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Type 1 diabetes (T1D) is resulted from a self-destruction of insulin-secreting 

pancreatic β-cells, but the exact etiology remains unknown despite evidence indicating 

interaction between environmental and genetic factors. For the genetically predisposed 

individuals of T1D, islet autoantibodies are used for predicting the likelihood of T1D in 

the future, however, neither the appearance nor the titer can indicate the extent of the 

destruction of β-cells or quantify the remaining β-cell mass. Therefore, additional 

biomarkers are needed to monitor the health status of β-cell and the development of T1D.  

Dysregulation of lipid metabolism exists in distinctive disease states. Several 

studies suggested lipids as a potential biomarker for T1D and the dysregulated profiles of 

lipids in T1D blood serum could predict the seroconversion of autoantibody positivity. 

However, many of the potential T1D lipid markers reported to date have not been 

validated in independent cohorts, and the structural identifications are ambiguous as only 

the total number of carbon atoms and double bonds in the fatty acyl chains were reported. 

There is no detailed structural information reported for the lipid species regarding the 

fatty acyl compositions and the location of C=C double bond- those fine structural details 

can determine the biological functions of lipids and help to elucidate the pathogenic 

mechanism of T1D. Based on these, we hypothesize that 1) lipid markers that either shed 

from diseased pancreatic β-cells or as a systemic response to autoimmune attack exist in 



 

 

human serum; 2) dysregulation of lipid markers can predate the appearance of islet 

autoantibodies. Using advanced lipidomics tools and longitudinally collected sera from a 

well characterized T1D cohort, the primary goal of this project is to identify a panel of 

serum lipid markers correlated to T1D progression, with unambiguous characterization of 

their molecular structures.  

In this dissertation, we are focusing on the following aims: 1) Create a 

comprehensive human serum lipid library for high throughput LC-MS based lipidomics 

analysis; 2) Identify candidate lipid markers to T1D progression through quantitative 

profiling of the temporal changes of serum lipids in T1D cohorts; and 3) 

Comprehensively characterize the structures of the lipid markers. These aims were 

addressed in four projects that employed advanced instrumentation, sophisticated data 

analysis tools and precious human samples longitudinally collected from a T1D cohort. 

The first project generated a comprehensive library contains LC retention time and 

accurate mass of each lipid molecular species, and will be used for accurate and speedy 

identification of serum lipids in T1D subjects. In addition, this library can be 

implemented for an accurate and high throughput analysis of human serum lipids related 

to other diseases. The second and third project focused on development of Ozone-

induced dissociation (OzID) on a high resolution MS to determine unambiguously the 

C=C double bond positions in unsaturated lipids. This technique is based on a highly 

selective gas phase reaction between C=C and ozone. We achieved high efficiency of 

OzID in both direct infusion- and RPLC-based workflows to effectively elucidate C=C 



 

 

unsaturation in complex biological samples.  Using the methodologies developed in the 

first three projects, the last project profiled temporal changes of lipidome in a T1D 

cohort, and identified a list of  candidate lipid markers. These lipid markers showed a 

distinct profile prior to appearance of T1D as compared to healthy controls.  
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CHAPTER I 

INTRODUCTION OF TYPE 1 DIABETES AND THE NEED OF ADDITIONAL  

BIOMARKERS 

Background 

Diabetes mellitus is a multifactorial and heterogeneous disorder that affects 415 

million people worldwide and resulted in 1.6 million deaths in 2016,  which is higher 

than the number of deaths from HIV and Malaria.1 In total, diabetes gives rise to nearly 

$545 billion annual health care cost, with more than $100 billion from the United States 

alone.2, 3  While Type 2 diabetes is more prevalent worldwide and constitutes 90% of the 

diabetic population, Type 1 diabetes (T1D), although occurs in <10% of the diabetics and 

mostly occurring in developed countries, is one of the most common chronic diseases in 

children, especially under the age of 5. There are approximately 1.25 million people in 

the United States with T1D, led to $14.4 billion in healthcare cost.4, 5 

T1D is an autoimmune disease resulted from destruction of insulin-secreting 

pancreatic β cells, which can be triggered by environmental factors, such as diabetogenic 

enterovirus on genetically susceptible individuals; however, despite many decades of 

research, the exact etiology remains unknown.6-8  It is commonly recognized that the 

progression of this disease depends on the remaining number of active b-cells, as 

illustrated in Figure 1.8-10 In general, about half of the T1D subjects carry susceptible 

HLA loci and are predisposed to develop T1D.8, 11, 12 During stage 1 of T1D progression 
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after exposure to an elusive environmental trigger, the immune tolerance to specific self-

antigens is lost and T1D-susceptible individuals express multiple anti-islet 

autoantibodies. At this particular phase, a portion of β cells has already begun to undergo 

irreversible functional loss and self-destruction.13, 14 However, it remains asymptomatic as 

there is no change physiologically to glucose tolerance. As the disease progress to stage 

2, abnormal glycemia starts to appear with a more significant loss in functional β -cell 

mass. However, full-blown T1D symptoms won’t appear until after reaching stage 3 of 

the disease when critical masses of β cells are being destroyed. At this stage of the 

disease, only up to 20% of β cells remaining, which leaves the individuals to rely on  

external insulin for their lifetime.15  

 
 

Figure 1. The Progression of T1D based on Time and The Beta-Cell Mass. 
 
 

Current Biomarkers In Prediction of T1D 

The progression of b-cell death is currently unpredictable, and the clinical 

symptoms of the disease are observed only when more than 80% of these cells are 
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dysfunctional or destroyed.6, 7, 16  Hence, biomarkers that serve as predictive tools for the 

onset of clinical symptoms and indicators for the progression of the disease are in need. 

Biomarkers are “substance, structure or process that can be measured in the body 

such as itself or its products can be used to predict the incidence of outcome or to monitor 

stages of a disease”.17 In addition to accurately diagnosis of T1D at its onset, good 

biomarkers of T1D should be able to quantify the risks of an individual during the 

different developmental stages of this disorder. Currently, autoantibody assays are 

clinically used as the diagnostic tool for those who have a family history of T1D. These 

assays can predict a 5-10 years window gap before the clinical onset of T1D.12, 15 

However, these biomarkers cannot predict when the clinical symptoms will present; nor 

tell what initiated the autoimmune attack on pancreatic β cells. 18, 19 Whilst the 

seroconversion of islet autoantibody can diverge from months to years before disease 

onset, the time point at which seroconversion occurs, may already be too late for 

preventing autoimmune-mediated β cell destruction or applying any therapeutic strategies 

to revert diabetes. As a result, there are insatiable interests and immediate needs in 

identifying biomarkers that can accurately indicate the initial process of β cell destruction 

process, and can be used for more accurate early diagnosis of T1D. 

Lipids As Potential Biomarkers For T1D 

In addition to being the main component of the cell membrane, lipids also play 

roles in signal transduction, and they are generally secreted into the bloodstream carrying 

information of tissues or cells’ health status. Dysregulated lipid profiles are observed in 

different diseases,20, 21 including T1D.22-25 For example, studies conducted in Finland and 
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the United States showed that lipidomic profiles in the cord blood and blood 

serum/plasma of infants could differentiate T1D from healthy individuals.23, 26 Oresic et 

al. showed that children who later developed T1D have lower levels of choline-

containing phospholipids in their cord blood when compared to healthy children.22, 27 

Interestingly, they observed changes in lyso- and plasmalogen-phosphotidylcholine (PC) 

species prior to the appearance of islet autoantibodies in T1D patient.27  Later, a follow-

up study by the same authors focusing on children with HLA-conferred risk of T1D, 

investigated dysregulated lipidomic profiles at birth and during the development of b-cell 

autoimmunity and the progression of the disease. Agreeing with their previous results, 

they concluded that children who developed T1D had unique cord blood lipidomic 

profile, including a lower level of choline-phospholipids. Moreover, this newer study 

suggested that a panel of seven lipids could be used to predict the progression of T1D.23 

In addition to lacking the detailed molecular structure of the identified lipid species, most 

of the studies listed above used cross-sectional cohorts and samples collected from 

individuals with T1D clinical onset, it would be more informative if the lipidome during 

the different stages of T1D progression can be profiled longitudinally, so that the 

pathologically changes, even during the asymptomic period can be accurately captured to 

identify biomarkers indicating the early stages of T1D.   

It is desirable to longitudinally profile lipid dysregulation during an individual’s 

progression to T1D. As demonstrated in a very recent study, sera from 120 children from 

three groups (T1D progressor, non-progressor, and healthy control) were profiled for the 

changes in lipidome across 3 time points collected from <3 months up to 3 years of age.25 
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Comparison between time points showed that most of the changes in the lipidome were 

observed in a much younger age. Lower levels of sphingomyelins (SM) were observed in 

T1D patients when compared to healthy control and patients who developed 

autoantibodies but yet had a clinical onset T1D (non-progressor). The appearance of 

autoantibodies was associated with down-regulation of SMs and LPCs and up-regulation 

of cholesterol esters (CEs). Although validations are needed to further confirm the 

authenticity and utilities of these potential lipid markers, this study suggests that the 

concept that dysregulated lipidome exists at the early, asymptomic phases of T1D is 

valid, and it is feasible to identify novel lipid biomarkers predate the appearance of islet 

autoantibody for a very early prediction of T1D.  

Conclusions 

Biomarkers released from the pathological site or as systemic response to chronic 

diseases are at low level, which always pose a challenge to accurately determine the 

changes, especially considering many confounding factors such as age, gender, body 

mass index (BMI) are in play with the underlying disease biology. T1D is a polygenic 

autoimmune disease with an unknown etiology. Because of late intervention of the 

disease often leads to life-threatening complications, novel biomarkers are needed to 

monitor the disease progression and earlier disease intervention.  Compared to cross-

sectional studies, longitudinal studies can track the temporal changes of biomarkers on an 

individual basis by eliminating the large individual variations of human cohort. This 

requires high quality samples collected longitudinally from well characterized clinical 

cohorts. The samples of our study design were collected longitudinally from 5 months old 
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to 20 years old, which covers the span of T1D development and they were from age-

matched individually from healthy controls, T1D progressors and autoantibody positive, 

non-progressors. By applying advanced technologies to profile the lipidomic changes in 

these samples, we are aiming to uncover the dysregulated lipids correlated well to the 

natural progression of T1D.  
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CHAPTER II 

REVIEW OF LIPIDOMICS WORKFLOW: SAMPLE PREPARATION, SEPARATION  

AND MASS SPECTROMETRIC ANALYSIS 

Introduction 

Lipids are known to be ubiquitous molecules with a diversity of structures and are 

distributed throughout a wide range of organisms.28 They are the primary component of 

membranes acting as the outer barrier for cells and organelles.29 Moreover, lipids provide 

an appropriate hydrophobic environment for the interactions with membrane proteins.30 

Recently, evidence show that lipids play a vital role in many biological pathways, 

including transcription of genetic code to the regulation of pathway and physiological 

responses.31 In the last decade,  aberrant lipid metabolisms were observed in several 

human diseases such as diabetes, obesity, cancers and Alzheimer’s disease.32-35 The 

dysregulated profile of lipids provides a better insight into the biological pathways 

underlying the pathologies of these diseases and offers new directions for biomedical 

research.36 Hence, lipidomics has attracted increasing attention from clinical studies. 

Taken all together, a systematic study of lipids has become the focal point in advancing 

the momentum of biosciences.20  

The complexity in lipid structures, due to the number of different biochemical 

transformation happened during biosynthesis, has made lipids one of the most diverse 
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biomolecules. In 2005, LIPID MAPS consortium developed a comprehensive 

classification system and categorized lipids into eight categories based on their chemical 

structure and biochemical principles (Table 1).37-39 Each category is further divided into 

classes and subclasses, based on the common functional groups or chemical “building 

blocks”.39 In this dissertation, we will focus on lipid categories and classes that are 

abundant and biologically significant in the mammalian systems. They are 

glycerophospholipids (GP) and glycerolipids (GL). GL are lipids including acylglycerols, 

in combination with alkyl and 1Z-alkenyl variants, and GP are lipids contains a phosphate  

group esterified to one of the glycerol hydroxyl groups. 

Table 1. Lipid Categories and The Number of Structures Listed from the LIPID MAPS Database 
 

 
 
In general, the biological function and activity of a molecule are based on its 

chemical structure. Thus, even a minor change in the structure can affect its physical and 

biochemical properties, as a consequence, influence the metabolism within a living 

organism.40 The diversity in lipid function is reflected by an enormous variation in the 

structure of lipid molecules.39, 41, 42 To better understand the roles lipids play in a 

Category Abbreviation Structure in Database 

Fatty acyls FA 2678 
Glycerolipids GL 3009 

Glycerophospholipids GP 1970 
Sphingolipids SP 620 
Steol Lipids ST 1744 

Prenol Lipids PR 610 
Saccharolipids SL 11 

Polyketides PK 132 
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biological system, it is essential to characterize the accurate structure of individual lipid 

species, and on top of that, to determine changes of lipid metabolites associated with 

various pathophysiological conditions. Lipidomics, as the science for large scale study of 

lipid molecular species in biological systems, offers new opportunities for precision 

medicine by providing specific lipid molecular targets for disease diagnosis and 

prognosis.43-45 

Overview Of Lipidomic Analysis 

 
 
Figure 2. Standard Lipidomic Workflow including The Components  of Sample Collection, Sample 
Preparation, Data Acquisition, and Data Processing. 
 
 

The general lipidomic workflow includes lipid extraction, separation, structural 

characterization, feature identification, and statistical analysis (Fig.2). The type of 

samples and the purpose of the study should be taken into consideration for the 

experimental design. Hence, the lipidomic sample preparation should be tailored to the 

sample type, which is usually collected from a cell line, laboratory animals, or clinical  

hospitals and routinely stored at -80°C prior to analysis.  
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Total Lipid Extraction Methods 

In biomedical research, the challenge has always been on how to efficiently 

collect the desired group or class of chemical compounds for the study. A critical step in 

lipidomic analysis is to effectively extract the majority of lipids representative in the 

sample without being biased, inducing, or promoting the degradation of lipids or 

contaminated with unwanted substances. The fidelity of the underlying biological study 

depends on the efficiency of the extraction method if one has a reliable analytical 

platform in the downstream sample analysis.  

 The main difference between lipids and other components of the biological 

sample (carbohydrates, proteins, and nucleic acid) is their hydrophobicity and solubility 

in an organic solvent.46 The performance of the lipid extraction with a solvent system 

depends on the partitioning of different lipid classes into the organic solvent used. In 

most cases, the lipidomic extraction procedure involves a phase separation, where 

hydrophobic lipids partition into the hydrophobic phase, while the hydrophilic molecules 

remain in the aqueous phase.47, 48 A good extraction process aims to recovery as many 

lipids as possible or to target the selected lipid classes with high specificity.  

Folch Method And Bligh And Dyer Method 

Folch and Bligh and Dyer methods were developed in the 1950s and have shown 

to be the most reliable and popular method used for lipid extraction for a variety of 

samples.49, 50 In general, both methods share a similar workflow, as shown in Figure 3. 

Briefly, all samples, except biological fluids, are homologized and introduced to a 

monophasic chloroform/methanol (2:1,v/v) for Folch and (1:2,v/v) for Bligh and Dyer 
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method. The use of methanol results in disruption of hydrogen bonding networks or 

electrostatic forces between lipids and biopolymers, releasing the lipids into the organic 

layer. The introduction of chloroform formed the two-phase system, with lipids migrating 

into the chloroform layer at the bottom, and the polar biomolecules in the top layer. The 

simplicity and efficiency of the liquid-liquid extraction in these two methods were 

implemented in a variety of samples to extract a broad range of lipid classes.47, 50, 51 Over 

the years, different modifications were done to these two methods, to make it more 

applicable for high throughput analysis. Overall, similar results were reported.48 In terms 

of polar lipids, both methods have shown a similar recovery rate; however, Folch method 

indicates a better recovery for non-polar lipids, while Bligh and Dyer method is more 

popular in sphingolipidomic studies.51 Thus, Folch method is the most popular procedure 

for total lipid extraction due to its recovery efficiency and the compatibility with a wide  

range of polarities of lipids. 

 
 
Figure 3. A Mixture of Organic Solvent (chloroform/methanol) was Added into The Sample, 
Vortexed, Incubated, and Centrifuged before Partition into Different Phases, Resulting Lipids 
Dissolved in The Bottom Layer, while The Middle Layer is The Protein and Top Layer is Water-
Soluble Substances. 
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MTBE And BUME 

One of the major drawbacks from the previous two extraction methods is the use 

of chloroform, which is a carcinogen and can be a health risk for lab personnel. In the last 

decade, different extraction protocols were proposed with the main objective of 

eliminating chloroform as the extraction solvent and having lipids dissolved in the upper 

organic layer to make it more amenable for automated liquid transfer. The most recent 

methods are methyl-tert-butyl ether (MTBE) and butanol and methanol (BUME) 

method.52, 53  

MTBE was first introduced by Matyash et al. with the total lipids collected in the 

lipid-enriched upper phase using MTBE solvent in combination with methanol and 

water.53 MTBE can offer a similar recovery when compared with the gold standard Folch 

method.54 Hence, MTBE method showed its potential with automation and being 

considered for automated lipidomic extraction.53 However, when taken with a high 

solvent/sample ratio, it is not compatible with the 96-well format. On the other hand, 

aiming for high throughput automated extraction of lipids, BUME method was proposed 

by Lofgren and coworkers to execute in 96-well format. 52, 55 The series of steps for 

sample preparation (sample collection, storage, homogenization, and extraction) were all 

performed in one single 2 mL polypropylene tube, hence the concept of “all-in-one-tube” 

concept. In terms of extraction efficiency, when compared with the gold standard Folch 

method, BUME obtained similar extraction efficiency for neutral lipids, sphingolipids 

and nonacidic phospholipids. 55 More evaluations between the three methods of MTBE, 

BUME and Folch could have been done to draw a more definitive conclusion. 
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Nevertheless, the Folch method remains the gold standard method in global lipidomics 

due to its unbiased recovery of all major lipid classes. 

Major Separation Techniques Used In Lipidomics 

Lipids are very heterogenous molecules, their diverse structures result into a wide 

range of chemical properties, from highly non-polar triacylglycerols to polar 

glycosphingolipids. As such, it is recommended to use a separation technique to increase 

the resolving power of analysis. In the past, thin-layer chromatography (TLC) or solid-

phase extraction (SPE) was used to pre-fractionate lipids into classes prior to any 

measurement of lipids.56 Since TLC and SPE are not as selective as liquid 

chromatography (LC), LC has been implemented to separate lipids based on their classes 

and/or molecular properties. Over the years, more researchers have adopted LC and 

developed different solvent systems to enhance the optimal separation of various lipids  

classes.  

 
 
Figure 4. General Structure and "building blocks" of Lipids. Fatty Acyl Chains are Attached to sn-1 
and 2 positions on the Glycerol Backbone of lipids, While the Head Group is Attached to The 
Backbone via Ester Linkage. 
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Liquid Chromatography 

Liquid chromatography utilizes the competitive adsorption between the analyte, 

stationary phase, and liquid mobile phase for separation. Compared to other techniques, 

LC offers speed, resolution, sensitivity and specificity. There are three approaches of LC 

for lipidomic analysis. They are normal phase-LC (NPLC), hydrophilic interaction LC 

(HILIC), and reversed phase LC (RPLC).57-60  These approaches separate lipids based on 

different mechanisms and can be tailored to separate the targeted analyte from a complex 

biological matrix.  

Normal Phase Liquid Chromatography 

NPLC separates lipids based on the polarity of the head groups (Figure 4),61 and 

has the capability to resolve a wide range of lipid classes. In the 1980s, Christie was the 

pioneer in utilizing the polarity interaction of NPLC to separate class-based lipids in real 

samples.59, 62 Throughout the years, modifications, including the introduction of aqueous 

and additives, improved the reproducibility and the peak shape of acidic phospholipids. 

Most importantly, the current approach in NPLC-based lipidomics uses a long, microbore 

silica column at a flow rate from 0.1-1 mL/min, and a higher flow rate for the desired 

study if there is a splitter. Typically, NPLC consists of a quaternary solvent system and 

uses highly non-polar solvents. The separation starts with a weak mobile phase such as 

heptane, isooctane, chloroform or a mixture of these solvents, and gradually introduces 

the stronger mobile phase for the elution of polar lipids. The stronger mobile phase 

comprises of methanol, IPA/MTBE, isooctane/IPA, acetone, IPA/MeOH, etc.61 

Triethylamine has been used to minimize the influence of fatty acyl chains in the 
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retention of the column particles.61, 63 Depending on the type of detector, different 

additives may be needed. Additives can be salts such as ammonium acetate, ammonium 

formate, diethylamine, formic acids. In NPLC, the analysis time is typically longer (30-

60 mins) than other techniques, primarily due to the choice of a longer column and the 

large particle-size sorbents and the time it takes for column re-equlibration. With the 

continuous development of NPLC, the number of lipid classes separated in a single run, 

increased from <10 lipid classes to more than 20 lipid classes and sub-classes, covering 

from non-polar to polar GL lipids in biological samples.59, 63-65  

Hydrophilic Interaction Liquid Chromatography 

Another approach that applies similar principle as NPLC to separate lipids is 

HILIC. Different from NPLC, HILIC uses non-polar solvents with the addition of water 

in the mobile phase to maintain a stagnant enriched water layer on the surface, which 

may attract the analyte.66 Moreover, a stronger solvent system is used, which improves 

the separation of more polar lipids such as GP subclasses. HILIC uses a shorter column 

with a smaller ID, operated at a similar flow rate of NPLC, resulting in a shorter analysis 

time (15-60 mins). Usually, with HILIC, ACN or the mixture of ACN are used in the 

system to resolve the non-polar lipids, while the more polar solvent presented at the end 

disrupts the bonding between polar lipids and particles inside the silica or the BEH 

column. The additive used for HILIC is the same as NPLC. HILIC has been implemented 

on the separation of polar lipids,67 and becomes a fundamental technique in the separation 

of sphingolipids while NPLC has more applications on a broader range of lipid classes 

and sub-classes in biological samples. 
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Reversed-Phase Liquid Chromatography 

RPLC is the most popular LC technique and has been most widely used for 

analysis at molecular level-based separation because of the high demand in studying 

lipids at the molecular level.63, 68, 69 The mechanism of RPLC separation of lipids is based 

on the interaction between the lipophilicity of the fatty acyl chains and the hydrophobic 

stationary phase (Figure 4).70, 71 Lipophilicity is primarily determined by the length and 

the number of double bonds in the acyl chains. Thus, a lipid species contains a longer 

fatty acyl chain will stay in the column longer than the one with a shorter chain, and the 

saturated lipids will elute later when compared to lipids with mon- or poly-unsaturated 

analogs. Previous studies showed the use of long, narrow column with 2-5 µm particle 

size, operating at high UHPLC back pressure range while maintaining the high 

resolution. Lately, the new technology of using porous shell fused to a solid core 

decreases the diffusional mass transfer path at high speed, resulting in a high-resolution 

chromatogram at shorter time of separation. The standard RPLC columns used in 

lipidomics are Acquity UPLC BEH C18, HSST3, BEH C8, Kinetex C18, and Accucore 

C30. These columns can endure a high-pressure flow rate while maintaining the well-

separated chromatogram. In RPLC, a weak mobile phase is applied at the beginning of 

the gradient which is made of water mixed with organic solvents such as 

water/acetonitrile (ACN), water/iso-propanol (IPA), or water/methanol/tetrahydrofuran, 

and gradually the gradient transits to a stronger mobile phase consists of high percentage 

of IPA. Based on its capability of separating lipids at the molecular level, RPLC is the 

primary tool for high-throughput separation and analysis of lipidome in biomedical 
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research.57 Over the years, deciphering the complexity of molecular lipids has highlighted 

the need to resolve isomers and isobars within a lipid class or from different lipid classes, 

especially the isomeric lipids that have different biological functions. With the most 

recent developments in column chemistry and solvent system optimization, RPLC is 

capable of separating lipids with varying compositions of fatty acyls, sn-positional 

isomers, and some isobaric species.72, 73 For example, application of RPLC in human 

plasma samples resulted in 300-400 lipid molecules identified, yet there are a high 

number of co-eluting peaks that can’t be determined to their molecular levels.26, 74, 75  

Two-Dimensional Liquid Chromatography 

While each LC approach has its advantages, there are inherent limitations in each 

approach if using alone, which can be overcome by integrating with other approaches. 

For example, NPLC and HILIC are good at separating lipids based on their classes, while 

lacking the separation power of individual lipid species; on the contrary, RPLC can 

provide molecular level separation, but lipid species with the same or similar fatty acyl 

chains but belonging to different lipid classes can co-elute. Therefore, pairing LC 

techniques together can leverage more separation principles and results in a better 

separation.60, 63, 76-78 This so called 2D-LC can be performed on-line (such as HILIC-

RPLC) or off-line (such as NPLC-RPLC). The off-line mode offers a full optimization of 

separation in each of the dimension, even though it might be labor-intensive. The on-line 

approach, on the other hand, can be automated, but the separation is not as 

comprehensive as what off-line mode can deliver, due to the restrictions in sampling time 

and solvent compatibility. For a comprehensive identification of lipid species in the 
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lipidome of a complex biological sample, 2D-LC is frequently recommended.63, 77, 79-81 

This not only can uncover the low abundant lipid species that typically would be masked 

by the high abundant lipids, doing so would also enhance the confidence in assignment of  

the molecular structure of lipids. 

 
 

Figure 5. Mechanism of Electrospray Ionization. 
 
 
Mass Spectrometric Analysis Of Lipids 

Ionization Of Lipids 

Concurrent with the development of mass spectrometric technologies, various 

methods have been applied to ionize lipids. In the 1980s, the popular method for 

ionization of biomolecule is fast atom bombardment (FAB), as such FAB was used in 

generating lipid ions for mass spectrometric analysis, but it has low sensitivity and is 

contaminated with ions from the insource fragmentation and matrix ions.82 The need for a 

soft ionization technique resulted in the development of electrospray ionization (ESI) in 

the 1990s.83 Compared to FAB, ESI offered up to 1000 times more sensitivity, enabled a 

rapid growth in the number of lipids identified in biological samples.83  

Fenn and colleagues first developed ESI.84 To analyze polar compounds, ESI uses 

a strong electric field under the atmospheric pressure to assist the transfer of ions from 
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solution into the gaseous phase prior to the mass spectrometric analysis. Compounds 

analyzed by ESI are converted to ionic form by protonation/deprotonation or ion 

adductation. To do so, a solution of compounds is dispersed to a fine spray of charged 

droplets, followed by solvent evaporation using nebulizing gas, and finally ejection from 

the highly charged droplets and desolvation into ions (Figure 5). 

 ESI-MS is a highly sensitive and efficient method, as long as a sufficient dipole 

potential is presented in a molecule to interact with the charge, ions can be formed and 

analyzed. ESI-MS-based shotgun lipidomics was first proposed by Han and Gross in 

2003,85 to directly analyze lipids from biological samples without any LC separations. In 

shotgun lipidomics, additives were added into the solution of lipid extract to assist the 

ionization of lipids. Positive ESI-MS yields abundant [M+H]+ and [M+X]+ (X= metal 

adducts such as Na, K, Li, etc.), while negative ESI-MS yields [M-H]- and other adducts. 

The results obtained by Han and coworkers were impressive and high throughput; 

however, there were challenges in working with a biological sample without any 

separation techniques. With the separation power provided by LC, ESI was also used to 

couple LC separation and MS analysis as it is a natural interface between these two 

techniques. For enhanced performance, the LC mobile phase needs to be a volatile 

solvent to preserve the ionization efficiency of ESI. NPLC uses apolar solvents; hence, 

the low conductivity of these solvents are not suitable with ESI-MS. In contrast, HILIC 

and RPLC are more compatible with ESI due to the organic-rich aqueous mobile phase 

can readily induce the ionization and desorption in the source.  
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Another well-known ionization technique is matrix-assisted laser desorption 

ionization (MALDI), which has been used for direct lipid analysis of a vast array of 

biological samples such as tissues.86-88 MALDI has been applied in studying a variety of 

lipid classes, from non-polar lipids such as triacylglycerols to highly polar lipids of 

glycosphingolipids.89-91 There are many applications of MALDI in biomedical research 

of lipidomics, especially when it comes to imaging lipid species in brain-related 

diseases.92-94 The advantages of MALDI lie in its tolerance of impurities and less labor-

intensive in terms of sample preparation. Moreover, it was observed that MALDI is more 

sensitive to phospholipids in the positive mode compared to ESI, resulting in multiple 

adducts for one lipid species in a single spectrum.95 This can be an advantage but also a 

disadvantage because of the complexity of the spectrum and the competition for 

ionization between phospholipids and other lipids, making it difficult for identification as 

well as quantification.96 Besides, MALDI is not compatible with LC technique. These 

shortcomings limit the application of MALDI in non-imaging-based lipidomics studies, 

where ESI is still dominated.  

Tandem Mass Spectrometry For Structure Characterization Of Lipids 

Confident identification of a lipid species requires accurate measurement of the 

molecular weight, isotopic pattern and very informative sub-structural information, with 

the former ones provided by high resolution MS and the latter one tandem mass 

spectrometric techniques. Tandem mass spectrometry or MS/MS is the basis for 

structural characterization of lipids, different scanning approaches such as product ion 
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scans, precursor ion scans, neutral loss scans, and multiple reaction monitoring scans are 

routinely used in shotgun and targeted lipidomics studies.97-103  

Collisional induced dissociation (CID) is the default technique in commercial 

mass spectrometers for performing tandem mass spectrometry and the most commonly 

used fragmentation technique for structural analysis of lipids. To perform CID, mass 

selected ions are collided with inert gas molecules through either potential-driven ion 

acceleration or excitation at resonant frequency of ion motion, which leads to increased 

ion internal energy and bond cleavage. Lipid species within the same class often follow 

the same fragmentation pattern under CID, whilst different lipid classes having different 

headgroups present unique class-characteristic fragment ions. In positive ionization 

mode, GPs form protonated or ammonium adduct [M+H]+ or [M+NH4]+, or a wide range 

of metal adducts including [M+Na]+, [M+K]+ and [M+Li]+, etc. Although the protonated 

adducts can form product ions resulting from neutral loss of fatty acyls, their relative 

abundance is very low, which makes it difficult for assignment of the structures. 

Alternatively, fragmentation of metal adducts showed more information-rich fragments 

that can indicate the sn-position on the glycerol backbone. However, their applications 

are not popular in the biomedical research due to the overcomplicated spectra.104-107  

For acidic GPs that favor negative ionization, they generally form deprotonated 

ions [M-H]-. For example, CID fragmentation of PS (16:0_18:1) produces the 

carboxylate anions [RCO2]-  at m/z 255 and 281, known as fatty acyl substituents. These 

two product ions also present concomitantly with anions of the fatty acids RCO2H or 

ketene derivatives R’CHCO. Moreover, the precursor ions of PS easily lose the serine 
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moiety (-87 Da) under the influence of CID. From these fragments in a spectrum, one can 

conclude the lipid class, as well as the composition of the acyl chains (number of carbon 

and double bonds). Meanwhile, PCs and SMs cannot be easily deprotonated, instead, they 

form acetate [M+CH3CO2]-, formate [M+HCO2]-, or chloride adduct [M+Cl]-. CID of 

these adducts generates neutral loss of the methyl group [M-CH3]-, and further 

disassociates to [RCO2H]- or [R’CHCO]- to reveal the structure of the fatty acyls. 

Moreover, the relative abundances/ratio between two fatty acid ions [R1CO2] -and 

[R2CO2]- in GPs can be used for sn-assignment. For instance, the PC (16:0_18:0) yielding 

two fatty acid ions at m/z 255 (FA (16:0)), and the more abundant at m/z 281 (FA 

(18:1)). This result indicated the FA (16:0) belongs to sn-1 position while FA (18:1) 

attached to sn-2 position, so this lipid is reported as PC (16:0/18:1) with clear sn-

annotation. Hence, the ratio of [R1CO2]- / [R2CO2]- <1 has been used to characterize the 

sn-assignment of lipids. The combined use of CID-MS/MS in both ionization modes can 

provide both the head group and fatty acyl information and to a certain degree, the stereo-

specificity of sn-position; therefore, it has been increasingly applied to lipidomic studies.  

It is of note that a different version of CID is implemented in the high resolution orbitrap 

instruments; this higher energy collisional dissociation (HCD) performs similarly to the 

CID in other mass spectrometers. Both techniques produce very similar fragments, with a 

slightly different relative ratio. 

Although CID/HCD has been the main tool for structural elucidation of lipids, the 

fragmentation can only provide the head group (lipid class), the composition of fatty 

acyls (total number of carbons and double bonds), and sn-assignment in some cases. 
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Direct CID/HCD of lipid ions has not been able to form fragments that can indicate the 

unsaturation site on acyl chains, or the C=C stereochemistry, which are level 4 and 5 of 

lipid structural identification as illustrated in Fig. 6. This has remained as the major 

challenge in the structural elucidation of lipids. Nonetheless, various approaches have  

been developed to overcome this challenge.  

 
 
Figure 6. Summary of The Levels of Structural Identification in Lipids using PC 38:1 as an Example. 
Level 1 contains Information of Total Number of Carbon and Double Bond; Level 2 presents 
Compositional Isomers with The Composition of Fatty Acyl Chains; Level 3 contains sn-assignment 
of Fatty Acyls; Level 4 represents Lipids with information of Double Bond Positions; and Level 5 
contains cis/tran information. 
 
 

One of the approach is to derivatize unsaturated lipids using olefin-specific 

photochemistry or chemistry, such as using Paterno-Buchi,108 and most recently, m-

CPBA epoxidation109 to enable a selective reaction to the C=C, which is carried out either 

in solution or during ionization process, then using CID-MS/MS of the derivatized ions to 

generate fragment ions specific to C=C position. In Paterno-Buchi reaction, a carbonyl 
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and an olefin produce a four-membered oxetane ring via UV irradiation during ESI, and 

CID-MS/MS of the oxetane ring-containing derivative subsequently yields diagnostic ion 

pairs with 16 Da different. Although this reaction is implemented explicitly for 

pinpointing the double bond position, its reaction efficiency is rather low, resulting in a 

mixture of reacted and non-reacted lipids, which overcomplicates the interpretation of 

mass spectra. m-CPBA, on the  other hand, utilizes the highly reactive epoxidation 

reaction of C=C to form an epoxide product in solution, which subsequently is being 

ionized and fragmented under CID-MS/MS to form aldehyde and olefin diagnostic ions 

(16 Da mass different). While the reaction is reported to have a complete conversion after 

10 min and the diagnostic fragments are easy to generate and interpret in any commercial 

mass spectrometers, the epoxide intermediate is induced prior to the ESI, and can be an 

isobar to other lipids if studied in a complex mixture. In addition, this technique is still 

under development to be compatible with polyunsaturated lipids. Overall, both 

techniques can pinpoint the position of unsaturation in lipids and use routine CID-

MS/MS for dissociation of derivatized ions, their application to complex biological 

sample may be limited as the low reaction efficiency, or the newly formed products can 

introduce additional species, sometimes isomeric or isobaric to the species in the already 

complicated lipidome. 
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Figure 7. Mechanism of The Ozonolysis Reaction. 1,3-Dipolar Cycloaddition of Ozone to The Alkene 
Leading to The Primary Ozonide, Which Decomposes to give a Carbonyl Oxide and a Carbonyl 
Compound.  
 
 
Gas Phase Ion Chemistry 

The reaction between ozone and olefin is also very specific and ozonolysis has 

been used in organic chemistry for many decades to oxidize alkenes in solution. This 

reaction was first used in solution for lipid unsaturation analysis using a mass 

spectrometer by Murphy and coworkers in 1996.110 Ten years later, Blanksby and 

coworkers revisited the same subject and initiated ozonolysis in the gas phase, by 

generating ozone using the high voltage corona discharge in the ESI source.111, 112 Once 

ozone attacks the alkene double bond, it follows the Criegee mechanism (Fig. 7),113  and 

dissociates the ozonide into a carbonyl oxide diradical and an aldehyde. The ions 

observed in the spectra are the ones that carry the charge and form the paired products. 

They are the charge-bearing Criegee intermediate and aldehyde, with 16 Da mass 

difference (Fig. 8). While OzESI-MS offers high selectivity to the C=C double bonds, 

their applications are limited to individual lipids or simple lipid mixtures because the 

reaction happens with every unsaturated lipids at the source and therefore lacks 
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selectivity with targeted lipids, in addition to the low reaction efficiency.112 Moreover, 

the OzESI products are isobaric with other oxidized lipid ions directly from the lipid 

extract, and the assignment of fragment ions to their respective precursor ions becomes 

ambiguous as the complexity of the mixture increases. To further improve gas phase 

ozonolysis in mass spectrometry, Blanksby and his team brought ozone gas into an ion 

trap of a mass spectrometer and utilized the ion trap as a gas chamber/reaction cell.114 

This approach kept the selectivity of ozonolysis to only the C=C of mass-selected lipid 

ions. This technique was first introduced in 2008, and termed ozone- induced dissociation 

(OzID).114 In the last ten years, OzID-MS was implemented on a few different instrument 

platforms, from low resolution ion trap instruments to high resolution Q-TOF based mass 

spectrometers, and from studying only lipid standards to application of biological 

samples  (Fig. 9).115-119 Moreover, OzID can be hyphenated with CID in tandem 

dissociation to get more informative structural information of lipids. The improvement in 

its efficiency has also moved from being only applicable with direct infusion to 

compatible with LC-based separation.115-117, 120-125 OzID-MS also is promising in 

distinguishing between the cis/trans-isomers;119, 126 however, reference lipid standards are 

suggested to be compared with before a definitive assignment of the structure can be 

reached.  
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Figure 8. OzID-MS Spectra of PC (16:0/18:1). Ozone Attacked the C=C Double bond on The FA 
(18:1) of the Lipid, to Form Primary Ozonide, and Subsequently Cleaved to Form Aldehyde Product 
(m/z 650) and the Criegee Product (m/z 666). These Two Product Ions are 16 Da apart.  
 
 

 
 
Figure 9. The Revolution of OzID-MS over the last 10 years. 
 
 
Conclusion And Future Directions 

Biological samples are complex. Lipids are immersed in and also bound to other 

biological molecules, such as proteins. High structural diversity of lipids itself already 

poses a significant challenge as many isomeric lipid species exist in a biological sample. 
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In addition, high abundant lipid species can mask the detection of low abundant ones. 

Similarly, lipid classes with high ionization efficiency can mask the detection of the 

classes with lower ionization efficiency. As such, comprehensively profiling the lipidome 

and establishing the structure-function relationship of lipids require optimal extraction of 

lipids from the biological matrix, integrated use of separation methods to reduce the 

complexity of lipids prior to structural analysis, and combined use of positive and 

negative ionization modes and tandem mass spectrometric techniques, including both 

CID/HCD and OzID to thoroughly and confidently characterize the structure of lipid 

species.  This is the strategy that we have adopted in this dissertation to identify lipid 

biomarkers for T1D, and will be presented in detail in the following chapters.  
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CHAPTER III 

ACCURATE MASS AND RETENTION TIME LIBRARY OF SERUM LIPIDS FOR  

TYPE 1 DIABETES RESEARCH 

This chapter is published at journal Analytical and Bioanalytical Chemistry and is 
presented in this style. 

 
 
Introduction 

Besides of being essential structural components of cell membrane, lipids have 

other distinctive biochemical roles in providing a hydrophobic environment for 

membrane proteins, assisting cell signaling process, regulating action of hormones, and 

storing biochemical energy.31, 127 Dysregulation of lipid metabolism has offered critical 

insights into the pathogenesis of complex diseases, and lipids are identified as biomarkers 

to cancers, diabetes, Alzheimer’s and other inflammatory diseases.128, 129 While clinical 

type 1 diabetes (T1D) features metabolic dysregulation of some serum lipid species, 

interestingly, changes in lipidome appear to precede hyperglycemia or even the 

appearance of islet autoimmunity.25, 26, 130  

Biomarkers can be either secreted or leaked from pathologic tissues to 

bloodstream. Although cell, tissue and biofluid samples are routinely used to study 

diseases, blood plasma and serum are the most commonly used specimen for clinical 

diagnostics because of their availability.131 However, significant analytical challenges are 

associated with this type of complex specimen, namely the identification of the low 
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abundant lipids and the differentiation of isobaric and isomeric species commonly exist in 

glycerophospholipids and glycerolipids classes. Because of these, most of the lipids 

reported in the literature were characterized to the level of summed composition, i.e. total 

number of carbon and double bonds in the fatty acyls, which results in ambiguity in 

characterizing the exact molecular structure and, in turn, hinders further investigation into 

the roles of these lipids in biological processes.28  

Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) is 

increasing used for untargeted lipidomic analysis owing to the increases in LC resolving 

power, decreasing particle size, novel column chemistry and new separation 

mechanisms.58, 63, 73, 80, 132, 133 The popularity of RPLC-MS based method can be further 

explained by several advantages such as more reliable identifications of individual lipid 

species exist at trace level and the separation of isomeric and isobaric lipids with reduced 

ion suppression.63, 132  Software, such as LipidBlast, LipidSearch, LipidMiner, and 

MzMine2 were developed to process LC-MS/MS based untargeted lipidomics data and to 

handle the need of automated data processing.134-137 These software use in-silico 

generated mass fragment libraries - many based on LIPID MAPS 

(https://www.lipidmaps.org/) - for lipid spectrum annotation. The drawback of providing 

a large database for lipidomic profiling in compound identification is the prevalence of 

false positive identifications. Incorporating LC retention time information into the 

database search could greatly reduce the search space and improve the search accuracy. 

In this respect, accurate mass and time tag approach has been developed for 
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proteomics,138, 139 and more recently applied to metabolomics,140 but rarely this approach 

has been used in lipidomics.141  

Previously, we developed an offline two-dimensional LC-MS/MS method for 

untargeted lipidomic profiling.63 In this approach, a mixed-mode LC and RPLC coupled 

to a high resolution mass spectrometer was demonstrated to double the lipidomic 

coverage for complex tissue and plasma samples in comparison to RPLC-MS/MS alone. 

More importantly, very reproducible retention time and high mass measurement accuracy 

was achieved for each lipid molecular species. In current work, we apply this approach 

for a comprehensive identification of lipids in T1D patient sera. Total lipids extracted 

from pooled sera were fractionated using mixed-mode LC based on the head group of 

each lipid class, collected fractions were further separated on a RPLC-MS/MS platform k   

cohort. The DAISY study protocol was approved by the Institutional Review Board of 

the University of Colorado and detailed study design and methods have been previously 

published.142, 143 Written informed consent were obtained for all study participants from a 

parent or legal guardian. Samples were stored at -80º C prior to analysis. Analysis of 

these samples was also approved by the Institutional Review Board of the University of 

North Carolina at Greensboro. All research was performed in accordance with relevant 

guidelines/regulations. 

In total, serum samples from 50 subjects were selected from two groups: Type 1 

Diabetes (T1D) group comprised of children who developed islet autoimmunity and 

progressed to T1D and the control group from children who remained negative islet 

autoimmunity at all times. Four time points (0.7 to 14.7 years of age) during the disease 
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progression in the T1D group were selected for this study, which include the earliest time 

point possible in the longitudinal study, the time point prior to and after appearance of 

persistent islet autoimmunity, and the time point of clinical diagnosis. Sample selection 

of the control group was age and sex matched to the T1D group. 

Pooled samples were created to represent different stages of disease development 

and also reflect the nature of each group. Aliquot of 5 µL from each sample within the 

first two time points of each group were pooled, so were the last two time points. 

Extraction of serum lipids was carried out following a modified Folch method.63 Briefly, 

pooled samples were diluted with cold (-20º C) chloroform/methanol (2:1, v/v) at ratio of 

5:1 (solvent/sample ratio). The mixture was vortexed for 10 s, then set at room 

temperature for 10 min and vortexed again before centrifuging for 10 min at rate 10,000 

RPM. The chloroform phase was collected to a glass vial, followed by evaporation of the 

extracted lipids to dryness under vacuum, and stored at -80° C in nitrogen gas prior to 

further analysis. 

Materials and Methods 

Chemical Reagents And Standards 

Ammonium formate, n-heptane, acetone, methanol, isopropanol (IPA) and water 

(Optima® LC-MS grade) were provided by Fisher Scientific (Fair Lawn, NJ). Acetonitrile 

(ACN) and formic acid were of LC/MS quality and acquired from Fluka (Germany). 

Chloroform (HPLC grade) and ammonia solution were purchased from Merck 

(Germany).  
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Lipid standards were purchased from Avanti Polar Lipids (Alabaster, AL), which 

include Cer d18:0/24:1, PC 18:0/18:1, PE 16:0/18:1, PG 16:0/18:1, PS 16:0/18:1, PI 

21:0/22:6, PC P-18:0/20:4, PC O-18:0/20:0, PE P-18:0/22:6, PE O-18:0/18:0, SM 

d18:1/12:0, and d5-TG ISTD Mix I. The acylglycerols, fatty acids, cholesterol and 

cholesterol esters were obtained from Nu-Chek Prep, Inc. (Elysian, MN).  

Mixed-Mode LC Fractionation Of Lipid Classes 

The mixed-mode LC separation was performed according to our previous 

published method using an Agilent HPLC equipped with a quaternary pump, and an 

Agilent 1260 Infinity evaporative light scattering detector (ELSD) (Palo Alto, CA, 

USA).63 The method was run on a Chromolith Performance Si column (100mm×4.6mm, 

macropores size 2.1μm and mesopores size 13nm, Merck, Darmstadt, Germany). The 

autosampler was set up at 23º C and the injection volume was 10 µL, equivalent to 100 

µL of serum. 

Overall, all lipid classes were collected into these fractions with the following 

order: CE and TG from 1- 3.2 min; Chol and 1,3-DG from 3.21-4.1; 1,2-DG from 4.11-

5.5 min; MG from 11-13.6 min; Cer from 13.61- 15 min; FAs from 15.01- 17 min; PG 

from 20.51- 22 min; PE from 26.01- 28 min; PI and PS from 28.01-30.5 min; PC from 

30.51- 35 min; SM from 35.01- 39 min; sn-1 LPCs from 39.6-41 min; sn-2 LPCs from 

41.5-42.4 min. 

RPLC- MS/MS Analysis  

The RPLC-MS/MS analysis was performed as we reported previously,73 using a 

Vanquish UHPLC system coupled to a high resolution hybrid Quadrupole-Orbitrap mass 
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spectrometer (QExactive HF, ThermoFisher Scientific, USA). The separation was 

achieved using an Accucore C30 column (ThermoFisher Scientific) maintained at 40º C 

and the gradient was delivered at a flow rate of 350 µL/min. The mobile phases A and B 

were ACN:H2O (60:40, v/v) and IPA:ACN (90:10, v/v), respectively, both containing 10 

mM NH4HCO3 and 0.1% HCOOH.63, 73 The sample tray was set at 15°C with the 

injection volume of 5 µL.  

The following parameters were used in electrospray ionization: the spray voltage, 

the capillary temperature and the heater temperature were at 3 kV, 350 °C and 400 °C, 

respectively, for both ionization modes; the S-Lens RF level was set at 50. The Orbitrap 

mass analyzer was operated at a resolving power of 120,000 in full-scan mode (scan 

range: 114 – 1700 m/z; automatic gain control target: 1e6) and of 30,000 in the Top20 

data-dependent MS2 mode (HCD fragmentation with stepped normalized collision 

energy: 25 and 30 in positive ion mode, and 20, 24 and 28 in negative ion mode; 

maximum ion injection time: 100 ms; isolation window: 1 m/z; automatic gain control 

target: 1e5 with dynamic exclusion setting of 15 s). 

Fatty Acid Analysis 

The method for total fatty acid analysis was described in our previous work.63 

Briefly, total lipids were extracted from human serum and dried prior to hydrolysis and 

derivatization with 2M KOH/CH3OH. The resulted fatty acid methyl esters (FAMEs) 

were extracted and profiled using an Agilent 7890 GC system (Agilent Technologies, 

Santa Clara, CA) coupled to a Leco Pegasus HT time-of flight MS (Leco, St. Joseph, 

MI). A HP-88 column (100 mx 0.25 mm) with a film thickness of 0.2 µm (Agilent 
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Technologies) was utilized for separation of FAMEs. Commercial FAMEs standard 

mixture (Agilent) was used as reference standards.  

Data Processing  

All LC-MS/MS data files were processed using LipidSearch software (version 

4.1) (ThermoFisher Scientific) to identify lipid molecular species within each lipid 

fraction. Settings of LipidSearch were as follow: precursor tolerance: 5 ppm; product 

tolerance: 5 ppm; product ion threshold: 5%; m-score threshold: 1; Quan m/z tolerance: ± 

5 ppm; Quan RT (retention time) range: ± 0.5 min; use of main isomer filter and ID 

quality filters A, B, C and D; Adduct ions: +H and +NH4 for positive ion mode, and -H, 

+HCOO and -2H for negative ion mode. The lipid classes selected for the search were: 

LPC, PC, LPE, PE, LPS, PS, LPG, PG, LPI, PI, LPA, PA, SM, MG, DG, TG, CL, So, 

Cer, CE. The same lipid annotations identified within ± 0.1 min were merged into the 

aligned results. LipidSearch results were manually inspected for sn-positional assignment 

of fatty acyls according to corresponding fragment ion intensities in tandem mass 

spectrometry. Identification results were further filtered using the retention time -total 

fatty acyl chain length correlation and, confident identification was also restricted to fatty 

acyl compositions provided by GC-MS-based total fatty acid analysis.  

The resultant raw data files of the pre-T1D sample were processed using 

Progenesis QI (Nonlinear Dynamics, UK) for peak detection with the following 

parameters: peak percentage 0.04%, retention time windows from 1 min to 25 min. All 

detected features were searched against our human serum lipid AMT library with 

matching tolerances of 0.2 min in retention time and 10 ppm in mass accuracy.  
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Results 

Isomeric and isobaric lipid species are dominant in highly complex blood serum 

samples, in addition, highly abundant lipid species can mask the low abundant lipid 

species, similarly the high ionization efficiency species can interfere the detection of 

species with low ionization efficiency. Therefore, to broaden the coverage of serum 

lipidome and to provide highly confident lipid identification, a mixed-mode-LC coupled 

with an ELSD detector was used to fractionate the total lipid extract into different lipid 

classes according to the polarity of lipid head group, which is followed by further 

separation of the collected fractions into individual molecular species and structural 

characterization using RPLC-MS/MS analysis (Fig. 10).  

 
 
Figure 10. Workflow to Create The Accurate Mass and Time Tag Library for Serum Lipids. Total 
Lipids were Extracted From Pooled Samples. In the First Dimension of LC Separation, Fractions 
Containing Lipid Classes from Total Lipid Extraction were Separated and Collected using Mixed-
Mode LC-ELSD, and further Analyzed at the Molecular Level in The Second LC Dimension using 
RPLC-MS/MS. Putative Identifications Obtained from Automated Data Processing Software 
LipidSearch were Manually Validated using Multiple Data Filtering Criteria (total fatty acid 
analysis by GC-MS, MS/MS profile and LC Elution Order), Only The Verified Lipid Identifications 
were Curated into The Final Lipid Library with Each Species Annotated With Accurate Mass and 
RPLC Retention Time.  
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Fractionation Of Total Lipid Extracts Using Mixed-Mode LC To Simplify The 

Sample Complexity Of Downstream RPLC-MS/MS 

We applied a previously optimized mixed-mode LC-ELSD method for class-level 

separation of lipids from total lipid extract of serum.63 In total, 18 lipid classes and 

subclasses were detected and eluted in the order of increasing polarity (Fig. 11), namely: 

cholesterol ester (CE), triacylglycerol (TG), cholesterol (Chol),  phosphatidylglycerol 

(PG), phosphatidylethanolamine (PE), phosphatidylethanolamine plasmalogen (p-PE), 

lysophosphatidylglycerol (LPG),  phosphatidylinositol (PI), phosphatidylserine (PS), 

lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), phosphatidylcholine 

plasmalogen (p-PC), sphingomyelin (SM), sn2-lysophosphatidylcholine (sn2-LPC) and 

sn1-lysophosphatidylcholine (sn1-LPC); ceramide (Cer), 1,3-diacylglycerol (1,3-DG) and 

1,2-diacylglycerol (1,2-DG) existed only in low level in serum, therefore they were not 

labeled on the chromatogram. Because of the low level of LPG, LPE and LPI in serum, 

they co-eluted with other glycerophospholipids, but this did not pose a challenge in 

downstream RPLC-MS/MS analysis as the co-eluting classes do not share isobaric 

species (Fig. 11).  Although mixed-mode LC-ELSD analysis can distinguish disease-

associated dysregulation of metabolism at the lipid class level, overall, there were no 

noticeable class-level changes between the disease groups or between the early and late 

time points of each group.  
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Figure 11. Mixed-Mode LC-ELSD Chromatograms Obtained from Total Lipid Extract of Human 
Sera. a) Pre-T1D Samples and b) Healthy Control Sample. Both Chromatograms Showed Similar 
Lipid Profiles at Lipid Class Level. 1: CE, 2: TG, 3: Chol, 4: FA, 5: PG, 6: LPG, PE, p-PE, 7: PI, PS, 
LPE, 8:PC, p-PC, LPI, 9:SM, 10: sn2-LPC, sn1-LPC. 
 
 
RPLC-MS/MS Analysis Of Lipid-Class Fractions Improved Confidence In 

Structural Identification Of Lipid Molecular Species 

With mixed-mode LC separation, the cross-class, isobaric species used to co-elute 

were separated into different fractions for further downstream RPLC-MS/MS-based 

molecular level separation and identification. This greatly improved the confidence of 

structural assignment. For instance, a full scan MS of PC fraction showed a lipid species 

with a neutral mass of 755.5465 Da. According to Human Metabolome Data Base 

(www.hmdb.ca) and LIPID MAPS (www.lipidmaps.org), 32 and 28 isomeric lipid 
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species from different lipid classes are associated with this mass, respectively, each with 

a unique composition. However, because this species was from the PC fraction, we 

limited the database search space of LipidSearch to PC when processing the RPLC-

MS/MS raw data of this fraction. Specifically, the precursor ion at m/z 756.5529 

([M+H]+) was selected for MS/MS fragmentation in positive ionization mode. As shown 

in Fig. 12a, the base peak at m/z 184.0733 - a signature ion of phosphocholine head 

group confirmed the identity of the fraction collected in the mixed-mode LC separation 

as PC. Similarly, m/z 800.5445 ([M+HCOO]-) was selected in the negative ionization 

mode for MS/MS, and it aligned well in retention time (<0.1 min) with the positive mode 

data. As shown in Fig. 12b, prominent ions at m/z 253.2172 and 279.2329, corresponding 

to the ions of [FA(16:1)-H]- and [FA(18:2)-H]-, respectively, demonstrated that the fatty 

acyl composition of this species is 16:1 and 18:2. The m/z 279.2329 as the base peak 

indicated that FA 18:2 located at sn-2 position on the glycerol backbone, as it is known 

that fragment ion ratio of [FA1-H]-/[FA2-H]- is less than 1.72, 73, 144 Hence, we concluded 

the identification for the species with neutral mass of 755.5465 Da with the retention time 

of 9.61 min to be PC 16:1/18:2.   
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Although fragment ion ratio of [FA1-H]-/[FA2-H]- <1 has been commonly used to 

assign the sn-positions, there are reported exceptions to this rule and it casts doubt on 

solely relying on this ratio to assign the sn- position when using different collision 

energies.98, 145-147 Therefore, we performed MS/MS for glycerolphospholipids and 

triacylglycerols standards containing different compositions of fatty acyl chains. These 

standards were studied with the stepped collision energy listed in the method section, 

Figure 12. MS/MS Spectra of  PC 16:1/18:2 in a), Positive ion Mode and b), Negative 
ion Mode. m/z 184.0733 in a) Shows the Signature ion of PC , Which also Confirmed 
The Accuracy of Mixed-Mode LC Fractionation, While m/z 253.2172 and 279.2329 in 
b) Reflect the Composition of the Two Fatty Acyl Chains and The sn-position 
assignment. 
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under both direct infusion and LC-MS conditions. In agreement with the literature,73, 104, 

106, 107, 146, 148 our data suggested that for most of the phospholipids, generation of [FA2-

H]- is more favorable than [FA1-H]- and the ratio of [FA1-H]-/[FA2-H]- is consistently 

smaller than 1 at different normalized collision energy. As a result, majority of the lipid 

species identified in this work have clear annotation of sn-positions using the “/”; for 

lipids with uncertainty in assigning the sn-position, we annotated it with “_”.149, 150 

Elution Order Of Lipids On RPLC Column Depends On The Total Carbon Number 

And Degree Of Unsaturation Of The Fatty Acyls 

Relative retention on RPLC column depends on the hydrophobicity of analyte, the 

more hydrophobic, the later it elutes. In the case of lipids, this is determined primarily by 

the length and saturation of fatty acyls. This rule is especially true for the molecular 

species within the same class of lipids, where all species share the same head group.71, 151 

We plotted the retention time versus the total carbon number of fatty acyls and observed, 

as shown in Fig. 13, a relationship of second degree polynomial regression for the fully 

saturated species of the abundant serum lipid classes: TG, SM, PC, LPC and Cer, with 

each class having a different slope reflecting the actual gradient conditions experienced 

by species in each class. In these plots, we observed species with the same number of 

total carbon but different retention time. By studying their MS/MS profile in both 

positive and negative mode, we confirmed they are sn-position isomers. Nevertheless, the 

correlation coefficients R2 are greater than 0.99 in all plots. To our knowledge, this is the 

most comprehensive determination of the dependence between elution order and total  

carbon number of various species of different lipid classes.  
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A similar correlation was observed for the fatty acyls containing one, two and 

multiple double bonds (Fig. 14). Compared with lipids containing fully saturated fatty 

acyls, more lipid molecules with the same total number of carbon and double bond 

exhibited different retention time (vertically lined dots). These species are isomers with 

different compositions of fatty acyl chains, in particular the C=C positional isomers, as 

the interactions are slightly different between different locations of C=C double bond and 

the C30 RPLC column. As a result of the presence of these isomeric lipid species, the 

correlation R2 are slightly lower than the values of the fully saturated lipids in Fig. 13, 

but still are greater than 0.97 with the species having less than 3 double bonds. When the 

lipid species have at least 3 double bonds, the correlation R2 were generally reduced, with 

the SM and TG lipids significantly reduced to >0.80.  Overall, PC had the highest 

correlation between retention time and total carbon number, even when the degree of 

unsaturation increased; while TG and SM had a lower correlation coefficient due to the 

complexity of the structures and a higher number of isomers (more vertical dots) for each 

species. 

In addition, higher degree of unsaturation resulted in the lipid species eluting 

earlier when comparing the lipid species with the same total number of carbon and 

different number of double bonds, i.e. for the same lipid class, the X:2 lipid species 

eluted earlier than X:1 when X is identical (Fig. 14), which is in agreement with previous 

report.71 It is of note that the excellent correlation observed between the retention time on 

RPLC and the length and degree of unsaturation of fatty acyls provide a way to filter the 
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output of LipidSearch software. As a result, those putative lipid identifications that 

deviated from the established regression curves were further filtered out and not counted  

as valid.  

 
 
Figure 13. Plots Showing Dependences of RPLC Retention Times of Saturated Lipids to The Total 
Number of Carbon, each Panel is a Different Lipid Class (TG, SM, PC, Cer, and LPC). Lipid 
Molecules with longer fatty acyl chain (larger number of total carbon) are less polar and elute later 
from column.  
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GC-MS Based Fatty Acyl Analysis Improved Confidence In Identification Of Fatty 

Acyl Composition Of Lipids 

Lipidomics research requires automated data annotation software, particularly at 

the initial identification stage. LipidSearch software is highly sensitive in peak detection, 

hence, often times, species in the noise were considered as identifications. Another 

observation from using LipidSearch as well as other automated software is the ability to 

identify “biological impossible” lipids due to the input of the in-silico library. The large 

number of putative identifications resulting from combinatorial enumeration inevitably 

generates large number of false positive identifications. To this end, we performed fatty 

acyl methyl ester analysis using GC-MS by derivatizing the fatty acyls hydrolyzed from 

lipid backbone under alkaline methanol condition. Using methyl ester derivatives of fatty 

acid standards as reference, fatty acyl chains of serum lipids were analyzed. Results 

showed that the fatty acyl chain lengths varied from 8 to 24 carbons, including the odd 

numbered chains, and the degree of unsaturation varied from 0 to 6. While it is possible 

that serum lipids contain unique fatty acyls of odd numbered carbon (>21 carbons) or 

more than 6 double bonds, their low abundance in these serum samples did not provide 

strong enough justification for the inclusion of these fatty acyls as valid lipid 

identifications. Based on the results of fatty acyl analysis, we filtered out the putative 

lipid identifications to limit the valid identifications only to those ones containing the  

detected fatty acyls.  
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Figure 14. Plots Showing Dependences of RPLC Retention Times of Unsaturated Lipids to The Total 
Numbers of Carbon, with each Panel Showing a Different Lipid Class (TG, SM, and PC)  or Degree 
of Unsaturation (1 to 4).  Within each class, slightly different retention times were observed between 
different C=C positional isomers and sn-position isomers (vertically lined dots).    
 
 
Contents And Characteristics Of The Human Serum Lipid Library 

Using the offline 2D-LC-MS/MS approach and the data filtering and validating 

approaches mentioned above, we confidently identified 753 lipid molecular species in 

healthy control and pre-T1D human sera. The curated library, as provided in Table S1, 

contains information of accurate mass, RPLC retention time for each identified species. 

Overall, these 753 lipid molecules belong to 13 major lipid classes: Cer, DG, LPC, LPE, 

LPI, LPG, TG, PC, PI, PE, PS, PG and SM (Fig. 15). The sub-classes including 

plasmalogen and sn-position (1,3- and 1,2-DG and sn-1/sn-2 LPC) were combined and 
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reported under their corresponding representative classes such as DG, PC, PE, LPE and 

LPC. Every lipid class was detected in both positive and negative ionization mode, 

except TG and Cer, which were solely in positive mode. [M+H]+ and [M+NH4]+ are the 

dominant ions in positive ionization mode,  whilst [M-H]- and [M+HCOO]-in the 

negative mode.  In total, 88% of the lipids within our human serum lipid library are 

unsaturated lipid species, with 83% of them being polyunsaturated (degree of 

unsaturation >2). Majority of the species observed belong to TG, SM, PC and PE classes. 

Cer species are composed of fatty acids of 16 to 24 carbons, with the majority having one 

to two double bonds and an appearance of the odd long chain base d17:1. Both 1,2-DG 

and 1,3-DG were detected, with a predominance of polyunsaturated 1,2-DG species. 

Lyso-glycerophospholipids (LPLs) including LPC, LPI, LPG, LPE were also found in the 

serum sample with a diverse fatty acyl chain length of 12-22 carbon. LPC is the most 

dominant LPLs with the strong preference of sn-1 over sn-2 isomers. Moreover, we were 

able to clearly identify plasmanyl and plasmenyl PLs using their distinct MS/MS 

fragments. 
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Figure 15. Relative Distribution of Lipid Species contained in The Serum Lipid Library. 

 
 
We further plotted the spatial distribution of all lipids included in the library in the 

two dimensional spaces of RPLC-retention time and m/z.  As shown in Fig. 16, clusters 

of lipids with mass ranges from 400-600 Da, 500-900 Da and >900 Da eluted in the 

following order: earlier than 5 min, 5.5-17 min, and after 17 to 25 min, respectively. 

Clearly, many isobaric and isomers species overlapped and it would be challenging to 

identify them if only using RPLC-MS/MS. The only lipid class that was separated well 

from others on RPLC is the highly non-polar TG. Lipid species belonging to LPLs eluted 

together, and GPLs (PC, PE, PI, PS) co-eluted with the DG, SM and Cer species. 

However, DG and Cer species have a different mass range from phospholipids. 

Conversely, with mixed-mode LC, we increased the level of confidence in lipid 

identification because a correct identification needs to come from the right fraction (lipid  

class), and match with the accurate mass and the elution order.  
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Figure 16. Individual Lipid Molecular Species Identified in Human Sera, Plotted with Their Respective 
m/z and Retention Time (min) on the RPLC. Identification of These Lipid Molecular Species was 
Facilitated by Lipid Class Level Fractionation using Mixed-Mode LC-ELSD, and Molecular Species 
Level Separation using RPLC-MS/MS.  
 
 
Application Of The Lipid Library To Identify Lipids From Serum Sample  

As a demonstration of the utility of the curated library in identification of lipids 

from biological sample, total lipids extracted from one individual pre-T1D serum sample 

were directly analyzed by RPLC-MS/MS without fractionation at lipid class level and 

raw data files were processed using two approaches - without and with our AMT serum 

lipids database. In the first approach, the raw data were processed directly using 

LipidSearch software resulting into 217 lipid species identified with assignment of sn-

positions. In the second approach, the resultant raw data were processed using Progenesis 

QI software. Detected features from Progenesis QI were searched against the curated 
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human serum lipid library based on the accurate mass and RPLC retention time of each 

lipid molecular species. In total, we identified 412 molecular lipids in one individual pre-

T1D serum sample, as summarized in Fig. 17. Majority of the species identified are in the 

class of TG, PC, SM, PE and LPC, which is proportional to the composition of lipid 

library. The profile of carbon length and degree of unsaturation for each fatty acyl in T1D 

lipidome varied from 10-22 carbons, including some odd chains (15 and 17 carbons), and 

0-6 double bonds C=C. Hence, with the use of our AMT lipid serum database, we are 

able to increase the number of identification significantly, mostly from the low abundant  

species.  

 
 

Figure 17. Number of Lipid Species identified from a T1D Serum Sample. Progenesis QI was Used to 
Match the LC-MS Profiles of The T1D Serum Sample to the Serum Lipid AMT Library. 
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Discussion 

There has been an increased interest in comprehensively characterizing the human 

serum lipidome for its use in disease diagnosis. However, due to the complexity of blood 

serum samples, it is commonly recognized that many lipid species are unlikely to be 

detected due to their low abundance in serum, which is further hindered by the limited 

resolving power of one-dimensional LC separation and the under-sampling issue of data-

dependent MS/MS. The accurate mass and time (AMT) tag approach was initially 

developed for high throughput proteomics to provide extensive coverage of complex 

peptide mixtures by taking advantage of the high resolution and wide dynamic range of 

the MS scans, which largely overcame the under-sampling issue in MS/MS-based peptide 

identification.139 The concept employed in AMT tag based-proteomics studies could be 

applied to study other biomolecules, such as lipids.141 Specifically, if an AMT tag library 

can be generated for various lipid species using a reproducible and robust LC-MS 

platform, then lipids from different samples of the same type of specimen could be 

analyzed in high throughput using the identical platform, where the AMT tag library 

would serve as a look-up table for lipid identification using LC retention time and 

accurate mass instead of relying on the MS/MS spectrum.  

To achieve this, we employed offline two-dimensional LC separation,63 which 

used mixed-mode LC in the first dimension to fractionate the total lipid extract into lipid 

classes, followed by reversed phase LC separation to further separate lipids in the same 

class into molecular species. The chromatographic separation and mass spectrometric 

detection conditions have previously been optimized in our laboratory, which doubled the 
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coverage of rat serum and liver lipidome compared to using RPLC-MS/MS alone. 

Fractionating total lipid extract into different lipid classes prior to the 2nd dimensional 

RPLC-MS/MS analysis is critical for building the library, as it greatly increased the 

confidence in lipid identification process by limiting the cross contamination of co-

eluting isobaric/isomeric species between different lipid classes. For example, isobaric 

PC and SM can be challenging to differentiate when co-eluted on RPLC column because 

they share the common characteristic fragment ion (phosphocholine head group) in 

positive ionization mode.101 However, the ambiguities in identification can be eliminated 

with additional dimension of separation provided by mixed-mode LC on which SM is 

clearly separated from PC.  

Automated lipid identification programs, such as LipidSearch, are powerful in 

identification of lipid molecular species based on pre-configured fragmentation rules.135 

However, not all MS/MS spectra acquired from real biological samples are of high 

quality, which can be further complicated by lipids co-eluted and co-fragmented within 

the precursor ion selection window. This undoubtedly poses a challenge in structural 

elucidation when only head group-specific ions can be observed. As an effort to improve 

the confidence of identified lipids, we did total fatty acyl analysis using GC-MS to limit 

the composition of identified lipids only to those detected fatty acyls. We also observed a 

rigorous dependence between the RPLC retention time and the sum composition of total 

carbon number of all fatty acyls, which was used to further remove the putative lipid 

identifications not following the trend line.  
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 The ratio of [FA1-H]-/[FA2-H]- has been used for sn-positional assignments; 

however, relative intensities of the two carboxylate anions can vary depending on length 

and unsaturation, as well as the collision energy used in fragmentation.72, 147, 152, 153 In this 

respect, it has been reported that different fragmentation patterns originated from 

different cleavage sites could be formed as a result of very different collision energies,154 

or the ratio of [FA1-H]-/[FA2-H]- could be altered with the collision energy.146, 147 Hence, 

to confidently identify the sn-position assignment of fatty acyls, we studied the relative 

ratio of [FA1-H]-/[FA2-H]- using a list of representative lipid standards with different fatty 

acyl chains for each class, and concluded that [FA1-H]-/[FA2-H]- <1 can be used to assign 

the fatty acyl positions in  most of lipid classes under our experimental conditions, i.e. 

NCE 20–30 under HCD. Thus, within the stepped collision energies used in this work, 

we ruled out their effects on reversing the ratio of carboxylate anions.  

Results from mixed-mode LC separation showed that there were no noticeable 

lipid class-level changes between healthy and T1D group or between the early and late 

time points of each group. Considering the samples used in this study were collected 

from patients older than 8 months and pooled from 25 subjects and two time points, our 

observation is somewhat in agreement with the serum lipid profile changes reported for 

the Finnish Type 1 Diabetes Prediction and Prevention cohort (DIPP) study, where the 

lipidomic profile changes associated with the progression of T1D appear to be most 

pronounced in children at 3 months of age.25 Nevertheless, no change at the lipid class 

level further underline the importance of separating lipids at the molecular species level.  
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In agreement with the literature, our finding revealed that TG, PC, and SM are 

predominant lipids in human serum, with TG comprising over 50% of lipids having more 

than 52 fatty acyl carbon atoms.155, 156 Compared to the previous published human 

plasma/serum lipidome, our lipid library provided unambiguous identifications at the 

level of sn-assignment for most of the glycerolphospholipids.81, 156, 157 Although generally 

not native to mammalian cell lipidome, glycerolphospholipids containing odd chain fatty 

acyls and longer chain fatty acyls on the sn-1 position were also observed and passed our 

validation criteria. It is of note that, despite cholesterol and fatty acids being abundant 

classes observed in the mixed-mode LC (Fig. 11), we didn’t perform identification of 

these two classes at the molecular level. Cholesterols have been known to ionize poorly 

with electrospray ionization unless derivatized to cholesterol esters158 and therefore 

traditionally cholesterols are ionized with chemical or photo ionization techniques and 

not suitable for detection using our electrospray ionization-based platform. With respect 

to identification of free fatty acids, the main fragment ions resulted from CO2 loss 

requires NCE > 50,159 which greatly exceed the NCE used for other lipid classes.  

 In summary, using orthogonal and highly resolving separation methods of 

mixed-mode LC and RPLC in conjunction with high resolution tandem mass 

spectrometry and multiple levels of data filtering and validation, we have created a 

comprehensive human serum lipid library containing 753 lipid molecular species, with 

accurate mass and retention time annotated for each lipid molecule and with confident 

assignment of fatty acyl sn-positions for most of the species. This library not only 
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provides a comprehensive resource for studies of T1D, it will also be valuable for 

biomarker studies of other childhood diseases.  
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CHAPTER IV 

OZONE-INDUCED DISSOCIATION ON A TRAVELING WAVE HIGH  

RESOLUTION MASS SPECTROMETER FOR DETERMINATION   

OF DOUBLE BOND POSITION IN LIPIDS 

This chapter has been published in journal Rapid Communication in Mass 
Spectrometry and is presented in that style. Vu, N., Brown, J., Giles, K., Zhang, 
Q. RCMS. 2017, 30, 1415-1423 

 
 
Introduction 

Lipids are involved in a wide range of biological processes from being a major 

component of cell membranes to regulation of metabolic pathways. Changes in lipids are 

reflected in various pathological and physiological conditions.39, 160-163 Consequently, 

lipids have been implicated as biomarkers and major contributors to diverse diseases such 

as obesity, diabetes, cancers and Alzheimer’s.21, 36 

The function of a lipid depends on its molecular structure. Lipid isomers that 

differ only in their fatty acyl C=C position can have very distinctive roles functionally. 

For example,  free fatty acids (FFAs) that contain double bonds at w6 or w9 positions 

inhibit the activity of nicotinic acetylcholine receptor, while the w11 and w13 isomers 

have no such effect.164 Similarly, FA (18:1, w3) prevents cardiovascular disease whilst its 

w6 double bond positional isomer worsens this disease.165 Thus, detailed characterization 

of lipid structures would aid in understanding their biological functions. 
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Recent advancements in the field of mass spectrometry (MS) have greatly 

improved the field of lipidomics, as a result more lipids have been identified with better 

structural annotation.73, 166-169 However, the determination of carbon-carbon double bond 

locations within the unsaturated fatty acyl chains still remains a challenge. Different 

hyphenated mass spectrometry techniques have been used to localize lipid double bond 

positional isomers. In gas chromatography coupled with mass spectrometry (GC-MS), 

lipid molecules are derivatized to form methyl esters for volatilization, which is followed 

by fragmentation with high energy electron ionization. Although this GC-MS analysis 

can pinpoint the location of a double bond that is closest to the methyl end of the fatty 

acyl chain,  it only allows confident identification of the location of double bonds in 

monounsaturated lipid species.170  In addition, the sn- substituent information is lost 

during the hydrolysis process and therefore GC-MS is incapable of determining C=C 

positions from intact lipids. On the other hand, the commonly used low energy collision 

induced dissociation (CID)-MS, is able to assign the sn- positions and identify the total 

number of carbon on each fatty acyl chain along with their total degree of unsaturation 

from intact lipids, but struggles to characterize the locations of double bonds without 

using multistage ion activation techniques on lipid-metal adduct ions.171-175 Alternatively, 

high energy CID-MS has been applied to study the structural variation of the fatty acyl 

chains, yielding a highly complicated fragmentation spectrum embedded with structurally 

diagnostic product ions.176-178  

 C=C selective ion-molecule reactions are promising techniques that largely 

overcome the above mentioned limitations. They also offer increased sensitivity and the 
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ability to provide detailed structural information of a given lipid molecule when coupled 

with mass spectrometry. Xia and co-workers coupled a photochemical reaction online 

with tandem mass spectrometry. 179-182 When the Paternò-Büchi (PB) reaction product 

between a lipid ion and acetone is activated using CID, it generates a pair of diagnostic 

ions originating from the C=C location. Using 193 nm laser, Brodbelt and co-workers 

implemented ultraviolet photodissociation on an Orbirap mass spectrometer to localize 

C=C in lipids.183 Another well-known ion-molecule reaction is the Ozone-induced 

dissociation (OzID) pioneered by Blanksby and co-workers, which uses the ozonolysis 

reaction of C=C to pinpoint the location of double bonds based on the neutral loss of 

diagnostic fragment ions (aldehyde and Criegee ions).114, 116, 121, 126, 170, 184 OzID has been 

implemented in both shotgun and LC-MS based lipid analyses, mainly using ion trap MS 

platforms (Thermo LTQ and AB QTRAP) to characterize the lipid double bond 

positional isomers; however, the presence of ozone/oxygen results in decreased 

resolution for helium filled ion traps when ozone/oxygen concentration exceeds a certain 

percentage in helium.114 In addition, most of the OzID-MS experiments carried out so far 

were focused on the sodiated adducts of lipids owing to their stability and predominant 

presence in shot-gun based lipidomics workflow;[31, 32] fragmentation of the most 

commonly observed protonated ions generated in LC-MS based lipidomics workflow has 

been less explored.  

 In this work, we demonstrate the ozonolysis of protonated lipid ions in a high 

resolution MS instrument platform to elucidate the locations of double bonds on the lipid 

fatty acyl chains. The experimental arrangement was based on a Synapt G2 HDMS 
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instrument (Waters Corp., Milford, MA), a MS with high resolution and accurate mass 

capability that employs Traveling Wave-based stacked ring ion guides (SRIGs) for ion 

transfer.185 By modifying the default potential settings, we improved the OzID efficiency 

by increasing the reaction time between lipid ions and ozone gas in the TriWave region 

whilst maintaining the duty cycle of the scan. This approach is promising in both shotgun 

and LC-MS based lipid analysis to fully characterize the structure of unsaturated, intact 

lipids.  

Experimental 

Chemicals 

C18:2 (10E,12Z) methyl ester was purchased from Nu-Chek Prep, Inc (Elysian, 

MN). All phospholipid standards were obtained from Avanti Polar lipids, Inc (Alabaster, 

AL). HPLC grade methanol, acetonitrile (ACN), and isopropanol (IPA) were purchased 

from Sigma-Aldrich (St. Louis, MO). LC-MS grade ammonium formate and formic acid 

were provided by Fisher Scientific (Pittsburgh, PA). 

Sample Preparations 

C18:2 (10E,12Z) methyl ester standard solution was prepared in methanol at a 

concentration of 12.5 µM. Phospholipid standard solutions were prepared in the solvent 

of ACN/IPA/H2O (65/30/5, v/v/v) at a concentration of 25 µM. To aid the formation of 

protonated, 10 mM of ammonium formate and 0.1% formic acid were added into each 

standard solution. All standards were stored at -20°C. A solution of 2 ng/µL leucine 

encephalin (Waters, UK) in ACN/H2O (50/50, v/v) with 0.1% formic acid was used as 

the lock mass for instrument calibrations. 
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In-line Ozone Generation 

An O3MEGA Integrated Ozone Delivery System (MKS Inc, Andover, MA) was 

used for in-situ production of ozone from high purity oxygen. The oxygen pressure was 

set to 15 psi and the ozone system was set to output up to 18 wt% of ozone at a flow rate 

of 0.5 slm. The generated ozone/oxygen mixture was connected to the mass spectrometer 

Trap/Transfer gas supply, with the excess guided to an Ozone Destruct Module (MKS 

Inc.) to convert ozone back to oxygen before venting to the laboratory exhaust system 

(Fig. 1). To ensure safe operation of the ozone delivery system, an Ozone Leak 

Detector/Monitor (Ozone Engineering Inc., El Sobrante, CA) was installed to alarm and 

shut down ozone production if room ozone concentration exceeded safe levels.  

Mass Spectrometry 

OzID-MS experiments were performed on a Waters Synapt G2 HDMS (Milford, 

MA) with MassLynx v4.1 instrument control and data acquisition software. The Synapt 

G2 HDMS has a TriWave region positioned between a quadrupole mass analyzer and an 

orthogonal time-of-flight (oa-ToF) mass detector (Fig. 18). The TriWave region is 

comprised of traveling wave-based SRIGs which have confining radio frequency and 

superimposed transient DC voltages for ion propulsion. These serve as: collision cell 

(Trap); ion mobility separator (IMS) and ion transport device (Transfer) delivering 

sophisticated ion manipulation functions, including ion accumulation, collision induced 

dissociation, ion mobility based separation and high speed ion transfer for TOF based 

detection. In the trap and transfer regions, ions can be manipulated to accumulate or 

fragment using CID prior or after the IMS region.186, 187  
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The Argon collision gas inlet of the mass spectrometer was connected to a 

stainless-steel T union to accept both Argon and Ozone, with each line having its own 

shutoff valve. This inlet supplies collision gas to both Trap and Transfer cells as 

configured by the manufacturer (Fig. 18). The trap and transfer gas flow was maintained 

at 2.0 mL/min using a flow controller (Bronkhorst, Suffolk, UK) operated via MassLynx. 

At this gas flow rate, pressures at the trap and transfer regions were at ~1.0 e-2 and 1.0 e-

4 mbar, respectively. The effective ozone concentration during OzID was at 6.0 %, which 

can be achieved by either diluting the in line generated high concentration Ozone with 

Argon or by directly generating Ozone at this concentration.  

Sample was directly infused using a syringe pump at a flow rate of 5 µL/min, and 

ionized using the electrospray ionization source. The parameter settings for ionization 

were: source capillary voltage 2.70 kV; sample cone voltage 30V and extraction cone 

voltage 6.0V; source and desolvation temperature at 40°C and 80°C, respectively; the 

cone gas and desolvation gas flow rate at 50 L/h and 500 L/h of nitrogen respectively. 

Precursor ions were mass selected in the quadrupole and reacted with ozone gas in the 

trap and transfer regions before reaching the ToF detector. Full MS spectra were acquired 

for every sample. The scan rate was set at 0.2 s/scan. 

The default trap and transfer collision energy were at 4.0 and 2.0 V, respectively. 

The Wave height and velocity in the trap region were set at 0.5 V and 300 m/s; in the 

transfer region were  set at 0.2 V and 247 m/s. Additionally, the TriWave DC conditions 

were set as follows: for the trap region: trap DC entrance 2.0 V, trap DC -2.0 V, Trap DC 
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exit 0.0 V; for the transfer region: transfer DC entrance and exit at 5.0 V and 15.0 V, 

respectively. 

Results and Discussions 

Performance Of OzID At The Default Trap And Transfer Settings 

All OzID performances of lipid standards were first studied using default 

acquisition settings of the Synapt G2 HDMS. In our experimental design, ozone gas was 

supplied in the trap and transfer regions to perform ozonolysis (Fig. 18).  Ion residence 

time within the TriWave region can be estimated from the traveling wave velocity, which 

is derived from the distance between pairs of electrodes divided by the time the pulse 

remains on each pair. For example, the spacing between each electrode pair in the trap 

and transfer regions is 3 mm; therefore, a 10 µs pulse time gives rise to an average 

velocity of 300 m/s. Under these default settings, it takes 946 µs for an ion beam to 

transmit through the trap and transfer regions while interacting with neutral gas before  

reaching to the ToF detector.187  

The conjugated lipid standard FAME C18:2(10E,12Z), previously shown to 

readily undergo ozonolysis was initially used to study OzID efficiency under the 

instrument default settings.184 When oxygen was employed as the collision gas, the 

sodium adduct (m/z 317) alone was observed in MS/MS spectrum under default minimal 

collision energy used for ion transmission (Fig. 19A). In contrast, when ozone gas was 

introduced into the collision cells, OzID aldehyde product ions at m/z 223 and 249 were 

generated with low intensity (Fig. 19B). These ions are specific to the 10 and 12th 

position of the double bond location, respectively. Likewise, ozonolysis reaction of the 
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protonated ions of PC (16:0/18:1(9Z)) (m/z 760) resulted in the characteristic neutral loss 

of 110 Da and 94 Da at the position n-9, which yielded the aldehyde and Criegee 

products ions at m/z 650 and 666, respectively (Fig. 20A). Compared to conjugated C=C 

(Fig. 19B), the monounsaturated C=C has ~ 30 times lower OzID efficiency. This is in 

line with what reported previously on the reaction rate difference between conjugated and 

single C=C when taking into consideration of the double bond conformation.188 It should 

be noted that these product ions were very weak and could only be observed in the 

spectra under high magnification. Nevertheless, these results indicated that OzID-MS  

could be implemented in the Traveling Wave mass spectrometer.  

 
 

Figure 18. Schematic of The Traveling Wave Q-TOF Mass Spectrometer (Synapt G2) Modified to 
Allow OzID in The Trap and Transfer Cells. IMS was Off during Experiment. 
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Optimization Of Traveling Wave Height And Velocity In Trap Region To Improve 

OzID Efficiency 

Under the default instrument settings, the traveling wave is set at an elevated 

wave velocity and wave height in order to reduce ion transmission times whilst 

maintaining sensitivity.186  Although this default setting is very beneficial for normal 

applications, it depresses ozonolysis of unsaturated lipid ions due to the short reaction 

time with ozone. Thus, modifying the wave height and wave velocity would effectively 

allow control of the movement of ions across the trap and transfer regions and their  

reaction time with ozone. 

  
 

Figure 19. OzID-MS Spectra of FAME C18:2 (10E,12Z) under Different MS Settings: A, Oxygen, 
MS/MS at default settings; B, Ozone, MS/MS at Default Settings; C, Ozone, Trap wave height = 0.2 
V; D, Ozone, Trap Wave Height = 0.2 V, Trap Wave Velocity = 8 m/s, Transfer Wave Height = 0.4 V 
and Transfer Wave Velocity = 247 m/s. 
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Figure 20. OzID-MS Spectra of PC (16:0/18:1(9Z)) under Different MS Settings. A, Ozone, Default 
Settings. B, Ozone, Trap Wave Height = 0.2 V, Trap Wave Velocity = 8 m/s, Transfer Wave Height = 
0.4 V and Transfer Wave Velocity = 247 m/s 

 
 
Increasing the height of traveling wave reduces the chance of ions ‘rolling-over’ 

the waves and so reduces residence time in the collision cells. Based on this, a series of 

trap wave heights were applied from 0.0 V to 0.5 V (at fixed 300m/s wave velocity) to 

study the effect on ozonolysis of the sodiated ion of FAME C18:2 (10E,12Z). In Fig. 21A 

it can be seen that 0.2 V wave height produced the highest yield of the OzID products and 

the spectrum is shown in Fig. 19C, which showed a 10x increase in OzID product yield 
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compared to OzID spectrum under default settings (Fig. 19B). Additionally, when the 

wave height was < 0.2 V, ion impulses were not sufficient to allow the ions to keep up 

with the traveling wave through the SRIG, leading to significant loss of signal intensity. 

This is possibly due to the transit time being too long and ions not exiting the TriWave 

before the interscan period during which a sweep-out pulse is applied. Likewise, trap 

wave velocity could be decreased to enhance the OzID reaction (Fig. 21B). Results 

showed that trap wave velocity of 8 m/s (at fixed 0.2 V wave height) produced the 

highest relative intensity of the OzID product ions because lipid precursor ions remained 

in the trap and transfer regions together with ozone gas for 16.65 ms, which is 

significantly longer than the 946 µs of the default setting. A slight enhancement to the 

OzID efficiency was observed in the transfer region by altering the wave height to 0.4 V 

while keeping the defaulted transfer wave velocity at 247 m/s (Fig. 19C &D); however, 

unlike the trap region, overall there was no significant change in OzID efficiency when 

varying the wave height or wave velocity in the transfer region. This may be explained by 

1) the lower pressure (1.0 e-4 mbar) thus lower effective ozone concentration in the 

transfer region; and 2) ions having higher velocity (i.e. reduced residence time) in the 

transfer cell, likely as a result of the trap bias applied in TOF mode which effectively 

adds to the traveling wave velocity in the transfer region.  

Using FAME C18:2 (10E,12Z) as a conjugated C=C containing standard, the 

optimized traveling wave velocity and height in both trap and transfer regions increased 

OzID efficiency ~1000x when compared with the result obtained under the default 

settings (Fig. 19D vs Fig. 19B). Identical experiments were performed on PC 
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(16:0/18:1(9Z)) to ensure the improvement of ozonolysis also worked on lipids 

containing a single C=C (Fig. 20B). Results showed a ~600x improvement in OzID 

efficiency using optimized trap and transfer traveling wave height and velocity settings 

for a monounsaturated lipid (Fig. 20B vs Fig. 20A). The different OzID yield for 

conjugated and mono C=C is a result of their different reactivity with ozone, as it is  

known that the former has much faster reaction rate than the latter one.188  

 
 

Figure 21. Effects of Changing Traveling Wave Height and Wave Velocity on OzID Efficiency: A, 
Trap Wave Height Effect; B, Trap Wave Velocity Effect; C, Transfer Wave Height Effect; D, 
Transfer Wave Velocity Effect. Data obtained by direct infusion of FAME C18:2 (10E,12Z). 

 
 
It is of note that an ion with m/z 263.1630 appeared when FAME C18:2 (10E, 

12Z) reacted with ozone under optimized trap and transfer wave height and velocity 

settings (Fig. 19D). A radical cation of m/z 262 was reported previously from OzID of 

this compound,188 however, the accurate mass that we measured for this ion preclude its 

identity as this radical cation. The exact identify of this ion remains to be determined; it is 

likely a result of hydrogen abstraction by the radical cation from other gas molecules in  

the vacuum environment (mass measurement error ppm).  
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Figure 22. Diagrams Illustrate The Transmission of Ions Through The Trap Cell in The TriWave 
Region and The Effect to Gas Phase Ozonolysis by Changing Trap Entrance Voltage and Trap DC 
Voltage. Potential Hills are Based on Trap Wave Height at 0.2 V. Trap Entrance DC and Trap DC 
are The Voltage Applied at The Entrance, and The End of Trap Cells (before Ions entering the IMS), 
respectively. Under the default setting (A) of trap entrance (2V) and trap DC (-2V), ions can easily 
transmit through trap cell. Upon the increase of trap entrance and trap DC voltage (B), an artificial 
“ion dam” is created in the trap region to hold ions in this region to react with ozone. 
 
 
Optimization Of Trapping DC Bias And Entrance Potential To Further Improve 

OzID Efficiency 

An alternate strategy that could prolong ion transit time is to increase the trap 

entrance voltage and trap DC. The trap entrance voltage is the voltage applied to the 

differential aperture at the entrance to the trap region, immediately after precursor ion 

selection in the quadrupole section. Trap DC is the potential of the post gate transport 

region of the trap cell. In the default setting, the trap entrance voltage and trap DC are set 

at 2V and -2 V, respectively relative to the main trap SRIG, to facilitate transmission of 

accumulated ions to the IMS cell (Fig. 22). However, these settings adversely decrease 

reaction time between ozone and lipid precursor ions, reducing efficiency. Alternatively, 
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these settings can be modified to analogously create a “water dam” for the incoming ions, 

in order to increase residence time and boost the ozonolysis efficiency while maintaining 

the signal intensity of the spectrum (Fig. 22). Trap entrance and trap DC were optimized 

at 7V and 0.2V (Fig. 23), respectively, for maximum ozonolysis yield. The high trap 

entrance voltage would slow/hold the stream of ions at the entrance to the trap region, 

therefore, lengthen the reaction time of precursor ions with ozone gas exiting the trap. 

Once the number of ions built up at the trap entrance space charge effects would 

overwhelm the “dam”, precursor ions and OzID product ions would travel through trap 

and transfer cells to reach to TOF detector, while OzID was further performed during 

their transit. It is of note that these optimal ion dam settings are at the expense of reduced 

overall ion transmission and signal intensity, therefore, we used trap DC of 0.2 V instead 

of 0.4 V because higher OzID yield but significantly lower ion transmission was present 

in the latter (Fig. 23A). 

The OzID-MS spectrum of protonated PC (16:0/18:1(9Z)) generated using these 

settings had sufficiently high intensity and signal-to-noise ratios to make OzID product 

ions  the base peak in spectrum (Fig. 24A). To our knowledge, this is the first time that 

ozonolysis of a protonated monounsaturated lipid ion has been demonstrated with such 

high reaction efficiency, by simply passing the ions through the ozone gas at a slower 

rate. Compared to the spectrum acquired under the default acquisition setting (Fig. 20A), 

the aldehyde product ion (m/z 650) represents >40,000x improvement in OzID efficiency 

(A650/A760). Even considering all the ion transmission losses with ion dam settings, the 
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absolute intensity of the aldehyde ion under ion dam settings still has~300x increase to 

that of the default settings. 

In addition to the commonly observed OzID products – the aldehyde and Criegee 

ions, we observed another abundant product ion at m/z 636.4240 (Fig. 24A). This ion is 

likely to be the further oxidation product of the vinyl peroxide structure of the Criegee 

ion as illustrated previously.126 Under  the environment of high concentration ozone, the 

vinyl peroxide ion lost a formaldehyde (H2CO) to form the unique product observed , 

which has similar mass to the direct C=C cleavage product (m/z 636.4599) generated 

using a high energy collision (~10 keV) either on magnetic sector or TOF/TOF 

instruments.176 Because the default collision energy in our OzID settings was at 4 eV and 

the high mass measurement accuracy of the Synapt G2, we were able to assign the 

product ions correctly as further oxidation product of vinyl peroxide (theoretical mass  

636.4240) , not of C=C bond direct cleavage.  

 
 
Figure 23. Effects on Changing Trap Entrance and Trap DC on OzID Efficiency: A, Trap DC Effect; 
B, Trap Entrance Effect. Data Obtained by Direct Infusion of PC (16:0/18:1(9Z)). 
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Overall, the enhancement in efficiency and sensitivity of OzID on the traveling 

wave mass spectrometry system illustrates the benefit of prolonged reaction time with 

ozone, and suggests the potential for its integration with a shotgun-based high throughput 

lipidomics workflow. Application of these settings to differentiate lipid regioisomers was 

performed below.  

Difference In The Yields Of OzID Products Can Distinguish Isomeric Lipids 

It has been reported that lipid isomers can be distinguished using OzID fragment 

ions of sodiated adducts.114, 116, 121, 126, 184 To see if similar patterns can be observed using 

protonated lipid ions on this traveling wave-based  OzID-MS, we selected four 

monounsaturated lipid standards: PC (16:0/18:1(9Z)), PC (18:1(9Z)/16:0), PC 

(18:1(9E)/18:1(9E)) and PC (18:1(9Z)/18:1(9Z)), with the former two representing sn-

positional isomers and the latter two as cis-trans configurational isomers. Due to the 

solvents used, protonated ions were the most abundant ions for these lipids and the 

experiments were performed on them. 

sn-positional Isomers 

The OzID-MS spectra of the [M+H]+ ions of the two sn-positional isomers: PC 

(16:0/18:1(9Z)) and PC (18:1(9Z)/16:0) were acquired under identical ozone 

concentration and MS instrumental parameter settings (Fig 24A & 24B). The pairs of 

aldehyde (m/z 650) and Criegee product ions (m/z 666, very weak) observed in each of 

these spectra are characteristic of the expected neutral loss of 110 Da and 94 Da, resulting 

from the cleavage at double bond position n-9. Given the same OzID-MS settings, it is 

reasonable to compare the relative reactivity of these two isomers with ozone based on 
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the ratio of product ion intensity to the precursor ions. Both of the isomers showed the 

aldehyde ion as the base peak at m/z 650, whereas the precursor ion for each isomer had 

different relative intensity. For the PC (16:0/18:1(9Z)), the relative intensity of precursor 

ion (m/z 760) was ~20%, whereas the intensity of the counterpart ion was ~50% of the 

base peak for PC (18:1(9Z)/16:0) isomer. This observation suggests that ozonolysis rates 

of the C=C depends on the substitution position of the fatty acyl moiety, and that the C=C 

in the protonated ions for PC (16:0/18:1(9Z)) isomer reacts ~1.5x faster than that in the 

PC (18:1(9Z)/16:0). The same observation was made by Poad et al. when they compared  

the reaction rates using the OzID approach with the additional supplemental voltage.126  

 
 
Figure 24. OzID-MS Spectrum of (A) PC (16:0/18:1(9Z)) and (B) PC (18:1(9Z)/16:0) Obtained Under 
Optimized OzID Settings: Trap Wave Height = 0.2 V, Trap Wave Velocity = 8 m/s, Transfer Wave 
Height = 0.4 V and Transfer Wave Velocity = 247 m/s, Trap Entrance = 7 V and Trap DC = 0.2 V. 
 
 
cis/trans Configurational Isomers 

The OzID-MS spectra obtained from the reaction of ozone with the [M+H]+ ions 

of the stereoisomeric PC (18:1(9E)/18:1(9E)) and PC (18:1(9Z)/18:1(9Z)) (m/z 786.58) 

are shown in Fig. 8. The spectra were obtained under the same OzID settings as described 

in the analysis of PC (16:0/18:1(9Z)). Since the C=C position is at n-9, the expected 
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neutral losses for the aldehyde (m/z 676) and Criegee ions (m/z 692, weak) are 110 Da 

and 94 Da when there is a cleavage of only one C=C from either of the fatty acyls. 

Moreover, we observed the abundant neutral losses of 220 Da, which is dual aldehyde 

(m/z 566) from the cleavage of double bonds from both sn-1 and sn-2 acyl chains. 

Comparing the OzID-MS spectra of the two configurational isomers in Fig.25 A & B, it 

is also interesting to note that the relative abundance of the OzID aldehyde products 

resulted from the cleavage of two double bonds (m/z 566) and one double bond (m/z 676) 

differed significantly between the cis- and trans- forms. The base peak in the OzID-MS 

spectrum of the trans-isomer was at m/z 566 (Fig. 25B), whilst under the same 

conditions, the cis-isomer spectrum presented a base peak at m/z 676 (Fig. 25A). This 

clearly indicates the trans- isomer has a higher reaction rate with ozone. Similar 

observations have been reported by Poad.et al for the OzID of the sodiated adducts of 

these phosphatidylcholine stereoisomers, in which the reaction rate of trans-isomers  to 

ozone is 2.5 times that of the cis-isomers. [31] Our observation is also in agreement with 

the known stability of trans-ozonide as supported by a higher steric hindrance imposed 

by cis-alkenes when the gas phase kinetics of ozone reaction with neutral cis- and trans- 

alkenes were measured.189, 190 This is also consistent with detailed theoretical calculations 

which show that product branching in ozonolysis reactions are sensitive to the structure 

of the primary ozonide, which in turn is influenced by the double-bond geometry. 

Interestingly, we observed an abundant product ion at m/z 552.2938, which is likely to be 

an aldehyde arising from further oxidation of the Criegee ion in the form of formaldehyde 

loss under high ozone concentrations, as suggested above. In addition, the signature ion 
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(m/z 184) from the phosphocholine head group loss can be observed, its low intensity and 

the facile cleavage under CID conditions further confirms the minimal collision energy 

applied in our experiments. 

Conclusions 

 The data presented here demonstrated that high quality OzID-MS spectra of 

protonated lipid ions can be obtained routinely from a traveling wave high resolution 

mass spectrometer. The modification of traveling wave height and velocity, as well as 

trap DC bias and entrance potential in the TriWave regions provided a significant 

enhancement in the ozonolysis efficiency in comparison to the default settings. As 

demonstrated, the relative abundances of the OzID characteristic aldehyde and Criegee 

ions can differentiate sn- positional and cis/trans isomers for standard lipids. In addition, 

the higher ozone concentration used in the current implementation of OzID further 

oxidizes the Criegee ions to form new product ions as a result of the loss of one 

formaldehyde from the metastable vinyl peroxide ions. Besides the enhancement of 

ozonolysis, the high mass accuracy achieved through a high-resolution measurement in  

Synapt G2 MS enables the assignment of OzID fragments without ambiguity.   
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Figure 25. OzID-MS Spectrum of (A) PC (18:1(9Z)/18:1(9Z)) and (B) PC (18:1(9E)/18:1(9E)) 
Obtained Under Optimized OzID Settings: Trap Wave Height =0.2 V, Trap Wave Velocity = 8 m/s, 
Transfer Wave Height = 0.4 V and Transfer Wave Velocity = 247 m/s, Trap Entrance = 7 V and 
Trap DC = 0.2 V. 
 
 

While our work was under review, implementation of OzID on a similar platform 

(Synapt G2 Si) has been reported,191 which explored traveling wave velocity and height 

for prolonged reaction time between Ozone and lipid ion in the IMS region. Although the 

trap and transfer regions are shorter in dimension compared to the IMS region and higher 

vacuum (1.0 e-2 mbar in trap and 1.2 e-4 mbar in transfer with IMS off) is also present in 

these regions, by creating an ion dam to trap ions to elongate their reaction time with 

Ozone, we achieved the highest efficiency OzID reported to date without sacrificing 
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spectrum acquisition rate (total trapping time is only 16.65 ms). On the other hand, Poad 

et al. implemented OzID in the high pressure (~ 3 mbar) IMS cell, significant 

improvement in OzID efficiency has been achieved during ion transmission through this 

region (20 - 200 ms) for its practical application in LC-MS based lipid analysis. This, 

together with the manipulation of OzID reaction in the trap and transfer region detailed in 

our work, makes the Q-IMS-TOF MS a very versatile platform to implement this C=C 

specific dissociation technique for unsaturated lipid isomer analysis.  
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CHAPTER V 

SERUM ISOMERIC LIPID IDENTIFICATION FACILITATED BY LIQUID  

CHROMATOGRAPHY-OZONE INDUCED DISSOCIATION-MASS  

SPECTROMETRY 

This chapter is intended for submission to journal Rapid Communication in Mass 
Spectrometry and is presented in that style. 

 
 
Introduction 

Blood plasma and serum contain a vast array of biomolecules that are either as 

systemic response to disease or being secreted or leaked from pathological tissues into 

circulation. The dysregulation of these biomolecules reflects the disease status, as such, 

they are being suggested as biomarkers to either diagnose the onset of disease or monitor 

the therapeutic outcome.131, 155, 192, 193 As one of the major compositions of human serum, 

lipids have been proposed as biomarkers for various diseases, including cancers,194 

diabetes,33 Alzheimer’s disease,32 etc.28, 157, 195, 196 Lipids have enormous structural 

diversity, with variations in backbone, headgroup, fatty acyl composition and their 

positions on the backbone, as well as the location and stereochemistry of C=C 

unsaturation. It is known that the function of lipids depends on their structures,28 

therefore, better understanding the roles lipid biomarkers play in disease pathogenesis 

requires detailed, unambiguous elucidation of their structures.80, 156 
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 Majority of the lipids can be easily fragmented using collision-induced 

disassociation (CID) or higher energy collision-induced dissociation (HCD)- tandem 

mass spectrometry, 80, 141 which reveals the head group information and the composition 

of fatty acyls, if both positive and negative ionization modes are used in combination.120 

Although CID/HCD fragments can indicate the degree of unsaturation of the fatty acyls, 

they are not useful to determine the double bond positions. As a result, most of the 

plasma/serum lipidome profiled in the past reported only the summed composition of 

carbon number and double bonds of the fatty acyls.156, 197 

Various CID-MS/MS-based approaches were developed to determine the position 

of C=Cs in lipids, such as dissociation of Paternò–Büchi reaction or epoxide products 

resulted from photochemical or chemical derivatization of C=C.108, 109, 198, 199 Ozone-

induced dissociation mass spectrometry (OzID-MS), on the other hand, does not require 

any derivatization of lipids, and relies on gas-phase ozonolysis reaction inside mass 

analyzer to pinpoint the C=C position using characteristic Criegee and aldehyde ions.114, 

118, 119, 123 The simplicity of spectrum interpretation is a clear advantage, but the efficiency 

of the ozonolysis reaction is an issue in the earlier implementations of this technology, 

which prevented it from being integrated into high throughput lipidomics workflows.  

We have previously increased the OzID efficiency in the shotgun analysis of 

phospholipids and applied the high-efficiency OzID-MS to elucidate detailed structures 

of sphingolipids in porcine brain sample.118, 119 To leverage both the power of LC 

separation and OzID-MS in the determination of C=C unsaturation, others have coupled 

LC with OzID-MS in a few instrument configurations.123, 125, 191, 200 Here we report the 
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coupling of UPLC with OzID-MS in a high-resolution Synapt G2 mass spectrometer, the 

high-pressure ion mobility cell enabled high ozonolysis efficiency for effective coupling 

with LC separation, which facilitated clear differentiation of isomeric lipids in human 

serum.   

Materials and Methods 

Materials 

All solvents used were Optima LC/MS grade and purchased from Thermo Fisher 

Scientific. Formic acid and ammonium formate were purchased from Sigma-Aldrich. 

Oxygen gas was provided by Airgas. Synthetic lipid standards including PC 16:0/18:1, 

PC 18:1/18:1, LPC 18:0, SM d18:1/12:0, SM d18:1/18:1, and TG 22:1/22:1/22:1 were 

acquired from Avanti Polar Lipids (Alabaster, AL). Human sera were purchased frozen 

from BioIVT (Westbury, NY, USA). 

Sample Preparation 

Individual lipid standard solutions were prepared at 15 µM in 2-

propanol/acetonitrile/water (65/35/5, v/v/v) with 10 mM ammonia formate and 0.1% 

formic acid, for direct infusion ESI-MS experiments. The lipid standard mixture for LC-

MS analyses was prepared in the same solution and at the same concentration of 15 µM 

for each lipid.  

The total lipids of human serum were extracted using methanol/chloroform 

according to a modified Folch method as reported previously.63, 73 After extraction of the 

lower organic phase containing lipids, the solution was dried under a stream of nitrogen 

and finally reconstituted in 100µL of 2-propanol/acetonitrile/water (65/35/5, v/v/v) with 
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10 mM ammonium formate and 0.1% formic acid. All lipid standards and lipid extract 

were stored at -80°C until analysis. 

Reversed-Phase Liquid Chromatography 

All chromatography was performed using a Waters Acquity UPLC system 

(Waters, Milford MA, USA) coupled with a high-resolution time of flight mass 

spectrometer.  Lipid extract and standard mixtures were analyzed using a core-shell 

Accucore C30 column (1.5 x 2.1 mm, Thermo Fisher Scientific) at 40°C. A binary 

solvent system of A (ACN:water, 60:40, v/v) and B (IPA:ACN, 90:10, v/v), both 

containing 10 mM ammonium formate and 0.1% formic acid and the following gradients 

were used: 0-5 min with 30% - 43% B; 5.1-14 min, 50-70% B; 14.1-21 min, 70-99% B; 

21.1-24, 99% B; 24-24.1 mins, 99-30% B; 24.1-31 min, 30% B. The flow rate was set to 

350 µL/min and the injection volume was 5 µL. 

Mass Spectrometry 

Mass spectra were acquired using a Synapt G2-HDMS (Waters, Wilmslow, UK). 

The typical parameter settings for ionization were: source capillary voltage 2.70 kV; 

sample cone voltage 50 V; source temperature 40°C; the cone gas flow rate 50 L/h. 

Precursor ions were mass selected in the quadrupole, passed through the trap region to 

enter and react with ozone gas in the IMS cell, then transmitted through the transfer 

region with or without collisional dissociation before reaching the TOF detector. MS 

 spectra were acquired at a rate of 1Hz.  



 

 

 

80 

 
 

Figure 26. Schematic of Traveling Wave Q-TOF HDMS Synapt G2 MS Modified to Allow OzID to 
Replace Nitrogen Gas in IMS Cell. Red region in the IMS cell indicated the He cell with He gas 
remained as default setting. 
 
 

The nitrogen gas inlet of the mass spectrometer was connected to a stainless-steel 

T union to accept both nitrogen and ozone with each line having its own shutoff valve. 

This inlet supplies drift gas to the IMS cell as configured in Fig. 26. The gas flow was 

maintained at 62 mL/min, which resulted in pressue in the IMS region as 2.13 mbar. The 

effective ozone concentration during OzID was at 6.1%. The transmission time for ions 

in the IMS cell was controlled by varying the amplitude and velocity of the traveling 

wave.  

Results  

OzID-MS studies in the Synapt G2 and G2-Si HDMS mass spectrometer can be 

implemented in either trap/transfer or IMS regions of the instrument.118, 119, 191 The 

significant difference between the trap/transfer cell versus the IMS cell is the gas 

pressure. At the default settings, the pressure at trap/transfer region is 0.018 mbar and 
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IMS region 3 mbar,  ~200 fold higher in the latter as required for ion-mobility separation 

applications.185 Noted the helium cell is designed to maintain the ion transmission while 

limiting the fragmentation and ion losses when ions transmitted into the high-pressure 

IMS cell. Helium pressure was set as default throughout this study and maintained at 

1000 mbar.  

 In this study, we implemented the OzID-MS in the IMS cell, and coupled it to the 

front end LC separation for analysis of blood serum lipids. Parameters for OzID-MS were 

first optimized using lipid standard PC 16:0/18:1 in direct infusion and mixture of lipid 

standards in LC separation conditions. Then, we focused on using LC-OzID-MS to 

elucidate C=C positions to differentiate isomeric lipids in human serum, where LPC, PC, 

SM, and TG lipid classes are dominant with isomeric species and it can be challenging to  

distinguish if using traditional LC-CID-MS/MS alone.   

 
 

Figure 27. Analysis of PC 16:0/18:1(n-9) in A) OzID-MS of IMS cell Under The Default Setting  and 
B) Under The Optimization Setting with Ozone as The Mobility Gas (setting listed in the method).  

m /z
600 650 700 750 800 850

%

0

100

m /z
600 650 700 750 800 850

%

0

100 760 .6078

760 .6078

650 .4466
636 .4290

666 .4417 808 .5920

A

B



 

 

 

82 

To optimize the conditions for OzID, a solution of synthetic standard PC 

16:0/18:1 was directly infused into the ESI source operating in positive ion mode. The 

precursor ion, observed at m/z 760.58 as the [M+H]+, was subsequently mass selected for 

gas phase ozonolysis under the default settings. As previously reported, lowering 

traveling wave amplitude and velocity in the reaction region can increase the efficiency 

of OzID by prolonging the ozonolysis time.119, 191 Therefore, these two parameters were 

lowered to 21.6 V and 8 m/s, respectively. Under these settings, we calculated the 

targeted ions interacted with O3 in the IMS for approximately 33 ms instead of ~386 µs 

as under the default settings. However, a drop in signal intensity was encountered as a 

result of ion scattering when operating at these low settings.185, 186, 201 Thus, further 

optimization was done on the pressure of the IMS cell, by varying the flow rate of helium 

and IMS gas.  These optimized settings offered a high-quality OzID-MS mass spectra of 

PC 16:0/18:1. As shown in Figure 27B, m/z 650 is the aldehyde ion resulted from 

ozonolysis because of the neutral loss of 110 Da from the precursor ion; m/z at 636 is 

differed by 30 Da from the Criegee product (m/z 666), suggesting it to be the further 

oxidation product of vinyl peroxide of Criegee ion as observed previously.119, 202 These 

two product ions at m/z 650 and 636 can be observed clearly in the spectrum without 

zooming; at 26%, the relative intensity is especially high for the m/z 650 ion. This result 

indicates a higher OzID-MS efficiency was achieved than previous experiments 

conducted in the same region.191   
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LC-OzID-MS of Lipid Standards Mixture 

The design of the instrument to have two collision cells in the front and back of 

the IMS, can offer CID capability without interfering the ozonolysis reaction. Hence, we 

can explore CID (Transfer cell) and OzID (IMS cell) either individually or in 

combination for the same precursor ion .  

A mixture of lipid standards was analyzed using LC-OzID-CID-MS to determine 

the double bond positions of lipids and to validate the OzID settings optimized in the 

direct infusion experiments. The mixture contains PC 16:0/18:1, PC 18:1/18:1, LPC 18:0, 

SM d18:1/12:0, SM d18:1/18:1 and TG 22:1/22:1/22:1, which were separated on a 

reversed phase Accucore C30 column. Based on the choice of salts, the abundant adducts 

for PC was [M+H]+, and for TG was [M+NH4]+.  

The targeted analyte was mass selected by the quadrupole and transmitted through 

the trap cell for ion activation in IMS cell, where the gas phase ozonolysis took place. 

After the formed ozonide fragmented into the unique OzID product ions, both unreacted 

precursor ions and product ions left the IMS cell to enter the transfer cell, which was set 

to 16 eV to produce the lipid class-characteristic CID products. This unique set up allows 

us to generate both OzID and CID ions in a single spectrum. While OzID can determine 

the C=C double bond location based on the neutral loss from the methyl end of the fatty 

acyl, the CID products can assist in annotating lipid classes based on their unique head 

group-specific ions.  



 

 

 

84 

The total ion chromatogram (TIC) constructed from the abundance of all ions 

detected in the OzID scans of targeted masses of lipid standards were presented in Fig. 

28A. Integration of OzID scans obtained across each of the chromatographic peaks gave 

the OzID mass spectra, and XIC of unique OzID products from different spectra was 

showed in Figure 28B. As seen, XIC at a particular m/z of OzID product ions aligned 

perfectly with the TIC of the precursor ions.   

Fig. 28C showed clear evidence that OzID is only selective to the unsaturated 

lipids, as no OzID products were observed since LPC 18:0 doesn’t contain any C=C for 

ozonolysis reaction. Fig. 28D showed the OzID-MS spectra of SM d18:1/12:0 without 

any evidence of product ion resulted from cleavage of C=C at n-14 on the long chain 

base. Fig. 3E showed the OzID-CID-MS spectrum of SM d18:1/18:1; m/z at 184 is the 

fragment of choline generated by CID. OzID-MS product was observed clearly at m/z 

619, which corresponds to the NL of 110 of n-9 position on the fatty acyl chain 18:1. The 

poor efficiencies of OzID in the unsaturated long chain base observed in SM standards 

agree with what we reported previously.112, 118  
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Figure 28. XIC of The Targeted Lipid Standards at The Known m/z. (A), and The XIC of OzID 
Products for The Unsaturated Lipid Standards (B). Integration of OzID Scans Obtained Across Each 
of The Chromatographic Peaks gave The OzID Mass Spectra Showed in here. OzID-MS of the 
following standards: C) LPC 18:1, D) SM d18:1/12:0, E) SM d18:1/18:1, F) PC 16:0/18:1, G) PC 
18:1/18:1. 

 
 
Fig. 28F and 28G showed the OzID of PC 16:0/18:1 and PC 18:1/18:1, 

respectively. M/z 184.04 was observed in both spectra, which is the diagnostic ions of 

choline head group for PC/SM class under the CID condition. It is of note that the 
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relative intensity of this ion (m/z 184) is lower in PC class than the ones from SM (Fig. 

28D and 28E), which differentiates the two lipid classes. Distinguished OzID product 

ions were observed in the respective spectrum at m/z 650 and m/z 676. Both product ions 

confirmed C=C at n-9 for both PC standards because of the 110 Da neutral loss from their 

respective precursor ions. In Fig. 28G, ion at m/z 566 showed a NL of 110 and 220 from 

m/z 676 and precursor ion at m/z 786, respectively. This ion reflects the OzID cleavage of 

two double bonds at the same location (n-9 ) of different fatty acyl chain. Also of note 

that a similar pattern and identical OzID product ions were generated using this LC-

OzID-MS approach when compared with the data acquired previously using direct 

infusion and OzID implemented in the trap cell.119  

LC-OzID-CID-MS Of Isomeric Lipids In Human Serum: OzID-MS Provides 

Informative Compositions Of Fatty Acyls In Serum Phosphatidylcholine 

PC is one of the major lipid classes in human serum, and many isomers exist that 

are structurally very similar and challenging to differentiate.38, 156 Taking advantage of 

the reactivity of PC lipids with ozone, we explored using RPLC-OzID-MS to confidently 

identify conformational isomers and double bond positional isomers of PC in human 

serum. OzID-MS confidently characterized the position and degree of unsaturation in  

fatty acyl chains of the interested lipids.  
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Figure 29. A) XIC of m/z at 784 was extracted (solid black line), and XIC of OzID Products at m/z 
674, 676 and m/z 636 (color coded lines), Represented for Parent Ion PC (18:1_18:2) and PC 
(16:0_20:3), respectively at 12.00 min and 12.27 min; B) OzID-MS spectra of PC (18:1_18:2) Showed 
The Result of Two Possible Double Bond Positions on a Fatty Acyl Contains a Mono-unsaturated DB 
at n-6 and n-9 at m/z 716 and m/z 674, while a pair of ions at m/z 676 and 716 indicated a 
polyunsaturared double bonds at n-6 and 9 on the other acyl; C) OzID-MS spectra of 
PC(16:0_20:3(n-6,9,12)). 
 
 

For instance, PC 36:3 can be composed of two isomers: PC 18:1_18: 2 and PC 

16:0_20:3, with the fatty acyl composition identified from LC-CID-MS/MS under 

negative ionization mode. When the corresponding [M+H]+ ion (m/z 784.59) was 

selected in LC-OzID-MS analysis under positive ionization mode, as shown in Fig. 29A, 

two closely eluting chromatographic peaks appeared (black line). The OzID-MS spectra 

for the peak at 12.00 min showed major products at m/z 674 and 716, corresponding to 

NL of 110 and 68 Da from the precursor ion, indicating mono-unsaturated double bond at 
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n-9 and n-6 position in fatty acyls (Fig. 29B, solid squares). Interestingly, we also 

observed ion at m/z 676, which cannot be the [M+2]+ isotopic peak of m/z 674 since it 

did not follow the isotopic distribution pattern. The appearance of m/z 676 and its 

corresponding neutral loss of 108 from precursor ion indicate that di-unsaturated C=Cs 

exist in the lipid species and one of the C=C is at n-9 position.121 Based on these two 

lines of evidence, we assigned this isomer to be PC (18:1_18:2) with the C=C in FA 18:1 

at n-9 and C=C in FA 18:2 as n-6 and n-9, respectively. OzID-MS spectrum of the later 

eluting isomer is shown in Fig. 29C, which is significantly different from the patterns 

observed in Fig. 29B. Three OzID products were observed at m/z 716, 676, 636 

correspondings to neutral losses of 68, 108, 148 from the m/z 784 precursor ion. These 

neutral losses correspond to C=Cs at n-6, n-9 and n-12 in poly-unsaturated fatty acyl, 

therefore the 2nd chromatographic peak was assigned as PC 16:0_20:3.  

OzID-CID-MS Resolves The Double Bond Position Isomers Of PC In Serum Lipid 

Extract 

RPLC has been known to resolve different PC isomers, especially for sn-

positional isomers when the length of the two fatty acyls varies to a large degree.72 

However, resolving double bond positional isomers remains as the major challenge in 

lipidomic analysis, which can result in unambiguous structure assignment for lipids 

derived from complex biological extracts. The data presented above primarily showcased 

using OzID-MS to determine the degree of unsaturation and the location of C=C in fatty 

acyls of lipids, here we show that for certain C=C positional isomers, OzID-MS can help 
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to differentiate them. Moreover, the highly OzID efficiency setting resolved the co-

elution of these peaks, giving us an additional orthogonal separation.  

An example is Fig. 30 , which is LC-OzID-MS analysis of precursor ion m/z 

788.6209 from human serum lipid extracts (Fig. 30). Under the high OzID efficiency we 

obtained, each scan can provide a high level of confidence for structural elucidation of 

double bond positional isomers. Two product ions, m/z 678 and 706 dominated in two 

subsequent scans, which is the neutral loss of 110 and 82 Da from the precursor ion, 

respectively. Hence, based on the accurate mass of the precursor and the OzID product 

ions, we confidently assigned these two spectra to be double bond position isomers of PC 

18:0_18:1 at n-9 and n-7, respectively (Fig. 30B and 30C). Moreover, in Fig. 30B one 

can see the appearance of both OzID product ions at m/z 678 and 706 because XIC of 

these two product ions shown PC 18:0_18:1(n-9) cannot be fully resolved from PC 

18:0_18:1(n-7). RPLC-MS chromatogram clearly showed the coelution of these two 

isomers. Without OzID, it is impossible to acknowledge the presence of these two  

isomers. 
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Figure 30. LC-OzID-MS of PC 18:0_18:1. A) XIC of the parent ion at m/z 788 (solid black line); XIC 
of OzID product ions m/z 678  and m/z 706 (color coded);  mass spectra of B) PC(18:0_18:1) 
indicated a mono- double bond at n-7; mass spectra of C) PC 18:0_18:1 indicated a mono-double 
bond at n-9, coeluted with its double bond positional isomer at n-7. 
 
 
OzID-CID-MS Resolves The Double Bond Position Isomers Of LPC In Serum Lipid 

Extract 

LPC presents another interesting case to determine the double bond positional 

isomers. Shown in Fig. 31A is LC-OzID-MS analysis of m/z 522.3642, corresponding to 

LPC 18:1. Fig. 31B and 31C were acquired at 3.11 min and 3.15 min, respectively. OzID 

product ions were observed at m/z 440 and 412, corresponding to neutral losses of 82 and 

110 Da, expected for a monounsaturated double bond at n-9 or n-7, respectively. Taken 

the data together, they suggested two double bond positional isomers of LPC 18:1  

presented in the human serum sample, namely LPC 18:1(n-7) and LPC 18:1(n-9).   
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Figure 31. LC-OzID-MS of LPC 18:1. A) is the XIC of m/z 522 (black solid line), of m/z 440 (green 
line), of m/z 412 (blue line); B) OzID mass spectra of LPC 18:1 revealed the double bond at n-7; 
OzID mass spectra of LPC 18:1 revealed the double bond at n-9. 
 
 
Discussion 

LC-OzID-MS has been implemented on QTrap and Synapt G2 Si mass 

spectrometers, 115, 191 in particular in the latter case, high duty cycle that is compatible 

with high-resolution LC separation was achieved. The results presented here confirmed 

the practicality of implementing LC-OzID-MS on an IMS cell-equipped mass 

spectrometer for high OzID efficiency, in addition to the benefit of performing OzID and 

CID concurrently for more informed structural elucidation of lipids due to the unique 

configuration of Synapt G2 system. With this, as illustrated in this work, isomeric species 

in a complex matrix of serum lipid extract, previously masked or unidentified by LC-

CID-MS/MS based approaches, now can be differentiated and structurally identified with 

more certainty.  
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Unlike the work of Blanksby and co-workers that primarily used sodiated adducts 

for OzID-MS, our focus for LC-OzID-MS-based lipidomics is on the protonated and 

ammonium adducts, for which we have already developed high throughout workflows for 

comprehensive profiling of the lipidome in complex biological samples.63, 73  Despite the 

generally lower efficiency of OzID product ions from protonated/ammonium adducts,114 

we achieved higher OzID reaction efficiency, which is compareable to OzID data of 

metal ion lipids, as demonstrated by presence of abundant OzID product ions without 

spectrum magnification. This result greatly facilitated data interpretation for biomedical 

applications of OzID-MS.  

 Differential reactivity of C=C with ozone were observed in the long chain base 

and in the fatty acyl when analyzing SM, with the latter one having much higher yield, 

while the former one almost no reactivity. This observation is similar to what we have 

reported previously on OzID-MS of glycosphingolipids, where the ozone reactivity with 

C=C of fatty acyl is eight times higher than that of long chain base.118 The differential 

reactivity likely can be explained by charged-induced fragmentation mechanism, where 

the gas phase conformation of protonated SM induces hydrogen bonding to their allylic 

alcohol, this results into limited interaction between C=C of the long chain base, ozone 

and the charge.112, 118  

Taken together, by utilizing the high pressure IMS cell in Synapt G2 as the 

reaction chamber for ozonolysis and the unique capability of concurrent OzID and CID, 

LC-OzID-CID-MS implemented here has largely overcome the deficiencies of LC and 

LC-CID-MS/MS in resolving C=C positional isomers in human serum lipids. Together 
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with the work reported by others, application of OzID-MS to high throughput LC-MS 

based lipidomics has become a reality, and more detailed structural characterization of 

the lipidome will establish unequivocally the lipid structure and biological function and 

uncover new biology at the system level. 
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CHAPTER VI 

IDENTIFICATION OF SERUM LIPID MARKERS TO TYPE 1 DIABETES 

PROGRESSION 

Introduction 

 Type 1 diabetes  (T1D)  is a chronic childhood autoimmune disease. T1D is 

characterized as insulin deficiency due to the selective death of pancreatic b-cells. 

Although both genetic and environmental factors have been considered as the possible 

pathogenic mechanisms of the disease, their exact etiology remains unknown.15, 203-205 

The currently detectable signal indicating the initiation of autoimmune attack in T1D is 

the appearance of autoantibodies. However, it might be too late for therapeutic 

intervention when seroconversion of islet autoimmunity is detectable. Hence, biomarkers 

that reflect and predate the disease progression, while provide an insight into the 

underlying causes of disease are of great need.15, 18, 19  

 Lipids have recently emerged as promising markers for T1D.22, 23, 25-27, 206, 207. As 

the main component of the cell membrane, lipids are typically secreted into the 

bloodstream carrying information of tissue or cell health. Multiple evidences suggest a 

disturbance of lipid profile in T1D patients, and lipids can even indicate the appearance 

of islet autoantibodies.23, 26 For example, phosphatidylcholines  (PC)  are down-regulated 

at birth, and triacylglycerol  (TG)  and ether phospholipids are also decreased with the 

progression of T1D.27 A recent study also showed increasing level of proinflammatory 
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lysophosphatidylcholine  (LPC)  several months prior to the seroconversion of 

autoantibody positivity.207 Another report found that higher concentrations of odd-chain 

TG and polyunsaturated glycerophospholipids are in those who developed T1D and were 

positive to autoantibody tests.24 Therefore, profiling lipids at different T1D stages could 

uncover lipid markers indicating the natural progression of the disease, and changes of 

some of these markers may even predate the process of seroconversion to islet 

autoimmunity.  

The main biofluid sample used for T1D studies is human blood plasma and 

serum. Different lipidomic analysis strategies were introduced to discover and 

characterize lipid markers of T1D.25, 26, 75, 208 These studies have not only expanded our 

knowledge of the dysregulated lipidome of T1D, but also provided insightful information 

that can help understanding the underlying pathology, diagnose the disease at the earlier 

stage and, potentially predict the progression of this disease. However, limitations in 

technologies used to measure the lipidome led to an ambiguous structure characterization 

of lipid markers. 

 Most of the T1D studies were focusing on cross-sectional characterization of 

serum/plasma lipidome after T1D is diagnosed. These blood-derived samples were often 

collected at a single time and reflected late stage of the disease after the development of 

hyperglycemia. Recently, a lipidomic study containing a series of samples collected 

chronologically between ages 0 to 3, reported some distinct lipid profile observed at the 

very young age of T1D patients.25 Despite the importance of this result, the sampling 

time points were inconsistent which may not truly capture the progressive nature of T1D.  
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 To identify the biomarkers for T1D progression, samples that contains the 

temporal changes of lipids during the different developmental stages of T1D is required. 

In this respect, the longitudinally collected serum samples were carefully selected from a 

well-characterized T1D cohort - Diabetes Autoimmunity Study in the Young 

(DAISY).142, 209 Moreover, a comprehensive lipidomic workflow, and advanced software 

such as Progenesis QI were used to analyze, process, and identify human serum lipids in 

T1D samples.63 As a result, we accurately profiled the temporal changes of lipidome 

during the natural progression of T1D, and further investigated the significant differences 

between T1D and healthy controls at a young age, and identified a panel of potential lipid 

markers predicting the development of islet autoimmunity after the age of three. 

Experimental Section 

Sample And Study Design 

 Participants were selected from the Diabetes Autoimmunity Study in the Young  

DAISY  cohort, with T1D susceptible HLC-DR/DQ alleles through genotyping at birth 

and followed prospectively. Informed consent was obtained from the parents of each 

study subject. The Colorado Multiple Institutional Review Board and the University of  

North Carolina at Greensboro approved all study protocols, respectively. 

Islet autoantibodies  GAA, BDC512, MIAA, and ZnT8  were measured at the 

Barbara David Center in Denver. In total, 292 serum samples of 75 subjects from three 

groups: Healthy control, T1D and AB group. T1D group contains children who 

developed islet autoantibodies and progressed to T1D; AB group are children who 

developed islet autoimmunity but have not yet progressed to T1D. Healthy controls are 
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children who have not developed islet autoantibodies or T1D and are frequency matched 

on age to the combined case groups. Venous non-fasting blood samples were collected at 

each study visit and plasma and separated and stored at -80˚. Three to four longitudinal 

samples were collected from 1995 to 2011. Frozen serum samples were transferred to our 

lab for sample processing and measurement. At the end, 90, 106 and 104 samples from 

T1D, AB and Healthy control group, respectively, were processed according to the  

experimental workflow Fig. 32 .  

 
 
Figure 32. The Overal Work Flow of The AMT Approach. Samples from the DAISY Cohort was 
Pooled together to Create a Comprehensive Human Serum Lipidome Library using the Offline  2D-
LC-MS/MS Aproach. Subsequently, a high throughput analysis of individual samples was done using 
the identical RPLC-MS/MS conditions used to generate the human serum AMT library. Raw data 
was processed by matching features with the AMT library before further statistical analysis. 
 
 
Analysis Of Molecular Lipids 

 All reagents and chemicals used in this study were purchased from Sigma Aldrich  

St. Louism, MO , and lipid standards were purchased from Avanti polar lipids. A total of 

292 serum samples were randomized and extracted using a Folch’s procedure that 
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previously published.63, 73 All the samples were prepared in the same batch by the same 

researcher to minimize the variations in sample preparation. For each sample, 25 µL of 

serum sample were performed Folch’s method using 125 µL methanol/chloroform 

(1:2,v/v), 190 uL of organic layer were collected, dried under nitrogen gas and 

reconstituted in 50 uL of IPA/ACN/H2O ( 60/35/5; v/v/v) for the subsequent high 

throughput analysis using RPLC-MS/MS. 

Quantitative LC-MS/MS Analysis 

 The samples were analyzed using an ultrahigh performance liquid 

chromatography coupled with a hybrid Q-orbitrap high resolution mass spectrometer 

(UHPLC-QEHF). The separation was performed using an Accucore C30 column 

(ThermoFisher Scientific). The column oven temperature was 40˚C and the gradient was 

delivered at a flow rate of 350 µL/min with mobile A  (ACN:H2O)  and B (IPA:ACN), 

respectively, both containing 10 mM NH3HCO3 and 0.1% HCOOH. The sample tray set 

at 15˚C with the injection volume of 5 µL.63 

 The following parameters were used in electrospray ionization: the spray voltage, 

the capillary temperature and the heater temperature were at 3 kV, 350 °C and 400 °C, 

respectively, for both ionization modes; the S-Lens RF level was set at 50. The Orbitrap 

mass analyzer was operated at a resolving power of 120,000 in full-scan mode  scan 

range: 114 – 1700 m/z; automatic gain control target: 1e6  and of 30,000 in the Top20 

data-dependent MS2 mode  HCD fragmentation with stepped normalized collision 

energy: 25 and 30 in positive ion mode, and 20, 24 and 28 in negative ion mode; 
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maximum ion injection time: 100 ms; isolation window: 1 m/z; automatic gain control 

target: 1e5 with dynamic exclusion setting of 15 s. 

Database Search For Identification 

 All raw files obtained from LC-MS/MS analysis were analyzed using Progenesis 

QI ver 2.3 separately in positive and negative ion mode, search against in-house curated 

human serum lipids database. The parameter for peak detection was 400<m/z<1200, 

RPLC retention time between 1-25 min, peak sensitivity was set at 0.04% base peak. 

Peak alignment was set at default for all the files in each mode. Progenesis QI detected 

the features in the chromatogram, assigned the identification and extracted the peak area 

for each feature. Raw data was exported in excel format for subsequent statistical 

analysis. 

Statistical Analysis 

 Data normalization was done using Perseus software ver 1.6.2.2  

https://maxquant.org/perseus/  and Metaboanalyst. Raw data was imported in the 

software without any missing value, then log2 transformation, and mean centering 

normalization. An ANOVA test with FDR <0.05 was adapted from significant analysis. 

Volano’s plot and Hierarchical clustering was done to observe and obtain the changes 

within and from three groups. Linear mixed model, t-test and ANOVA were done using 

SAS ver 9.4 (SAS Institute, Cary, NC, USA). Separation model of PLS-DA and OPLS-

DA was done using SIMCA ver 16 (Umetrics, Umea, Sweden). 
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Results  

Comprehensive Coverage Of Human Serum Lipidome  

Human serum from 75 subjects belonging to three groups  T1D, AB and controls  

were used in this study, with relatively matching of race, gender and age. Our 

identification approach is based on the accurate mass and time (AMT) tag approach, 

which relies on the uniqueness of the measured molecular mass and LC elution time for a 

specific molecule in the context of a particular biological system. A schematic 

representation of experimental design and workflow is indicated in Fig.32. The strategy 

implicitly makes use of the fact that many possible species are masked from being 

identified in 1D-LC system because of undersampling issue in data dependent MS/MS 

scans, but they can be identified in high confidence when sample matrix is greatly 

simplified, such as using an offline LC to fractionate samples. Therefore, a species 

previously identified using the off-line 2D-LC-MS/MS approach will most likely be the 

same species observed at the same m/z and retention time in the 2nd dimensional LC-

MS/MS.  

Previously, pooled samples of these subjects were used to establish a 

comprehensive human serum lipid library containing the structural information, as well 

as the accurate mass and the reliable retention time. This informative serum lipid library 

served as the database for the feature identification purpose of this study. Moreover, 

utilizing the fragmentation pattern of lipid standards analyzed in the identical platform, 

the in-silico fragmentation of serum lipids was generated to assist in the high confident 

identification of DAISY samples. This strategy takes advantage of the accurate mass 
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measurements from high resolution MS, the reproducible retention time information 

obtained from high efficiency Accucore C30 column, and MS/MS level confirmation of 

lipids to provide extensive coverage and confidence in identification of lipid molecular 

species from serum. In total, 327 and 229 lipid species were commonly identified in 

positive and negative ion mode, respectively, with high confidence in every sample of 

this study, which belong to the following lipid classes: CE, DG, LPC, PC, PE, TG, Cer, 

SM and plasmanyl and plasmenyl lipids. The structures of these lipids were determined at 

the level of head groups, compositions and positions of fatty acyl chains. In comparison, 

a vast majority of earlier T1D studies using LC-MS based lipidomics only acquired the 

data in positive ion mode, which limit the level of identification to lipid class and total  

number of carbon and double bond for most of the glycerol phospholipids.  

 
 
Figure 33. Hierarchical Clustering Plots Showing Age Dependence of Serum Lipidome, using Lipids 
Identified from Healthy Control Samples in Positive Ionization Mode.  A , plotted in two year-
intervals of age. Group 1: 0-2 years, group 2: 2-4 years, group 3: 4-6 years, group 4, 6-8 years, group 
5, 8-10 years, group 6, 10-14 years, group 7, >14 years.  B , plotted in sampling time points. 

A B 
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Influences Of Age On The Human Serum Lipidome 

 We analyzed serum lipids prospectively in three groups of samples:  T1D, AB and 

Healthy Controls. Statistical modeling was applied to study the temporal changes of 

lipids in healthy children. Overall, more than 60% of healthy control serum lipids 

identified in this study had age-dependent expression trends (Fig. 32A). As shown in 

Fig.32, one could observe the changes that occurred after the subject reaching two years 

old. Whilst lipids in TG class showed downregulation following the maturity of the 

subjects, lipid species belonging to PC and SM classes showed upregulation. We 

observed a decreasing level of plasmalogen lipids after the first time point, and a 

dysregulated profile of PE. In addition, we performed heatmap analysis of the lipidomic 

changes according to the sampling time points, as matched to the time points of the T1D 

group (Fig. 32B),  and similar lipid profile changes were observed with respect to age.  

Identical tests were done on the data collected from the negative ionization mode and 

similar trends of changes in lipid classes were observed (Fig. 33).  This result highlighted 

the major challenge in a longitudinal study, i.e. whether the temporal changes observed 

for lipids truly reflect the underlying pathological conditions or are associated with age 

during a child’s development. Hence, the data were statistically analyzed while taking 

age into consideration as detailed below. 
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Figure 34. Hierarchical Clustering Plots Showing Age Dependence of Serum Lipidome, using Lipids 
Identified from Healthy Control Samples in Negative Ionization Mode.  A , plotted in two year-
intervals of age. Group 1: 0-2 years, group 2: 2-4 years, group 3: 4-6 years, group 4, 6-8 years, group 
5, 8-10 years, group 6, 10-14 years, group 7, >14 years.  B , plotted in sampling time points. 
 
 
Distinct T1D Lipdome At A Young Age  

 We compared the serum lipidome of T1D, AB, and Healthy Controls at the first 

time point, which were acquired at the earliest time point possible for the individual 

subject considering the constraints of clinical enrollment. A volcano plot using t-test and 

FDR < 0.05 revealed a list of lipids with significant changes within four fold (Fig.34)  In 

agreement with the literature, we observed a lower level of TG, but a higher level of SM 

and PC species in the T1D group.24, 27 Similar comparison were also made between the 

two groups of samples at the other time points (2, 3 and 4); however, we didn’t observe 
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any significant changes in these time points between the two groups. When we compared 

the two groups of samples belongs to AB and healthy control at different time points, 

significant changes were observed at time point 2. In contrast with observation in T1D 

when compared with healthy controls, AB groups has a higher level of TG and lower 

level of PC and SM (Fig. 35) . This is an interesting observation for AB group because a 

series of sample at time point 2 was collected a few months to a year prior to the 

appearance of the first autoantibody. Overall, the most significant changes were obtained  

in the time point one, which is promising to identify biomarkers for early diagnosis.  

 
 
Figure 35. Volcano Plot Revealed a Significant Different Level of Lipids when comparing T1D with 
Control at the 1st Time Point. Each dot is one lipid species. Horizontal axis is the differences in term 
of lipid levels, and vertical axis is the p-value. Most of the TG have a lower abundance in T1D and 
can be seen on the upper left side of the plot. The PC and SM are observed on the upper right side. 
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Figure 36. Volcano Plot Revealed a Significant Different Level of Lipids when comparing AB with 
Control at Time Point 2. Each dot is one lipid species. Horizontal axis is the differences in term of 
lipid levels, and vertical axis is the p-value. Most of the TG have a lower abundance in healthy 
control, and can be seen on the upper right side of the plot.  The PC and SM are higher abundance in 
AB, and observed on the upper left side of the plot. 
 
 

Although the total separation between three groups from  <3 years of age wasn’t 

achieved, PLS-DA plot shows the separation between T1D versus non-T1D  (AB and 

healthy controls) (Fig. 36) . Based on the VIP score and the p-FDR value, we identified a 

panel of lipids in both positive and negative ion mode which distinguish T1D from the 

other two groups  (Table 2). The average concentrations of these species were plotted in 

Fig. 37, which clearly showed these significantly changed lipids have a higher 

concentration in T1D compared to the other two groups in positive and negative mode, 

respectively, with healthy control samples having the lowest level of potential lipid 

markers listed in Table 2.  

 

 



 

 

 

106 

Table 2. A Panel of Lipids with Significant Differences in T1D Group as Compared to the AB and 
Healthy Control Groups. Data in both negative and positive modes were used in the analysis. 
Significant changes were designated as adjusted p-FDR <0.05 and VIP >1.3. 
 

Mode Accepted_Compound_ID pfdr_p VIP from 
PLSDA 

negative PC O-18:0/20:3 0.012 1.93 
negative PE 18:0p/20:3 0.012 2.17 
negative SM d43:1 0.012 1.88 
negative LPC 0:0/17:1 0.023 1.58 
negative LPC 15:0/0:0 0.023 1.84 
negative PC 16:0/22:4 0.023 1.56 
negative PE 18:0p/22:5 0.023 1.65 
negative PI 22:5/18:0 0.023 1.39 
negative SM d35:1 0.023 1.41 
negative PC 15:0/18:1 0.024 1.37 
negative PC 16:0/17:1 0.025 1.37 
negative LPC 17:0/0:0 0.025 1.64 
negative PC 15:0/16:1 0.025 1.31 
negative PC 15:0/18:2 0.025 1.35 
negative PC 18:0/20:3 0.025 1.31 
negative PC O-18:0/22:4 0.025 1.67 
negative PI 22:4/18:0 0.025 1.34 
negative SM d33:2 0.025 1.32 
negative SM d37:2 0.025 1.33 
negative SM d41:3 0.025 1.46 
negative SM d43:2 0.025 1.37 
negative PE P-20:0/20:3 0.025 1.99 
negative SM d43:3 0.025 1.32 
negative SM d43:2 0.038 1.94 
negative LPE 18:1 0.046 1.46 
positive PC 17:0_20:3 0.012 1.80 
positive PC 15:0/20:3 0.012 1.70 
positive PC P-18:1/22:4 0.015 1.68 
positive PC 16:0/22:4 0.023 1.61 
positive PC 17:0/22:5 0.023 1.40 
positive PC P-20:0/18:2 0.023 1.51 
positive PE 18:0_18:1 0.023 2.47 
positive PE P-18:0/20:3 0.023 1.81 
positive SM d45:5 0.023 1.42 



 

 

 

107 

positive PC 17:0/20:5 0.023 1.40 
positive PC 18:0/20:3 0.024 1.46 
positive SM d35:2 0.024 1.37 
positive LPC 15:0/0:0 0.025 1.67 
positive LPC 17:0/0:0 0.025 1.53 
positive LPE 18:1 0.025 1.82 
positive PC 15:0/18:1 0.025 1.35 
positive PC 15:0/18:2 0.025 1.34 
positive PC 15:0/20:4 0.025 1.32 
positive PC 17:0/18:1 0.025 1.32 
positive PC 18:0/22:4 0.025 1.37 
positive PC 20:4_17:0 0.025 1.32 
positive PC O-16:0/20:3 0.025 1.67 
positive SM d37:2 0.025 1.31 
positive TG 12:0_14:0_14:0 0.025 1.37 
positive TG 18:1_12:0_12:0 0.025 1.44 
positive PC 18:0/22:5 0.025 1.35 
positive TG 18:1/12:0/14:0 0.028 1.45 
positive TG 16:0/12:0/18:1 0.028 1.34 
positive LPC 0:0/16:1 0.045 1.32 
positive TG 18:2/15:0/20:5 0.049 1.53 

 
 

 
 
Figure 37. PLS-DA Plot showing Separation between T1D  (red)  and non-T1D groups at <3 years 
age, The Latter contains both AB and Healthy Controls  (blue) .  
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Temporal Expression Patterns Of Serum Lipids In T1D, AB, And Healthy Controls 

 When comparing the temporal changes within each group, we recognized some 

patterns.The linear mixed model was used to observe the temporal change of each subject 

over time, with p-FDR<0.1, we identified 11 lipids with significant temporal changes in 

all groups. Comparing to the AB and Healthy controls, potential biomarkers in T1D 

group listed in Table 4 showed distinguished profile at the earliest time point. In the 

example in Fig.38, PI 22:5/18:6 and PC 18:0/20:3 were examined over 20 years of study. 

Both lipids indicated a higher level at the young age in T1D samples, and a gradual 

decrease chronologically. Both AB and healthy control groups showed an alternate  

profile observed during the development of these subjects.  

 
 
Figure 38. The Average Lipid Level of Potential Markers listed in Table 2. Heatmap revealed a 
significant higher level of lipids in T1D group observed in A) positive mode and B) negative ion 
mode. 
 

A B 
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Table 3. List of Candidate Lipids with a Temporal Change Across all the Subjects and Samples. 
Linear Mixed Model used The Adjust p-FDR <0.1 to identify lipids with significant changes. The 
level and trend of lipid in T1D were compared to Healthy Controls and AB. 
 

Mode Accepted_Compound_ID pfdr_p Starting 
Level in T1D 

Trend in T1D 

negative Cer d18:2/20:0 0.083 high slightly increase 
negative Cer d18:2/22:0 0.023 high slightly increase 
negative PC 18:0/20:3 0.092 high slightly increase 
negative PE 16:0p/20:4 0.083 low decrease 
negative PE 18:0p/20:4 0.063 high decrease 
negative PE P-20:0/20:4 0.021 low decrease 
positive PE P-20:0/20:4 0.063 low decrease 
negative PI 22:4/18:0 0.083 high decrease 
negative PI 22:5/18:0 0.063 high decrease 
negative SM d41:2 0.023 high decrease 
negative SM d41:3 0.079 high decrease 

 
 
Lipid Profile Of Children Under The Age Of Three Can Predict The Development  

Of Islet Autoimmunity  

 
 

Figure 39. Temporal Change of PI 22:5/18:0 and PC 18:0/20:3 Recorded in Negative Ion Mode. 
Linear mixed model was performed with p-FDR<0.1. Each point is one sample, and the color of the 
line and point are color coded to the group. The plot revealed the normalized level of lipids vs the 
clinical age of sample. The predicted level of lipid in each plot is the linear regression line, with their 
slop reflects their alternation over time. 
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Additional analyses were performed to predict the onset of islet autoimmunity 

after the age of three when comparing healthy control group and the group developed 

islet autoimmunity  (T1D and AB group). OPLS-DA scores plot (Fig. 39) showed the 

separation between controls and non-control  T1D and AB , with a validated Q2=0.02, 

which passed the permutation test in predicting if the subject will develop the 

autoantibody after 3 years of age. With this data, we identified a panel of potential lipid 

markers that can predict if the patients will develop islet autoantibodies after 3 years of  

age (Table 4).  

 
 

Figure 40. OPLS-DA Scores Plot of Control and non-control group ( AB and T1D ). Each dot is one 
subject. Subjects anticipated in this test contained sample that gave a negative antibody positivity 
prior to three years of age, but later give the positive result to the antibody assay when the subject is 
> 3 years old. Color coded to refect the group, Control group is green , non-control is yellow . 
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Table 4. List of Candidate Markers that can Predict the Appearance of Islet Autoantibodies after 
The Age of Three. VIP score >1.3, and the mean value for each group represents the up-or down-
regulated level in each group. 

 
Mode Accepted_Compound_ID Control_MEAN non_Control_MEAN VIP from 

OPLS-DA 

negative Cer d16:1/16:0 -2.37 -1.88 2.10 

negative Cer d16:1/24:0 2.85 3.07 2.36 

negative Cer d17:1/22:0 -0.79 -0.32 2.90 

negative Cer d18:1/18:0 -0.23 0.02 2.13 

negative Cer d18:2/20:0 -3.30 -2.82 3.01 

negative Cer d18:2/22:0 0.60 1.08 3.74 

negative Cer d18:2/24:0 1.94 2.08 1.85 

negative LPE 18:1 1.57 1.35 1.53 

negative LPI 20:4 -1.90 -2.11 1.63 

negative PC 16:0/22:4 5.23 5.38 1.77 

negative PC 18:0/18:0 -0.90 -0.60 2.48 

negative PC 18:0/20:2 3.71 3.96 2.32 

negative PC 18:0/20:3 6.17 6.37 2.09 

negative PC 18:0/22:3 -0.89 -0.63 2.36 

negative PC 22:0/18:2 -1.47 -1.09 1.59 

negative PC O-18:0/18:1 1.36 1.67 2.29 

negative PC O-18:0/22:4 1.23 1.36 1.58 

negative PC P-16:0/16:0 1.96 1.77 1.76 

negative PE 16:0p/20:4 4.10 3.85 2.43 

negative PE 16:0p/22:6 2.89 2.71 1.58 

negative SM d33:1 3.63 3.86 1.64 

negative SM d37:1 1.98 2.12 1.77 

negative SM d38:1 5.73 5.94 1.64 

negative SM d39:1 4.39 4.73 2.45 

negative SM d39:2 1.33 1.52 2.03 
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negative SM d40:1 6.67 6.93 2.60 

negative SM d40:2 6.27 6.42 2.03 

negative SM d41:1 5.65 5.88 2.69 

negative SM d41:2 4.54 4.72 2.10 

negative SM d41:2 3.46 3.69 2.34 

negative SM d41:3 1.08 1.25 1.75 

negative SM d42:2 5.65 5.85 1.68 

negative SM d43:2 0.67 0.80 1.95 

positive Cer d18:2/24:0 -2.92 -2.65 2.11 

positive Cer d40:1 -2.48 -2.19 2.28 

positive Cer d41:1 -2.37 -2.20 1.93 

positive LPC 0:0/18:3 -2.40 -2.63 1.82 

positive LPC 18:2/0:0 4.51 4.22 2.03 

positive LPC 20:4/0:0 1.40 1.20 1.65 

positive LPE 16:0 -2.94 -3.09 1.62 

positive LPE 18:1 -1.84 -2.07 1.75 

positive LPE 18:2 -0.80 -1.13 1.92 

positive LPE 20:4 -1.82 -2.09 2.01 

positive PC 16:0/22:4 4.95 5.17 2.32 

positive PC 17:0_20:3 0.20 0.49 1.69 

positive PC 18:0/18:0 -1.59 -1.31 1.61 

positive PC 18:0/20:2 2.90 3.20 2.67 

positive PC 18:0/20:3 5.70 6.01 2.70 

positive PC 18:0/22:5 2.85 3.06 1.53 

positive PC 19:0/18:2 1.17 1.31 1.84 

positive PC O-20:0/20:3 -1.34 -1.04 1.88 

positive PE P-16:0/20:4 1.75 1.56 1.91 

positive PE P-16:0/22:6 0.58 0.40 1.62 

positive PE P-20:0/20:4 -0.76 -1.04 1.65 
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positive SM d33:1 1.75 2.06 1.70 

positive SM d37:1 0.55 0.90 2.10 

positive SM d38:1 4.54 4.85 1.85 

positive SM d39:1 2.52 2.87 2.08 

positive SM d39:2 -1.16 -0.89 1.68 

positive SM d40:1 5.18 5.46 1.86 

positive SM d41:1 3.90 4.14 2.01 

positive SM d41:2 1.63 1.85 1.84 

positive SM d41:3 -0.33 -0.10 1.59 

positive SM d41:4 0.60 1.05 1.91 

positive SM d42:4 3.53 3.77 2.23 

positive SM d43:4 2.19 2.43 1.68 

positive SM d43:5 -0.27 0.03 1.55 

 
 
Discussion 

 The AMT approach has been more widely used in proteomics for high throughput 

and accurate identification of peptides,139, 141, 210, 211 very rarely it has been applied in 

lipidomics.26 Using this approach and our in-house curated human serum library, we 

profiled lipidome level changes of serum lipids from three longitudinally collected 

sample sets related to T1D. To our knowledge, this is the first application of AMT 

approach to high throughput lipidomics, most of the lipids identified in our study contain 

the composition of fatty acyl chains and their sn-positions on the glycerol backbone, 

which provides at a high level of confidence in structural annotation of serum lipidome. 

 Dyslipidemia is well-established in diabetes mellitus. Previous work by others 

showed that most distinct changes of lipidome occurred in T1D children younger than 3 



 

 

 

114 

months old.25 In this respect, we had similar findings in this DAISY cohort that most 

significant changes occurred at young age  <3 years  when comparing T1D and non-T1D 

groups. It is of note that it is difficult to observe change in lipids during the development 

of a chronic disease due to age as  the major confounding factor, as we clearly 

demonstrated the lipidome levels are age dependent. Nonetheless, our data highly 

suggested the most pronounced changes happened at the earliest time point of patients, 

which is < 3 years of age. Oresic and co-workers found SM levels were low in T1D 

group compared to other groups at a younger age, and persistently lower over time when 

compared to the other groups.25 In contrast, our data suggested a higher level of SM 

lipids at the younger age, decreasing during the development of the disease. The 

discrepancy may arise from the different cohort of samples were used, which differ in 

geographical location and other confounders, such as diets, genotypes, etc. This point can 

be further illustrated with two studies conducted by the same authors with opposite 

results. While one study revealed decreased levels of PC, SM and LPC in serum,212 the 

second study showed increased SM and PC in T1D when compared to control samples.213 

These contradictions suggest the needed rigorousness in study design, including sample 

collection, but it is difficult to achieve for infant <1 year of age, i.e. most of the samples 

were collected non-fasting, and the diet-intake can significantly influence the serum 

lipidome. In this respect, previous study has shown children with different diets could 

result in higher concentration of odd chain TGs and polyunsaturated FA-containing 

phospholipids.214 Hence, it is critical to have samples from the same study cohort for a 

fair and comprehensive comparison. Despite these limitations, we identified a panel of 
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lipids that can predict islet autoimmunity, as well as differentiate between three groups of 

samples earlier than 3 years of age. 

Sample storage conditions also had a big influence on the integrity of samples.215 

Multiple studies had confirmed temperature and chemicals used in sample storage can 

affect degradation of lipids. The preanalytical variables include the storage condition 

immediately after sample collection, the storage condition pre- and post-transportation. 

Investigation on the variances of free-thaw cycles and sample storage condition found 

that a stable period for human plasma/serum sample is within 3 years at a temperature <-

20°C, and <10 freeze-thaw cycles.216 The samples used in our study were stored around 

4-25 years inside -80°C freezer prior to transportation to our laboratory. Although we 

have minimized freeze-thaw cycles during sample preparation, we do not know to which 

extent long term storage can affect lipid stability. To our knowledge, effect of very long 

term storage on lipid degradation under deep freezing conditions has not been studied. 

Considering the heterogeneity of lipid levels within individuals and the limitations of 

long term sample storage in longitudinal cohorts, comparing the relative abundance of 

lipids cross-sectionally at different stages of disease development  is still a valid approach 

for biomarker identification.  

 In summary, this research identified distinct changes in serum lipidome for 

subjects in the younger age who developed T1D or islet autoimmunity.  It also suggests 

that, for better uncovering the longitudinal changes of different lipid profiles, a more 

rigorous age-matching between groups and with equal years of interval is desired to 

eliminate age as a confounding factor. While the list of lipid markers still needs to be 
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validated using other cohort of samples for their utilities in T1D diagnosis, nevertheless, 

the AMT approach we developed can be adapted to other large scale high throughput 

lipidomics studies, and the temporal changes of serum lipidome during childhood would 

also serve as a valuable resource for pediatric disease research. 
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CHAPTER VII 

CONCLUDING REMARKS 
 
 

Type 1 diabetes (T1D) is a well-known chronic disease occurs most frequently in 

children. Due to the unknown etiology and autoimmune nature of the disease, a late 

clinical diagnosis results in serious complications and financial burden. The current 

biomarker studies in T1D are mostly limited to cross-sectional comparisons at the disease 

onset, and in general do not reflect what happened at the early stages of this disorder. 

Recently, dysregulated lipid metabolism were observed in T1D, both at the overt disease 

stage and prior to development of islet autoimmunity, a key step in the natural 

progression of this autoimmune-mediated disease. Since function of lipids are determined 

by their structures, it is critical to comprehensively and accurately determine the structure 

of lipids.  

In this dissertation, we developed novel analytical capabilities in structural 

elucidation of lipid molecules, particularly in determination of sn-position, and the 

location of unsaturation. A high throughput approach for lipidomics analysis was also 

developed to comprehensively quantify a large number of clinical samples, which has 

been used to profile the temporal changes of lipidome during the natural progression of 

T1D.  

Chapter III established a novel workflow for accurate identification of lipids in 

human serum. By adding the additional separation dimension of mixed mode-LC, the 
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approach overcame the challenges in the one dimension RPLC-MS/MS approach and 

provided high confidence in structural identification, particularly for the isomeric and 

isobaric species existed within the same lipid class or between classes. The human serum 

lipids were identified with accurate mass and RPLC retention time, which were curated 

into an in-house data base for high throughput analysis of lipids from the same biological 

specimen. Identification of these lipid species were further confirmed at the fatty acyl 

level using tandem mass spectrometry in both positive and negative ion mode, with sn-

positional assignment determined for most of the lipid molecular species. Chapter IV and 

V advanced further in structural elucidation of lipids by providing information on the 

location of C=C unsaturation. This was accomplished inside the mass analyzer through a 

specific gas phase ion chemistry between ozone and unsaturated lipid ions. This ozone-

induced dissociation (OzID) process generates C=C location characteristic diagnostic 

fragmentation ions, which is highly valuable for structural elucidation at the level of C=C 

position. For the first time, we achieved the highest OzID efficiency with the protonated 

lipids in a high resolution traveling wave mass spectrometer, up to ~1000x more effective 

compared to previous reports. Moreover, the flexibility to implement OzID in a high gas 

pressure of the instrument made this technique compatible with LC separation for better 

resolving of isomeric unsaturated lipids. With OzID-MS, double bond positional isomers 

in human serum lipids can be elucidated. Using longitudinally collected human serum 

from individuals in T1D, AB and healthy control groups and the human serum lipid 

library curated in Chapter III, Chapter VI applied accurate mass and time tag approach 

for high throughput analysis and identification of candidate lipid markers that indicate 
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T1D progression. A significant difference was obtained in the lipid profile of T1D 

individuals at a younger age, however, the changes were normalized at later stages of this 

disease, which is in line with what reported by others using longitudinally collected 

samples.  

 In summary, we developed innovative methods for comprehensive 

characterization of lipids in human serum and high throughput analysis of human serum 

samples to identify T1D lipid biomarkers. While the panel of lipid markers still need to 

be validated in independent T1D cohorts for their values in predicting islet autoimmunity 

and early diagnosis of T1D, the advanced analytical capabilities we developed in C=C 

unsaturation determination and in AMT-based high throughput analysis of lipidome 

changes in human serum can be applied to other human diseases. In addition, the 

temporal changes of lipids during childhood development would also be valuable for 

researches in other pediatric diseases. 
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Table S1. Human Serum Lipid Library Including Accurate Mass and RPLC Retention 
Time. 
 

Compound 
ID 

Compound name Class Calc 
Mass 

Formula RPLC 
retention 

time (min) 
1 Cer(d16:0/22:0) Cer 595.59003 C38H77O3N11 15.88 
2 Cer(d16:1/16:0) Cer 509.4808 C32 H63 O3 N1 10.44 
3 Cer(d16:1/24:0) Cer 621.606 C40 H79 O3 N1 16.73 
4 Cer(d17:1/16:0) Cer 523.4964 C33 H65 O3 N1 11.25 
5 Cer(d17:1/18:0) Cer 551.5277 C35 H69 O3 N1 12.91 
6 Cer(d17:1/22:0) Cer 607.5903 C39 H77 O3 N1 16.12 
7 Cer(d17:1/24:0) Cer 635.6216 C41 H81 O3 N1 17.15 
8 Cer(d18:0/16:0) Cer 539.5277 C34 H69 O3 N1 12.65 
9 Cer(d18:0/18:0) Cer 567.559 C36 H73 O3 N1 14.26 
10 Cer(d18:0/22:0) Cer 623.6216 C40 H81 O3 N1 16.99 
11 Cer(d18:0/24:0) Cer 651.6529 C42 H85 O3 N1 17.92 
12 Cer(d18:1/16:0) Cer 537.5121 C34 H67 O3 N1 12.07 
13 Cer(d18:1/18:0) Cer 565.5434 C36 H71 O3 N1 13.70 
14 Cer(d18:1/20:0) Cer 593.5747 C38 H75 O3 N1 15.28 
15 Cer(d18:1/22:0) Cer 621.606 C40 H79 O3 N1 16.42 
16 Cer(d18:1/24:0) Cer 649.6373 C42 H83 O3 N1 17.62 
17 Cer(d18:2/16:0) Cer 535.4964 C34 H65 O3 N1 10.69 
18 Cer(d18:2/18:0) Cer 563.5277 C36 H69 O3 N1 12.36 
19 Cer(d18:2/20:0) Cer 591.559 C38 H73 O3 N1 14.02 
20 Cer(d18:2/22:0) Cer 619.5903 C40 H77 O3 N1 15.59 
21 Cer(d18:2/24:0) Cer 647.6216 C42 H81 O3 N1 16.85 
22 Cer(d34:0) Cer 539.5277 C34 H69 O3 N1 12.96 
23 Cer(d36:0) Cer 567.559 C36 H73 O3 N1 14.26 
24 Cer(d38:0) Cer 595.5903 C38 H77 O3 N1 16.05 
25 Cer(d40:0) Cer 623.6216 C40 H81 O3 N1 17.19 
26 Cer(d40:1) Cer 621.606 C40 H79 O3 N1 16.62 
27 Cer(d42:3) Cer 645.606 C42H79O3N1 15.40 
28 Cer(d44:1) Cer 677.6686 C44 H87 O3 N1 17.99 
29 CE(18:1) ChE 650.60015 C45 H78 O2 21.22 
30 CE(18:2) ChE 648.5845 C45 H76 O2 20.75 
31 CE(20:3) ChE 674.60015 C47 H78 O2 20.83 
32 CE(20:4) ChE 672.5845 C47 H76 O2 20.45 
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33 CE(22:6) ChE 696.5845 C49 H76 O2 20.20 
34 DG(12:0/18:2) DG 536.4441 C33 H60 O5 10.52 
35 DG(16:0/0:0/18:2) DG 592.5067 C37 H68 O5 13.72 
36 DG(16:0/18:1) DG 594.5223 C37 H70 O5 14.89 
37 DG(16:1/18:1) DG 592.5067 C37 H68 O5 13.48 
38 DG(16:1/18:2) DG 590.491 C37 H66 O5 12.26 
39 DG(16:1/18:3) DG 588.4754 C37 H64 O5 11.20 
40 DG(18:0/18:1) DG 622.5536 C39 H74 O5 16.29 
41 DG(18:1/0:0/16:0) DG 594.5223 C37 H70 O5 14.99 
42 DG(18:1/0:0/18:1) DG 620.538 C39 H72 O5 15.06 
43 DG(18:1/18:1) DG 620.538 C39 H72 O5 15.24 
44 DG(18:1/18:3) DG 616.5067 C39 H68 O5 12.76 
45 DG(18:1/20:3) DG 640.5067 C41 H68 O5 13.67 
46 DG(18:1/20:4) DG 642.5223 C41 H70 O5 15.21 
47 DG(18:1/20:4) DG 642.5223 C41 H70 O5 13.42 
48 DG(18:1/22:4) DG 670.5536 C43 H74 O5 14.52 
49 DG(18:1/22:5) DG 668.538 C43 H72 O5 13.98 
50 DG(18:1/22:6) DG 666.5223 C43 H70 O5 12.99 
51 DG(18:2/0:0/18:1) DG 618.5223 C39 H70 O5 13.79 
52 DG(18:2/0:0/18:2) DG 616.5067 C39 H68 O5 12.57 
53 DG(18:2/18:1) DG 618.5223 C39 H70 O5 14.03 
54 DG(18:2/18:3) DG 614.491 C39 H66 O5 11.53 
55 DG(18:2/20:4) DG 640.5067 C41 H68 O5 13.67 
56 DG(18:2/20:5) DG 638.491 C41 H66 O5 11.18 
57 DG(18:2/22:4) DG 668.538 C43 H72 O5 13.35 
58 DG(18:2/22:5) DG 666.5223 C43 H70 O5 12.78 
59 DG(20:2/18:2) DG 644.538 C41 H72 O5 16.46 
60 DG(20:3/18:1) DG 644.538 C41 H72 O5 14.14 
61 DG(22:6/18:2) DG 664.5067 C43 H68 O5 11.82 
62 LPC(0:0/14:0) LPC 467.3012 C22 H46 O7 N1 P1 1.54 
63 LPC(0:0/15:0) LPC 481.3168 C23 H48 O7 N1 P1 1.86 
64 LPC(0:0/16:1) LPC 493.3168 C24 H48 O7 N1 P1 1.79 
65 LPC(0:0/17:0) LPC 509.3481 C25 H52 O7 N1 P1 2.60 
66 LPC(0:0/17:1) LPC 507.3325 C25 H50 O7 N1 P1 2.16 
67 LPC(0:0/18:0) LPC 523.3638 C26 H54 O7 N1 P1 3.46 
68 LPC(0:0/18:1) LPC 521.3481 C26 H52 O7 N1 P1 2.42 
69 LPC(0:0/18:2) LPC 519.3325 C26 H50 O7 N1 P1 1.84 
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70 LPC(0:0/18:3) LPC 517.3168 C26 H48 O7 N1 P1 1.62 
71 LPC(0:0/20:0) LPC 551.3951 C28 H58 O7 N1 P1 5.28 
72 LPC(0:0/20:1) LPC 549.3794 C28 H56 O7 N1 P1 3.61 
73 LPC(0:0/20:2) LPC 547.3638 C28 H54 O7 N1 P1 2.64 
74 LPC(0:0/20:3) LPC 545.3481 C28 H52 O7 N1 P1 2.08 
75 LPC(0:0/20:4) LPC 543.3325 C28 H50 O7 N1 P1 1.79 
76 LPC(0:0/20:5) LPC 541.3168 C28 H48 O7 N1 P1 1.55 
77 LPC(0:0/22:5) LPC 569.3481 C30 H52 O7 N1 P1 1.90 
78 LPC(0:0/22:6) LPC 567.3325 C30 H50 O7 N1 P1 1.68 
79 LPC(0:0/P-16:1) LPC 477.3219 C24 H48 O6 N1 P1 2.25 
80 LPC(0:0/P-18:1) LPC 505.3532 C26 H52 O6 N1 P1 3.03 
81 LPC(0:0/P-18:2) LPC 503.3376 C26 H50 O6 N1 P1 2.63 
82 LPC(12:0/0:0) LPC 439.2699 C20 H42 O7 N1 P1 1.24 
83 LPC(14:0/0:0) LPC 467.3012 C22 H46 O7 N1 P1 1.66 
84 LPC(14:1/0:0) LPC 465.2855 C22 H44 O7 N1 P1 1.32 
85 LPC(15:0/0:0) LPC 481.3168 C23 H48 O7 N1 P1 2.01 
86 LPC(16:0/0:0) LPC 495.3325 C24 H50 O7 N1 P1 2.45 
87 LPC(16:1/0:0) LPC 493.3168 C24 H48 O7 N1 P1 2.67 
88 LPC(16:2/0:0) LPC 491.3012 C24 H46 O7 N1 P1 1.52 
89 LPC(17:0/0:0) LPC 509.3481 C25 H52 O7 N1 P1 3.05 
90 LPC(17:1/0:0) LPC 507.3325 C25 H50 O7 N1 P1 2.53 
91 LPC(18:0/0:0) LPC 523.3638 C26 H54 O7 N1 P1 3.78 
92 LPC(18:1/0:0) LPC 521.3481 C26 H52 O7 N1 P1 2.63 
93 LPC(18:2/0:0) LPC 519.3325 C26 H50 O7 N1 P1 1.98 
94 LPC(18:3/0:0) LPC 517.3168 C26 H48 O7 N1 P1 1.10 
95 LPC(20:0/0:0) LPC 551.3951 C28 H58 O7 N1 P1 5.71 
96 LPC(20:1/0:0) LPC 549.3794 C28 H56 O7 N1 P1 3.91 
97 LPC(20:2/0:0) LPC 547.3638 C28 H54 O7 N1 P1 2.86 
98 LPC(20:3/0:0) LPC 545.3481 C28 H52 O7 N1 P1 2.23 
99 LPC(20:4/0:0) LPC 543.3325 C28 H50 O7 N1 P1 1.90 
100 LPC(22:0/0:0) LPC 579.4264 C30 H62 O7 N1 P1 7.46 
101 LPC(22:2/0:0) LPC 575.3951 C30 H58 O7 N1 P1 4.25 
102 LPC(22:5/0:0) LPC 569.3481 C30 H52 O7 N1 P1 2.27 
103 LPC(22:6/0:0) LPC 567.3325 C30 H50 O7 N1 P1 1.81 
104 LPC(O-16:0/0:0) LPC 481.3532 C24 H52 O6 N1 P1 2.94 
105 LPC(O-18:0/0:0) LPC 509.3845 C26 H56 O6 N1 P1 4.56 
106 LPC(O-20:0/0:0) LPC 537.4158 C28 H60 O6 N1 P1 6.63 
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107 LPC(P-16:0/0:0) LPC 479.3376 C24 H50 O6 N1 P1 2.85 
108 LPC(P-18:0/0:0) LPC 507.3689 C26 H54 O6 N1 P1 3.12 
109 LPC(P-18:1/0:0) LPC 505.3532 C26 H52 O6 N1 P1 2.30 
110 LPC(P-18:2/0:0) LPC 503.3376 C26 H50 O6 N1 P1 2.40 
111 LPC(P-20:0/0:0) LPC 535.4002 C28 H58 O6 N1 P1 4.66 
112 LPC(P-20:1/0:0) LPC 533.3845 C28 H56 O6 N1 P1 3.41 
113 LPE(14:0) LPE 425.2542 C19 H40 O7 N1 P1 1.73 
114 LPE(16:0) LPE 453.2855 C21 H44 O7 N1 P1 2.38 
115 LPE(16:1) LPE 451.2699 C21 H42 O7 N1 P1 1.87 
116 LPE(17:0) LPE 467.3012 C22 H46 O7 N1 P1 3.22 
117 LPE(18:0) LPE 481.3168 C23 H48 O7 N1 P1 4.00 
118 LPE(18:1) LPE 479.3012 C23 H46 O7 N1 P1 2.58 
119 LPE(18:2) LPE 477.2855 C23 H44 O7 N1 P1 1.93 
120 LPE(18:3) LPE 475.2699 C23 H42 O7 N1 P1 1.67 
121 LPE(20:2) LPE 505.3168 C25 H48 O7 N1 P1 3.02 
122 LPE(20:3) LPE 503.3012 C25 H46 O7 N1 P1 2.35 
123 LPE(20:4) LPE 501.2855 C25 H44 O7 N1 P1 1.87 
124 LPE(20:5) LPE 499.2699 C25 H42 O7 N1 P1 1.61 
125 LPE(22:4) LPE 529.3168 C27 H48 O7 N1 P1 2.69 
126 LPE(22:5) LPE 527.3012 C27 H46 O7 N1 P1 2.37 
127 LPE(22:6) LPE 525.2855 C27 H44 O7 N1 P1 1.88 
128 LPG(16:0) LPG 484.2801 C22 H45 O9 N0 P1 2.31 
129 LPG(18:0) LPG 512.3114 C24 H49 O9 N0 P1 3.54 
130 LPG(18:2) LPG 508.2801 C24 H45 O9 N0 P1 1.87 
131 LPI(18:0) LPI 600.3275 C27 H53 O12 N0 

P1 
3.25 

132 LPI(18:1) LPI 598.3118 C27 H51 O12 N0 
P1 

2.28 

133 LPI(18:2) LPI 596.2962 C27 H49 O12 N0 
P1 

1.75 

134 LPI(20:3) LPI 622.3118 C29 H51 O12 N0 
P1 

1.96 

135 LPI(20:4) LPI 620.2962 C29 H49 O12 N0 
P1 

1.70 

136 PC(12:0/18:2) PC 701.4996 C38 H72 O8 N1 P1 8.00 
137 PC(14:0/14:0) PC 677.4996 C36 H72 O8 N1 P1 8.94 
138 PC(14:0/15:0) PC 691.5152 C37 H74 O8 N1 P1 9.34 
139 PC(14:0/17:0) PC 719.5465 C39 H78 O8 N1 P1 10.88 
140 PC(14:0/18:2) PC 729.5309 C40 H76 O8 N1 P1 9.43 
141 PC(14:0/20:3) PC 755.5465 C42 H78 O8 N1 P1 9.78 
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142 PC(14:0/20:4) PC 753.5309 C42 H76 O8 N1 P1 9.24 
143 PC(14:0_12:0) PC 649.4683 C34 H68 O8 N1 P1 7.50 
144 PC(14:0_16:1) PC 703.5152 C38 H74 O8 N1 P1 9.10 
145 PC(15:0/14:0) PC 691.5152 C37 H74 O8 N1 P1 9.66 
146 PC(15:0/16:0) PC 719.5465 C39 H78 O8 N1 P1 11.22 
147 PC(15:0/16:1) PC 717.5309 C39 H76 O8 N1 P1 9.85 
148 PC(15:0/18:1) PC 745.5622 C41 H80 O8 N1 P1 11.37 
149 PC(15:0/18:2) PC 743.5465 C41 H78 O8 N1 P1 10.19 
150 PC(15:0/20:3) PC 769.5622 C43 H80 O8 N1 P1 10.59 
151 PC(15:0/20:4) PC 767.5465 C43 H78 O8 N1 P1 9.99 
152 PC(15:0/22:5) PC 793.5622 C45 H80 O8 N1 P1 10.11 
153 PC(15:0_22:6) PC 791.5465 C45 H78 O8 N1 P1 9.63 
154 PC(16:0/14:0) PC 705.5309 C38 H76 O8 N1 P1 10.45 
155 PC(16:0/15:0) PC 719.5465 C39 H78 O8 N1 P1 10.88 
156 PC(16:0/16:0) PC 733.5622 C40 H80 O8 N1 P1 11.99 
157 PC(16:0/16:1) PC 731.5465 C40 H78 O8 N1 P1 10.61 
158 PC(16:0/17:0) PC 747.5778 C41 H82 O8 N1 P1 12.45 
159 PC(16:0/17:1) PC 745.5622 C41 H80 O8 N1 P1 12.22 
160 PC(16:0/17:1) PC 745.5622 C41 H80 O8 N1 P1 12.23 
161 PC(16:0/18:1) PC 759.5778 C42 H82 O8 N1 P1 12.13 
162 PC(16:0/18:2) PC 757.5622 C42 H80 O8 N1 P1 10.95 
163 PC(16:0/18:3) PC 755.5465 C42 H78 O8 N1 P1 10.20 
164 PC(16:0/19:1) PC 773.5935 C43 H84 O8 N1 P1 12.91 
165 PC(16:0/19:2) PC 771.5778 C43 H82 O8 N1 P1 11.53 
166 PC(16:0/20:3) PC 783.5778 C44 H82 O8 N1 P1 11.35 
167 PC(16:0/20:5) PC 779.5465 C44 H78 O8 N1 P1 9.81 
168 PC(16:0/22:4) PC 809.5935 C46 H84 O8 N1 P1 11.82 
169 PC(16:0/22:5) PC 807.5778 C46 H82 O8 N1 P1 10.85 
170 PC(16:0_20:4) PC 781.5622 C44 H80 O8 N1 P1 10.75 
171 PC(16:1/18:1) PC 757.5622 C42 H80 O8 N1 P1 11.21 
172 PC(16:1/18:2) PC 755.5465 C42 H78 O8 N1 P1 9.61 
173 PC(16:1/18:2) PC 755.5465 C42 H78 O8 N1 P1 9.60 
174 PC(16:1/18:3) PC 753.5309 C42 H76 O8 N1 P1 8.88 
175 PC(16:1/20:3) PC 781.5622 C44 H80 O8 N1 P1 9.92 
176 PC(16:1/20:4) PC 779.5465 C44 H78 O8 N1 P1 9.40 
177 PC(16:1/20:5) PC 777.5309 C44 H76 O8 N1 P1 8.50 
178 PC(16:2/18:2) PC 753.5309 C42 H76 O8 N1 P1 9.24 
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179 PC(17:0/16:0) PC 747.5778 C41 H82 O8 N1 P1 12.79 
180 PC(17:0/18:1) PC 773.5935 C43 H84 O8 N1 P1 12.91 
181 PC(17:0/18:2) PC 771.5778 C43 H82 O8 N1 P1 11.77 
182 PC(17:0/20:2) PC 799.6091 C45 H86 O8 N1 P1 12.99 
183 PC(17:0/20:5) PC 793.5622 C45 H80 O8 N1 P1 10.38 
184 PC(17:0/22:5) PC 821.5935 C47 H84 O8 N1 P1 11.63 
185 PC(17:0_20:3) PC 797.5935 C45 H84 O8 N1 P1 11.91 
186 PC(17:0_20:3) PC 797.5935 C45 H84 O8 N1 P1 12.17 
187 PC(17:0_20:4) PC 795.5778 C45 H82 O8 N1 P1 11.27 
188 PC(17:1/18:2) PC 769.5622 C43 H80 O8 N1 P1 10.35 
189 PC(17:1/20:4) PC 793.5622 C45 H80 O8 N1 P1 10.38 
190 PC(18:0/16:0) PC 761.5935 C42 H84 O8 N1 P1 13.57 
191 PC(18:0/18:0) PC 789.6248 C44 H88 O8 N1 P1 15.06 
192 PC(18:0/18:1) PC 787.6091 C44 H86 O8 N1 P1 13.69 
193 PC(18:0/18:2) PC 785.5935 C44 H84 O8 N1 P1 12.55 
194 PC(18:0/18:3) PC 783.5778 C44 H82 O8 N1 P1 11.87 
195 PC(18:0/20:2) PC 813.6248 C46 H88 O8 N1 P1 13.89 
196 PC(18:0/20:4) PC 809.5935 C46 H84 O8 N1 P1 12.34 
197 PC(18:0/20:5) PC 807.5778 C46 H82 O8 N1 P1 11.36 
198 PC(18:0/22:3) PC 839.6404 C48 H90 O8 N1 P1 14.49 
199 PC(18:0/22:4) PC 837.6248 C48 H88 O8 N1 P1 13.38 
200 PC(18:0/22:5) PC 835.6091 C48 H86 O8 N1 P1 12.92 
201 PC(18:1/18:1) PC 785.5935 C44 H84 O8 N1 P1 12.26 
202 PC(18:1/18:2) PC 783.5778 C44 H82 O8 N1 P1 11.35 
203 PC(18:1/20:3) PC 809.5935 C46 H84 O8 N1 P1 11.82 
204 PC(18:1/20:4) PC 807.5778 C46 H82 O8 N1 P1 11.12 
205 PC(18:1/22:0) PC 843.6717 C48 H94 O8 N1 P1 16.49 
206 PC(18:1/22:4) PC 835.6091 C48 H86 O8 N1 P1 11.97 
207 PC(18:1/22:5) PC 833.5935 C48 H84 O8 N1 P1 11.21 
208 PC(18:1/22:6) PC 831.5778 C48 H82 O8 N1 P1 10.51 
209 PC(18:1_22:2) PC 839.6404 C48 H90 O8 N1 P1 13.98 
210 PC(18:2/18:2) PC 781.5622 C44 H80 O8 N1 P1 9.92 
211 PC(18:2/20:3) PC 807.5778 C46 H82 O8 N1 P1 10.33 
212 PC(18:2/20:4) PC 805.5622 C46 H80 O8 N1 P1 9.72 
213 PC(18:2p/20:2) PC 793.5985 C46 H84 O7 N1 P1 13.53 
214 PC(18:3/16:1) PC 753.5309 C42 H76 O8 N1 P1 8.68 
215 PC(18:3/18:2) PC 779.5465 C44 H78 O8 N1 P1 8.96 
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216 PC(18:3/18:3) PC 777.5309 C44 H76 O8 N1 P1 8.06 
217 PC(18:4/20:3) PC 803.5465 C46 H78 O8 N1 P1 9.29 
218 PC(19:0/18:2) PC 799.6091 C45 H86 O8 N1 P1 13.35 
219 PC(20:0/18:2) PC 813.6248 C46 H88 O8 N1 P1 14.15 
220 PC(20:0/18:2) PC 813.6248 C46 H88 O8 N1 P1 14.13 
221 PC(20:0/20:3) PC 839.6404 C48 H90 O8 N1 P1 14.49 
222 PC(20:0/20:4) PC 837.6248 C48 H88 O8 N1 P1 13.92 
223 PC(20:0/22:6) PC 861.6248 C50 H88 O8 N1 P1 13.54 
224 PC(20:1/18:2) PC 811.6091 C46 H86 O8 N1 P1 12.69 
225 PC(20:1/20:4) PC 835.6091 C48 H86 O8 N1 P1 12.41 
226 PC(20:1/22:6) PC 859.6091 C50 H86 O8 N1 P1 11.94 
227 PC(20:1_18:1) PC 813.6248 C46 H88 O8 N1 P1 13.65 
228 PC(20:2/20:1) PC 839.6404 C48 H90 O8 N1 P1 14.20 
229 PC(20:3/20:4) PC 831.5778 C48 H82 O8 N1 P1 10.24 
230 PC(20:4/20:3) PC 831.5778 C48 H82 O8 N1 P1 10.09 
231 PC(20:4/20:4) PC 829.5622 C48 H80 O8 N1 P1 9.41 
232 PC(20:4/22:6) PC 853.5622 C50 H80 O8 N1 P1 9.09 
233 PC(20:4_17:0) PC 795.5778 C45 H82 O8 N1 P1 11.56 
234 PC(20:5/18:2) PC 803.5465 C46 H78 O8 N1 P1 8.80 
235 PC(22:0/18:2) PC 841.6561 C48 H92 O8 N1 P1 15.62 
236 PC(22:0/20:4) PC 865.6561 C50 H92 O8 N1 P1 15.41 
237 PC(22:4/20:4) PC 857.5935 C50 H84 O8 N1 P1 10.51 
238 PC(22:5/20:4) PC 855.5778 C50 H82 O8 N1 P1 10.02 
239 PC(22:6/17:0) PC 819.5778 C47 H82 O8 N1 P1 10.87 
240 PC(22:6/18:0) PC 833.5935 C48 H84 O8 N1 P1 11.96 
241 PC(22:6_16:0) PC 805.5622 C46 H80 O8 N1 P1 10.39 
242 PC(24:0/18:2) PC 869.6874 C50 H96 O8 N1 P1 16.81 
243 PC(24:0/20:4) PC 893.6874 C52 H96 O8 N1 P1 16.65 
244 PC(24:0/20:5) PC 891.6717 C52 H94 O8 N1 P1 16.81 
245 PC(O-16:0/14:0) PC 691.5516 C38 H78 O7 N1 P1 11.43 
246 PC(O-16:0/16:0) PC 719.5829 C40 H82 O7 N1 P1 13.00 
247 PC(O-16:0/16:1) PC 717.5672 C40 H80 O7 N1 P1 11.63 
248 PC(O-16:0/18:1) PC 745.5985 C42 H84 O7 N1 P1 13.08 
249 PC(O-16:0/18:2) PC 743.5829 C42 H82 O7 N1 P1 11.94 
250 PC(O-16:0/20:3) PC 769.5985 C44 H84 O7 N1 P1 12.32 
251 PC(O-16:0/20:4) PC 767.5829 C44 H82 O7 N1 P1 11.71 
252 PC(O-16:0/22:4) PC 795.6142 C46 H86 O7 N1 P1 12.79 
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253 PC(O-16:0/22:5) PC 791.5829 C46 H82 O7 N1 P1 11.53 
254 PC(O-16:0/22:6) PC 791.5829 C46 H82 O7 N1 P1 11.30 
255 PC(O-18:0/16:0) PC 747.6142 C42 H86 O7 N1 P1 14.58 
256 PC(O-18:0/18:1) PC 773.6298 C44 H88 O7 N1 P1 14.69 
257 PC(O-18:0/18:2) PC 771.6142 C44 H86 O7 N1 P1 13.55 
258 PC(O-18:0/20:3) PC 797.6298 C46 H88 O7 N1 P1 13.93 
259 PC(O-18:0/20:4) PC 795.6142 C46 H86 O7 N1 P1 13.32 
260 PC(O-18:0/22:4) PC 823.6455 C48 H90 O7 N1 P1 14.36 
261 PC(O-18:0/22:5) PC 821.6298 C48 H88 O7 N1 P1 13.25 
262 PC(O-18:0/22:6) PC 819.6142 C48 H86 O7 N1 P1 12.91 
263 PC(O-20:0/18:2) PC 799.6455 C46 H90 O7 N1 P1 15.11 
264 PC(O-20:0/20:4) PC 823.6455 C48 H90 O7 N1 P1 14.87 
265 PC(O-20:0/22:4) PC 851.6768 C50 H94 O7 N1 P1 15.81 
266 PC(O-20:0/22:6) PC 847.6455 C50 H90 O7 N1 P1 14.47 
267 PC(O-20:e/18:1) PC 801.6611 C46 H92 O7 N1 P1 16.10 
268 PC(P-16:0/14:0) PC 689.5359 C38 H76 O7 N1 P1 11.19 
269 PC(P-16:0/16:0) PC 717.5672 C40 H80 O7 N1 P1 12.78 
270 PC(P-16:0/18:1) PC 743.5829 C42 H82 O7 N1 P1 12.87 
271 PC(P-16:0/18:2) PC 741.5672 C42 H80 O7 N1 P1 11.69 
272 PC(P-16:0/20:2) PC 769.5985 C44 H84 O7 N1 P1 14.59 
273 PC(P-16:0/20:3) PC 767.5829 C44 H82 O7 N1 P1 13.11 
274 PC(P-16:0/20:4) PC 765.5672 C44 H80 O7 N1 P1 11.44 
275 PC(P-16:0/22:6) PC 789.5672 C46 H80 O7 N1 P1 11.04 
276 PC(P-16:1/20:3) PC 765.5672 C44 H80 O7 N1 P1 11.91 
277 PC(P-16:1/21:4) PC 777.5672 C45 H80 O7 N1 P1 10.88 
278 PC(P-16:1/24:7) PC 813.5672 C48 H80 O7 N1 P1 10.55 
279 PC(P-18:0/16:0) PC 745.5985 C42 H84 O7 N1 P1 13.05 
280 PC(P-18:0/18:1) PC 771.6142 C44 H86 O7 N1 P1 13.19 
281 PC(P-18:0/18:2) PC 769.5985 C44 H84 O7 N1 P1 11.99 
282 PC(P-18:0/20:4) PC 793.5985 C46 H84 O7 N1 P1 11.77 
283 PC(P-18:0/22:4) PC 821.6298 C48 H88 O7 N1 P1 12.83 
284 PC(P-18:0/22:5) PC 819.6142 C48 H86 O7 N1 P1 11.87 
285 PC(P-18:0/22:6) PC 817.5985 C48 H84 O7 N1 P1 11.37 
286 PC(P-18:1/18:1) PC 769.5985 C44 H84 O7 N1 P1 12.97 
287 PC(P-18:1/18:2) PC 767.5829 C44 H82 O7 N1 P1 12.05 
288 PC(P-18:1/20:4) PC 791.5829 C46 H82 O7 N1 P1 11.53 
289 PC(P-18:1/22:2) PC 823.6455 C48 H90 O7 N1 P1 14.88 
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290 PC(P-18:1/22:4) PC 819.6142 C48 H86 O7 N1 P1 13.94 
291 PC(P-18:1/22:5) PC 817.5985 C48 H84 O7 N1 P1 11.64 
292 PC(P-18:1/24:7) PC 841.5985 C50 H84 O7 N1 P1 11.87 
293 PC(P-20:0/18:2) PC 797.6298 C46 H88 O7 N1 P1 13.94 
294 PC(P-20:0/20:4) PC 821.6298 C48 H88 O7 N1 P1 13.56 
295 PC(P-20:0/22:4) PC 849.6611 C50 H92 O7 N1 P1 14.28 
296 PE(16:0/18:1) PE 717.5309 C39 H76 O8 N1 P1 12.56 
297 PE(16:0/18:2) PE 715.5152 C39 H74 O8 N1 P1 11.38 
298 PE(16:0/20:4) PE 739.5152 C41 H74 O8 N1 P1 11.16 
299 PE(16:0/20:5) PE 737.4996 C41 H72 O8 N1 P1 10.18 
300 PE(16:0/22:4) PE 767.5465 C43 H78 O8 N1 P1 12.22 
301 PE(16:1/18:1) PE 715.5152 C39 H74 O8 N1 P1 11.15 
302 PE(17:0/18:2) PE 729.5309 C40 H76 O8 N1 P1 12.18 
303 PE(17:0_18:1) PE 731.5465 C40 H78 O8 N1 P1 13.34 
304 PE(17:1/20:4) PE 751.5152 C42 H74 O8 N1 P1 10.96 
305 PE(17:1/22:6) PE 775.5152 C44 H74 O8 N1 P1 10.59 
306 PE(17:1_18:2) PE 727.5152 C40 H74 O8 N1 P1 11.21 
307 PE(18:0/16:0) PE 719.5465 C39 H78 O8 N1 P1 13.99 
308 PE(18:0/20:3) PE 769.5622 C43 H80 O8 N1 P1 13.52 
309 PE(18:0/20:4) PE 767.5465 C43 H78 O8 N1 P1 12.76 
310 PE(18:0/20:5) PE 765.5309 C43 H76 O8 N1 P1 11.77 
311 PE(18:0/22:4) PE 795.5778 C45 H82 O8 N1 P1 13.77 
312 PE(18:0/22:5) PE 793.5622 C45 H80 O8 N1 P1 13.33 
313 PE(18:0_18:1) PE 745.5622 C41 H80 O8 N1 P1 14.10 
314 PE(18:1/18:1) PE 743.5465 C41 H78 O8 N1 P1 12.67 
315 PE(18:1/20:2) PE 769.5622 C43 H80 O8 N1 P1 13.35 
316 PE(18:1/22:5) PE 791.5465 C45 H78 O8 N1 P1 11.87 
317 PE(18:1/22:6) PE 789.5309 C45 H76 O8 N1 P1 10.89 
318 PE(18:1_18:2) PE 741.5309 C41 H76 O8 N1 P1 11.49 
319 PE(18:2/18:2) PE 739.5152 C41 H74 O8 N1 P1 10.30 
320 PE(18:2/20:4) PE 763.5152 C43 H74 O8 N1 P1 10.08 
321 PE(18:2_18:0) PE 743.5465 C41 H78 O8 N1 P1 12.98 
322 PE(20:1/20:4) PE 793.5622 C45 H80 O8 N1 P1 12.59 
323 PE(22:6/16:0) PE 763.5152 C43 H74 O8 N1 P1 10.78 
324 PE(22:6/18:0) PE 791.5465 C45 H78 O8 N1 P1 12.37 
325 PE(O-16:0/18:2) PE 701.5359 C39 H76 O7 N1 P1 12.41 
326 PE(O-16:0/20:4) PE 725.5359 C41 H76 O7 N1 P1 12.24 
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327 PE(O-16:0/22:4) PE 753.5672 C43 H80 O7 N1 P1 13.23 
328 PE(O-16:0/22:6) PE 749.5359 C43 H76 O7 N1 P1 11.76 
329 PE(O-18:0/18:1) PE 731.5829 C41 H82 O7 N1 P1 15.11 
330 PE(O-18:0/18:2) PE 729.5672 C41 H80 O7 N1 P1 14.00 
331 PE(O-18:0/22:4) PE 781.5985 C45 H84 O7 N1 P1 14.76 
332 PE(O-18:0/22:6) PE 777.5672 C45 H80 O7 N1 P1 13.38 
333 PE(P-16:0/18:0) PE 703.5516 C39 H78 O7 N1 P1 13.53 
334 PE(P-16:0/18:3) PE 697.5046 C39 H72 O7 N1 P1 11.13 
335 PE(P-16:0/20:4) PE 723.5203 C41 H74 O7 N1 P1 11.90 
336 PE(P-16:0/20:5) PE 721.5046 C41 H72 O7 N1 P1 10.90 
337 PE(P-16:0/22:6) PE 747.5203 C43 H74 O7 N1 P1 11.49 
338 PE(P-16:0p/18:1) PE 701.5359 C39 H76 O7 N1 P1 13.35 
339 PE(P-16:0p/18:2) PE 699.5203 C39 H74 O7 N1 P1 12.16 
340 PE(P-18:0/16:0) PE 703.5516 C39 H78 O7 N1 P1 14.79 
341 PE(P-18:0/18:1) PE 729.5672 C41 H80 O7 N1 P1 14.87 
342 PE(P-18:0/18:2) PE 727.5516 C41 H78 O7 N1 P1 13.75 
343 PE(P-18:0/20:1) PE 757.5985 C43 H84 O7 N1 P1 16.11 
344 PE(P-18:0/20:3) PE 753.5672 C43 H80 O7 N1 P1 14.27 
345 PE(P-18:0/20:4) PE 751.5516 C43 H78 O7 N1 P1 13.50 
346 PE(P-18:0/22:5) PE 777.5672 C45 H80 O7 N1 P1 14.05 
347 PE(P-18:0/22:7) PE 773.5359 C45 H76 O7 N1 P1 11.85 
348 PE(P-18:1/18:1) PE 727.5516 C41 H78 O7 N1 P1 13.43 
349 PE(P-18:1/18:2) PE 725.5359 C41 H76 O7 N1 P1 12.24 
350 PE(P-18:1/20:3) PE 751.5516 C43 H78 O7 N1 P1 12.98 
351 PE(P-18:1/20:4) PE 749.5359 C43 H76 O7 N1 P1 11.99 
352 PE(P-18:1/22:5) PE 775.5516 C45 H78 O7 N1 P1 13.10 
353 PE(P-18:1/22:6) PE 773.5359 C45 H76 O7 N1 P1 11.59 
354 PE(P-18:2/18:2) PE 723.5203 C41 H74 O7 N1 P1 11.05 
355 PE(P-18:2/20:4) PE 747.5203 C43 H74 O7 N1 P1 10.79 
356 PE(P-18:2/22:6) PE 771.5203 C45 H74 O7 N1 P1 10.40 
357 PE(P-20:0/18:1) PE 757.5985 C43 H84 O7 N1 P1 16.24 
358 PE(P-20:0/18:2) PE 755.5829 C43 H82 O7 N1 P1 15.27 
359 PE(P-20:0/20:3) PE 781.5985 C45 H84 O7 N1 P1 15.59 
360 PE(P-20:0/20:4) PE 779.5829 C45 H82 O7 N1 P1 15.02 
361 PE(P-20:0/22:5) PE 805.5985 C47 H84 O7 N1 P1 15.52 
362 PE(P-20:0/22:6) PE 803.5829 C47 H82 O7 N1 P1 14.64 
363 PE(P-20:1/18:1) PE 755.5829 C43 H82 O7 N1 P1 14.82 
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364 PE(P-20:1/20:4) PE 777.5672 C45 H80 O7 N1 P1 13.75 
365 PE(P-20:1/22:6) PE 801.5672 C47 H80 O7 N1 P1 13.05 
366 PG(16:0/18:1) PG 748.5254 C40 H77 O10 N0 

P1 
11.55 

367 PG(16:0/18:2) PG 746.5098 C40 H75 O10 N0 
P1 

10.48 

368 PG(16:0/20:4) PG 770.5098 C42 H75 O10 N0 
P1 

10.30 

369 PG(18:0/18:1) PG 776.5567 C42 H81 O10 N0 
P1 

13.07 

370 PG(18:1/18:2) PG 772.5254 C42 H77 O10 N0 
P1 

10.61 

371 PI(16:0/16:0) PI 810.5258 C41 H79 O13 N0 
P1 

11.11 

372 PI(16:0/18:1) PI 836.5415 C43 H81 O13 N0 
P1 

11.27 

373 PI(16:0/18:2) PI 834.5258 C43 H79 O13 N0 
P1 

10.14 

374 PI(16:0/20:3) PI 860.5415 C45 H81 O13 N0 
P1 

10.27 

375 PI(17:0/18:2) PI 848.5415 C44 H81 O13 N0 
P1 

10.91 

376 PI(17:0/20:3) PI 874.5571 C46 H83 O13 N0 
P1 

11.30 

377 PI(17:0/20:4) PI 872.5415 C46 H81 O13 N0 
P1 

10.74 

378 PI(17:0_18:1) PI 850.5571 C44 H83 O13 N0 
P1 

12.04 

379 PI(18:0/18:2) PI 862.5571 C45 H83 O13 N0 
P1 

11.69 

380 PI(18:0/20:3) PI 888.5728 C47 H85 O13 N0 
P1 

12.09 

381 PI(18:0/20:4) PI 886.5571 C47 H83 O13 N0 
P1 

11.49 

382 PI(18:0_18:1) PI 864.5728 C45 H85 O13 N0 
P1 

12.81 

383 PI(18:1/18:1) PI 862.5571 C45 H83 O13 N0 
P1 

11.39 

384 PI(18:1_18:2) PI 860.5415 C45 H81 O13 N0 
P1 

10.27 

385 PI(18:2/18:2) PI 858.5258 C45 H79 O13 N0 
P1 

9.15 

386 PI(18:2/20:4) PI 882.5258 C47 H79 O13 N0 
P1 

9.63 

387 PI(20:2/18:0) PI 862.5571 C45 H83 O13 N0 
P1 

11.83 

388 PI(20:4/16:0) PI 858.5258 C45 H79 O13 N0 
P1 

9.97 

389 PI(20:4/18:1) PI 884.5415 C47 H81 O13 N0 
P1 

10.33 
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390 PI(20:4/20:1) PI 912.5728 C49 H85 O13 N0 
P1 

11.56 

391 PI(22:4/18:0) PI 914.5884 C49 H87 O13 N0 
P1 

12.53 

392 PI(22:5/16:0) PI 884.5415 C47 H81 O13 N0 
P1 

10.57 

393 PI(22:5/18:0) PI 912.5728 C49 H85 O13 N0 
P1 

12.10 

394 PI(22:6/16:0) PI 882.5258 C47 H79 O13 N0 
P1 

9.63 

395 PI(22:6/18:1) PI 908.5415 C49 H81 O13 N0 
P1 

9.99 

396 PS(20:0/20:4) PS 839.5676 C46 H82 O10 N1 
P1 

12.40 

397 PS(20:0p/18:2) PS 799.5727 C44 H82 O9 N1 P1 13.34 
398 PS(20:0p/20:4) PS 823.5727 C46 H82 O9 N1 P1 13.10 
399 PS(38:6p) PS 791.5101 C44 H74 O9 N1 P1 11.90 
400 SM(d17:1/23:3) SM 780.6145 C45 H85 O6 N2 P1 14.08 
401 SM(d22:1/18:2) SM 782.6302 C45 H87 O6 N2 P1 12.60 
402 SM(d28:0) SM 620.4893 C33 H69 O6 N2 P1 6.62 
403 SM(d28:1) SM 618.4737 C33 H67 O6 N2 P1 5.78 
404 SM(d29:1) SM 632.4893 C34 H69 O6 N2 P1 6.67 
405 SM(d30:0) SM 648.5206 C35 H73 O6 N2 P1 7.90 
406 SM(d30:1) SM 646.505 C35 H71 O6 N2 P1 7.32 
407 SM(d30:2) SM 644.4893 C35 H69 O6 N2 P1 6.13 
408 SM(d31:1) SM 660.5206 C36 H73 O6 N2 P1 8.02 
409 SM(d32:0) SM 676.5519 C37 H77 O6 N2 P1 9.38 
410 SM(d32:1) SM 674.5363 C37 H75 O6 N2 P1 8.79 
411 SM(d32:2) SM 672.5206 C37 H73 O6 N2 P1 7.55 
412 SM(d32:4) SM 668.4893 C37 H69 O6 N2 P1 7.34 
413 SM(d33:0) SM 690.5676 C38 H79 O6 N2 P1 10.17 
414 SM(d33:1) SM 688.5519 C38 H77 O6 N2 P1 9.57 
415 SM(d33:2) SM 686.5363 C38 H75 O6 N2 P1 9.02 
416 SM(d33:2) SM 686.5363 C38 H75 O6 N2 P1 8.35 
417 SM(d33:4) SM 682.505 C38 H71 O6 N2 P1 8.02 
418 SM(d34:0) SM 704.5832 C39 H81 O6 N2 P1 10.99 
419 SM(d34:1) SM 702.5676 C39 H79 O6 N2 P1 10.36 
420 SM(d34:2) SM 700.5519 C39 H77 O6 N2 P1 9.04 
421 SM(d34:3) SM 698.5363 C39 H75 O6 N2 P1 7.95 
422 SM(d34:3) SM 698.5363 C39 H75 O6 N2 P1 9.38 
423 SM(d34:4) SM 696.5206 C39 H73 O6 N2 P1 8.81 
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424 SM(d34:5) SM 694.505 C39 H71 O6 N2 P1 7.55 
425 SM(d35:0) SM 718.5989 C40 H83 O6 N2 P1 11.47 
426 SM(d35:0) SM 718.5989 C40 H83 O6 N2 P1 11.82 
427 SM(d35:1) SM 716.5832 C40 H81 O6 N2 P1 11.21 
428 SM(d35:1) SM 716.5832 C40 H81 O6 N2 P1 10.84 
429 SM(d35:2) SM 714.5676 C40 H79 O6 N2 P1 9.86 
430 SM(d35:2) SM 714.5676 C40 H79 O6 N2 P1 10.17 
431 SM(d35:3) SM 712.5519 C40 H77 O6 N2 P1 8.70 
432 SM(d35:4) SM 710.5363 C40 H75 O6 N2 P1 9.57 
433 SM(d36:0) SM 732.6145 C41 H85 O6 N2 P1 12.63 
434 SM(d36:1) SM 730.5989 C41 H83 O6 N2 P1 12.01 
435 SM(d36:2) SM 728.5832 C41 H81 O6 N2 P1 10.67 
436 SM(d36:3) SM 726.5676 C41 H79 O6 N2 P1 9.47 
437 SM(d36:4) SM 724.5519 C41 H77 O6 N2 P1 8.17 
438 SM(d36:5) SM 722.5363 C41 H75 O6 N2 P1 9.24 
439 SM(d36:5) SM 722.5363 C41 H75 O6 N2 P1 9.04 
440 SM(d37:0) SM 746.6302 C42 H87 O6 N2 P1 13.48 
441 SM(d37:1) SM 744.6145 C42 H85 O6 N2 P1 12.94 
442 SM(d37:1) SM 744.6145 C42 H85 O6 N2 P1 12.48 
443 SM(d37:2) SM 742.5989 C42 H83 O6 N2 P1 11.53 
444 SM(d37:2) SM 742.5989 C42 H83 O6 N2 P1 11.26 
445 SM(d37:3) SM 740.5832 C42 H81 O6 N2 P1 10.01 
446 SM(d37:4) SM 738.5676 C42 H79 O6 N2 P1 11.21 
447 SM(d37:4) SM 738.5676 C42 H79 O6 N2 P1 10.84 
448 SM(d37:5) SM 736.5519 C42 H77 O6 N2 P1 9.85 
449 SM(d38:0) SM 760.6458 C43 H89 O6 N2 P1 14.29 
450 SM(d38:1) SM 758.6302 C43 H87 O6 N2 P1 13.76 
451 SM(d38:1) SM 758.6302 C43 H87 O6 N2 P1 13.63 
452 SM(d38:2) SM 756.6145 C43 H85 O6 N2 P1 12.35 
453 SM(d38:3) SM 754.5989 C43 H83 O6 N2 P1 11.04 
454 SM(d38:3) SM 754.5989 C43 H83 O6 N2 P1 10.75 
455 SM(d38:4) SM 752.5832 C43 H81 O6 N2 P1 9.51 
456 SM(d38:5) SM 750.5676 C43 H79 O6 N2 P1 10.67 
457 SM(d38:6) SM 748.5519 C43 H77 O6 N2 P1 9.47 
458 SM(d39:0) SM 774.6615 C44 H91 O6 N2 P1 15.11 
459 SM(d39:1) SM 772.6458 C44 H89 O6 N2 P1 14.58 
460 SM(d39:2) SM 770.6302 C44 H87 O6 N2 P1 13.18 
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461 SM(d39:2) SM 770.6302 C44 H87 O6 N2 P1 12.83 
462 SM(d39:3) SM 768.6145 C44 H85 O6 N2 P1 11.97 
463 SM(d39:3) SM 768.6145 C44 H85 O6 N2 P1 11.76 
464 SM(d39:3) SM 768.6145 C44 H85 O6 N2 P1 11.52 
465 SM(d39:4) SM 766.5989 C44 H83 O6 N2 P1 12.47 
466 SM(d39:4) SM 766.5989 C44 H83 O6 N2 P1 12.93 
467 SM(d39:5) SM 764.5832 C44 H81 O6 N2 P1 11.25 
468 SM(d40:0) SM 788.6771 C45 H93 O6 N2 P1 15.73 
469 SM(d40:1) SM 786.6615 C45 H91 O6 N2 P1 15.20 
470 SM(d40:2) SM 784.6458 C45 H89 O6 N2 P1 13.60 
471 SM(d40:2) SM 784.6458 C45 H89 O6 N2 P1 14.08 
472 SM(d40:3) SM 782.6302 C45 H87 O6 N2 P1 12.29 
473 SM(d40:4) SM 780.6145 C45 H85 O6 N2 P1 13.95 
474 SM(d40:4) SM 780.6145 C45 H85 O6 N2 P1 10.97 
475 SM(d40:5) SM 778.5989 C45 H83 O6 N2 P1 10.42 
476 SM(d40:6) SM 776.5832 C45 H81 O6 N2 P1 10.76 
477 SM(d40:7) SM 774.5676 C45 H79 O6 N2 P1 9.05 
478 SM(d41:1) SM 800.6771 C46 H93 O6 N2 P1 15.59 
479 SM(d41:2) SM 798.6615 C46 H91 O6 N2 P1 14.77 
480 SM(d41:2) SM 798.6615 C46 H91 O6 N2 P1 14.31 
481 SM(d41:3) SM 796.6458 C46 H89 O6 N2 P1 13.04 
482 SM(d41:4) SM 794.6302 C46 H87 O6 N2 P1 14.59 
483 SM(d41:5) SM 792.6145 C46 H85 O6 N2 P1 10.81 
484 SM(d42:1) SM 814.6928 C47 H95 O6 N2 P1 16.52 
485 SM(d42:2) SM 812.6771 C47 H93 O6 N2 P1 15.52 
486 SM(d42:2) SM 812.6771 C47 H93 O6 N2 P1 15.01 
487 SM(d42:3) SM 810.6615 C47 H91 O6 N2 P1 13.79 
488 SM(d42:4) SM 808.6458 C47 H89 O6 N2 P1 12.71 
489 SM(d42:4) SM 808.6458 C47 H89 O6 N2 P1 15.33 
490 SM(d42:4) SM 808.6458 C47 H89 O6 N2 P1 12.51 
491 SM(d42:5) SM 806.6302 C47 H87 O6 N2 P1 11.59 
492 SM(d42:6) SM 804.6145 C47 H85 O6 N2 P1 10.57 
493 SM(d42:6) SM 804.6145 C47 H85 O6 N2 P1 10.29 
494 SM(d42:7) SM 802.5989 C47 H83 O6 N2 P1 9.94 
495 SM(d42:7) SM 802.5989 C47 H83 O6 N2 P1 11.19 
496 SM(d42:7) SM 802.5989 C47 H83 O6 N2 P1 9.29 
497 SM(d42:8) SM 800.5832 C47 H81 O6 N2 P1 16.82 
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498 SM(d43:1) SM 828.7084 C48 H97 O6 N2 P1 17.07 
499 SM(d43:1) SM 828.7084 C48 H97 O6 N2 P1 16.82 
500 SM(d43:2) SM 826.6928 C48 H95 O6 N2 P1 15.40 
501 SM(d43:2) SM 826.6928 C48 H95 O6 N2 P1 15.71 
502 SM(d43:2) SM 826.6928 C48 H95 O6 N2 P1 16.20 
503 SM(d43:3) SM 824.6771 C48 H93 O6 N2 P1 14.55 
504 SM(d43:3) SM 824.6771 C48 H93 O6 N2 P1 14.19 
505 SM(d43:4) SM 822.6615 C48 H91 O6 N2 P1 15.93 
506 SM(d43:4) SM 822.6615 C48 H91 O6 N2 P1 13.48 
507 SM(d43:5) SM 820.6458 C48 H89 O6 N2 P1 14.32 
508 SM(d43:6) SM 818.6302 C48 H87 O6 N2 P1 13.42 
509 SM(d43:7) SM 816.6145 C48 H85 O6 N2 P1 11.95 
510 SM(d43:8) SM 814.5989 C48 H83 O6 N2 P1 10.81 
511 SM(d44:1) SM 842.7241 C49 H99 O6 N2 P1 17.31 
512 SM(d44:1) SM 842.7241 C49 H99 O6 N2 P1 17.05 
513 SM(d44:1) SM 842.7241 C49 H99 O6 N2 P1 17.54 
514 SM(d44:2) SM 840.7084 C49 H97 O6 N2 P1 16.77 
515 SM(d44:2) SM 840.7084 C49 H97 O6 N2 P1 16.06 
516 SM(d44:2) SM 840.7084 C49 H97 O6 N2 P1 16.31 
517 SM(d44:3) SM 838.6928 C49 H95 O6 N2 P1 15.26 
518 SM(d44:4) SM 836.6771 C49 H93 O6 N2 P1 14.03 
519 SM(d44:5) SM 834.6615 C49 H91 O6 N2 P1 12.88 
520 SM(d44:6) SM 832.6458 C49 H89 O6 N2 P1 11.61 
521 SM(d44:6) SM 832.6458 C49 H89 O6 N2 P1 12.03 
522 SM(d44:7) SM 830.6302 C49 H87 O6 N2 P1 10.74 
523 SM(d44:7) SM 830.6302 C49 H87 O6 N2 P1 12.21 
524 SM(d44:7) SM 830.6302 C49 H87 O6 N2 P1 13.06 
525 SM(d44:8) SM 828.6145 C49 H85 O6 N2 P1 11.27 
526 SM(d44:8) SM 828.6145 C49 H85 O6 N2 P1 11.58 
527 SM(d45:4) SM 850.6928 C50 H95 O6 N2 P1 17.07 
528 SM(d45:4) SM 850.6928 C50 H95 O6 N2 P1 16.82 
529 SM(d45:5) SM 848.6771 C50 H93 O6 N2 P1 16.21 
530 SM(d45:5) SM 848.6771 C50 H93 O6 N2 P1 15.71 
531 SM(d45:5) SM 848.6771 C50 H93 O6 N2 P1 15.41 
532 SM(d45:6) SM 846.6615 C50 H91 O6 N2 P1 14.54 
533 SM(d45:6) SM 846.6615 C50 H91 O6 N2 P1 14.20 
534 SM(d46:5) SM 862.6928 C51 H95 O6 N2 P1 16.31 
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535 SM(d46:6) SM 860.6771 C51 H93 O6 N2 P1 15.28 
536 SM(d46:7) SM 858.6615 C51 H91 O6 N2 P1 14.07 
537 SM(d46:8) SM 856.6458 C51 H89 O6 N2 P1 12.89 
538 TG(10:0_10:0_12:0) TG 582.4859 C35 H66 O6 13.55 
539 TG(10:0_10:0_18:1) TG 664.5642 C41 H76 O6 16.42 
540 TG(10:0_10:0_18:2) TG 662.5485 C41 H74 O6 15.40 
541 TG(10:0_10:0_18:3) TG 660.5329 C41 H72 O6 14.38 
542 TG(10:0_12:0_12:0) TG 610.5172 C37 H70 O6 14.94 
543 TG(10:0_12:0_14:1) TG 636.5329 C39 H72 O6 15.20 
544 TG(10:0_12:0_18:1) TG 692.5955 C43 H80 O6 17.34 
545 TG(10:0_12:0_18:2) TG 690.5798 C43 H78 O6 16.52 
546 TG(10:0_12:0_18:3) TG 688.5642 C43 H76 O6 15.69 
547 TG(10:0_12:0_20:4) TG 714.5798 C45 H78 O6 17.33 
548 TG(10:0_12:0_20:5) TG 712.5642 C45 H76 O6 16.52 
549 TG(10:0_18:1_22:6) TG 820.6581 C53 H88 O6 17.84 
550 TG(10:0_18:2_18:2) TG 770.6424 C49 H86 O6 17.67 
551 TG(10:0_18:2_18:3) TG 768.6268 C49 H84 O6 17.05 
552 TG(10:0_18:3_18:3) TG 766.6111 C49 H82 O6 17.71 
553 TG(10:0_18:3_22:6) TG 816.6268 C53 H84 O6 17.29 
554 TG(12:0_12:0_12:0) TG 638.5485 C39 H74 O6 16.24 
555 TG(12:0_12:0_14:0) TG 666.5798 C41 H78 O6 17.28 
556 TG(12:0_12:0_17:1) TG 706.6111 C44 H82 O6 17.77 
557 TG(12:0_12:0_18:2) TG 718.6111 C45 H82 O6 17.45 
558 TG(12:0_12:0_18:3) TG 716.5955 C45 H80 O6 16.81 
559 TG(12:0_12:0_18:3) TG 716.5955 C45 H80 O6 18.12 
560 TG(12:0_12:0_20:4) TG 742.6111 C47 H82 O6 18.12 
561 TG(12:0_12:0_20:5) TG 740.5955 C47 H80 O6 17.45 
562 TG(12:0_14:0_14:0) TG 694.6111 C43 H82 O6 18.12 
563 TG(12:0_14:0_18:2) TG 746.6424 C47 H86 O6 18.25 
564 TG(12:0_14:0_18:3) TG 744.6268 C47 H84 O6 17.71 
565 TG(12:0_14:0_18:3) TG 744.6268 C47 H84 O6 18.82 
566 TG(12:0_14:0_20:4) TG 770.6424 C49 H86 O6 18.81 
567 TG(12:0_14:1_20:5) TG 766.6111 C49 H82 O6 17.59 
568 TG(12:0_17:1_18:2) TG 786.6737 C50 H90 O6 18.61 
569 TG(12:0_18:2_18:2) TG 798.6737 C51 H90 O6 18.36 
570 TG(12:0_18:2_18:3) TG 796.6581 C51 H88 O6 17.85 
571 TG(12:0_18:2_20:5) TG 820.6581 C53 H88 O6 18.37 
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572 TG(12:0_18:2_22:6) TG 846.6737 C55 H90 O6 17.89 
573 TG(12:0_18:3_18:3) TG 794.6424 C51 H86 O6 17.29 
574 TG(12:0_18:3_20:5) TG 818.6424 C53 H86 O6 17.84 
575 TG(14:0_14:0_20:4) TG 798.6737 C51 H90 O6 19.39 
576 TG(14:0_14:0_22:6) TG 822.6737 C53 H90 O6 18.50 
577 TG(14:0_17:1_18:2) TG 814.705 C52 H94 O6 19.21 
578 TG(14:0_18:2_18:3) TG 824.6894 C53 H92 O6 18.56 
579 TG(14:0_18:2_20:5) TG 848.6894 C55 H92 O6 18.99 
580 TG(14:0_18:3_20:4) TG 848.6894 C55 H92 O6 19.31 
581 TG(14:0_20:5_20:5) TG 870.6737 C57 H90 O6 18.36 
582 TG(15:0_10:0_14:0) TG 680.5955 C42 H80 O6 17.57 
583 TG(15:0_10:0_18:1) TG 734.6424 C46 H86 O6 18.35 
584 TG(15:0_12:0_14:0) TG 708.6268 C44 H84 O6 18.36 
585 TG(15:0_12:0_14:0) TG 708.6268 C44 H84 O6 18.50 
586 TG(15:0_12:0_18:1) TG 762.6737 C48 H90 O6 18.99 
587 TG(15:0_12:0_18:2) TG 760.6581 C48 H88 O6 18.59 
588 TG(15:0_14:0_14:0) TG 736.6581 C46 H88 O6 18.99 
589 TG(15:0_14:0_16:0) TG 764.6894 C48 H92 O6 19.56 
590 TG(15:0_14:0_18:1) TG 790.705 C50 H94 O6 19.66 
591 TG(15:0_14:0_18:2) TG 788.6894 C50 H92 O6 19.15 
592 TG(15:0_14:0_18:3) TG 786.6737 C50 H90 O6 18.78 
593 TG(15:0_16:0_16:0) TG 792.7207 C50 H96 O6 20.07 
594 TG(15:0_16:0_18:1) TG 818.7363 C52 H98 O6 20.04 
595 TG(15:0_16:0_18:2) TG 816.7207 C52 H96 O6 19.65 
596 TG(15:0_16:1_18:3) TG 812.6894 C52 H92 O6 19.01 
597 TG(15:0_18:1_18:1) TG 844.752 C54 H100 O6 18.91 
598 TG(15:0_18:1_18:2) TG 842.7363 C54 H98 O6 19.73 
599 TG(15:0_18:1_20:5) TG 864.7207 C56 H96 O6 19.62 
600 TG(15:0_18:1_22:6) TG 890.7363 C58 H98 O6 19.35 
601 TG(15:0_18:2_18:2) TG 840.7207 C54 H96 O6 19.29 
602 TG(15:0_18:2_18:3) TG 838.705 C54 H94 O6 19.69 
603 TG(15:0_18:2_20:5) TG 862.705 C56 H94 O6 19.30 
604 TG(15:0_18:2_22:6) TG 888.7207 C58 H96 O6 18.91 
605 TG(15:0_8:0_16:0) TG 680.5955 C42 H80 O6 17.74 
606 TG(16:0_10:0_22:6) TG 794.6424 C51 H86 O6 17.80 
607 TG(16:0_12:0_18:1) TG 776.6894 C49 H92 O6 19.39 
608 TG(16:0_12:0_18:3) TG 772.6581 C49 H88 O6 19.41 



 

 

 

154 

609 TG(16:0_14:0_14:0) TG 750.6737 C47 H90 O6 19.29 
610 TG(16:0_14:0_18:1) TG 804.7207 C51 H96 O6 19.91 
611 TG(16:0_14:0_18:3) TG 800.6894 C51 H92 O6 19.09 
612 TG(16:0_14:0_20:4) TG 826.705 C53 H94 O6 19.30 
613 TG(16:0_14:0_22:6) TG 850.705 C55 H94 O6 19.11 
614 TG(16:0_14:1_18:3) TG 798.6737 C51 H90 O6 18.71 
615 TG(16:0_16:0_16:0) TG 806.7363 C51 H98 O6 20.40 
616 TG(16:0_16:0_17:0) TG 820.752 C52 H100 O6 20.51 
617 TG(16:0_16:0_17:1) TG 818.7363 C52 H98 O6 20.54 
618 TG(16:0_16:0_18:1) TG 832.752 C53 H100 O6 20.37 
619 TG(16:0_16:0_20:4) TG 854.7363 C55 H98 O6 19.83 
620 TG(16:0_16:0_20:5) TG 852.7207 C55 H96 O6 20.01 
621 TG(16:0_16:0_24:0) TG 918.8615 C59 H114 O6 21.88 
622 TG(16:0_16:1_18:1) TG 830.7363 C53 H98 O6 20.00 
623 TG(16:0_16:1_18:2) TG 828.7207 C53 H96 O6 19.65 
624 TG(16:0_17:0_18:1) TG 846.7676 C54 H102 O6 20.48 
625 TG(16:0_17:1_18:1) TG 844.752 C54 H100 O6 20.53 
626 TG(16:0_18:1_18:1) TG 858.7676 C55 H102 O6 20.35 
627 TG(16:0_18:1_20:4) TG 880.752 C57 H100 O6 20.34 
628 TG(16:0_18:1_20:5) TG 878.7363 C57 H98 O6 19.98 
629 TG(16:0_18:2_18:2) TG 854.7363 C55 H98 O6 19.55 
630 TG(16:0_18:2_18:3) TG 852.7207 C55 H96 O6 19.19 
631 TG(16:0_18:2_20:4) TG 878.7363 C57 H98 O6 19.37 
632 TG(16:0_18:2_20:5) TG 876.7207 C57 H96 O6 19.59 
633 TG(16:0_18:2_22:4) TG 906.7676 C59 H102 O6 19.81 
634 TG(16:0_18:2_22:5) TG 904.752 C59 H100 O6 19.64 
635 TG(16:0_18:2_22:6) TG 902.7363 C59 H98 O6 19.20 
636 TG(16:0_18:3_20:5) TG 874.705 C57 H94 O6 19.18 
637 TG(16:0_20:4_22:6) TG 926.7363 C61 H98 O6 19.02 
638 TG(16:0_20:5_22:6) TG 924.7207 C61 H96 O6 18.61 
639 TG(16:0_20:5_22:6) TG 924.7207 C61 H96 O6 19.21 
640 TG(16:0_22:5_22:6) TG 952.752 C63 H100 O6 19.22 
641 TG(16:0_22:6_22:6) TG 950.7363 C63 H98 O6 18.81 
642 TG(16:1_12:0_20:4) TG 796.6581 C51 H88 O6 18.91 
643 TG(16:1_12:0_20:5) TG 794.6424 C51 H86 O6 18.27 
644 TG(16:1_14:1_16:1) TG 772.6581 C49 H88 O6 18.27 
645 TG(16:1_17:1_18:1) TG 842.7363 C54 H98 O6 18.28 
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646 TG(16:1_18:2_18:2) TG 852.7207 C55 H96 O6 19.02 
647 TG(16:1_18:2_18:3) TG 850.705 C55 H94 O6 18.80 
648 TG(16:1_18:2_22:6) TG 900.7207 C59 H96 O6 18.61 
649 TG(16:1_18:3_20:5) TG 872.6894 C57 H92 O6 18.80 
650 TG(16:2_18:2_18:3) TG 848.6894 C55 H92 O6 18.36 
651 TG(17:0_18:1_18:1) TG 872.7833 C56 H104 O6 20.56 
652 TG(17:0_18:1_18:2) TG 870.7676 C56 H102 O6 20.11 
653 TG(17:0_18:1_20:4) TG 894.7676 C58 H102 O6 20.07 
654 TG(17:0_18:2_20:4) TG 892.752 C58 H100 O6 19.64 
655 TG(18:0_12:0_16:0) TG 778.705 C49 H94 O6 19.93 
656 TG(18:0_16:0_16:0) TG 834.7676 C53 H102 O6 20.82 
657 TG(18:0_16:0_17:0) TG 848.7833 C54 H104 O6 20.92 
658 TG(18:0_16:0_18:0) TG 862.7989 C55 H106 O6 21.20 
659 TG(18:0_16:0_18:1) TG 860.7833 C55 H104 O6 20.79 
660 TG(18:0_16:0_20:4) TG 882.7676 C57 H102 O6 20.79 
661 TG(18:0_16:0_22:6) TG 906.7676 C59 H102 O6 20.16 
662 TG(18:0_17:0_18:0) TG 876.8146 C56 H108 O6 21.31 
663 TG(18:0_17:0_18:1) TG 874.7989 C56 H106 O6 20.96 
664 TG(18:0_17:0_20:4) TG 896.7833 C58 H104 O6 20.54 
665 TG(18:0_18:0_18:0) TG 890.8302 C57 H110 O6 21.56 
666 TG(18:0_18:0_18:1) TG 888.8146 C57 H108 O6 21.17 
667 TG(18:0_18:1_18:1) TG 886.7989 C57 H106 O6 20.77 
668 TG(18:0_18:1_20:0) TG 916.8459 C59 H112 O6 21.53 
669 TG(18:0_18:1_20:4) TG 908.7833 C59 H104 O6 20.29 
670 TG(18:0_18:1_20:4) TG 908.7833 C59 H104 O6 20.75 
671 TG(18:0_18:1_22:0) TG 944.8772 C61 H116 O6 21.86 
672 TG(18:0_18:1_22:5) TG 934.7989 C61 H106 O6 20.43 
673 TG(18:0_18:1_22:6) TG 932.7833 C61 H104 O6 20.13 
674 TG(18:0_18:1_22:6) TG 932.7833 C61 H104 O6 20.51 
675 TG(18:0_18:1_24:0) TG 972.9085 C63 H120 O6 22.16 
676 TG(18:0_20:0_22:0) TG 974.9241 C63 H122 O6 22.45 
677 TG(18:0_20:4_22:4) TG 958.7989 C63 H106 O6 20.11 
678 TG(18:0_20:4_22:6) TG 954.7676 C63 H102 O6 19.59 
679 TG(18:0_22:0_22:0) TG 1002.9554 C65 H126 O6 22.73 
680 TG(18:1_12:0_12:0) TG 720.6268 C45 H84 O6 18.12 
681 TG(18:1_12:0_14:0) TG 748.6581 C47 H88 O6 18.82 
682 TG(18:1_12:0_18:1) TG 802.705 C51 H94 O6 19.40 
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683 TG(18:1_12:0_18:2) TG 800.6894 C51 H92 O6 18.90 
684 TG(18:1_12:0_20:5) TG 822.6737 C53 H90 O6 18.89 
685 TG(18:1_14:0_17:1) TG 816.7207 C52 H96 O6 20.08 
686 TG(18:1_14:0_18:1) TG 830.7363 C53 H98 O6 19.89 
687 TG(18:1_14:0_18:2) TG 828.7207 C53 H96 O6 19.47 
688 TG(18:1_14:0_18:3) TG 826.705 C53 H94 O6 18.99 
689 TG(18:1_14:0_20:4) TG 852.7207 C55 H96 O6 19.87 
690 TG(18:1_17:1_18:1) TG 870.7676 C56 H102 O6 18.90 
691 TG(18:1_17:1_18:2) TG 868.752 C56 H100 O6 20.10 
692 TG(18:1_18:1_18:1) TG 884.7833 C57 H104 O6 20.34 
693 TG(18:1_18:1_18:2) TG 882.7676 C57 H102 O6 19.95 
694 TG(18:1_18:1_22:0) TG 942.8615 C61 H114 O6 21.51 
695 TG(18:1_18:1_22:4) TG 934.7989 C61 H106 O6 20.16 
696 TG(18:1_18:1_22:5) TG 932.7833 C61 H104 O6 19.80 
697 TG(18:1_18:1_22:6) TG 930.7676 C61 H102 O6 20.16 
698 TG(18:1_18:2_18:2) TG 880.752 C57 H100 O6 19.55 
699 TG(18:1_18:2_20:2) TG 908.7833 C59 H104 O6 20.16 
700 TG(18:1_18:2_20:4) TG 904.752 C59 H100 O6 19.39 
701 TG(18:1_18:2_20:4) TG 904.752 C59 H100 O6 20.08 
702 TG(18:1_18:2_22:0) TG 940.8459 C61 H112 O6 21.23 
703 TG(18:1_18:2_22:5) TG 930.7676 C61 H102 O6 19.40 
704 TG(18:1_18:2_22:6) TG 928.752 C61 H100 O6 18.72 
705 TG(18:1_18:3_24:0) TG 966.8615 C63 H114 O6 21.32 
706 TG(18:1_20:3_20:4) TG 930.7676 C61 H102 O6 20.28 
707 TG(18:1_20:4_20:4) TG 928.752 C61 H100 O6 19.82 
708 TG(18:1_20:4_22:0) TG 964.8459 C63 H112 O6 21.09 
709 TG(18:1_20:4_24:0) TG 992.8772 C65 H116 O6 21.46 
710 TG(18:2_14:1_17:1) TG 812.6894 C52 H92 O6 18.75 
711 TG(18:2_17:1_18:2) TG 866.7363 C56 H98 O6 19.30 
712 TG(18:2_17:1_22:6) TG 914.7363 C60 H98 O6 18.90 
713 TG(18:2_18:2_18:2) TG 878.7363 C57 H98 O6 19.11 
714 TG(18:2_18:2_20:4) TG 902.7363 C59 H98 O6 18.95 
715 TG(18:2_18:2_22:6) TG 926.7363 C61 H98 O6 18.71 
716 TG(18:2_18:2_22:6) TG 926.7363 C61 H98 O6 19.37 
717 TG(18:2_20:4_22:6) TG 950.7363 C63 H98 O6 18.50 
718 TG(18:2_22:6_22:6) TG 974.7363 C65 H98 O6 18.27 
719 TG(18:3_14:1_18:2) TG 822.6737 C53 H90 O6 18.13 
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720 TG(18:3_17:1_18:2) TG 864.7207 C56 H96 O6 18.88 
721 TG(18:3_18:2_18:2) TG 876.7207 C57 H96 O6 18.68 
722 TG(18:3_18:2_18:3) TG 874.705 C57 H94 O6 18.23 
723 TG(18:3_18:2_18:3) TG 874.705 C57 H94 O6 18.59 
724 TG(18:3_18:2_20:5) TG 898.705 C59 H94 O6 18.06 
725 TG(18:3_18:2_20:5) TG 898.705 C59 H94 O6 18.69 
726 TG(18:3_18:2_20:5) TG 898.705 C59 H94 O6 19.00 
727 TG(18:3_18:2_22:6) TG 924.7207 C61 H96 O6 18.26 
728 TG(18:3_18:3_20:3) TG 900.7207 C59 H96 O6 18.80 
729 TG(18:3_18:3_20:5) TG 896.6894 C59 H92 O6 18.21 
730 TG(20:0_18:1_18:1) TG 914.8302 C59 H110 O6 20.72 
731 TG(20:0_18:1_18:1) TG 914.8302 C59 H110 O6 21.14 
732 TG(20:0_18:1_18:2) TG 912.8146 C59 H108 O6 20.84 
733 TG(20:1_18:1_18:1) TG 912.8146 C59 H108 O6 20.72 
734 TG(20:5_14:1_18:2) TG 846.6737 C55 H90 O6 18.55 
735 TG(20:5_17:1_18:2) TG 888.7207 C58 H96 O6 18.74 
736 TG(20:5_17:1_18:2) TG 888.7207 C58 H96 O6 19.31 
737 TG(20:5_18:2_18:2) TG 900.7207 C59 H96 O6 19.38 
738 TG(20:5_18:2_22:6) TG 948.7207 C63 H96 O6 18.04 
739 TG(20:5_18:2_22:6) TG 948.7207 C63 H96 O6 18.70 
740 TG(22:0_18:2_18:2) TG 938.8302 C61 H110 O6 20.93 
741 TG(22:5_17:1_18:2) TG 916.752 C60 H100 O6 19.35 
742 TG(22:5_18:2_18:2) TG 928.752 C61 H100 O6 19.19 
743 TG(24:0_18:2_20:5) TG 988.8459 C65 H112 O6 21.31 
744 TG(8:0_10:0_10:0) TG 526.4233 C31 H58 O6 10.44 
745 TG(8:0_10:0_12:0) TG 554.4546 C33 H62 O6 12.01 
746 TG(8:0_10:0_18:2) TG 634.5172 C39 H70 O6 13.99 
747 TG(8:0_10:0_20:5) TG 656.5016 C41 H68 O6 13.99 
748 TG(8:0_12:0_18:3) TG 660.5329 C41 H72 O6 16.41 
749 TG(8:0_14:0_20:5) TG 712.5642 C45 H76 O6 16.84 
750 TG(8:0_18:2_18:2) TG 742.6111 C47 H82 O6 16.85 
751 TG(8:0_18:2_18:3) TG 740.5955 C47 H80 O6 16.10 
752 TG(8:0_8:0_10:0) TG 498.392 C29 H54 O6 8.97 
753 TG(8:0_8:0_8:0) TG 470.3607 C27 H50 O6 7.58 

 

 


