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Definition: Let f be a function from [a,b] into the real 

numbers. Then f is said to be locally variable on [a,b] provided 

there is a positive integer N such that if )s \_  is an increasing 

sequence with s = a and s = b, then f is of bounded variation o n        ' 

on all but at most    N    of the intervals    [s,,  s  ]    for    0 < p < n. 

Theorem:    Let    f    be a continuous function from    [a,b]    to the 

real numbers that is locally variable.     If there exists a number    M 

such that if    Js l?1    is a Stieltjes subdivision of    [a,b],  then 

Z    f(s2p-l)(f(s2p)  " f(s2p-2))l  <M»  then I    f ** ex±sts' 
P-1 
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INTRODUCTION 

This paper is the result of inquiry into questions that arose 

concerning Stieltjes integrals. During a course in real analysis at 

the University of North Carolina at Greensboro, the students were asked 

to find an example of a continuous function f from [0,1]  to the 

t real numbers such that J     f of did not exist. The function f such 
0 

that f (x) = jx sin n if x / 0 was selected since it is a function 
X 

[0    if x = 0 

not of bounded variation.    It was observed that the set of sums over 

all  Stieltjes  subdivisions of    [0,1]    was bounded for the function    f 
1 

with respect to itself.    Thus the question remained, does     J    f df 
1 6 

exist?    It is shown in the paper that /    f df    does exist. 
0 

In looking for a general condition weaker than bounded variation 

under which Stieltjes integrals exist,  three questions were asked. 
b 

First,  if    f    is continuous does j    f df exist?    A counter example is 
a b 

given in the paper.    Second,  does J     f df    exist if and only if    f    is 
? a 

continuous and    f      is of bounded variation?    A counter example for 

this question is given in the paper.    Last, if    f    is continuous and the 

set of sums over all Stieltjes subdivisions of    [a,b]    is bounded does 
b 

/    f df exist?    By the addition of a condition called locally variable 
a 
as a restriction on the function,  the last question can be answered 

affirmatively. 



CHAPTER I 

Notation,  Definitions and Some Properties of Stieltjes Integrals 

Notation;    The symbol    (sA     = s    means that    a    and b    are 
I  Pja 

nonnegative integers and    s    is a sequence whose domain is the set to 

which the integer   p    belongs only in case    a < p < b. 

Definition 1:    A Stieltjes subdivision of the interval     [a,b]    is 

a nondecreasing finite sequence    s =  (si?1    such that      s„  = 
*• o> 0 0 

s^ = b.    If ) 2m 

and 

s \Q      is a Stieltjes subdivision of    [a,b]     the norm 

of    s, denoted    ||s||,  is defined by    ||s|| = sup    \ 

If    (   I 2m 
r._    ^ <P <"j. s^_  - s^_  „ |1 

(sp)0       is a S*161^63 subdivision of    [a,b]    then the even part 

of    s    is  the set    jsp-jo < P < mj and the odd part of    s    is the set 

lA?    of p\ 0 Definition 2;    A refinement of a Stieltjes subdivision    \s\ 

[a,b]    is a Stieltjes subdivision    \t\Q      of    [a,b]    such that the 

even part of      sLn    is a subsequence of the even part of    \t 1?°. 

Definition 3?    The function    f    from    [a,b]    to the real numbers 

is said to be of bounded variation only in case there is a number 

V < „    such that if    jsl?1    is a Stieltjes subdivision of    [a,b]    then 
m " 
2  |f(s„ ) - f(s„ 0) I < V. The total variation of f is the smallest 
p=l 2p '2p-2 

r    ; pm 
number    V    such that if   | s \„      is a Stieltje subdivision of    [a,b] 

m 
then    2  |f(s?n) - f(s~?)|  < V. 

P=l 
'2p 2p-2J 



Definition U;    Let    a    and    b    be real numbers with    a < b.    Let 

f    and    g    be functions from    [a,b]    to the real numbers.    The 

Stieltjes integral from    a    to    b    of    f   with respect to    g    denoted 
b 

j    f dg    is a number    z    such that if    e    is a positive number there 

is a Stieltjes subdivision    [s \^    of    [a,b]    such that if      jt \^ 

is a refinement of    Is \ „      then 
m LP)0 

I  fx 
f(Vl)(e(V  - ^t2p-2))  " Z   I < €• 

The following three theorems are easily proved and hence are 

stated without proof. 

Theorem 1;    Let    is \„      be a Stieltjes subdivision of    [a,b] 

and let    U \Q      be a refinement of    (*B\Q«    
If    J^o*    is a 

refinement of     It l?    then    [r l^    is a refinement of    ULJQ • 

Theorem 2%    Let    \s l?    and    W?    be Stieltjes subdivisions 

of    [a,b]»    There exists a Stieltjes subdivision    Jr )Q      that ii 

[•A?-   too*. 
is a 

common refinement of 

Theorem 3; Let f and g be functions from [a,b] to the real 

> ,b 

numbers.    If    I     f dg    exists then   J     f dg    is unique. 
'a a 

b 
Theorem Lj    If  /    f dg    exists and    c    is a real number then 

b b a        b 
cf    f dg = J    cfdg-J    f d(cg). 

a a a 

Proof;    Let £ be a positive    number.    Either    c = 0    or    c / 0. 
■    -I 2n 

If    c  = 0    then let      s    .      be a Stieltjes subdivision of    [a,b]    such 

that if    (tJ?*    is a refinement of       [sp\Q      then 



i    ' ^ Vi f(Vl)(g(V - g(t2p-2)}   l<-    Let    Wo2""    be 

Wo"'   Now refinement of 

| c I   fdg-cz   fCt^-XfdO - gCt^O) 
p=l 

"2p-2' 

=    c |   | /    f dg - Z   i'(t2_1)(g(t    ) - g(t        ))   | < |c|. € - 0 < e. 
a p=l ¥~ ¥ ¥ 

Then     |  c /    f dg - 2    c f(t     ,)(g(t-  ) - g(t^_?))   I   = 
a p=l * y ™ 

b m 
| c /    f dg - c  Z    f(t _-)<«(t2  ) - g(t2D_o))   I < €    and *V theorem 3 

a p=l V l> V- 

b b 
c/    f dg =/    c   f dg.    All Lso 

b m 
c /     f dg - 1   f(t^(cgCt    ) - cg(t        ))   I 

a p=l * 

m 
-    =      c /    f dg -  Z    f(t        )  c  (g(t    )  - g(tjw_P)) 

a p=l H 

=   |  c J    f dg - c  Z    f(t __1)(g(t2 )  - Sit      2))   | < e    and by 
a p=l * " 

b b /    I 2n 
theorem 3, c /    f dg = j    f d(cg).    If    c / 0    then let    j S?\Q      be a 

a a 

Stieltjes subdivision of    [a,b]    such that if    [t^Q      is a refinement 



of lVo «. iia u-ivwy-Vi^r 

Let    / tA 0    be a refinement of    [si?0. Now- 

rn 

('*'° * f(Vi)(e(V "e(W 

=    c 
,b m 

2p-l/vev"2p' " KV°2p-2"   I *  1°" •   |c|   = £' 

m 

^     |C"a    ' ^ "pfl ° f(Vl)(g(V  " g(V2}) 

D m 

p=l 
< e    and by theorem 

,b b 
3    c J     f dg =J    c f dg.    Also 

a 

b 

a 

m 
f dg-Z      f(t )(cg(t2)  -cg(t.    ,))   | 

P-1 
2p-2J 

b m 

-  |  0        f dg -X      f(t?       )  c  (g(t_  ) - g(t.    .)) 
P-1 

2p'      BV 2p-2i 

b m 
■  I  0  I     f dg - c  2    f(t        )(g(t    )  - g(t ))   |  < c    and by theorem 

P-1 
2p-l/V6V  2p'      BV  2p-2' 

b b 
3, c j    f dg -J    f d(cg). 

a a 

Theorem £;    If    /    f dh    and    j    g dh    exist then   J     (f + g)  dh 
a a a 

b b 
/     f dh + j    g dh. 



Proof:    Let    £    be a positive number.    Let    js\^n    be a Stieltjes 

subdivision of    [a,b]    such that if   [tp\ J"    is a refinement of 

\ 2n m 

Wo      then     I /    f * "  I   f<W(h(t2o>  - ^^n-p))   I *  £/2' p=l 
Let 

rp>0      be a stieltJes subdivision of    [a,b]    such that if    It \ j*    is 

a refinement of    )r \ X"    then M? 
p'o 

/ g dh -^ gCt^^ChCtgp) - h(t2p_2)) I < «/2. Let It)?    be 

I 2k common refinement of M"" and )r_\* . Let j z_\ „ 

or (t\f then 
b r b       q 

/ f dh + / g dh - Z  (f + g)(z2 1)(h(z ) - h(z   )) 
p=l 

/ f dh ♦ / g dh - %      (f(z   ) ♦ g(z   ))(h(z ) - h(z   » 
a       a      p=l      v * * * 

[    f dh + /  g dh - Z    f(z   )(h(z ) - h(z   )) - 
a a P»l      r r r 

2_ g(z?.)(h(z_ ) -h(z_ .)) |< 
P=l 

2p-l/v'v'2p/   "Vi,2p-2' 

I / f dh - 2 '(»2p.1)(h(«2p) " »»(.   )) | ♦ 
a       p—X 

b       q 

| /  g dh - 2 g(*2p_1)<h(*2p
) ' h(z2p-2)) I < £/2 + e/r = £'  ^ 

b b b 
theorem 3, jfdh+jgdh=J     (f + g) dh. 



, ,b b b 
Theorem 6;    If   /    f dh    and   /    f dg    exist then    /      fd(h ♦ g) 

a a a 

b b 
/    f dh + I    f dg. 

Proof;    Let    e    be a positive number.    Let    (s \Q"    be a Stieltjes 

subdivision of    [a,b]    such that if    [tlj™    is a refinement of 

{sp\0       then     I   /    f * " j       f(t2p-l)(h(t2D
)   " h(t2D-2))   I * £/2' 

(    I 2k a P=^- /    l 
Let    (rp)0      be a stieltJes subdivision of    [a,b]    such that if    (t \ 

is a refinement of    jr \ ~*    then 

2m 
p'O 

D m 
I /    f dg -I      f(Vl)(g(t2p) - g(t2p_2))   | < £/2.    Let    Jtp\f    be 

a common refinement of    / s \ "'    and 
p'O l"i 

refinement of H?- 
HT - Wok- » W 2q be a 

b b q 
/    f dh + /     f dg -  2       f(i )[(h * g)(z.   )   -   (h ♦  g)(z?rW,)]   |   = 

p=l "2p-l' 2p' J2p-.: 

b b q 
/    f dh * /    f dg -  2       f(Z )[(h(z    )  -h(z ))  4 

P-l 
2p' "2p-2> 

«V - ^-gp-z))! I = 

b b q 
1/    fdh*J     fdg-2      f(«.   J(h(z    ) .    h(a.    J)  - 

a 

q 
2 

p-l 

P"l 2p-l'v   v"2p' •2p-2' 

f(z2p-l><e<z2p>  " g(z2p-2»   I 2 I 7    f * " 



pfx 
f<»2p*><h<"2p> " h<«2p-2)> 

b       q 
/ f dg - z  ^2p_iKg(z2p) - g(z2_2)) I < c/2 ♦ e/2 = e. By 

p=l 

b       b       b 
theorem 3, / f dh + / f dg = j f d(h + g)# 

b b 
Theorem 7:    If / f dg exists then J g df exists and 

a a 

b       b 
j    f dg + / gdf= f(b)g(b) - f(a)g(a) 
a       a 

Proof:    Let    e    be a positive number.    Let    is \Q      be a Stieltjes 

subdivision of    [a,b]    such that if    [tJ0      is a refinement of    j s j Q
n 

b m (   I 2m 
then     | /    f dg -  2      f(s2D-l

)(e(s2D)  ~ g(s2p-2})   ' * e*    Let    tVo a p=l r- r r 

be a refinement of    [«AQ      such that if    0 < p < 2n    then 

*2p  " V = V2 = SP    f°r    P    CTen 

*2p+l = Sp f°r    P    °dd 

it    fr^Qk    be a refinement of    [tjj J1.    Then 

b k 

f(b)g(b)  - f(a)g(a)  -/    f dg -  Z     g(r        )(f(.r2p) - f(r2p_2)) 
a P=l 



rt'acMW " f(ro>e<ri> " / f * " *   ^r2p-i)f(r2p^ 
P=i 

P=I 
g(r2p-l)f(r2p-2) 

k-1 
2 

P" 

I     f dg - I      I^WfJ   ♦   2      ^r2p-l)f(r2p-2) 
a p=l p=2 

b k-1 

P 
\     g(r2p+1)f(r2p) - J    fCr^fCr^) - /   f dg 

k-1 
2 

P= 
Z      f(r2p)(g(r2p+1)  - gO^))  - /    f dg   |.    If    p    is an even 

p-1 a. 
integer and    0 < p < 2n    then there is an integer    j    such that 

p < j < k-1    and    sp = t2p = t2p+1 = t2p+2 = r2j  = r2j+1 = r2j+2. 

Thus    a = SQ = t,_ = rx    and    b = s2n = t^ = r^.    Let    Vp-1 = rp 

for    1 < p < 2k-l    then    i V \ Qk~2 is a refinement of    {s^ Q
n    and 

k-1 
2 

P-1 
fCOCffr**)-•<***»-/ fdg 

*      f(V2p-l)(g(V2p)  ' g(V2p-2)>  " i    f dg   '  < "    ThUS 

P-1 

f( 

b k 
b)g(b)  - f(a)g(a)  - /    f dg -    Z      g(^2p-l)(f(r2p) " f(r2p-2)}   '< £' 

a p=l 

hence by theorem 3, ( g df exists, and J g df - 

f(b)g(b) - f(a)g(a) - / f dg. 



b b 
Corollary 1; If J    f df exists then (   f df = 

(f(b))2-(f(a??2 

2 
b b 

Proof:    By theorem 7, /    fdf+J    f df - f(b)f (b)  - f (a)f (a) 
a a 

and therefore /    f df =  (f(b))  -  (f(a)?^ 

b 
Corollary 2:    If  /    f df    exists and    f(a)  = f(b)    then 

b 
j    f df = 0. 
a 

Proof:    By corollary 1, j    f df =  (f(b)  - f(a))    = | = 0. 
a 

Let    f    and    g    be functions from    [a,b]    to the real numbers  such 

that if    c > 0    then there is a Stieltjes subdivision   j s \Q      of 

[a,b]    such that if     < t I .      is a refinement of    |s_\0      then 

1   f(«2p-l>te<V ■ g(V2,} ' I   f(Vl)(g(t2P
) ■ g(t2p.2))|  K U 

P=l r       7 P=1 

Let    S =  [s>~      be the sequence defined by    s,   = Stieltjes 

subdivision f(Sl)p]2n    of    [a,b]    such that if    [t^J"    is 

refinement of    s      then 
m 

-1        2P_1 2P ^p 2        p=l X2p-1 2p x2p- 
))I<1. 

!i+l = Stieltjes subdivision    /(a±+1)AQ      of    [a,b]    such that    s.   , 

refines    s.     and if    It 
i (  P 

12m is a refinement of    s.+,     then 

l «v,wv - g(V2» "i f(si^2p.i
)(g(s^i2p

) • 
g"(s^    »i<_L i+i 2p-2 i+1. 



10 

Let    V "fail be the sequence defined by 

n 
Vk = Ji   f(Vi)(g(B^J"e(V     » p=l 2p-l 2p 2p-2 

In the following three lemmas    f, g,  S,  and    V   are as above. 

Lemma 1:    Let    e    be a positive number and let   §    be a positive 

number such that    §    < e.    Let    faj.Q      be the Stieltjes subdivision of 

[a,b]    such that if    (tA?"    is a refinement of    ISJQ"    then 

n 

£    f<Vl)(gV  - ^(s2p.2)) " 

m 
2      f^t2p-l^g^t2p^  " g^2p-2^   I < e*    There exist a refinement 

=P\?   *   Wo" such that if    fujj*    is a refinement of    fiUJq 

then     | ^    fCs^JCg^) - g(i2p_2))  - 

m 

P=l 
f(t2_)(g(t    ) - g(t       ))   | <  |. 

2p- 

Proof:    Let    (r\«      be a Stieltje subdivision of    fa,b]     such that 

lt\J"    is a refinement of      {rjjg then 

\ fS-i)(eCV - fCV«))" !i f(Vi)(g(V " 



11 

g(t      2))   I <    §/2«    Let    r^W be a coramon refinement of     fr \^ 

and    [SJQ".    Then      fs \^q    is a refinement of    [s \^n    and if    jt \^ 

jfinement of      f s fit is also a refinement of   fr L      and xs a rei 

q _ m 

8<t2p.2))   I " 

2      fffo^JCgfiaJ " gG-    J) - 2    f(rp    ,)(g(r?J  - g(r.    J) 
p=l '2p-l'VBX"2p '2p-2" " "    — 2p-l'^2p' 2p-2' 

m 
^    ffrj^MlCr^) - g(r2p_2)) - ^   f(t^)(g(V - 

(s \ Q
Q
    is a refinement of Thus [sj2/1    such that if    M?    is i 

L   PJ 

refinement of      fsJ 2q    then     |    2      f^op_1)(gCs2p) - g(s2p_2)) - 

m 

p=\ 
f(t2p-l)(g(t2P) " g(V2)}   I * *' 

Lemma 2:    The sequence    V   converges. 

Proof;    Let    e be a positive number.     There exist a positive 

integer    N    such that    J < e/2 <    e.    Let    c    and    d    be positive 

integers   such that c > N    and    d > N.    There is a Stieltjes subdivision 

s      of    [a,b]     such that if    M**   is a refinement of    SQ    then 



m 

I    *      f(t2p-l)(g(t2p) " g(t2p-2)}  -    2     f<sc        )(8(«c    )  - 
P_1 Pel 2p-l c2p 

1 
g(sc ))   | < g>'    There is a Stieltjes subdivision    s,    of    [a.b] 

2p-2 Q 

such that if    (t \Q     is a refinement of    s,    then 

I    2     f(sd        )(g(a.    ) - g(s )) - 
p=l Q2p-1 a2p d2p-2 

m 1 

p=\ 
f(t2P-i

)(g(V " g(t2P-2)} \<r 

Let \ t \ n      be a common refinement of s  and s, then 
(. p'U c      d 

I   v^ -  V    I   = '    d        c   ' 

2      f(s )(g(s      )  - g(s ))  -    2      f(sp        )(g(.      )  - 
p=l a2p-l a2p a2p-2 p-1 C2p-1 c2p 

!(sc )) 
C2p-2 

m 
2      f(s )(g(s      )  - g(s ))  -    2    f(t        )(g(t    )  - 

p-1 d2p-l d2p d2p-2 p-1        ** ^ 

«(v)} + 

m n 

*      f<W>C*C*llJ - g(t2D-2)) "  2    f(sc )(g(sc    } " g(sc )}   I ^ p=1 2p-l 2p 2p-«e        p-1 c2pml c2p c2p-2 

m 

-i V^1 •g(V*" ■ P=I f(vi><«v - 



13 

g(t2p_2))   I ♦ 

m 

1111 
j(s ))   I  <    -    +    -    < -    +    -    <    e/2    + c/2 = €.    Thus if    e  > 0 

'2p-2 N N 

there exist a positive integer    N    such that if    c    and    d    are 

integers and    N < c,  d    then     |   V, - V\| = 

| 5      f(s, )(g(s.    )  - g(s. )) -    2      f(sc        )(g(s       )  - 
p-1 d2p-l d2p d2p-2 p-1 C2p-1 C2p 

g(s ))    | < f»      Thus    V   is a Cauchy sequence and    V    converges. 
C2p-2 

b 
Lemma 3'-    Lim    V.   =  /   f dg 

k -+ „ a 

Proof; Let £ be a positive number. Since V converges let 

lim V, = Z. There exists a positive integer N such that if k is 

an integer and    N < k    then    |   Z - Vk   | < c/2.    Let    k    be an integer 

such that    N < k    and    -    < E/2.    Let    ft\Q      be a refinement of 
k 

sk " 

m 

then Wo 

I v«v - g(v2» - X f(v)(g(V' 
g(sk        )) 

K2p-2 



1U 

Itl 

*      f(t2p-l)(g(t2P
) " 6(t2p-2) "  Vk   I  < -    **« 

m 
2 

p=l " JL  f(Vl)(g(t2p)  " g(t2p-2)}   I   =   I   Z -    t    f(^        )(g(sk    )  - 
p=l 2p-l 

g(sk ))  ♦ 
k2p-2 

n m 

-1 2p-l K2p K2p-2 p=l        *^L * 2p "Z 

n 
Z -    2    f (s. 

p-1        "2p-l "2p 
,        ,)(f(\    ) "g(\ ))|  * |    2    f(sk        )(g(sk    )  - 

m 

i^))-» V,wV-,(wJ) 
m 

2p-2 p=l        "2p-l "2p 

2p-2^ 

Z -  V.    |   ♦   |   U   -    2    f(t9_J(g(t0r>) - g(t,    -))| < e/2 ♦ - < 
p=1 ^2p-l'^"2p' 2p-2' 

e/2 + e/2 =  e.    Thus if    e > 0,  Z    is a number and    a     is a Stieltjes 

subdivision of    [a,b]    such that if    jt\0      is a refinement of    sk 

m 
Z -    2    *(t2    iXgftgp) - g(t2p_2))| < e.    Therefore    Z = then 

b 
f dg and lim V. = |  f dg. 

k - . 

The preceding lemmas and definitions may be combined and stated 

as follows. 
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Theorem 8:    Let    f    and   g    be functions from    [a,b]    to the real 

numbers.    If    e    is a positive number and there exists a Stieltjes 

subdivision    js^Q11    of    [a,b]    such that if    [t ^    refines    U^ 

then     £ f(»2p.1)(«(»2p)  " 8(»2p.2)) "£ ^Vl)(g(t2p) " 

b 
g(t2 _)) | < e, then J f dg exists. 

Theorem 9; Let f and g be functions from [a,b] to the real 

numbers. If f is continuous and g is of bounded variation on 
b 

[a,b] then  f f dg exists. 

Proof: Let c be a positive number. Let H be the total 

variation of g. By the uniform continuity of f, let  § be a 

positive number such that if x, y e [a,b] and | x - y | < § then 

I f(x) - f(y) | < ~3» Let [s V?1    be a Stieltjes subdivision of 

[a,b] such that |ls|| < §. Let [t \J™ be a refinement of }sp\Q . 

Since each t? , , 1 < p < m, is contained in some [s2k_2» ^k"'' 

!2P-1 riuiber such that    f(s2k-1)  + z2p_i = f^t2p-l^ 

and 
"2p-l <      < Then     |    2    f(s2    1)(g(s2p)  " *<B2p-2))  " 

P=l 

m 
?-  '<**wiX«(*sJ -g(t?D.2))l 

P=i 2p-l'VBV   2p 2p-2' 

|   Z    fC-gp.iXgC-gp)- *fegp.2» - \  (f(s2k-l)  + z2p-l)(g(t2p) " 
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g(t2    2))   |    and since the even part of   (BLAQ     is contained in the 

even part of   [tp^0      the above equals    |   8     f(s2p_i)(g(s2p) " 

g(S2p-2)}  ~X f(s2p-l)(g(s2p>  " ^s2p-2»  -p| Va«V^(V2}) 

m m 

=  I   2^ Vl^V  " g(t2P-2))| ^    =\   Kp-l^V  " g(t2P-2)l  « 

m m 

pfx rar I g(t2P
)" g(V2)l = i^pfi |g(V " g(t2P-2)l ^ » 

H < e.    Thus if    e  > 0    there is a Stieltjes subdivision   (sJQ      of 

[a,b]    such that if    f*A*    is a refinement of    ^Q      then 

n "i 

I  ^ f(s2p-1)(g(s2p)  - g(s2p.2)) -£ f(Vl)(g(V  - g(t2P-2))l * € 

and by theorem 8,     J    f dg exists. 
a 

b b 
ThPOT-fm 10:    If    a < c < b    and    /    f dg exists then    f    f dg 

f'* +  J    f dg. 
c 

Proof;    Let    e    be a positive number.    Since   J    f dg exists let 

Mjj"    be a Stieltjes subdivision of    [a,b]    such that if    {t^Q      is 

a refinement of h\T   then    \[t* ^ ^       H^y - 
g(t )) |  < c/2.    Let    Mf   be a refinement of    {sp\0

n    such that 
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tg.   = c.    Let (rp)Qq    be a refinement of    jt^?"1 

piO      such that    r      ■ c 
and    (rpj*»    is identical to   {tjj*    on    [c,b}.    Then    t   - c/2 + c/2 

I p|  ^Vl)(g(t2p) " g(t2p-2)) "    / f dg   I +   | ^ f dg - 

Ww)^.|(r^))| 
m 

"  (
pfl  f(t2P^Kg(V " g(V2» "pi, f<r2p-l)(g(V - g(r2p_2))|  - 

'pi. f(Vl)(g(t2P
) " g(t2P-2)) "p=\ 

f(r2p-l>^V " t&Va»l    thUE 

(plo      is a st±eltjes subdivision of    [a,c]    such that if    [r V*J    is 

a refinement of    (tjf    then     I «   f(t^)W^) - |(t^)) - 

j c 
f    f^r2p-l^g^r2p^ " g(r2p-2^' < €*    Therefore by theorem 8,   j   f dg 

exists.    By similar method    J    f dg    exists.    Let   (uA«k    be a 
c ™ 

Stieltjes subdivision of    [a,c]    such that if    fw\n      is a refinement 

1 c 

°f   ("p^f    then     I  2   f(W2P-l)(g(V " «<W2P-2))  " J   f *   I * €/2« 
C      1 ?i P=1 a C      7 On 
tP)0      be a stieltJes subdivision of    [c,b]    such that if    )w if* 

is a refinement of    ) V \ 2i    then 
a I 9)0 

=1
2 «Vi}«V - g(%2}) - i f * ' « e/?- Let h\o     be 
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the Stieltjes subdivision of    [a,b]    such that    z    = u    for 0 < D < 2k 
P        P *■ * — 

and    ZP = VP"2k    for    2k - P - 2  (l+k)*    Let   ^o*   be ' refinemer't 

of [zp\o then there is •n integer    d < m    such that    W_,  = z?.. 

.  d c 
Then    e = e/2  ♦ e/2 >  |   Z    f(W2p.1)(g(W2p) - g(W2p_2» -    |   f dg  |  * 

m 
Z 

m 

3=d
S

+1 
f<W2p-l)(g(V  " f0W)  " /    f *   I *  lp=\ 

f^Vl)(g(W2p) " 

c b 
g(W2    J)  -(   /   fdg +  |   fdg)|.    Thus by theorem 3, 

^~ a c 

ebb 
/   fdg + /fdg = |   fdg. 
a. c a 

Theorem 11:    If    f    is a function from    [a,b]    to the real numbers 
b 

and    /   f d f    exists then    f    is continuous, 
a 

Proof:    Suppose    f    is not continuous on    [a,b].    Let    c  e  [a,b] 

such that    f    is not continuous at    c»    Either the discontinuity at    c 

is on the right or the left.    Let    the discontinuity be on the right. 

Let    E    be a positive number such that if    §    is a positive number 

there is an    x e  [a,b]    and     |  x - c   | <  §    such that     |f(x) - f (c) | 
2 

> e.    Let      Y" §•    Let    [sn\nn    be the stieltjes subdivision of    [a,b] 

such that if 

m 

Wo" is a refinement of \2n 
WS then 

1  I    f(t2p-l)(f(t2p)  " f(t2p-2))  " [  f d f   I  <  Y*    Let    k    ^ a 

positive integer.    Let    ft I?1    be a refinement of    [s\^n    such that 
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t2k = c    and    t2k+l    t c*    Let    d e   [t2k*  t2k+l"1    such that  I  f^c^  " 

f(d)|  > e.    Let    ('AQ be a refinement of    {t\^    such that 

r2k+l  = r2k+2 = d, r'   ■ t     for   0 < p < 2k, and   r   g = t     for 

2k+l < p < 2m.    Let   £u \^m+2    be a refinement of   [t \^™    such that 

u2k+l = V u; 

2k+l < p < 2m. 

z2k+l = *2k»  U2k+2  " * ^ " *p    for    ° ^ P ^ 2k> ^    V2 = *P    f°T 

m+1 
Then     |  ^ f(r2p.1)(f(r2p) 

m+1 
f(r2p-2»  -p=\ ^p-l^'V 

f(u2p.2))l   = 

I f(^)(f(r,wJ - f(r0„) - f(u9t,,)(f(u„+9) - f(u„ ))| 2k+l/v   v  2k+2 2k 2k+l/XiX"2k+2J *2k' 

|  f(d)(f(d)  - f(c))  - f(c)(f(d) - f(c))|  =   |(f(d) - f(c))(f(d)  - 

f(C))|    =    I    f(d)   -   f(C)|
2   >€2. 

Since    frl2™*2 inc. {r \gm+2 and    (up\^
+2 are refinements of   M*    then 

2 e2 -  2 Y >  |"? fOP^Xf^)  - f(r?n_?)) -  f f « t  \ * 

a 

m+1 

P-l 
2p-l'^2p' l2p-2' 

b m+1 
/   f«f-I   *Ca2B^L)(f(u2p)-f(u2^2))|> 

p=i 

*   *<W(f(V - *fr^2» - /    fdW   fdf" 
m+1 

pi f(U2p-l>^<V   " f(U2p-2}) 
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it ffr^XKV m+1 

a contradiction. Thus f is continuous. A similar argument holds 

for discontinuity on the left. 
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CHAPTER II 

A Stieltjes Integral Existence Theorem for Some 
Functions Not of Bounded Variation 

Example 1;    Let    g:    [0,1] ■*    reals be defined by    g(x)  ■ 
f n 

Ix~  sin    - if    x / 0.    Then    g    is continuous on    [0,1]    but 

\o    if x  = 0. 

f1 
I    g dg    does not exist. 
0 

Proof:    The function    g    is the product of continuous functions 

for    x / 0;  thus if    g    is continuous at zero  then it is continuous on 
p 

[0,1].    Let    e    be a positive number.    Let    §  = e      and if   x e  [0,1] 

i 2 
such that     |x-0|  <  § = e      then 

ii n 

x      "'        ' ' x 

= e    and    g    is continuous at zero 

fxsin    — — 01   =   | fx sin    -|  =   | <x|| sin    -| <  \Jx\  - {x < fT ■ 1 

g    1 

Is /!!    be the sequence defined by    s_  = 1,  s? 

2p+l'  s2p-l = s2p-2»  where    ° < p- 

Let 

X 8(Vl)(g(82p-23  " g(s2p})  "    l± g2(s2p-2>  " g(s2p-2)g(s2p)  = 

2 (^sT~_  sin 
p=2 X   2P"2 "2P-2 J   *i*2p-2    sin =~2^ si" £ 

2 Z    s-    _ sin 
P=2    2P-2 s2p-2 r2-N s?n  9     Sin     * Sin     s        "     Z     2D^T  

+ 
2P-2 s2p-2 S2p      p=2 ^P ± 

2k ' 2p^T   >     I 2fe   "   *   S5T    * theorem 3-27 of Rudin' 
P=2  ^        p=l2P+1 
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Principles of Mathematical Analysis.     2      rj-     converges if and only 
p=l      p 

-       2P 2P 

2      —, converges,    lim    "TT    - lim _.    = i    thus    Z   -^r 
P=0    2? X

+l p^    2P+1
+1    p^ T72p      2 p=1 2p+l 

diverges and    Z    g(s2p_1)(g(s2p_2)  - g(s    ))    diverges by comparison. 

Therefore if    (r }Q
n is a Stieltjes  subdivision of    [0,1]    with    q    the 

smallest integer such that    r?    / 0    then there is a refinement [t (?" 

of   r p L    such that if    M    is a positive number there is a positive 

integer    k    such that      t2R = r2 , ftAjr"      is identical to 2k-2 

values of   |"^J-      on    (0,  r2q)    and    S    g(t2p_1) (g(t2p) - g(\lp_2))  - 

q 
S    g(r2p-l)(g(r2p) ' *(r2p^  >M*    Thus if    e>0    Md   /rpion 4 is a 

Stieltjes subdivision of     [0,1]    there is a refinement    M'      of 
p>0 

H 2n m 
such that 

\   g(Vl)(g(t2p) " g(t2P-2))  ~ p=l 2p' 2p- 

f 2    g^r2p-l^g^r2p^ ' «(r2    2))   I  > e    and    J    g dg    does not exist. 

Example  2:    Let    f    be a function from    [0,1]     to the real numbers 

fx    sin   -   if   x / 0 
defined by    f (x)  =   ( x 

[_0   if   x = 0. 
The function    f    is continuous at    0. 
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Proof:    Let    e    be a positive number.    Let    5 =  e.    Let   x  r   [0,1] 

such that     |0-x|  <  §    then     |  f(0) - f(x)   |   = 

If IT IT 
|0 -x sin-l  =   |x sin-|  =   |x|| sin -| <   |x| •!  =   |x |  < § = £.    Thus if 

£ > 0    there is a    § > 0    such that if    x  e  [0,1]    and     |0-x|  <  §    then 

|f(0) -  f(x) |  < e    and    f    is continuous at    0. 

The function    f    is not of bounded variation. 

Proof:    Suppose    f    is of bounded variation on    [0,1]    then there 

is a number    V   such that if    It \-      is a Stieltjes subdivision of 
n I p; c   1 ?r> 

[0,1]    then    2    |f(t_    _) - f(t    ) | < V.    Let    \%\fr be a Stieltjes 
p=]_ cp—c cp (_ p) U 

subdivision of    [0,1]     such that    n   is even,  t_ = 0,  t„    = t?    ,   = 1, 

^    *2p " t2pJ. = n^p+2"   for    1 < P < n.    Then    2    |f(t    ) - f(t        ) 
p-1 2p' 

n-1 

"A  |f(t2n-2P> " ^t2n-2p-2>l  =   'f(t2n>  " f^2n-2^   +   lf(t2n-2> " p=0 ■2p 

^n-U^   +  '   '  '  +lf(t2} " f(t0)!   =   |f(l)  " #'   +   |f# ■ fCl)|   + 

|fCT -f(0)l = 

lo- (4)1 + 1(4) -o| +    0 - ® + 1(f) - o| ♦ + |(^)-o| 

i+K— _^_   - U(j * \ * 7- + .  .   •  + ^T")-    Then 
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n , (n/^-1    , 

2    If C*2p) - f (t2P-2^' = **    s     "2K+I* the first ("^T1 tems of 

to -] 

2    .1   ■■»       By theorem 3.27 of Rudin,  Principles of Mathematical 
k=l 

if 
CO -i ao        Qi^ 

Analysis,   2    rr-,     converges if and only if    2    -r—, converges. 
k-1 m* k=0 2K X+l 

lim -«—«.       = lim  s-   = T*    Thus    2    —r—, diverges as does 
k+. 2      +1      k-„    2+£k      * k=0    2K i+l 

co -i °° 1 
2    .,   .»     Since the partial sums of    2    *■&     form a monotonic 

k-1 2k+1 k-1 ^K X 

increasing sequence that does not converge then the sequence is 

o    is a 

in 

Stieltjes  subdivision of    [0,1]    then    2    |f (s»  ) - f (s?p_2) I > v» 
p=l 

a contradiction. 

Definition 5:    Let    f    be a function from    [a,b]    into the real 

numbers.    Then    f    is said to be locally variable on    [a,b]    provided 

there is positive integer    N    such that if    |sp\o      is an increasinS 

sequence with    s    = a    and    s    = b,  then    f    is of bounded variation on 

all but at most    N    of the intervals    [s    ,,  s  ]    for    0 < p < n. 

Example 3;    Let    i    be a natural number.    Let    h±:  [0,1] ■» real 

numbers be defined by    h. (x)   = xi2  + xi-i.    Let    f:  [0,1]    -   real 

numbers be defined by    f(x)  = 
in * if   x / 0 ix sin 

0    if    x = 0 

1      li .    Let    g±'-^» fl 
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f(M*)) 
real numbers be defined by g.(x) 

-g.(x) if jij < x < i 

. Let g: [0,1] ■» real 

numbers be defined by g(x) 
0    if    x = 0 

Then    g    is 

The 

continuous but is not locally variable. 

Proof;    Let    i    be a natural number.    Then    g(r-)  ■ sAj)  = 

f(hi(r» - mi - » - ■&) ■ «.<&) ■ f0*(&» ■ £121- o. 
i i i i 

function    g.   is continuous in  [T-T» T]    by the composition of 

continuous  functions and thus    g    is continuous on    (0,1].    Let    e    be 

a positive number.    Let    n    be a natural number such that   — < c.    Let 

x £  [0,1]     such that     |0-x|  <|    then     |g(0)  - g(x) | =   |0-g(x) |   = 

|g(x)|  <  Is  (x)|   =   |fC\(x))|  <   I 1   I  <i< e.    Thus if    f > 0    there 

is a    § > 0    such that if     |o-x|  < 5    then     |g(0)  - g(x) | < e    and    g 

on is continuous at    0.    The function    h.    is monotonically increasing 

[ik> T] "lth hi(A:) = ° and \$ = 1 thus f(hi(x)) on 

[i, h     takes on all  the values that    f    takes on [0,1].    Then by 

example 2,  f(h.(x))    is not of bounded variation on [jjjp jJ«    Since 

there are an infinite number of such intervals then g    is not locally 

variable on    [0,1]. 
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Theorem 12:    Let    f    be a function from    [a,b]    to the real 

numbers.    If    [BL)Q      is a Stieltjes subdivision of    [a,b]    then there 

exists a Stieltjes subdivision, (rLn,    of    [a,b]     such that 

p| ^W^V " f(S2p-2))   +p| ^
r2P-l)(f(r2p) - f<*2p-2»  - 

f2(b) - f2(a). 

Proof; Let > s \  " be a Stieltjes subdivision of [a,b]. Let 

l^t   be a refinement °f   f«p\?   «* that   tUp_3 = tUp_2 = tUpml = 
S
2D-1    

and    *1 D 
= s2r>'    ^e*    ir \0      be a Stieltjes subdivision of 

[a,b]    such that    r2p = t2p,  rUp_3 = t^,  and    r^ = t^.    Let 

n = 2n.    Then    Z    f(s0    ,)(f(s„  ) - f(s„    J)  + 
p-1 2p-l/^^2pi '2p-2v 

'■   KviKflrJ - f(r^ J) 
P-1 

2p-l'^^2p 2p-2' 

p=\ 
f(s2p-l>(f<s2p> " *W  + f<B2p-l>  " f(s2P-2»  + 

X f(s2p-l)(f(s2p) " f(s2P-l
)}  + «%**«^l>  ' f(32p-2^  + 

jL f(V3)(f(lW - K^N + f(lW)(fV - f(V)Jl By 

substitution the above is equal 

X fVa,(f(V " f(V2)} + f(V2)(f(V-2) - f(Vu)J + 
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?=\ «W(f(W - f(WJ + f(V(f(V - f(V2» ' 

«VkW(ffW - f(Vu» = 
n 
2 

-=: •2V - f2(V2) + f2(V-2) - f2(Vu> = 

2    f2(t,    )  - f2(t,      , )  = f2(t,    ) - f2(tj  = f2(b)  - f2(a).    Thus 
p-1 "UP V-U ^Un 
fr (Q      is  a Stieltjes subdivision of    [a,b]    such that 

2 2 
t  (b) - f  (a). 

m 
fCa2p-2»   +p=\   «VlKffV  -  f(r2P-2» 

-ie 

Theorem 13s    Let    f    be a continuous function from    [a,b]     to 

real numbers such that if   Ts\2n    is a Stieltjes subdivision of 

_a,b]    then    f    is not of bounded variation on at most one of the 

intervals     [s,,    ».  s_  ].    If there exists a number    M    such that 
2P-2'     2p 

1    f(s2p-l)(f(s2D)  " f(s2p-2))l < M    then   i    f d f exists* 
-=: 

32p; 2p 

Proof;    Since     (    f df exists if    f    is of bounded variation 
a 

consider    f    is not of bounded variation.    Let    €    be a positive 

number.    Let    f = max    f|f(x)fl x c  [a,b]j .    Let    J    be a positive 

number such that    f .   $ < e/lO.     Since    f    is uniformly continuous on 
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[a,b]    then let    y    be a positive number such that if   x, y e  [a,b]    and 
2 

|x-yl < Y    then     |f(x)  - f (y) |  < §.     Since    f      is unifomLy continuous 

on    [a,b]    then let    X    be a positive number such that if   x, y e  [a,b] 

and    |'x-y|  <  X    then  |f (x)-f2(y)\     < e/lO.    Let    o   = min \y,  \L    Let 

N   be the smallest number such that if    is I"    is a Stieltjes 

subdivision of    [a,b]     and    ||s|| < a    then 

f(s2p-l^f(s2p)  " f(s2p-2^' - N*    Let    (Sp\on   be a stieltJes 

subdivision of    [a,b]     such that    ||s|| < o   and    N - e/2 < 

u 
f(s      1)(f(s    )  - f(s ))|.    Let    c    be an integer such that 

1 < c < n. Let f not be of bounded variation on [s2c_2» 
B2c^* Then 

" ^ <   I   \   '<»2p-l><'C»2p>  " f^S2p-2»l  "   I  \   f^2p-l)(f(S2P
) - D=l r r r p=x P=l 

f(i 
-? 

_2)) ♦ Hs^Ufis^) - f(s2c_2)) ♦   Z    tie^Htb^ - 

f(V2J)| "   I   f(s2c-l)(f^2c) " f^2c-2»l  +  I     *    f(s2p-l)(f(s2P
} " 

f(a        ))  ♦    2      '(-^X^-gp) - «-^*»l  ■   lf"(s2c-l)l'f(s2c^ " 
p=c+l 

c-1 
Z 

p=l *    f<S2p-l>^S2p> " f(s2p-2» +„J+1  
f<Vl)('V * 

n 
2 

p=c+l 
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c-1 

f(8o^c))l   ■   " •   § +   I   2    f<82p-i)C'(»2p> * f(S2p-2» '2p-2 

pj+1 
f(*2P-lHf('2p)  " r(s2p-2>>' « £/10 +   lpf" ^Vl)C(V " 

n 
f(s2p-2))  +  Z f(s2p-l)(f(s2p)  " f(s2p-2))l#    Thus    N ~  £/2 < £A° + 

p=c+l 

c-1 n 
f(s2p-l)(f(s2p>  " f<S2p-2»  +    *      f<S2p-l>(f<S2p>  " f(s2P-2»l  0r '2p'      ^°2p 2p- p=l        "** "*' -x" p=c+l 

c-1 n 

'2p'       ^2p- 

» - * < I  £ f(s2p-l)(f(s2p>  " f<fl2p-2»  ♦JL,   f(s2P-l
)(f(s2p) - p=c+l 

f(s2p.2))|. 

Suppose  there exists,    |^*,  a Stieltjes subdivision of 

k h 
[s2c-2'  S2c]     suchthat    I2    f(z2p-l)(f(z2p) " f(z2p-2))!  >F    £* 

By Theorem 12 there exists a Stieltjes  subdivision    S%\ Q      of 

[s2c-2>  52c]     SUch that    Z    f(z2p-l)(f(z2p) " f(z2p-2))  + 

m 2 2 

*    f(t2p-l)(f(t2p)  ■ f(t2p-2})  = f (S2c) " f  (S2c-2)-    ThUS 

I f(»2P.1)C*(«ar) - «Vt» + \ f<Vi)(f(V " f(V2}) 

m 
S 

P-1 

k 

P 

p O If 

f (e    )  - f (a)|    and     |   Z    4^X4^) " '(■2p-2))l " 
p-1 
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£ f<Vl)(f(V  ■ f(V2^1 ^  ^ f(32p-l)(f(s2p) " f(32p-2»  + 

p| ^VlKfCV  - f(t2p-2))l  =   I  f2(s2c^ " ^W  <fe    Si since 

is 2c - s2c_2l < *   ^us  JE < U  fd^Xtf^) - f(»^i)l < 

m 

f    f(t2p-lKf(t2p)  " f(t2p-2})l  + e/l°    "- 

'  Z    f^t2p-l^f^t2p^  ' f^t2p-2^'*    0bsenre that values of 

Jx 
f(z2p-l><f<Z2p>   " f(z2p-2»     "* p|  f(VlKf(V  " ^P-P-^ 

must be opposite in sign since the absolute value of each exceeds    e/10 

and the absolute value of their sum is less than    e/lO.    Let 

S    f(z2p-l)(f(z2p)  " f(z2p-2))    be positive. 

Either    N - |£ < 2    f(s2    jKf(s2p) - ■f(s2p-2))  + 

(j! f(s2p-l><f(S2p>  " f<S2p-2» lL   ^Zp-l^^ ' f(82p-2»-    In 

< - 

?=1 p=c+l 

the former case let    jr \^    be a Stieltjes subdivision of    [a,b]    such 

--hat    [rp\2J     is identical to    [s^f on    [a,  s^],    identical to 
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>zp} Qk,  on    [s2c_2,  s2cJ     and identical to    U^n    on    [s.,c,  b].    Then 

|  ^ f(Vl)(f(r2p)  - fCr^2))|   A    f(^>C*U^) - f(s2p_2))  ♦ 

pfc+1 «(v)(f(V ■ ^V*^ +
pfi 

f(i**)Cf(V " f(v)} * 

3i , 3e , 2j N-^ + ^ = N    a contradiction.    In the latter case let   jrA„ 

Stieltjes subdivision of    [a,b]    such that    [r[^    is identical  to 

be a 

^o"    on    [a'  B2e-2]*  identical to    fojo" on    [s2c-2' s2c]    ^ 
identical to    fsAQ      on    L"2CJ [s2c, b].    Then     |   Z    *(r2p_1)(f(r2p)  - 

f(r2p_2))i = - u f(^4)Cf(V - ^2p-2» ;=c
2
+1 «Vi)(f(V - 

m 

f(s2p_2)))  -  2    f(t2p.l
)(f(t2p) " f(t2p-2))  > N " 3€/5 + ^    = "    " 

contradiction.    Thus if    f^Ag      is a Stieltjes  subdivision of 

[s2c-2>  S2c]     then   1   2    f^2p.l)(f(8?P) " f^P-2^ ' " W$'    ^ 
other 

P-1 
case is similar. 

2c- /C-" 

df    exists.    Let   fu H1    be a Stieltjes subdivision of    [a,  s2c_2 
*.  p)0 . s 

such that if fuJ|"    is a refinement of   [upj21    then    \J" £ df - 

t    f(u2p.1)(f(u2p) -f(u2p_2))|<  c/20.    Since    f    is of bounded 
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b 
variation on    U-gj  b]    then    /      f df    exists.    Let    lvj2h    be 

2c 

Stieltjes subdivision of    [s„  ,  b]    such that if    fv^2d   is a 
dc ( plO 

refinement of    [y\^    then     | J      f df -  2    f(V^jKf(V- )  - 

2c 

f(V2    2))|  < e/20.    Let    (hj26      be a Stieltjes subdivision of    [a,b] 

such that J h |_ is identical to     f u
n\n      on    fa>   so _?]>    k?-+i   = 

K2i+2 = S2c-2» ^21+3 = S2c»    ^ identical  to    fo^1    on    [s^,  b]. 
l6t    W be a refinement of   ?h |.       such that    j,   it   are integers 

and    h2j  = s2c_2,  h2k = s2c.    Tnen j ^~l f df + J      f df - 
s2c 

S2c-2 b 

:=1 «h2p-l)(f(h2p>  " f(h2p-2)) 1  =  1/ f « + i     fdf~ 
'2c 

=f1 
f(h2p-l)(f(h2p)  " f(h2p-2)}  "=J

Z
+1 

f(Vl><f(V  " f(V2»  " 

J^ ^Vl)(f(h2p) " f(h2P-2))l *   ' /2C"2 f * ^ f0Vl)(f(V 

- f<V2)}|  +   ' ^    f * lL   f(Vl)(f(h2P) " f(h2p-2))!   + 
p=k>l 

2s)  ' f(l'2; 
1 _S.+   fOwKffraJ " *<"fc*a»l < e/2° + £/20 + h£/$ = io- 

f^b) - f2(a) -  (    f2c"2 f df ♦  /   f df) |   =   I  f2(b) - f2(a)  - 
2 J* s2c 
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(AW -**« ,f2(b)-f2(32c))i = 
 2          2  

(b)  - f2(a)  - f2(s2„2)  ♦ f2(a)  - f2(b)  * f2(s?J,  , 

I  f2(s2c)-f
2(s2c.2)|  <  e^O . €/2Qm 

:hus | f2(b? 2- f2<a> -! f(h   )(f(h ) - f(h   )) 
P=i 

if2(b) ■ f2(a>. (/2c-2f df * / fdf) + ( 
S2c 

,S2c-2 f df + 

■ df)  - !    f(h2p.1)(f(h?p) - f(h2p_2))|  <  lf2(b) - f2(a) - 

'2c 

P=l 

f*2c"2 f df + /     f df) | +  |( /2C"2 f df + /     f df) - 
s2c a S2c 

f(h2p-l)(f(h2p)  - f(h2p-2)}l  * £/20 + 9£/10 < '*    Therefore if 

is a positive number then there exists a Stieltjes subdivision,   I h^Q 
2e 

such that if      h u8    is a refinement of 
(   P)0 

^8      1 o   a   r«Wnoin<mt.   nf     ) h   I then 

f2(b)  - f2(a)  - !    f(h2^1)(f(h2  )  - f(h^.2))| <«    and    /    f df 

exists. 
p-1 

Thpnrm il.i    Let    f    be a locally variable continuous function frcm 

[a,b]    to the real numbers.    If there exists a number    M    such that if 

s >_      is a Stieltjes  subdivision of    [a,b]    then 
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|   Z    f(32D-l^f(s2p)  " f^2p-2^l  <M    thenJ     f df    exists. 
p=l P" a 

Proof:    Let    N    be the positive integer such that if \ s. ~)2n 
is 

I
J

PJO 
a Stieltjes subdivision of    [a,b]    then    f    is of bounded variation on 

all but at most    N    intervals     [s„    ?,  s„  ]    for    0  < p < n.    Let 

|s (»n    be a Stieltjes subdivision of    [a.b]    such that    f   is not of 
I PJ° 
bounded variation on    N    intervals    [S2D_?»  S

?TJ    
for    ° < p - n*    Let 

p    be a positive integer such that    0 < p < n.    Either    f   is of 

bounded variation on    [sp- ?»   s2x^    or it is not*    If    f   is °f bounded 

variation on    [s    -t   ■«_]    then J   ^    f df    exists by theorem 9.    If   f 
s2p-2 

is not of bounded variation on    [s~    „,  s?  ]    then J f df    exists 
S2p-2 

n       .s- ,-b 
by theorem 13.     By theorem 10,   2    [J    p    f df]  =1      f df. 

P=1    s2p-2 

Lemma Ll    Let    f    be a continuous function from    [a,b]    to the 

real numbers.    Let   («JQ
D
 be a Stieltjes  subdivision of    [a,b].    If 

there exists a positive integer    k    such that    1 < k < n   and either 

f(s2k) - f(s2k_2)  > 0    and    f(s2k_2) - f(s^)  > 0    or    f(s2k)  - 

f(82k-2J - °    and    f(s2k-2)  "  f (s2k-U} - °    th6n ^^ iS 3 StieltJeS 

subdivision No 2n-2 such that    2    f(s      1)(f(s2  )  - f(s2p_2)) < 
p-1 

n-1 

P=l 
f(Vl)(f(t2p) - f(V2)}' 2p 

Proof :    Case I.    Let    k    be a positive integer such that 
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1 < k < n,  f(s2k)  - f(s2k_2)  >0    and    f(s2k_2)  - f(s2k-U> ^ °«    Let 

(t\
2n~2    be a Stieltjes  subdivision of    [a,b]     such that    t    = s     for 

\ p)0 P        P 
0 < p < 2k-U,  t2k_3 = c  e[s2k_k,  s2k]    such that    f(c) = sup 

[f(x)|x e[s2k_u,   s2k]j,  and    tp = s2p+2    for    2k - 2 < p < 2n - 2.    Then 

k-2 

I f(s2p-l>(f(s2p) " f(s2p-2»  «£ «V^ " f(VJ)  + 

f(s2k.3)(f(s2k_2) - f(s2k.u)) ♦ fCia^Xtfs,*) - f(s2k.2)) * 

I        fCs.p.^CfC^)  - «V)3 A' f(S2p-l)(f(s2P
) " f(82p-2» + 

p=k+l P_1 

f(c)(f(s2k_2) - f(s2k.u)) ♦ f(c)(f(S2k) - f(s2k_2))  +p|+i 

V^ ■ f(02p-2>3  * ^ f(s2P-l)(f(s2P
) " V1 

n 
♦ f(c)(f(s2k) - f(s2k_u))  ♦ Z        ^(s2P-l

)(f(s2P
)  " f(s2p-2))   = 

k-2 
2 

p=l 

0-1 
2 

p=k 

I  «Vl>«V ■ f(V2})  + f(t2k-3)(f(t2k-2> " f(W>  + 

? fct^xfct^ - f(t2p_2)) =n? f(Vi)(f(t2P
)" f(V2)}' 

n-1 
Thus    S    f(s2D.1)(f(S2)  - f(S2_.2)) < 2    '(Vl)(f(*2P> " f(t^2))' 

p=l p * P"1 

Case II.     Let    k    be a positive integer such that   1 < k < n, 

f(s2k)  " f(s2k-2) ± °*  WMl    f(s2k-2>  " f(s2k-U) - °*    Let    f^O " 

be a Stieltjes subdivision of    [a,b]    such that      tp = sp    for 



0 < p < 2k  - h,  tpk-l  = d e^s2k-U'  S2k^    such that    f^  = irLf 

f(x)|x ets^,  s2k] \,  and    t    = sp+2    for    2k  -2 < p < 2n-2.    Then 

k-2 
2 

P= 
x ftB^XfC-gp) - f(S2p_2)) = ^ fd^x^ - f(s2p_2)) * 

f(s2k_3)(f(s2k.2) - f(s2k_u)) ♦ fC-a^XfC^) - f(32k_2)) - 

2 +    fU^XfC-gp)  - *(-2p_2» < fx    '(-2p-i)(*(«2p) - f(s2p-2»  + 

p=k+l 

f(d)(f(s2k_2)   -   f(32k_U)    +   f(d)(f(82k)   -   f(82k-2))      * 

n 
Z 

p=k+l V^  ■ '^P-^  = \ f(S2p-lKf(S2P) ' f(V2)J  + 

n 
f(d)(f(s2k) - f(s2k_u))   * 1        f<«2P-l)(f(fl2p)  " f(s2p-2))  = 

k-2 
S 

P-1 

n-1 
Z 

p=k 

" f(t2p-l)(f(t2P
)  " ^V^  + f(t2k-3)(f(t2k-2)  " *W + 

? f(t   )(f(t ). r(t   )) =n? f(vi)(f(v ■ fV}'Thus 

=k        r r r p=l 

| fCs^JCfCs^) - f(s2p_2)) <\  fCtj^WV - *<VB»- 

Let    f    be the function from     [0,1]     to the real numbers defined 

by f(x) = x sin - if x 4 0  The function f was earlier shown 

0 if x=0 
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to be continuous and not of bounded variation in example 2. 

In the remainder of the paper    f    is as above. 

Lemma $:    If    p    is a positive integer there is one and only one 

number   x £  [—^r, —]     such that    f (x)  = 0,  f (x)    is a maximum of    f    on 

f_i_   =•]    if    p    is  even and    f(x)    is as minimum of    f    on    [—|r, -] 
p+1    p F'*   P 

if   p    is odd. 

Proof:    f    is differentiate on    (0,1]    and    f' (x)  = sin 
rt      Tt IT . n       n n it 
- - -   cos    -.    f (x)  = 0    when sin   - = -   cos    -.    Since cos    - 
x     x x x      x f x n 

cannot be zero here then    f' (x)  = 0    when tan    - ■ -.    Let   p    be a 

positive integer.    Since the tangent function takes on all real values 

on the interval    [p«,   (p+l)" ]    then there is an    x    such that 
1 , It TT II TT Tf r, 

-T!<x-»i^x"-T or    p» < j (p+D« and tan   - = -.    Since 

P p+i 

n-   is positive for    x e(0,l]     then    (^y2, J)    only need be considered 

since tan    -    is nonpositive elsewhere on    [—^, -]    that it is 

defined.    Suppose there exist    JU    and   x2    such that    p < ^ 

< x2 < p + 1/2, tan    ;    - £     and tan   ^ - £.    Define function    g 
*1      *l 

IT " 

frcm    ( 1 i)    to  the real numbers by    g(x)  = - - tan    -.    The 
vp+l/2'  p' 

function    g    is differentiable.    Since    gC^)   = g(x2) ■ 0    there is a 

, 1 l. .    _ i/  x  ,     gfci) - g(x2)  =0.    Consider 
number    c  €  (-=r/0, -)    such that    g  (c) -     i £ vp+l/2'  p' 

*1 -    Xr 

g'(x)=:2(sec2:.l)    and sec2 j/l    on    (^/2, $    thus 

g'(x) / 5,  a contradiction.    Thus there exists at most one number 
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x eHTj ~]    such that tan   Z = Z    or    f' (x)  = 0.    f' (-)  = sin   p" - p« p+1    p xx p 

cos    p" =£p"   if    P    is even      Thus if   p    is a positive integer there 

p"   if    p    is odd. 

is one and only one number   x  ^T^T* ~]    such that    f' (x)  = °i    f(x)    is 

a maximum of    f    on     [r^p ~]    if    P    is even and    f (x)    is a minimum of 

f    on    Cplp p]    if    P    iS °dd* 

Lama £:    Let    c,  d e(0,l]     such that    c < d.    f'(c) = f' (d)  = 0. 

Then    |f(c)| <   |f(d)|. 

Proof:    By lemma 5,  f(c)    and    f(d)    are local maximums or local 

minimums.    Let    ^    be a positive integer such that    c dj-^, * I*    Le 

p      be a positive integer such that    d d--^, - h    Then   px > P2-    In 

[-L.     i ],   |x    sin    j J     is bounded by   i .    There is an 

x 6[X     I ]     such that     |sin    d  = 1    and    |f(x)|  = x.    Then    |f(x) 
P2

+l'  P2 
x 

x>   1      >I.     ^s     |f(c)|<i , |    <|f(x)|,   |f(x)|<|f(d)l    and 
p2+l - ^ Pi    pl 

|f(c)|  <|   <   |f(x)|  <   |f(d)|    or     |f(c)|  <  |f(d) 

*ne {S
P]5 

_   -,    =    So._o« 
P=l 

Pl 

Define   f ,1-      by    sQ = 1,  *2p = x    such that    f'(x)  = 0    on 
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p=l 
f<s2p-2)(f(52p-2>   " f(s2p})  " I  ^W " f(s2o-2>f(s*,> = 2P"    ^ -   -2p. 2p-2/iV°2p' 

v2  _,_2 
2    [(S2D-2

)
    

sin s~        " s2p-2 S
2D 

sin s~        sin   - ]  = 
p=l        ^ * S2p-2        dp *    ^ s2p-2 s2p 

co p O    H TT If 
0+2    [(s-    0)    sin    ■*        - s0    Q s«    sin   —        sin   - ] < 

p=2        2P-2 s
2p-2        2P"2    2P s2p-2 s2p 

2    [(TT)2  +  (^T)
2
]  =    22    4-^2 = 2 2     K.    By theorem 3.28 of 

p=2      p-i p-x p=2 (.p-x; p=1    ^ 

Rudin, Principles of Mathematical Analysis  2     •_    converges and thus 
p=l    p 

1    f^s2p-l^f^S2p-2^  " f^s2p^    converges by comparison.    In lemma 7, 

H'o' is as defined above. 

Lemma 7:    Let    M =  2    ^s      j)(f(s2p_2)  - f(0)«    Let   [tp^2n be 

P-l 

n 
a Stieltjes subidvision of    [0,1]    then     |  2    f(*^j)(*(t^)  - f^t2p_2^ 

< M + ]. 

Proof:    By theorem 12 there is a Stieltjes subdivision    jQQ 

of    [0,1]    such that    2    f(t2p_1)(f(t2p) - f(t2p-2))  + 

2    f(t-    J(f(t„  )  - f(t„    J)  = f2(D - r(0)  = 0.    Thus let 
p=l        ^P"-1- ^P ^P"^ 
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>:    f(t.2p.1)(f(t2p)  - f(*2p-2))  >0"    ^ lemma !t,  let    fr |*>    be a 

Stieltjes subdivision of    [0,1]     such that if   k    is an integer and 

1 < k < q    then    f(r2k)  - f (i*2k>2)    and    f(r2k_2)  - ffc^. )    are 

opposite in sign and    Z    f (r2p_i)(f(r2p)  " f^r2p-2^ - 

p| 
f(Vl)(f(t2P

)  " «V*)}* pi rt'^W^ - f(lW>  " 

£ f(r2q-2P-l
)(f(r2q-2p)   "  «&<***»   =p| 

f (r2q-2p+l —2q-2p+2 )(f(r„ ) - 

f(r„ o_))« Suppose there exists an integer j such that 1 < j < q 

and f(s2j.1)(f(s2j.2) - f(s2J)) < |f(r2q_2j+1)(f(r2q.2J+2) - 

f(r, 2i)|.  Then either  |f(s 21) | < |f(r2q.2;)+1) I °r lf(s2j-2
) _ 

'2J 

f(s2.)| <   |f(r2q.2j+2)  - f(r2q_2j)|.    I" b°th cases    s2j-2 < r2q-2j+2 

by lemma 6 and    [r2q_2j+2,  1]    G    [s2j_2,  1].    Then there is a partition 

jvlj    of    [s2._2,  1]    consisting of    j    intervals such that if   i    is 

an integer and    0 < i < j     then    f(V±)  - ftV^)    and    f(v±+1) - f(^) 

are opposite in sign.    By the definition of    feSo*    ^s2j-2' l*    may be 

partitioned into at most    j-1    intervals with this property, a 

contradiction.    Thus if    j    is an integer and    1 < k < q    then 
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Then by comparison    2    f (t^Xf (t^) - f(t2p_2)) <    2    f(r2q_2p+1) 

M**-**' " f(r2q-2p» ^ ^V^Vz3 " ^2p»  + 

^2q-l)(f(r2q)-f(r2q-2))<M+1- 

1 
Lemma 8;    j    f df exists 

Proof;    By lemma 7 there is a positive number    K    such that if 

t]2n    is a Stieltjes subdivision    [0,l]    then   |  2    fU^i^^W " 
pjO p=l 

f(t        ))|<K.     Let    c  6(0*1}.    The function    f    is of bounded 

variation on    [c,l].    Thus if    j    is an integer and    1 < j < n    then 

f    is not of bounded variation on at most one interval    [tg^  t2J] 

and    f is locally variable.    Then by theorem Ik   [ t df exists. 

Example hi    Let    g    be a function from    [0,1]    to the real numbers 

defined by    g(x)   = 2 ♦ f(x).    f I d 6 exists and    g2    is not of 

bounded variation. 

Proof:    Since   / f df exists and the constant function 2 is 

0 
2 1 

continuous and of bounded variation then    /    f d 2 exist., an      I 

/ f d 2  =   /fd (2*t)    by theorem 6.    Then    f    (2f)  df   exists by 

tLorem 7,  2+2    is continuous and ^  (2*f) d 2 exists,  thus   £ (2f) 
df 
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{  (2+f)  d 2  =(   (2+f)  d(2+f) -/"    g dg exists,    g2 = (2+f)2 = U+hf+f2. 

Let   L    be a positive number.    Let [s)f be a Stieltjes subdivision 

of    [0,1]    such that    Z     |f(t    )  - f(t2      )|  >L.    Then    2    |g^(t    ) - 
p=l p p p=l 

;
2(t      )| = 5   |U+Uf(t?n) ♦ f2(t?n) - k - Uf(t2D_2) - f2(t2D_2) 

p=l 
V   T X   KW 

iuf(t2p) - uf(t2p_2) ♦ f2(t2p) - f2(t2p.2)| = jn If(t2p) - 
p=l p=l 

n 
f(t2p_2)|| u ♦ f(t2p) ♦ f(t2p_2)l >£ |f(t2p) - fCt^KM - 

n 

I'V1  ■   |f(V2>,)  > =\   'f(t2P} " 'Vz^^ 

2 2     |f(t2p)  -f(t2p.2)|   >1     IfO^-fCt^)!   >U    Thus if    L    is 
p-1 

a positive number there is a Stieltje subdivision j tpjQ 
such that 

n 

P-1 

e2(t    )  - e2(t )l  > L    and    %     is not of bounded variation. 
2p' '2p-2 
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