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INTRODUCTION 

Enzyme  induction   in bacterial   systems has  been studied   intensively 

(F.   Jacob  1966,   J.  Monod   1966).     Comparative studies have also been made 

in   the   late   stage of development  in Neurospora  crassa.     In  this  thesis, 

the  induction of aryl-beta-glucosidase and  cellobiase   in Neurospora  has 

been  studied   in  the early stages  of development.    A mutant  strain of 

Neurospora  characterized  by   its   low   level of aryl-beta-glucosidase was 

used  as well  as wild   type   in an attempt  to  learn   the   function of  the 

gluc-l   locus.     In addition,   the endogenous   induction--an  increase   in 

enzyme activities during  the process   of differentiation--was   studied. 

A  comparison  between  endogenous   induction and  exogenous   induction  caused 

by  external   effectors has   been discussed. 



HISTORICAL BACKGROUND 

It  has   been known   for over  sixty years   that  certain enzymes  of 

micro-organisms  are   formed  only  in  the presence of  their specific sub- 

strate   (Jacob and Monod   1961).     This   effect was   later named   "enzyme 

adaptation" by Karstrom in 1938,   and   the  study of  enzyme  induction was 

initiated  by   the discovery of   "diauxy"--two  complete growth cycles which 

could   be observed when bacteria grew  in  some varied mixtures  of carbohy- 

drates   (Monod   1966).     In   1946,   it was  shown that   the adaptive  enzyme 

systems   are  controlled   in bacteria by genetic determinants   (Monod and 

Audureau   1946).     Now  induced  enzyme  synthesis  can  formally be defined  as 

the  increase   in  the  ratio of  the rate of synthesis   of a given  enzyme   to 

the rate of synthesis  of   total   cell protein  resulting  from exposure of 

cells   to  compounds   (inducers)  which are  identically or  structurally 

related   to   the substrate of  the given  enzyme   (Hogness   1959).     A  large 

number  of   inducible systems have been discovered and studied   in bacteria. 

Among  all  of  those,   the   "lactose" system   (beta-galactosidase and  related 

enzymes)  of Escherichia  coli  has been  studied most   intensively by 

Monod   et al.    (Monod  and Cohn   1952,   Cohn   1957, Monod   1959,  Jacob and 

Monod   1961).     It   has been proved by a  combination of immunological  and 

isotopic methods   that   the enzyme  formed  upon   induction was derived   from 

a complete de novo   synthesis  of enzyme molecules.     It has also  been proved 

that   the beta-galactosidase was  synthesized at   the  cellular   level,   that 

is,   the  response  of all  cells   to   induction  is   simultaneous and  equal,   if 

one meets   the  following  conditions: 



The   first  condition was   the method of gratuity developed by Monod 

et al.   (1952),   in which the kinetics  of enzyme   formation  should be 

studied   under  conditions where neither   the presence of  the   enzyme  itself, 

nor  its   inducer,   influenced   the general  cellular metabolism.     The  inducer 

should   induce only one new  factor,  namely,   a   supplementary process of 

specific  synthesis which was  precisely  the phenomenon under  investiga- 

tion.     For  this  purpose an   inducer,   thio-methyl-beta-D-glucoside   (TMG), 

was used. 

The  second   condition   involved  the use of non-resting cells.     It was 

believed   that   the individuals  of a  resting  cell  population   in a washed 

cell   suspension, would have all   levels  of   internal  reserves  and  a wide 

variation   in ability  to make  enzymes.     The resultant kinetics,   therefore, 

would  not  be applicable at  the  cellular  level. 

The   last   consideration was   the  inducer   transport   system.     Rickenberg 

et al.   (1956)   had proved   the presence of an   induced permeation system in 

E.   coli.     Their evidence   for  this  system was  based  on   the observation of 

"cryptic" mutants   that could not   concentrate  the  inducer   in  the cell. 

These  strains   could,   however,   show induced beta-galactosidase activity 

when  the  external   level of   inducer was  extremely high.     The kinetics   and 

specificity of  the   transport  system was  similar  to   those  of  typical 

enzymes  and was  given the name  "permease." 

Since  1953,   some negative adaptations,   i.e.,   specific  inhibitions  of 

enzyme   synthesis have been discovered and  observed   (Monod  and  Cohen- 

Bazire,   1953;   Cohn,   Cohen  and Monod   1953;   Adelberg and Umberger  1953). 

Studies   have revealed   that   the  "repression"  effect,   as   it was   later named 

by Vogel   (1957  a,   b)   is   very  closely analogous,   albeit  symmetrically 



opposed,   to   the  induction effect. 

This was   based  on   the observation  that: 

1. The   specificity of   induction or repression  is  not   related  to 

the   structural   specificity of  the  controlled  enzymes. 

2. It   has also been shown that   the rate  of synthesis  of different 

enzymes   involved   in  the metabolism or  synthesis of a single  substance 

appears   to  be governed   by a common   system in bacteria. 

3. This   is   so  in  the biochemical and genetic  studies  of a   large 

number of mutants   in both  induction  and repression systems. 

(Jacob and Monod   (1961,   1963)   generalized and designed  a model  of the re- 

gulation  of protein synthesis   in bacteria.) 

The occurrence of inductive and repressive effects in other micro- 

organisms and in tissues of higher organisms have been observed in many 

instances, but it has not been possible to analyze any of these systems 

in detail, partly due to lack of adequate genetic systems. The fungus, 

Neurospora crassa, has been used for genetic studies for many years, and 

in many respects its biological system is between that of bacteria and 

higher organisms.     Neurospora,   therefore,   seemed  suitable   for a  study  of 

enzyme  induction. 

The   induction and genetic control of  tyrosinase   in Neurospora was 

studied  by  Horowitz  et al.   (1960).     They   found  that  there were   three   genes 

controlling   the  synthesis of  tyrosinase.     Of   the   three,   only one gene has 

a   structure-determining role  in  the  synthesis  of  the  enzyme.     The other 

two genes   influenced   the  synthesis   indirectly  through   their control  over 

an   inductive mechanism that  operates  on   the   enzyme.     In   1966,   Nge et  al. 

(1966)   found  an orthophosphate repressible alkaline phosphotase  enzymes 



in Neurospora.     These are discussed  in  some detail by others   (Urey   1966; 

Urey and Horowitz   1967). 

Beta-glucosidase induction  studies   in Neurospora  initiated  by Single- 

ton and Murphy   (1958),   continued by Belz  and  Zweiback   (1959),   and Kann- 

wisher   (1962)   emphasized   the  later stages  of the  life cycle.     Landmann 

(1954)  observed  that  it was possible  to  induce  lactase  in  resting mycelia 

and  noted a diauxic  effect on  induction when mycelia were grown on su- 

crose and  then  induced  in  the  same media with   lactose.     Washing the 

mycelia  free of the  sucrose and   then  inducing resulted   in high   levels  of 

enzyme activity for as   long as   thirty-four hours.     His work further 

showed  that   there were  relatively large  reserves  available  for   the syn- 

thesis  of enzyme  in Neurospora.     In  the resting state the ability of   the 

mycelia  to produce  the  enzyme was dependent on  the age of  the mycelia  at 

the   time of   induction.     However,   in the growing  state,   more  factors were 

involved.     The work of Kannwisher demonstrated   the same possibility  for 

beta-glucosidase  induction  in mycelia.     He   found  also  cellobiose was 

most suitable  for beta-glucosidase induction  in Neurospora. 

The beta-glucosidase  system studied before   1963 was   found   to contain 

two enzymes.     The  thermostable beta-glucosidase was named aryl-beta- 

glucosidase  and  the  thermolabile one,   cellobiase   (Mahadeven and  Eberhart 

1964 a).     These  two  enzymes were found   to be under different  regulatory 

gene control.     Mutants  of regulatory genes   for  both enzymes  have been 

isolated.     Gluc-1  and  gluc-2   genes  control   the  synthesis  of aryl-beta- 

glucosidase   only   (Mahadeven  and Eberhart   1964 b,   Miller  and Eberhart 

unpublished  data).     The  cell-1  gene  regulates   the  l^vel of both cello- 

biase and  cellulase   (Myers  and  Eberhart   1966).     However,   aryl-beta- 



glucosidase,   cellobiase and  cellulase  can  be  induced  in wild  type  strains 

simultaneously by  cellobiose. 

Zalokar  and Cochrane   (1956)   observed   that   the metabolic patterns  of 

the  cells of Neurospora  change with age and morphological differentia- 

tion.     The most striking differentiation occurred at sporolation,   and 

this  differentiation was  both of a morphological  and a  physiological 

nature.     Studies  by Zalokar   (1959  a,b)   in Neurospora again showed   that 

specific activities  of several  enzymes were different   in conidia,   young 

hyphae,   and  mature mycelia.     Succinic dehydrogenase was   low  in conidia 

and  about  ten  times more active  in mature mycelium.    Aldolases   increased 

about   three   times   after the germination of   conidia.     Beta-galactosidase 

was   formed   in appreciable amounts  only after prolonged   growth and  had   a 

much higher   specific   activity  in mycelia.     The  observations  of Reinhardt 

(1892)   confirmed  that   the pattern of  the growth and differentiation of a 

Neurospora mycelium,   as well  as  other   fungi,   is   that   the protoplasm mi- 

grates   from older parts of the hyphae  into   the  growing   tips which brings 

the differentiation  along  the  length of the mycelium.      In  1964,   Hill and 

Sussman  studied   the   levels  of  trehalase and   invertase   found during  the 

development   of Neurospora.     Invertase activity was highest   in the mycelium 

after  growth had  been completed,   whereas   the greatest   amount of   trehalase 

activity was   found  in ungerminated conidia.     Both enzymes  showed   the 

least activity  in ascospores.     The specific  activity  changed also,   but 

not  by   the  same order  of magnitude.     In  1966,   Etten et  al.   did a more de- 

tailed  study of changes   in   fungi with  age.     The decrease  in  the   rate  of 

respiration with  age  of Rhizoctonia solani  and Sclerotium bactaticola was 

examined.     Specific  activities   in cell  free  extracts were measured  for 



most of   the  enzymes   in  the hexose monophosphate shunt,   Embden-Meyerhof- 

Parnas   pathway,   tricarboxylic acid  cycle and  terminal  electron-transport 

system.      In addition,   glucose oxidase,   isocitritase,   and malic  enzyme 

were measured. 

According  to Horowitz  et al.   (1960),   the normal appearance  and dis- 

appearance  of   tyrosinase activity during  the  life  cycle of Neurospora  is 

regulated  by  an inductive mechanism.     The  constitutive   formation  of  the 

enzyme  during  growth of the organism is   the result of self-induction, 

the  inducer  or   inducers  originating in  the  intracellular pool of   aromatic 

amino  acids.     The changes  of enzyme activities   due  to  self-induction are 

considered  as   "endogenous   induction" in  this   thesis. 



MATERIALS AND METHODS 

Selection of   the Strains 

A mutant   strain,   gluc-1,   of Neurospora was detected by its   reduced 

ability to cleave esculin  (esculetin glucoside)   in  the  growth media  to 

esculetin and   glucose.     Esculetin then reacts with   the   ferric chloride 

also present  in the media  to produce a  black precipitate  that accumulates 

as a   function of the amount  of beta-glucosidase produced by the   fungus. 

Strains containing the gluc-1  gene produce low levels  of aryl-beta- 

glucosidase  activity   (Eberhart,  Cross and Chase 1964).     Another  type  of 

strain,   gluc-2,   shows still a  lower degree of  esculin destruction 

(Eberhart,   Beck,  and Miller unpublished  data).     The conidia  from the 

wild   type and mutant  strains were   induced  by mM cellobiose for   six hours. 

Differences   in aryl-beta-glucosidase activity were  detected.     As  indi- 

cated  in Table  1,  wild type  strains have  the  highest  inducibility,   gluc-1 

strains  the next,   and gluc-2   the  least.     Although  the cellobiase can also 

be   induced  by cellobiose,   there is  no regular difference  in cellobiase 

level among wild type,   gluc-1,  and gluc-2 strains. 

Unless   otherwise indicated,  wild   type St.   Lawrence,   74 0R8-la and 

gluc-l strain CM25(4-5)A were used.     For most of  the  induction studies, 

the  conidia were used  instead of mycelia  in order   to  study  the  earliest 

stages  of development. 

Media and Growth of Cultures 

For stock maintenance and conidial  harvest,   solid glycerol complete 

(GCP) media  is used.     This medium contains  minimal  medium  (Vogel, 



Table   1 

Aryl-beta-glucosidase activities   in  conidia  of 
wild   type,   gluc-1 and  gluc-2   strains* 

StLa 74-0R8-la(gluc+) 

St A 4 gluc+ 

CM 75(9-5) gluc-2 

CM 25(4-5)A gluc-1 

CM 26(3-8)a gluc-1 

30(2-3) gluc-1 

27(2-5)A Sluc-1 

33(3-7) gluc-1 

Before induction 
IPX P.P.(410mu)b 

After 6 hours induction 
IPX O.D.(41Pmu)b 

and determination of enzyme activity) 

P.P53 0.140 

P. 086 0.175 

P.PP4 0.012 

P.P17 P.037 

P.P10 P. 030 

P.P12 0.073 

0.013 0.062 

0.015 0.066 

ibed  in Materials & Methods (Preparation 

b.  O.D.(600mu) 
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unpublished  date) plus   casitone  (Difco)   lg,   yeast  extract   (Difco)   2.5g; 

agar   (Difco)   15g;   glycerol   (j.  T.   Baker Chemical Co.,   Phillipsburg, 

N.   J.)   8 ml  and  vitamin stock solution  10 ml per  1000 ml  of medium. 

To  increase  the production of conidia,   Neurospora was   grown on 

300 ml GCP   solid media   in a  2000 ml Erlenmeyer  flask  for 3 days,   then 

the   flask was   invested and allowed  to grow  for another 4  days. 

For  growing the mycelium liquid GCP media was used.     Both conidia 

and mycelium were harvested and washed  by   filtration and centrifugation 

under aseptic  conditions. 

Cellobiose at a concentration of mM in phosphate buffer pH  6.0, 

0.1 M was used  as  the  basic   induction media.     Any modification will   be 

mentioned  in each specific   experiment. 

Preparation and  Determination of Enzyme Activity 

After  the  conidia  or mycelia had  been washed with distilled water 

at   least  three   times  by centrifugation or   filtration,   cells were 

suspended   in phosphate  buffer 0.1 M,   PH 6.0,  and ground by sonification 

at  2°  to  5°C   for  5 minutes.     The  suspension was  centrifuged at 

10,000  rpm,   0°C,   for one hour,  and the supernate was   tested   for  enzyme 

activity.     Beta-glucosidase activity was  determined by   the amount  of 

chromogenic  substance,   p-nitrophenol,   liberated  by   the hydrolysis  of 

the  substrate-p-nitrophenyl-beta-D-glucoside   (PNPG).     To 0.1ml  of   the 

lOmg./ml.   solution was  added 0.9ml.   of  the  enzyme  solution and   the mix- 

ture was   then   left at  room  temperature  for  10 minutes. 

The reaction was   stopped  by adding 0.5ml of 1M tris  buffer, 

shaking immediately.     Results were read at 410mu with a  colorimeter. 

Cellobiase activity was  determined by using enzyme  solution which had 
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been incubated  in a  60°C water bath  for  1 minute,   then cooled down 

immediately.     The enzyme activity of aryl-beta-glucosidase was  obtained 

by subtracting  the cellobiase activity  from that of  beta-glucosidase. 

Protein content was determined  by the method  of Lowry   (1951).    A 

human  serum albumin  solution was used  for   the  standard  curve,   and the 

specific activity of enzyme  solution was calculated as  units  of activ- 

ity per mg.   of protein. 

For  the whole cell assay,   a  suspension of conidia was used  instead 

of the enzyme solution.    After adding the  conidial   suspension  to  the 

substrate,   the mixture was  kept   shaking for  10 minutes.     Before read- 

ing,   centrifugation was used to  remove the  cells. 
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ENDOGENOUS  INDUCTION 

Method 

A series   of wild   type and gluc-1  strains were inoculated into 

250 ml Erlenmeyer  flasks  containing 25ml  of media which consisted  of 

2% Vogel's minimal media and 2% sucrose.     Approximately 60,000 conidia 

were placed  in  each  flask,  and all   the cultures were incubated at  room 

temperature.     After  the  third day,   one sample  from both wild  type and 

gluc-l   strains were  taken each day.     Mycelia and conidia were separated 

by  filtration  through a nylon net.     The number of conidia was  determined 

by  counting under a  light microscope.     The wet mycelial pellet was 

weighed.     Enzyme activities  in  conidia,  mycelia,   and media were deter- 

mined. 

Results 

Following  germination,   the weight of cells  increased  steadily.     The 

cultures   then   started  to conidiate,   and a  decrease  in the weight  of 

mycelia was  noticed.     As the number  of conidia produced  increased,   the 

weight of mycelia decreased.     The relationship  is  shown in Figure  1. 

The analysis  of   the total   enzyme activities of the cultures   is 

shown  in Figure 2.     The  total   units   (units  in mycelia,  conidia and wash- 

ings)  of aryl-beta-glucosidase  increased  greatly  in wild  type,   but not 

in  the  gluc-1 mutant.     The pattern of increase in enzyme activities 

followed  the pattern of  the increase in conidia very closely.     Cello- 

biase activities also   increased,   but  to a  lesser  extent. 
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Figure 1.  The change of the weight of mycelia and the number of 
conidia during endogenous induction 
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Figure  2.    The   change of  total   units  of aryl-beta-glucosidase and 
cellobiase during endogenous   induction 
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The differences  between wild   type and  gluc-1 with  respect   to cellobiase 

are not as  obvious  as   those with respect  to aryl-beta-glucosidase.     It 

is  apparent   that   the   formation of aryl-beta-glucosidase   is  related   to 

the morphological   as well  as  physiological differentiation  in wild   type. 

This   enzyme   is  not   limiting   in the production of conidia because without 

much   increment   in  enzyme activities,   the gluc-1   strain could  still   spo- 

rulate normally,   and   the number of  conidia   in   the  gluc-1   cultures were 

higher   than  those   in  the wild  type during  the   first six days.     During 

this period,   the weight of mycelia   in both  types  of culture was  essen- 

tially  the  same.     It   is natural   to  suggest   that  the formation of aryl- 

beta-glucosidase  is   a  result,   not a  cause,   of  the physiological changes 

going on   in   conidiation.     In wild   type,   the gene  expression   for this 

particular   enzyme  is brought  about  by   endogenous metabolic activities. 

In  gluc-1 mutants,   this   induction was   less  under  the regulation of   the 

mutant  gene,   gluc-1. 

Although   the   increase  of  the  total  activities  of aryl-beta-glucosidase 

in wild   type was  associated with  the number of conidia  produced,   the 

specific activity of  this   enzyme  remained constant   in  conidia   themselves 

(Figure 3).     The high value   for   the   first day  in wild  type might be an 

artifact because  of  the very  low number of conidia.     Even a   low reading 

for  enzyme  activity gave high specific activity  in  this   case.     The   speci- 

fic activities   for   cellobiase were  low in both wild  type and ^lucj. 

strain and   continued  to be   low  throughout   the  time course of   the experi- 

ment. 

On   the other  hand,   the  specific  activities  of aryl-beta-glucosidase 

increased   in mycelia  in both strains,   although  to a  lesser degree   in  the 
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Figure 3.     The  change of aryl-beta-glucosidase and  cellobiase   in 
conidia during endogenous   induction 
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mutant   (Figure  4).     The specific  activity of cellobiase in  the mycelia 

of both  strains was   variable possibly due  to   instability of   this  enzyme. 

The increase of specific  activity of aryl-beta-glucosidase   in mycelia 

with age  foreshadows   conidiation.     The change  in  the  specific activity 

of aryl-beta-glucosidase would  then be related  to the process of dif- 

ferentiation. 

In washings,   there were very high aryl-beta-glucosidase activities, 

but the cellobiase activities were  too  low  to be detected.     These results 

confirmed   the  earlier  findings  of Eberhart £t al_.   (1964).     Both  the total 

units of aryl-beta-glucosidase and   the specific activity increased ac- 

cording  to   the   course of   conidiation   (Figure  5).     The   first  observation 

is  that  the  aryl-beta-glucosidase  is  one of   the enzymes produced   in  large 

amounts prior   to or during  conidiation.     The second  observation is  that 

the aryl-beta-glucosidase   is  easily washed  off.    This  agrees with  the 

observations   of Eberhart   (1961). 

A comparison was made of  the   total units of activity   in conidia, 

mycelia and washings   (Table 2).     It was discovered   that  in wild   type, 

the  total  units  of  aryl-beta-glucosidase were higher   in  the washings   than 

in the  conidia  in   the  earlier  samples.     Later  the units were  lower   in 

washings   than  in  the conidia.     In  the gluc-1  strain   the aryl-beta- 

glucosidase  also  remained  higher  in   the washings  than  the   conidia.    This 

might  be due   to   the   limited  increase  in  the number of conidia produced 

by gluc-1   strain. 

For   the  endogenous   induction studies,   there are  two questions  to  be 

raised:      (1) What   is   the significance of   the conidiation  in endo induct ion? 

(2) What   is   the significance of enzyme distribution?    These questions  are 

discussed   in more detail   in  the   following  sections. 
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Figure 4.     The  change of aryl-beta-glucosidase and   cellobiase   in 
mycelia during endogenous   induction 
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Figure 5.     The  change of aryl-beta-glucosidase activity  in washings 
during endogenous   induction 
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Table 2 

Compar ison  of   total  units of aryl- •beta-glucosidase 
in growing  cultures  of R1 iic-1 and gluc-l+ strains 

Total X Total X Total X Total Y Total Y Total Y 
in in in in in in 

Day conidia mycelia washing conidia mycelia washing 

gluc+ 1 8.25 66 0 13.75 82.5 77 

gluc-1 1 5.5 107 0 16.5 24.8 67.8 

gluc+ 2 2.75 57.8 0 22 165 105 

gluc-1 2 5.5 66 13.8 57.75 57.8 101.5 

gluc+ 3 0 232 0 47.75 24.8 79.9 

gluc-1 3 8.25 74.3 0 30.25 8.25 95.5 

gluc+ 4 0 132 13.2 118.25 104.5 141 

gluc-1 4 11 140.5 20.8 99 99 132 

gluc+ 5 27.5 181.5 0 577.5 198 472 

gluc-1 5 16.5 165 8.6 181.5 173 206 

gluc+ 6 115.5 107 21.5 973.5 157 685 

gluc-1 6 0 16.5 8.6 165 165 206 

gluc+ 7 5.5 198 0 1210 115.5 7 92 

gluc-1 7 27.5 33 17.5 275 264 236 

gluc+ 8 206.25 115.5 44 1361.25 223 835 

gluc-1 8 16.5 132 0 198 183 264 

gluc+ 9 206.25 0 27 2268.75 330 1065 

gluc-1 9 19.25 148.5 34.4 167.25 181.5 266 

gluc+ 10 264 132 42.9 2112 256 1092 

gluc-1 

gluc+ 

gluc-1 

10 13.75 107 0 123.75 264 27 9 

11 

11 

0 

0 

239 

157 

2 

0 

2640 

178.75 

480 

132 

1080 

308 

gluc+ 

gluc-1 

12 

12 

206.25 

27.5 

181.5 

0 

22 

22 

2433.75 

330 

264 

322 

1275 

396 

X:  Cellobiase 

Y:  Aryl-beta-glucosidase 

■M 
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EXOGENOUS  INDUCTION 

General Considerations 

According  to  Cohn  (1957)  and Hogness,   et al.   (1959),   the homo- 

geneity of   cells   in  induction referred   to before could be  established 

by using a nonmetabolizable inducer and  cryptic  cells.     For  this   study, 

a nonmetabolizable  inducer was not available.     Cellobiose was used  since 

Kannwisher   (1962)   had shown in his  thesis  that   it was  the best inducer 

in this  system.     It was  suggested by Landmann  (1954)   that   in Neurospora 

the resting  state was more  suitable than in the growing state.     In  the 

growing state  there were more complicating factors  involved.     Enough 

reserves were present  in resting cells   to allow induction. 

For most  of our experiments,  washed conidia were suspended  in 

phosphate   buffer  containing mM cellobiose and  shaken in a  25C water 

bath   for  induction  studies. 

Method and Results 

1.     The  effect  of  the concentration of cellobiose on the induction 

of aryl-beta-glucosidase and cellobiase  in wild type and  gluc-1  strains. 

Strain 33(3-7)   gluc-1  Cot  and RB-1-(19)  gluc-l+ cot were  used in  this 

experiment.     According to  Kannwisher   (1962),  cot  strains were easier  to 

handle and  formed uniform cell  suspensions.     For a comparison to 

Kannwisher's  result,   these Cot  strains were chosen  for this particular 

experiment. They were grown in Vogel's media with 1% sucrose, 0.1% agar 

and U vitamin stock solution and aerated at 33°C. After incubation for 

48 hours,   the colonies were washed with  sterile distilled water  and 
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suspended   in  the  induction media   for 6 hours.    After washing,   proteins 

were  released  by  sonication.     Results are shown  in Figure 6.     Cellobiose 

of 10" M gave   the highest   induction of aryl-beta-glucosidase,   and con- 

centrations  between  10" M and   10" M showed high  efficiency  for cello- 

biase.    This  result was different  from that shown by Kannwisher, who 

indicated   that   10-3M cellobiose was  the most efficient  concentration   for 

induction using  24 or   36  hour cells.     It   is certain that  relative con- 

centrations  of  cells  as well  as   inducers were very critical  for  the 

results,   also   the age of   the cell had a significant   influence on the 

response of the cell   to   inducer. 

2.     Time   course of   induction of aryl-beta-glucosidase and  cellobiase 

in wild  type and gluc-1  conidia.     Since most of  the work done before on 

beta-glucosidase  induction emphasized  later stages,   in  this  thesis, 

conidia were  used  instead of mycelia in order  to  study   induction during 

the  earliest   stages   of development.    Since  the concentration of inducer 

is   very important   in  studying  the kinetics of enzyme synthesis  at  a 

cellular   level,   ImM cellobiose was used.     In  this  experiment,   conidia 

harvested  and washed   from GCP cultures were transferred  and   incubated at 

25°C  in phosphate buffer  0.1M,   PH 6.0,   containing  ImM cellobiose only. 

At different   time   intervals   samples were  taken by removing  flasks   from 

the water bath and  harvesting  the conidia by centrifugation   (Figure  7). 

From this   study,   it was   learned  that after six hours   induction,   the  cul- 

ture showed   the highest  enzyme activity,   both   for aryl-beta-glucosidase 

and  cellobiase   in wild   type.    A longer  time of   induction resulted   in 

lowered   specific activity and   total units.     In MH-L grains,   only  the 

cellobiase was   induced,   but   to a  lesser  extent.     Kannwisher's  data on 
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Figure 6.     The  effect of   the  concentration of cellobiose  on   the 
induction of aryl-beta-glucosidase and   cellobiase  in wild   type 
and gluc-1   strains 
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Figure  7.    Time course of  induction of aryl-beta-glucosidase and 
cellobiase  in wild   type and  gluc-1   conidia 
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the  induction of mycelia  showed   that   the maximum enzyme activity was 

gained  after an   induction of  3 hours.     The  reasons   for   this   lack of 

agreement  of the  results   are  still  unknown.     The reasons   that   there was 

a drop  in activity after  6   hours'   induction were probably:     (1)   after 

6 hours,   the energy reserve  inside  the cells was   used   up and   the  enzymes 

already  synthesized were not  stable under the experimental   conditions; 

(2)  changes  occurred   in  the physiology of the cells,   possibly,   after 

6 hours,   causing  conidia   to begin growing  into young mycelia although 

the media  used was   for resting cells;   (3)   the production of proteinase 

which destroyed   the aryl-beta-glucosidase or cellobiase  induced; 

(4)   changes   in  the permeation system.     The  first possibility was   tested 

by  the   following experiment. 

3.     The  influence of  energy  source on   induction of aryl-beta- 

glucosidase and   cellobiase   in wild   type conidia.     (Figure 8). 

Xylose,   1.5g/100 ml,   and   yeast   extract,   0.1g/100 ml,  were added   sepa- 

rately  to   the   induction media which  contained mM cellobiose  in  0.1M, 

pH 6.0,   phosphate buffer.     Xylose  or   cellobiose were added   to buffer as 

controls.     Xylose was  used  as a   carbon source other   than cellobiose 

because  it  cannot be used  as an   inducer and   can be considered minimal 

(Cohn  1957).     It was   concluded   from  this  experiment   that an additional 

energy supply did not  change the time  course of   induction.     This  sug- 

gested  that  the decrease  of enzyme activity after 6   hours'   induction was 

not due  to  the   limitation  of the energy reserve  in  conidia.     Therefore, 

for more  studies,   induction media without  any energy  supply other  than 

the  inducer  cellobiose was  used. 
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Figure 8.     The  influence of energy source on   induction of 
aryl-beta-glucosidase and  cellobiase  in wild   type conidia 
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4.     The  influence of glucose on  the induction of beta-glucosidases 

in wild   type  and gluc-1   conidia.     Glucose was  added  to  the   induction 

media   to a   final  concentration of  10_4M,   10    M and   10"2M.     A control 

flask  contained   induction media  only.     Conidia were grown   for 3  or 6 

hours   as   indicated. 

Monod  discovered  early  in  1941  that  the growth of wild  type E.   coli 

on a minimal medium containing glucose and one of a number of other 

sugars   followed a   two  step pattern   (diauxic growth),   in which the utili- 

zation of   the second  sugar did not begin until after  the  supply of 

glucose had  been  exhausted.     The   lag period  corresponded   to  the  time   re- 

quired   to produce  induced   levels   of enzymes needed   for utilization of   the 

second   sugar.     These enzymes were not present   in sufficient amount so 

long as   glucose was  available.     This phenomenon of  specific   inhibition 

by glucose of   inducible enzyme  formation,  observed also  in  the case of 

some   inducible degradative  enzymes other  than  those   involved  in  sugar 

utilization,   had become known as   the "glucose  effect."    Experiments  on  the 

uptake   into   the  cell of   labeled   inducers,  D-galactose C14  and D-fucose H3 

(Adlya  and   Echols   1966),   pointed   to  inhibition at   the  level of  inducer 

transport   system as   the possible  primary mechanism of  the glucose  effect 

in   the   case  of   the  "gal"  enzymes.     If  there were a similar   inducer 

transport mechanism in Neurospora,   this  same glucose effect   should be 

detectable.     When glucose of various  concentrations were added  to  the 

induction media,   very confusing results were obtained   for   cellobiase 

induction   (Figure 9).     For aryl-beta-glucosidase   in wild   type,   high  con- 

centrations   of glucose  showed complete   inhibition,   low concentrations 



36 



Figure  9.     The  effect of glucose  on exogenous   induction of 
cellobiase 
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showed   inhibition at  the beginning and   slight   stimulation  later. 

(Figure  10a).     Whether or not   this  corresponded  to   the   lag period  of   the 

diauxic growth   in E.   coli was   inconclusive.     More experiments  on  the up- 

take of radioactive inducers and glucose are necessary before any con- 

clusive statement  can be made. 

5.     Induction of cellobiase and  the  influence of xylose   in   12  hour 

cells.    After harvesting and washing,   conidia were  transferred   to sucrose 

complete  liquid media and  grown at   25°C   for   12  hours  before   they were 

innoculated   into  induction media.     SCP medium contains   2% sucrose  instead 

of  glycerol   in GCP medium.     Xylose 2% was  used as  before. 

This   experiment was done  for  the purpose of  looking at   the   induction 

phenomenon at  an early  stage of development   in mycelia  rather   than coni- 

dia.     Xylose showed   inhibition on  induction  in conidia  and   in   12 hour 

mycelia.     In wild   type mycelia  the specific  activity of aryl-beta- 

glucosidase was much   less   than   it  is   in  conidia   (Figure  10b).     The 

aryl-beta-glucosidase activity  in gluc-1  strains was   too  low  to  be de- 

tected.    Xylose showed   inhibition  toward  cellobiase only at   the beginning 

in  both wild   type and  gluc-1   strains   (Figure   11).     These results were not 

in  agreement with  the  earlier demonstration of the gratuitous   induction 

effect of xylose. 

* 
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aryl-beta-glucosidase  in wild   type 
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Figure  10b.     Induction of aryl-beta-glucosidase and   the   influence 
of xylose  in  12 hour wild   type  cells 
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Figure   11.     The induction of cellobiase and   the influence of 
xylose   in  12   hour  cells 
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DISCUSSION 

The  studies  of Mahadeven  and Eberhart   (1962,   1964)   indicated  that 

the gluc-1 gene  in Neurospora  is  responsible  for the regulation of  the 

production of aryl-beta-glucosidase,   but did not  change  the physical 

properties  of   this   enzyme.     From heterocaryon experiments  between glue-1 

and wild  type  strains,   the dominance of gluc-1  gene over  the wild  type 

indicated   the  similarity of  this  situation  to  the dominant  repressor 

system of beta-galactosidase  in E.   coli.     The results  of endoinduction 

and  exoinduction  experiments  also  indicated   that   the gluc-1  gene has   the 

regulatory   function.     Strains   containing gluc-1  gene  respond   to the 

inducer or metabolite  in   the  cytoplasm.     The mechanism of   this   type of 

control may also be due  to  the  synthesis  of a repressor by  this  gene. 

The  repressor  can   then combine with  the inducer  or metabolite stero- 

specifically.     This  model  can  also  explain  the  fact  that   this gene  is 

dominant   in heterocaryons.     However,   for more direct  evidence,   radioactive 

inducer may  be used   to isolate  radioactive  inducer-repressor complexes. 

In  1964,   Eberhart   et  al_.,   discussed   the simultaneous  induction of cellu- 

lase,   cellobiase,   and aryl-beta-glucosidase by cellobiose, which  suggested 

a  coordinated  regulatory mechanism analogous   to  that described   for   the 

beta-galactosidase  system  in E.   coli by Jacob and Monod   (1961).     Myers 

and Eberhart   (1966)   reported   the simultaneous production of cellulase and 

cellobiase  as   a regulatory expression of  the cell-1 gene  in Neurospora; 

aryl-beta-glucosidase  levels  are not  affected by   the celM   locus.     An 

experiment   involving a cross  of gluc-1  K cell^l  showed  that celM 
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segregates   independently of  the gluc-1  character.     The  results  in  this 

thesis   showed  also   the  independent   regulation of aryl-beta-glucosidase 

and  cellobiase  by  either exoinduction or endoinduction.     The  gluc-1 

mutant produces   low aryl-beta-glucosidase,   but  the  level of  cellobiase 

remains   the   same.     The addition of glucose,   xylose or  other  energy 

sources   indicates   that   the differences  in  enzyme   level  between wild   type 

and mutant  are not due  to a difference  in nutrient   transport  ability, 

therefore  probably no permease  system is   involved   since  there was no 

glucose  effect   observed  and   the  induction of  cellobiase  in both strains 

were very close  in all  circumstances.     Endoinduction  studies   also support 

this  suggestion.     A mapping study of gluc-1,   cell-1  and  structural  genes 

for   corresponding enzyme may help  to understand   the mechanism of  regula- 

tion and   the significance of   their relationship  in  utilization of cellu- 

lose  in Neurospora. 

Under   the same experimental  conditions,   both   the aryl-beta-glucosidase 

and   cellobiase were   induced   to a different   extent   in conidia  or young 

mycelia.     The specific activities of  these   enzymes were always  higher   in 

conidial   induction  than mycelial.     In  their   thesis work,  Belz  and Zwei- 

back discovered   the same phenomenon   (Belz  and Zweiback   1959).     This  dif- 

ference must  be due   to   the different  responses of genes  at  various ages 

of development.     In  endogenous   induction  studies,   there was no  inducer 

added  to   the media prior   to  conidiation.     The change   in enzyme  content 

must have been a result of change in endoenvironment of  the cell.     Studies 

by  Zalokar   (1959a,   1959b)  on  "growth and  differentiation of Neurospora 

hyphae" and   "enzyme  activity and   cell differentiation"   in Neurospora 

also   indicated  variations   in  enzyme distribution at different  ages  of 

* 
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cells  and at different parts  of a single  cell.     Thus,   the  endoinduction 

may be caused by a high  local  concentration or   the  lowering of repressor 

of a certain metabolite which   can  function as an   inducer.     However,   the 

accumulation or disappearance  of molecules   in a  cell must  be under a 

control of gene   function or a combination of   functions  of  several  genes. 

Conidia of Neurospora were produced most abundantly when the envi- 

ronment did not   favor growth.     Results   of  this  study,   as well as   an 

earlier report  by Eberhart   (1961),   indicate  that aryl-beta-glucosidase 

is  an exocellular  enzyme   in conidia,   but not   in mycelia.     Cellobiase   is 

not an exocellular  enzyme   in any case.     Although   these   two enzymes  have 

overlapping substrate specificity,   there may  be some significance   for 

Neurospora   to produce more  stable aryl-beta-glucosidase  in  conidia and   to 

excrete  it outside  the cell under unfavored  conditions.     It would be 

interesting to  study  the cellobiase differentiation  in  cell-1 mutants 

which produce very high amounts  of cellobiase   in mycelia. 

It has been well established  that   the mitotic process   ensures   the 

exact distribution of genes   to  each  cell of  the organism.     The enzymatic 

and other differences between cells must arise  from differences   in  the 

activity of  the same  set of genes   in different  cells.     The starting and 

the stopping of  the synthesis  of specific proteins--differentiation at 

the molecular  level—may occur  by some  process   involving genie DNA,  by 

the  transcription of  the DNA. to   form messenger RNA,   by   the  combination  of 

messenger RNA. with  the ribosome during protein synthesis,   or  by  some 

transformation of   the ultimate protein product   (Villee,   1966).    Although 

must  research  has  been conducted   in  this  area,   there is  no definite 

answer yet   for   this  complex problem.     As  a working hypothesis,  many 

k 
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investigators currently assume that cellular differentiation involves 

the activation of specific genetic sites, and there are many attempts 

to relate what is known of nucleic acid and protein metabolism to the 

study of differentiating cells.  There are probably other mechanisms of 

control of the synthetic pathways that do not operate directly at the 

gene, but at the ribosomal level, or even at the cell surface where the 

transport of substances into and out of the cell is regulated (Villee, 

1966).  The situation in our system may be tested by adding actinomycin 

D or puromycin (which inhibit transcription and translation, respectively) 

to induction media.  Cell extracts from conidia may be injected into 

mycelia to see whether any substance in conidia can cause a change in 

the induction behavior of mycelia.  Fractionation and analysis of the 

cell extract might be able to give a clue to aryl-beta-glucosidase 

regulation. 

A fungus is one of the simplest organisms which shows differentia- 

tion in its life cycle.  With the long historical background in biochemi- 

cal and genetic studies, Neurospora serves as a very good material for 

these newly developed studies of biochemical genetics. 
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SUMMARY 

The aryl-beta-glucosidase and  cellobiase have been compared   in 

wild   type and mutant  strains  of Neurospora crassa.     The gluc-1 mutant 

failed   to  show significant  induction by various   concentrations of 

exogenous   cellobiose.     This strain also  failed   to  show  the usual   endo- 

genous   induction  exhibited by wild   type Neurospora  under a  variety of 

experimental   conditions.     New techniques were developed  to   study   the 

release  of  exogenous  enzyme in   the process of conidiation.     Intact cells 

were also   studied.     The results were discussed   in   light of   the Jacob and 

Monod model. 
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