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Abstract: 
 
Evidence-based medicine frequently uses statistical hypothesis testing. In this paradigm, data can 
only disconfirm a research hypothesis’ competitors: One tests the negation of a statistical 
hypothesis that is supposed to correspond to the research hypothesis. In practice, these 
hypotheses are often misaligned. For instance, directional research hypotheses are often paired 
with non-directional statistical hypotheses. Prima facie, one cannot gain proper evidence for 
one’s research hypothesis employing a misaligned statistical hypothesis. This paper sheds lights 
on the nature of and the reasons for such misalignments and it provides a thorough analysis of 
whether they pose a threat to evidence-based medicine. The upshots are that the misalignments 
are often hidden for clinicians and that although some cases of misalignments can be partially 
counterbalanced, the overall threat is non-negligible. The counterbalances either lead to 
methodological inadequacy (in addition to the misalignment), loss of statistical power, or involve 
a (potential) lack of information that could be crucial for decision making. This result casts doubt 
on various findings of medical studies in addition to issues associated with under-powered 
studies or the replication crisis. 
 
Keywords: Research hypotheses | Statistical hypothesis testing | Null hypotheses | Evidence-
based medicine | Clinical decision making  
 
Article: 
 
1 Introduction 
 
Evidence-based medicine (EBM) involves the statistical analyses of data. Such analyses play a 
crucial role for evaluating whether a treatment is promising and for a clinician’s recommendation 
regarding a patient’s therapy. ‘Evidence’ is a relative term; evidence is evidence for or against 
something. A common approach to statistical analysis of data is statistical hypothesis testing. For 
instance, a clinician’s research hypothesis may be that transcranial magnetic stimulation (TMS) 
has a positive effect on spinal cord injury (SCI) patients. In this paradigm, data cannot directly 
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support a hypothesis, but only disconfirm its competitors. So, one examines the negation of the 
research hypothesis, namely that TMS has no or a negative effect on SCI patients. If the negation 
is disconfirmed, one can reason that the research hypothesis is indirectly supported. One thus 
tests the negation of a statistical hypothesis that corresponds to the research hypothesis (cf. 
Fig. 1). 
 

 
Figure 1. Indirect testing of a research hypothesis 
 
It goes without saying that the reasoning involved in statistical hypothesis testing is risky. The 
conclusion does not follow from the data. The amount of risk depends on how well the sample 
reflects the population, on whether the samples have been drawn independently of each other, on 
the statistical power of the study, etc. Moreover, several researchers have argued that the results 
of hypothesis testing alone should not be a decisive guide (e.g., Cohen 1994; Ioannidis 2005; 
Cumming 2012, Chap. 1), and some researchers reject dichotomous hypothesis testing and focus 
on other statistical means, such as the so-called confidence intervals (e.g., Meehl 1978; 
Cumming 2012, Chap. 1). However, our main focus is not on these topics here. Instead, we are 
concerned with a prevailing issue that prima facie poses a threat even to rather low-risk cases of 
hypothesis testing or confidence interval calculations: Intuitively, it is essential that the statistical 
hypothesis closely corresponds to the research hypothesis; it should align with its claim. Take 
the previous example: The hypothesis that TMS has a positive effect on SCI patients 
is directional.1 So, its corresponding statistical hypothesis should feature the same direction. Yet, 
in EBM, often a non-directional hypothesis is used, such as the negation of a so-called nil-null 
hypothesis.2 Nil-null hypotheses reflect the claim that, say, there is no effect whatsoever. 
Accordingly, its negation reflects the claim that the treatment of interest has some effect—of 
whatever direction. This misalignment of pairing a directional research hypothesis with a non-
directional statistical hypothesis is not uncommon. The authors examined 30 papers in paraplegia 
research, which were part of a systematic review on SCI trials (Zimmermann et al. 2019). 20 of 
the 30 papers feature such a misalignment and nonetheless involve conclusions regarding the 
research hypotheses. Prima facie, such conclusions are illegitimate, as Casella and Berger 
emphasize (1987, p. 106). Arguably, one cannot gain proper evidence for one’s research 
hypothesis without an appropriately corresponding statistical hypothesis. Yet, misalignments 
prevail in EBM. What are the reasons for this practice? Does it pose a threat or is the 
misalignment benign upon closer examination? 
 
This paper sheds light on these questions with an interdisciplinary approach, combining insights 
from applied medical statistics and philosophical considerations. We proceed as follows: In 

 
1 We briefly discuss the normative issue of whether directional research hypotheses should be used in evidence-
based medicine at all in Sect. 4.4. 
2 Cho and Abe (2013) claim that this issue also prevails in business research, and given the reasons provided in 
Sect. 4, it is likely to be also found in other disciplines, e.g., psychology. 
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Sect. 2, we briefly describe the basics of statistical hypothesis testing in EBM. In Sect. 3, we 
distinguish between different forms of a misalignment between research hypotheses and 
statistical hypotheses. In Sect. 4, we provide basic reasons for the misalignment practice in EBM. 
Our upshots are (i) that these reasons do not justify the misalignments and (ii) that the 
misalignments are often hidden for clinicians. In Sect. 5, we evaluate whether the misalignments 
pose a threat to evidence-based medicine, with an eye on informed decision making by 
clinicians, physicians, and patients. Our upshot is that some cases of misalignments can be 
partially counterbalanced. However, the counterbalances either lead to methodological 
inadequacy (in addition to the misalignment), loss of statistical power, or involve a (potential) 
lack of information that could be crucial for informed decision making. The threat is thus non-
negligible. This result of our analysis casts doubt on various findings of medical studies in 
addition to issues associated with under-powered studies (cf., e.g., Ioannidis 2005) or the fact 
that a substantial number of findings of medical studies cannot be replicated (cf., e.g., Davis 
et al. 2014). In Sect. 6, we suggest some remedies to the misalignment practice. 
 
2 Statistical Hypothesis Testing in Clinical Studies 
 
Statistical hypothesis testing is a form of inferential statistics. The aim is to infer properties of a 
population (e.g., all SCI patients) by investigating a sample (e.g., 50 SCI patients). There have 
been extensive discussions about the vices and virtues of this testing, but we do not want to go 
into detail here.3 The relation between research hypotheses and statistical hypotheses is also 
crucial to statistical analyses where estimating the effect size or confidence intervals is the 
primary goal. 
 
Statistical hypothesis testing involves four central steps. First, a research hypothesis is 
established that contains measurable variables for its evaluation, such as measures of a patient’s 
electrical perceptual threshold (EPT). This step is also called operationalization. 
 
Second, the research hypothesis needs to be paired with a corresponding statistical hypothesis. 
This requires setting up a specific statistical model for the collected data. For instance, a 
statistical hypothesis could be concerned with the difference Δ = μT − μP of mean electric 
perceptual thresholds under treatment and placebo in a TMS study with SCI patients. To assess 
the research hypothesis that, say, the treatment leads to an increased EPT compared to a placebo, 
one constructs a statistical hypothesis that is supposed to align with the research hypothesis. This 
is the so-called alternative hypothesis (H1), e.g., H1 : Δ > 0. However, as mentioned before, 
its negation is tested, i.e., the so-called null hypothesis (H0), e.g., H0 : Δ ≤ 0. Importantly, H0s can 
also be concerned with specific differences, e.g., H0 : Δ ≤ 2 is also a fine H0.4  
 
Third, the evidence against H0 can be quantified by calculating the so-called p value. This value 
is defined as the probability of observing data which is at least as ‘extreme’ as the data at hand, 
when H0 is true. For illustration, assume that the test statistic (i.e., basically the empirical mean 

 
3 For an overview see, e.g., (Nickerson 2000; Gigerenzer 2004; Lecoutre and Poitevineau 2014). 
4 There are also cases where the null hypothesis is not the negation of the alternative hypothesis (e.g., when 
considering fixed point alternatives). However, since these cases are the exception rather than the rule, they are not 
our main focus of this article, except for cases where they may serve as a potential remedy for avoiding what we call 
‘MAGNITUDE MISALIGNMENT’ (see below). 



difference, multiplied with some scaling factor) in the treatment-versus-placebo example is 1. 
Although this is a value greater than 0, it could also be a result of by-chance differences. So, it is 
reasonable to calculate the probability of getting a test statistic of 1 or even a larger value, given 
that the treatment is not superior. This probability is illustrated in the first plot in Fig. 2. 
 
Fourth, the p value is taken as the basis for a formal decision rule: H0H0 is rejected if and only if 
the p value is less than a pre-specified cutoff α, where often α = 0.05. So, loosely speaking, if it 
is very unlikely to observe data like the one at hand under H0, you do not trust in H0, where ‘very 
unlikely’ is specified by α. If the p value is smaller than α, the result is said to be statistically 
significant. 
 
A decision based on the p value can be wrong. There could be a false positive result or type I 
error: the test is significant although H0 is true. Conversely, the test might not be significant 
although H1 is true, which is a false negative result or a type II error (β). 1 − β is also called 
the statistical power. In regulatory guidelines, emphasis is placed on keeping the type I error rate 
below a pre-specified threshold α, but also on determining the number of samples or subjects that 
have to be included in the study to achieve sufficient power (cf., e.g., ICH E9). The former can 
be accomplished by following the aforementioned decision rule (i.e., rejecting the null 
hypothesis if p < α). For sample size calculation, one has to specify α, the hypothesized effect 
size, the desired power (e.g., 80 or 90%), and some nuisance parameters (e.g., the hypothesized 
variability of data, other variances, correlations, depending on the particular hypothesis test). In 
clinical studies, the hypothesized effect size needs to be at least as large as the so-
called minimal clinically important difference (MCID). 
 
When calculating the p value, one has to distinguish between one- and two-sided testing 
problems. The EPT example above represents an instance of a so-called ‘one-sided hypothesis 
testing problem’ because its H1 has one direction. In other settings, for instance, when comparing 
two treatments in the development phase, a researcher might only hypothesize that there 
is some difference in terms of efficacy. In this case, the null hypothesis will be non-directional or 
two-sided, that is, H0 : μT − μP = 0 versus H1 : μT − μP ≠ 0. The two cases are illustrated in Fig. 2. 
In the one-sided case (corresponding to the EPT example), the p value is the right-tail 
probability, whereas the probabilities in both tails are considered in the two-sided setting. 
The p value for the two-sided case in Fig. 2 is twice the p value for the one-sided case. 
 

 
Figure 2. One-sided versus two-sided tests; Grey areas represent the p values 
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Hypothesis testing is centered around the p value. But, as we have mentioned, the hypothesized 
size of an effect plays an important role when it comes to the power analysis and the sample size 
considerations for a given study. Nevertheless, considering the actual effect size in a data set is 
not part of the formal decision rule about H0 as such.5 It goes without saying that it is 
nonetheless important for informed clinical decision making. We go back to this point in Sect. 5. 
 
In medical research, hypotheses are also evaluated by calculating so-called confidence intervals. 
For instance, in order to test H0 : Δ ≤ 0, one might check whether the corresponding one-sided 
confidence interval contains 0 or not. In what follows, we focus on p values. But, as we indicate, 
the problems discussed may also arise when using confidence intervals instead of p values. 
 
3 Prevailing Misalignments Between Research Hypotheses and Statistical Hypotheses 
 
There is a variety of possible misalignments between research hypotheses and their statistical 
hypotheses. We focus on two common ones, namely on what we call DIRECTION 
MISALIGNMENT and MAGNITUDE MISALIGNMENT. A research hypothesis and its statistical 
hypothesis are misaligned when the statistical hypothesis does not reflect the direction of the 
research hypothesis or the magnitude of the effect stated in the research hypothesis. The latter 
case is meant as follows: A directional research hypothesis is typically not about an effect of 
whatever magnitude but about an effect of a particular size. For instance, in clinical studies, the 
effect size needs to be at least as large as the minimal clinically important difference (MCID). 
Ideally, the desired effect size should be reflected in the corresponding statistical alternative 
hypothesis, too: For example, one should consider setting H1 : μT − μP = δ or H1 : μT − μP ≥ δ, 
where δ denotes the desired effect size, e.g., the MCID.6  
 
Take as a paradigmatic example for DIRECTION MISALIGNMENT a study by Derakhshanrad et al. 
(2015). Their research hypothesis is clearly directional: “The objective of this study was to 
determine whether an integrated and an intensive outpatient program would result in 
functional improvement of spinal cord injury (SCI) patients [...].” (p. 860, our italics) However, 
they explicitly state that only two-sided tests were used (p. 861), which implies that they 
used non-directional statistical hypotheses. 20 of the 30 studies we reviewed feature such a 
misalignment. DIRECTION MISALIGNMENT might also occur in the other direction, e.g., when a 
non-directional research hypothesis is tested with a one-sided test (presumably due to data-driven 
considerations). But since such cases typically involve a conclusion to a 
matching directional research hypothesis (rather than to the initial non-directional one), we do 
not focus on this variant of DIRECTION MISALIGNMENT. 
 
A frequently occurring instance of misalignment in clinical studies features both DIRECTION 
MISALIGNMENT and MAGNITUDE MISALIGNMENT: A directional research hypothesis is paired with 
the negation of a statistical nil-null hypothesis, i.e., with a thesis that reflects that there 
is no effect. The statistical hypothesis is then tested with a two-sided test. This is a twofold 
misalignment: Although the research hypothesis is about a directional effect, the statistical 
hypotheses are just concerned with whether there is any effect (DIRECTION MISALIGNMENT) of 

 
5 Note that it would be methodologically inadequate to exclusively consider effect sizes because by-chance 
variations cannot be accounted for. 
6 As we indicated in footnote 4, in such cases H1H1 and H0H0 do not exhaust the parameter space. 



any magnitude (MAGNITUDE MISALIGNMENT). 17 of the 30 studies we reviewed feature such a 
twofold misalignment. 
 
A less common form of a misaligned statistical hypothesis is a direction-matching statistical 
hypothesis that does not reflect the magnitude claim (MAGNITUDE MISALIGNMENT). As 
Bigirumurame and Kasim emphasize (2017), such a misalignment is quite common in medical 
research. For instance, Jeong and Yoo conclude that air stacking leads to significant 
improvement for cervical SCI patient (2015, p. 1952), although the statistical hypotheses used in 
their study did not specify any effect magnitude.7  
 
There is also one form of misalignment, which occurs at an earlier stage, and one form of 
misalignment, which occurs at a later stage. The former occurs at the first step of statistical 
hypothesis testing. We call it operationalization misaligment.8 It can occur when the measurable 
variables are chosen for the statistical evaluation. For instance, positive differences in the mean 
electric perceptual threshold might not adequately capture the hypothesis that the treatment leads 
to an improvement for the SCI patients. The other form of misalignment occurs at the testing 
stage. We call it TESTING MISALIGNMENT. Recall the indirect testing method (cf. Fig. 1): One 
tests the negated corresponding statistical hypothesis. There are cases, where the statistical 
evaluation method tests a negated statistical hypothesis other than the initially constructed one. 
For instance, non-parametric methods are often recommended as a standard remedy or rule-of-
thumb when the validity of the assumptions underlying classical parametric tests (such as 
the t test) are suspected (cf., e.g., Field 2000, p. 49). However, non-parametric methods are based 
on statistical hypotheses other than the ones used for parametric tests. Briefly, the effect measure 
that underlies frequently used non-parametric tests like, for example, the Wilcoxon–Mann–
Whitney test, may also detect effects other than a shift of the group means (i.e., the parametric 
effect measure). So, if a non-parametric method is used post hoc and one draws conclusions 
regarding one’s research hypothesis, one reasons based on a non-matching negated statistical 
hypothesis. Importantly, OPERATIONALIZATION MISALIGMENT and TESTING MISALIGNMENT can 
occur independently of whether the initial statistical hypothesis is aligned. 
 
Analyzing OPERATIONALIZATION MISALIGMENT and TESTING MISALIGNMENT is a project on its 
own. In what follows, we focus on DIRECTION and MAGNITUDE MISALIGNMENT. 
 
4 Reasons for the Prevailing Misalignments 
 
We identified four basic reasons for the misalignments between research hypotheses and their 
statistical hypotheses in medical research: THE TAUGHT ERROR, THE PRACTICAL 
ENFORCEMENT, THE AIM OF CONSERVATIVE TESTING, and THE AIM OF RESEARCH OPEN-
MINDEDNESS. Our upshots are that these reasons do not justify the misalignment practice and that 
the misalignments are often hidden for clinicians. 
 
4.1 The Taught Error 
 

 
7 In fact, Jeong and Yoo’s study also features DIRECTION MISALIGNMENT. They conclude from two-sided tests that 
there is a significant improvement (cf., e.g., Jeong and Yoo 2015, p. 1952). 
8 We owe this suggestion to Gerit Pfuhl. 



The first reason is that misalignments occur in teaching of statistical testing. This issue comes in 
at least three flavors: The first is that directional research hypotheses are not uncommonly paired 
with non-directional statistical hypotheses, when illustrating hypothesis testing. Consider the 
following case (Cumming 2012, p. 21): 
 

Suppose we want to know whether the new treatment for insomnia is better than the old. 
To use NHST [Null hypothesis significance testing] we test the null hypothesis that 
there’s no difference between the two treatments in the population. 

 
So, Cumming effectively suggests that to test a directional research hypothesis one should use a 
statistical nil-null hypothesis. To test whether the treatment is better one tests a statistical 
hypothesis that reflects the claim that the treatment does not make any difference whatsoever 
(e.g., H0 : Δ = 0). So, H1 is Δ ≠ 0, which does not correspond to the directional research 
hypothesis. Here, a misalignment case is given as a paradigmatic example. A less extreme case 
is stating a statistical nil-null hypothesis along with a directional research hypothesis (cf., e.g., 
Hacking 2001, Chap. 18). Although this does not imply that these hypotheses are paired, it is at 
least suggested. A related issue is that some textbooks suggest that one can conclude from a 
statistically significant p value for the nil-null hypothesis that a directional statistical hypothesis 
is (indirectly) supported (and thus a corresponding directional research hypothesis). For instance, 
Machin, Cambell, and Walters illustrate hypothesis testing with the following example: The 
blood pressure of patients is examined before and after exercise. The p value calculated for a nil-
null hypothesis is statistically significant. Machin et al. then claim that “[...] there is sufficient 
evidence to [...] accept the [statistical] alternative hypothesis that there is a difference (a rise) in 
the mean blood pressure of middle-aged men before and after exercise” (2007, p. 108). Yet, the 
difference need not be a rise. Without additional considerations, one cannot conclude anything 
directional from rejecting a non-directional statistical hypothesis. 
 
Second, the fact that H0 is the negation of a thesis which is supposed to reflect the research 
hypothesis is often not emphasized or not even mentioned. For instance, Cumming writes 
(2012, p. 21): 
 

Many textbooks describe NHST as a series of steps, something like this: 
 
1. Choose a null hypothesis [i.e., H0] [...] Sometimes, in addition to specifying H0, an 
alternative hypothesis, H1 is also specified. 

  
This idea of first choosing some H0 and then perhaps additionally specifying H1 neglects the fact 
that H1 is supposed to correspond to the research hypothesis and that H0 is the negation of H1. A 
less extreme case is exemplified by Machin, Cambell, and Walters’ claim that “[...] the null 
hypothesis [i.e., H0] is often the negation of the research hypothesis [...]” (2007, p. 106, our 
italics). This is misleading. H0 cannot negate the research hypothesis because the latter is not a 
statistical hypothesis. Moreover, H0 should negate the hypothesis that reflects the research 
hypothesis, i.e., H1. It is no surprise that neither the direction of nor the magnitude involved in 
the research hypothesis is of great concern throughout these textbooks. We found this neglect in 
other textbooks, too (cf., e.g., Bland 2000; Kirkwood and Sterne 2003; Everitt 2006). 
 



The third issue affects MAGNITUDE MISALIGNMENT. In some textbooks, it is suggested that H0s 
simply are nil-null hypotheses (cf. Altman 1991, p. 165; Bland 2000, ch. 9.1; Kirkwood and 
Sterne 2003, p. 59; Everitt 2006, p. 165; Machin et al. 2007, p. 106). Authors like Altman thus 
unsurprisingly state that “[...] there is no direct reference in this [testing] method to 
the magnitude of the effect of interest [...]” (cf. Altman 1991, p. 166, his italics). Yet, as we have 
seen, point hypotheses can be used as H1. 
 
THE TAUGHT ERROR is linked to THE PRACTICAL ENFORCEMENT. 
 
4.2 The Practical Enforcement 
 
THE PRACTICAL ENFORCEMENT is the fact that two-sided tests seem to be the norm in practically 
relevant settings. There are at least three reasons for this. The first is that some popular statistical 
methods only involve two-sided tests. For instance, for comparing the means of several groups—
without any incorporation of co-variates—the so-called Analysis of Variance (ANOVA) F test is 
often used. ANOVAs only involve two-sided tests. The null hypothesis is here H0 : μ1 = ⋯ = μa, 
where μ1 denotes the mean of group 1, and so forth. However, the H0 is rejected if and only if the 
test statistic exceeds a certain cutoff value, which is determined based on the so-called 
(central) F-distribution. This structure of the rejection criterion for certain two-sided tests like the 
ANOVA might give the false impression of being a one-sided test procedure, although in fact, a 
two-sided hypothesis is tested, as emphasized by Kaiser (1960), Cho and Abe (2013, p. 1261). 
Another example is the Chi-square test, which is frequently used for the analysis of contingency 
tables. A related example stems from a vivid debate about how to specify the previously 
mentioned type I error bound αα. A large group of researchers from renowned institutions 
recently opted for a much lower standard, namely 0.005 (Benjamin et al. 2018).9 In their paper, 
they also argue for a statistical method to overcome certain problems. Yet, this proposal is 
concerned with two-sided testing. 
 
The second reason is concerned with statistical tools; for some frequently encountered settings, it 
is more straightforward to access two-sided tests in statistical software packages (such as SPSS 
and R) than one-sided ones. For instance, when using multiple regression models, the regression 
coefficients are usually tested for significant differences from 0 by two-sided test procedures. 
Although this might be appropriate when using regression techniques for exploratory purposes 
(e.g., variable selection), the risk of misalignment is increased in confirmatory settings. For 
instance, regression models are frequently used for comparing means between several groups 
(e.g., treatment groups) while adjusting for several co-variates (e.g., baseline measurements of 
the outcome variable of interest). In this case, the significance of the coefficient corresponding to 
the group indicator variable is of primary interest. However, a two-sided p value provided by the 
statistical software does not correspond to a directional research hypothesis. 
 
The third reason is that guidelines for good scientific (statistical) practice might (perhaps 
involuntarily) discourage researchers from using one-sided tests. For instance, according to the 
New England Journal of Medicine guidelines, all reported p values should be two-sided, except 
when one-sided tests are required by study design, such as in non-inferiority trials 
(cf. https://www.nejm.org/author-center/new-manuscripts). The ICH statistical principles for 

 
9 Similar demands are voiced by, e.g., (Berger and Sellke 1987; Nickerson 2000; Colquhoun 2014). 
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clinical trials E9 state that researchers must provide a clear justification if they decide to use a 
one-sided test instead of a two-sided one (ICH E9, Sect. 5.5). Thus, it seems that two-sided tests 
are the default and one-sided tests are the more difficult cases. 
 
In light of THE TAUGHT ERROR and THE PRACTICAL ENFORCEMENT, it seems plausible to 
hypothesize that the misalignments we pointed out in Sect. 3 are often hidden for clinicians who 
conduct studies. They apply what they have learned and what popular statistical tests, common 
statistical software packages, and guidelines seem to (involuntarily) encourage. Additionally, our 
review suggests that clinicians do not always pay special attention to the directionality of the 
theses involved. In the 30 papers we examined, the directions of all hypotheses involved are 
clearly stated in 3 only. Although these findings do not mean that the respective authors do not 
care about directionality—the papers might only cover a part of their considerations—they 
indicate that there is some lack of awareness concerning the alignment of research and statistical 
hypotheses. Yet, none of the reasons discussed so far justify the misalignment practice. For 
instance, using ANOVAs does not justify testing a non-directional statistical hypothesis to 
reason about a directional research hypothesis. 
 
THE TAUGHT ERROR and the practical reinforcement are no accident. They are at least partially 
motivated by two theoretical reasons, namely THE AIM OF CONSERVATIVE TESTING and THE AIM 
OF RESEARCH OPEN-MINDEDNESS. 
 
4.3 The Aim of Conservative Testing 
 
As Cho and Abe highlight (2013), there are theoretical reasons for using two-sided tests instead 
of one-sided tests. The first reason is the worry that one-sided tests are not rigorous enough. It 
has been argued that statistical significance can typically be obtained more easily by using one-
sided tests instead of two-sided tests (cf. Kimmer 1957; Braver 1975; Altman 1991, p. 171; 
Howell 2007, pp. 98–100). In the one-sided setting, the p value is smaller than for the 
corresponding two-sided test since the latter is the accumulation of the probabilities in both tails 
(cf. Fig. 2). So, as a safeguard against potential criticism regarding ‘fishing for significance’, 
researchers might prefer conducting two-sided tests. When it comes to the calculation of one-
sided confidence intervals, there might be an additional issue with respect to interpretation, since 
one of the confidence interval limits is infinite. 
 
Note, however, that the rigor achieved with two-sided tests with respect to the type I error rate 
comes at the price of losing power (i.e., with a reduced probability of detecting a statistically 
significant effect, given that the intervention is indeed efficacious). Moreover, using two-sided 
tests might also be sub-optimal due to the fact that usually, in contrast to the directional setting, 
uniformly most powerful tests can only be obtained under additional restrictions on the classes of 
test statistics.10  
 
4.4 The Aim of Research Open-Mindedness 
 
The second theoretical reason in favor of two-sided tests is that one-sided tests violate THE AIM 
OF RESEARCH OPEN-MINDEDNESS. One-sided tests carry the risk of not catching effects in the 

 
10 There are proposals for solving this problem, see, e.g., (Lehmann and Romano 2005), p. 229 ff. 



direction opposite to the initial assumption (cf., e.g., Altman 1991, p. 171; Dubey 1991; 
Bland 2000, Chap. 9.5; Ruxton and Neuhäuser 2010; Cho and Abe 2013). For instance, consider 
a study where the research hypothesis is that a new treatment yields an average quality of life 
score that is larger than under the current gold standard treatment. But the study data show that 
the average quality of life score was substantially lower in the group receiving the new treatment. 
Using a one-sided test, the statistical significance of this adverse result cannot be assessed, and 
this potentially important unexpected finding might thus not be adequately considered and 
reported. 
 
But, importantly, THE AIM OF RESEARCH OPEN-MINDEDNESS does not justify misalignments. It 
simply recommends to use non-directional research hypotheses. 
 
This leads us to a fundamental issue, namely the normative question of whether directional 
research hypotheses should be used in evidence-based medicine at all. For instance, according to 
the principle of clinical equipoise, clinicians should not predict what they will discover in 
clinical trials. They should not hypothesize that treatment A is better than treatment B or than a 
placebo, etc. (for more on this principle see, e.g., Freedman 1987; Djulbegovic 2009). 
Accordingly, clinicians should only use non-directional research hypotheses (and only two-sided 
statistical tests). However, to discuss this principle or the normative question in general would 
lead us too far afield here. Either way, such normative principles do not justify the 
misalignments we are interested in. They only favor non-directional research hypotheses. 
 
To sum up, misalignments between a research hypothesis and its corresponding statistical 
hypothesis seem to be favored by taught examples and common practices, which are connected 
to theoretical reasons for using two-sided tests. Yet, none of theses reasons justifies the 
misalignment practice. So, we proceed with considering whether this practice poses a threat to 
evidence-based medicine. 
 
5 Do Misalignments Pose a Threat to Evidence-Based Medicine? 
 
Employing a misaligned statistical hypothesis is methodologically flawed. It also seems clear 
that one cannot gain proper evidence regarding the hypothesis that, say, some medication 
is better than a placebo by examining whether there is any difference whatsoever between the 
parameters of interest. A close alignment between a research hypothesis and its statistical 
hypothesis seems to be methodologically essential. As we have seen, there are also no 
justificatory reasons for the misalignments. One could thus reason that the misalignments pose a 
threat to evidence-based medicine simply by virtue of being a fundamental methodological flaw. 
But although we do not want to diminish the issue of such a flaw, we follow a different 
approach. We want to examine whether the misalignments are benign upon closer examination; 
they could be counterbalanced by other factors. 
 
In what follows, we first discuss promising counterbalancing factors for DIRECTION 
MISALIGNMENT and then promising counterbalancing factors for MAGNITUDE MISALIGNMENT. 
Our discussions are not only guided by methodological concerns but also by considerations 
about medical research practice and considerations about informed decision making by 



clinicians, physicians, and patients. After all, one main function of hypothesis testing is to aid 
good clinical decision making. 
 
5.1 Counterbalances for Direction Misalignment 
 
DIRECTION MISALIGNMENT occurs when the direction of the research hypothesis and the direction 
of its ‘corresponding’ statistical hypothesis do not match. At first glance, the toolbox of statistics 
offers a counterbalancing instrument for the discussed cases where a direction research 
hypothesis is combined with a non-directional statistical hypothesis. According to the so-
called closure testing principle (Marcus et al. 1976), if a two-sided p value is statistically 
significant, one can subsequently conduct two one-sided tests using the same level αα. Thereby, 
one could obtain the p value that is relevant for the directional research hypothesis. 
 
But one should not celebrate too soon for at least three reasons. (i) Such a method does not 
counterbalance all cases: Post hoc one-sided tests are only legitimate if the two-sided test is 
statistically significant. If the two-sided test is non-significant, the procedure stops without any 
further testing. So, although the procedure allows for control of type I errors, the price to pay is a 
loss in power (cf. Sect. 4.3). (ii) Methodologically, it does not seem appropriate to change one’s 
statistical hypothesis post hoc; one should decide whether to test one-sided or two-
sided before analyzing the data, as Altman urges (1991, p. 171) and as is required for 
preregistrations of trials and studies. (iii) The post hoc move conflicts with classical principles of 
statistical hypothesis testing, as outlined in Sect. 2. For instance, if initially the effect is supposed 
to be positive, but, in fact, it turns out to be negative, the closure testing principle effectively 
leads to the rejection of the initial alternative hypothesis. This contradicts the principle that 
evidence should only be used to disconfirm the null hypothesis. 
 
Regarding (i), one might object that in the case of non-significant p values, the data are not 
conclusive independent of the research hypothesis’ direction. It should thus be no issue that the 
closure testing principle does not cover all cases. Yet, this is not the case. A one-sided test result 
could be statistically significant although a two-sided test result based on the same data is not. 
 
One might also object that (ii) is not an issue. Instead of characterizing the closure testing 
principle as a post hoc change of statistical hypotheses, one should construe it as a new testing 
situation. One re-employs the data to conduct two one-sided tests, where each corresponds to a 
different research hypothesis. If so, no alternative hypothesis is being rejected. However, this 
change of research hypotheses is not part of the closure testing principle. So, from the point of a 
research hypothesis evaluation, the apparent remedy involves a dubious ad hoc move. 
 
Up to this point, we have only considered p values. In practice, as recommended by guidelines 
for the conduct and reporting of clinical trials (e.g., ICH E9; Kirkwood and Sterne 2003, 
Chap. 8), not only the test decision, but also the precise p values and, most importantly, the effect 
size(s) (e.g., mean difference between treatment groups) or confidence intervals should be 
considered. The final conclusion regarding the research hypothesis is then the result of taking a 
number of different aspects of the evidence into account. Given the fact that the p value and the 
respective test decision only play one role among others, one might wonder whether 
misalignments are more benign in such scenarios. Can the dubious ad hoc move criticized in (ii) 



be counterbalanced by considering effect sizes or the like? We think that it can be—at least to a 
substantial degree. If one considers the effect size, one might have a good justification for doing 
a one-sided test that matches the effect size’s direction and for modifying one’s research 
hypothesis. If so, our objection that the closure testing principle is methodologically unmotivated 
is weakened. Yet, it is not rebutted, because changing one’s research hypothesis is not part of 
a confirmatory testing setting. 
 
Moreover, the other problematic issues are not mitigated; there is still no counterbalance for non-
statistically significant cases (and thus a loss of power), and there is still a conflict with classical 
principles of statistical hypothesis testing. Analogous problems of one- versus two-sided testing 
arise in the case of using confidence intervals instead of p values, as well. For instance, using 
two-sided instead of one-sided confidence intervals also means a loss in power (in some sense). 
 
In addition to these methodological considerations, we would like to note that in medical 
research practice the closure testing principle is not commonly used (at least in our experience). 
One might think that this does not have any bad practical impact. If one tests two-sided but 
observes a clearly positive effect, it might seem benign that no closure testing principle was 
used. It just seems obvious that the treatment has some positive effect. While this might be true 
when effect sizes are in fact considered, the issue in medical research practice is that effect sizes 
have been neglected and are still neglected (also for non-significant results). It is to be expected 
that there is a substantial amount of published findings where the conclusions were exclusively 
drawn based on the (two-sided) p values.11 And if the effect sizes are not specified in the study 
report, there is room for claiming that the test results (indirectly) ‘support’ a directional research 
hypothesis about an improvement with a p value that is statistically significant due 
to negative effects. In light of various known issues with questionable research practices, we thus 
doubt that effect size considerations have substantially counterbalanced DIRECTION 
MISALIGNMENT in practice. 
 
To sum up: The result of our analysis is that DIRECTION MISALIGNMENT cannot be fully 
counterbalanced by the closure testing principle (combined with effect size considerations), 
especially from a methodological, but also from an applied point of view. This casts doubt on 
findings of studies that feature this kind of misalignment. 
 
5.2 Counterbalances for Magnitude Misalignment 
 
MAGNITUDE MISALIGNMENT occurs when the statistical hypothesis does not reflect 
the magnitude of the effect stated in the research hypothesis. At first glance, the toolbox of 
statistics also offers a counterbalancing instrument for this kind of misalignment: As we have 
mentioned, in the planning phase of a clinical study, it is mandatory to calculate the minimum 
number of subjects that have to be included to detect a certain effect: the minimal clinically 
important difference (MCID), with the statistical power (1 − β) usually set to 80% or 90%. So, if 
the research hypothesis is merely concerned with a clinically important difference and the 
sample has the appropriate size, a MAGNITUDE MISALIGNMENT might be be regarded as benign. 

 
11 Statistical significance still seems to play a dominant role in medical research insofar as that statistically 
insignificant results are less frequently published (cf., e.g., Altman 1991, Chaps. 8.5.4, 15.5.2; Dwan et al. 2008)—
this phenomenon is called ‘publication bias’. 



 
Yet, there are also at least three worries regarding this counterbalancing mean. (i) Arguably, not 
all cases are covered by the MCID consideration; not all cases are just about noticeable effects. 
Hypotheses about ‘significant improvements’ or ‘substantial improvements’ go beyond 
a minimal clinically important difference. 
 
(ii) A crucial question is whether MCID satisfyingly captures the use of qualitatively 
evaluative terms like ‘better’ that are frequently used in research hypotheses. MCID is aimed at 
accommodating for qualitative changes, but at least conceptually and in practice MCID and 
qualitative differences could come apart. MCID is calculated based on estimates. Typically, 
these are not based on patient-centered considerations, but drawn from previous studies, subject-
matter experts, or a given standard. If available, meta-analyses may serve as a convenient means 
of obtaining estimates not only of the effects, but also of nuisance parameters (e.g., variances). 
But for a particular group of patients, fulfilling MCID might not lead to a qualitative change. 
Consider a case where a three point difference on some quality-of-life scale is used for 
determining the required sample size because this difference was the MCID in a comparable 
study. This does not ensure that the three point difference is a qualitative difference for the 
patients in question. In other words, MCID might be necessary but not sufficient for capturing 
qualitative improvements. For capturing the latter, a patient-centered approach is to be preferred, 
i.e., one would need to consider in more detail the particular patients’ needs and expectations. 
These considerations might not only apply to assessment of efficacy, but also to safety aspects: 
Some patients might be willing to tolerate side effects the medical doctors would call severe, 
and vice versa. In other words, there might be differences in the harm-benefit assessments. This 
aspect is of particular importance for patients with diseases that have potentially life-threatening 
consequences. 
 
(iii) Not specifying the desired effect size in the statistical hypothesis leads to the (potential) lack 
of crucial information. On the one hand, clinicians might disagree about the MCID estimates. If 
such a disagreement is hidden in the sample size planning, disagreements might easily be 
overlooked. On the other hand, not incorporating the MCID estimate into the statistical 
hypotheses leads to a more difficult comparison of two treatments. This loss of information can 
have bad practical consequences. A physician or patient might decide for a risky treatment 
without realizing that the potential benefits are minuscule from the patient’s point of view, etc. If 
the estimates were reflected in the hypothesis, differences could be visible to everyone, including 
patients who want to make an empirically informed decision about their treatments. 
 
So far, we neglected effect size considerations. What if we add them? Based on the effect size, 
one could determine whether the MCID threshold has been reached. Moreover, the variability of 
the effect sizes (in comparison to the risks and disadvantages of the treatment) is also valuable 
information for clinician, physicians, and especially patients for informed decision making. 
Providing information about effect sizes pointing in opposite directions, or about their 
corresponding variability plays an essential role when it comes to formulating evidence-based 
recommendations (cf., e.g., Guyatt et al. 2008). Although we agree that considering effect sizes 
softens the blow of MAGNITUDE MISALIGNMENT, it does not solve the issue of the potential lack 
of crucial information. And that this issue is non-benign for medical practice should be evident 
from the fact that systematic reviews indicate that sample size calculation issues are still poorly 



reported in a considerable number of publications (cf., e.g., Bariani et al. 2015). In our review, 
we also examined whether the required sample sizes, in particular with regard to the 
hypothesized effect size, are provided. Only 3 papers report the MCID that was used for 
determining the required sample size. Even in these rare cases, however, the MCID estimates 
were inferred from previous studies, and not based on patient-centered considerations. The cited 
reviews also give reason to believe that a substantial number of studies might not be adequately 
powered. In addition, and as discussed before, although effect sizes are strongly encouraged or 
even required to be stated in study reports and publication, the interpretations and conclusions of 
medical studies often focus on the (non-)significance of the testing results instead of effect size 
considerations. 
 
To sum up: The result of our analysis is that MAGNITUDE MISALIGNMENT cannot be fully 
counterbalanced by MCID considerations or sample size planning. On the one hand, not all cases 
of MAGNITUDE MISALIGNMENT are covered. On the other hand, both methodologically and for 
informed clinical decision making, there is a danger of not capturing the qualitative differences 
in the research hypotheses and of not displaying important information. Our considerations cast 
doubt on findings of medical studies that feature MAGNITUDE MISALIGNMENT. 
 
All in all, we conclude that misalignments pose a non-negligible threat to evidence-based 
medicine. Our results especially cast doubt on findings of medical studies that involve 
both DIRECTION MISALIGNMENT and MAGNITUDE MISALIGNMENT. 
 
6 Concluding Remarks: Consequences for Clinicians’ Theoretical and Practical Reasoning 
 
In this paper, we have identified four forms of misalignment between research hypotheses and 
their statistical hypotheses, namely DIRECTION MISALIGNMENT, MAGNITUDE 
MISALIGNMENT, OPERATIONALIZATION MISALIGNMENT, and TESTING MISALIGNMENT. We have 
focused on the first two, and we have identified two main reasons for the occurrence of such 
misalignments, namely that they are favored by common practices (e.g., popular statistical tests, 
involuntarily misleading guidelines, or taught errors), which are based on theoretical 
considerations in favor of two-sided tests. Our upshot regarding whether such misalignments 
pose a threat to evidence-based medicine is mixed. Some cases of misalignments can be partially 
counterbalanced and rendered more benign. Yet, not all misalignments can be counterbalanced 
and the counterbalancing instruments have severe disadvantages: They either lead to 
methodological inadequacy (in addition to the misalignment) or involve a (potential) lack of 
information that could be crucial for medical research, informed clinical decision making, and 
patient-centered considerations. In addition, using two-sided tests for 
testing directional hypotheses results in a loss of power. This means that potentially beneficial 
treatments might be missed. Given the dominance of statistical significance in the interpretation 
of medical studies, a non-significant result will most likely lead to stopping the marketing 
application of the particular treatment under consideration, and any further investigations might 
be considered unnecessary. Apart from that, flaws in calculating the required sample size can 
still be found in a considerable number of studies, which means that magnitude alignment might 
be a more serious problem than it seems at first glance. This further influences statistical power 
and, thus, might pose an additional threat to EBM in practice. 
 



In view of these issues that misalignments face in addition to the flaw of a misalignment on its 
own, we strongly recommend avoiding them. We propose five remedies that can be applied to 
clinicians’ theoretical and practical thinking. 
 
The first remedy is to urge clinicians to pay more attention to the relation between their research 
hypotheses and the chosen statistical hypotheses—in teaching, in regulatory guidelines, and in 
practice. Using two-sided tests should involve a non- or bi-directional research hypothesis. If one 
wants to use directional research hypotheses, one needs to test one-sided. If one does not want to 
use one-sided tests, one should not specify directional research hypotheses. 
 
The second remedy is to demand the preregistration of trials and studies. This might also draw 
more attention to the adequacy of the chosen statistical hypothesis, and it hampers what one 
could call ‘hypothesis hacking’: after statistical testing, one specifies a research hypothesis that 
matches the testing results.12 In our experience, this does not rarely occur. 
 
The third remedy is concerned with MAGNITUDE MISALIGNMENT. We suggest incorporating the 
MCID estimate into the statistical hypotheses by using an alternative hypothesis that is related to 
the effect size, e.g., H1 : μT − μP ≥ δ, or a point hypothesis (cf. Sect. 3). The results of such 
testings would be also a better guide for patients. Having good reason to believe that TMS has an 
effect of a size that is apt for the patient’s needs is more informative than just having good reason 
to believe that TMS has some unspecified effect. However, it might be more difficult to explain 
such hypotheses to practitioners (since the alternative is restricted to one single value). 
 
The third remedy might lead to more one-sided testing situations. Our fourth remedy is indeed to 
re-consider using one-sided tests. Two-sided tests are the right choice for many cases but 
presumably not for all. An important benefit of one-sided tests is that the loss of power that two-
sided tests face would be diminished. Although their reasons for employing directional 
hypotheses (and one-side tests) must be clearly stated and justified, researchers should not be 
afraid of using one-sided tests. They should also keep in mind that sacrificing power for little 
reason might also be unethical because potentially promising new treatment approaches are 
likely to be overlooked. However, we think that two important conditions for using one-sided 
tests are as follows: (i) The test needs to be rigorous enough. As mentioned in Sect. 4.3, the use 
of one-sided tests is criticized for its ‘fishing for significance’ potential. But one could simply 
test with half of αα to obtain appropriate rigor (cf. ICH E9, Sect. 5.5). (ii) The test needs to fit the 
confirmatory testing setting. For instance, Ruxton and Neuhäuser (2010) propose a decision 
criterion for using a one-sided test: If a significant effect in the opposite direction yields the same 
consequences as no effect, a one-sided test can be used. This could be sensible in many 
frequently encountered situations in medical research. For instance, when evaluating safety 
outcomes, it is important to detect effects in both directions. However, when the main interest is 
on efficacy, the consequences of a non-significant one-sided test result might be the same, 
regardless whether the effect is 0 or opposite to the initial assumption: the marketing application 
of the treatment would be stopped. Such a decision criterion could also used be in preregistration 
to justify the use of one-sided tests. 
 

 
12 We owe this suggestion to a researcher in the audience of our talk at the 8th Philosophy of Medicine Roundtable. 



Last but not least, we suggest as a fifth remedy that clinicians should better distinguish 
confirmatory statistical settings from exploratory ones. Statistical testing is not limited to 
disconfirming hypotheses. It can be also used for exploring one’s data set. Moreover, in some 
cases, clinicians can also rely more on descriptive statistics. For instance, when it comes to safety 
and tolerability, guidelines suggest “[...] applying descriptive statistical methods to the data, 
supplemented by calculation of confidence intervals wherever this aids interpretation” (ICH E9, 
Sect. 6.4). Yet, descriptive statistics cannot replace inferential statistics. Despite all the potential 
problems associated with hypothesis testing, its merits must be taken into account (e.g., 
accommodating by-chance variability). 
 
In our opinion, all stakeholders in medical research should move the ‘scientific paradigm’ toward 
a multi-factorial decision model, with an eye on the interpretation of the effect size and its 
clinical relevance. This does not mean that hypothesis testing should be banned from 
research. p values or confidence intervals and effect size estimation are two aspects of the 
available evidence, which are complementary to each other. With respect to patient-physician 
communication and involvement of patients into clinical decisions, placing more emphasis on 
effect sizes is crucial: A SCI patient is primarily interested in the improvement of motor function 
that can be expected ‘on average’ for a particular treatment. Her or his decision will be mostly 
based on this aspect—and so should the treating physician’s decision be. Clinicians should thus 
be encouraged to provide detailed and reliable information about how one therapy compares to 
another with respect to the clinical outcome (e.g., improvement in gait performance, bladder 
function, quality of life). Especially in rare disease settings such as SCI, however, the number of 
subjects are usually small, which leads to a considerable impact of by-chance variation. 
Therefore, it is especially important to consider the variability of the effect size. This can be 
communicated and explained to the patients by referring to analogous paradigmatic examples 
from daily life (e.g., uncertainty in the results of opinion polls). Moreover, especially in rare 
diseases, case reports or series represent a substantial amount of the evidence that is used for 
clinical decision-making. These data might also facilitate emphasizing the inter-individual 
differences in the communication with patients. Case series provide useful additional evidence, 
complementing the results from clinical trials, which naturally yield summary statements about 
the treatment efficacy ‘on average’ rather than being focused on evaluations at the single-subject 
level. 
 
We have deliberately considered only one problem, namely misalignments of research and 
statistical hypotheses, within the broad topic of medical data analysis. It is needless to say that 
the paper thus could not serve as a critical appraisal of the methodological and statistical quality 
of evidence in SCI or medical research in general. Moreover, we did not take into account that 
often not a single research hypothesis is considered. In such cases, the corresponding statistical 
hypotheses would be more complex. We have also only considered a frequentist framework. In 
future research, it is worth examining if analogous problems arise for Bayesian accounts. 
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