

JOYNER, GEORGE DAVID. A Stieltjes Integral Existence Theorem. (1970) Directed by: Dr. H. B. Hoyle . pp. 43

Definition: Let f be a function from [a,b] into the real numbers. Then f is said to be locally variable on [a,b] provided there is a positive integer N such that if $\{s_p\}_0^n$ is an increasing sequence with $s_o = a$ and $s_n = b$, then f is of bounded variation on all but at most N of the intervals $[s_{p-1}, s_p]$ for 0 .

Theorem: Let f be a continuous function from [a,b] to the real numbers that is locally variable. If there exists a number M such that if $\{s_p\}_0^{2n}$ is a Stieltjes subdivision of [a,b], then

 $|\sum_{p=1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2}))| < M, \text{ then } \int_{a}^{b} f df \text{ exists.}$

A STIELTJES INTEGRAL EXISTENCE THEOREM

by

George David Joyner

A Thesis Submitted to the Faculty of the Graduate School at The University of North Carolina at Greensboro in Partial Fulfillment of the Requirements for the Degree Master of Arts

> Greensboro March, 1970

> > Approved by

B. Hayle, III dviser Thesis

APPROVAL SHEET

This thesis has been approved by the following committee of the Faculty of the Graduate School at the University of North Carolina at Greensboro.

> Thesis Adviser

Oral Examination Committee Members

e TH res B. n

, MA

March 17, 1970

Date of Examination

ACKNOWLEDGMENT

With sincere appreciation and gratitude I would like to thank Dr. H. B. Hoyle for his patient assistance and encouragement that made this thesis possible.

TABLE OF CONTENTS

I c	age
introduction	v
HAPTER I: NOTATION, DEFINITIONS, AND SOME PROPERTIES OF STIELTJES INTEGRALS	ı
HAPTER II: A STIELTJES INTEGRAL EXISTENCE THEOREM FOR SOME FUNCTIONS NOT OF BOUNDED VARIATION	21
IBLIOGRAPHY	43

INTRODUCTION

This paper is the result of inquiry into questions that arose concerning Stieltjes integrals. During a course in real analysis at the University of North Carolina at Greensboro, the students were asked to find an example of a continuous function f from [0,1] to the real numbers such that $\int_{0}^{1} f df did not exist$. The function f such that $f(x) = \begin{cases} x & \sin \frac{\pi}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

not of bounded variation. It was observed that the set of sums over all Stieltjes subdivisions of [0,1] was bounded for the function f with respect to itself. Thus the question remained, does $\int_{0}^{1} f df$ exist? It is shown in the paper that $\int_{0}^{1} f df$ does exist.

In looking for a general condition weaker than bounded variation under which Stieltjes integrals exist, three questions were asked. First, if f is continuous does $\int_{a}^{b} f df$ exist? A counter example is given in the paper. Second, does $\int_{a}^{b} f df$ exist if and only if f is continuous and f^2 is of bounded variation? A counter example for this question is given in the paper. Last, if f is continuous and the set of sums over all Stieltjes subdivisions of [a,b] is bounded does $\int_{a}^{b} f df$ exist? By the addition of a condition called locally variable as a restriction on the function, the last question can be answered affirmatively.

v

CHAPTER I

Notation, Definitions and Some Properties of Stieltjes Integrals

<u>Notation</u>: The symbol $\begin{pmatrix} s \\ p \end{pmatrix}_a^b = s$ means that a and b are nonnegative integers and s is a sequence whose domain is the set to which the integer p belongs only in case $a \le p \le b$.

<u>Definition 1</u>: A Stieltjes subdivision of the interval [a,b] is a nondecreasing finite sequence $s = \{s_p\}_0^{2m}$ such that $s_0 = a$ and $s_{2m} = b$. If $\{s_p\}_0^{2m}$ is a Stieltjes subdivision of [a,b] the norm of s, denoted ||s||, is defined by $||s|| = \sup \{s_{2p} - s_{2p-2} | 1 \le p \le m\}$. If $\{s_p\}_0^{2m}$ is a Stieltjes subdivision of [a,b] then the even part of s is the set $\{s_{2p} | 0 \le p \le m\}$ and the odd part of s is the set $\{s_{2p-1} | 1 \le p \le m\}$.

<u>Definition 2</u>: A refinement of a Stieltjes subdivision $\{s_p\}_0^{2n}$ of [a,b] is a Stieltjes subdivision $\{t_p\}_0^{2m}$ of [a,b] such that the even part of $\{s_p\}_0^{2n}$ is a subsequence of the even part of $\{t_p\}_0^{2m}$.

<u>Definition 3</u>: The function f from [a,b] to the real numbers is said to be of bounded variation only in case there is a number $\forall < \infty$ such that if $\{s_p\}_0^{2m}$ is a Stieltjes subdivision of [a,b] then $\sum_{p=1}^{\infty} |f(s_{2p}) - f(s_{2p-2})| < V$. The total variation of f is the smallest number \forall such that if $\{s_p\}_0^{2m}$ is a Stieltje subdivision of [a,b] then $\sum_{p=1}^{m} |f(s_{2p}) - f(s_{2p-2})| \le V$. Definition 4: Let a and b be real numbers with $a \leq b$. Let f and g be functions from [a,b] to the real numbers. The Stieltjes integral from a to b of f with respect to g denoted $\int_{a}^{b} f dg$ is a number z such that if ϵ is a positive number there is a Stieltjes subdivision $\{s_{p}\}_{0}^{2n}$ of [a,b] such that if $\{t_{p}\}_{0}^{2m}$ is a refinement of $\{s_{p}\}_{0}^{2n}$ then $|\sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) - z | < \epsilon$.

The following three theorems are easily proved and hence are stated without proof.

<u>Theorem 1:</u> Let $\{s_p\}_0^{2n}$ be a Stieltjes subdivision of [a,b] and let $\{t_p\}_0^{2m}$ be a refinement of $\{s_p\}_0^{2n}$. If $\{r_p\}_0^{2q}$ is a refinement of $\{t_p\}_0^{2m}$ then $\{r_p\}_0^{2q}$ is a refinement of $\{s_p\}_0^{2n}$.

<u>Theorem 2:</u> Let $\{s_p\}_0^{2n}$ and $\{t_p\}_0^{2m}$ be Stieltjes subdivisions of [a,b]. There exists a Stieltjes subdivision $\{r_p\}_0^{2q}$ that is a common refinement of $\{s_p\}_0^{2n}$ and $\{t_p\}_0^{2m}$.

<u>Theorem 3:</u> Let f and g be functions from [a,b] to the real numbers. If $\int_{a}^{b} f dg$ exists then $\int_{a}^{b} f dg$ is unique.

 $c \int_{a}^{b} f \, dg = \int_{a}^{b} c f \, dg = \int_{a}^{b} f \, d(cg).$

<u>Proof:</u> Let ϵ be a positive number. Either c = 0 or $c \neq 0$. If c = 0 then let $\left\{s_{p}\right\}_{0}^{2n}$ be a Stieltjes subdivision of [a,b] such that if $\left\{t_{p}\right\}_{0}^{2m}$ is a refinement of $\left\{s_{p}\right\}_{0}^{2n}$ then

$$|\int_{a}^{b} f dg - \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| < \epsilon. \text{ Let } \left\{t_{p}\right\}_{0}^{2m} \text{ be a}$$

refinement of ${s_p}_0^{2n}$. Now

$$| c \int_{a}^{b} f dg - c \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) |$$

$$= |c| | \int_{a}^{b} f dg - \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) | < |c| \cdot \epsilon = 0 < \epsilon.$$

Then
$$| c \int_{a}^{b} f dg - \sum_{p=1}^{m} c f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) | =$$

$$| c \int_{a}^{b} f dg - c \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) | < \epsilon$$
 and by theorem 3

$$c \int_{a}^{b} f dg = \int_{a}^{b} c f dg$$
. Also

$$| c \int_{a}^{b} f dg - \sum_{p=1}^{m} f(t_{2p-1})(cg(t_{2p}) - cg(t_{2p-2})) |$$

$$\mathbf{p} = | c \int_{a}^{b} f dg - \sum_{p=1}^{m} f(t_{2p-1}) c (g(t_{2p}) - g(t_{2p-2})) |$$

$$= |c \int_{a}^{b} f dg - c \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) | < \epsilon \text{ and by}$$

theorem 3, $c \int_{a}^{b} f dg = \int_{a}^{b} f d(cg)$. If $c \neq 0$ then let $\left\{s_{p}\right\}_{0}^{2n}$ be a

Stieltjes subdivision of [a,b] such that if ${t_p 0^{2m}}$ is a refinement

of
$$\{s_{p}^{1}\}_{0}^{2n}$$
 then $|\int_{a}^{b} f dg - \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| < |\frac{c}{b}|_{0}^{c}|$.
Let $\{t_{p}^{1}\}_{0}^{2m}$ be a refinement of $\{s_{p}^{1}\}_{0}^{2n}$. Now
 $|\circ \int_{a}^{b} f dg - \circ \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))|$
 $= |\circ| |\int_{a}^{b} f dg - \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| < |\circ| + |\frac{c}{b}| = \epsilon$.
Then $|\circ \int_{a}^{b} f dg - \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))|$
 $= |\circ| \int_{a}^{b} f dg - \circ \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))|$
 $= |\circ| \int_{a}^{b} f dg - \circ \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| < \epsilon$ and by theorem
 $3 \circ \int_{a}^{b} f dg - \sum_{p=1}^{m} f(t_{2p-1})(cg(t_{2p}) - cg(t_{2p-2}))|$
 $= |\circ| \int_{a}^{b} f dg - \sum_{p=1}^{m} f(t_{2p-1})(cg(t_{2p}) - g(t_{2p-2}))|$
 $= |\circ| \int_{a}^{b} f dg - \sum_{p=1}^{m} f(t_{2p-1})(cg(t_{2p}) - g(t_{2p-2}))|$
 $= |\circ| \int_{a}^{b} f dg - \circ \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))|$
 $= |\circ| \int_{a}^{b} f dg - \circ \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| < \epsilon$ and by theorem
 $3_{1} \circ \int_{a}^{b} f dg - \int_{a}^{m} f dg - \int_{a}^{m} f d(cg).$
Theorem 5: If $\int_{a}^{b} f dh$ and $\int_{a}^{b} g dh$ exist then $\int_{a}^{b} (f + g) dh =$
 $\int_{a}^{b} f dh + \int_{a}^{b} g dh.$

Proof: Let ϵ be a positive number. Let $\left\{s_{p}\right\}_{0}^{2n}$ be a Stieltjes subdivision of [a,b] such that if ${t_p}_0^{2m}$ is a refinement of ${s_p}_0^{2n}$ then $|\int_0^b f dh - \sum_{p=1}^m f(t_{2p-1})(h(t_{2p}) - h(t_{2p-2}))| < \epsilon/2$. Let $\left\{r_{p}\right\}_{0}^{2k}$ be a Stieltjes subdivision of [a,b] such that if $\left\{t_{p}\right\}_{0}^{2m}$ is a refinement of $\left\{r_{p}\right\}_{0}^{2k}$ then $\left|\int_{0}^{b} g dh - \sum_{p=1}^{m} g(t_{2p-1})(h(t_{2p}) - h(t_{2p-2}))\right| < \epsilon/2. \text{ Let } \left(t_{p}\right)_{0}^{2m} \text{ be a}$ common refinement of $\left(s_p\right)_0^{2n}$ and $\left(r_p\right)_0^{2k}$. Let $\left(z_p\right)_0^{2q}$ be a refinement of $\left\{t_p^{2m}\right\}_0^{2m}$ then $|\int_{a}^{b} f dh + \int_{a}^{b} g dh - \sum_{p=1}^{q} (f + g)(z_{2p-1})(h(z_{2p}) - h(z_{2p-2}))| =$ $\left|\int_{a}^{b} f dh + \int_{a}^{b} g dh - \sum_{p=1}^{q} (f(z_{2p-1}) + g(z_{2p-1}))(h(z_{2p}) - h(z_{2p-2}))\right| =$ $\int_{a}^{b} f dh + \int_{a}^{b} g dh - \sum_{p=1}^{q} f(z_{2p-1})(h(z_{2p}) - h(z_{2p-2}))$ $g_{\Sigma_{2p-1}}^{q} g(z_{2p-1})(h(z_{2p}) - h(z_{2p-2})) | \le$ $\int_{0}^{b} f dh - \sum_{p=1}^{q} f(z_{2p-1})(h(z_{2p}) - h(z_{2p-2})) | +$ $\left|\int_{a}^{b} g dh - \sum_{p=1}^{q} g(z_{2p-1})(h(z_{2p}) - h(z_{2p-2}))\right| < \epsilon/2 + \epsilon/2 = \epsilon. By$ theorem 3, $\int^{b} f dh + \int^{b} g dh = \int^{b} (f + g) dh$.

Theorem 6: If
$$\int_{a}^{b} f dh$$
 and $\int_{a}^{b} f dg$ exist then $\int_{a}^{b} f d(h + g)$
= $\int_{a}^{b} f dh + \int_{a}^{b} f dg$.

<u>Proof:</u> Let ϵ be a positive number. Let $\left\{s_{p}\right\}_{0}^{2n}$ be a Stieltjes subdivision of [a,b] such that if $\left\{t_{p}\right\}_{0}^{2m}$ is a refinement of $\left\{s_{p}\right\}_{0}^{2n}$ then $\left|\int_{a}^{b} f dh - \sum_{p=1}^{m} f(t_{2p-1})(h(t_{2p}) - h(t_{2p-2}))\right| < \epsilon/2$. Let $\left\{r_{p}\right\}_{0}^{2k}$ be a Stieltjes subdivision of [a,b] such that if $\left\{t_{p}\right\}_{0}^{2m}$ is a refinement of $\left\{r_{p}\right\}_{0}^{2k}$ then

$$|\int_{a}^{b} f dg - \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| < \epsilon/2. \text{ Let } \left\{t_{p}\right\}_{0}^{2m} \text{ be}$$

a common refinement of $\{s_p\}_0^{2n}$ and $\{r_p\}_0^{2k}$. Let $\{z_p\}_0^{2q}$ be a refinement of $\{t_p\}_0^{2m}$.

$$\left|\int_{a}^{b} f dh + \int_{a}^{b} f dg - \sum_{p=1}^{q} f(z_{2p-1})[(h + g)(z_{2p}) - (h + g)(z_{2p-2})]\right| =$$

$$\int_{a}^{b} f dh + \int_{a}^{b} f dg - \sum_{p=1}^{q} f(z_{2p-1})[(h(z_{2p}) - h(z_{2p-2})) +$$

$$(g(z_{2p}) - g(z_{2p-2}))] | =$$

$$\int_{a}^{b} f dh + \int_{a}^{b} f dg - \sum_{p=1}^{q} f(z_{2p-1})(h(z_{2p}) - h(z_{2p-2})) -$$

$$\sum_{p=1}^{q} f(z_{2p-1})(g(z_{2p}) - g(z_{2p-2})) | \le | \int_{a}^{b} f dh -$$

$$\int_{a}^{q} f(z_{2p-1})(h(z_{2p}) - h(z_{2p-2})) | +$$

$$| \int_{a}^{b} f dg - \sum_{p=1}^{q} f(z_{2p-1})(g(z_{2p}) - g(z_{2p-2})) | < \epsilon/2 + \epsilon/2 = \epsilon.$$
 By

theorem 3, $\int_{a}^{b} f dh + \int_{a}^{b} f dg = \int_{a}^{b} f d(h + g).$

<u>Theorem 7:</u> If $\int_{a}^{b} f \, dg$ exists then $\int_{a}^{b} g \, df$ exists and

 $\int_{a}^{b} f dg + \int_{a}^{b} g df = f(b)g(b) - f(a)g(a)$

<u>Proof:</u> Let ϵ be a positive number. Let $\left\{s_{p}\right\}_{0}^{2n}$ be a Stieltjes subdivision of [a,b] such that if $\left\{t_{p}\right\}_{0}^{2m}$ is a refinement of $\left\{s_{p}\right\}_{0}^{2n}$

then $\left|\int_{a}^{b} f dg - \sum_{p=1}^{m} f(s_{2p-1})(g(s_{2p}) - g(s_{2p-2}))\right| < \epsilon$. Let $\left\{t_{p}\right\}_{0}^{2m}$

be a refinement of $\{s_p\}_{0}^{2n}$ such that if $0 \le p \le 2n$ then

 $\begin{cases} t_{2p} = t_{2p+1} = t_{2p+2} = s_p \text{ for } p \text{ even} \\ t_{2p+1} = s_p \text{ for } p \text{ odd} \end{cases}$

Let $\left\{ r_{p}^{2k} \right\}_{0}^{2k}$ be a refinement of $\left\{ t_{p}^{2m} \right\}_{0}^{2m}$. Then

$$f(b)g(b) - f(a)g(a) - \int_{a}^{b} f dg - \sum_{p=1}^{k} g(r_{2p-1})(f(r_{2p}) - f(r_{2p-2})) | =$$

$$| f(r_{2k})g(r_{2k-1}) - f(r_0)g(r_1) - \int_a^b f dg - \sum_{p=1}^k g(r_{2p-1})f(r_{2p}) + \\ \frac{k}{p=1} g(r_{2p-1})f(r_{2p-2}) | = \\ | - \int_a^b f dg - \sum_{p=1}^{k-1} g(r_{2p-1})f(r_{2p}) + \sum_{p=2}^k g(r_{2p-1})f(r_{2p-2}) | = \\ | \frac{k-1}{p} g(r_{2p+1})f(r_{2p}) - \sum_{p=1}^{k-1} g(r_{2p-1})f(r_{2p}) - \int_a^b f dg | = \\ | \frac{k-1}{p=1} f(r_{2p})(g(r_{2p+1}) - g(r_{2p-1})) - \int_a^b f dg | \cdot \text{ If } p \text{ is an even} \\ \text{integer and } 0 \le p \le 2n \text{ then there is an integer } j \text{ such that} \\ p \le j \le k-1 \text{ and } s_p = t_{2p} = t_{2p+1} = t_{2p+2} = r_{2j} = r_{2j+1} = r_{2j+2} \cdot \\ \text{Thus } a = s_0 = t_1 = r_1 \text{ and } b = s_{2n} = t_{1n+1} = r_{2k-1} \cdot \text{ Let } V_{p-1} = r_p \\ \text{for } 1 \le p \le 2k-1 \text{ then } \{v_p\}_0^{2k-2} \text{ is a refinement of } \{s_p^{12n} \text{ and} \\ | \frac{k-1}{p=1} f(r_{2p})(g(r_{2p+1}) - g(r_{2p-2})) - \int_a^b f dg | = \\ | \frac{k-1}{p=1} f(v_{2p-1})(g(v_{2p}) - g(v_{2p-2})) - \int_a^b f dg | < \epsilon \text{. Thus} \\ | f(b)g(b) - f(a)g(a) - \int_a^b f dg - \sum_{p=1}^k g(r_{2p-1})(f(r_{2p}) - f(r_{2p-2})) | < \epsilon, \\ \text{hence by theorem } 3_{j_a}^b g \text{ df exists, and } \int_a^b g \text{ df } = \\ f(b)g(b) - f(a)g(a) - \int_a^b f dg. \end{cases}$$

r

S

S

126

033.

bance

a(d)

Let $V = \left\{ V_k \right\}_{1}^{\infty}$ be the sequence defined by

$$V_{k} = \sum_{p=1}^{\infty} f(s_{k_{2p-1}})(g(s_{k_{2p}}) - g(s_{k_{2p-2}}))$$

In the following three lemmas f, g, S, and V are as above.

Lemma 1: Let ϵ be a positive number and let § be a positive number such that § < ϵ . Let $\{s_p\}_0^{2n}$ be the Stieltjes subdivision of [a,b] such that if $\{t_p\}_0^{2m}$ is a refinement of $\{s_p\}_0^{2n}$ then

$$\begin{aligned} \mid \sum_{p=1}^{n} f(s_{2p-1})(g(s_{2p}) - g(s_{2p-2})) - \\ & \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) \mid < \epsilon. \text{ There exist a refinement} \\ & \left\{\overline{s}_{p}\right\}_{0}^{2q} \text{ of } \left\{s_{p}\right\}_{0}^{2n} \text{ such that if } \left\{t_{p}\right\}_{0}^{2m} \text{ is a refinement of } \left\{\overline{s}_{p}\right\}_{0}^{2q} \right\} \\ & \text{then } \mid \sum_{p=1}^{q} f(\overline{s}_{2p-1})(g(\overline{s}_{2p}) - g(\overline{s}_{2p-2})) - \\ & \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) \mid < \$. \\ & \frac{Proof:}{p} \text{ Let } \left\{r_{p}\right\}_{0}^{2k} \text{ be a Stieltje subdivision of } [a,b] \text{ such that} \\ & \text{if } \left\{t_{p}\right\}_{0}^{2m} \text{ is a refinement of } \left\{r_{p}\right\}_{0}^{2k} \text{ then} \end{aligned}$$

 $|\sum_{p=1}^{k} f(r_{2p-1})(g(r_{2p}) - g(r_{2p-2})) - \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(r_{2p-2})) - g(r_{2p-1})(g(t_{2p}) - g(r_{2p-1})) - g(r_{2p-1})(g(t_{2p-1})) - g(r_{2p-1})($

$$\begin{split} g(t_{2p-2})) &|< \$/2. \text{ Let } \{\overline{s}_{p}\}_{0}^{2q} \text{ be a common refinement of } \{r_{p}\}_{0}^{2k} \\ \text{and } \{s_{p}\}_{0}^{2n} \cdot \text{ Then } \{\overline{s}_{p}\}_{0}^{2q} \text{ is a refinement of } \{s_{p}\}_{0}^{2n} \text{ and if } \{t_{p}\}_{0}^{2k} \\ \text{is a refinement of } \{\overline{s}_{p}\}_{0}^{2q} \text{ it is also a refinement of } \{r_{p}\}_{0}^{2k} \text{ and} \\ &| \frac{q}{2} \quad f(\overline{s}_{2p-1})(g(\overline{s}_{2p}) - g(\overline{s}_{2p-2})) - \frac{\pi}{2} \quad f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) | \leq \\ &| \frac{q}{2} \quad f(\overline{s}_{2p-1})(g(\overline{s}_{2p}) - g(\overline{s}_{2p-2})) - \frac{\pi}{2} \quad f(r_{2p-1})(g(r_{2p}) - g(r_{2p-2})) | + \\ &| \frac{k}{2} \quad f(r_{2p-1})(g(r_{2p}) - g(r_{2p-2})) - \frac{\pi}{2} \quad f(t_{2p-1})(g(t_{2p}) - g(r_{2p-2})) | + \\ &| \frac{k}{2} \quad f(r_{2p-1})(g(r_{2p}) - g(r_{2p-2})) - \frac{\pi}{2} \quad f(t_{2p-1})(g(t_{2p}) - g(r_{2p-2})) | + \\ &| \frac{k}{2} \quad f(r_{2p-2})| | < \frac{\$}{2} + \frac{\$}{2} = \$. \\ \\ \text{Thus } \{\overline{s}_{p}\}_{0}^{2q} \text{ is a refinement of } \{\overline{s}_{p}\}_{0}^{2n} \text{ such that if } \{t_{p}\}_{0}^{2m} \text{ is a } \\ &\text{refinement of } \{\overline{s}_{p}\}_{0}^{2q} \text{ then } | \frac{\pi}{2} \quad f(\overline{s}_{2p-1})(g(\overline{s}_{2p}) - g(\overline{s}_{2p-2})) - g(\overline{s}_{2p-2})) - g(\overline{s}_{2p-2})| - \\ &| \frac{\pi}{2} \quad f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| < \$. \end{split}$$

Lemma 2: The sequence V converges.

<u>Proof:</u> Let ϵ be a positive number. There exist a positive integer N such that $\frac{1}{N} < \epsilon/2 < \epsilon$. Let c and d be positive integers such that $c \ge N$ and $d \ge N$. There is a Stieltjes subdivision s_c of [a,b] such that if $\{t_p\}_{0}^{2m}$ is a refinement of s_c then

$$\begin{split} &|\sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) - \sum_{p=1}^{n} f(s_{c_{2p-1}})(g(s_{c_{2p}}) - g(s_{c_{2p-2}}))|| < \frac{1}{c} \cdot \text{ There is a Stieltjes subdivision } s_{d} \text{ of } [a,b] \\ &= \text{ such that if } \left\{ t_{p}_{10}^{2m} \text{ is a refinement of } s_{d} \text{ then} \right\} \\ &+ \left| \frac{q}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) - \frac{m}{d} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) \right| < \frac{1}{d} \cdot \\ &= t \left\{ t_{p}_{10}^{2m} \text{ be a common refinement of } s_{c} \text{ and } s_{d} \text{ then} \right\} \\ &+ \left| \frac{q}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) - \frac{m}{d} f(s_{c_{2p-1}})(g(s_{c_{2p}}) - g(s_{d_{2p-2}})) \right| < \frac{1}{d} \cdot \\ &= t \left\{ t_{p}_{10}^{2m} \text{ be a common refinement of } s_{c} \text{ and } s_{d} \text{ then} \right\} \\ &+ \left| \frac{q}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) - \frac{m}{p-1} f(s_{c_{2p-1}})(g(s_{c_{2p}}) - g(s_{d_{2p-2}})) \right| \\ &= t \left\{ \frac{q}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) - \frac{m}{p-1} f(t_{2p-1})(g(t_{2p}) - g(s_{d_{2p-2}})) \right\} \\ &+ \left| \frac{q}{p-1} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) - \frac{m}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) \right| \\ &= t \left\{ \frac{q}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) - \frac{m}{p-1} f(t_{2p-1})(g(t_{2p}) - g(s_{d_{2p-2}})) \right\} \\ &= t \left\{ \frac{q}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) - \frac{m}{p-1} f(t_{2p-1})(g(t_{2p}) - g(s_{d_{2p-2}})) \right\} \\ &= t \left\{ \frac{q}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) - \frac{m}{p-1} f(t_{2p-1})(g(t_{2p}) - g(s_{d_{2p-2}})) \right\} \\ &= t \left\{ \frac{q}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) - \frac{m}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) \right\} \\ &= t \left\{ \frac{q}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) - \frac{m}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) \right\} \\ &= t \left\{ \frac{q}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) - \frac{m}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}}) \right\} \\ &= t \left\{ \frac{q}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) - \frac{m}{p-1} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}}) \right\} \\ &= t \left\{ \frac{q}{p-1} f(s_{d_{2p-1}})(g(s_{d$$

$$\begin{split} g(t_{2p-2})) &| + \\ &| \sum_{p=1}^{n} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) - \sum_{p=1}^{n} f(s_{2p-1})(g(s_{2p}) - g(s_{2p-2})) || < \frac{1}{d} + \frac{1}{c} \leq \frac{1}{N} + \frac{1}{N} < \epsilon/2 + \epsilon/2 = \epsilon. \\ &\text{Thus if } \epsilon > 0 \\ &\text{there exist a positive integer N such that if c and d are integers and N < c, d then $| v_d - v_d | = \\ &| \sum_{p=1}^{q} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) - \sum_{p=1}^{n} f(s_{d_{2p-1}})(g(s_{d_{2p}}) - g(s_{d_{2p-2}})) - g(s_{d_{2p-2}}) - g(s_{d_{2p-2}})(g(s_{d_{2p-2}}) - g(s_{d_{2p-2}})) || < \epsilon. \\ &\text{Thus V is a Cauchy sequence and V converges.} \\ &\frac{\text{Lemma 3: } \lim_{k \to \infty} w_k = \frac{b}{k} f dg \\ &\frac{\text{Proof: } \text{Let } \epsilon \text{ be a positive number. Since V converges let} \\ &\lim_{k \to \infty} w_k = Z. \\ &\text{There exists a positive integer N such that if k is \\ &\text{an integer and N \leq k} \\ &\text{then } | Z - v_k | < \epsilon/2. \\ &\text{Let } k \text{ be an integer} \\ &\text{such that } N \leq k \text{ and } \frac{1}{k} < \epsilon/2. \\ &\text{Let } \{t_p\}_0^{2m} \text{ be a refinement of} \\ &s_k = \left\{s_k\right\}_{0}^{2m} \\ &\text{then } \\ &| \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) - \sum_{p=1}^{n} f(s_{k_{2p-1}})(g(s_{k_{2p}}) - g(s_{k_{2p}})) \\ & = \frac{m}{p-1} \\ & = \frac{$$$

g(s_{k2p=2})) | =

$$\begin{aligned} &|\sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}) - v_{k}| < \frac{1}{k} \quad \text{Then} \\ &| z - \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| = | z - \sum_{p=1}^{n} f(s_{k_{2p-1}})(g(s_{k_{2p}}) - g(s_{k_{2p-2}}))| \\ &| g(s_{k_{2p-2}})| + \\ &| \sum_{p=1}^{n} f(s_{k_{2p-1}})(g(s_{k_{2p}}) - g(s_{k_{2p-2}})) - \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| \\ &| z - \sum_{p=1}^{n} f(s_{k_{2p-1}})(g(s_{k_{2p}}) - g(s_{k_{2p-2}}))| + | \sum_{p=1}^{n} f(s_{k_{2p-1}})(g(s_{k_{2p}}) - g(s_{k_{2p}}))| \\ &| z - \sum_{p=1}^{n} f(s_{k_{2p-1}})(g(s_{k_{2p}}) - g(s_{k_{2p-2}}))| + | \sum_{p=1}^{n} f(s_{k_{2p-1}})(g(s_{k_{2p}}) - g(s_{k_{2p-2}}))| \\ &| g(s_{k_{2p-2}})) - \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| \\ &= | z - v_{k}| + | v_{k} - \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| < \epsilon/2 + \frac{1}{k} < \\ &| e^{j/2} + \epsilon/2 = \epsilon. \quad \text{Thus if } \epsilon > 0, z \text{ is a number and } s_{k} \text{ is a Stieltjes} \\ &| \text{subdivision of } [a,b] \text{ such that if } \left\{ t_{p}^{j} t_{2p-2}^{2m} \right\} | < \epsilon. \quad \text{Therefore } z = \\ &| \text{then } | z - \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| < \epsilon. \\ &| \text{Therefore } z = \\ &| \text{then } | z - t_{p-1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| < \epsilon. \\ &| \text{Therefore } z = \\ &$$

 $\int_{a}^{b} f dg \text{ and } \lim_{k \to \infty} V_{k} = \int_{a}^{b} f dg.$

The preceding lemmas and definitions may be combined and stated as follows.

<u>Theorem 8:</u> Let f and g be functions from [a,b] to the real numbers. If ϵ is a positive number and there exists a Stieltjes subdivision $\{s_p\}_0^{2n}$ of [a,b] such that if $\{t_p\}_0^{2m}$ refines $\{s_p\}_0^{2n}$

then
$$|\sum_{p=1}^{n} f(s_{2p-1})(g(s_{2p}) - g(s_{2p-2})) - \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(s_{2p-2})) - \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p-1}))(g(t_{2p-1})) - g(s_{2p-2})) - \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p-1}))(g(t_{2p-2})) - g(s_{2p-2})) - g(s_{2p-2})(g(t_{2p-2}))(g(t_{2p-2})) - g(s_{2p-2})(g(t_{2p-2}))(g(t_{2p-2})) - g(s_{2p-2})) - g(s_{2p-2})(g(t_{2p-2}))(g(t_{2p-2})) - g(s_{2p-2})(g(t_{2p-2}))(g(t_{2p-2})) - g(s_{2p-2})(g(t_{2p-2}))(g(t_{2p-2}))(g(t_{2p-2})) - g(s_{2p-2})(g(t_{2p-2}))(g(t_{2p$$

 $g(t_{2p-2})) | < \epsilon$, then $\int_{a}^{b} f dg$ exists.

<u>Theorem 9:</u> Let f and g be functions from [a,b] to the real numbers. If f is continuous and g is of bounded variation on [a,b] then $\int_{a}^{b} f dg$ exists.

Proof: Let ϵ be a positive number. Let H be the total variation of g. By the uniform continuity of f, let § be a positive number such that if x, y ϵ [a,b] and |x - y| <§ then $|f(x) - f(y)| < \frac{\epsilon}{1+H}$ Let $\{s_p\}_0^{2n}$ be a Stieltjes subdivision of [a,b] such that ||s|| <§. Let $\{t_p\}_0^{2m}$ be a refinement of $\{s_p\}_0^{2n}$. Since each t_{2p-1} , $1 \le p \le m$, is contained in some $[s_{2k-2}, s_{2k}]$, then there is a number z_{2p-1} such that $f(s_{2k-1}) + z_{2p-1} = f(t_{2p-1})$

and
$$|z_{2p-1}| < \frac{\epsilon}{1+H}$$
 Then $|\sum_{p=1}^{n} f(s_{2p-1})(g(s_{2p}) - g(s_{2p-2})) - g(s_{2p-2})| = \frac{m}{2} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))|$
= $|\sum_{p=1}^{n} f(s_{2p-1})(g(s_{2p}) - g(s_{2p-2})) - \sum_{p=1}^{m} (f(s_{2k-1}) + z_{2p-1})(g(t_{2p}) - g(s_{2p-2}))|$

$$\begin{split} g(t_{2p-2})) &| \text{ and since the even part of } \left\{ s_{p}^{1} \right\}_{0}^{2n} \text{ is contained in the} \\ \text{even part of } \left\{ t_{p}^{1} \right\}_{0}^{2m} \text{ the above equals } \left| \frac{2}{2} f(s_{2p-1})(g(s_{2p}) - g(t_{2p-2})) \right| \\ g(s_{2p-2})) - \frac{2}{p-1} f(s_{2p-1})(g(s_{2p}) - g(s_{2p-2})) - \frac{2}{p-1} z_{2p-1}(g(t_{2p})-g(t_{2p-2}))| \\ = \left| \frac{2}{p-1} z_{2p-1}(g(t_{2p}) - g(t_{2p-2})) \right| \\ \leq \frac{2}{p-1} |z_{2p-1}||g(t_{2p}) - g(t_{2p-2})| \\ = \frac{2}{p-1} \frac{2}{1+H} |g(t_{2p}) - g(t_{2p-2})| \\ = \frac{2}{1+H} |g(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| \\ = \frac{2}{1+H} |g(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| \\ = \frac{2}{1+H} |g(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| \\ = \frac{2}{1} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})| \\ = \frac{2}{1} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})$$

a refinement of $\{s_p\}_0^{2n}$ then $|\int_a^b f dg - \sum_{p=1}^m f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2}))| < \epsilon/2$. Let $\{t_p\}_0^{2m}$ be a refinement of $\{s_p\}_0^{2n}$ such that

$$\begin{split} t_{2k} &= c. \text{ Let } \{r_p\}_{0}^{2Q} \text{ be a refinement of } \{t_p\}_{0}^{2m} \text{ such that } r_{2j} = c \\ \text{and } \{r_p\}_{0}^{\frac{1}{2}Q} \text{ is identical to } \{t_p\}_{0}^{\frac{1}{2}m} \text{ on } [c,b]. \text{ Then } e = c/2 + c/2 \\ | \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) - \int_{a}^{b} f dg | + | \int_{a}^{b} f dg - \\ \frac{q}{p-1} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) - \int_{p-1}^{q} f(r_{2p-1})(g(r_{2p}) - g(r_{2p-2}))| = \\ | \sum_{p=1}^{m} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) - \int_{p-1}^{q} f(r_{2p-1})(g(r_{2p}) - g(r_{2p-2}))| = \\ | \sum_{p=1}^{k} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) - \int_{p-1}^{\frac{1}{2}} f(r_{2p-1})(g(r_{2p}) - g(r_{2p-2}))| \text{ thus } \\ \{t_p\}_{0}^{2k} \text{ is a Stieltjes subdivision of } [a,c] \text{ such that if } \{r_p\}_{0}^{2j} \text{ is } \\ a \text{ refinement of } \{t_p\}_{0}^{2k} \text{ then } | \sum_{p=1}^{k} f(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) - \\ \frac{1}{2} f(r_{2p-1})(g(r_{2p}) - g(r_{2p-2}))| < \epsilon. \text{ Therefore by theorem } \delta, \int_{a}^{c} f dg \\ exists. By similar method \int_{0}^{b} f dg exists. Let \{u_p\}_{0}^{2k} be a \\ \\ \text{Stieltjes subdivision of } [a,c] \text{ such that if } \{w_p\}_{0}^{2j} \text{ is a refinement } \\ \text{of } (u_p)_{0}^{\frac{1}{2k}} \text{ then } | \sum_{p=1}^{2} f(w_{2p-1})(g(w_{2p}) - g(w_{2p-2})) - \\ \int_{a}^{c} f dg | < \epsilon/2. \\ \text{iet } \{v_p]_{0}^{2k} \text{ be a } \\ \\ \text{Stieltjes subdivision of } [a,c] \text{ such that if } \{w_p\}_{0}^{2j} \text{ is a refinement } \\ \\ \text{of } (u_p)_{0}^{\frac{1}{2k}} \text{ then } | \sum_{p=1}^{2} f(w_{2p-1})(g(w_{2p}) - g(w_{2p-2})) - \int_{a}^{c} f dg | < \epsilon/2. \\ \text{iet } \{v_p\}_{0}^{2k} \text{ be a Stieltjes subdivision of } [c,b] \text{ such that if } \{w_p\}_{0}^{2q} \text{ sa a refinement of } \{v_p\}_{0}^{2k} \text{ then } \\ \frac{1}{2} f(w_{2p-1})(g(w_{2p}) - g(w_{2p-2})) - \int_{0}^{b} f dg | < \epsilon/2. \text{ Let } \{x_p\}_{0}^{2(1+k)} \text{ be } \\ \\ = \\ \end{bmatrix}$$

F

the Stieltjes subdivision of [a,b] such that $z_p = u_p$ for $0 \le p \le 2k$ and $z_p = V_{p-2k}$ for $2k \le p \le 2$ (i+k). Let $\left[W_{p}^{1} \right]_{0}^{2m}$ be a refinement of $\left\{ z_p \right\}_{0}^{2(i+k)}$ then there is an integer $d \le m$ such that $W_{2d} = z_{2i}$. Then $\epsilon = \epsilon/2 + \epsilon/2 > | \frac{d}{2} f(W_{2p-1})(g(W_{2p}) - g(W_{2p-2})) - \int_{a}^{c} f dg | +$ $| \frac{m}{2} f(W_{2p-1})(g(W_{2p}) - g(W_{2p-2})) - \int_{c}^{b} f dg | \ge | \sum_{p=1}^{m} f(W_{2p-1})(g(W_{2p}) - g(W_{2p-2})) - (\int_{a}^{c} f dg + \int_{c}^{b} f dg) |$. Thus by theorem 3, $\int_{a}^{c} f dg + \int_{c}^{b} f dg = \int_{a}^{b} f dg.$

Theorem 11: If f is a function from [a,b] to the real numbers and $\int_{a}^{b} f d f$ exists then f is continuous.

Proof: Suppose f is not continuous on [a,b]. Let $c \in [a,b]$ such that f is not continuous at c. Either the discontinuity at c is on the right or the left. Let the discontinuity be on the right. Let ϵ be a positive number such that if § is a positive number there is an $x \in [a,b]$ and |x-c| < such that |f(x) - f(c)|> ϵ . Let $\gamma = \frac{\epsilon^2}{2}$. Let $\{s_p\}_{0}^{2n}$ be the Stieltjes subdivision of [a,b] such that if $\{t_p\}_{0}^{2m}$ is a refinement of $\{s_p\}_{0}^{2n}$ then

 $\begin{array}{l} t_{2k}=c \ \text{and} \ t_{2k+1} \neq c. \ \text{Let} \ d \in [t_{2k}, t_{2k+1}] \ \text{such that} \mid f(c) - \\ f(d) \mid > \epsilon. \ \text{Let} \ \left\{r_p\right\}_0^{2m+2} \ \text{be a refinement of} \ \left\{t_p\right\}_0^{2m} \ \text{such that} \\ r_{2k+1} = r_{2k+2} = d, \ r_p = t_p \ \text{for} \ 0 \leq p \leq 2k, \ \text{and} \ r_{p+2} = t_p \ \text{for} \\ 2k+1 \leq p \leq 2m. \ \text{Let} \ \left\{u_p\right\}_0^{2m+2} \ \text{be a refinement of} \ \left\{t_p\right\}_0^{2m} \ \text{such that} \\ u_{2k+1} = t_{2k}, \ u_{2k+2} = d, \ u_p = t_p \ \text{for} \ 0 \leq p \leq 2k, \ \text{and} \ u_{p+2} = t_p \ \text{for} \\ 2k+1 \leq p \leq 2m. \end{array}$

Then
$$\begin{vmatrix} m+1 \\ 2 \\ p=1 \end{vmatrix} f(r_{2p-1})(f(r_{2p}) - f(r_{2p-2})) - \sum_{p=1}^{m+1} f(u_{2p-1})(f(u_{2p}) - \sum_{p=1}^{m+1} f(p_{2p-1})(p_{2p-1})(p_{2p-1}) - \sum_{p=1}^{m+1} f(p_{2p-1})($$

f(u_{2p-2}))| =

to the second of the second of

$$|f(r_{2k+1})(f(r_{2k+2}) - f(r_{2k}) - f(u_{2k+1})(f(u_{2k+2}) - f(u_{2k}))| =$$

 $| f(d)(f(d) - f(c)) - f(c)(f(d) - f(c))| = |(f(d) - f(c))(f(d) - f(c))| = | f(d) - f(c)|^2 > \epsilon^2.$ Since $\{r_p\}_0^{2m+2}$ and $\{u_p\}_0^{2m+2}$ are refinements of $\{s_p\}_0^{2m}$ then

$$\epsilon^{2} = \frac{2}{2} \epsilon^{2} = 2 \gamma > |\sum_{p=1}^{m+1} f(r_{2p-1})(f(r_{2p}) - f(r_{2p-2})) - \int_{a}^{b} f d f | +$$

$$\int_{a}^{b} f d f - \sum_{p=1}^{m+1} f(u_{2p-1})(f(u_{2p}) - f(u_{2p-2}))| \ge 0$$

$$\sum_{p=1}^{m+1} f(r_{2p-1})(f(r_{2p}) - f(r_{2p-2})) - \int_{a}^{b} f df + \int_{a}^{b} f df - \frac{1}{a} f df + \int_{a}^{b} f df + \int_{a}^{b} f df + \int_{a}^{b} f df - \frac{1}{a} f df + \int_{a}^{b} f$$

 $\sum_{p=1}^{m+1} f(u_{2p-1})(f(u_{2p}) - f(u_{2p-2}))|$

$$= |\sum_{p=1}^{m+1} f(r_{2p-1})(f(r_{2p}) - f(r_{2p-2})) - \sum_{p=1}^{m+1} f(u_{2p-1})(f(u_{2p}) - f(u_{2p-2}))|,$$

20

a contradiction. Thus f is continuous. A similar argument holds for discontinuity on the left.

CHAPTER II

A Stieltjes Integral Existence Theorem for Some Functions Not of Bounded Variation

Example 1: Let g: $[0,1] \rightarrow$ reals be defined by $g(x) = \sqrt[\pi]{x} \sin \frac{\pi}{x}$ if $x \neq 0$. Then g is continuous on [0,1] but 0 if x = 0. $\int_{0}^{1} g \, dg$ does not exist.

<u>Proof:</u> The function g is the product of continuous functions for $x \neq 0$; thus if g is continuous at zero then it is continuous on [0,1]. Let ϵ be a positive number. Let $\S = \epsilon^2$ and if $x \in [0,1]$ such that $|x-0| < \S = \epsilon^2$ then $|\sqrt{x} \sin \frac{\pi}{x} - 0| = |\sqrt{x} \sin \frac{\pi}{x}| = |\sqrt{x}|| \sin \frac{\pi}{x}| \le |\sqrt{x}| = \sqrt{x} < \sqrt{\S} = \sqrt{\epsilon^2}$ $= \epsilon$ and g is continuous at zero.

Let $\{s_p\}_0^\infty$ be the sequence defined by $s_0 = 1$, $s_{2p} = \frac{2}{2p+1}$, $s_{2p-1} = s_{2p-2}$, where 0 < p.

 $\sum_{p=1}^{\tilde{z}} g(s_{2p-1})(g(s_{2p-2}) - g(s_{2p})) = \sum_{p=1}^{\tilde{z}} g^2(s_{2p-2}) - g(s_{2p-2})g(s_{2p}) =$ $\sum_{p=2}^{\tilde{z}} (\sqrt{s_{2p-2}} \sin \frac{\pi}{s_{2p-2}})^2 - \sqrt{s_{2p-2}} \sin \frac{\pi}{s_{2p-2}} \sqrt{s_{2p}} \sin \frac{\pi}{s_{2p}} =$ $\sum_{p=2}^{\tilde{z}} s_{2p-2} \sin^2 \frac{\pi}{s_{2p-2}} - \sqrt{s_{2p}s_{2p-2}} \sin \frac{\pi}{s_{2p-2}} \sin \frac{\pi}{s_{2p}} = \sum_{p=2}^{\tilde{z}} \frac{2}{2p-1} +$ $\sqrt{\frac{2}{2p+1} \cdot \frac{2}{2p-1}} > \sum_{p=2}^{\tilde{z}} \frac{1}{2p-1} = \sum_{p=1}^{\tilde{z}} \frac{1}{2p+1}.$ By theorem 3.27 of Rudin,

<u>Principles of Mathematical Analysis</u>, $\sum_{p=1}^{\infty} \frac{1}{2p+1}$ converges if and only $\inf_{p=0}^{\infty} \frac{2^{p}}{2^{p+1}+1} \quad \text{converges.} \quad \lim_{p \to \infty} \frac{2^{p}}{2^{p+1}+1} = \lim_{p \to \infty} \frac{1}{2^{p+1}} = \frac{1}{2} \quad \text{thus} \quad \sum_{p=1}^{\infty} \frac{1}{2^{p+1}}$ diverges and $\sum_{p=1}^{\infty} g(s_{2p-1})(g(s_{2p-2}) - g(s_{2p}))$ diverges by comparison. Therefore if ${r_p}_0^{p-1}$ is a Stieltjes subdivision of [0,1] with q the smallest integer such that $r_{2q} \neq 0$ then there is a refinement $\left\{t_{p}\right\}_{0}^{2m}$ of ${r \choose p_0}^{2n}$ such that if M is a positive number there is a positive integer k such that $t_{2k} = r_{2q}$, $\binom{k}{t_p}$ is identical to 2k-2values of $\{s_p\}_0^\infty$ on (0, r_{2q}) and $\sum_{p=1}^k g(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) - g(t_{2p-2}))$ $\sum_{p=1}^{4} g(r_{2p-1})(g(r_{2p}) - g(r_{2p})) > M. \text{ Thus if } \epsilon > 0 \text{ and } \left\{ r_{p} \right\}_{0}^{2n} \text{ is a}$ Stieltjes subdivision of [0,1] there is a refinement $\left\{t_{p}\right\}_{0}^{2m}$ of $\left\{r_{p}\right\}_{0}^{2n}$ such that $\left|\sum_{p=1}^{m} g(t_{2p-1})(g(t_{2p}) - g(t_{2p-2})) - g(t_{2p-2})\right|$ $\sum_{p=1}^{n} g(r_{2p-1})(g(r_{2p}) - g(r_{2p-2})) | > \epsilon \text{ and } \int_{0}^{1} g \, dg \text{ does not exist.}$ Example 2: Let f be a function from [0,1] to the real numbers defined by $f(x) = \begin{cases} x & \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$ The function f is continuous at 0.

<u>Proof:</u> Let ϵ be a positive number. Let $\S = \epsilon$. Let $x \in [0,1]$

such that |0-x| <\$ then |f(0) - f(x)| =

 $|0 - x \sin \frac{\pi}{x}| = |x \sin \frac{\pi}{x}| = |x|| \sin \frac{\pi}{x}| < |x| \cdot 1 = |x| < \S = \epsilon$. Thus if $\epsilon > 0$ there is a \$ > 0 such that if $x \in [0,1]$ and |0-x| < \$ then $|f(0) - f(x)| < \epsilon$ and f is continuous at 0.

The function f is not of bounded variation.

<u>Proof:</u> Suppose f is of bounded variation on [0,1] then there is a number V such that if ${t_p}_0^{2n}$ is a Stieltjes subdivision of [0,1] then $\sum_{p=1}^{n} |f(t_{2p-2}) - f(t_{2p})| < V$. Let ${t_p}_0^{2n}$ be a Stieltjes subdivision of [0,1] such that n is even, $t_0 = 0$, $t_{2n} = t_{2n-1} = 1$,

and
$$t_{2p} = t_{2p-1} = \frac{2}{n-p+2}$$
 for $1 \le p < n$. Then $\sum_{p=1}^{n} |f(t_{2p}) - f(t_{2p-2})|$

$$= \sum_{p=0}^{\infty} |f(t_{2n-2p}) - f(t_{2n-2p-2})| = |f(t_{2n}) - f(t_{2n-2})| + |f(t_{2n-2}) - f(t_{2n-2})| + |f(t_{2n-2})| + |f$$

$$f(t_{2n-l_4})| + \cdots + |f(t_2) - f(t_0)| = |f(1) - f(\frac{2}{3})| + |f(\frac{2}{3}) - f(\frac{2}{4})| +$$

$$\cdot \cdot \cdot + |f(\frac{2}{n-1}) - f(0)| = |0 - (\frac{2}{5})| + |(\frac{2}{5}) - 0| + \cdots + |(\frac{2}{n-1}) - 0| = |0 - (\frac{2}{5})| + |(\frac{2}{5}) - 0| + \cdots + |(\frac{2}{n-1}) - 0| = |0 - (\frac{2}{5})| + |(\frac{2}{5}) - 0| + \cdots + |(\frac{2}{n-1}) - 0| = |0 - (\frac{2}{5})| + |(\frac{2}{5}) - 0| + \cdots + |\frac{1}{n-1}| - 0| = |0 - (\frac{2}{5})| + |(\frac{2}{5}) - 0| + \cdots + |\frac{1}{n-1}| - 0| = |0 - (\frac{2}{5})| + |(\frac{2}{5}) - 0| + \cdots + |\frac{1}{n-1}| - 0| = |0 - (\frac{2}{5})| + |(\frac{2}{5}) - 0| + \cdots + |\frac{1}{n-1}| - 0| = |0 - (\frac{2}{5})| + |(\frac{2}{5}) - 0| + \cdots + |\frac{1}{n-1}| - 0| = |0 - (\frac{2}{5})| + |(\frac{2}{5}) - 0| + \cdots + |\frac{1}{n-1}| - 0| = |0 - (\frac{2}{5})| + |(\frac{2}{5}) - 0| + \cdots + |\frac{1}{n-1}| - 0| = |0 - (\frac{2}{5})| + |(\frac{2}{5}) - 0| + \cdots + |\frac{1}{n-1}| - 0| = |0 - (\frac{2}{5})| + |(\frac{2}{5}) - 0| + |0 - (\frac{2}{5})| + |(\frac{2}{5}) - 0| + \cdots + |(\frac{2}{n-1})| - 0| = |0 - (\frac{2}{5})| + |0$$

n-1

n-1

3

$$\frac{n}{2} |f(t_{2p}) - f(t_{2p-2})| = 4 \frac{(n/2)-1}{k=1} \frac{1}{2k+1}, \text{ the first } (n/2)-1 \text{ terms of}$$

$$\frac{\tilde{z}}{k=1} \frac{1}{2k+1} \text{ By theorem } 3.27 \text{ of Rudin, } \underline{\text{Principles of Mathematical}}$$

$$\frac{\text{Analysis}}{k=1}, \frac{\tilde{z}}{2k+1} = \frac{1}{2k+1} \text{ converges if and only if } \frac{\tilde{z}}{k=0}, \frac{2^{k}}{2^{k+1}+1} \text{ converges.}$$

$$\lim_{k\to\infty} \frac{2^{k}}{2^{k+1}+1} = \lim_{k\to\infty} \frac{1}{2+\frac{1}{2}k} = \frac{1}{2}, \text{ Thus } \frac{\tilde{z}}{2}, \frac{2^{k}}{2^{k+1}+1} \text{ diverges as does}$$

$$\frac{\tilde{z}}{2k+1} = \frac{1}{2k+1} \text{ Since the partial sums of } \frac{\tilde{z}}{2k+1} + \frac{1}{2k+1} \text{ form a monotonic}$$

increasing sequence that does not converge then the sequence is unbounded. Thus there is an integer m such that if $\left\{s_p\right\}_{0}^{2m}$ is a Stieltjes subdivision of [0,1] then $\sum_{p=1}^{m} |f(s_{2p}) - f(s_{2p-2})| > V$, a contradiction.

<u>Definition 5:</u> Let f be a function from [a,b] into the real numbers. Then f is said to be locally variable on [a,b] provided there is positive integer N such that if $\{s_p\}_0^n$ is an increasing sequence with $s_0 = a$ and $s_n = b$, then f is of bounded variation on all but at most N of the intervals $[s_{p-1}, s_p]$ for 0 .

Example 3: Let i be a natural number. Let $h_i: [0,1] \rightarrow real$ numbers be defined by $h_i(x) = xi^2 + xi$ -i. Let $f: [0,1] \rightarrow real$ numbers be defined by $f(x) = \begin{cases} x \sin \frac{\pi}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$. Let $g_i: [\frac{1}{i+1}, \frac{1}{i}]$ + real numbers be defined by $g_i(x) = \frac{f(h_i(x))}{i}$. Let $g: [0,1] \rightarrow real$

numbers be defined by $g(x) = \begin{cases} g_i(x) \text{ if } \frac{1}{i+1} \le x \le \frac{1}{i} \\ 0 \text{ if } x = 0 \end{cases}$ Then g is

continuous but is not locally variable.

and the set of the set

<u>Proof:</u> Let i be a natural number. Then $g(\frac{1}{i}) = g_i(\frac{1}{i}) = \frac{f(h_i(\frac{1}{i}))}{i} = \frac{f(1)}{i} = 0$ and $g(\frac{1}{i+1}) = g_i(\frac{1}{i+1}) = \frac{f(h_i(\frac{1}{i+1}))}{i} = \frac{f(0)}{i} = 0$. The

function g_i is continuous in $[\frac{1}{i+1}, \frac{1}{i}]$ by the composition of continuous functions and thus g is continuous on (0,1]. Let ϵ be a positive number. Let n be a natural number such that $\frac{1}{n} < \epsilon$. Let $x \in [0,1]$ such that $|0-x| < \frac{1}{n}$ then |g(0) - g(x)| = |0-g(x)| = $|g(x)| \le |g_i(x)| = |\frac{f(h_i(x))}{i}| \le |\frac{1}{i}| \le \frac{1}{n} < \epsilon$. Thus if $\epsilon > 0$ there

is a \$ > 0 such that if |0-x| < \$ then $|g(0) - g(x)| < \epsilon$ and g

is continuous at 0. The function h_i is monotonically increasing on $\left[\frac{1}{i+1}, \frac{1}{i}\right]$ with $h_i(\frac{1}{i+1}) = 0$ and $h_i(\frac{1}{i}) = 1$ thus $f(h_i(x))$ on

 $\left[\frac{1}{i+1}, \frac{1}{i}\right]$ takes on all the values that f takes on [0,1]. Then by example 2, $f(h_i(x))$ is not of bounded variation on $\left[\frac{1}{i+1}, \frac{1}{i}\right]$. Since there are an infinite number of such intervals then g is not locally variable on [0,1].

<u>Theorem 12:</u> Let f be a function from [a,b] to the real numbers. If $\{s_p\}_0^{2n}$ is a Stieltjes subdivision of [a,b] then there exists a Stieltjes subdivision, $\{r_p\}_0^{2n}$, of [a,b] such that

$$\sum_{p=1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2})) + \sum_{p=1}^{m} f(r_{2p-1})(f(r_{2p}) - f(r_{2p-2})) =$$

 $f^{2}(b) - f^{2}(a)$.

<u>Proof:</u> Let $\{s_p\}_0^{2n}$ be a Stieltjes subdivision of [a,b]. Let $\{t_p\}_0^{4n}$ be a refinement of $\{s_p\}_0^{2n}$ such that $t_{4p-3} = t_{4p-2} = t_{4p-1} = s_{2p-1}$ and $t_{4p} = s_{2p}$. Let $\{r_p\}_0^{4n}$ be a Stieltjes subdivision of [a,b] such that $r_{2p} = t_{2p}$, $r_{4p-3} = t_{4p-4}$, and $r_{4p-1} = t_{4p}$. Let m = 2n. Then $\sum_{p=1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2})) + p = 1$

$$\sum_{p=1}^{n} f(t_{lp}-t_{l})(f(t_{lp}-2) - f(t_{lp}-t_{l})) + f(t_{lp})(f(t_{lp}) - f(t_{lp}-2)) =$$

$$\sum_{p=1}^{n} (f(t_{lp}) + f(t_{lp}-2))(f(t_{lp}) - f(t_{lp}-2)) + (f(t_{lp}-2) + f(t_{lp}-2)) + (f(t_{lp}-2) + f(t_{lp}-2)) + (f(t_{lp}-2) - f(t_{lp}-1)) =$$

$$\sum_{p=1}^{n} f^{2}(t_{lp}) - f^{2}(t_{lp}-2) + f^{2}(t_{lp}-2) - f^{2}(t_{lp}-1) =$$

$$\sum_{p=1}^{n} f^{2}(t_{lp}) - f^{2}(t_{lp}-1) = f^{2}(t_{lp}) - f^{2}(t_{lp}) - f^{2}(t_{lp}-1) = f^{2}(t_{lp}) - f^{2}(t_{lp}-1) = f^{2}(t_{lp}) - f^{2}(t_{lp}) - f^{2}(t_{lp}) - f^{2}(t_{lp}) = f^{2}(t_{lp}) - f^{2}(t_{lp}) = f^{2}(t_{lp$$

<u>Theorem 13:</u> Let f be a continuous function from [a,b] to the real numbers such that if $\{s_p\}_0^{2n}$ is a Stieltjes subdivision of [a,b] then f is not of bounded variation on at most one of the intervals $[s_{2p-2}, s_{2p}]$. If there exists a number M such that

 $|\sum_{p=1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2}))| < M \text{ then } \int_{a}^{b} f d f \text{ exists.}$

<u>Proof:</u> Since $\int_{a}^{b} f df$ exists if f is of bounded variation consider f is not of bounded variation. Let ϵ be a positive number. Let $\overline{f} = \max \{ |f(x)| | x \in [a,b] \}$. Let § be a positive number such that $\overline{f} \cdot \{ \le \epsilon/10 \}$. Since f is uniformly continuous on [a,b] then let γ be a positive number such that if x, y ϵ [a,b] and $|x-y| < \gamma$ then $|f(x) - f(y)| < \S$. Since f is uniformly continuous on [a,b] then let λ be a positive number such that if x, y ϵ [a,b] and $|x-y| < \lambda$ then $|f^2(x)-f^2(y)| < \epsilon/10$. Let $\sigma = \min \{\gamma, \lambda\}$. Let N be the smallest number such that if $\{s_p\}_0^{2n}$ is a Stieltjes subdivision of [a,b] and $||s|| < \sigma$ then

 $|\sum_{p=1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2}))| \le N_{\bullet} \text{ Let } \left\{s_{p}\right\}_{0}^{2n} \text{ be a Stieltjes}$

subdivision of [a,b] such that $\|\mathbf{s}\| < \sigma$ and $N - \epsilon/2 < \varepsilon$

 $|\sum_{p=1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2}))|$. Let c be an integer such that

 $1 \le c \le n$. Let f not be of bounded variation on $[s_{2c-2}, s_{2c}]$. Then

$$\mathbb{N} - \epsilon/2 < |\sum_{p=1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2}))| = |\sum_{p=1}^{c-1} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-1}))| = |\sum_{p=1}^{c-1} f(s_{2p-1})(f(s_{2p-1}))| = |\sum_{p=1}^{c-1} f(s_{2p-1})(f(s_{2p-1}))| = |\sum_{p=1}^{c-1} f(s_{2p-1})(f(s_{2p-1}))| = |\sum_{p=1}^{c-1} f(s_{2p-1})(f(s_{2p-1})(f(s_{2p-1}))| = |\sum_{p=1}^{c-1} f(s_{2p-1})(f(s_{2p-1})(f(s_{2p-1}))| = |\sum_{p=1}^{c-1} f(s_{2p-1})(f(s_{2p-1})(f(s_{2p-1})(f(s_{2p-1}))| = |\sum_{p=1}^{c-1} f(s_{2p$$

 $f(s_{2p-2})) + f(s_{2c-1})(f(s_{2c}) - f(s_{2c-2})) + \sum_{p=c+1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2})) + f(s_{2p-1})(f(s_{2p})) + f(s_{2p-2})(f(s_{2p-2})) + f(s_{2p-2})(f(s_{2p-2}$

 $f(s_{2p-2}))| \leq |f(s_{2c-1})(f(s_{2c}) - f(s_{2c-2}))| + |\sum_{p=1}^{c-1} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2}))| + |\sum_{p=1}^{c-1} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2}))| + |f(s_{2p-2})| + |f(s_$

$$f(s_{2p-2})) + \sum_{p=c+1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2}))| = |f(s_{2c-1})||f(s_{2c}) - f(s_{2p-2})|| = |f(s_{2c-1})||f(s_{2c})| = |f(s_{2c})||f(s_{2c})| = |f(s_{2c})||f(s_{2c})||f(s_{2c})| = |f(s_{2c})||f(s_{2c})||f(s_{2c})||f(s_{2c})| = |f(s_{2c})|$$

 $f(s_{2c-2})| + |\sum_{p=1}^{c-1} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2})) + \sum_{p=c+1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-1}))(f(s_{2p})) + \sum_{p=c+1}^{n} f(s_{2p-1})(f(s_{2p})) + \sum_{p=c+1}^{n} f(s_{2p-1})(f(s_{2p-1})(f$

$$\begin{split} f(s_{2p-2}))| &< \overline{f} \cdot \frac{1}{5} + |\sum_{p=1}^{c-1} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2})) + \\ &\sum_{p=c+1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2}))| &< \epsilon/10 + |\sum_{p=1}^{c-1} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2}))| \\ f(s_{2p-2})) + \sum_{p=c+1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2}))| & \text{Thus } N - \epsilon/2 < \epsilon/10 + \\ |\sum_{p=1}^{c-1} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2})) + \sum_{p=c+1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2}))| \text{ or } \\ N - \frac{3\epsilon}{5} < |\sum_{p=1}^{c-1} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2})) + \sum_{p=c+1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2}))| \\ &\text{Suppose there exists, } \left\{ z_{p}^{1} \frac{2k}{0}, \text{ a Stieltjes subdivision of } \right. \\ \left[\frac{s_{2c-2}}{s_{2c}}, s_{2c} \right] \text{ such that } \left| \sum_{p=1}^{k} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2})) \right| + \sum_{p=1}^{m} f(s_{2p-2}))| \\ &\sum_{p=1}^{m} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2})) + \frac{1}{s} f(s_{2p-2}))| \\ &= \\ \left[\frac{s_{2c-2}}{s_{2c}}, s_{2c} \right] \text{ such that } \left| \sum_{p=1}^{k} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2})) \right| + \sum_{p=1}^{m} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2})) \right| \\ &= \\ \left[\frac{s_{2c-2}}{s_{2c}}, s_{2c} \right] \text{ such that } \left| \sum_{p=1}^{k} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2})) \right| \\ &= \\ \left[\frac{s_{2c-2}}{s_{2c}}, s_{2c} \right] \text{ such that } \left| \sum_{p=1}^{k} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2})) \right| \\ &= \\ \left[\frac{s_{2c-2}}{s_{2c}}, s_{2c} \right] \text{ such that } \left| \sum_{p=1}^{k} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2})) \right| \\ &= \\ \left[\frac{s_{2c-2}}{s_{2c}}, s_{2c} \right] \text{ such that } \left[\frac{s_{2}}{s_{2p-2}} \right] \\ &= \\ \left[\frac{s_{2c-2}}{s_{2c}}, \frac{s_{2c}}{s_{2c-2}} \right] \text{ or } \left[\frac{s_{2p-2}}{s_{2c-2}} \right] \\ &= \\ \left[\frac{s_{2c-2}}{s_{2c}}, \frac{s_{2c}}{s_{2c-2}} \right] \left[\frac{s_{2}}{s_{2c-2}} \right] \\ &= \\ \left[\frac{s_{2}}{s_{2c}} \right] + \frac{s_{2}}{s_{2c-2}} \right] \\ &= \\ \left[\frac{s_{2}}{s_{2c}} \right] + \frac{s_{2}}{s_{2c-2}} \right] \\ &= \\ \left[\frac{s_{2}}{s_{2c-2}} \right] \\ &= \\ \\ \left[\frac{s_{2}}{s_{2}} \right] \\ &= \\ \\ \left[\frac{s_{2}}{s_{2}} \right] \\ &= \\ \\ \\ \left[\frac{s_{2}}{s_{2}}$$

And the second state of th

an gan gus h

Int and I have all and I have been she

variation on
$$[s_{2c}, b]$$
 then $\int_{s_{2c}}^{b} f df$ exists. Let $\{\overline{v}_{p}\}_{0}^{2h}$ be a

Stieltjes subdivision of $[s_{2c}, b]$ such that if $\{v_p\}_0^{2d}$ is a

refinement of
$$\{\overline{v}_p\}_0^{21}$$
 then $|\int_{s_{2c}}^b f df - \sum_{p=1}^d f(v_{2p-1})(f(v_{2p}) - p_{2c})(f(v_{2p-1}))(f(v_{2p}))|$

$$\begin{split} & f(\mathsf{v}_{2p-2}))| < \varepsilon/20. \text{ Let } \left\{\overline{h}_p\right\}_0^{2e} \text{ be a Stieltjes subdivision of } [a,b] \\ & \text{ such that } \left\{\overline{h}_p\right\}_0^{2e} \text{ is identical to } \left\{\overline{u}_p\right\}_0^{2i} \text{ on } [a, s_{2c-2}], \overline{k}_{2i+1} = \\ & \overline{h}_{2i+2} = s_{2c-2}, \overline{h}_{2i+3} = s_{2c}, \text{ and identical to } \left\{\overline{v}_p\right\}_0^{2i} \text{ on } [s_{2c}, b]. \\ & \text{ Let } \left\{h_p\right\}_0^{2g} \text{ be a refinement of } \left\{\overline{h}_p\right\}_0^{2e} \text{ such that } j, \texttt{ are integers } \end{split}$$

and
$$h_{2j} = s_{2c-2}$$
, $h_{2k} = s_{2c}$. Then $|\int_{a}^{s_{2c-2}} f df + \int_{s_{2c}}^{b} f df - s_{2c}$
 $\int_{a}^{g} f(h_{2p-1})(f(h_{2p}) - f(h_{2p-2}))| = |\int_{a}^{s_{2c-2}} f df + \int_{s_{2c}}^{b} f df - s_{2c}$

$$\sum_{p=1}^{n} f(h_{2p-1})(f(h_{2p}) - f(h_{2p-2})) - \sum_{p=j+1}^{n} f(h_{2p-1})(f(h_{2p}) - f(h_{2p-2})) -$$

$$\int_{p=k+1}^{g} f(h_{2p-1})(f(h_{2p}) - f(h_{2p-2}))| \le |\int_{a}^{s_{2c-2}} f df - \sum_{p=1}^{J} f(h_{2p-1})(f(h_{2p}))| \le |\int_{a}^{s_{2c-2}} f(h_{2p-1})(f(h_{2p-1}))(f(h_{2p-1}))| \le |\int_{a}^{s_{2c-2}} f(h_{2p-1})(f(h_{2p-1}))(f(h_{2p-1}))(f(h_{2p-1}))| \le |\int_{a}^{s_{2c-2}} f(h_{2p-1})(f(h_{2p-1}))$$

$$f(h_{2p-2}))| + | \int_{s_{2c}}^{b} f df - \sum_{p=k+1}^{g} f(h_{2p-1})(f(h_{2p}) - f(h_{2p-2}))| +$$

$$\frac{f(h_{2p-1})(f(h_{2p}) - f(h_{2p-2}))| < \epsilon/20 + \epsilon/20 + 4\epsilon/5 = \frac{9\epsilon}{10}}{\frac{f^2(b) - f^2(a)}{2} - (\int_a^{s_{2c-2}} f df + \int_{s_{2c}}^b f df)| = |\frac{f^2(b) - f^2(a)}{2} - \frac{f^2(a)}{2} - \frac$$

$$\frac{(r^{2}(s_{2c-2}) - r^{2}(a)}{2} + \frac{r^{2}(b) - r^{2}(s_{2c}))|_{2}}{2} = \frac{|r^{2}(b) - r^{2}(a) + r^{2}(s_{2c-2}) + r^{2}(a) - r^{2}(b) + r^{2}(s_{2c})|_{2}}{2} = \frac{|r^{2}(b) - r^{2}(s_{2c-2})|_{2}}{2} + \frac{\epsilon/10}{2} = \epsilon/20.$$

$$Thus = |\frac{r^{2}(b) - r^{2}(a)}{2} - \frac{g}{2} + r^{2}(a) - \frac{g}{2} + r^{2}(b) - r^{2}(a) - r^{2}(a) - \frac{g}{2} + r^{2}(a) - r^$$

<u>Theorem 11</u>: Let f be a locally variable continuous function from [a,b] to the real numbers. If there exists a number M such that if ${s \choose p}_{0}^{2n}$ is a Stieltjes subdivision of [a,b] then

$$\sum_{p=1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2}))| < M \text{ then } \int_{a}^{b} f df \text{ exists.}$$

Proof: Let N be the positive integer such that if $\left\{s_{p}\right\}_{0}^{2n}$ is a Stieltjes subdivision of [a,b] then f is of bounded variation on all but at most N intervals $[s_{2p-2}, s_{2p}]$ for 0 . Let $<math>\left\{s_{p}\right\}_{0}^{2n}$ be a Stieltjes subdivision of [a,b] such that f is not of bounded variation on N intervals $[s_{2p-2}, s_{2p}]$ for 0 . Letp be a positive integer such that <math>0 . Either f is of $bounded variation on <math>[s_{2p-2}, s_{2p}]$ or it is not. If f is of bounded variation on $[s_{p-2}, s_{2p}]$ then $\int_{s_{2p-2}}^{s_{2p}} f$ df exists by theorem 9. If f

is not of bounded variation on $[s_{2p-2}, s_{2p}]$ then $\int_{s_{2p-2}}^{s_{2p}} f df$ exists

by theorem 13. By theorem 10, $\sum_{p=1}^{n} [\int_{s_{2p-2}}^{s_{2p}} f df] = \int_{a}^{b} f df$.

Lemma 4: Let f be a continuous function from [a,b] to the real numbers. Let $\{s_p\}_0^{2n}$ be a Stieltjes subdivision of [a,b]. If there exists a positive integer k such that $1 < k \le n$ and either $f(s_{2k}) - f(s_{2k-2}) \ge 0$ and $f(s_{2k-2}) - f(s_{2k-4}) \ge 0$ or $f(s_{2k}) - f(s_{2k-2}) \le 0$ and $f(s_{2k-2}) - f(s_{2k-4}) \ge 0$ then there is a Stieltjes

subdivision $\{t_p\}_{0}^{2n-2}$ such that $\sum_{p=1}^{n} f(s_{2p-1})(f(s_{2p}) - f(s_{2p-2})) \le$ n-1 $\sum_{p=1}^{n-1} f(t_{2p-1})(f(t_{2p}) - f(t_{2p-2})).$

Proof: Case I. Let k be a positive integer such that

eiri

15.10

Ganla

to be continuous and not of bounded variation in example 2. In the remainder of the paper f is as above.

Lemma 5: If p is a positive integer there is one and only one number $x \in [\frac{1}{p+1}, \frac{1}{p}]$ such that f'(x) = 0, f(x) is a maximum of f on $[\frac{1}{p+1}, \frac{1}{p}]$ if p is even and f(x) is as minimum of f on $[\frac{1}{p+1}, \frac{1}{p}]$ if p is odd.

<u>Proof:</u> f is differentiable on (0,1] and f'(x) = sin $\frac{\pi}{x} - \frac{\pi}{x} \cos \frac{\pi}{x}$. f'(x) = 0 when sin $\frac{\pi}{x} = \frac{\pi}{x} \cos \frac{\pi}{x}$. Since $\cos \frac{\pi}{x}$ cannot be zero here then f'(x) = 0 when $\tan \frac{\pi}{x} = \frac{\pi}{x}$. Let p be a positive integer. Since the tangent function takes on all real values on the interval $[p\pi, (p+1)\pi]$ then there is an x such that $\frac{1}{p+1} \le x \le \frac{1}{p}, \frac{\pi}{\frac{1}{p}} \le \frac{\pi}{x} \le \frac{\pi}{\frac{1}{p+1}}$ or $p\pi \le \frac{\pi}{x} (p+1)\pi$ and $\tan \frac{\pi}{x} = \frac{\pi}{x}$. Since

 $\frac{\pi}{x} \text{ is positive for } x \in (0,1] \text{ then } (\frac{1}{p+1/2}, \frac{1}{p}) \text{ only need be considered}$ since $\tan \frac{\pi}{x}$ is nonpositive elsewhere on $[\frac{1}{p+1}, \frac{1}{p}]$ that it is defined. Suppose there exist x_1 and x_2 such that $p < x_1$ $< x_2 < p + 1/2$, $\tan \frac{\pi}{x_1} = \frac{\pi}{x_1}$ and $\tan \frac{\pi}{x_2} = \frac{\pi}{x_2}$. Define function g

from $(\frac{1}{p+1/2}, \frac{1}{p})$ to the real numbers by $g(x) = \frac{\pi}{x} - \tan \frac{\pi}{x}$. The function g is differentiable. Since $g(x_1) = g(x_2) = 0$ there is a number $c \in (\frac{1}{p+1/2}, \frac{1}{p})$ such that $g'(c) = \frac{g(x_1) - g(x_2)}{x_1 - x_2} = 0$. Consider

 $g'(x) = \frac{\pi}{x^2}(\sec^2\frac{\pi}{x}-1)$ and $\sec^2\frac{\pi}{x}\neq 1$ on $(\frac{1}{p+1/2},\frac{1}{p})$ thus $g'(x)\neq 0$, a contradiction. Thus there exists at most one number

 $x \in [\frac{1}{p+1}, \frac{1}{p}]$ such that $\tan \frac{\pi}{x} = \frac{\pi}{x}$ or f'(x) = 0. $f'(\frac{1}{p}) = \sin p\pi - p\pi$ cos $p^{\pi} = p^{\pi}$ if p is even Thus if p is a positive integer there p^{π} if p is odd.

is one and only one number $x \in [\frac{1}{p+1}, \frac{1}{p}]$ such that f'(x) = 0, f(x) is a maximum of f on $[\frac{1}{p+1}, \frac{1}{p}]$ if p is even and f(x) is a minimum of f on $[\frac{1}{p+1}, \frac{1}{p}]$ if p is odd.

Lemma 6: Let c, d $\epsilon(0,1]$ such that c < d. f'(c) = f'(d) = 0. Then |f(c)| < |f(d)|.

<u>Proof:</u> By lemma 5, f(c) and f(d) are local maximums or local minimums. Let p_1 be a positive integer such that $c \in [\frac{1}{p_1+1}, \frac{1}{p_1}]$. Let

 p_2 be a positive integer such that $d \in [\frac{1}{p_2+1}, \frac{1}{p_2}]$. Then $p_1 > p_2$. In

 $\left[\frac{1}{p_1+1}, \frac{1}{p_1}\right]$, $|x \sin \frac{\pi}{x}|$ is bounded by $\frac{1}{p_1}$. There is an

 $x \in [\frac{1}{p_2+1}, \frac{1}{p_2}]$ such that $|\sin \frac{\pi}{x}| = 1$ and |f(x)| = x. Then |f(x)| = 1

 $x > \frac{1}{p_2 + 1} \ge \frac{1}{p_1}$. Thus $|f(c)| < \frac{1}{p_1}, \frac{1}{p_1} < |f(x)|, |f(x)| \le |f(d)|$ and

$$|f(c)| < \frac{1}{p_1} < |f(x)| \le |f(d)|$$
 or $|f(c)| < |f(d)|$.

Define $\{s_p\}_0^\infty$ by $s_0 = 1$, $s_{2p} = x$ such that f'(x) = 0 on $[\frac{1}{p+1}, \frac{1}{p}]$, and $s_{2p-1} = s_{2p-2} \cdot \sum_{p=1}^{\infty} f(s_{2p-1})(f(s_{2p-2}) - f(s_{2p})) =$

$$\begin{split} & \sum_{p=1}^{\infty} f(s_{2p-2})(f(s_{2p-2}) - f(s_{2p})) = \sum_{p=1}^{\infty} f^2(s_{2p-2}) - f(s_{2p-2})f(s_{2p}) = \\ & \sum_{p=1}^{\infty} [(s_{2p-2})^2 \sin^2 \frac{\pi}{s_{2p-2}} - s_{2p-2} s_{2p} \sin \frac{\pi}{s_{2p-2}} \sin \frac{\pi}{s_{2p}}] = \\ & 0 + \sum_{p=2}^{\infty} [(s_{2p-2})^2 \sin^2 \frac{\pi}{s_{2p-2}} - s_{2p-2} s_{2p} \sin \frac{\pi}{s_{2p-2}} \sin \frac{\pi}{s_{2p}}] < \\ & \sum_{p=2}^{\infty} [(\frac{1}{p-1})^2 + (\frac{1}{p-1})^2] = 2 \sum_{p=2}^{\infty} \frac{1}{(p-1)} 2 = 2 \sum_{p=1}^{\infty} \frac{1}{p^2}. & \text{By theorem 3.28 of} \\ \\ & \text{Rudin, } \underline{Principles of Mathematical Analysis } \sum_{p=1}^{\infty} \frac{1}{p^2} & \text{converges and thus} \\ & p=1 \quad p^2 \quad f(s_{2p-1})(f(s_{2p-2}) - f(s_{2p})) & \text{converges by comparison. In lemma 7,} \\ & \left\{s_p\right\}_0^{\infty} \text{ is as defined above.} \\ & \underline{Lemma 7:} & \text{Let } \mathbf{M} = \sum_{p=1}^{\infty} f(s_{2p-1})(f(s_{2p-2}) - f(s_{2p})). & \text{Let } \left\{t_p\right\}_0^{2n} & \text{be} \\ & \text{a Stieltjes subidvision of } [0,1] & \text{then } \left|\sum_{p=1}^{n} f(t_{2p-1})(f(t_{2p}) - f(t_{2p-2}))\right| \\ & | < \mathbf{M} + 1. \\ & \underline{Proof:} & \text{By theorem 12 there is a Stieltjes subdivision } \left\{t_p\right\}_0^{2n} & \text{f(s_{2p-1})}(f(t_{2p}) - f(t_{2p-2})) + \\ & \text{of } [0,1] & \text{such that } \sum_{p=1}^{n} f(t_{2p-1})(f(t_{2p}) - f(t_{2p-2})) + \\ \end{array}$$

 $\sum_{p=1}^{m} f(\bar{t}_{2p-1})(f(\bar{t}_{2p}) - f(\bar{t}_{2p-2})) = f^{2}(1) - f^{2}(0) = 0.$ Thus let

$$\sum_{p=1}^{n} f(t_{2p-1})(f(t_{2p}) - f(t_{2p-2})) > 0. By lemma l_{4}, let \left\{r_{p}\right\}_{0}^{2q} be a$$

Stieltjes subdivision of [0,1] such that if k is an integer and $1 < k \le q$ then $f(r_{2k}) - f(r_{2k-2})$ and $f(r_{2k-2}) - f(r_{2k-l_4})$ are

opposite in sign and $\sum_{p=1}^{q} f(r_{2p-1})(f(r_{2p}) - f(r_{2p-2})) \ge 1$

$$\sum_{p=1}^{n} f(t_{2p-1})(f(t_{2p}) - f(t_{2p-2})) \cdot \sum_{p=1}^{q} f(r_{2p-1})(f(r_{2p}) - f(r_{2p-2})) =$$

$$\sum_{p=0}^{q-1} f(r_{2q-2p-1})(f(r_{2q-2p}) - f(r_{2q-2p-2})) = \sum_{p=1}^{q} f(r_{2q-2p+1})(f(r_{2q-2p+2}))$$

 $f(r_{2q-2p})$). Suppose there exists an integer j such that $1 < j \le q$ and $f(s_{2j-1})(f(s_{2j-2}) - f(s_{2j})) < |f(r_{2q-2j+1})(f(r_{2q-2j+2}) - q)| \le 1 \le q$

 $f(r_{2q-2j})|$. Then either $|f(s_{2j-1})| < |f(r_{2q-2j+1})|$ or $|f(s_{2j-2}) - f(r_{2q-2j+1})|$

$$\begin{split} & f(s_{2j})| < |f(r_{2q-2j+2}) - f(r_{2q-2j})|. & \text{In both cases } s_{2j-2} < r_{2q-2j+2} \\ & \text{by lemma 6 and } [r_{2q-2j+2}, 1] < [s_{2j-2}, 1]. & \text{Then there is a partition} \\ & \left\{ \bigvee_{p > 0}^{j} \right\}_{0}^{j} & \text{of } [s_{2j-2}, 1] & \text{consisting of } j & \text{intervals such that if } i & \text{is an integer and } 0 < i < j & \text{then } f(v_{i}) - f(v_{i-1}) & \text{and } f(v_{i+1}) - f(v_{i}) \\ & \text{are opposite in sign. By the definition of } \left\{ s_{p > 0}^{j} & (s_{2j-2}, 1) & \text{may be} \\ & \text{partitioned into at most } j-1 & \text{intervals with this property, a} \\ & \text{contradiction. Thus if } j & \text{is an integer and } 1 < k \leq q & \text{then} \\ & |f(r_{2q-2j+1})(f(r_{2q-2j+2}) - f(r_{2q-2j}))| \leq f(s_{2j-1})(f(s_{2j-2}) - f(s_{2j})). \end{split}$$

Then by comparison
$$\sum_{p=1}^{n} f(t_{2p-1})(f(t_{2p}) - f(t_{2p-2})) \leq \sum_{p=1}^{q} f(r_{2q-2p+1})$$

$$(f(r_{2q-2p+2}) - f(r_{2q-2p})) \leq \sum_{p=1}^{\infty} f(s_{2p-1})(f(s_{2p-2}) - f(s_{2p})) +$$

 $f(r_{2q-1})(f(r_{2q}) - f(r_{2q-2})) < M + 1.$ $\underline{\text{Lemma 8:}} \int_{0}^{1} f \, df \, \text{exists}$

Proof: By lemma 7 there is a positive number K such that if

 ${t \choose p}_{0}^{2n}$ is a Stieltjes subdivision [0,1] then $|\sum_{p=1}^{n} f(t_{2p-1})(f(t_{2p}) - f(t_{2p-2}))| < K$. Let $c \in (0,1]$. The function f is of bounded variation on [c,1]. Thus if j is an integer and $1 \le j \le n$ then f is not of bounded variation on at most one interval $[t_{2j-2}, t_{2j}]$ and f is locally variable. Then by theorem $l_{1} \int_{0}^{1} f$ df exists.

Example 4: Let g be a function from [0,1] to the real numbers

defined by g(x) = 2 + f(x). $\int_{0}^{1} g d g$ exists and g^{2} is not of bounded variation.

<u>Proof:</u> Since \int_{0}^{1} f df exists and the constant function 2 is

continuous and of bounded variation then $\int_{0}^{1} f d 2$ exists and $\int_{0}^{1} f d f + \int_{0}^{1} f d 2 = \int_{0}^{1} f d (2+f)$ by theorem 6. Then $\int_{0}^{1} (2+f) d f$ exists by theorem 7, 2+f is continuous and $\int_{0}^{1} (2+f) d 2$ exists, thus $\int_{0}^{1} (2+f) d f$

$$\int_{0}^{1} (2+f) d 2 = \int_{0}^{1} (2+f) d(2+f) = \int_{0}^{1} g dg exists. g^{2} = (2+f)^{2} = 4+4f+f^{2}.$$
Let L be a positive number. Let $\left\{t_{p}\right\}_{0}^{2n}$ be a Stieltjes subdivision of [0,1] such that $\sum_{p=1}^{n} |f(t_{2p}) - f(t_{2p-2})| > L.$ Then $\sum_{p=1}^{n} |g^{2}(t_{2p}) - g^{2}(t_{2p-2})| = \sum_{p=1}^{n} |h_{+}4f(t_{2p}) + f^{2}(t_{2p}) - 4 - 4f(t_{2p-2}) - f^{2}(t_{2p-2})| = \sum_{p=1}^{n} |h_{+}f(t_{2p-2}) + f^{2}(t_{2p}) - f^{2}(t_{2p-2})| = \sum_{p=1}^{n} |f(t_{2p}) - 4f(t_{2p-2})| = \sum_{p=1}^{n} |f(t_{2p-2})| = \sum_{p=1}^{n} |f(t_{2p-2})|$

 $\sum_{p=1}^{n} |g^{2}(t_{2p}) - g^{2}(t_{2p-2})| > L \text{ and } g^{2} \text{ is not of bounded variation.}$

BIBLIOGRAPHY

Rudin, Walter. <u>Principles of Mathematical Analysis</u>. New York: McGraw-Hill, 1964.