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TOMLINSON, JOHN GARRETT, Ed. D. Middle School Science Teachers' Conceptions 
of the Nature of Scientific Knowledge. (1992) Directed by Dr. H. Svi Shapiro. 178 pp. 

The purpose of this interpretive inquiry study was to ascertain the conceptions of the 

nature of scientific knowledge of middle school science teachers. Initially, a model of the 

nature of scientific knowledge was developed from the literature. Scientific knowledge is 

characterized as humanistic, social, historical, based on specific beliefs, observation based, 

a result of inquiry, composed of knowledge structures, and unique. The model served as a 

comprehensive framework against which to compare teachers' conceptions of the nature of 

scientific knowledge. 

The study involved six successful middle school science teachers from urban and 

suburban/rural school districts. Each subject participated in two unstructured interviews 

with the researcher. 

Results indicate that the teachers possessed a somewhat idealistic view of scientists, a 

limited conception of the role of scientific communities in the production of knowledge, a 

confusion of science and technology, a conception of a standardized methodology in 

science, a positivist perspective of knowledge, and a realist/pluralistic realist view of 

knowledge. In addition, subjects confused the functions of laws and theories, possessed a 

popular conception of scientific facts, viewed historical knowledge as cumulative, and had 

difficulty relating the basic assumptions of science as well as other ways of knowing. 

Therefore, the study found that the subjects possessed a less than adequate view of the 

nature of scientific knowledge. 

The study concludes that these middle school science teachers were poorly prepared 

to present to their students an adequate view of the nature of scientific knowledge. Thus, 

increased emphasis on the nature of scientific knowledge in teacher preservice and 

inservice training is needed. Recommended changes include academic work/teacher 

training in the history, philosophy, and sociology of science and the integration of the 



dimensions of the nature of scientific knowledge with pedagogy as well as curriculum 

materials. In addition, an internship at a research laboratory for preservice and inservice 

teachers is recommended. 
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INTRODUCTION: 

PERSONAL PROLOGUE AND PREFACE 

Personal Prologue 

I am a science educator. A significant part of my being is connected to the discipline 

of science. Even my relationships with family and friends are influenced by my science 

self-view. My training in science has influenced how I perceive the natural world around 

me. I am constantly observing with astonishment the intricacies and complexities of 

nature. It is humbling to realize how much there is to know and how little is known about 

the natural world. Science provided me with a mental framework to attempt to understand 

the natural world. Yet, I began to question that mental framework that I had learned 

through schooling and educational experiences. This dissertation was motivated by that 

questioning process in which I began to leam a different perspective of science as a way of 

knowing. 

My interest in science began as a child with the wonderment of the natural world. 

The "why" and "how" questions began to emerge as I attempted to relate my being to the 

natural setting in which I was positioned. In school, I began to learn answers to my 

questions and my curiosity grew. I attempted to understand all the many concepts in the 

forms of facts, theories and laws of the science discipline, although not really 

comprehending the personal significance of learning the information. I experienced many 

successes with "knowing" about science and was encouraged by several significant 

individuals to pursue science as a career. Not realizing it, science was beginning to become 

more and more a part of my being and began to influence my world view. 

In undergraduate school, the complexities of the natural world began to make an 

impression on me. The zoology, botany, physics, and chemistry courses all promoted an 
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intricate natural world view that transformed my high school visions into a new view of the 

structural reality of nature. I was astonished by the amount that humankind knew about the 

natural world and began to feel comfortable with the conceived certainness portrayed by 

scientific knowledge. It all seemed very objective based on the absoluteness of 

observational data and proved by the logic of scientific methodology. It was an intriguing 

world in which to be involved. 

However, in graduate school, a transformation began to occur. It began when I read 

Thomas Kuhn's book, The Structure of Scientific Revolutions. Gradually a new vision 

began to form about this world of science that I had felt so comfortable being a participant. 

I began to wonder about the certainness and absoluteness of knowing in science. I thought 

about my feeling of the superiority of science as a way of knowing. I began to realize that 

science had been reified in my training to the extent that the humanness of it was not 

apparent. Motivated by Kuhn's work, I sought out other works on the subject. Now 

instead of reading about the subject matter in science, I began to read about the scientific 

enterprise. Immediately, I realized I had moved into the realm of the philosophy, history, 

and sociology of science. A completely different view of the world of science in which I 

previously felt so contented began to emerge. It was an uncomfortable transformation in 

which I learned how vulnerable our scientific knowledge really is. I believe that so much 

of humans' identity is interwoven with their visions of the natural world that there is a 

tendency to "want" our knowledge of it to be certain. However, as history has shown, our 

"knowledge" of today may become the falsehoods of tomorrow. 

Because of this re-awakening of my science world view, I began to reflect on the 

science education of students. Do students misunderstand science as I once did seeing it in 

terms of reification and certainty? I researched the question in the literature and discovered 

my fear was substantiated. The very schooling process of which I am a part was 
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producing students who do not fully understand the nature of scientific knowledge 

particularly from a historical, philosophical, and sociological perspective. The literature 

(American Association for the Advancement of Science, 1989; Elliott & Nagel, 1987; 

Horner & Rubba, 1978; Kuhn, 1970; Padilla, 1983; Rubba, Horner, & Smith, 1981; 

Tyson & Woodard, 1989; Yager, 1983) advocated that the textbook represents the "truth" 

about the natural world for students, and it legitimized a science world view of certainty. 

My concern moved to the classroom teacher who is the key to any change in students' 

visions. As with students, the literature (Behnke, 1961; Blakely, 1987; Ogunniyi, 1982; 

Rowe, 1976) confirmed my suspicions. As I had been trained, teachers likewise were 

being enculturated into a science world view that science is a positivist, factual way of 

knowing and, in turn, they were portraying science in that way to students. From this very 

personal concern for science education, I wanted to learn more about the teacher views of 

scientific knowledge. I wanted to spend time with teachers discussing in detail their 

conceptions of the nature of scientific knowledge. 

Thus, the topic and methodology for this dissertation was born. I decided to talk 

with teachers about their conceptions of scientific knowledge through an unstructured 

interview. It would provide me with the framework as well as the flexibility to probe their 

subjective realities. However, first I needed an understanding of this concept "scientific 

knowledge." From an exhaustive review of the literature, I constructed a "model" of this 

entity to compare teachers' responses. It took me well over a year to complete this model. 

It was very difficult because of the numerous viewpoints of the historical, philosophical, 

and sociological nature of scientific knowledge. I had to make decisions on which ideas to 

incorporate in my model, and I found myself reexamining many times the current model as 

I would read a newly acquired book or article on the subject. However, I am currently 

satisfied with my constructed model. 
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I do not concede any special validity to the model, only that the contextual choices 

made were based on the extensive reading of the topic. It was a subjective procedure, but 

choices had to be made as in any construction of a model. I know that in the future as I 

further explore this topic my ideas may change, but that is the nature of learning. I can 

only say presently that it is the best I can do, and I am willing to defend it as a credible 

model. 

I thoroughly enjoyed the many interactions with the subjects. They enthusiastically 

discussed their views with me and wanted to learn my viewpoint. I could not help but 

perceive a thankfulness in the subjects that someone wanted to listen to what they had to 

say. Many times they struggled with an answer or exhibited "structured silences" as they 

searched for an answer. Numerous times they expressed the realization that they had not 

ever thought about many of the questions I asked. It became obvious that many of the 

concepts of the nature of scientific knowledge were very taken-for-granted by the 

participant-teachers. The terms were learned in their training but they were never analyzed 

thoroughly. It was at times uncomfortable for them to admit they did not know an answer 

or understand some very basic concepts of their discipline. For example, David remarked 

in his frustration, "That's pretty sad for a science teacher not to know that". However, all 

the subjects wanted to know more about my research and after the completion of the 

dissertation, I will visit with them to discuss their viewpoints in relation to the model. I 

owe that to them as fellow human beings who are searching for an adequate science world 

view. The teacher-participants inspired me during the years of writing the dissertation. 

After an interview, I was always energized by their interest and enthusiasm. I felt that I 

truly had a topic of importance to the science education community. 

The most difficult part of the dissertation was the analysis of the subjects' written 

narratives. I wanted to portray as accurately as possible the subjects' views. I owed that 
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endeavor to them for trusting me with their personal conceptions of scientific knowledge. 

It was in writing the interpretive narratives that I constandy had to be aware of my 

subjective mental frameworks that would be imposed on the data. I struggled with the 

analysis always reading the written naiTatives many times to enhance an adequate analysis. 

For some reason, I always would wonder if the narratives would be interpreted in the same 

way by someone else. However, the frameworks of analysis are the dimensions of the 

model of scientific knowledge. They are outlined and obvious to those who read them. It 

was the subjective decision making on "pertinent" data that I had to be constandy 

analyzing. I can only say that Ijhave to the best of my ability constructed an analysis based 

on the data and shaped by the frameworks of the model. I am confident that my subjects 

would agree that my descriptions portray their conceptions of the nature of scientific 

knowledge. 

I believe this study will make a contribution to the science education community 

because of its depth. Only in the detailed nature of the interviews did the many meanings 

of scientific terminology and concepts become evident. I believe my recommendations for 

the improvement of the deficiencies in science teacher world-views would improve their 

conceptions of the nature of scientific knowledge. 

As human beings we have a tendency to believe we can find the truth about nature. 

We have expended a large amount of energy and resources in an attempt to know about the 

natural world around us. We are frustrated at times by how little we know and the 

tentativeness of our knowledge. We must accept that we are limited knowledge seekers 

and the sociological, historical, theoretical, and philosophical aspects of scientific inquiry 

influence the resulting knowledge. It is in an in-depth study of scientific knowledge that an 

appreciation of its tentativeness and lack of absolute validity can be appreciated. It is 

uncomfortable to realize we don't "know" for certain, but this realization must be part of 
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our struggle to comprehend the natural world. It is in our limitations as human beings that 

strength can be found to continue our search for understanding. "To know" is tentative. 

Scientific knowledge is not the truth but human's attempt to create personal understanding. 

The Greek philosopher Zenophanes (Magee, 1985) says it best by explaining: 

The gods did not reveal, from the beginning, 
All things to us, but in the course of time 
Through seeking we may learn and know things better. 
But as for certain truth, no man has known it, 
Nor shall he know it, neither of the gods 
Nor yet of all the things of which I speak. 
For even if by chance he were to utter 
The final truth, he would himself not know it: 
For all is but a woven web of guesses, (p. 24) 

Preface 

This study is a portrayal of the conceptions of six middle school science teachers 

about the nature of scientific knowledge. An attempt was made to reveal the subjective 

realities of the participants in an effort to make explicit the obvious as well as tacit meanings 

conceived about scientific knowledge. The importance of teachers in conveying an 

adequate vision to students of the dynamic nature of scientific knowledge cannot be 

overemphasized. Only by understanding teachers' conceptions in an in-depth manner can 

strategies be taken to improve deficiencies in their comprehension of the nature of scientific 

knowledge. The term "nature of scientific knowledge" is a very complex entity which 

involves historical, sociological, humanistic, and philosophical interactions. The study 

attempts to bring all of those elements together by the creation of a model of the nature of 

scientific knowledge. The eight dimensions of the model describe the complexities of these 

elements and their interrelationships. In addition, the model served as an interpretive 

framework against which to compare subjects' views about the nature of scientific 
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knowledge. The implications of this study can have dramatic effects on the manner in 

which science teachers are currently trained. 

Chapter One explains the nature and significance of the problem as well as reviews 

the literature on the topics of students' and teachers' conceptions of the nature of scientific 

knowledge. An operational definition of the nature of scientific knowledge as well as an 

explanation of the meaning of an "adequate" understanding of the nature of scientific 

knowledge are provided to assist the reader in understanding the terminology. 

Furthermore, scientific literacy and its relationship to an adequate understanding of the 

nature of scientific knowledge is examined. A description of the research studies on 

students' and teachers' understanding of scientific knowledge is given. Finally, the 

importance of the classroom teacher to curricular changes is outlined, and an explanation is 

provided of the importance of middle school science instruction. 

In Chapter Two, a detailed description of a model of the nature of scientific 

knowledge based on the literature is given. Initially, the model is portrayed in an outline 

form with descriptor phrases followed by brief explanations. The remainder of the chapter 

is composed of detailed descriptions of each of the eight dimensions of the model. 

A depiction of the study's methodology is provided in Chapter Three. The 

introduction describes the deficiencies of previous studies on the nature of scientific 

knowledge and the rationale for the use of the interpretive inquiry methodology in the 

study. The nature of inteipretive inquiry as a methodology is given to assist the reader in 

an understanding of its basis and its goal of a particular understanding. The limitations and 

strengths of interpretive inquiry as well as the rationale of the generalizability of the study 

are outlined. Unstructured interviews as "a conversation with a purpose" are described to 

assist the reader in a comprehension of that particular methodology. The procedure of the 

study is outlined depicting the selection of the subjects, the initial conference, the interview 
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format, and the analysis of the subjects' narratives. Finally, subject profiles are given to 

provide the reader with an understanding of the biographical and professional backgrounds 

of the six subjects. 

Chapter Four describes the participating middle school science teachers' conceptions 

of the importance of science education and each dimension of the model of the nature of 

scientific knowledge as well as outlines subjects' conceptions of the influences of their 

views on their teaching methodologies. This chapter was the result of an in-depth analysis 

of the written narratives of each subject's interview. Through the use of subjects' quotes, 

the description freezes instances in the interviews to analyze both their explicit as well as 

implicit meanings. It is in this chapter that "what is said" is given and then "what is meant" 

is described. The chapter attempts to depict the nature of scientific knowledge as viewed 

by the six teacher-participants. 

Lastly, Chapter Five summarizes the major findings of the study and portrays the 

implications of the study's findings on the training of science teachers. In addition, 

recommendations are proposed on strategies to improve science teachers' conceptions as 

well as for further research into this area. 

In summary, it was with deep personal concern that I undertook this study. The 

concern was for the students in our schools as well as the teachers in the "everydayness" of 

their profession. In addition, there was a concern for my personal understanding of a very 

complex issue - the nature of scientific knowledge. I strived for a disciplined study 

coupled with an openness to provide the depth I needed to ascertain an understanding of the 

subjective realities of the teacher-participants. It has been a personally rewarding journey 

into an exciting world of scientific knowledge and teacher world views. I realize the 

difficulties of attempting a personally meaningful study and producing "knowledge" from it 
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that can be objectified to the rest of the science education community. In final analysis, the 

value of this study lies in the success it has in combining both of these goals. 
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CHAPTER I 

SCIENTIFIC LITERACY, STUDENTS, TEACHERS, AND THE NATURE OF 

SCIENTIFIC KNOWLEDGE 

Introduction 

Scientific literacy is widely stated as a goal of science education. As the world 

becomes increasingly scientifically oriented, individuals need an adequate understanding of 

science. Scientific illiterates are strangers in their own society. Being ignorant of science, 

they are not able to comprehend the debates of scientific issues, much less influence them. 

Although there are many definitions of "scientific literacy," one widely accepted dimension 

is the adequate understanding of the nature of scientific knowledge (American Association 

for the Advancement of Science, 1989; Association for Science Education, 1981; Bybee, 

1986; McCormick, 1989; National Assessment of of Educational Progress, 1989; National 

Science Teachers Association, 1982; Showalter, Cox, Holobinko, Thompson, & Oriedo, 

1974). Many science educators advocate an increased emphasis on the nature of science 

and scientific knowledge in science instruction and curriculum development (Abimbola, 

1983; Aikenhead, 1986a, Bybee, 1986; Clough, 1989b; Gallagher, 1984; Hodson, 1988). 

In response to the growing consensus on the importance of students' comprehension 

of the nature of scientific knowledge, three new national curriculum development projects 

as well as a national assessment instrument are including this dimension as a fundamental 

part of their reform recommendations. "Project 2061: Science For All Americans," a 

project of the American Association for the Advancement of Science (AAAS), is currently 

developing curriculum models that include methods of scientific inquiry, the essence of the 

scientific enterprise, and the scientific perspective (AAAS, 1989). The Biological Sciences 

Curriculum Study (BSCS) is designing a science program specifically for middle school 
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students titled "Science and Technology: Investigating Human Dimensions" that includes 

curriculum emphases of the nature of science and scientific explanation (BSCS, 1990). 

The National Science Teachers Association (NSTA) has initiated a major science 

curriculum reform program, "Scope, Sequence, and Coordination of Secondary School 

Science" in which students will investigate the basic ideas of the nature of scientific 

knowledge (NSTA, 1990). In addition, the 1989-90 National Assessment of Educational 

Progress (NAEP) measurement of students' knowledge of science expanded its previous 

efforts to include the nature of science (NAEP, 1989). 

Locally, North Carolina is a curriculum development center for National Science 

Teachers Association's Scope, Sequence & Coordination project. The "North Carolina 

Project For Reform In Science Education" is developing a middle school curriculum 

framework in which an important strand is the historical perspective that emphasizes an 

adequate understanding of the operation of the scientific enterprise (North Carolina Project 

for Reform in Science Education, 1991). In addition, the state science curriculum of North 

Carolina is being revised to include as one of its strands the nature of science. 

The increased emphasis on the epistemological nature of science in assessment and 

curriculum development is hoped to improve students' distorted notions about this 

fundamental dimension of scientific literacy. Studies show that students confuse the 

functions of models, laws, and theories (Aikenhead, 1987), use terms like scientific 

method, science, and technology in contradictory ways (Fleming, 1987; Ryan, 1987), and 

think science produces indisputable, absolute truths (Fleming, 1986; Rubba, Homer & 

Smith, 1981). Students prescribe to the following popular view of scientific knowledge: 

"Science knowledge is proven knowledge.... Personal opinion or preferences and 

speculative imagining have no place in science. Science is objective. Scientific knowledge 

is reliable knowledge because it is objectively proven knowledge." In addition, students 
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apparently do not understand the aims of science, its processes, its human dimensions, nor 

its interactions with society. 

Students' fundamental misconceptions about the nature of scientific knowledge must 

result, in part, from the type of science instruction they receive in schools. Through the 

use of textbooks and traditional instructional methodologies, school science portrays 

scientists as idealized and depersonalized pursuers of the truth about an objective reality 

using a particular infallible step-by-step scientific method. Projecting an inductivist-

positivist image of science, schools advocate that knowledge is induced from 

generalizations based on unbiased observations (Abimbola, 1983; Clough, 1989a). The 

emphasis of school science on vocabulary and concepts reifies knowledge discounting the 

human element in its creation. Through the use of "cookbook" type laboratory exercises, 

hypotheses are viewed as simple guesses and theories are believed to be proven by 

objective direct observations and easy yes/no analysis (Hodson, 1988). Scientific laws are 

taught to students as validated, established theories. Schwab (1960) characterizes such 

instruction in science as the "rhetoric of conclusions." Traditional classroom methods 

"treat only the outcomes, the conclusions of enquiry, divorced from the data which support 

them and the conceptual frames which define and limit their validity" (Schwab, p. 8). 

Lacking in school science is any discussion of other ways of knowing as well as the 

scientific community's activities in the dissemination and validation of scientific 

knowledge. 

Thus, current pedagogical methods distort the nature of scientific knowledge by 

providing a simplistic view of a very complex humanistic enterprise. The result of the 

continued usage of traditional instructional techniques and curriculum materials will have 

far reaching consequences to the acquisition by students of an important dimension of 

scientific literacy. The key to any improvement in students' conceptions of the nature of 
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scientific knowledge either through new instructional techniques or new cunicular materials 

is the science teacher. 

The Problem. Its Nature. And Its Significance 

The most important element in the instructional process as well as the primary 

arbitrator of the science curriculum is the science teacher. The science teacher mirrors a 

view of the nature of scientific knowledge and represents the image of science for students. 

Conceptions of the nature of scientific knowledge will influence the language used, the 

topics that are emphasized, the investigative procedures employed, the evaluation methods 

implemented, the use of textbook/resource materials, and the resulting student interactions. 

These elements of instruction compose the teaching style which is one of the most 

important factors influencing students' view of the nature of scientific knowledge (Rubba 

& Horner, 1981). The assertion is that science teachers' conceptions of the nature of 

scientific knowledge influence their teaching practices which in turn affect students' views 

of the scientific enterprise. 

Unfortunately, numerous research reports reveal that science teachers possess many 

of the same fundamental misconceptions about the nature of scientific knowledge as 

students (Behnke, 1961; Billeh & Malik, 1977; Blakely, 1987; Carey & Stauss, 1968, 

1970; Hodson, 1988; Kimball, 1967-68; Miller, 1963; Rowe, 1976; Schmidt, 1967-68). 

For example, many science teachers confuse science and technology, possess an 

inductivist-positivist perspective of science, subscribe to the belief of a step-by-step 

scientific method that portrays a direct relationship between observation and theory, and 

promote a naive realist position. These distorted notions of the nature of scientific 

knowledge do not seem to be related to the number of years of teaching experience, college 

grade point average nor the number of college science courses (Billeh & Hasan, 1975; 

Carey and Stauss, 1970; Kimball, 1967-68). These misnotions are reflected in their 
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teaching styles and perpetuate students' misconceptions about the nature of scientific 

knowledge. 

Therefore, it appears that an obstacle to students achieving a widely accepted 

dimension of scientific literacy, an adequate understanding of the nature of scientific 

knowledge, is the science teacher. Since the middle school level of education represents a 

critical time in a student's development of attitudes toward science, an understanding of 

middle school science teachers' views about the nature of scientific knowledge is very 

important. Any misconceptions learned by students during the middle school years will be 

especially difficult to correct at the high school level. 

It is the responsibility of science educators to present an adequate view of scientific 

knowledge to students. Because the teacher is at the focus of the curricular 

recommendations to improve students' views of the nature of scientific knowledge, it is 

imperative to recognize the importance of adequate conceptions of teachers in achieving any 

desired goals. Only when the many dimensions of teachers' views of the nature of 

scientific knowledge are analyzed can science educators begin to address the problems and 

design methods to correct the situation through the preservice or inservice training of 

teachers. As science education enters a new decade with an increased nationwide emphasis 

on this very important dimension of scientific literacy, the science education profession 

needs to promote an adequate understanding of the nature of scientific knowledge among 

its practitioners. 

The Nature of Scientific Knowledge - An Operational Definition 

Science is a quest for understanding of the natural world, and the activity of the quest 

results in "scientific knowledge." Although the nature of scientific knowledge may be 

viewed as a part of a larger concept of the "nature of science", the term "nature of scientific 

knowledge" is defined in this research study in such a comprehensive manner that it 
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incorporates most of the widely accepted dimensions of the "nature of science" concept. 

Thus, discussions of relevant literature will include references to the nature of science as 

well as to the nature of scientific knowledge. It was important in analyzing scientific 

knowledge not only to examine the products (facts, theories, and laws), but the processes 

that produce the resultant knowledge. Therefore, in this research project, the term "nature 

of scientific knowledge" describes the human dimensions, social nature, historical 

elements, inquiry processes, basic beliefs, and uniquenesses that are involved in the 

production of such knowledge as well as the nature of the resulting products. In Chapter 

Two, a detailed description of each dimension of a conceptual model of the nature of 

scientific knowledge is presented. Any reference in the research study to an "adequate" 

understanding of the nature of scientific knowledge refers to a comprehension of the 

dimensions of the conceptual model. 

Scientific Literacy and the Importance of Science Education 

The National Science Teachers Association (NSTA) has emphasized that the primary 

goal of science instruction is to increase the scientific literacy of students (NSTA, 1982; 

NSTA, 1987; NSTA, 1990). The world will change radically in the future, and science as 

well as technology will be at the focal point of that change - producing, forming and 

reacting to it. It is essential that individuals understand the nature of scientific knowledge 

because science permeates all realms of human activity and affects the quality of life. 

Scholars have attempted to describe the characteristics of a scientifically literate 

person. The literature reveals that the scientifically literate individual: 

1. Understands and appreciates the diversity and unity of the natural world 
(American Association for the Advancement of Science, 1989; McCormick, 1989; 
Rothman, 1989). 
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2. Comprehends the nature of science as a human enterprise with both great potential 
and limitations as well as understands the historical dimensions of science. 
(American Association for the Advancement of Science, 1989; Bybee, 1986; 
Kimball, 1967-68; Lederman, 1985; McCormick, 1989; Rothman, 1989; Rubba 
& Andersen, 1978; Showalter, Cox, Holobinko, Thompson, & Oriedo, 1974; 
Voelker, 1982). 

3. Understands the nature of scientific knowledge, the investigative procedures, and 
applies key scientific constructs such as laws, hypotheses, facts, and theories 
accurately (American Association for the Advancement of Science, 1989; 
Lederman, 1986; McCormick, 1989; Rothman, 1989; Rubba & Andersen, 1978; 
Showalter et al., 1974). 

4. Utilizes the processes of science and scientific ways of thinking in solving 
problems and decision making in everyday life (American Association for the 
Advancement of Science, 1989; Haney, 1964; Lederman, 1986; McCormick, 
1989; Rothman, 1989; Showalter et al., 1974). 

5. Possesses feelings and values consistent with the essence of science (Rubba & 
Andersen, 1978). 

6. Comprehends the role of science in society and its interrelationships with 
technology (Kyle, Jr., 1984; Rubba & Andersen, 1978; Showalter et al., 1974). 

The dimensions of scientific literacy are incorporated in the numerous stated goals of 

science education. A National Science Foundation (NSF) research study, Project 

Synthesis, interpreted data from three NSF studies as well as the National Assessment of 

Educational Progress study and formulated four "goal clusters" which summarize the 

primary aims of science education as indicated by the existing literature. The clusters 

indicate learning objectives in four classifications of relevance for (a) the individual, (b) 

society, (c) academic preparation, and (d) career selection (Kahl & Harms, 1981). 

The first goal cluster relates science education to the personal needs of the individual. 

The emphasis of this goal cluster is the preparation of individuals to use science for the 

improvement and management of their lives in an increasingly scientific world (Kahl & 

Harms, 1981). These goals include the knowledge a person needs in order to be a 

responsible consumer and the ability to recognize and comprehend how science affects 

one's life. Individuals need to possess the inquiry and critical thinking skills to understand 
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and interpret information in a systematic way to make informed, responsible decisions 

(Aldridge & Johnston, 1984; Bybee, 1984; National Science Teachers Association, 1987; 

Norris, 1985; Rothman, 1989; Siegal, 1985; Steen, 1989). Ultimately, the purpose of 

science education is to prepare individuals to lead personally responsible and fulfilling lives 

by liberating their human intellect (American Association for the Advancement of Science, 

1989). 

The second goal cluster relates to the needs of society and emphasizes science 

education as an avenue to produce responsible citizens who are able to deal intelligently 

with complex science related issues of society such as pollution or nuclear energy 

(Aikenhead, 1986a; Aldridge & Johnston, 1984; Bybee, Carlson, & McCormack, 1984). 

Citizens need to understand the nature of science and its potential to not only solve societal 

problems, but to create new ones. Thus, individuals must possess the initiative to 

understand public policy on scientific issues and the skills to influence it (Kahl & Harms, 

1981; Koballa, Jr., 1984; McCormick, 1989; Voelker, 1982). A sense of appreciation and 

custodianship of the natural world should be fostered (Kahl & Harms, 1981). Other goals 

in the literature that relate to this Project Synthesis goal cluster state the importance of 

science education to maintaining and improving nationalistic goals such as the economy 

(Bybee et al., 1984; Connelly, 1969; Mullis & Jenkins, 1988), security (Aldridge and 

Johnston, 1984), productivity (McCormick, 1989), and citizenship participation (Bybee, 

1986; McCormick, 1989; Connelly, 1969; Mullis & Jenkins, 1988). 

The third goal cluster advocated by Project Synthesis includes the science education 

goals that relate to academic preparation. The opportunity should be available to those 

individuals who desire to professionally and academically advance in acquiring scientific 

knowledge. The goal relates to the acquisition of the necessary science courses that must 

be completed to further a study of science. (Goodlad, 1984; Kahl & Harms, 1981; 
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McCormick, 1989). Science education should produce the next generation of scientists 

(Aikenhead, 1986a; Bybee et. al., 1984; Harms, 1981; McCormick, 1989). 

The last goal cluster involves career education awareness. Although related to the 

previous goal cluster, the career awareness cluster includes any careers related to the 

scientific field from scientists to lab technicians. These goals emphasize the availability of 

careers as well as the extent of required academic preparation. Also, students should be 

cognizant of famous scientists and their contributions as well as the human factor in the 

scientific enterprise (Campbell, 1985; Kahl & Harms, 1981; Mackay, 1971). 

Thus, the term "scientific literacy" contains many dimensions, and these dimensions 

are interwoven in the numerous goals of science education. One dimension that is widely 

accepted as being a fundamental element of scientific literacy as well as a very important 

goal in science education is the adequate understanding of the nature of scientific 

knowledge. It is this dimension that permeates all comprehensions of science and provides 

individuals with a firm basis to understand the complexities of the scientific enterprise. 

The Importance of an Adequate Understanding of the Nature of Scientific Knowledge 

Although an understanding of the nature and functions of the products of science 

(facts, theories, and laws) is important, a comprehensive view of the social, historical, 

regulatory, humanistic, and investigative perspectives of knowledge production provides 

an individual with a complete world view of science. Personal and social decisions are 

made not on the content of science learned, but on an understanding of the character, 

processes and limits of the scientific enterprise (Aikenhead, 1987; Fleming, 1986). Latour 

and Woolgar (1986) state: 

Science... generates too much hope and too much fear. 
If the public could be helped to understand how scientific 
knowledge is generated and could understand that it is 
comprehensible and no more extraordinary than any other 
field of endeavor, they would not expect more of scientists 
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than they are capable of delivering, nor would not fear 
scientist as much as they do (p. 13). 

An authentic view of the nature of scientific knowledge creates the realization that science 

cannot produce easy solutions to complex problems, the so called "technological fix." The 

myth of "scientism", the excessive faith in the rationality and objectivity, would be 

discouraged (Aikenhead, 1986a). 

Furthermore, for individuals who understand the humanistic and tentative nature of 

knowledge, confusion is avoided when new information contradicts traditional 

scientific principles or when two research projects interpret the same data differently 

producing contradicting results (Connelly, 1969; Crowell, 1989; Hickman, 1984). 

Cynicism about science can be avoided if individuals understood the conditional nature of 

scientific facts, theories, and laws. The tentative reliability of science is understood when 

major restructuring of knowledge occurs especially in the current age in which knowledge 

possesses such a short "half-life" (Benjamin, 1989). 

Thus, understanding the nature of scientific knowledge promotes confidence to 

question statements of science, to be open to new answers, and to critically analyze 

scientific decisions that influence the well-being of our society. Furthermore, a basic 

understanding of knowledge production yields insights into the interactions between the 

scientific community and society. It provides a deeper understanding and personal 

reflection of the complexity of the natural world and the immense difficulty of 

understanding it. 

Students' Views of the Nature of Scientific Knowledge 

Most research studies conclude that students have not attained an adequate 

understanding of the nature of scientific knowledge. Student conceptions of science are 

often as mystical as realistic (Aikenhead, 1986a). The majority of the tests to access 

student understanding are objective measures using multiple choice answers or a Likert 
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scale. A few of the measures allow for written responses to questions or explanations to 

answers. 

The Test on Understanding Science (TOUS) was developed by Cooley and Klopfer 

(1961) and consists of 60 multiple choice questions dealing with understandings of the 

scientific enterprise, scientists, and aims/methods of science. MacKay (1971) used TOUS 

to measure the comprehension of science of over 1200 seventh-tenth grade students and 

found pupils lacking an understanding of the dynamic, ongoing nature of science. 

Students confused the functions and distinctions of models, theories, and laws as well as 

the relationship of scientific facts and truth. Students were also unclear about the difference 

between science and technology. Jungwirth (1973) used one part of TOUS, "Scientists as 

People," and studied 613 ninth graders, 610 tenth graders and 213 twelfth graders in 

Israel. He discovered misconceptions about the role, motivations, and characteristics of 

scientists. 

A recent study of 10,800 high school students in Canada by Aikenhead, Fleming, 

and Ryan (1987) used an instrument called Views On Science, Technology, and Society 

(VOSTS) in which students agreed, disagreed, or could not respond to 46 statements and 

were required to write an explanation of their choice of an answer. VOSTS examined the 

characteristics of scientific knowledge, scientists, and the interactions of science, 

technology and society. In examining the argumentative student explanations, the 

investigators found that students used terms like scientific method, facts, the tentativeness 

of knowledge in many and contradictory ways. Students were uninformed on the external 

influences on scientific knowledge, the authentic motivation of generating science 

knowledge, the realistic view of the scientific inquiry, and the basis of principles, models, 

and classification schemes. In general, they conceived of a scientific method that entailed 

following prescribed procedures meticulously. Students viewed scientific facts in many 
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ways including as proven entities. Students did confuse science with technology and the 

authors referred to the combination as "technoscience" (Aikenhead, 1987; Ryan, 1987). 

Considered as one of the best measures of students' understanding of science on a 

national basis is the National Assessment of Educational Progress (NAEP) science 

assessment which samples 9-, 13-, and 17-year olds. The test requires students to answer 

multiple-choice questions on areas of content, context (scientific, societal, personal and 

technological), and cognitive areas. Based on the 1976-77 assessment which sampled 

17,345 nine-year olds, 25,653 thirteen-year-olds, and 31,436 seventeen-year-olds, Welch 

(1981) reports that 70% of the students understood the significance of observation in 

science, but less than half were cognizant of errors that are inherent in the measurement 

process. Less than 60% of the students knew that science knowledge is based on specific 

assumptions and only 25% and 32% (nine- and thirteen-year-olds respectively) realized that 

all science concepts are not thoroughly understood. Welch (1981) concludes that students 

seem to conceive science as something done by others rather than a process that could be 

incorporated into their ways of thinking. The 1986 NAEP assessment which sampled a 

total of 6,932 nine-year-olds, 6,200 thirteen-year-olds, and 3,868 seventeen-year-olds 

supports the previous findings with students' knowledge of science and their integration 

abilities being very limited (Mullis & Jenkins, 1988). 

Other inquires into students' understanding of the nature of scientific knowledge 

reveal similar deficiencies. The 1989 International Assessment of Mathematics and Science 

(including the United States and four other countries as well as four Canadian provinces) 

found that only 42% of the sampled American 13-year-old students understood scientific 

procedures and data analysis (Lapointe, Mead, & Phillips, 1989). Horner and Rubba 

(1978) conducted a survey at a mid-western high school in the United States and found that 

30% believed that scientific research produces indisputable, absolute truth as well as 
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exhibited the belief that theories mature into laws. A study by Fleming (1986) revealed that 

students believed that facts are equivalent to the truth, and scientists are viewed as the 

"keepers of the truth" (p. 208). 

Furthermore, Rubba, Horner, and Smith (1981) surveyed 40 seventh and 62 eighth 

graders using a Likert scale questionnaire that asked questions about scientific laws/theories 

and their relation to truth. They found that the surveyed students did not understand 

science "well enough to appreciate the tentative nature of scientific knowledge" nor that 

"scientific laws and scientific theories are two distinct types of explanations" (p. 225). 

Other reports reveal that students generally do not possess an adequate understanding of the 

nature of scientific knowledge (Cawthron & Rowell, 1978; Cooley & Klopfer, 1963; 

Lemer & Bennetta, 1988; Mead & Metraux, 1957; Miller, 1963; Mitias, 1970). 

Some studies do reveal encouraging findings about students' conceptions of the 

nature of scientific knowledge. The 1976-77 National Assessment of Educational Progress 

did find that 80% of students tested believed that theories change (Welch, 1981). 

Aikenhead (1987) found that 15% of students knew the impreciseness and human character 

of classification schemes as well as most students believed scientific knowledge is 

tentative. A study of 409 biology students by Lederman (1986) using the Nature of 

Scientific Knowledge Scale that uses 48 statements in a Likert scale response format 

revealed that sampled students' conceptions of the nature of science were adequate. 

Although there are some contradictions, at least most of the research studies indicate 

that substantial numbers of students possess misconceptions about the nature of scientific 

knowledge. They believe that science supplies right answers, the application of a 

"scientific method" yields objective valid data, models/classification schemes represent 

realities in nature, basic knowledge is unchanging, theories evolve into laws, and science 

and technology are synonymous. 
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The Importance of the Classroom Teacher 

The significance of the classroom teacher to the learning process as well as execution 

of the curriculum is extensively supported in the literature. Teacher practices such as 

modes of presentation, verbal/nonverbal behaviors, language usage, task selection, 

classroom management, and instructional style determine to a large degree the quality and 

level of students' learning (Abimbola, 1983; Harms, 1981; Lunetta & Penick, 1983; 

Skymansky & Penick, 1981; Wiggins, 1989). Because students learn many behaviors by 

imitation and identification, the role model created by the teacher is very influential. The 

science teacher is the image of science for students. Watson (1983) states that "the view of 

science in the classroom is created by the teacher and mirrors the views of the teacher" (p. 

51). 

Specifically, studies by Benson (1984), Lederman (1985,1986), and Zeider and 

Lederman (1987) substantiate that certain teaching practices (frequent inquiry-oriented 

questioning, problem solving, sequential probing, relevancy of studies, and personable 

student-teacher interactions) positively influence students' conceptions of the nature of 

scientific knowledge. Furthermore, teachers' epistemological conceptions of science are a 

factor in determining personal positions on the selection of content and implementation of 

instructional methods which influence students' views. Dibbs (1982) found a positive 

relationship between teachers' beliefs in a particular philosophy of science and their 

teaching styles which in turn affect students' understandings. Dibbs states: 

Pupils' views about the philosophy of science are influenced by 
the way in which they are taught science even if their 
teacher does not attempt to do so explicitly. The teaching 
style used implies that the teacher holds a certain 
philosophy, and this implicit philosophy can have effects 
upon the pupils. Pupils taught in different ways exhibit 
a different pattern of responses on specially designed 
measures for science understanding, (p. 226) 
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Benson's (1984) inquiry into the conceptions of biology teachers supports Dibbs' study by 

finding that teachers strongly influenced students by their particular views of biology. 

Furthermore, the language teachers use in instruction can affect students' conceptions 

of the nature of scientific knowledge. Munby (1976) emphasizes that "the language in 

which science instruction is given is significant for the understanding it can convey about 

the nature of science" (p. 115). Zeidler and Lederman's (1987) study of 18 biology 

teachers "concluded that the ordinary language teachers use to communicate science content 

does provide the context in which students formulate their own conceptions of the nature of 

science" (pp. 6-7). For example, a realist perspective views scientific knowledge as real, 

true, and having its own reality. Scientific descriptions are viewed as fixed, objective and 

empirical truths. An alternative perspective of scientific knowledge is the instrumentalist 

view in which scientific statements are products of human imagination used to make 

inferences and construct models to explain phenomena. It views knowledge as changing, 

utilitarian, and tentative. In a comparison of the instrumentalist and realist language used 

by biology teachers, Zeidler and Lederman's (1987) study found that teachers' views of the 

nature of scientific knowledge as expressed in their language is persuasive. 

In addition, the teacher is the ultimate mediator, interpreter and clarifier between the 

curriculum and the student. It is teacher characteristics that are more important than a 

particular set of curriculum materials. Since the teacher is at the center of many 

recommendations to improve deficiencies in students' understanding of the nature of 

scientific knowledge, it is imperative to realize that the teacher is the critical factor in 

achieving any desired goals. The knowledge, philosophy and instructional style of the 

teacher must be in agreement with the curricular objectives and methods for the materials to 

be successful (Bates, 1978; Harms, 1981). Schwab (1960) states, "If the structure of 



25 

teaching and learning is alien to the structure of what we propose to teach, the outcome will 

inevitably be a corruption of that content" (p. 15). Heiron (1971) advocates: 

By the intellectual milieu he [the teacher] fosters, 
by the conceptual contexts he engenders in the minds 
of his students, indeed, by virtue of the topics he 
emphasizes (and tests for) and those he does not, he 
is in a position to either amplify or short-circuit 
the purposes of those who developed the course materials, (p. 204) 

Specifically referring to curriculum development to improve students' understanding of the 

nature of science, Carey and Stauss (1970) emphasize that: 

If the teacher's understanding and philosophy of science is not 
congruent with the current interpretation of the nature of science; 
if the objectives that he establishes are not congruous with the 
dynamic spirit of science, then the instructional outcomes will not 
be representative of science in spite of all the efforts that may be 
expended by those charged with the development of relevant 
curricular materials, (p. 368) 

Thus, the classroom teacher has a pivotal role in any attempt through curriculum 

reform as well as better instructional methodologies to improve students' understanding of 

the nature of scientific knowledge. Teachers' views of the nature of scientific knowledge 

influence explicitly as well as implicitly teaching practices, language used, selection of 

materials, and implementation of curriculum. Any deficiencies in teachers' conceptions 

must be addressed and rectified before students' understandings can be improved. 

Teachers' Understandings of the Nature of Scientific Knowledge 

If students are to acquire an adequate comprehension of the nature of scientific 

knowledge, teachers need to possess an adequate understanding in order to instill its 

essential qualities in students. However, most researchers indicate that inservice and 

preservice science teachers, in general, do not possess an adequate understanding of the 

nature of science (Behnke, 1961; Billeh & Malik, 1977; Blakely, 1987; Carey & Stauss, 
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1968, 1970; Hodson, 1988; KimbaU, 1967-68; Miller, 1963; Rowe, 1976; Schmidt, 1967-

68). Schmidt (1967-68) commented that "some secondary science teachers understand 

science no better than students they may be assigned to teach." (p. 365). Hodson (1988) 

discloses that a 1979 Association for Science Education report in the United Kingdom 

states that: 

Most science teachers, who are themselves products of a science 
education that places a high premium on scientific knowledge 
and pays lip service to the history and philosophy of science, 
share... a scant understanding of the nature of scientific 
knowledge, (p.21) 

Prospective science teachers have been the object of several studies. Carey and 

Stauss (1968) used the Wisconsin Inventory of Science Processes (WISP), a test of 93 

statements on the assumptions, activities and products of science, in conjunction with an 

essay question, "What is your concept of the nature of science?", to measure the 

understanding of prospective science teachers in a science methods class. Although results 

of the study indicated the majority recognized the human element in science, a minority 

confused science and technology, and there was an indication of a lack of an adequate 

concept of the nature of scientific knowledge. Ogunniyi (1982) evaluated the 

understanding of the nature of science of 53 prospective science teachers by their use of 

language to describe science. The measure administered was the Language of Science Test 

which consists of 64 statements based on the language of science concepts held by selected 

philosophers. The results indicated that most subjects conceived laws and theories as 

verifiable and true, thought science terms such as atom, electron, and molecule were 

empirical concepts, and generally did not possess an adequate notion of the nature of 

scientific knowledge. 
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Several studies compared the understanding of the nature of science between 

practicing teachers and students. Miller (1963) used the Test on Understanding Science 

(TOUS) to compare levels of understanding of science teachers to secondary students. 

Miller found that 38% of the advanced eleventh and twelfth grade students scored above 

50% of teachers. Miller's study was replicated by Schmidt (1967-68), and the results 

indicated that 47% of the students scored above 25% of the teachers and 9% above 50% of 

the teachers. Behnke (1961) used a survey instrument with statements about the scientific 

enterprise to analyze the opinions of 621 science teachers. The most surprising finding by 

Behnke was that 51% of science teachers agreed strongly that scientific knowledge was 

unchangeable and fixed. Behnke concludes that "much of the misunderstandings ... were 

related to a lack of understanding of the nature of science" (p. 200). Carey and Stauss 

(1970) surveyed 31 experienced science teachers with the WISP instrument and their 

findings supported previous studies that science teachers do not possess an adequate 

understanding of the nature of scientific knowledge. 

In more recent studies, Rowe (1976) investigated the conceptions about laws and 

theories of 50 randomly selected middle/junior high school science teachers using an 

opinionnaire that required responses indicating agreement, disagreement, uncertainty or 

confusion with a series of statements. The results indicated that the sampled teachers' 

views of laws and theories were contradictory and inconsistent. Blakely (1987) used 

TOUS to sample 91 middle school teachers' understanding of the nature of science. 

Blakely concluded that at least 25% of the science teachers: 

Confuse science and technology; misunderstand how scientists 
cooperate with one another;... fail to discriminate among laws, 
theories, and hypotheses; and are unsure of the purpose of scientific 
experiments and the aims of science, (p. 354) 
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However, other studies have found that in comparing mean scores of teachers to the 

mean scores of students, teachers' scores were higher than students (Broadhurst, 1967; 

Welch & Pella, 1968). Lederman (1985,1986) administered the Nature of Scientific 

Knowledge Scale to high school biology teachers and concluded that participating teachers 

possessed an adequate conception of the nature of science. 

Some studies have attempted to determine the relationships of teachers' understanding 

of the nature of scientific knowledge to some academic/teaching experience variables. 

Carey and Stauss (1970) investigated teachers' understanding in relation to the variables of 

teaching experience, college grade point average, science credit hours and high school 

science courses. In the sample of 31 science teachers, they found little relationship 

between the variables and teachers' conceptions of the nature of science. In a previous 

study, Carey and Stauss (1968) also found no relationship to academic variables (number 

and grades of science courses taken) and an understanding of science using the WISP 

instrument. Blakely (1987) found no significant differences in the scores on TOUS of 91 

middle school teachers based on the number of methods classes taken in preservice training 

or the possession of middle school certification. Billeh and Hasan (1975), Billeh and 

Malik (1977) and Kimball (1967-68) found in their research studies that teaching 

experience does not have a significant affect on teachers' understanding of the nature of 

scientific knowledge. Therefore, it appears that conceptions of the nature of scientific 

knowledge are formed before, during or by the end of preservice training and remain 

virtually unchanged by teaching experience. 

Thus, preservice and inservice teachers do not possess an adequate understanding of 

the nature of scientific knowledge based on the majority of studies. There exists a 

confusion of science and technology, an inductivist-positivist perspective of science, and a 

belief in the stability of scientific knowledge. Even in a comparison with the students they 
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are teaching, studies indicate the teachers' understanding is not much greater, and in some 

instances, less than some of their students. Academic and experience variables do not seem 

to relate to levels of understanding of the nature of scientific knowledge. Therefore, it 

cannot be assumed that when science educators discuss the dimensions of the nature of 

scientific knowledge that they fully understand those concepts. 

Middle School Science: Its Importance 

The middle school is an administrative structure that usually encompasses grades 6-8 

or 6-9 and the student age group of 11-14 years old. The middle school years represent the 

time students are forming attitudes about themselves in relation to school and in relation to 

science. Modes of behavior, patterns of thought, and basic attitudes are being established 

in the early adolescent (Pratt, 1981; Padilla, 1983; Yager, Aldridge & Penick, 1983; Smith, 

1983). It is in middle school that students begin to make decisions about their future 

science study. Simpson (1978) and Voelker (1982) assert that by the ninth grade, students 

have established their attitudes about science. If middle school students develop a negative 

attitude about science, it influences future performance and views about the nature of 

science and its usefulness. Any failure students experience in middle school may convince 

individuals that they are incapable of learning or understanding science. Furthermore, if 

students learn an unrealistic view of the nature of scientific knowledge in middle school 

years, it is even more difficult to resolve misconceptions later in the schooling process. 

Therefore, it is important that particular attention be given during the middle school 

years to establish positive attitudes toward science and a realistic view of the nature of 

scientific knowledge. It is an ideal place in the schooling process to institute changes in the 

present content oriented science instruction because (a) learners are at the point in their 

intellectual development to begin to understand the complex nature of knowledge 
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production and (b) the middle school science curriculum is integrated, interdisciplinary, and 

exploratory in nature (Thier, 1984). 

Also, middle school teachers tend not to be single subject specialists (i.e. biology, 

physics, chemistry) and would be less content oriented. Classroom instruction could 

emphasize science processes and inquiry to explore science questions instead of an 

emphasis on the preparation for the next science course. Promoting the use of science 

skills (observing, hypothesizing, collecting data, and experimenting) would provide the 

middle school student with the opportunity to be theorists and to understand a realistic 

perspective of the production of science knowledge (Padilla, 1983). A multidimensional 

approach to science could be implemented using practical applications and everyday 

experiences including issues in society as well as the historical aspects of scientific thought. 

Thus, the middle school represents a critical period for students in their development 

of attitudes and concepts about the nature of scientific knowledge. In addition, the middle 

school is an excellent place in the schooling process to institute changes in science 

education from the content driven curriculum to one modeled after a realistic view of the 

nature of scientific enterprise. 

Summary 

Scientific literacy is a widely accepted goal of science education. An important 

dimension of scientific literacy is an adequate understanding of the nature of scientific 

knowledge. An adequate epistemological comprehension of science provides an 

understanding of the social, historical, regulatory, humanistic and investigative 

perspectives of knowledge production as well as the functions of the products of science. 

However, most research studies reveal that students do not have an adequate understanding 

of the nature of scientific knowledge. Traditional instructional methodologies and 
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curriculum materials currently being used distort the dynamic nature of knowledge 

production. 

Thus, there is an increased emphasis on the epistemological aspects of science in the 

science education community as evidenced by three national science curriculum reform 

efforts currently being implemented in which the nature of scientific knowledge is an 

important part of their recommendations. The most important element in the 

implementation of any curricular reforms or improved instructional techniques is the 

science teacher. However, the science teacher seems to be an obstacle to any improvement 

of students' conceptions because most research studies reveal that preservice and inservice 

science teachers do not possess an adequate view of the nature of scientific knowledge. 

Because the teacher is at the focus of any curricular recommendations to improve 

students' views of the nature of scientific knowledge, it is imperative to recognize the 

importance of adequate conceptions of teachers in achieving any desired goals. Only when 

these dimensions of teachers' conceptions of the nature of scientific knowledge are 

thoroughly analyzed can science educators begin to recognize the causes and intricacies of 

any misconceptions as well as the barriers to the classroom implementation of adequate 

epistemological views. Strategies can then be developed to correct any misconceptions of 

the nature of scientific knowledge by the preservice and inservice training of teachers. The 

science education community must promote an epistemologically adequate view of science 

among its practitioners especially as science education enters a new decade of an increased 

nationwide emphasis on this veiy important dimension of scientific literacy. 
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CHAPTER II 

A MODEL OF THE NATURE OF SCIENTIFIC KNOWLEDGE 

Introduction 

To provide a basis of comparison for the study of teachers' conceptions of the nature 

of scientific knowledge, a model of the nature of scientific knowledge was developed 

through a review of the literature. It will serve as a comprehensive statement against which 

to identify deviations of conceptions revealed by teachers. There are many possibilities of 

such a model, but a combination of models by Welch (1984), Kimball (1967-68), Rubba 

and Andersen (1978), American Association for the Advancement of Science (1989), and 

Showalter, Cox, Holobinko, Thompson, and Oriedo (1974) supported by pertinent 

commentary from the literature provided a basis for a portrayal of the nature of scientific 

knowledge. 

No claim is made that the dimensions described in the model outline thg, nature of 

scientific knowledge. There is disagreement among scientists and philosophers about the 

elements of scientific knowledge. An attempt was made to outline the most widely 

accepted constituents of scientific knowledge found in the literature. The model consists of 

descriptor phrases followed by a brief explanation. After the model outline, each 

dimension of the model is described in detail. 

Model Outline 

The model consists of eight dimensions. The nature of scientific knowledge is such 

that it is: 

1. Humanistic - The production of knowledge is a human activity characterized by 
human limitations, strengths, and weaknesses. The fundamental human entity in 
scientific knowledge production is the scientist. Scientists exhibit a full range of 
altruistic to biased behaviors. Thus, there is no simple, accurate characterization 
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of scientists' abilities and traits. Scientists are motivated by professional and 
personal reasons as well as human curiosity. The resultant knowledge 
demonstrates that scientists as human beings are imperfect knowledge seekers. 

2. Social - Scientists interact through scientific communities that use a shared 
framework of beliefs about the natural world to determine the acceptability of 
problems, investigative methods, and results. In addition, the community of 
scientists regulates professional credentialing, codes of conduct, communication 
systems, and standards of agreement. Through debate and consensus, scientific 
communities are the exclusive arbitrators of the authenticity of knowledge. 
Science as a social institution influences and is influenced by other institutions in 
the funding, directions and purposes of scientific research. Furthermore, science 
and technology interrelate but are not synonymous having very different social 
roles. Scientific knowledge itself is amoral. Moral judgements can only be made 
on the applications of that knowledge. 

3. Historical - Within a paradigm structure or research program, scientific 
knowledge develops cumulatively. However, from a total historical perspective, 
scientific knowledge has evolved through revolutionary eras of complete shifts of 
beliefs about the natural world. Scientific progress produces subsequent 
paradigms that are more effective than previous ones at solving and generating 
new experimental problems. The revolutionary history of scientific knowledge 
demonstrates the uncertainty and tentativeness of that knowledge. 

4. Based on Specific Beliefs About the Natural World - The production of scientific 
knowledge is based on the beliefs that the natural world is understandable, causal, 
orderly, consistent, and predictable. 

5. Observation Based - Scientific knowledge results from inquiry that is based on 
the act of observing, directly or indirectly, natural phenomena. Scientific 
observation is not a simple process but is a complex human activity involving 
selection schemata and filtration mechanisms influenced by the experiences, 
expectations, language and paradigmatic beliefs of scientists. To minimize human 
selection and filtration effects, the scientific community subjects observational 
evidence to stringent independent tests. However, theory precedes observation as 
well as its validation. Therefore, all scientific observation is as tentative as the 
theory on which it is based. 

6. A Result of Inquiry - Scientific knowledge is produced by a dynamic interaction 
between scientists using many methods of inquiry and the natural world. 
Induction, falsification, and hypothetic-deductive models of scientific inquiry all 
suffer from the problematic aspects of the act of observing, the finiteness of 
observational evidence, their basis on past experience, and logic invalidity. The 
revisionist view of inquiry rejects formal logic systems and sense data as the 
ultimate epistemological authorities and recognizes the theory-ladenness of 
scientific inquiry in observation, methodology, factual relativism, and the 
resulting knowledge structures. There is no one scientific method, but many 
modes of scientific inquiry that vary according to the scientist, the discipline, the 
investigative problem, reliance on historical data, and the use of applicable 
theoretical structures. Scientific inquiry produces knowledge that is probabilistic, 
fallible and tentative. 
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7. Composed of Knowledge Structures - Facts, theories, and laws are the 
knowledge structures of science. They attempt to explain or describe natural 
phenomena in as simple and comprehensive manner as possible in many cases 
using mathematical language to state relationships in a precise way. These 
knowledge structures form a structural reality that may or may not correspond to 
the absolute natural reality. Scientific facts are understandings of scientists based 
on many repeatable observations of some natural phenomena. Different than the 
common-sense understanding of the word fact, scientific facts are dependent on 
theory, tentative, and devoid of absolute truthfulness. Theories and laws result 
from the testing of hypotheses. Hypotheses are attempts to explain or describe an 
observation that can be tested by experimentation. A theory strives to explain a 
broad range of phenomena whereas a law describes relationships between 
repeatable, observable events. A scientific law and theory are two different 
knowledge structures. Laws describe relationships whereas theories explain 
reasons for the relationships. Therefore, theories do not become laws and vice 
versa. Scientific models are mental, mathematical, or physical depictions of laws 
and theories that strive to express in a simple way the structure or behavior of 
entities. Facts, theories and laws form a structural paradigm of nature for the 
scientific community. However, these knowledge structures are not the truth in 
the absolute sense, but are incomplete, probabilistic, and tentative. 

8. Unique - Scientific knowledge is just one of many ways of knowing. Although 
some processes of knowing scientifically overlap with other modes of knowing, 
there are several distinguishing characteristics of scientific knowledge. These 
include its testability, predictive power, consistency, replication, communal 
review, and revisionary nature. Some problems lie outside the realm of scientific 
inquiry, and thus, science is unable to answer all questions. 

These eight dimensions do not have discrete borders that separate them, but they are 

interrelated in many ways. For example, the humanistic, social, and historic dimensions 

influence and inform each other as well as the entire realm of scientific inquiry and 

observation. The resulting knowledge structures reflect human limitations, historical 

advances, and the social interaction of decision-making. These facts, theories, and laws in 

turn constitute a paradigm of nature used by scientific communities to inform and limit 

future research efforts. 

Description of the Model's Dimensions 

Each dimension of the model of scientific knowledge is described below in detail to 

assist in an understanding of the brief explanations that follow the descriptor phases in the 

model outline. 
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The Humanistic Dimension 

The production of scientific knowledge is first and foremost a human enterprise. Any 

interpretation of the natural world emerges and develops in the human mind, and thus, 

knowing scientifically must be put into a human context. To understand the human quality 

of science, it is necessary to comprehend the nature of the "agent" in knowledge production 

- the scientist. The concept "scientist" in the epistemological model is defined as an 

individual who has received professional training in the system of natural scientific 

knowledge and is, on a daily basis, actively engaged in research activity investigating the 

natural world. The human characteristics of scientists affect the credibility and reliability of 

the resultant knowledge. Comprehending scientific knowledge requires knowing about the 

human qualities of scientists. 

Many sources including school science curriculum materials portray an idealized 

version of the characteristics of scientists. Scientists are described as objective, 

emotionally neutral, rational possessing superior reasoning abilities, open-minded, invested 

with superior intelligence, truthful, and communal in sharing knowledge (Carin & Sund, 

1975; Cawthron & Rowell, 1978; Cronin, 1989; Cross, 1990; Diederich, 1967; Haney, 

1964; Mahoney, 1976,1979). However, studies of scientists reveal individuals exhibiting 

characteristics contrary to the image of the model scientist (Cole, 1985; Cole & Cole, 1973; 

Kuhn, 1970; Mahoney, 1976,1979; Mahoney & DeMonbreum, 1979; Mahoney & 

Kimper, 1976; Mitroff, 1974; Roe, 1961). These strengths, weaknesses and limitations of 

being human permeate and shape the resultant scientific knowledge. 

A widespread assertion portrays the scientist as objective and emotionally neutral in 

his scientific investigations. Mahoney (1979) states that the scientist is characterized as "a 

dispassionate creature allegedly capable of suppressing personal biases in the interest of 

objective inquiry" (p. 351). However, the representation of the scientist as objective has 
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been strongly challenged (Chalmers, 1976,1990; Cole, 1985; Herron, 1971; Kuhn, 1970; 

Mahoney, 1976; Robinson, 1969; Welch, 1984). The effects of paradigmatic beliefs, 

professional schooling, and expectations of scientists on objectivity in observing 

phenomena will be discussed in detail in fifth model dimension titled "Observation and the 

Production of Scientific Knowledge." 

Another attribute portrayed in the ideal version of scientists is that scientists do not 

exhibit emotionality in their professional work. Roe (1961) explains that reported 

descriptions of scientists "describe their cold, detached, impassive, unconcerned 

observation of phenomena which have no emotional meaning for them" (p. 456). Mitroff 

(1974) challenged this assertion by the results of his study of 42 geoscientists in America 

that disclosed "vividly the inner and often extreme emotions that are connected with the 

doing of science" (pp. 70-71). Mahoney (1976) provides the strongest statement of the 

scientists' emotionality and its affect of scientific investigation by stating that "the scientist 

is probably the most passionate of professionals; his theoretical and personal biases often 

color his alleged 'openness' to the data" (p. 6). 

Furthermore, far from being stoic, scientists often exhibit unrestrained jubilation and 

excitement with positive experimental results or new discoveries. Likewise, not unusual 

among scientists are feelings of disappointment and depression. Experimental anomalies 

cause agony and frustration that may result in professional self-doubts. Scientists are often 

emotionally attached to their scientific work and sometimes suffer direct attacks or bitter 

disputes involving their conceptual perspectives (Mahoney, 1979; Kuhn, 1970). 

Emotional objectivity may be an admirable goal for a scientist, but its realizability is 

not possible. The subjective nature of scientists is explained by Mahoney (1979) who 

states, "The scientist cannot be devoid of emotions; human beings necessarily display 

certain behavior patterns which are characteristic of the species" (p. 364). In fact, most 
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scientists are motivated by their deep emotional association with their profession. Thus, 

scientists are subjective human beings that are affected by a wide range of emotions and 

that emotionality may affect the epistemological credibility of their work. 

Moreover, the conception that scientists possess superior reasoning abilities and 

rationality have been called into question. A study in which the logical abilities of 15 

ministers were compared to 15 physicists and 15 psychologists, the scientists performed no 

better than the other subjects (Mahoney & DeMonbreum, 1977). Logical thinking skills are 

certainly helpful to the scientist, but they are not wholly sufficient. Mahoney (1979) states 

that "much of scientific thinking is 'psycho-logic' rather than formally rational" (p. 364). 

Thinking processes contrary to formal logic have marked numerous scientific discoveries. 

Copernicus' placement of the sun at the center of the universe was more a "bold leap of 

faith, an act of imagination" (Hansgen, 1991, p. 691) based on aesthetic and philosophical 

reasons than the logic of contemporary scientific ideas. Thus, scientists should not be 

stereotyped as possessing superior logical and reasoning abilities. 

In addition, scientists exhibit a full range of creativity in their work. This creativity 

involves human strategies such as speculation, fantasizing, brainstorming, and imagining. 

The invention of scientific concepts and the subsequent testing of these ideas are " as 

creative as writing poetry, composing music, or designing skyscrapers" (American 

Association for the Advancement of Science, 1989, p. 27). 

Open-mindedness is a characteristic that is often used to describe scientists. Open-

mindedness involves the withholding of judgement until enough evidence is available, 

being open to all data relevant to a theory or hypothesis, and the readiness to alter an 

opinion when justified by the data. Studies (Mahoney, 1979) have revealed that there is a 

variance along a continuum in the "withholding of judgement" dimension of open-

mindedness among scientists. Scientists range from those who will not make conclusions 
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unless there is a large amount of supporting data to those who on very little data formulate 

extensive generalizations and enterprising models. 

Furthermore, the open-mindedness corollary of scientists' receptivity to all relevant 

data can be challenged by a review of historical evidence. For instance, Copernicus, 

Newton, Mendel, Darwin, and Einstein each experienced the narrow-mindedness of their 

peers even to the extent of the prevention of the publication of their opinions. Mahoney 

(1979) advocates that such intolerance to new, relevant data is present currently by the 

prejudiced way in which scientific journal articles are reviewed. 

Related to the issue of scientists' openness to relevant data, is the characteristic of the 

willingness of a scientist to change an opinion when justified by the data. Mahoney (1979) 

states that "eminent researchers have often displayed dogmatic faith in their theories, even 

in the face of strong falsifying data" (p. 359). There appears to be differential levels of 

dogmatism among scientists depending on their status in the scientific community (Mitroff, 

1974). Considering that a scientists' life's work may be devoted to the promotion and 

development of a particular theory, it is not unexpected that such inflexibility be exhibited. 

Thus, scientists may be very persistent in their opinion despite the introduction of 

formidable contrary evidence. 

In addition, the stereotypical scientist is portrayed as an individual with superior 

intelligence. Whereas it is evident that only the brightest applicants are admitted to graduate 

school, does superior intelligence predict degrees of scientific contribution? Mahoney 

(1979) and Cole and Cole (1973) reveal that, using standard measures of IQ, studies have 

not found a convincing relationship between contributions to science and IQ. Zuckerman 

(1970) probably summarizes a more accurate view of the scientist in regard to intelligence 

by stating, "motivation and endurance seem to count for at least as much as intelligence in 

producing superior scientific work" (p.241). Therefore, scientists need not possess 
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superior intelligence and the level of intelligence does not necessarily affect the level of 

significant contribution to scientific knowledge. 

Honesty and integrity are model traits of the idealized scientist. While it is realistic to 

state that the majority of scientists strive toward truthfulness, the misrepresentation and 

fabrication of data or results do exist. Historically, Galileo falsified some figures on 

gravity (Cohen, 1957), and Newton manipulated data in order to correspond to his models 

(Westfall, 1973). In modern times, Mahoney (1979) states that "the misreporting of 

research, the discarding of discrepant subjects, and similar misdemeanors, can readily find 

their way into the most righteous of laboratories" (p. 361). A national survey of 

physicists, biologists, psychologists, and sociologists (Mahoney & Kimper, 1976) found 

that 42% of the subjects were cognizant of at least a single case in which experimental data 

had been falsified. Thus, scientists are not unsusceptible to distorting experimental data 

and results. 

Furthermore, scientists are portrayed as individuals who openly share their continual 

work and knowledge in a cooperative manner with other scientists. Included in this 

corollary is the assumption that scientists are more interested in advancing scientific 

knowledge than personal honors and prestige. With the abundance of scientific papers and 

journals the appearance of a communal sharing of information would appear to be obvious. 

However, the extensive publication of articles may be motivated by less generous reasons. 

Typically, scientists are driven by a intense desire to gain credibility and recognition. A 

priority contest results in which scientists or research teams race to be the first to advocate a 

new discovery, innovation, theory, or technique. Scientists are very cautious in reporting 

unfinished work and revealing potential answers. Thus, the outcome in some cases is one 

of competitiveness instead of cooperation to the point of being secretive. Throughout 

history and in present times, science has witnessed many bitter disputes about the priority 
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issue of discoveries (Mahoney, 1979). Recently, two scientists, Dr. Robert Gallo and Dr. 

Luc Montagnier, have participated in a seven-year dispute about which one deserves the 

credit for discovering the AIDS virus (Thompson, 1991). 

However, most of the factors that motivate scientists are not contrary to the progress 

of scientific knowledge. Incentives for scientists include (a) the publication of articles, (b) 

receiving research grants or monetary awards, (c) being cited in other scientific journals, 

(d) receipt of distinguished awards, and (e) invitations to advance professionally. Because 

of the importance of recognition in gaining financial support, scientists devote most of their 

time to researching and writing papers. 

Moreover, human curiosity has to be considered as an important motivating force in 

scientific inquiry (Aikenhead, 1987; Haney, 1964; Kuhn, 1970; Welch, 1984). Kuhn sees 

the scientist as a "puzzle-solver," and the challenge of the puzzle is a significant motivating 

factor for the scientist. Scientists tend to want to understand a novel natural phenomena 

that cannot be explained by existing knowledge. 

Thus, as human beings, scientists exhibit the full range of altruistic to biased behavior 

patterns similar to fellow members of the human race. There is no single personality 

description of the scientist just like there is no distinct model that describes all human 

beings. Like other members of the human species, scientists react, behave, reason, and 

sense based on past and present experiences. As human beings, scientists are somewhat 

inadequate of grasping the actualities of the natural world in its absolute terms. The human 

element permeates scientific knowledge production and is a component that penetrates all 

dimensions of any epistemological model of science. 

Therefore, scientific inquiry is a human journey. The human qualities and behavioral 

patterns of scientists affect scientific knowledge production. As a knower, "homo 

scientus" (Mahoney, 1976) will always be an imperfect knowledge seeker. The human 
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constituent of the nature of scientific knowledge must not be neglected, and that most 

important factor should not be characterized in a simplistic, idealized manner. 

The Social Nature of Scientific Knowledge 

The production of scientific knowledge is a complex social activity that involves 

groups of scientists called scientific communities operating under a shared framework of 

beliefs/values, rites of passage, codes of conduct, communication systems, and standards 

of agreement. Scientific knowledge is public knowledge and is like a language. It is 

intrinsically the common property of a group of people. To understand the nature of 

scientific knowledge, the group dynamics that create, shape, and use the knowledge need 

to be recognized. 

A typical scientific community consists of practitioners of a particular specialization. 

Members of the community have completed comparable educational training in similar 

scientific literature about their speciality. Usually each community has a subject matter of 

its own marked by the boundaries of its technical literature. Practitioners within a 

community view themselves as having the responsibility for the development of their 

subject matter as well as the professional training of their successors (Kuhn, 1970). 

Such scientific communities can exist in several different levels. All natural scientists 

would be the most global community whereas specific professional groups (botanists, 

zoologists, physicists, etc.) are scientific communities. Communities may be an 

assemblage of scientists of similar techniques such as protein chemists, radio astronomers, 

high-energy physicists, or organic chemists. These communities are further subdivided 

into groups of scientists that conduct detailed research into very specific areas of their 

discipline such as the neuroendrocrinologists that study only "releasing factors of a peptide 

nature" that affect brain control (Latour & Woolgar, 1986). Typical communities at this 
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level have approximately one hundred members each. It is in these communities of 

scientists that the production and validation of scientific knowledge occurs. 

Like other social institutions, a scientific community is stratified with a division of 

labor. The fellowship of scientists is generally hierarchically divided which affords 

approximate categorization by responsibilities. The lowest category includes the 

technicians, instrument specialists, or graduate research assistant whose primary work 

usually includes the unimaginative day-to-day operation of experimental equipment to 

generate data. Next is an extensive group of experimentalists whose job is very similar to 

the technicians in grinding out data, but they usually have a greater responsibility in 

organizing and directing research. The next level consists of a heterogeneous grouping of 

indistinguished scientists whose major work emphasis is conceptual and can be classified 

as theoreticians. They plan experimental designs and interpret research data. The 

theoreticians share their responsibilities with the top echelon of the community - the famed 

scientists. This top group includes usually older, well published members who are 

recognized as the "experts" of the discipline. The top two categories of scientists share 

communal responsibilities of judging the worth of potential research, serving on editorial 

boards, advising on fund allocations, maintaining positive public relations and protecting 

the history of their discipline (Mahoney, 1979). 

Kuhn (1970) refers to the entire body of views about the "reality" of the natural world 

shared by a scientific community as a "paradigm" or a "disciplinary matrix." These beliefs 

arc in the form of the structures of science: facts, theories, and laws. The paradigm 

describes the entities that exist in nature as well as the behavior of those entities. For 

example, a component of the disciplinary matrix is "symbolic generalizations", such as 

F=ma or "action equals reaction," which are used and accepted by members of the scientific 

community without question. 
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Furthermore, a particular paradigm is accepted by a community of scientists on a 

consensus basis and serves as a template to measure and evaluate all scientific activity. 

Adherence to a paradigm allows members of a scientific community comprehensiveness in 

professional communication through a shared language and relative harmony in 

professional opinions. In the face of opposition of the accepted paradigm, the scientific 

community provides encouragement and support usually resulting in stubborn resistance of 

contradictory views. Such paradigms require great loyalty by scientists and operating 

under a particular paradigm affects individual scientists and their scientific endeavors in a 

number of ways (Kuhn, 1970). 

A scientific community requires of an individual a set of credentials to be accepted 

into its speciality. A person not only has to be endorsed by established members but has to 

have completed professional training that embodies principles of the accepted paradigm. In 

the schooling process, the scientific subject matter which is the tested and shared 

possessions of the community is learned and applied to problems to facilitate understanding 

of accepted consequential happenings in nature (Kuhn, 1970). In such learning, the 

language of science becomes part of an individual's vocabulary and permeates all phases of 

the work of the scientist from problem formation to validating conclusions. Kuhn (1970) 

emphasizes that "as one is given words together with concrete examples of how they 

function in use; nature and words are learned together" (p. 191). Thus, scientists learn a 

subject matter whose boundaries have been established by a community of professionals 

among whom they were trained, with whom they must work, and from whom they must 

receive recognition (Kuhn, 1970). 

Therefore, the centrality of language in the training of scientists as well as 

communication within a scientific community cannot be minimized. Language is a social 

mechanism of interfacing with other human beings. To be social knowledge, scientific 
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knowledge has to be linguistically encoded. In order for scientific ideas to be questioned, 

altered, and shared by other scientists, a shared background of agreed upon meanings to 

words is necessary. The accepted paradigm of nature supplies these meanings. Thus, the 

way in which scientists organize and discuss the natural world is based on and limited by 

language (Kuhn, 1970). 

Since a scientific community's paradigm oudines the current accepted view of the 

natural world, it serves a criterion for determining "valid" problems to study and their 

importance. In particular, a paradigm defines the problem and assures that a problem has a 

solution. To a large degree, these problems are the only ones a scientific community will 

regard as "scientific" and urge fellow scientists to pursue. Problems that do not meet the 

criteria of the accepted paradigm will be rejected as meaningless, metaphysical or too 

problematic (Kuhn, 1970; Herron, 1971). Thus, a particular paradigm of nature guides a 

group's research efforts. 

Also, commitment to a science community's paradigm restricts and regulates the 

investigative procedures and instrumentation. To be "legitimate," the scientific methods 

used must obey the accepted "rules of the game." These rules include application of 

accepted scientific facts, laws and theories as well as preferred types of instruments and 

procedures for their use. Striving to solve a problem defined by existing knowledge, 

scientists know what they want to achieve and design the investigative instruments 

accordingly. In using the accepted methods and instrumentation, the paradigm provides a 

scientist with assumptions that particular findings will result (Kuhn, 1970). 

Once a possible solution to an accepted problem is found, it is not ultimately the 

personal decision of an individual scientist or a team of scientists to the "validity" of the 

finding. It is the responsibility of the scientist or scientists to communicate, formally and 

informally, the findings of the experiment to the relevant scientific community and persuade 
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other scientists of the correctness of the experimental results. Scientific opinions do not 

become "knowledge" until it has been reviewed and received approval by the consensus of 

a scientific community. 

Therefore, scientists strive for recognition through publication in order for their work 

to be acknowledged, replicated or expanded. They invest a great deal of energy into 

persuasive publication (Latour & Woolgar, 1986; Mahoney, 1979). It is thus not 

surprising that there are over 70,000 scientific journals with a new article being published 

every 35 seconds (Hurd, 1990; Mahoney, 1979). Scientists strive to publish their work as 

extensively and quickly as possible. Scientific activity can be viewed as "an exchange of 

social recognition for information" (Hagstrom, 1965, p. 13). 

Moreover, the publication process itself is an important social component of the 

scientific enterprise involving individuals' interactions in reviewing and approving or 

rejecting articles that will affect the fate of ideas. Without communication to the 

professional community, ideas will seldom gain recognition or acceptance. The social 

dynamics of the publication process can either promote or discourage ambitious scientists 

as well as emerging scientific research trends. 

However, scientists need each other in order to increase their production of 

knowledge as well as confirm its acceptability (Latour & Woolgar, 1986). Not only does 

most experimental work involve teams of scientists, but peer approval and feedback are 

very important in motivating fruitful investigative endeavors. A scientific community 

provides an arena for such approval or feedback through professional meetings and 

publications. 

Thus, in essence to be knowledge, the proposed solution has to be certified by the 

practitioners of the trade. Scientific communities are the exclusive arbitrators of the 

authenticity of scientific knowledge. Latour and Woolgar (1986) state that "scientific 
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activity is not 'about nature', it is a fierce fight to construct reality" (p. 243). The "reality" 

of nature is the result of these communal debates not its cause. In other words, during the 

debate about the meaning of experimental results, no scientists can resolve the controversy 

by revealing that nature told them the answer. Rather, as Clough (1989b) states: 

They must present their evidence for what they think nature is, and the 
controversy continues until there is a collective decision reached on 
what the evidence means. However, once the controversy is resolved the 
reason for the decision is not ascribed to the consensus reached by the 
participants, but rather is attributed to the independent existence of nature, (p. 10) 

The result is that the construction of scientific knowledge appears to be unconstructed by 

anyone. 

Once an idea becomes an accepted part of the corpus of knowledge, its history of 

social construction fades away and the circumstances of its subjective production become 

less and less significant. It is viewed as noncontroversial, objective, taken-for-granted, 

and becomes part of the tacit knowledge of the scientist. Only if later evidence points to the 

knowledge as being "wrong" are the social factors of its creation resurrected. The accepted 

information is embodied in textbooks or daily scientific activity and perhaps forms the basis 

of new instrumentation. It becomes part of the accepted paradigm of nature. The 

community of scientists strongly supports the concept and contests attacks against its 

validity. The new "knowledge" is used to judge the worth of experimental questions, 

procedures, or even research projects. Opposing views are rejected and viewed as 

nonscientific or nonexistent. The new "fact"-of nature exists solely because of the 

continuing support of a community of believers (Feyerabend, 1975). 

Furthermore, science cannot be seen as an isolated social institution. It interacts with 

other social institutions such as government, education, business, and military. These 

institutions influence the funding, direction, and purposes of the scientific community. 
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Due to these influences, research in the natural sciences is becoming more socially than 

theory driven. Science is subjected to the usual conflicts of class, government and 

business interests not so much in its efforts to preserve and transmit knowledge but in its 

role of modifying and expanding knowledge (Aikenhead, 1986a; Fleming, 1987). 

Moreover, it is in these interactions with other social institutions that the distinct role 

of science and technology begins to become unclear. However, the social role of science 

is to extend or modify knowledge about natural phenomena without regard to its practical 

applications. On the other hand, technology's social role can be viewed as the development 

and enhancement of practical methods and procedures to respond to human needs. Seeing 

technology as just applied science implies that the aim of technology is to discover practical 

applications of scientific research. Fleming (1987) emphasizes that technology is not just 

applied science. In other words, technology does not depend on science, but possesses its 

own resources and is itself an identifiable cultural institution. Science does not necessarily 

limit technological possibilities just as conversely a significant advancement in science 

produces corresponding progress in technology. Therefore, "technologists apply 

technology, just as scientists apply science" (Fleming, 1987, p. 165). However, there is 

an interrelationship between science and technology in that scientific discoveries do 

influence technological advances just as technological instrumentation affects the progress 

of science. In addition, scientific knowledge itself is amoral. It is in the applications of 

scientific and technological knowledge that moral judgements have to be made. 

Thus, the social system of science implemented by the interactions of scientists 

through scientific communities determines the validity of problems, investigative 

techniques, and experimental results based on a communal view of the natural world. This 

natural paradigm of the scientific community that is taught to aspiring scientists and 

practiced by the status quo restricts views of the natural world and permeates the 
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production of knowledge. Scientific knowledge is shaped by the beliefs and attitudes of its 

practitioners and reflects the history, power structure and political climate of the supportive 

community. The "reality" of nature is socially constructed being the result of interactions 

between scientists rather than the purpose of communal activity. The epistemological 

aspects of acceptability cannot be divorced from the sociological concept of decision­

making. Therefore, scientific knowledge production is a social phenomenon. 

The Historical Aspect of Scientific Knowledge 

Throughout time humans have attempted to understand the natural world and thus 

scientific knowledge has a history. There have existed many models for the structure and 

complexity of the natural world. Each one of the historical models of nature have been 

examined carefully by contemporary scientists concerning its perceived validity. These 

past views of nature have been discarded, modified or maintained withstanding challenges 

to their perceived authenticity. Yesterday's revolution in thought is today's common sense, 

and today's knowledge may evolve into tomorrow's discarded ideas. Scientific knowledge 

is continually in a state of examination and change. 

Historical study provides a method of examining the manner in which scientific 

knowledge has developed. Neither the ahistorical inductivist's view of the confirmation of 

theories by observational data nor the Popperian perspective of falsification of theories 

provide an adequate portrayal of the development of science (Chalmers, 1976). Rather 

Thomas Kuhn (1970) better describes the evolution of science by a careful examination of 

its history. He outlines a revolutionary view of the development of scientific knowledge 

using a sociological perspective. 

Operating under an accepted paradigm of nature, scientists do not question the 

assumptions of the paradigm, but they further define and articulate the structures and bases 

of the current paradigm. Kuhn (1970) refers to such "puzzle-solving" activity within the 
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scientific communities as "normal science." It is the period of time when paradigmatic 

knowledge is extended by attempting to increase the match between theoretical predictions 

and experimental results. 

In doing so, scientists will experience difficulties and encounter apparent puzzles that 

resist solving using the prevailing beliefs about nature. Kuhn (1970) points out that there 

will always be unsolved puzzles within a paradigm. However, an anomaly will become 

threatening to the paradigm if it contradicts paradigmatic fundamentals, and it persistendy 

resists removal despite the continued efforts of the community of scientists. Due to the 

failure to remove the anomaly and possible gradual buildup of other anomalous events, the 

accepted paradigm begins to possess a diminished capacity to solve or generate problems 

for its practitioners and is less able to support its vigorous research tradition. Thus, in 

Kuhn's (1970) perspective, the periods of normal science become interrupted by intervals 

of crisis or breakdown in the current paradigm. 

Moreover, attempts by scientists to solve the anomaly or anomalies become 

increasingly more radical and the previous rules of investigative activity are relaxed. 

Special efforts in investigating the anomaly may cause the profession to consider a new 

array of commitments as well as a new set of principles of investigative procedures. 

Professional insecurity heightens, and scientists begin to doubt as well as openly question 

the reigning paradigm. The crisis intensifies when a rival paradigm emerges. The new 

paradigm will be much different and incompatible with the previous one. Scientists 

examine competing articulations and are willing to try alternative investigative procedures to 

attempt to understand the debate over fundamentals. This period of crisis in paradigmatic 

beliefs resulting in a debate of competing views is called by Kuhn (1970) as "extraordinary 

science." 
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Eventually, the period of extraordinary science may end by a consensus of scientists 

accepting an alternative paradigm of nature and abandoning the original, problematic 

paradigm. The decision to reject a paradigm is always accompanied by the acceptance of 

another rival paradigm. Such extraordinary shifts of paradigms are referred to by Kuhn 

(1970) as "scientific revolutions". He explains that "they are the tradition-shattering 

complements to the tradition-bound activity of normal science" (Kuhn, 1970, p. 6). The 

new paradigm would explain as much of the anomalous areas as possible and create new 

problems for research. The new paradigm is not just a change in a theory, but a radical 

shift or "gestalt switch" in the scientific community's natural world view. 

With the onset of a new paradigm, there is a reconstruction and reevaluation of the 

knowledge structures of science - facts, theories, and laws. In essence, the world of 

scientific investigation has changed. Scientists design new instruments, research new 

problems, and make new observations. A period of normal science resumes until a new 

crisis develops followed by an revolution in paradigms. This revisionary process in the 

collective theoretical and methodological beliefs is far from a cumulative process (Kuhn, 

1970, Herron, 1971). 

However, the historical development of science is usually viewed as a cumulative 

process. Scientists are seen as contributing one or more pieces to the puzzle of a view of 

nature, and these pieces are added up to make the science of today. This cumulative 

perspective is typical of inductivists' account of science. In other words, scientific 

knowledge continuously grows as increasingly numerous observations are made which 

permits the formulation of new concepts, the refinement of previous ones, and the 

discovery of new relationships between phenomena (Chalmers, 1976). Textbooks portray 

scientific progress as cumulative because they explain only the portion of a scientists' past 

achievements that appear to be contributoiy to the premises and solutions of the textbook's 
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current paradigmatic problems. Past scientists are portrayed as working on the same set of 

problems under the same paradigmatic conditions as todays' scientists. Contrary to this 

perspective, earlier scientists pursued their own problems with their own instrumentation 

within the contemporary paradigmatic beliefs which were quite different than today's model 

of the natural world (Kuhn, 1970). 

The "development-by-accumulation" viewpoint is challenged by the revolutionary 

idea of scientific development as described by Kuhn (1970) when viewed in a long-range 

historical perspective. Kuhn emphasizes that the cumulative view ignores the role of 

paradigms in influencing observation and experiment The basis for the revolutionary 

perspective is that history illustrates that there have been bodies of belief that are 

incompatible with the current principles in science. These discarded views of the behavior 

of the natural world exist as evidence that science has not grown by accumulation. 

Therefore, the evolution of science can be viewed as "a succession of tradition-bound 

periods punctuated by noncumulative breaks" (Kuhn, 1970, p. 208). 

Only during periods of normal science is scientific inquiry cumulative because its aim 

is the further articulation of the currently accepted paradigm. It is based on several past 

scientific discoveries of the paradigm that the scientific community asserts as providing the 

basis of future research efforts. Periods of normal science are usually very successful in 

the expansion of the scope and precision of the paradigmatic knowledge. The knowledge 

gained during periods of normal science builds upon itself. Ironically, it is in the detailed, 

precise investigative activity of normal science that anomalies begin to appear and 

subsequently may cause a paradigmatic shift in the scientific community (Kuhn, 1970). 

Furthermore, the criterion for scientific progress as seem in the Kuhnian perspective 

is problem-solving ability. The revolution of paradigms involves the probability of a better 

fit between experimental results and theory of the successful paradigm. The most 
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significant claim made by the supporters of the new paradigm is that they can answer 

problems that led the previous paradigm to crisis. 

Thus, the development of scientific knowledge is the result of the continuous effort 

by the community of scientists to fit theoretical predictions with experimental findings. 

Scientific knowledge progresses cumulatively only within periods of normal science. 

However, there will always be the possibility that a new theory will better explain 

observations and new laws will enhance descriptions of phenomenal relationships. The 

consequence is a revolution in the view of the natural world which produces reevaluation of 

the knowledge produced under the tenets of the previous paradigm. The history of science 

demonstrates that the scientific enterprise can never irrevocably commit itself to any fact, 

law or theory no matter how valid it appears in the current paradigm of nature. Therefore, 

scientific knowledge has a revolutionary history that demonstrates its epistemological 

uncertainty and tentativeness. 

Specific Beliefs About the Natural World 

The production of scientific knowledge is based on certain beliefs or assumptions 

about the natural world. Scientists believe in the existence of a real world, an absolute 

reality, that can be examined and comprehended through careful research. By using human 

intelligence with the assistance of investigative procedures and instruments, it is believed 

the structure of the natural world can be revealed (American Association for the 

Advancement of Science, 1989; Kimball, 1967-68; Welch, 1984). 

Furthermore, scientists believe that nature is not inconsistent in behavior. 

Consistency in nature occurs in relation to time, scale, and place. The current discoveries 

are applicable to explaining natural phenomena in the past as well as the future. Nature 

behaves on a small scale as it does on a large scale, and natural events are not unique to any 



53 

single part of the universe (American Association for the Advancement of Science, 1989; 

Aikenhead, 1975; Kimball, 1967-68; Welch, 1984). 

Moreover, it is believed that events in nature have explainable causes, and there is an 

orderliness in nature. Thus, the causes of natural phenomena can be described by systems 

of explanations that apply everywhere in nature. By understanding these relationships, 

predictions can be made about the behavior of natural occurrences. (Hodson, 1988; 

Kimball, 1967-68; Welch, 1984; Aikenhead, 1975). 

Therefore, based on these very fundamental beliefs, scientists conduct their daily 

investigative activity of problem solving. The resulting scientific knowledge rests on the 

foundation of these assumptions. 

Observation and the Production of Scientific Knowledge 

An important step in the production of scientific knowledge is the observation of 

natural phenomena. Playing a basic role in scientific inquiry, observation not only leads to 

the formation of questions, but observation set in a testable framework also is vital to the 

determination of acceptable answers. However, it is important to understand the contextual 

nature of the act of observing and formulating observation statements. 

Scientists can explore the natural world by actively observing a wide range of 

conditions or from observing the selected conditions of a contrived experiment in the 

laboratory. Such observations are made directly by using the human senses, indirectly by 

using magnifying glasses, microscopes, etc. as extensions of the human senses, or by 

devices that extend the capabilities of human senses such as neutrino detectors (Norris, 

1985). Because of the importance of evidence in science, great significance is placed on 

the development of observing methods and instruments (American Association for the 

Advancement of Science, 1989). 
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However, human beings are not perfect instruments of observation, and thus, there 

are no purely objective observations. Observation is linked to human sensation of stimuli 

and perception. "Sensation" refers to the stimulation of the sense organs, and "perception" 

refers to the mental interpretations of the sensations. The act of observing involves the 

human processes of sensation selection and perceptual filtration (Hanis, 1979). From the 

vast array of incoming stimuli, an individual chooses to attend to only a few relevant ones 

and ignores the iiTelevant ones. The selection of "relevant" stimuli is not at random but is 

based on some sort of experiential schemata. Furthermore, there are filtration mechanisms 

that intercede between the act of sensing and perception. For example, several observers 

may receive identical images of an object on their respective retinas of their eyes, but they 

will not necessarily have the same perceptional experience. These filtration mechanisms 

consist of the experiences, knowledge, and expectations of the observer. In science, two 

filtration mechanisms are particularly important to understand - linguistic systems and 

paradigmatic theoretical beliefs (Chalmers, 1976). 

Initially, the act of observing is complicated by a dependency on the use of a language 

symbol system. Humans experience many sensations, but language tends to filter out 

sensations that cannot be related using familiar linguistic terms. Thus, the act of perceiving 

and the act of expressing an observation statement are one function. Furthermore, 

communication of an observation can only occur through the use of words that have agreed 

upon meanings. In the scientific enterprise, the precise meanings of words are defined by 

an accepted paradigm (Feyerabend, 1975). For example, the word "force" has a precise 

meaning derived from a theory in physics. In science, observation statements are 

necessarily formulated in the language of some theory that provides distinct conceptual 

schemes for words. Thus, clearly structured theories are a prerequisite for precise 
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observation statements. In other words, theory precedes observation in science (Chalmers, 

1976). 

Therefore, the perceptional schema of scientists is based largely on the selected 

paradigm of the natural world they choose to utilize. This perspective creates a filtration 

mechanism for scientists that determines what observations are relevant to an investigation. 

However, preselection is a necessary characteristic of scientific observation. Cole (1985) 

states that "researchers have to focus before they can see which means they have to decide 

where to look" (p. 98). Otherwise, there would be no basis for determining relevant 

observations. Such observational schemata based on a paradigm are acquired by scientists 

through their training and association with other scientists when they learn methods of 

observation as well as the descriptions of the observable entities in nature. Thus, what 

scientists perceive and expect through observation is influenced by a conceptual framework 

composed of paradigmatic experiences and knowledge (Cole, 1985; Mahoney, 1979). 

Even sophisticated instrumentation does not produce objective observational 

information. The theoretical basis of the design and operation of an instrument was once 

controversial among scientists. Blachelard (Latour & Woolgar, 1986) refers to such 

instrumentation as "reified theory." Such scientific apparatus, called "inscription devices" 

by Latour and Woolgar, produce pictures, charts, diagrams, and figures. These 

inscriptions that are used as scientific evidence are far from being objective or independent 

of theoretical influence. 

Furthermore, support for the theory-ladenness of scientific observation is revealed 

through any historical analysis of science (Abimbola, 1983; Kuhn, 1970; Mahoney, 1976). 

Alter the paradigm, and different observational data will result. For example, "valid" 

observations of falling objects on the earth based on the Ptolemaic geocentric view of the 

solar system became erroneous under the Copernican paradigm where the earth spins on its 
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axis. Thus, observations are not unsusceptible to revision, and there can be no permanent 

boundaries established on what entities are in fact observable. 

Moreover, not only does "what" is observed depend on the linguistic and 

paradigmatic lens used to view it, but any inferences drawn from the observation is 

influenced even further by the scientist's paradigm of nature. Observations can describe 

what is sensed directly or indirectly, but they do not explain anything. In science, an 

observation has no meaning until it is explained (Aikenhead & Fleming, 1975). Scientists' 

inferences from observations determine how they construct the structure of the natural 

world. 

In addition, the social nature of scientific observation should not be minimized. 

Scientific observations must be communicated as observation statements to the scientific 

community in order to become relevant to the discipline. Thus, different from 

personal/private observations, scientific observations formulated in paradigmatic language 

are public entities which can be utilized and examined. The scientific community interacts 

to determine the contributory nature of observations (Chalmers, 1976). Aikenhead and 

Fleming (1975) state that "in science, an observation is not an observation unless a group 

of scientists agrees with it" (p. 904). 

However, the theoretical, experiential, and linguistic elements of observation have not 

been overlooked by scientists. It is because of these elements that scientists have required 

that investigative observation be done in standardized conditions following routine 

procedures. Scientific observational techniques involve the use of measurement and 

controlled experimentation. Scientists actively engage with the natural world to check for 

the reality of an observed phenomena. Acceptable observation statements are those that 

have survived the most stringent independent tests levelled against them by the community 

of scientists. The use of quantification and instrumentation reduces the subjectivity of 
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observation. However, these methods do not eliminate the subjective nature of human 

perception, but just minimize its effects (Chalmers, 1990). 

Thus, observation is not a simple process, but a human activity that is permeated by 

selection schemata and filtration mechanisms composed of shared beliefs in a paradigm and 

an observational language. Much different than the inductivist-positivist perspective of 

unbiased observations yielding a secure basis for science, observations are not flawless or 

beyond the question of doubt. Theory must precede observation as well as the validation 

of observation statements, making the resulting scientific knowledge as fallible as any 

theory on which it is based. Because of the fallibility of theories, the guidance they provide 

to the determination of which observations are relevant may be misleading and might result 

in important observations being missed. Therefore, it is important to understand the 

theory-ladenness of the act of observing and the subsequent tentative conclusions drawn 

from those observations that result in scientific knowledge. 

Scientific Knowledge as a Result of Inquiry 

Scientific knowledge is produced through inquiry. It is through experimentation that 

scientists strive to substantiate and expand the tenets of the accepted paradigm of nature by 

rigorous testing of theoretical predictions. In addition, it is the replication of the 

experimental results by members in a scientific community that determine the contributory 

nature of any findings to the body of knowledge. The popular view of scientific inquiry is 

that scientific knowledge is based on objective, proven facts from which theories and laws 

are derived inductively. 

This view of science became prevalent during the seventeenth century Scientific 

Revolution due to scientists like Galileo and Newton. The concept was promoted by 

Frances Bacon who stressed that to understand nature, humans need to observe and 

investigate natural phenomena instead of depending on the previous explanations of the 
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ancient philosophers such as Aristotle. It was stressed that experience through observation 

was the source of scientific knowledge (Chalmers, 1976). There are many problems with 

the belief that scientific inquiry is grounded in the truth of inductive logic, involves proved 

empirical facts of experience independent of theory from which theories and laws are 

derived, and is determinant in the survivability of theories and laws. To understand these 

problematic areas, a brief review of the historical philosophical thought about scientific 

inquiry is helpful. 

Frances Bacon advocated a logical system of scientific inquiry through the inductive 

method called empiricism-inductivism, and Bertrand Russell, along with Alfred Whitehead, 

blended symbolic logic systems with the empiricist's viewpoint to form logical positivism 

(Abimbola, 1983). Both philosophies insist that science begins with unprejudiced 

observation of natural phenomena. Their tenets insist that observation statements can be 

justified by direct use of the investigator's senses. Other observers can verify the 

truthfulness of the observation statements by use of their senses. Singular observation 

statements describe a particular observation at a certain time and place. Scientific laws and 

theories are broad generalized statements about natural phenomena. The inductivist claims 

that it is legitimate to formulate a generalization from a finite number of singular 

observation statements providing there are a large number of observations and a variety of 

observations under numerous conditions (Chalmers, 1976; Mahoney, 1976). 

However, there are several problematic aspects to this inductive basis of scientific 

inquiry. In addition to the theory-ladenness of observation, inductive arguments are not 

logically valid arguments. Moreover, the demand for numerous observations under a 

variety of circumstances can be called into question as well as justifications based on past 

experience (Mahoney, 1976). 
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To address some of these problems of induction, the logical empiricists, a present 

philosophy of science, focus on the confirmation of universal statements through testing of 

predictions. This philosophy is based on the works of Carnap, Hempel, Nagel and others 

(Abimbola, 1983). It is committed to the use of the empirical sciences and symbolic logic 

in the examination of the predictive and explanative nature of theories and laws. The 

logical empiricists insist that it is induction that is used to derive hypotheses (logic of 

discovery), but deductive reasoning is used to formulate predictions and explanations (logic 

of proof) (Abimbola, 1983; Chalmers, 1976). This is the basis of the hypothetico-

deductive model of scientific inquiry. The hypothesis is the starting point from which 

predictions of behavior can be deduced, and if the behavior does indeed occur, the 

hypothesis is confirmed. If the predicted events do not happen and the soundness of the 

deductive logic is certain, then the hypothesis must be revised (Abimbola, 1983; Chalmers, 

1976). 

However, the origin of the hypothesis by inductive reasoning in the hypothetico-

deductive model has been questioned by Hanson, Polanyi, and others (Mahoney, 1976). 

They argue that the formation of hypothesis is much less rational than depicted and that 

hypotheses can originate in a variety of ways from lucky guesses to accidents, dreams as 

well as logical reasoning. Furthermore, in the hypothetico-deductive model, induction is 

not eliminated from the confirmation of the hypothesis. In other words, the hypothesis 

holds true once, twice, three, four,..."n" times, and then a claim can be made that it will 

always hold which is inductive logic. However, it cannot be known for certain that it will 

always hold, because the hypothesis has been tested only a limited number of times. In 

other words, it can only be argued that the statement will hold because it has always held. 

Thus, the hypothetic-deductive model does not eliminate the problems of inductive 

reasoning (Chalmers, 1976). 
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Furthermore, the positivists and logical empiricists advocate that scientific knowledge 

is based on a pure empirical factual data base. They advocate that the "facts" of experience 

form the origin of theories, force consensus, and are the final determinant of accuracy. 

However, there are no "pure" factual data because they acquire their meanings only in a 

conceptual framework which is a particular paradigm of nature. Thus, the production of 

data presupposes some conceptual construct. In other words, rather than reflecting data, 

theories may be thought of as generating data. Since facts are dependent on theory, they 

are relative, not absolute and may change in the future as theoretical assumptions change. 

Thus, factual evidence serve as devices that attempt to describe the real natural 

world rather than a firm basis for knowledge (Chalmers, 1990; Mahoney, 1976). 

One method out of the induction problem as well as the other aforementioned 

problems as a basis of scientific proof is to claim that formulation and confirmation of 

theories and laws is probabilistic. In other words, the generalizations inductively derived 

through a number of observations cannot be guaranteed to be perfectly true, but there is a 

high degree of probability that they are true. The larger the instances of observation, the 

more probable the conclusion. Likewise, the greater the number of confirming instances 

indicate a degree of probability that an hypothesis will hold true. However, the result is 

still an universal statement based on a finite number of observations (Chalmers, 1976). 

Another way to avoid the problems of induction is to deny that induction is the basis 

of scientific inquiry. Karl Popper (Chalmers, 1976) does just that in his falsification theory 

of scientific research. He admits that observation is theory-laden and that observational 

data cannot absolutely establish the truthfulness of a theory or law. Furthermore, he 

stresses that the true test of an hypothesis is not being able to confirm it through testing, but 

that it is stated in such a way that would allow some event to falsify it. Thus, different 

from the verificationists who need many similar observations to "prove" a theory or 



61 

hypothesis, the falsificationists need only one disconfirming observation to refute a 

generalization (Chalmers, 1976). 

However, theories are insulated from complete falsification by the "Duhem-Quine" 

thesis. It states that "any theory can be permanently saved from refutation by internal 

revisions and adjustments" (Mahoney, 1976, p. 140). The tenet is illustrated in the history 

of science and seems to be currently practiced. Theories are adjustable in their predictions, 

and scientists are more likely to modify a theory than to outright renounce it. Thus, the 

acceptance or the rejection of theories based on data is not as straightforward as it appears. 

Therefore, neither the inductivist's claim that theories and laws result from drawing 

conclusions inductively from observation or the falsificationist's belief of the refutation of 

hypotheses based on observation adequately characterize scientific inquiry. Another new 

revisional model of scientific inquiry was created by an in-depth analysis of the history of 

science. It is based on the philosophical thought of Bronowski (1965), Feyerabend 

(1988), Kuhn (1970), and Toulin (1953). The basic tenets of this "revisionist" philosophy 

of scientific inquiry are as follows: 

1. Formal logic systems and sense data as the ultimate authorities in the validity of 
scientific knowledge are rejected. The ultimate decision of the truthfulness of 
knowledge rests with the scientific communities. 

2. Paradigmatic beliefs determine to a large extent what is perceived of phenomena 
and thus, observation is very theory-ladened. 

3. There are no absolute, immutable facts, but facts are relative to their conceptual 
frameworks, and as paradigms change, facts will change. 

4. Theory does not arrive out of data, but theory is prerequisite for data. 

5. Scientific inquiry operates within an accepted paradigm that determines the 
validity of problems, instrumentation, functional models, and methods of 
inference. 

6. Conjecture, paradigmatic beliefs and tacit knowledge all interact in scientific 
inquiry. 
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7. Scientific inquiry is characterized as continuous research with ongoing criticism. 

8. Scientific knowledge is not ultimately true, but is fallible and tentative (Abimbola, 
1983; Mahoney, 1976). 

Thus, the new view of scientific inquiry rejects the idea that scientific knowledge is 

securely grounded in inductive logic systems and the facts of unbiased observational 

evidence. The natural reality produced by scientists is "more like the clay models of a 

sculptor than the steel girders of an architect" (Mahoney, 1976, p. 134). 

Specifically, what is the nature of scientific inquiry? It would seem that an accurate 

description of the nature of scientific inquiry would be found in the writings of the 

individuals actively engaged in the process; the scientists. However, scientific papers, the 

printed communications of scientists in professional publications, distort the processes of 

science. Such papers misrepresent the thought processes that originate and accompany the 

work reported in the papers (Latour & Woolgar, 1986; Medawar, 1964). They fail to 

describe erroneous trails, hunches that did not materialize, or mistakes in the experimental 

process. According to Knorr-Cetina (1981): 

It is clear... that once the selections of the laboratory have been crystallized 
into a scientific result, the contingencies and contextual selections from 
which it was composed can no longer be differentiated. In fact, the scientists 
themselves actually decontextualize the products of their work when they turn 
them into "findings," "reported" in the scientific paper (p. 47). 

In addition, the format of scientific papers (introduction, literature review, methods, 

results, and discussion) promotes the perception of an inductive view of the process of 

experimentation. In other words, theoretical generalizations will result from objective, 

unbiased observations and declarations of fact. Also, the pressure to publish may cause 

scientists to only describe successful studies, to only investigate the easily evaluated 

questions, and to misrepresent the procedures or results to satisfy journalistic requirements 

(Mahoney, 1976). 
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Furthermore, misrepresentations of scientific investigations are confounded by 

textbooks that portray scientific inquiry as involving a specific process called the "scientific 

method." This model of inquiry is usually outlined as a step-by-step procedure that 

scientists follow. The steps are usually outlined as : 

1. Make an observation and identify the problem 
2. Collect information about the problem 
3. Form a hypothesis 
4. Test the hypothesis 
5. Collect and analyze the experimental data 
6. Form a conclusion (Clough, 1989b; Hill, Shaw, Jones, & Carter, 1990) 

This typical textbook description of a step-by-step "scientific method" is characterized 

by Connelly (1969) as a "fairy tale on enquiry" (p. 110). The processes of discovery are 

too complex to be generalized into a simplistic step-by-step model (Feyerabend, 1975; 

Halpin & Swab, 1990; Herron, 1971; Hodson, 1988; Hurd, 1986; Toulmin, 1985). Such 

a description misrepresents the dynamic nature of the interactions between the scientist, the 

experimental problem, and relevant subject matter. In Science for All Americans by the 

American Association for the Advancement of Science (1989), the authors state: 

Scientists differ greatly from one another in what phenomena they investigate 
and in how they go about their work; in the reliance they place on historical 
data or on experimental findings and on qualitative or quantitative methods; 
in their recourse to fundamental principles; and in how they draw on the findings of 
other sciences, (p. 26) 

Because the many sciences have different areas of concern as well as different goals, they 

require different types of evidence and utilize a variety of theoretical structures. Thus, they 

employ many different procedures of investigation. 

Furthermore, a review of the history of science illustrates that many past ideas of 

science have arisen in a very disorderly way. Any adherence to a specific method of 

science would have eliminated many of past theoretical conceptions that are now considered 
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as a basis of science. Feyerabend (1975) advocates that there are no general 

methodological rules which at times should not be broken. If any tenet is cited as being 

fundamental for scientific inquiry, a review of the history of science will disclose incidents 

where the rule was not obeyed. Feyerabend explains that scientific progress would be 

hindered seriously if scientists followed a definite method. The only rule in science, 

according to Feyerabend, is "anything goes." 

Whatever the methodology used, the important issue is that the experiment is 

conducted according to a standardized procedure that can be replicated by members of the 

scientific community. It is in the experimental setting that variables can be held constant or 

manipulated to provide observations of phenomenal regularities. Such experimental 

intervention into natural phenomena is necessary to provide relevant information. 

However, regularities in data obtained in artificially constructed experiments do not 

necessarily indicate valid explanations for natural phenomena occurring outside 

experimental situations. In the natural world, phenomena result from a combination of 

many diverse processes juxtaposed in a complex manner. The scientific experiment is 

designed only to facilitate the production and observation of some phenomena that is 

relevant (Chalmers, 1990). 

While it is conceded that observations, empirical data, experimental design, and 

justification of results are all formulated in theory, once the experiment is activated, it is the 

nature of the world that produces a result. Chalmers (1990) states, "It is the fact that 

experimental outcomes are determined by the workings of the world... that provides the 

possibility of testing theories against the world" (p. 72). Significant results are often 

ambiguous, very hard to obtain, and not infallible. However, the history of science has 

shown that significant results can result from experimentation based on many methods of 

inquiry. 
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Thus, scientific inquiry involves a dynamic interaction between the natural world, the 

humanity of the scientist, paradigmatic theoretical assumptions and many investigative 

methods. Induction cannot be justified as providing the absolute proof of the truthfulness 

of knowledge due to its finite number of observational evidence, its basis on past 

experience, the problematic nature of observation, and its logical inability to derive a proof. 

Falsification and the hypothetico-deductive models of scientific inquiry suffer from the 

same problematic aspects as induction. The ultimate epistemological authority for the 

validity of knowledge arriving from scientific inquiry is not formal logic systems or sense 

data, but the consensus of scientific communities. There is not one but many scientific 

methods of investigating natural phenomena. The evaluation of the validity of theories and 

laws is not a simple straightforward process of inquiry, but involves theory modification 

more frequently than theory rejection. Understanding scientific inquiry illustrates that there 

are no experimental tests that can judge a theory's or law's absolute truthfulness. Scientific 

inquiry produces knowledge that is fallible, probabilistic, and tentative. 

The Structures of Scientific Knowledge 

Through the many methods of inquiry, the resulting scientific knowledge is 

expressed in the form of facts, theories, and laws. These "structures" of knowledge form 

the basis for a view of the natural world detailing its composition and in turn drawing their 

validity and meaning from an accepted paradigm. Due to facts, theories, and laws, it is 

possible for scientists to communicate in a shared language as well as make predictions and 

propose explanations. 

The structures of scientific knowledge attempt to describe and explain natural 

phenomena in as simple and broad terms as possible (Kimball, 1967-68; Rubba & 

Andersen, 1978; Welch, 1984). This principle of parsimony states that "science should be 

conservative in stating the implications of its data; that the data should be interpreted in the 
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simplest manner possible" (Lachman, 1960, p.53). The result are facts, theories, and laws 

that express specificity and with clear expression versus vagueness and generality. Science 

strives to generate the least number of comprehensive concepts to describe or explain the 

largest number of natural observations (Rubba & Andersen, 1978). The facts, theories, 

and laws devised by the separate disciplines of science contribute to the overall body of 

knowledge which is interrelated and concordant. 

Furthermore, facts, theories, and laws in science are usually expressed whenever 

possible in the language of mathematics. Mathematics allows definitions of quantities, 

properties and relationships in a very concise and precise manner. Systems of mathematics 

are very helpful in data organization as well as communicating information based on data 

(Lachman, 1960). 

Scientific knowledge structures and reality. 

The popular view of the structures of scientific knowledge is that they relate the truth 

about the natural world. What is the relationship between these knowledge structures and 

the reality of nature? The "realist" position advocates that there is a very direct relationship 

between the knowledge structures of science and "what the world is really like." In other 

words, facts, theories, and laws have a direct ontological relationship to the real natural 

world similar to common-sense objects of perception. Scientists discover these truths 

about a natural world that is just waiting to be revealed. Inductivists and logical positivists 

as realists state that truth about the natural world can be derived through valid inductive 

processes. Criticism of this perspective relate to the logical invalidity of induction and the 

theory dependence of observation (Aikenhead, 1987; Latour & Woolgar, 1986). 

Recognizing the many problems of the realist position, the "instrumentalist" 

advocates a distinct separation between scientific concepts relating to direct observation and 

others relating to theory. Entities that can be directly observed describe the real world, but 
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theoretical descriptions of entities not directly observable do not. The theoretical entities are 

just useful instruments to promote calculations and to order perceptional information. They 

do not have an ontological status that connects them to reality nor an existential status. 

Thus, neutrons, electrons, and quarks do not exist in the natural world whereas planets, 

stars, and rocks do. The naive instrumentalist believes it is not the purpose of science to 

establish entities beyond observation because there is no sure method to connect the 

unobservable to the observable. The main criticism of the naive instrumentalist perspective 

is the distinction between the observable and theory. All observation statements are theory-

laden and thus fallible. Thus, their viewpoint is based on a distinction that is not present 

(Aikenhead, 1987; Chalmers, 1976). 

In contrast to the instrumentalist and realist positions, the "radical instrumentalist" or 

"pluralistic realist" (Chalmers, 1976) advocates that such a boundary between observational 

language and theoretical language is nonexistent. Emphasis is placed on the distinction 

between conceptual systems such as facts, theories, and laws that are changeable, human 

products and the real natural world. The external natural world is real, but so are facts, 

theories and laws that are continuously produced and adjusted by real scientific inquiry. In 

other words, there is an absolute natural reality and a "structural reality," scientifically 

speaking, of facts, theories, and laws. They are two distinct realities that are linked by 

scientific inquiry. 

The radical instrumentalist or pluralistic realist denies that there exists a direct link 

between the structures of science and the real natural world. The entities described in facts, 

theories, and laws may or may not exist in nature, but to insist that they exist in the real 

world is a mistake since the structures of science are not derived from objective sense data, 

but are constructed from theory dependent observation statements. Even though scientific 

inquiry strives to understand the relationship between scientific knowledge structures and 
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the real world, there is no absolute test of their truthfulness. If confirmation of theoretical 

predictions occur during experimentation, it has not been demonstrated that the entity exists 

in nature. It only demonstrates that the predicted result was obtained in the artificial reality 

of the experimental set-up. Thus, the knowledge structures that compose the structural 

reality of scientists are tentative describing entities that may or may not exist. They cannot 

provide epistemological certainty about the absolute reality of the natural world, and by 

their very nature, they are provisional (Chalmers, 1976). 

In support of the radical instrumentalist or pluralistic realist position of the separation 

of an external natural world and a structural reality of knowledge structures is the historical 

record of science in which the scientific structural reality has changed as opposed to the 

absolute natural reality. For example, upon the acceptance of the heliocentric view of the 

solar system, the rotation of the earth as opposed to a stationary earth position became the 

common-sense view of the world. The earth did not begin turning on its axis with 

Copemicanism. Furthermore, the radical instrumentalist position makes sense of the effort 

of science to derive knowledge structures that are simple and coherent. Such coherency 

and simplicity allow scientific inquiry to be very precise and productive. It is not nature 

that is simple, but only the knowledge structures that humans produce. (Chalmers, 1976) 

Thus, the structures of scientific knowledge are explanative and descriptive 

constructions that constitute a structural reality for the scientists. They are not final 

statements of truth, but are conditional and never proven in the absolute sense. Scientific 

facts, theories, and laws have discrete and special functions as knowledge structures. A 

discussion of each will assist in an understanding of their similarities and differences. 

Scientific fact. 

In the everyday usage of the word, a fact is defined as an entity that has an actual 

existence or occuiTence that is viewed as possessing an objective reality. Facts are 
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presented as independent of opinion or belief and as a result, they are unsusceptible to 

modification or change under any circumstances. There seems to be no debate about the 

existence of a fact. It is taken for granted about its truthfulness and used to support other 

facts (California Department of Education, 1990; Latour & Woolgar, 1986). It is believed 

that laws and theories can be refuted or confirmed by the facts of observation and 

experimentation. Thus, facts seem to be the epistemological authority on which other 

knowledge structures are based. 

However, an examination of the construction and features of a scientific fact will 

illustrate a different perspective. A fact is a statement that has lost most of its conditional 

modalities. It is the aim of the laboratory to decrease the number of modalities of a 

statement and to add more "factuality" to the statement. Statements are thus loaded with 

associative investigative documents and qualifying modalities that create an evaluation of 

the statement. The object of scientists is to persuade their colleagues to drop the modalities 

and accept as well as use the statement as a matter of fact. Most statements remain with 

their qualifying modalities, and some are discarded never to be considered again. 

However, some statements possessing a large amount of supporting evidence are 

borrowed as well as used extensively by the scientific community. Their fact-like status 

becomes greater as they lose qualifying modalities. It eventually loses most of its 

modalities and becomes part of the larger body of knowledge. Thus, a qualified statement 

about an object becomes an existential, objective object in the structural reality of the 

scientist as more and more reality is attributed to the object. Once the controversy ends in 

the scientific community, the statement becomes a fact and its methods of subjective 

construction are forgotten (Latour & Woolgar, 1986). 

However, three modalities that a scientific fact always keeps are its theory-ladenness, 

its tentativeness and its lack of absolute truthfulness. It is in this way that the scientific 
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view of a fact and the common, everyday usage of the word "fact" are very different. 

Specifically, a scientific fact can be thought of as an understanding based on many 

repeatable experimental observations done within a theoretical framework. Facts acquire 

their meaning only within a conceptual framework, thus they are relative. Since there is no 

absolute test of the validity of the scientific evidence, scientific facts do not "prove" a 

theory or law. Scientific inquiry does not result in infallible ideas and thus, does not serve 

as a proof. The word "proof' should be limited to strict logical derivations or abstract 

mathematics. 

Furthermore, there are no "bare" facts, but scientific facts achieve their meanings only 

in a paradigmatic theoretical context. That theoretical context generates the basis for 

scientific inquiry that produces facts. Thus, facts can be viewed as the products of theory, 

not its predecessor. Since the facts of science are based on the current theoretical 

paradigm, they are always subject to change based on new evidence (California Department 

of Education, 1990; Feyerabend, 1975). The idea of the mutability of facts supports the 

notion that progress in science is not by factual accumulation. The history of science 

demonstrates the rejection of alleged immutable "facts" that were replaced by newer ones. 

Mahoney (1976) explains, "Our 'facts' are just as fickle as our theories. Todays facts are 

yesterday's science fiction and tomorrow's myths" (p. 18). 

Thus, factual relativism places scientific facts in a very different perspective than the 

common-sense usage of the word "fact." Facts change when their theoretical basis 

changes. Facts do not "prove" theories or laws since there is no absolute test of the validity 

of scientific evidence. Factual relativism demonstrates that facts are not the firm, 

immutable epistemological building blocks of truth as perceived by the nonscientist, but are 

changeable, pragmatic constructions that provide a possible correspondence to an absolute 

natural reality. 
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Scientific hypothesis. 

In order to develop an understanding of the last two scientific knowledge structures, 

theories and laws, a comprehension of the nature of a scientific hypothesis is helpful. A 

hypothesis attempts to explain an observation and serves as a foundation for 

experimentation. It is a very important mental tool of a scientist. Serving as a supposition 

or an educated guess, an hypothesis is used to make a prediction implying a cause and 

effect relationship. Then through experimentation, a phenomenon is observed and a 

comparison is made with the prediction. If the hypothesis is very close to the prediction, 

the researcher has an useful explanation of the event (Aikenhead & Fleming, 1975). 

Throughout the history of science, hypotheses have led to important discoveries. 

Some hypotheses, although wrong, are very productive. However, the majority of 

incorrect hypotheses prove unfruitful. When an hypothesis seems correct after 

experimentation, the researcher limits claims of discovery to the specific conditions of the 

experiment and continues further investigation. This "working hypothesis" is scrutinized 

under further experimentation and new avenues of investigation applying the new 

hypothesis may result. If an hypothesis explains many facets of a natural phenomena after 

many subsequent investigations, it might eventually become a conceptual scheme of 

understanding which is a theory. In addition, if a working hypothesis about the 

relationships of observable events subsequently are accepted by the scientific community, it 

might become a scientific law. However, it must be remembered that there is not a simple, 

direct connection between hypotheses through observation and theories/laws due to the 

mediation of paradigmatic beliefs. 

Scientific theory. 

A theory attempts to explain a group of observations that reflects on some property of 

the natural world. Whereas an hypothesis strives to explain a narrow range of events, a 
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theory organizes and explains a broad range of phenomena. Hypotheses are derived from a 

theoretical basis and if through continuous testing, the hypotheses are sustained, the theory 

is strengthened. If many hypotheses based on the theory are confirmed by a preponderance 

of evidence, the theory will gain the acceptance by the scientific community. Thus, 

theories gain credibility and consistency through the testing of hypotheses. Theories strive 

to explain cause and effect relationships about previously observed phenomena, create new 

experimental investigations, and predict future natural behaviors (Aikenhead & Fleming, 

1975; California Department of Education, 1990; Lerner and Bennetta, 1988; Lachman, 

1960). 

Theories are never proven to be true or false in the absolute sense. They are tentative 

changing with new observations and their usefulness. Theories are tools used by the 

scientific community to attempt to explain the behavior of perceived natural entities. No 

theory explains all events applicable to it. The more useful a theory is, the better the theory 

is. If a theory begins to make invalid predictions concerning new observations, its 

usefulness suffers and a new search for a more valid theory begins. When a theory is 

replaced, it is not proved false. It has just become not useful (Aikenhead & Fleming, 

1975). 

Theories can be of two basic types: (a) theories that provide an intellectual framework 

for understanding and prediction of a specific type of natural phenomena as well as a 

direction for new investigations and (b) great key theories that informs a whole science that 

brings many discrete findings together into a systematic science such as the theory of 

evolution. Theories unify science so extensively that only in the theoretical context can 

concepts be understood and contributions be evaluated (Lemer & Bennetta, 1988). 
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Scientific law. 

A scientific law describes relationships between observable events that have been 

observed to occur over and over again. In addition, laws can be used to predict the 

occurrence of relationships between certain phenomena. An example of a law in science is 

Boyle's Law which states "that the volume of a gas varies inversely with the pressure 

applied to it, other conditions remaining constant"(Lachman, 1960, p. 28). Such lawful 

relationships are often expressed in a mathematical form or by formulae. Laws in science 

do not explain the reasons for such relationships between existing properties. Theories 

attempt to explain such relationships. Laws describe, theories explain. In the case above, 

the kinetic theory of gases was created to explain the relationship between volume and 

pressure (Horner & Rubba, 1979). In some instances, laws are advanced before theories 

are generated to explain them. For example, the law of gravity has existed for a long time 

and currently, there is no single, accepted theory to explain it. 

Since laws and theories are entirely different types of knowledge statements, theories 

do not become laws. No matter how much testing of a theory occurs, it will not develop 

into a law. There is not a maturational relationship between the two knowledge structures. 

Laws are derived from hypotheses that receive enough acceptability from the scientific 

community to be accepted. Also, laws and related theories do not have to appear similar. 

For example, Boyle's Law does not mention "molecules" that are mentioned in the kinetic 

theory of gases that strives to explains molecular interactions (Horner & Rubba, 1979). 

Furthermore, no law is considered absolute or unchanging. Current scientific laws 

are viewed more valid by scientists than alternative ones. When observations are made that 

cannot be described by a current law, the law is changed or new laws are adopted. Just as 

with theories, laws are based on observational and experimental evidence and are subject to 

the limitations and influences of those human operations. 
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Scientific model. 

To assist in the understanding of scientific theories and laws, scientists create models. 

Models are mental, mathematical, or physical depictions that strive to illustrate in a simple 

way the structure or behavior of entities that are described in theories and laws. Models 

cannot be expected to represent exactly the theoretical or lawful entity or phenomenon. 

They are limited in their usefulness due to scale, qualitative differences, and simplicity. 

Thus, models can be conceived as pragmatic representations of theories and laws 

(Aikenhead & Fleming, 1975; American Association for the Advancement of Science, 

1989). 

The Uniqueness of Scientific Knowledge as a Wav of Knowing 

Scientific knowledge is just one of several ways of knowing or domains of meaning. 

Other modes of knowing include mathematics, history, politics, religion, philosophy, 

technology, and aesthetics. Some authors (Burke, 1985; Feyerabend, 1975; Mahoney, 

1976) advocate that science cannot be distinguished from other ways of knowing. 

Mahoney (1976) compares science to religion in that science also involves worship of a 

knowledge base, ritualistic behavior, a precise dogma, a hierarchy of participants and 

entrance requirements for its participants. Burke (1985) explains that science is like 

magical rituals and religious beliefs because each contains a cosmogony that explains 

existential questions, a structure to explain cause and effect relationships, languages only 

known to the participants who have been admitted after passing rigid tests, and a 

procedural methodology. Feyerabend (1975) takes even a more radical stance with his 

denunciation of an universal scientific method by advocating that science cannot be 

differentiated from myths, politics, art, or even fairy tales. 

However, even though science overlaps with other ways of knowing, science does 

possess some distinctive characteristics. The main differentiations of scientific knowledge 
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from the other ways of knowing is attributable to its testability, predictive power, 

consistency, replication, communal review, and revisionary nature. An idea to be scientific 

must be able to be tested yielding experimental or observational evidence to judge its 

validity against alternative explanations. It is the predictive power of scientific explanations 

that allow them to be judged against other explanations. A scientific explanation must agree 

with all observational data better than alternative ideas, and must illustrate a cause and effect 

relationship. Furthermore, any researcher can replicate a scientific investigation and verify 

or reject the results. A scientific finding must be communicated openly and fully to 

members of the scientific community to be deemed contributory. In the public arena of 

peer review, scientific knowledge is tested and debated about its validity before it becomes 

accepted knowledge (American Association for the Advancement of Science, 1989; 

California Department of Education, 1990; Showalter, Cox, Holobinko, Thompson & 

Oriedo, 1974). 

In addition, the revisionary nature of scientific knowledge distinguishes it from other 

types of knowledge. When discrepancies arise in the observed results of inquiry and the 

predicted results, the specific knowledge scheme is called into question. If subsequent 

examination of a particular knowledge structure reveal many discrepancies, revision and 

reformulation of the knowledge structure will occur. Thus, scientific knowledge is always 

tentative and self-correcting. (Heiron, 1971, Showalter et al., 1979). 

Thus, scientific knowledge is only one way in which humans attempt to understand 

their surroundings. Other modes of knowing create knowledge in their own particular 

way. They have different aims, methods of accumulating and validating data, ways of 

decision-making, and a set of assumptions all of which generate a different kind of 

knowledge. Many questions cannot be studied in a scientific mode of knowledge 

production and lie outside the realm of science. Therefore, science is unable to answer all 
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questions. Is science the best way of knowing? Scientific knowledge provides a very 

complex picture of the natural world, but that is not the proof that it portrays the most 

accurate paradigm of nature. 

Summary 

A model of the nature of scientific knowledge was created based on previous models 

and a review of the literature. Scientific knowledge is humanistic, social, historical, based 

on specific beliefs, observation based, a result of inquiry, composed of structures, and has 

attributes of uniqueness. Scientific inquiry is a human enterprise affected by qualities and 

behavorial patterns of scientists. These human characteristics affect the credibility of the 

resultant knowledge. In addition, scientific knowledge is shaped by its social nature and is 

affected by the power structure and political climate of the supportive scientific community. 

The epistemological aspects of its acceptability cannot be divorced from the sociological 

concept of decision making. Scientific observation is not a simple process, but is 

permeated by theory and the limitations of language. There is no one scientific method but 

many approaches to scientific inquiry which results in the knowledge structures of science 

- facts, theories, and laws. An understanding of the dynamic processes of scientific 

inquiry demonstrates that science cannot produce final statements of the truth. All 

scientific knowledge is probabilistic and tentative never being proved in the absolute sense. 

Even though scientific knowledge has unique attributes such as its testability, predictive 

power and communal review, science cannot answer all questions. It is just one way of 

knowing. 
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CHAPTER IE 

METHODOLOGY 

Introduction 

The majority of studies on students' or teachers' conceptions of the nature of 

scientific knowledge have used quantitative measures. Instruments using a Likert scale to 

monitor responses to statements about the nature of science and scientific knowledge 

include the Nature of Science Scale (Kimball, 1967-68), Test on The Social Aspects of 

Science (Korth, 1968), Wisconsin Inventory of Science Processes (Scientific Literacy 

Center, 1967), Welch Science Process Inventory (Welch & Pella, 1968), and Nature of 

Scientific Knowledge Scale (Rubba, 1976). Cooley and Klopfer (1961) devised a measure 

tided Test on Understanding Science which includes multiple choice questions. 

To better understand respondent answers to questions concerning the nature of 

scientific knowledge, Aikenhead, Fleming, and Ryan (1987) designed a measure called 

Views on Science-Technology-Society (VOSTS). The test asks respondents to react to a 

statement by marking agree, disagree, or could not respond and then to write a short 

paragraph explaining their choice. In this way, researchers are able to gain an insight into 

the reasoning and thought patterns that informs respondents' answers. In a study of 

10,800 high school seniors using VOSTS, Aikenhead, Fleming, and Ryan (1987) 

discovered that in many cases a number of respondents marked agree and disagree to 

particular questions, but at the same time gave similar justifications for their answers. 

These findings raise significant concerns about the measures using the Likert scale 

adequately measuring participants' conceptions of the nature of scientific knowledge. 

Furthermore, from the analysis of the written justifications in VOSTS, Aikenhead, 

Fleming, and Ryan (1987) indicated a need to examine carefully the meanings of the words 
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and ideas individuals used. What were individuals' conceptions of terms such as 

scientists, scientific method, fact, law, theory, technology, or science? The qualitative data 

of VOSTS support the need for this research study into the conceptions of the nature of 

scientific knowledge by an in-depth probing of the language and thought patterns of 

participants through interpretive inquiry using unstructured interviews. 

The Nature of Interpretive Inquiry 

Interpretive inquiry strives to make sense of and understand the conceptions of 

individuals through face-to-face interactions to gain an inner perspective of their personal 

world views. The meanings people impose on reality influences the way they think and 

behave. The best way to discern individuals' conceptions is to watch, discuss, listen and 

participate with them in their struggle to relate their world views. Interpretive inquiry is 

based on a phenomenological paradigm that there is subjective reality constructed primarily 

through an individual's experiences in the world. This personal reality which includes a 

tacit, taken-for-granted world can only be understood through the intersubjective 

involvement with another human being (Barritt & Beekman 1983; Firestone, 1987; 

Shapiro, 1983). The emphasis is on interpretation and description while the ultimate goal 

of interpretative inquiry is a particular understanding (Rist, 1982; Shymansky, 1984). In 

this case, the particular understanding is middle school science teachers' conceptions of the 

nature of scientific knowledge. 

In interpretive inquiry, the researcher is the instrument and the interpretation of the 

data arises out of the experiences of the investigator (Eisner, 1981; Smith, 1982). Since 

the researcher plays an active role in the creation of the understandings of the investigation, 

the subjectivity of the researcher is recognized. The perceptions and personal 

understandings that the investigator brings to the study influence the selection of questions, 

episodes, statements, and descriptions as well as the ultimate interpretation. 
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However, it is the subjectivity of the researcher that presents some dangers in 

interpretive inquiry studies. Different from quantitative studies, there are numerous ways 

to conceptualize and define the relevant parameters of the data. In addition, there are no 

reliability or validity quantifications of the instrument or statistical analysis of the data to 

determine "significance." It is the researcher that provides the only means of knowing 

about the subjects and the ultimate interpretation of the data. In this particular study, the 

researcher has struggled with the immense responsibility of portraying subjects' views as 

accurately as possible and interpreting their conceptions in an adequate manner. It is 

recognized by the researcher that there is always a degree of arbitrariness inherent in any 

attempt to categorize subjects' world views. The researcher does not assume any special 

validity of the participants' science world views as defined in the study other than the fact 

that their construction was defined by parameters of the study's model of scientific 

knowledge and were formulated judiciously to create a common ground for interpretation. 

Other limitations of interpretive inquiry studies as compared to quantitative studies relate to 

the absence of precision in focusing on one or a few variables and the limited number of 

subjects. The issue of generalizability in interpretive studies is discussed below. 

The power of interpretive studies is their scope. Rich description provides the reader 

with a recreation of observations as well as a deep understanding of the results (Firestone, 

1987; Rist, 1982; Smith, 1982). It freezes instances of the inquiry to bring them to a level 

of awareness and consciousness. Since such a study requires an intense, in-depth 

involvement of the investigator, usually interpretive inquiry studies involve a small number 

of subjects. The strengths of the interpretive inquiry studies are the recognition of 

subjectivity, detailed depictions, and the attention to perspectives evidenced by quotations 

and descriptions. 
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Moreover, generalizability is a concept relating to the belief that the findings of a 

study can be generalized to the universe of similar phenomena. In interpretive inquiry 

studies, the emphasis is on particular understandings with little possibility of absolute 

replication. However, this research study is predicated and supported by previous studies 

on individual's conceptions of the nature of scientific knowledge. In addition, interpretive 

inquiry studies maintain that the general resides in the particular, and what is learned from 

the intense analysis of individuals' subjective realities can be expanded to other settings. 

These subjective realities are not arbitrary ones but are constructed by the participants 

through experiences and associations with other human beings and cultural influences. 

Thus, participants' subjective realities are reflective of the culture in general (Eisner, 1981). 

In this particular study, the participants have experienced professional training as a science 

teacher which is somewhat standardized and very similar across the nation. Also, their 

work situations in the middle school setting is comparable to most middle schools in the 

nation in respect to organizational schemes, student populations and curricular content. 

Due to these similar educational cultural influences and sociological effects, particular 

subjective realities of the participants can be generalized. In learning about each 

individual's "consciousness of scientific knowledge," important information can be gained 

about the general science education culture. Moreover, the generalizability of this 

interpretive study lies in the intersubjectivity of the study with the audience reading it and 

their ability to personally relate descriptions and findings to their own situations. 

Unstructured Interviews 

The unstructured interview format was selected as the method of obtaining a 

perspective of the middle school science teachers' conceptions of the nature of scientific 

knowledge. The unstructured interview (also called informal interview or semi-structured 

interview) is seen as a "conversation with a purpose" (Burgess, 1984). As opposed to the 
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structured interview where the subject is in a subordinate role answering predetermined 

questions in a particular pattern, the unstructured interview employs a thematic framework 

from which to form questions during the conversation. The questions can be rephrased, 

reordered, analyzed, and discussed. There is considerable active participation and 

interaction by both individuals. The investigator is a confidant who sincerely is interested 

in the views of the individual. Because there exists a more natural, personal relationship 

between the researcher and the respondent than in the formal interview setting, the 

conversation yields much richer, in-depth information (Burgess, 1984; Rist, 1982). 

Procedure 

Selection of Subjects 

The study involved a total of six middle school science teachers from an urban school 

district of approximately 20,00 students and a suburban/rural school district of about 

24,000 students. The selection of the participants began with a request of the school 

districts' science supervisors for a list of recommended teachers to participate in the study. 

Criteria outlined for recommended participants included teachers actively involved in 

teaching middle school science as well as certified in that field. In addition, recommended 

individuals must be judged as "successful" science teachers as evidenced by peer 

recognition, school district activities, and receipt of awards. Also, the list of requested 

recommended participants needed to include both sexes, different races, and a range of 

teaching experience. From the submitted lists of recommended teachers, the investigator 

chose six participants that included a range of teaching experience, both sexes, and two 

races. A descriptive profile of each subject is given at the end of the chapter. All subject 

names used in the descriptive profile as well as throughout the study are pseudonyms to 

insure the anonymity of the participants. 
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Initial Conference 

After the selection of possible participants in the study, the researcher sent to each 

subject a letter that outlined a brief description of the research project, an invitation to 

participate, and a notification that a phone call would follow to ascertain a decision of 

involvement. The first six teachers contacted by the researcher agreed to participate in the 

study. During the phone conversation, a date and time for an initial conference was 

scheduled. The initial conference, usually lasting about thirty minutes, included a detailed 

discussion of the scope of the study, the time requirements, the assurance of 

confidentiality, and the use of the results of the study. At that time, subjects read and 

signed the "Consent to Act as a Human Subject" form. A date and time for the first 

interview session was scheduled. In addition, each subject was given the 

Biographical/Professional Background Questionnaire (see Appendix A) to complete and 

return by mail to the researcher before the first interview. 

Interview Format 

The interview stage of the study consisted of two interactions on different days 

between the researcher and each participant. The unstructured interviews were held at the 

subjects' homes during a time free from distractions and interruptions. All conversation 

was recorded on audio tape and brief notes were taken by the researcher detailing any 

"interpretive asides" (expressive nature, body language, and behaviors of the subject). The 

initial interviews began with an explanation of the aims of the interview and the freedom to 

seek clarification of any questions. The interviews continued with questions seeking 

clarification of any completed items on the Biographical/Professional Background 

Questionnaire. From that point, the interviews involved a discussion between the 

researcher and subjects about the main themes of the study - the importance of science 

education, the eight dimensions of the model of scientific knowledge, and the way in which 
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the teachers' viewed their conceptions of scientific knowledge affecting their instructional 

methodologies. An Interview Theme and Question Guideline (see Appendix B) was used 

by the researcher as a reference to ensure that the same themes would be covered in all 

interviews. The guideline indicates the types of questions that were addressed in the 

interview sessions. However, during the interviews, questions were rephrased and 

reordered as an interview progressed. Thus, the sequence of questioning was quite 

different for each subject. The initial interview sessions were very successful with 

participants freely and enthusiastically discussing their perspective of each of the interview 

themes. The lengths of the initial interviews ranged from 90 minutes to three hours with 

the average length being two hours. 

After the initial interview session with each subject, the researcher transcribed the 

audio tape. It was invaluable for the researcher to personally transcribe the audio tapes. It 

allowed not only for the content of the questions and answers to be heard again, but also 

permitted an examination of interview and questioning techniques used by the researcher. 

In this way, the researcher was able to improve in questioning and interaction strategies for 

subsequent interview sessions. It was discovered that reasking questions in a different 

way, sometimes using the language of the participant, was an effective method of checking 

for consistency and clarification of answers. In addition, detailed questioning was needed 

into the precise meanings of words to allow a complete understanding of the implicit 

meanings of the language used by the subjects. 

Using the transcript, a careful analysis of the initial interview was done seeking out 

any thematic areas that were missed or areas that needed clarification. Once the analysis 

was finished, a date and time for the second interview was scheduled with the subjects. 

The time interval between the first and the second interview sessions ranged from two 

weeks to five months with the average length of time being nine weeks. The second 
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interviews proved invaluable in providing the researcher with a chance to address areas that 

needed further explanation or clarification as well as to ask about themes for which time did 

not allow during the initial interview. As in the initial interview sessions, the subjects were 

enthusiastic and eager to talk about their views. The lengths of the second interviews 

ranged from 50 to 125 minutes with the average length being 76 minutes. The audio tapes 

of the second interviews were transcribed again by the researcher. The total transcript of all 

the interviews with the subjects totaled 287 pages in length taking 95 hours to transcribe. 

Analysis 

Analysis occurred during the interviewing process as well as subsequent to it which 

is typical to interpretive inquiry studies. There was constantly an interaction between 

collection of data and analysis; between "what is known versus what is to be learned" 

(Rist, 1982, p. 445). 

Using the transcripts, the investigator repeatedly read the narrative of each subject 

striving to understand participants' assumptions, meanings of words, and conceptions. 

Particular attention was given to reoccurring concepts that related to the thematic framework 

of the interview. Any connection between the subjects' biographical data and conceptions 

was noted. A detailed attempt was made by the researcher to determine the conceptual 

"lens" through which participants viewed scientific knowledge. 

Finally, the subjects' narratives were analyzed seeking unifying elements that linked 

the conceptions of the six participants as compared to the model of the nature of scientific 

knowledge and subsidiary issues of the study. Described in the next chapter, these 

elements supported by quotes and descriptive narrative portray the nature of scientific 

knowledge as conceived by the sample of middle school science teachers. 
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Subject Profiles 

Beth 

Beth is a white female, 45 years old. She has taught a total of 22 years all at the same 

school, and on a daily basis , she teaches eighth grade science to 104 students. As a 

tenured teacher, she is certified on a graduate level as a mentor teacher and in the areas of 

academically gifted, middle school science and social studies. Possessing an 

undergraduate degree in home economics, Beth continued to complete her education with 

the Masters of Education degree in middle school science. Beth is a regular workshop 

leader around the state and a presenter at state science conferences. Beth has received an 

Outstanding Science Teacher Award and the Distinguished Service to Science Education 

Award from a state science teachers' organization. Her local school district presented her 

with its highest science teaching award as well as the Teacher of the Year Award. She is 

involved extensively on a district-wide basis in inservice training particularly in cooperative 

learning and effective schools. 

Beth became involved in teaching science when unable to secure a position as a home 

economics teacher. She returned to graduate school to secure her certification in science 

and began teaching at her present school. Her views about scientific knowledge have been 

influenced by college professors and interactions with science educators. She views the 

classroom teacher as very important commenting, "The quality of education boils down to 

what happens when a classroom of students sit down under the direction of that one 

teacher." Science is exciting to Beth because of its changing views of ourselves and the 

planet earth. In addition, Beth enjoys teaching science because of her love of the subject 

and the positive feedback of her students. 
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Diane 

Diane is a white female, 29 years old. She has a total of eight years teaching 

experience having been at her present school six years. She is certified as a mentor teacher 

and in the areas of academically gifted, middle school science and math. As a tenured 

teacher, she teaches eighth grade science to 101 students daily. After receiving a Bachelor 

of Arts degree in education, she completed the Master of Education degree in middle school 

math. She received an Outstanding Science Teacher Award and the Distinguished Service 

to Science Teaching Award from a state science teachers' association. In addition, her 

school district presented her with the Teaching Excellence Award as well as the Teacher of 

the Year Award. Diane is also an author having published an article on affective education 

in a professional magazine. She is especially proud of being selected as a participant in a 

national research associate program serving an eight-week summer internship at a research 

laboratory. 

Diane was influenced by two high school science teachers to pursue a science related 

career. Her views about the nature of scientific knowledge has been affected initially by 

college professors and reading science literature, but more recently by her experiences at a 

national laboratory. She conceives the importance of classroom teachers as "critical" 

because they serve as a role model, facilitator, and a motivator for students which can 

"make or break a kid as far as their interest in science." Science is interesting to Diane 

because it is "intriguing... not boring, and it is applicable to the real world." Because of 

her love of learning and helping others, she wanted to become a teacher particularly at the 

middle school level. 

David 

David is a white male, 48 years old. He has a total of 20 years of teaching experience 

with 15 years at his present school. David teaches seventh grade science to 120 students 
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on a daily basis. As a tenured teacher, he is certified on the "A" level as a mentor teacher 

and in the academically gifted and middle school science areas. He graduated from a local 

university with a Bachelor of Arts degree in biology with some graduate work in ecology. 

He has received awards from the local Jaycees as Young Educator of the Year and from the 

local school district as Middle School Teacher of the Year. He is actively involved in his 

school's leadership team and serves as science department chairperson. 

In addition, David views the importance of the classroom teacher as being a positive 

role model for students. Science interests David because it "gives us meanings and 

explanations for the physical and biological relationships on the planet earth." Being 

influenced by his family background, military service career, and college experiences, 

David decided to follow a career as a science teacher. 

Alice 

Alice is a white female, 41 years old. She has been teaching for a total of 11 years 

with six of those years at her present school. As a tenured teacher, she teaches eighth 

grade science to 120 students on a daily basis. She is certified on the "A" level in middle 

school science having received a Bachelor of Science degree in education. Alice has 

participated in many district-wide inservice sessions from critical thinking workshops to 

school leadership seminars. Being active in coaching science competition teams at her 

school, Alice has directed teams of students to the finals of two state science competitions 

in recent years. She has received the Teacher of the Year Award and has been a nominee 

for the district-wide Teaching Excellence Award. Because of her innovative teaching 

techniques, Alice has received two grants to enhance her classroom science teaching. 

Alice is interested in science because "all knowledge is stimulated from science." She 

views science as a way to "allow humanity to be free to create and through that creation 

give forth something of themselves." Alice believes that classroom teachers are important 
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because they are necessary to stimulate critical thinking and "to offer... a safe shelter for 

that child to be free to think." Influenced by her grandfather who was a doctor and the 

curiosity of her children, Alice became a teacher of science to help young people develop a 

desire to learn more about the natural world. 

Jane 

Jane is a black female, 45 years old. She has been teaching for a total of 21 years, 

five of which have been at her present school. She teaches science to 111 seventh grade 

students each school day. As a tenured teacher, she is certified on the "A" level in middle 

school science. She completed her Bachelor of Science degree in biology and has 

continued her professional development through attendance to many inservice opportunities 

on various science instructional methodologies. Jane was a recent nominee for the state 

Earth Science Teacher of the Year Award. 

Furthermore, Jane is interested in science because "it attempts to explain the world 

around us and... uses the knowledge gained to enhance our lives." Professional 

colleagues, inservice workshops, and reading the science education literature have 

influenced Jane's view of scientific knowledge. She views the importance of the 

classroom teacher as a "guide for the students in learning." Even though Jane did not enter 

college to be a science teacher, science was always one of her favorite subjects. She enjoys 

teaching science because of the excitement of the subject and the personal stimulation of 

helping students. 

Mi 

Bob is a white male, 44 years old. This year is his first year at his present school but 

he has been teaching for a total of 13 years. He is certified in middle and secondary science 

possessing a Bachelor of Science degree in science education. He has done some post­

graduate work in curriculum planning and the social foundations of education. He has 
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worked in four different school districts teaching middle and high school sciences in 

addition to a tenure as a central office administrator and manager in a private business. He 

currently teaches eighth grade science to 125 students daily. On the district level, he has 

recently received their top award, the Excellence in Science Teaching Award. As an avid 

reader of science literature, Bob is very active in his district in writing science curriculum 

and integrating computers in his classroom. 

Bob likes science because he enjoys "knowing why things are the way they are." 

Being influenced by a special middle school teacher, Bob began to enjoy science and later, 

in the military, Bob was given the chance to teach others. In college, Bob was guided into 

the science education field by an influential science educator. He immensely enjoys 

teaching science because of his love of the subject, the challenge of testing new ideas, and 

the feedback of his students. 

Summary 

The previous results of quantitative measures of the nature of scientific knowledge 

have indicated a need for an in-depth probing of individuals' conceptions of this important 

area of science. The interpretive inquiry method of investigation was chosen for the study 

because of its emphasis on face-to-face interactions with individuals in an attempt to 

understand their subjective realities. By the use of unstructured interviews, the researcher 

sought to ascertain the personal meanings the subjects ascribed to their views of the nature 

of scientific knowledge. Although interpretive inquiry studies are limited by the lack of 

reliability/validity quantifications, statistical analysis, and large number of subjects, their 

strengths lie in the scope of the studies through rich description and recognition of 

subjectivity. Because the subjective realities of the participants are reflective of their 

cultural and socialization experiences, a particular understanding of their scientific 

knowledge conceptions applies to a general understanding of science teachers' world 



90 

views. The methodology of this study has provided a portrayal of the views of scientific 

knowledge held by the sample of middle school science teachers. 
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CHAPTER IV 

THE IMPORTANCE OF SCIENCE EDUCATION AND THE NATURE OF 

SCIENTIFIC KNOWLEDGE: CONCEPTIONS OF SIX MIDDLE SCHOOL SCIENCE 

TEACHERS 

Introduction 

Through the unstructured interview format, a detailed account was obtained of the 

teachers' conceptions of the nature of scientific knowledge. Two subsidiary issues 

addressed in the interviews were the importance of science education and the effect of the 

subjects' views of the nature of scientific knowledge on their teaching strategies. This 

chapter describes these conceptions in a thematic approach. Initially, teachers' conceptions 

of the importance of science education will be described which is followed by participants' 

conceptions of the eight dimensions outlined in the model of the nature of scientific 

knowledge. Finally, a portrayal of teachers' conceptions of the effect of their views on 

their instructional strategies will be given. 

The Importance of Science Education 

The main goal of science education is to increase the scientific literacy of students. In 

Chapter One, the features of scientific literacy and the main goals of science education are 

depicted. The two most prominent views expressed by the subjects dealt with the 

custodianship of the natural world and the acquisition of critical thinking/problem-solving 

skills as an individual as well as a citizen. The subjects viewed science education as 

providing students with an appreciation and understanding of the natural world in order to 

live in harmony with it. Recycling, natural resource conservation, energy efficiency, acid 

rain, and ecological relationships were mentioned as key environmental issues that students 

should understand. Beth stated that being literate in science is: 
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Being familiar with enough basic science concepts so that you can live 
in this world and not do detriment to yourself or this planet as you use 
the resources ... in such a way that their use will benefit you as an individual and 
for the good of this planet. 

Two subjects felt strongly enough that they felt the "survival" of the world depended on the 

science education of students. In discussing the problems of humanity, Bob stated that "if 

there is a solution, it is going to be found through science" whereas David expressed, "Our 

entire future is dependent upon our understanding of science." 

Furthermore, the importance of students developing critical thinking and problem 

solving skills in science education was commented upon by every subject. These skills 

were viewed as necessary for intelligent decision making as an individual or as a citizen 

contributing to society. Alice saw science education in a personal perspective as 

developing "a student who can look at all sides of an issue, can see the value of a problem, 

can take that problem and fit it somewhere into their puzzle of life." In this manner, she 

believed students can learn to analyze problems, to recognize that all ideas have merit, 

create their own ideas, and develop confidence in their own knowledge. Jane emphasized 

that students have "got to be able to hear the facts on both sides and then make a decision 

based on what they think is best for the community or for them." Several subjects 

considered the critical thinking/problem solving skills inherent in scientific methodology. 

By studying science, Beth related, "That's what you are teaching when you teach process 

skills, and you teach the scientific method - a logical way of arriving at a legitimate, 

credible answer to a problem." 

In addition, subjects mentioned future employment opportunities for students, 

possession of an adequate knowledge base, and affective concerns as reasons for science 

education. Diane emphasized that she thinks that "we need people who understand and 

who are capable in science, who can go out there and fill the jobs." Jane was more 
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specific by stating that "we have to provide scientists." The acquisition of a knowledge 

base in science was discussed in the context of acquiring future jobs or understanding 

scientific issues in decision making. Finally, subjects noted that science education should 

develop interest, curiosity and a positive attitude toward science. Bob explained that 

students should understand that science is "fun to do." 

However, in every case, the subjects stated that the goals of science education were 

not being achieved in schools. Beth attributed the reason to the lack of time and hands-on 

science instruction. She explained: 

You are caught between what you really feel is the right thing to do 
for kids, and what you really can do. It takes time to plan and we do not 
always have that time. That's why hands-on ... science ... doesn't 
get done. 

Similarly, Diane viewed the failure of achieving the science education goals due to the lack 

of hands-on science that causes a loss of interest by students. Diane responded: 

I think you really got to get them to like it [science].... I see teachers who have 
their kids come in, sit down, and read a page and answer questions.... That is 
all they ever do and they never use any lab equipment.... I don't even think 
it is the majority of teachers who are teaching with the hands-on approach. 

David attributed the uncaring attitudes of students about science whereas Alice believed 

class sizes and lack of teacher planning time contributes to the failure of achieving the 

science education goals. Bob viewed the reasons as the unchangeability of teachers, the 

curriculum, and the use of textbooks as well as the emphasis on vocabulary. Bob 

explained, "I think teachers are ... scared of changing what they are doing.... I think 

probably all of us spend more time in the textbook than we should... and too much time on 

vocabulary." Jane thought societal influences on children, too many concepts to learn, 

textbooks, and a lack of hands-on activities create a deficiency in meeting science education 

goals. 
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Interestingly, when the question of the importance of science education was narrowed 

to "Why is middle school science education important?", the answers also narrowed 

considerably. Almost in every case the subjects mentioned that middle school science is 

preparation for high school science course work. David stated, "I've got to get them ready 

for high school." The other dominant issue involved the conception that it was the really 

last chance to develop an interest and a positive attitude in students about science. Diane 

explained that she needed to "make them [students] love science so that when they leave 

me, they will continue taking them [science courses] in high school." The importance of 

middle school science education was paramount in Beth's view who stated, "If we get 

more kids going into science, it is going to be the middle school that is going to make the 

difference." The issues of developing a custodianship of the natural world and critical 

thinking/problem solving skills were not mentioned in the middle school context. Thus, it 

appears that the subjects could be more comprehensive in their thinking of the general 

importance of science education. However, when applied to their particular daily situation 

at the middle school level, their reasoning was more practical and diminished to preparation 

and attitudinal aspects of science schooling. 

In comparison with the conception of scientific literacy and its characteristics as well 

as the National Science Foundation's "goal clusters" (Kahl & Harms, 1981) as outlined in 

Chapter One, the subjects conceptions of the importance of science education were 

generally inclusive of most of the dimensions. Neglected as goals of science education by 

the subjects were an understanding of the scientific enterprise as a human enterprise and a 

cognition of scientific history. These two areas are very important for a complete 

understanding of the nature of scientific knowledge. 
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The Nature of Scientific Knowledge 

Humanistic Nature of Scientific Knowledge 

Teachers' conceptions of the human element in the production of scientific knowledge 

was ascertained by questioning about their views of the characteristics of scientists. The 

difficulty with this line of discussion was the different participants' conceptions of the 

word "scientist." The investigator began to realize the various views by examining 

answers to the Biographical/Professional Background Questionnaire question, "Do you see 

yourself as a scientist?" Five of the six subjects expressed the view that they were 

scientists. Cited reasons for their conceptions included their use of problem-solving 

strategies in experimentation, discovery techniques using the scientific method, and 

curiosity about the natural world. Beth stated, "A scientist is one who appreciates, 

observes, and attempts to understand how things work in the natural world, and I do all 

those things." Diane possessed two views of a scientist by viewing herself as a scientist in 

class in the process of investigating problems but did not see herself as a scientist 

professionally speaking. Diane explained, "As a profession, I do not because I am not 

solving/investigating problems on a daily basis." Bob was confident in not viewing 

himself as a scientist because he doesn't do research. 

In the interviews, the issue of participants' conceptions of the word "scientist" was 

clarified even further. The general view of a scientist was reinforced by the subjects' 

responses. Jane explained: 

I have come to see that anybody who pursues an interest 
or studying about science is a scientist. If you are 
finding out about the world around you and gathering 
some kind of knowledge then technically you are a scientist. 

Beth does not see the requirement of generating new knowledge to be a scientist. She 

stated, "I see a scientist as anybody that is trying to observe, learn about and interact [with 
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the natural world] in a positive way." Beth, David, Alice, and Jane saw themselves as 

scientists. 

Moreover, Diane viewed herself as a scientist in the classroom in the process of 

investigating problems, but she was careful to point out the alternate interpretation of the 

word "scientist" in the professional sense. Through her experience at a national laboratory, 

she related her view of the professional scientists as one who does research on a continual 

basis and produces knowledge. However, Bob distinguished between a scientist and a 

"student" of science. He viewed a scientist as a person who is actively engaged in research 

on a daily basis and creates knowledge. A "student" of science is anyone who studies 

science and uses it in some form of communication. Therefore, he viewed himself as a 

"student" of science. 

The discovery of the different interpretations of the word "scientist" by the sample of 

teachers has significant implications for measuring individuals' conceptions of scientists by 

multiple choice or Likert scale measures. The different interpretations of the word 

"scientist" would illicit misleading answers by respondents to questions formulated with 

the test designers' conception of the word. To obtain an accurate measure of conceptions 

of a scientist by a sample, it would be necessary to explain the test's definition of the word 

"scientist." In the interviewing process, before the researcher continued questioning about 

scientists, the operational definition of a scientist was given. A scientist is an individual 

who has received professional training in a system of natural scientific knowledge and is, 

on a daily basis, actively engaged in research activity investigating the natural world. 

The interviewing process continued with an examination of respondents' conceptions 

of the characteristics of scientists. When asked about objectivity in scientists, two subjects 

seemed to be unsure because their initial answer conveyed their belief in scientists being 

objective, but later they changed their view of scientists' objectivity. All the subjects 
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believed that scientists strive for objectivity in research, but they viewed such objectivity 

can be tempered by human biases. Beth explained, "I think there has to be objectivity in 

science, but anytime you deal with the human element how can you be sure there is 100 

percent objectivity?" Alice stated her uncertainty by commenting, "I just don't know how 

objective they truly are." The subjects connected any biases in scientists to the process of 

the interpretation of data. Alice commented: 

If you are a scientist ... and you really want to believe 
it [possible answer to a problem], then you are more apt to 
believe it. You focus on the data that has been collected 
by scientists who believe what you are thinking. 

However, when forced to choose, most of the subjects felt that scientists were more 

objective than subjective. None of the subjects mentioned initially the effects of 

paradigmatic beliefs, language or professional schooling on the objectivity of scientists. 

Only after asking about these effects on scientists' objectivity did the subjects comment that 

those factors do affect objectivity. Beth thought that the scientist's professional training 

"would increase his objectivity and might help him ask the right questions." Bob was the 

only participant that discussed the emotional nature of scientists in relation to objectivity. 

He explained, "I think most scientists probably are very emotional... and I mean most of 

them are emotionally attached to what they are doing." Yet, he viewed scientists as able to 

put their emotions aside and to objectively determine the validity of their findings. 

In addition, other characteristics of scientists discussed by the subjects included 

reasoning abilities, intelligence, honesty, open-mindedness, and sharing knowledge. Two 

of the subjects believed scientists have to be very rational and possess good reasoning 

skills. Superior intelligence was not viewed as necessary for scientists by participants, but 

they viewed scientists as at least above average in intelligence. Moreover, most of the 

subjects believed scientists strive toward honesty in their work. However, two of the 
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subjects did relate reading about the falsification of data by scientists. In addition, Beth 

was very disturbed upon learning about a group of scientists that intentionally left out a step 

in their methodology to prevent others from duplicating it. All but one of the subjects 

viewed scientists as open-minded. Beth viewed open-mindedness as a basic requirement 

for a scientist by advocating, "If you truly are a scientist then you will toss your theory or 

alter it so that it conforms to the new information." In contrast, based on her experience in 

a laboratory, Diane commented that scientists "were willing to listen to all points of view... 

but they did not waiver at all." She continued by explaining that the scientists "were very 

adamant." Therefore, Diane viewed scientists as not being open-minded in the sense of 

accepting new ideas. 

Furthermore, all the subjects viewed scientists as very willing to share their 

experimental findings with the scientific community. Beth stated, "The whole idea of 

doing it [experimentation] is to share it [the results] with the scientific community, and it is 

up for peer review." However, only one subject believed that the publication of 

experimental findings consumed most of a scientist's time. Relating her experience in a lab 

setting working with scientists, Beth related that "about 90% of their time is spent writing 

and researching papers... to get it [experimental results] out to everybody else." All the 

other subjects conceived that data collection and analyzing data consumed most of a 

laboratory scientist's time. 

When asked about the factors that motivate scientists, the predominant answers given 

by all the subjects dealt with intrinsic reasons. Curiosity was viewed as the primary 

motivating factor for scientists. Beth explained, "It is the pure desire to know on a 

personal level" whereas Jane was more specific by stating, "I think it is curiosity and... 

that built-in motivation that hates mysteries. They just want to solve and they want to find 

out." In addition, a common view of scientists' motivation was the desire to help 



99 

humanity. Bob advocated that they "care about the future of the world and the future of 

mankind." In helping humanity, the subjects saw the scientist as being able to solve 

problems that affect the future such as cures for diseases. Beth believed that scientists are 

motivated entirely by the intrinsic factors by commenting, "Scientists are doing it out of just 

a yearn for learning and a desire to know how the natural world works." 

However, other subjects included extrinsic factors for the motivation of scientists. 

Diane stated: 

It is not just internal because they get satisfaction 
and approval from their peers. They get recognition 
from the people around them so it is both internal 
about yourself plus getting recognition from your peers. 

Thus, Diane recognized the motivating factor of peer recognition which may take the form 

of publications, professional advancement, presentations, or awards. Based on her 

experience in the laboratory setting, Diane mentioned that even the number of cites in 

professional publications was an important motivating factor of scientists. Other external 

motivating factors expressed by subjects were money, project funding and prestige. 

It is apparent during the interviewing process that the one specific origin of the 

subjects' views about scientists was through their interactions with scientists. Jane formed 

her conceptions of scientists by her brief interaction with a scientist whom she views as 

very intrinsically motivated. Jane stated, "This person is not self-seeking in trying to get 

recognition for herself." Diane related that she thought scientists were "super smart, 

intelligent persons" working mainly by themselves. After her extensive experience in a 

laboratory setting, her views of scientists changed drastically. Diane commented, "You 

don't have to be brainy. My scientist was so down to earth that he was just like the typical 

person you would see on the street." 
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In summary, it is very important to understand the conceptions of the word "scientist" 

by research subjects before any understanding of their conceptions of the traits of scientists 

can be obtained. With the exception of one subject, these science teachers considered 

themselves as scientists in the ways they studied and attempted to understand the natural 

world. In describing the characteristics of scientists, all subjects described most of the 

typical ideal traits of scientists. The influence of expectancy effects on objectivity was 

related by most of the participants. However, the subjects did not specifically recognize the 

effects on objectivity of paradigmatic beliefs, language and the professional schooling of 

scientists. They tended to believe scientists are more objective than subjective. 

Furthermore, most subjects conceived scientists as very open-minded, not realizing the 

extent of scientists' possible intolerance toward conflicting views. In addition, there was 

the belief that scientists openly shared their scientific findings with the scientific 

community. The secretive nature of scientific inquiry was not mentioned by most subjects. 

Finally, most subjects realized the intrinsic as well as extrinsic motivating factors of 

scientists, but only one subject comprehended the extensive time scientists devote to 

publication. In general, subjects' understanding of the human element in the production of 

scientific knowledge tended toward an idealistic view rather than a realistic view. They 

held scientists in the highest regard and were very disturbed when contradictions to their 

views were revealed. It was apparent that the most influential factor affecting subjects' 

views of scientists was their association or lack of association with scientists. By far, 

Diane possessed the most realistic view of scientists whereas the other five subjects, who 

have not had any extensive association with scientists, generally viewed scientists in a more 

idealistic way. 
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The Social Nature of Scientific Knowledge 

Conceptions of the social nature of scientific knowledge were determined by asking 

the subjects about the interactions of scientists in the production and arbitration of scientific 

knowledge. Other issues addressed in the interviews were subjects' views of the 

difference between science and technology as well as the interaction of science as an 

institution with other social institutions. 

Initially, a mutual understanding of the term "scientific community" had to be 

ascertained. Most of the subjects viewed a scientific community in a very broad sense. 

For example, Jane conceived a scientific community as "those people who are really doing 

some kind of research ... in any area of science." There was not any clear understanding 

by the subjects of the term "scientific community." Thus, to clarify the term, the researcher 

explained the study's operational definition. A scientific community is a group of scientists 

who have completed comparable educational training in similar scientific literature about 

their specialization. In addition, the community has its own subject matter that is marked 

by the boundaries of its technical literature. 

Most of the subjects knew very little about any type of hierarchical arrangement of 

members of a scientific community. Only after asking directly about it did subjects attempt 

to relate any conceptions about a hierarchy. Only the top members of a scientific 

community, the "experts" or "Nobel Prize winners", were described in a hierarchical 

explanation. Only Diane mentioned the hierarchical levels of the experimental and 

theoretical scientists. In addition, Diane was the only subject that recognized that research 

assistants or technicians can be considered part of the scientific community, and they do the 

bulk of the actual experimentation and gathering of data in a lab setting. Reflecting on her 

lab experiences, Diane emphasized that the technicians "were assigned to gather the data 

and then it was given to the scientist for him to interpret." Thus, most of the time of the 
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laboratory scientist is interpreting data and writing research papers. In contrast, most of the 

other subjects believed the majority of a laboratory scientist's time was spent running tests 

and gathering the experimental data. 

Moreover, there was very little understanding by subjects of a "paradigm" in the 

Kuhnian sense and its affect on the beliefs and operation of a scientific community. Only 

two subjects mentioned the effect of the scientific community in determining the "rules of 

the game." Alice commented that the scientific community determines "scientific 

investigations, lab studies... and different types of research." In a more detailed account, 

Diane stated that the scientific community has "different standards just like different 

professional organizations have their own rules and ethics.... They set their own rules of 

what's acceptable and what's not acceptable." Most subjects viewed the determination of 

the kind of research problems pursued in a scientific community to be more a factor of 

funding than influenced by the scientific community. Jane explained, "If you get the 

money, then you are going to have a bit more influence as to what can be studied." No 

subject commented initially on the effect of the scientific community and its paradigm on 

the credentialing of its practitioners. Thus, most subjects did not have a realization of the 

effect of a scientific community's paradigm on the determination of research problems and 

experimental methods as well as the schooling of scientists. 

In contrast, the importance of communication between scientists within a scientific 

community was recognized by all the subjects. Beth stated that: 

They [scientists] are very open with sharing the knowledge they have gained 
and the observations that they have made. They are very open with the 
procedures, with data, with inteipretations, and it's there for others who have the 
background, knowledge, and the interests to look at what has been done, the 
data that has been collected, and the inteipretations and inferences that have been 
drawn. Science knowledge is only advanced when that has been done many, 
many times. 
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Diane reinforced Beth's comments by advocating that "without the communication, there is 

no knowledge." Bob thought that scientists would be foolish not to share their findings 

because someone else could obtain the same results and claim to be the first. David was 

adamant in believing it was an obligation of scientists to share information by expressing, 

"If they do not communicate ... they are not really scientists." Thus, the subjects were 

cognizant of the communal aspect of scientists sharing information within a scientific 

community believing it is a basic requirement to be considered a "scientist." 

Moreover, the subjects were questioned about the role of the scientific community in 

the process in which experimental findings become acceptable scientific knowledge. All 

subjects related the importance of replication of experimental results in determining the 

acceptability of findings. Jane explained: 

When people have repeated... your experiment and got the same results 
or they observed something under the same conditions and found... those 
same solutions or results from that observation, and it is done many times 
then that knowledge will be accepted. 

Diane stated, "You need other people to be able to validate what you have found." The 

recent incident of scientists rejecting cold fusion was given by two of the subjects as an 

example of the scientific community's ability to determine the acceptability of experimental 

results. In addition, the issue of scientific debates whether through the literature or through 

meetings and the persuasive nature of the arguments were described by Beth, Diane, Bob, 

and Jane. Bob commented, "The debate is constant, and people are researching based on 

whatever their particular hypothesis is ... and as they gather evidence, one gathers more 

convincing evidence than the others." Beth stated that scientists "have glorious debates, 

but that's one of the wonders of science. That we can all have the same problem, and we 

have different explanations." 
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However, there was confusion among the subjects on the process of the final 

acceptance of experimental findings as scientific knowledge. Alice explained: 

The majority rules. I visualize this conference of 
scientists ... sitting in a room and if 45% of them say 
this is what we have found and the other 35% say we 
disagree, then the 45% rules. 

Finally, Alice admitted she did not know. David believed there was a committee in 

Washington, D. C. that reviewed experimental findings and decided on its acceptability as 

knowledge. Like Alice, he commented, "I don't know that." The other four subjects had a 

better understanding of the process of the role of the scientific community in the acceptance 

of scientific knowledge. Diane expressed: 

Once you get to that point where lots more people 
are supporting you then it [scientific findings] 
becomes accepted because you have the majority 
of people who believe what you have done to be right. 

Bob explained, "I think it would be based on consensus... whatever comes out to be the 

most acceptable form of a model to explain what happens... and the one most people can 

buy into." 

The aforementioned examples illustrate that the subjects' difficulty in understanding 

of the extensive nature of the interaction of scientists in a scientific community in arbitrating 

the acceptability of knowledge. Most subjects mentioned that the question of the process 

involved in knowledge becoming acceptable had not ever occurred to them. They tended to 

want to use terms of absoluteness in describing the process such as "when it is found to be 

true" (Jane) or when one "had hard scientific data to support it" (Beth). In addition, the 

term "proven" was used by subjects or as Alice relates that it becomes accepted knowledge 

when "we have not been able to disprove it." The subjects' usage of the terms "true," 

"hard data" and "proven" will be examined a subsequent section. Because this kind of 
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knowledge had been produced by scientists, subjects tacitly accepted its credibility without 

fully considering the human and social dynamics involved in its creation. At least in some 

of the subjects' cases, scientific knowledge has been reified to the extent that it had been 

taken for granted to be "true." 

In discussing the social role of science and technology with subjects, a clarification of 

those two terms was necessary. There was confusion among the participants of the exact 

nature of science in relation to technology. The basic problem was the conception of 

technology as just "applied science" and its relationship to the general broad term "science." 

In thinking of technology as applied science, some subjects believed technology to be a 

component of science whereas other subjects viewed it to be different than science. For 

example, all subjects related the idea that technology was applied science. However, when 

asked if science and technology were the same, three subjects responded affirmatively and 

three negatively. Jane responded, "Yes,... you just take the knowledge that you have 

gained from science and use it to solve some problem or make some device." Similarly, 

Alice and Diane viewed science and technology as the same with technology being applied 

science. 

However, Beth and Bob were very careful in explaining their differentiation between 

science and technology. Beth explained: 

Science is the basic research that explains how things work. A scientist 
will tell me how sound and light waves work. A technologist and engineer 
will use that knowledge and make me a VCR or laser disk. He puts that basic 
knowledge into something that will make my. life easier. 

Bob equated "science" to pure science and "applied science" to technology. In addition, 

both Bob and David thought that technology depended on science. Bob said, "I can see 

science without technology, but I can't see technology without science." 



106 

Moreover, even though some subjects did not equate science and technology, the 

view of technology as applied science permeated all subjects' descriptions of the aims of 

science with the exception of one subject. Responses to questions about the aims of 

science included the improvement of the quality of life (Beth), cures for diseases (Diane), 

solutions to societal problems (Alice & David), and increase food supply (Jane). Only Bob 

related that "science is not studied for any other purpose than discovery." 

Furthermore, when asked about the social roles of science and technology, four of 

the subjects related the practical aspects of technology. Framing the question of science 

and technology in the social perspective helped most of the subjects differentiate the 

different purposes of science and technology. Beth, Diane, Bob and Jane conceived the 

social function of science as investigating the natural world whether the information was 

useful or not. They viewed technology as the practical application of science to benefit 

society and humankind. However, as indicated above, three of those four subjects still 

included examples of technology in their explanations of the aims of science. 

Therefore, the sample teachers' conceptions of science and technology were difficult 

to differentiate because of their conflicting answers to questions. Five subjects would 

use the words science and technology interchangeably in one case only to use the words as 

separate entities in another case. Only one subject, Bob, was consistent in his answers 

regarding his conceptions of science and technology. Thus, these differing responses to 

the words "science" and "technology" as well as the phrasing of questions about the two 

words have large implications for any future test design studying those entities. 

In addition, subjects' views of technology as just applied science as well as 

technology depending on science is in contrast to the model's explanation of technology. 

In the model, technology is viewed as being much more than just applied science 

possessing its own resources as a research entity. In other words, technology is much 



107 

more than finding practical applications of scientific research. Technological possibilities 

are not limited by scientific research and can exist without science. 

Furthermore, only two subjects viewed scientific knowledge as amoral. Beth 

explained, "It is not the knowledge that is good or bad, but it is how it is used". Thus, 

Beth as well as Diane realized that moral judgement can only be made on the ways humans 

use knowledge, not on the knowledge itself. The other four subjects did not separate 

knowledge from its uses viewing knowledge as either good or bad. 

Finally, all subjects viewed science as interacting with other social institutions such as 

the government, general public, religious bodies, educational establishments, and private 

businesses. The main issue mentioned concerning science and its interactions with these 

institutions was funding. It was strongly felt that funding was the driving force behind 

research to the point of determining the problems that "needed" to be investigated by 

scientists. Relating her experience at a laboratory, Diane said scientists "research where the 

money is." 

In summary, subjects' understanding of the dynamic nature of scientific communities 

in determining research methodologies and the acceptability of knowledge was limited. On 

many occasions, they expressed the concern that they had never really thought about these 

issues. Their conceptions of the communal nature of scientists continued to reveal a 

somewhat idealistic view of scientists. In addition, their remarks tended to be focused on a 

positivist perspective of knowledge. The acceptability of knowledge was based on 

unbiased experimentation that yielded "facts"and "hard data" that were "proven." The 

political dimension of consensus-making in scientific communities was not well understood 

and was reduced by some subjects to the "majority rules" in determining acceptable 

knowledge. It seemed difficult for subjects to discuss that knowledge was based on 

consensus, and they wanted to use the "terms of absoluteness" such as proven or true in 
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reference to knowledge. The confusion of the terms science and technology is evident of a 

misunderstanding of the social roles of each. In general, subjects did not fully understand 

the sociological effects of the scientific community in the Kuhnian sense or the 

epistemological aspects of the acceptability of research problems, investigative methods, 

and the resulting knowledge structures. 

The Historical Aspect of Scientific Knowledge 

To ascertain subjects' conceptions about the historical nature of scientific knowledge, 

questions were asked about the manner in which knowledge has changed over time. In 

addition, the researcher was interested in identifying whether subjects' views of the 

historical change of scientific knowledge was cumulative or revolutionary. Finally, 

subjects expressed their views about progress in science. 

In examining the manner in which scientific knowledge has changed over history, 

only two subjects mentioned anomalies and their effect on changing current paradigms. 

Beth commented, "Part of the fun of science is anomalies - when what you think is going 

to happen, doesn't happen." She continued to describe her belief that "when new data 

come along, we have to be willing to make changes in those theories and laws." Bob 

explained, "If something were to happen and it was repeatable, and the law did not apply, 

then the law would have to change." In addition, Bob commented, "As the evidence 

becomes more convincing in one direction or the other, the area with the most convincing 

evidence becomes the new knowledge base." Two of the subjects mentioned that scientific 

knowledge changes when new technology was designed to gather evidence using the 

example of plate tectonics. Otherwise, subjects viewed changes in knowledge over time as 

more the addition of new discoveries rather than the rejection of current knowledge 

structures. Diane explained, "We learn a little bit and that leads us to new areas that we 
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want to look into." There was no concept of the Kuhnian view of competing paradigms by 

the subjects. 

In addition, four of the six subjects viewed historic changes in scientific knowledge 

as cumulative rather than revolutionary. Beth responded, "The body of science knowledge 

builds in tiny little increments as scientists add a little bit to that body of knowledge." She 

offered the example of the quote by Isaac Newton that states, "I stand on the shoulders of 

giants" indicating a cumulative perspective. Diane supported Beth's view by stating, "Our 

new knowledge is built on old knowledge.... From the beginning of time, things have been 

documented and passed down and experimented on." These subjects conceived of 

"wrong" knowledge of the past as being improved rather than discarded. 

However, David and Bob mentioned that change in scientific knowledge is 

revolutionary and cumulative. Bob explained, "I think we lose some [knowledge], because 

it is tossed and no longer even works ... and I think that obviously it accumulates." All 

the subjects conceived progress in science as solving problems improving our view of the 

natural world. Jane commented, "Being able to explain more fully why things happen, and 

being able to solve more problems around us.... I consider that progress." 

Because the subjects had no conception of the effect of paradigms on the production 

of scientific knowledge and the resulting conflicts of paradigms in the Kuhnian sense, there 

was very little understanding of the historical change of that knowledge. Even though Beth 

mentioned "anomalies" in describing change, she persisted in presenting a cumulative view 

of the history of science. The subjects with the cumulative view of knowledge exhibited no 

hesitation in discussing the question. It was very obvious to them that science has 

progressed in that manner. The cumulative view of knowledge by four of the subjects is 

not surprising due to the prominence of this view in many textbooks. This cumulative 

view does indicate an positivist's perspective of knowledge. It was surprising to the 
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researcher that two subjects were cognizant of a somewhat revolutionary view in addition 

to a cumulative view of the development of science. One of these subjects, Bob, does 

extensive reading in science which may account for his perspective. Furthermore, the 

subjects' ideas of the progress of science as problem solving agrees with the Kuhnian 

perspective. However, Kuhn would disagree that progress as problem solving offers a 

better view of the natural world as the subjects advocated. He would only say that new 

knowledge can only solve problems the old knowledge could not. Thus, it would appear 

that subjects would benefit from a study of the history of science to appreciate the 

cumulative as well as the revolutionary nature of scientific knowledge over time. 

Specific Beliefs About the Natural World 

The production of scientific knowledge by scientists is based on certain basic beliefs 

about the natural world. Subjects were asked their conceptions about these beliefs, and 

they had a great deal of difficulty with their answers regarding the basic beliefs of science. 

It appears to be an issue that is so taken-for-granted that they had not ever really thought 

about it. Although not stating it direcdy, all the subjects believed there is an absolute reality 

of nature. Two subjects responded that they believe that the natural world can be 

comprehended. Bob expressed the belief that "it is possible to understand all of it given 

some day given enough time." In addition, only two subjects explained that there are 

causes for natural phenomena. David advocated, "There is an explanation for everything in 

the world." Beth reinforced this view by stating, "There are certain basic laws and forces 

that govern what happens out there." Other basic beliefs of science stated was that nature is 

not static (Bob and Diane), there is an order to nature (Alice), and there are cycles in nature 

(Beth and Jane). 

It was interesting that in four of the six cases the conversation about the basic beliefs 

of scientists evolved into a discussion of humanity's effects on the natural world. When 
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considering the basic ideas of nature, subjects related their concern for the survival of 

humans. In relating humanity's influences on natural cycles, Jane responded, "We have to 

take care of this planet because it is basically... all we have." Alice indicated, "In order for 

man to survive, we have no alternative but to respect our natural world and to care for it." 

Therefore, it appears when subjects think about the basic issues of orderliness, causality, 

and comprehension of the natural world, they relate those beliefs to a concern of their 

survival as human beings. 

Thus, the subjects' understanding of the basic assumptions of scientists as they 

investigate the natural world was limited. It serves as an example of the taken-for-granted 

nature of subjects' cognition of the basic principles of science. The subjects may have been 

cognizant of these basic beliefs, but it was very difficult and in some instances impossible 

for them to relate them. Indicating the difficulty of verbalizing an answer, Bob stated, "I 

could probably touch on some of them, but I don't know if I could pull them all out." 

Since scientific knowledge is based on these foundations, it would be beneficial for the 

subjects to become more aware of their existence. 

Observation and the Production of Knowledge 

Observation of natural phenomena plays a basic role in scientific inquiry. To 

ascertain subjects' views about scientific observation, initially they were asked about their 

conceptions of the act of observing. In addition, questions were asked about the 

importance of observation in science and the factors which might affect a scientist's 

observations. Finally, the role of instrumentation in scientific observation was discussed. 

An understanding of subjects' views of the concept "to observe" was necessary to 

analyze their responses. Five of the six subjects possessed a view of observation 

congruent with the model's definition of the term. Jane explained, "Observe means to 

look, to touch, to taste, or to hear - any kind of information we gather through the senses." 
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Similarly, the other four subjects described the act of observing as involving the use of all 

the senses. In contrast, Diane viewed observation in the sense of visual perception using 

the eyes more than the use of all the senses. 

All subjects recognized the importance of observation in the production of scientific 

knowledge. David advocated, "Observation is the most important thing in science" 

whereas Bob explained, "Science cannot be done without observation." Bob continued to 

explain that all phases of scientific research depend on observations. Furthermore, Beth 

emphasized the replication of observations by other scientists as being vital to science in the 

determination of the acceptability of knowledge. She explained, "Before you... accept 

something as a scientific fact then more than one person would... have observed it. It 

would have to be something that could be replicated and duplicated." 

In addition, all but one subject believed expectancy effects affected the act of 

observing. Beth emphasized that scientists sometimes see what they expect to see based on 

their desire to prove an idea. She said that scientists "can want something to be there, even 

subconsciously, and read more into what is actually there." In describing what influences 

scientists' observations, Diane explained, "What they believe, they want to see ... they try 

to see that particular thing happening." She continued by relating an incident at the national 

laboratory where she worked one summer when she saw an occurrence happen in an 

experiment upon which the scientist disagreed with her saying the occurrence was not 

suppose to happen until eight seconds later. Diane was disturbed by the incident and said, 

"It was like fudging data in a sense." 

Moreover, the experiences, knowledge base, and emotions of scientists were believed 

by subjects to contribute to bias in observing. Diane explained, "Some scientists, based on 

what they know, come with an idea that one way is better than another way, and they 

ignore this aspect and concentrate on their own." In relating to the background experiences 
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of scientists influencing observation, Alice responded that sometimes they "look hard 

enough and... will find it even though it is really not there." Emotional influences on 

scientific observation was mentioned only by Bob who stated, "Scientists' observations ... 

could be influenced by whether he and his wife argued that morning." Furthermore, Beth 

discussed the issue of the race to be first in science and its effect on observation. She used 

the example of the cold fusion incident and said, "Those guys so wanted to be the first that 

there was an eagerness on their part for something to be there." 

The role of instrumentation in making observations was viewed as very important by 

all the subjects. Diane summed up the views of all the subjects by stating, "It is extremely 

important and invaluable." The primary reasons for the subjects' conceptions about the 

importance of instrumentation was their view of the objectivity and preciseness of 

instruments in validating experimental results. Beth commented, "An instrument has no 

biases" and it "is going to measure it as it is." Diane concurred with Beth by stating that 

instruments "relied less and less on human decision making." In addition, Diane 

explained, "They are so precise it is just incredible and the more precise, the more validity 

that adds to your research." All subjects viewed that the quantitative output of such 

instruments in the form of numbers or graphs added credibility to the results. Alice stated, 

"It makes the collection of data more valid." 

It is interesting that when subjects discussed the traits of scientists as described in the 

previous humanistic dimension section, they tended toward an idealistic perspective. 

However, upon focusing on one trait, objectivity in observation, the subjects were more 

realistic in their descriptions. Only Beth, after revealing the factors she felt affects 

observation, was somewhat steadfast in an idealistic version of a scientists' objectivity. 

She said, "If it [scientific knowledge] is not based... on unbiased observation, then it is 

not real science." The subjects were aware of the effects of background experiences, 
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expectations, knowledge base, emotions, and human limitations on scientific observation. 

They did not use the terms "sensation selection" or "perceptual filtration, "but they 

understood their influences. However, no subject mentioned the importance of language in 

observation or that the accepted paradigm informed the knowledge base that affects 

observation. Neither were they cognizant of the effects of scientists' professional training 

on observation nor the extensive amount of the theory-ladenness of observation. 

Moreover, all subjects viewed observations made by scientific instrumentation as 

completely objective. This positivist perspective by subjects was revealed by their 

insistence that the data from instruments in the form of numbers or graphs produced "valid" 

knowledge void of human influence and biases. There was no comprehension of 

instrumentation as "reified theory" or its dependence on the tenets of an accepted paradigm. 

The realization of the human element in the design and construction of the scientific 

instrumentation was absent. Even though the subjects were cognizant of specific factors 

that affect scientific observation, they possessed no comprehension of the effects of the 

theory-ladenness of instrumentation. 

Scientific Knowledge as a Result of Inquiry 

An understanding of the processes of scientific inquiry is paramount in order to 

comprehend the credibility of the resulting scientific knowledge. To ascertain subjects' 

views about the nature of scientific inquiry, questions were asked pertaining to their 

conceptions of the importance of scientific inquiry, its methodology, inductive/deductive 

reasoning, and the validity of the resulting knowledge structures. 

The fundamental importance of scientific inquiry to the scientific enterprise was 

recognized by all participants. The "experimentation" of science was viewed as a 

distinguishing factor in determining if knowledge was "scientific." Beth advocated, "Only 

science is based on knowledge gained through experiments ... that's the difference." The 
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subjects emphasized the importance of the duplication and replication of experiments that 

added validity to any findings. Jane explained, "When other people have... duplicated 

your experiment and got the same results ... then that knowledge will be accepted." 

Moreover, it was in the discussion of the importance of scientific inquiry that the 

issue of scientific methodology arose. All subjects attributed the credibility of scientific 

knowledge as opposed to other types of knowledge to the use of "the scientific method." 

Beth differentiated scientific knowledge from other types by communicating that scientific 

knowledge "is arrived at through the process of the scientific method." Jane explained, "I 

think scientific knowledge is different from the others in that it is arrived at through a very 

systematic process - the scientific method" whereas Alice indicated, "You would have more 

confidence in your thoughts in that you would have carried out the typical scientific 

investigative problem-solving steps." Furthermore, Alice was intent on a methodology in 

science by stating, "You have to have a method to acquire any knowledge at all." In 

addition, Jane attributed the "wrongness" of past knowledge to the lack of the proper use of 

the scientific method. The subjects' meanings of "scientific method" was explored in 

detail. Participants viewed scientific methodology as an approach to problem solving 

(Beth), a structured way to solve problems (Diane), a procedure to answer questions 

(David), a method to acquire knowledge (Alice), a logical way or organizational sequence 

to solve problems (Bob), and a method of thinking (Jane). 

Furthermore, when subjects were asked about scientific methodologies, all subjects 

commented that there was not just one scientific method. Yet upon describing scientific 

methodology, the subjects outlined the typical steps of the idealized scientific method. 

Without exception, they began their depiction of scientific inquiry with a problem or 

question followed by gathering information to form a "hypothesis". The hypothesis is 

tested and from data accumulated from the tests, conclusions are formed. Moreover, 
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subjects' conceptions of the scientists' deviations from a standardized method was limited 

to a view of only small departures from a methodology. Jane thought that the scientific 

method may "vary a little bit" whereas Diane viewed scientists as sometimes changing the 

methodological order, but she stated, "For the most part, I think they try to follow it." All 

subjects acknowledged that the sequence of steps may be altered by scientists, but in every 

case the participants insisted that there was some procedure or sequence in scientific 

inquiry. 

In addition, all subjects communicated an inductivist's and positivist's view that 

scientific methodology and experimentation produces "proven" knowledge. David 

responded, "They [scientists] have used the scientific method, and they have proved that 

these things are right" whereas Diane expressed, "You can experiment and you can get the 

results you need to prove something." Subjects believed that to be "knowledge," it had to 

be "proven" and scientific knowledge was different because it was "proven." In describing 

the knowledge structures (facts, theories, and laws), as will be explained in the next 

section, the subjects used the terminology "proven" or "disproven" to differentiate between 

the structures. When asked about their definitions of "proven", the subjects struggled with 

their explanations. Beth explained, "Middle schoolers never ask me these kinds of 

questions." Upon continual probing of their meanings of "proven", in every case, the 

subjects communicated that "proven" indicated that the same results were obtained from the 

replication of experimental tests and in two instances, references included verification by 

"the scientific method." The reasoning seemed to be that experimental methodology 

produces hard data (Beth), quantitative data (Diane), facts (David), or replicated data (Bob 

and Jane) that "proves" a result. Thus, the method legitimizes the resulting knowledge. 

In every case, quantitative experimental data was conceived as very important in 

scientific inquiry. Jane advocated, "The best science is that science that is quantitative," 
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and she continued to explain that her usage of "hard data" referred to quantitative 

experimental data. Diane explained, "It [quantitative data] adds more validity to it 

[experimental results] and... you can prove it with the data." In addition, David said, "In 

order... to prove something you have got to have ... a lot of stats, a lot of numbers." With 

the exception of two subjects, the participants conceived quantitative data as being objective 

and having more validity than qualitative data. In contrast, Bob and David viewed both as 

having equal value. Bob stated, "I don't think either one of them has any value without the 

other." 

Moreover, most subjects conceived scientific inquiry as being logical in nature. 

Diane corresponded that scientific knowledge is produced by experimental results that 

"seem to be the most logical explanations" whereas Jane attributed it to a method of logical 

thinking. In explaining why scientific knowledge is perceived as more valid than other 

types of knowledge, Bob explained "Because of the logical way in which it is arrived at." 

When asked if scientific inquiry involves inductive or deductive reasoning, all subjects 

responded that it involves both. However, upon asking the participants their understanding 

of deductive and inductive logic, only one subject could explain the difference. Beth 

explained, "One is when you find out for yourself, that's inductive... and deductive is 

when you it is pretty much given to you" whereas Diane stated, "Deductive is sort of 

breaking down and inductive is more intuitive." Beth and Diane as well as three other 

subjects admitted they did not know. Only Jane described the differences in deductive and 

inductive logic correctly. 

Thus, the participants were not fully cognizant of the many, diversified 

methodologies that are used in the scientific enterprise due to the variety of theoretical 

structures and goals of the different sciences. They tended to take a simplified view of 

scientific inquiry. While admitting there is not one scientific method, they described the 
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typical textbook description of the scientific method upon being asked to depict the 

methodology used by scientists. In addition, in describing scientific inquiry, they would 

use the terminology "the" scientific method not realizing the implications of the word 

choice. They were resistant in conceiving scientists varying much from the sequence of 

steps outlined in the ideal model of inquiry. 

Moreover, in conceiving scientific methodology as a step-by-step procedure, the 

subjects had a positivist's point of view that scientific knowledge has a special validity 

because it is based on objective quantitative data that "proves" it The method seemed to 

legitimize the evidence and validate the knowledge. Although subjects felt like scientific 

inquiry was logical in nature, all subjects did not understand the inductive/deductive nature 

of knowledge that results in its probabilistic nature. They believed that logic and the 

"method" was the ultimate authorities that determine the validity of knowledge discounting 

the impact of scientific communities in the arbitration of knowledge. There was no 

understanding of the theory-ladenness of experimentation nor the relativism of facts. By 

their answers, these teachers believed scientific inquiry produces knowledge structures that 

are proven in some absolute sense. They possessed a popular view of scientific inquiry 

that suggests scientific knowledge is firmly based on proven, objective data. 

Scientific Knowledge Structures 

Through the many investigative methods of science, the resulting scientific 

knowledge structures are composed of facts, theories, and laws. These structures form a 

basis of a natural world view that depict its composition and organization. To ascertain 

subjects' conceptions of the relationship of these knowledge structures and natural reality, 

subjects were questioned about their views of the reality of nature as portrayed by these 

knowledge structures. In addition, subjects were asked to relate their understandings of 

facts, laws, and theories as well as hypotheses and models. 
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The researcher discussed in detail with the subjects their conceptions of the scientific 

knowledge structures and the reality of the natural world. Initially, subjects were asked if 

they believed that scientific knowledge reflects the reality of nature. In general, all subjects 

with the exception of one viewed that scientific knowledge reflected the reality of nature. 

In particular, they believed laws and facts describe reality whereas theories possibly do not. 

However, they were very specific in qualifying their answers with a statement about 

contemporary scientific understanding. For example, in answering a question about 

whether scientific knowledge reflects reality, Beth responded: 

I think it probably does as accurately as our methods 
and our instruments at this point in time lets us 
understand what is there.... Our scientific explanations 
are the best we can do of what we have observed. 

Bob explained, "I think as we continue to increase scientific knowledge in all directions and 

in all areas, each of those areas is getting closer to actual reality. Alice communicated she 

believes that scientific knowledge reflects reality "as we know it for 1991." In contrast to 

the other subjects, Diane, in responding to a question about whether scientific knowledge 

relates the real natural world, said: 

Probably about 1% about what is really out 
there... we have been able to explain only 
a minute part of it.... Its our best explanation 
we have ... but we just don't know. We can't 
say its right or wrong. 

Thus, subjects' qualifications that contemporary knowledge only reflects reality as we 

know it for this point in history indicated a view that scientific understanding of reality does 

change. Although not using the terminology "structural reality," they were describing a 

changing reality portrayed by the knowledge structures. For example, Bob explained: 
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Reality is based on what you know... until something 
else comes along to change it.... Right now, scientific 
knowledge states what's "real"... but that may not be 
absolute because as we add to scientific knowledge, we 
might add to or change what is "real." 

Beth related, "We describe it [reality] as we think it is and when new data come along, we 

have to be willing to make changes." David advocated, "We have nothing else better to 

accept until somebody comes along with a better explanation.... We have to accept what we 

have." Thinking about the history of science, Jane responded, "I think our knowledge 

about reality has changed because we find out more." Thus, five of the six subjects 

believed that our scientific knowledge does reflect generally the reality of nature. 

However, they are very cognizant of the changing of a "structural reality" as new 

information is acquired through scientific inquiry. Thus, even though the subjects tended 

toward a realist position that advocates a direct ontological relationship between scientific 

knowledge and natural reality, a pluralistic realist position was also evident by the subjects' 

responses about the changeable nature of scientific knowledge. 

Furthermore, in an attempt to understand teachers' views of the relationship of the 

particular knowledge structures and what is really "out there," the researcher discovered 

that the issue of "truth" became evident as it related to natural reality. As described below, 

subjects differentiated between the different types of knowledge structures (facts, theories, 

and laws) by using the terms "true" or "untrue." In other words, if subjects felt like a 

structure reflected reality, it was viewed as true, if not, the structure was untrue. Again, 

this aspect of subjects' conceptions reveals a realist's ontological viewpoint of the 

knowledge structures. The exception to the usage of the term "truth" by the subjects was 

Diane who stated, "I never use the word 'truth'.... I think of truths as more moralistic. I 

don't use the word scientifically." In addition, the terminology of "proven" or "disproven" 

was used to explain the different aspects of the knowledge structures. As was explained in 
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the previous section, the subjects' conceptions of "proven" refers to the verification of an 

experimental result by the replication of the experiment many times producing the same 

result. For the subjects, the word "proven" insinuates truthfulness. For example, David 

states, "It takes years and years, experiment after experiment, to prove. If it is proven, it is 

true." Descriptions of the teachers' conceptions of each of the knowledge structures will be 

explained below in which the words "true/untrue" and "proven/unproven" will be used by 

the subjects. An understanding of the subjects' meanings of those words as described 

above will help in a comprehension of their various differentiations of the knowledge 

structures. 

The first knowledge structure explored with the participants was a scientific fact. 

Subjects were asked to describe their conception of a "scientific fact." Jane responded, "I 

think a fact is a specific bit of information that is true because if it is not true, you can 

disprove it." Jane continued to explain that by "true" and "proven" she meant, "that under 

particular circumstances, this occurrence happens over and over again." Bob saw a fact as 

a law with a smaller base of application and he viewed facts as true and proven. However, 

later in the interview, Bob began to question his conception of a fact and said," I think a 

fact is a law, it is a truth, but... let's stay away from the word 'true'.... I don't know." 

Alice was very straightforward with her answer by saying, "A fact is what we know to be 

true at this particular point in time.... Facts are proven." Similarly, David commented," A 

fact is something that actually has occurred at some point in time" and is proven "by 

experimentation, by replication - if the same holds true over and over again, then we have 

to accept it as fact." He further explained, "A fact is true and a nonfact would not be true." 

Diane and Beth were unsure of their conceptions of a scientific fact. Diane said, "A fact, I 

never really thought about a fact" whereas Beth responded, "I'm not sure I'm clear on 

scientific fact." 
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Thus, in at least three of the above cases, the subjects were unclear and somewhat 

surprised at their inability to convey a meaning for "scientific fact." Yet, in some of the 

previous conversations about scientific knowledge, they have stated that their confidence in 

science rests in its foundation on "facts." For example, Beth said," Science should have a 

basis in fact" whereas Diane expressed," Science should deal with observable facts" and 

"is mainly facts." Bob communicated, "Laws are based on explanations of facts." This is 

an example of the taken-for-granted terminology that can be used by science teachers that 

upon focusing on the word, the familiar becomes unfamiliar and the difficulty of describing 

the word's meaning illicits surprise. 

Furthermore, the subjects' views of a scientific fact or their usage of the word, as in 

the cases of Beth, Diane, and Bob, illustrate the popular definition of the word "fact" in that 

it is a true entity that has been proven and is the epistemological authority for knowledge. 

There was no clear conception of the relativism of scientific facts due to their theory-

ladenness and lack of absolute validity. Contrary to the subject's views, facts are products 

of theory and are not proven in any absolute sense. 

In order to understand the next two knowledge structures, theories and laws, the 

researcher felt it was necessary to first comprehend subjects' views about hypotheses. 

When asked "What is a hypothesis?", three of the six subjects replied, "an educated guess" 

which is by far the most common answer given by students, teachers, and textbooks. Jane 

responded, "It is a proposed solution to a question." Beth was more detailed in her answer 

by stating: 

A hypothesis is a possible answer to a question or problem that is 
based on some knowledge.... It is just as likely to be wrong as it 
is to be right. You won't know until you have done an experiment 
to test that hypothesis. 
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Bob explained: 

It's an attempt to explain something you don't know. Around that explanation, 
you can develop experimentation to see if it works or not.... The only way 
that you can redly develop a workable experiment is to take a chance and 
make a guess of how it is going to happen. 

At least in the case of Beth and Bob, the typical sequence of "the scientific method" is 

reappearing in their conceptions of the formation of a hypothesis as a necessary step in 

scientific inquiry. In addition, four subjects believed that a hypothesis was the initial step 

in a maturational process in which theories become laws. Beth commented, "You build to 

theories from hypotheses and then eventually to the laws." In other words, laws develop 

from theories not hypotheses. Bob was somewhat unsure of the relationship between laws 

and hypotheses by stating that "if there is one instance [that the law is contradicted] then it 

can't be a law, it can be an hypothesis again." However, several questions later, Bob 

related that hypotheses become theories that later become laws. Thus, hypotheses are 

conceived by the subjects as informed guesses or proposals and in at least some instances, 

an initial step in scientific inquiry that produces theories and eventually laws. 

Furthermore, teachers' conceptions of scientific theories and laws were investigated. 

Most subjects viewed scientific theories as possible explanations to natural phenomena. 

Beth stated, "A theory is an hypothesis" on which "experiments have been done and there 

is a lot of evidence to support it." In addition, she called a theory "a possibility" and a 

"possible explanation for something that has been observed." Diane related, "A theory I 

think is... something that we try to explain what we see out there, but it can't actually be 

totally tested." David stated, "A theory is your best guess that has been tested and is at the 

present time accepted." Bob conceived a theory as "scientific speculation" whereas Jane 

was unsure of a meaning. 
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Moreover, scientific laws were viewed in a somewhat different perspective than 

theories. Beth conceived laws as "something that can be supported with hard data... and 

probably absolute on the basis of the data that has been collected." She also referred to 

laws as "scientific truths." In addition, Diane explained, "A law is something that has 

withstood the test of time and is ... correct in every situation they have ever tested it... and 

has been proven beyond a shadow of a doubt." Similarly, David supported Diane's 

consistency idea of laws by stating, "A law is when it is going to happen all the time." In 

his description of a law, Bob indicated: 

A scientific law is something that has withstood 
multiple applications. It' would be something that 
could be applied in lots of different ways and by 
lots of different people for the long term. 

In an attempt to understand participants' conception of laws and theories, the 

researcher asked subjects about the differences in laws and theories. It was in this line of 

questioning that the words "proven" and "truth" again appeared in subjects' answers as 

well as the conceptions of a maturational relationship between theories and laws. Jane was 

unsure about the differences in laws and theories stating, "I really have not had the two 

clearly defined to me. It is like words people use, but when you have to be pinpointed on 

it, what's the difference?" Beth stated a law is "a scientific truth" as compared to a theory 

which does not have all the evidence to support it as a law. In comparing the law of 

conservation of energy to the theory of evolution, Beth explained, "For a law, we have all 

the pieces" and for a theory, "it is hard to get the data you need." Similarly, Diane 

responded, "I think a law is... proven to be coiTect... and it has never been disproven and 

then I think a theory is... just hard to prove." David stated, "A law is something that has 

been proven... and a theory is not proven" whereas Alice agreed with David's 

conceptions. Bob also believed laws are proven and that theories have a more limited base 
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of evidence. He commented, "A theory is something that... hasn't been tried enough in 

enough different situations so that you can use it to predict for sure." However, Bob 

struggled with describing differences in theories and laws. He commented: 

If a new dimension were to happen and it was repeatable and the law did not 
apply, then the law would have to change and probably go back to a 
theory .... But if that was possible, how could it be a law? I'm sure glad I 
don't discuss this with my kids because I would lead them astray. I would 
confuse them totally because I am confusing myself. 

Thus, all subjects, with the exception of Jane, believed that laws were "proven" being 

based on a large amount of replicated data which seemed to indicate to the subjects laws 

were true in some absolute sense. 

Due to the "unproven" status of theories as conceived by the participants, five 

subjects believed that a theory is an intermediate step to producing a "proven" law. Beth 

stated, "A theory is put forth and then eventually when enough data is collected and the 

possibility of any of it not being true is completely eliminated, then it becomes a scientific 

law." Diane responded, "I see a law as being a theory that has been proven" whereas 

David explained, "A theory cannot be disproven unless you have got absolute proof, then 

that becomes a law." Alice agreed with the previous subjects by relating "a theory is what 

could be proven to be a law in years to come." Bob indicated, "I would think theories have 

to be constantly corrected" and "when they are no longer corrected... then you have to start 

considering it a law." Thus, all subjects, with the exception of Jane who was unsure of the 

basic meanings of laws and theories, conceived theories as having the possibility of 

becoming laws. There was no clear understanding of the different functions of a law as 

describing relationships and a theory as explaining relationships between phenomena. 

Scientifically speaking, theories do not become laws nor do laws become theories. Both 

knowledge structures are derived from hypotheses. 
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Furthermore, the changing nature of theories as knowledge structures was more 

evident in respondents' answers than laws. Due to the conception explained above that 

theories may become laws, subjects were very willing to think of theories as tentative. 

However, they revealed the conception of laws as being more stable knowledge structures. 

To be a law it had to be proven, a truth, absolute, and very reliable which suggests a 

rigidity that is resistant to change. In fact, subjects were willing to not call a knowledge 

structure a "law" if it had to be altered. For example, Bob explained that laws "should not 

be laws if they had to change." In addition, the subjects that viewed a law as a "proven 

theory" related the belief that if a "law" is disproven it would return to being a "theory." 

Beth was resistant to thinking that past laws in history have changed because "at that point 

in time we did not have the scientific method" inferring that "the" method legitimizes the 

"proof' of a law. Alice was very persistent in answering questions about the changeability 

of laws and theories by always adding the phrase "as we know it in 1991" or "at this 

particular time." Diane demonstrated the least amount of absoluteness in her conceptions of 

the tentativeness of laws by stating, "who knows maybe ten years down the line something 

will come up that it just won't fit for that situation - so I don't think anything is absolute." 

In addition, as stated above, subjects conceptions of scientific facts seem to reveal the same 

status of rigidity to change as laws. Thus, there appears to be the cognition by subjects of 

degrees of tentativeness to the knowledge structures. 

Finally, participants' conceptions of a scientific model were investigated. All subjects 

viewed scientific models as visual representations of scientific concepts. Diane said that 

models are "something that we use to give them [students] the visual aspects of things we 

are unable to see." David explained, "A model is something ... either on paper or it is three 

dimensional... that you put to scale that represents something that is either tangible or not 

tangible." Bob commented, "They are an attempt to show you what something is, looks 
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like, or how it physically fits together." Jane expressed that a model is" a mock-up or a 

physical representation of something." Diane was the only one to mention computer 

modelling. Following an attempt to understand subjects' conceptions of models, the 

researcher inquired into the relationship of models and the real natural world. Most 

subjects acknowledged their belief that models do not represent the reality of nature. They 

frequently used the model of the atom as an example in responses. Bob stated, "I don't 

think that any model that I have seen of the atom describes what it is going to look like." 

Diane expressed, "Like the atomic model.. we just don't know that it illustrates the 

theory." Contrastingly, David was unsure about models relating to reality by stating, "I 

really don't know if they do. Sometimes I question models myself." 

In summary, subjects generally felt that scientific knowledge reflects the reality of 

nature revealing a realist position that advocates an ontological viewpoint of knowledge. 

However, a pluralistic realist position was also evident in the subjects' expression of the 

changing status of the knowledge structures as they relate to natural reality. A scientific 

fact was considered "proven" and "true" by subjects indicating the popular view of a fact 

versus the scientific view of a fact that demonstrates its theory dependency and lack of 

absolute validity. Hypotheses were viewed by respondents as "educated guesses," 

"proposed solutions," and "possible answers" as well as an initial step in the develop of 

theories. Subjects conceived theories as possible explanations based on the available 

evidence whereas laws were viewed as more reliable based on replicated data. In a 

comparison of theories and laws, participants believed theories were unproven whereas 

laws were proven and truthful in an absolute sense. All subjects believed that theories can 

become laws demonstrating no comprehension of the two very different functions of each 

knowledge structure. The tentativeness of the knowledge structures seemed to be viewed 

by subjects in degrees of change with theories being the most changeable and facts and 
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laws being the least changeable. Finally, all subjects viewed models as representations of 

entities in nature that may not resemble the actual thing. It was in the area of questioning 

about the scientific knowledge structures that the "familiar" seemed to become "unfamiliar" 

to the respondents. On many occasions, some mentioned above, the subjects exhibited 

difficulty in describing familiar terms like facts, theories and laws. It illustrated the taken-

for-grantedness by subjects of these knowledge structures that they use on a regular basis 

in their classroom instruction. 

The Uniqueness of Science as a Wav of Knowing 

Even though science overlaps with other ways of knowing, there are some 

distinguishing characteristics that differentiates it from other knowledge. These features 

include its testability, predictive power, consistency, replication and communal review. To 

determine subjects' views about the uniqueness of scientific knowledge, interview 

questions focused on science as a way of knowing and the distinguishing attributes of 

scientific knowledge. 

Initially, subjects were asked whether science was the only way of knowing. In 

answering this question, some subjects exhibited difficulty in thinking about other "ways 

of knowing" than science. For example, Diane stated, "How else would we know?... I 

guess I don't quite understand.... What other types do you mean? I am not sure what other 

types are besides science. I think of science as covering everything." Bob commented, 

"To experience something is not necessarily science, is it? I am trying to think of some 

other examples." When asked, Alice paused a long time and then responded, "No, there is 

not." She conceived all knowledge as being the same. Similarly, David, after pausing for 

a brief period of time, conceived science as the only way of knowing and commented, "I 

mean, how else are you going to know?" Jane responded, "Do I understand you to mean 

could I know something in sociology?" and then admitted she had never thought of other 
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ways of knowing. With the exception of Alice, the above subjects eventually thought of 

other ways of knowing such as mathematical (Diane), religious (Diane, Bob, Jane), and 

historical (Bob). Beth was the only subject who did not hesitate in answering the question 

about science as the only way of knowing. She explained, "Oh, no. I think you can know 

with your heart... feelings, intuition. There are other ways of knowing." For Beth, the 

other modes of knowing included religious, personal, and cultural. Thus, for three 

subjects the existence of other forms of knowing besides science was not part of their 

subjective reality. At least they had not thought of history, religion or math as other ways 

of knowing and in the cases of Alice and David, there were no other ways of knowing 

besides science. 

If subjects indicated there were other ways of knowing, the researcher inquired about 

the manner in which scientific knowledge was different than other types of knowledge. 

Beth responded, "Only science is based on knowledge gained through experiment, 

observation, and... the use of the scientific method" and "repeated verification and 

duplication" as well as "observable facts." Describing religious, personal, and cultural 

knowing, Beth explained, "Their basis is more in emotion and in things of the heart -

subjective." Diane stated, "I think ... science as being something proven, where religious 

knowledge, you have to take it as faith that there is a God although no one can ever prove 

that." Bob explained, "Scientists are more involved in looking at a concept that can make 

predictions. I am not sure that historians are necessarily looking at making predictions." 

In addition, he stated, "Science is based on testing... and it is self correcting" whereas 

"religion doesn't tend to correct itself.... It's based on real faith." Jane expressed that the 

experimental nature of science makes it different from other knowledge modes, and she 

acknowledged, "Thinking scientifically follows a certain or broad general sequence of 

doing things-the scientific method." Furthermore, she indicated the different nature of 
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science and religion by stating, "You can't take science and prove the Bible." Therefore, 

according to the subjects, the uniqueness of scientific knowledge is attributed to its 

methodology that includes experimentation, replication, predictive nature, and self-

correctibility. There was a strand of positivism that was reflected in the respondents' 

answers that "the method" in science produces "proven" knowledge. Except for the 

context of the replication of experimental findings, the subjects did not mention the 

uniqueness of the communal interactions in science. 

Finally, subjects were asked whether science was the best way of knowing? Beth did 

not think science was the best way but believed that the different types of knowledge had 

different roles to play. She explained: 

That is why I go to church.... I need that faith in God, but then I go 
to the science book when I want to explain how.... I feel sorry for 
those folks who are caught up in one aspect of knowledge that they 
can't even give a hearing to die other. 

Diane struggled with the question stating, "I guess that science in a sense adds a lot of 

validity to what you know. I don't know." However, later she commented, "I say it's the 

best way." Bob thought science was the best way and related, "It is the only way that you 

can really know. I think through religion ... people say they know. I think that what they 

really are saying is they accept. They don't know, but they accept." Contrastingly, to the 

question about science being the best way of knowing Jane responded, "Not really. We 

have solved a lot of problems with science but honesdy it is no better." Therefore, among 

those subjects that conceived there are different ways of knowing, two out of four believed 

science was the best way. 

In summary, most subjects had not conceived science in the terminology of a "way of 

knowing" and initially exhibited difficulty in thinking of other modes of knowing. It was 

very natural for them to think of knowing as being only scientific. Only two subjects were 
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steadfast in their conception of science as the only way of knowing. Subjects conceived 

the experimental, predictive, and replicative nature of scientific knowledge as attributes of 

uniqueness. Only one subject mentioned the revisionaiy nature of scientific knowledge and 

no respondent related the communal interactions of science except in the context of 

experimental replication. In addition, they felt very comfortable with their conceived 

absoluteness of scientific knowledge using terminology such as "proved" and "verified" as 

opposed to other types of knowledge which were based on more "subjective" conditions 

such as faith and emotion. It was evident that "the scientific method" legitimized their 

conceptions of the validity of scientific knowledge. However, only two subjects thought 

science was the best way of knowing whereas two subjects recognized that different modes 

of knowledge have different aims or roles. 

Teachers' Conceptions of the Nature of Scientific Knowledge: Influences on Teaching 

Methodologies 

The final theme addressed in the interview sessions included questions relating to 

subjects' views about the relationship of their conceptions of the nature of scientific 

knowledge and their instructional methodologies. In addition, the respondents' views of 

the factors that affected their particular conceptions of science were ascertained. Finally, 

participants' opinions on the barriers that prevent them from teaching the nature of scientific 

knowledge more effectively were identified. 

Initially, subjects were asked about their views of the factors that influenced their 

conceptions of the nature of scientific knowledge. Beth responded that her interactions 

with education and science university faculty as well as with individuals in science 

education professional organizations affected her conceptions of science. Diane expressed 

that her high school and college science schooling experiences, reading, and middle school 

teaching experiences provided her with her conceptions of science. However, she 
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emphasized that recently her summer experience at a research laboratory facility had 

changed many of her views of scientific inquiry. She explained, "I think I'm more aware 

now of what real scientists are really like" and "what life is really like out there [in the 

scientific community]." David related that his experiences as a surgical technician in the Air 

Force and his college training in science influenced his conceptions. Alice credited her 

students and reading books as the factors that helped her formulate a science world view. 

Experiences in the Navy, college science course work and extensive reading of scientific 

literature have all assisted Bob in forming his conceptions of scientific knowledge. Lastly, 

Jane communicated that college science course work and her brief interactions with 

university science researchers have influenced her views. Thus, the most frequently 

indicated factor influencing their science world views was their experience in college 

science course work. Other factors included reading scientific literature, personal 

experiences with scientific work (armed forces, research labs), high school course work, 

and students. 

In every instance, subjects felt that their conceptions of scientific knowledge affected 

their methods of teaching. Beth responded, "What we've talked about [her views of the 

nature of scientific knowledge] would have to be the driving force behind everything I do 

in the classroom because I'm not going to do something I don't believe in." In addition, 

she commented, "I really view science as something you do and not something you read 

about." Thus, Beth largely involves her students in laboratory/hands-on activities in her 

classes. Similarly, Diane stated that she teaches science as inquiry with hands-on activities 

which is the way she enjoyed it as a student. She explained: 

You don't just learn science by reading a textbook. The times I've enjoyed 
science most was when I was right in there doing certain things. Those are 
the things that I remember the most... when I did things. So, that's the way 
I teach. 
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Therefore, Diane emphasizes lab activities in her classroom. She continued to describe that 

her summer experiences at a research lab influenced her teaching. Diane commented: 

I give a lot more input about my experience ... and relate it to something 
we did.... I'm more aware now of what real scientists are really like, and 
I can share that with the kids. The other thing is the current research.... I 
can bring that to my kids. 

Furthermore, Alice believed that her views of the inquiry method of science has 

influenced her emphasis on critical thinking and the Socratic method of teaching. She 

explains, "If a child asks a question, I respond by asking a question. I try to teach the kids 

to do that to me. Question everything. I say everything. To me, the best learners are those 

people who can question." She continued, "Science ... really stimulates the mind. It poses 

questions that have answers, but yet at the same time those answers can be questioned." 

These problem-solving capabilities of science are emphasized by Alice in her teaching 

strategies, in particular with lab exercises. In response to the reasons she felt laboratory 

work was important, she replied: 

So that children can feel confident that when they set out to solve that 
problem, this variable can be involved, and if the experiment doesn't 
come out like it's supposed to come out, that it is not wrong.... They 
have the right to experience the problem-solving skills development. 

Alice reports that her class is involved in problem-solving/laboratory activities about 50% 

of the time. Similarly, David views the inquiry methods of science as important in science 

teaching. However, he reported only doing laboratory/hands-on activities 25% of the time. 

Bob emphasized his views of the tentativeness of science in his classroom. He 

explained: 

I try not to be one of those "this is the fact, this is the way" type. It is 
not just the way I teach.... I tend to teach more of an inquiring 
method. I think we spend more time trying to figure out what or how 
it works, than saying this is it. 
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In addition, his conceptions of science as inquiry are reflected in his teaching. To the 

question about the importance of laboratory exercises, Bob related, 

Because that is what science is. I mean science is not fill-in-the-blank 
type questions. That is not what science is.... The part of science 
that is important and valuable is the research part. Teaching kids how 
to do that is more important. How to handle solving a problem 
using some materials and equipment to find out something is a lot more 
important than having them take a book and pick out the key 
words in a paragraph. 

Bob reported using hands-on laboratory activities about 60% of the time in his classroom. 

Similarly, Jane's view of science as a method of inquiry influences her emphasis on hands-

on activities. Jane reported doing hands-on, laboratory exercises about 40% to 45% of the 

time. 

Thus, subjects acknowledged that their conceptions of the nature of scientific 

knowledge influenced their teaching methodologies. In every instance, subjects reported 

that their views of science as problem-solving permeated their instruction by their emphasis 

on laboratory, hands-on student activities. They viewed such instruction as demonstrating 

the skeptical, tentative, critical thinking, and problem solving nature of science. The 

amount of time reported of actual hands-on, experiential teaching of science ranged from 

25% to 60%. However, there was no implicit indication that the humanistic, communal, 

observational, and historical aspects of the nature of scientific knowledge was reflected in 

their teaching practices. Therefore, it demonstrates the previously mentioned lack of 

understanding of these areas of scientific knowledge by the subjects. 

Finally, the last theme addressed was to identify any ways subjects could improve 

their science instruction as well as any barriers that might prevent them from teaching the 

nature of scientific knowledge more effectively. All subjects believed they could teach 

science in a more effective manner. To the question about methods of teaching science 
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more effectively, Beth responded, "I would do it from a total lab perspective" and she 

further explained, "I would have a lab every single day. We would pose big problems like 

pollution, water, air, and then we would be involved in investigations that would be 

student planned.... They would come up with solutions." Similar to Beth's perspective, 

Diane stated, "What I would like to do is totally teach it [science] from a lab aspect.... It 

would be totally hands-on, field trips and outdoor experiences." In addition, David, Bob, 

and Jane viewed an improvement of students' conceptions of the nature of scientific 

knowledge would be achieved by an increase in laboratory/hands-on techniques as well as 

field trips. Contrastingly, Alice would improve science instruction by just instituting a 

literature-based methodology and not necessarily increasing the number of 

laboratory/hands-on activities she already does in her classroom. 

However, to questions about the barriers that prevent such methodologies from being 

instituted, the subjects included school scheduling, funds, class size, parental expectations, 

tradition, textbooks, equipment, planning/instructional time, and state curriculum 

requirements. In addition, Beth mentioned competency testing as a deterrent. 

Teachers feel the pressure to get kids ready for end-of-year course 
testing... because those scores are looked at carefully.... As long 
as that testing program is there, it encourages recall of factual 
information. 

Interestingly, in most cases, textbooks were condemned by the subjects as an 

instructional tool and seen as a deterrent to teaching an adequate view of the nature of 

scientific knowledge. Commenting on textbooks, Diane stated: 

You get a presentation of knowledge and you might get a little experiment 
that illustrates it, but it is almost going in the reverse of science.... There 
might be a little chapter that tries to explain what scientific knowledge is, but 
by that, it doesn't really do anything. 



136 

To the question of textbooks representing the scientific enterprise correctly, Alice 

responded, "They try to, but they do a lousy job." Beth responded, "Kids really have no 

conception of what science is really about because that textbook is there." Bob expressed 

that textbooks represent a static view of science. He explained, "They [textbooks] pretty 

much say this is it. It would be nice to get a textbook that was more inquiry than fact; 

instead what we get is about 95% fact." Contrastingly, Jane replied, "They [textbooks] 

have gotten better in that they put more activities in the books." She did voice concerns 

about lack of depth in textbooks concerning the nature of scientific knowledge. In 

addition, David thought that textbooks express an adequate view of science "for the most 

part." Although David said, "I hate them," he still uses textbooks. Beth, Diane, Alice, and 

Bob think textbooks are a waste of instructional money. In opposition to an adequate view 

of the nature of scientific knowledge, textbooks were viewed as a static representation of 

science (Beth, Diane, Bob), a source of facts and truth (Diane, Beth, Bob), failure in 

representing the dynamics of the production of scientific knowledge (Diane, Bob) and an 

intimidation to students (Alice). 

In summary, the most often mentioned factor that affected subjects' conceptions of 

the nature of scientific knowledge was their experience in college science course work. 

Other factors included experiences in scientific work (armed forces or research lab), high 

school courses, reading scientific literature and students. Thus, the importance of these 

areas in affecting preservice science teachers conceptions of the nature of scientific 

knowledge should be recognized. In addition, all subjects acknowledged that their 

conceptions of the nature of scientific knowledge affects their teaching methodologies. 

However, the only dimension of science that was identified by the subjects as permeating 

their teaching methods was inquiry. There was no explicit indication of the humanistic, 



137 

historical, or social aspects of science being demonstrated in their instruction. These 

findings indicate the implicit nature of these dimensions in the subjects' subjective reality. 

Moreover, all subjects felt that they could improve their teaching of the nature of 

scientific knowledge. With the exception of one subject, the participants viewed the 

incorporation of a total hands-on/laboratory curriculum as the best way to teach science. 

Contrastingly, Alice believed a literature-based science curriculum with no increase in 

experiential student activities would accomplish the same purpose. The subjects listed 

many barriers that prevented them from teaching science more effectively. One barrier, 

textbooks, was seen by most subjects as a particular deterrent to teaching the nature of 

scientific knowledge effectively. The subjects conceived textbooks as representing science 

as a static discipline, science as producing proved truth or facts, and science that is void of 

inquiry and communal interactions. 

Summary 

The chapter has described six middle school science teachers' conceptions of the 

importance of science education and the nature of scientific knowledge. In addition, their 

conceptions of the influences that their science world views have on their instructional 

methodologies were explained. 

The subjects' views of the importance of science education were inclusive of most of 

the elements of scientific literacy as well as the National Science Foundation's goal 

clusters. However, the subjects did not conceive of two important dimensions of scientific 

literacy: the understanding of science as a human enterprise and the cognition of historical 

nature of science. Moreover, most subjects viewed themselves as "scientists" in the way 

they studied and attempted to understand the world. Thus, the researcher had to explain to 

the subjects the study's operational definition of a scientist in order to ascertain their views. 

All subjects described the typical ideal traits of scientists that are usually depicted in science 
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education literature including textbooks. They tended to view scientists as objective 

realizing only the effects of expectations on objectivity. The effects of paradigmatic beliefs, 

language, and professional schooling on objectivity were not recognized by the subjects. 

In addition, subjects believed scientists are very open-minded, very willing to share all 

information, and motivated more by intrinsic (desire, curiosity, caring) than extrinsic 

(financial rewards, peer approval, prestige, and awards) reasons. Subjects tended to hold 

scientists in the highest regard being disturbed by any contradictions to their somewhat 

idealized view of scientists. 

Furthermore, subjects' conceptions of the dynamic nature of scientific communities in 

deciding research methodologies and the acceptability of knowledge was limited. They 

revealed a positivist perspective of knowledge acceptability implying that scientific 

knowledge is proven by unbiased observation, facts and "hard data." The political and 

sociological dimension of consensus-making in scientific communities was not well 

understood and some subjects believed the acceptability of knowledge was based on a 

"majority rules" criterion. The different social roles of science and technology were 

misunderstood by most of the subjects. In addition, due to subjects' lack of awareness of 

the effect of paradigms on the production of scientific knowledge and the resulting conflicts 

of paradigms in the Kuhnian sense, the subjects exhibited little understanding of the 

historical nature of science. Most subjects conceived the progression of scientific 

knowledge as cumulative discounting any revolutionary perspectives. Moreover, the 

subjects exhibited difficulty in relating the basic assumptions of scientific inquiry. It 

demonstrates the taken-for-grantedness of these basic principles by subjects. 

When subjects focused on scientific observation, they tended to be more realistic in 

their conceptions of a scientist. Subjects communicated the effects of expectations, 

background experiences, knowledge base, emotions, and human limitations on scientific 
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observation. Only one subject was steadfast in viewing observation as objective. Subjects 

were not cognizant of the effects of language, theory, nor professional training on 

observation. Contrastingly, all subjects viewed observational information gained through 

scientific instrumentation as objective which reveals no understanding of the theory-

ladenness of instrument design and construction. Moreover, the subjects tended to have a 

simplified view of scientific inquiry. While admitting that there is more than one method in 

science, they described scientific inquiry using the typical textbook step-by-step process 

that is characteristic of "the" scientific method. They were resistant to conceiving scientific 

inquiry varying much from the typical steps demonstrating a positivist, inductivist's view 

that scientific knowledge has a special validity due to an experimental method that produces 

facts and proves knowledge. Thus, the subjects were not completely aware of the many 

experimental methodologies used in science due to a variety of theoretical structures and 

goals of research. All subjects conceived scientific inquiry as logical, but they had no 

comprehension of its deductive/inductive nature. To the subjects, logic and "the" method 

was the ultimate authority in the acceptability of knowledge discounting the impact of 

scientific communities in the arbitration of knowledge. 

Furthermore, subjects generally conceived that scientific knowledge reflects the 

reality of nature demonstrating a realist position that advocates an ontological viewpoint of 

knowledge. In addition, a pluralistic realist position was revealed by the subjects 

conceptions of the changing status of knowledge structures as they relate to reality. In 

differentiating between the different knowledge structures, subjects tended to use the 

"terms of absoluteness," proven/unproven and true/untrue, continuing to demonstrate a 

positivist viewpoint. Scientific facts were conceived by subjects in the popular perspective 

as true and proven as opposed to a relativistic viewpoint that accurately describes scientific 

facts. Hypotheses were viewed as an initial step in the development of only theories. 
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Subjects conceived theories as unproven explanations based on available evidence whereas 

laws were proven and truthful based on more reliable, replicated data. Demonstrating no 

comprehension of the different functions of laws and theories, all subjects viewed that 

theories may become laws. Moreover, subjects had difficulty thinking of other ways of 

knowing besides science. Subjects did relate the experimental, predictive, and implicative 

nature of scientific knowledge as attributes of uniqueness. As opposed to other modes of 

knowing which are based on faith and emotion, the subjects felt comfortable with their 

conceived absoluteness of scientific knowledge that is "proven" and "verified." However, 

only two subjects conceived of science as the best way of knowing. 

Moreover, the most common element that influenced their conceived views of the 

nature of scientific knowledge that was mentioned by the subjects was college science 

course work. Other influential areas included scientific work experiences, high school 

courses, literature review, and students. All subjects conceived that their views of 

scientific knowledge influence their teaching methodologies. However, the only dimension 

communicated by the subjects as permeating their instruction was scientific inquiry. There 

was no indication that the humanistic, historical, or social aspects of scientific knowledge 

was being reflected in science instruction. Most subjects related that they could improve 

their instructional methods in science by the incorporation of a totally hands-on/laboratory 

curriculum. However, barriers described by subjects to this type of methodology included 

scheduling, class sizes, parental expectations, tradition, planning/instructional time, 

money, equipment, testing mandates, and state curriculum requirements. Textbooks were 

also conceived by subjects as an hindrance to the improvement of science instruction due to 

their inaccurate portrayal of the nature of scientific knowledge. 

Lastly, many of the questions asked in the interviewing process about the nature of 

scientific knowledge addressed the "familiar." However, many times the "familiar" became 
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"unfamiliar" when subjects had to delineate a meaningful answer. Such commonly used 

terms as facts, laws, theories, and technology became somewhat unfamiliar to them. It 

demonstrated the taken-for-grantedness of many of the basic principles of science by these 

teachers. Furthermore, some of the issues involving the nature of scientific knowledge 

addressed in the interviews were previously never considered by these subjects. For 

example, Beth commented, "You are making me think about things I've never thought 

about before" whereas Bob stated, "You are asking questions I have not thought about." 

Therefore, compared to the dimensions of the nature of scientific knowledge as outlined in 

the model, these subjects possessed a somewhat less than adequate view of scientific 

knowledge and the historical, sociological, experimental and humanistic processes that 

produce it. 
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CHAPTER V 

CONCLUSIONS: IMPLICATIONS FOR SCIENCE EDUCATION AND 

RECOMMENDATIONS 

Introduction 

Based on the literature, an interpretive model was formulated that describes the nature 

of scientific knowledge in eight dimensions. It was posited by the model that the nature of 

scientific knowledge is humanistic, socially constructed, historical, based on specific 

beliefs, observation based, a result of inquiry, composed of structures, and unique. It 

served as a comprehensive framework to compare the conceptions of six middle school 

science teachers about nature of scientific knowledge. The previous chapter delineated the 

subjects' conceptions of scientific knowledge and compared their views to the interpretive 

model. Encouraging aspects of subjects' conceptions of the nature of scientific knowledge 

included their comprehension of the importance of scientific observation, the communal 

sharing of experimental results, and the significance of scientific experimentation. 

However, the subjects tended to view scientists in an ideal manner, did not understand the 

sociological dimension of decision-making in scientific communities, had little 

comprehension of the revolutionary nature of historical science, and were not cognizant of 

the theory dependency of observation or instrumentation. There was a tendency by 

subjects to view scientific inquiry as a simple step-by-step process typical of "the" scientific 

method which legitimizes proven, truthful knowledge. In addition, subjects did not 

understand the different functions of theories and laws as knowledge structures. Even 

though there were slight variations in the adequacy of science world views by different 

subjects, generally these six middle school science teachers' conceptions of scientific 

knowledge were less than adequate as compared to the model. This chapter will discuss 
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the implications of these findings on science education and student comprehension as well 

as recommend strategies to improve teachers' conceptions of the nature of scientific 

knowledge. In addition, suggestions for future inquiries into this topic will be given. 

Implications For Science Education 

The six middle school science teachers' conceptions of the nature of scientific 

knowledge revealed deficiencies compared to the study's model. The findings of this 

research project have many broad as well as specific implications about student 

comprehension of the nature of scientific knowledge and the current instructional 

methodologies being implemented in middle school science classrooms. The study's 

results also indicate a need for strategies for the improvement of teachers' conceptions of 

the nature of scientific knowledge as well as for science curriculum improvement. In 

addition, subjects' conceptions of the importance of science education and the influences of 

their views on their classroom methodologies provide insights into areas of improvement. 

Initially, inquiry into teachers' conceptions of the importance of science education 

revealed a partial understanding of scientific literacy and the goals outlined by the National 

Science Foundation. Subjects' science education goals included the development of critical 

thinking/problem solving skills, affective concerns, career opportunities, and custodianship 

of the natural world. However, subjects' views of goals narrowed considerably when 

asked about middle school science education. One of the two goals mentioned is of 

particular interest: the preparation of students for high school. This finding seems to 

indicate that these middle school teachers are very concerned about teaching the content of 

science which is emphasized in high school. How students learn science greatly 

influences their attitudes about what science is. In teaching predominantly content, 

scientific knowledge is represented in a very static manner. Schwab (1960) calls such 

instruction "the rhetoric of conclusions." Thus, what results is scientific knowledge that is 
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portrayed to students as reified, objective, and noncontroversial. This approach may 

discourage creative students from seeking science careers because they perceive science as 

boring and personally irrelevant. In contrast, if science is taught as a process, students 

could understand better the humanistic, sociological, historical, and experimental nature of 

scientific knowledge. Students could participate in the scientific processes of investigation 

developing an understanding of the human interactions of knowledge production. 

Interestingly, the subjects admitted the goals of science education were not being 

achieved and attributed the reason to lack of planning time and hands-on/laboratory student 

activities. In other words, they advocated more interactive science teaching but because of 

time, their instruction tends to be more content driven than process driven. In fact, the time 

spent by the subjects in conducting hands-on/laboratory student activities ranged from 20% 

to 60% of the total instructional time. Thus, for whatever the reason, 40% to 80% of the 

subjects' classroom instruction time was spent in content driven instruction. Although 

content can be learned and does inform process instruction, the processes of science are 

seldom adequately learned in a content instructional context. 

Moreover, these six successful science teachers probably use hands-on/laboratory 

activities more than most teachers. Yet, they felt the obligation to primarily convey science 

content to students. However, the subjects neglected to mention the understanding of the 

humanistic nature of science as well as a cognition of the history of science as important 

goals of science education. These goals are the types of goals that can be approached 

adequately in process science instruction. Thus, it appears that teachers may feel more 

comfortable with teaching the end products of science (content) which they conceive as 

understanding rather than the dynamic processes of science that entails its humanistic, 

sociological, and historical dimensions which they do not fully comprehend. 
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In discussing the humanistic aspects of scientific knowledge, the researcher 

discovered that four of the six subjects viewed themselves as scientists. This finding has 

significant implications for test design as well as students' understanding of the humanistic 

nature of scientific knowledge. Since students learn many behaviors by imitation and 

identification, the role model created by the teacher is very influential. If teachers are 

portraying themselves to students as scientists, teacher behaviors will tend to be transferred 

by students into their conceptions of scientists' behaviors. In other words, the 

characteristics portrayed by the teacher may be seen as characteristics of a scientist by 

middle school students. If, by their behaviors, teachers characterize science as an 

emotional, stimulating search for answers that strives to produce creative, tentative 

solutions through many types of methodological inquiries, then students would acquire a 

reasonable view of scientists. However, if teachers' behaviors portray science as an 

unemotional, objective search for absolute solutions through "the" scientific method, 

students would be misguided in forming their views of scientists' behaviors. Realizing the 

somewhat idealized conceptions of scientists held by these teachers, it would seem to be 

difficult for them to realistically characterize scientists by their behaviors. A much better 

disposition in this matter would be for teachers to admit they are not scientists, but are 

science educators or as Bob phrased it, "students of science." 

In describing scientists, the subjects listed the idealized traits usually associated with 

scientists in textbooks and science education materials. They were cognizant of some of 

the influences on scientists' objectivity such as expectancy effects, but did not relate the 

effects of paradigmatic beliefs, language, and professional schooling on objectivity. In 

fact, the subjects said scientists were more objective than subjective. Most of the subjects 

believed scientists were very open-minded, motivated mostly by inward drives and openly 

shared their experimental findings. Thus, subjects' conceptions of scientists tended more 
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toward an idealistic view than a realistic perspective. The implication of this finding is that 

teachers perpetuate the idealism of scientists that is often found in science textbooks and 

science education literature. Thus, students will tend to conceive scientists in an unrealistic 

manner. There would be no comprehension on the students' part of the full range of the 

behavior patterns of scientists that are typical of the human race that includes both prejudice 

as well as openness. In addition, with teachers' portrayal of an idealized version of 

scientists, the limitations and inadequacies of scientists' humanity would not be realized by 

students. Thus, students would tend to think of the resulting knowledge produced by such 

scientists as being objective and absolute. Ideal scientists legitimize a view of "ideal" 

knowledge. An in-depth biographical study of scientists would increase the awareness of 

teachers and students of the human qualities of scientists that permeates all scientific 

knowledge. 

Moreover, it was evident that Diane possessed the most realistic view of scientists. 

This can be directly attributed to her summer experience at a national laboratory during 

which she worked with scientists. Thus, in addition to biographical studies of scientists, 

conceptions of the human qualities of scientists by teachers can be improved by actually 

working with them. In this real life setting, teachers could interact with scientists and learn 

about their biases and limitations. 

Furthermore, subjects possessed a limited understanding of the sociological 

dimension of scientific knowledge. There was no conception of paradigms in the Kuhnian 

sense by subjects. Thus, there was no realization of the effects of paradigmatic beliefs on 

observation, experimentation, and research methodologies. Although subjects were 

cognizant of the communal aspect of scientists sharing information and the value of the 

replication of experiments, they expressed concern that they had not really thought about 

how knowledge becomes ultimately accepted. They tended to think of the acceptability of 
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knowledge in a positivist perspective in which accepted knowledge is based on unbiased 

experimentation that yields "hard data" that proves facts, theories and laws. The political 

dimension of consensus-making in scientific communities was not well understood and 

was interpreted by some subjects as the "majority rules" in determining acceptable 

knowledge. The implications of this finding suggests that teachers convey scientific 

knowledge to students in terms of absoluteness. Knowledge is not seen as being arbitrated 

by interactions of scientists, but is based on objective data and is proven to be true. Thus, 

students tend to think of knowledge as the truth, and it seldom changes. Knowledge is 

reified to the extent that its human and sociological constructions are not evident. An 

understanding of the social nature of the acceptability of knowledge would enlighten this 

positivist viewpoint about scientific knowledge. Teachers and students need to be 

cognizant of the arbitration of scientific knowledge by scientific communities. Students 

should be involved in active debates about their experimental findings which will foster an 

understanding of the social dimensions of scientific communities. In this way, scientific 

knowledge can be seen as constantly in a state of examination and change. Its validity 

cannot be divorced from the sociological aspects of decision-making. Thus, scientific 

inquiry does not appear to be examined within a social context in the classroom. Science is 

presented to students in social isolation. 

In addition, the terms science and technology were confused by the subjects. Most of 

the subjects would use the words interchangeably in one case only to separate their 

meanings in another case. Viewing technology as applied science as conceived by some 

subjects is in disagreement with the model's interpretation. Technology is not limited by 

scientific research and can exist without science. Teachers' confusion of the difference in 

science and technology leads to the peipetuation of this misunderstanding in students. 
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Such "technoscience" views should be brought to the awareness levels of students and the 

different social roles of science and technology discussed. 

Furthermore, subjects possessed little understanding of the historical nature of 

scientific knowledge in the context of Kuhnian paradigms. Most subjects conceived 

science as progressing through history cumulatively. Science is seen as adding one or 

more pieces to the puzzle of nature and these pieces are added incrementally to make the 

science of today. The implication of promoting this view of historical science is the 

incorrect portrayal of scientists in the past working on the same set of problems using the 

present set of paradigmatic beliefs. Thus, students may think past beliefs "silly" when 

based on current paradigmatic beliefs. Teachers need to portray historical science as a 

revolutionary process in which past beliefs were discarded and replaced by new ones. In 

addition, in past times, scientists worked on different problems that were outlined by the 

dominant paradigm controlling the view of nature. Discounting the revolutionary nature of 

the history of science negates the effect of theoretical paradigms on viewing the natural 

world. Students need to understand the past conflicts of paradigms and the revolutionary 

way in which the view of the natural world has changed. An understanding of the history 

of science demonstrates that science can never commit itself irrevocably to any fact, theory, 

or law no matter how acceptable it appears within the current paradigmatic view of nature. 

Scientific knowledge can then be viewed as uncertain and tentative. An in-depth study of 

the history of science by teachers would assist in an understanding of the revolutionary 

nature of scientific knowledge over time. 

The taken-for-grantedness of the basic beliefs of science about the natural world was 

very evident in the difficulty subjects had in relating any conception of them. Subjects 

never seemed to have considered these basic assumptions of science. However, the basic 

beliefs that nature is understandable, causal, orderly, consistent and predictable need to be 
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discussed with students because they underpin any foundation for the acceptability of 

scientific knowledge. For example, scientists make generalizations from a finite number of 

observations because it is believed that nature is consistent or what has happened in the past 

will continue to happen in the future. If the natural world was considered inconsistent, the 

effect on the knowledge structures of science would be significant. Teachers and students 

need to consider the importance of these assumptions about the natural world on the 

credibility of scientific knowledge. 

In addition, all subjects recognized the importance of observation to science. In 

contrast to the above idealized view of scientists, the subjects were far more realistic of 

scientists when they described objectivity in scientific observation. Most subjects were 

aware of the effects of background experiences, expectations, emotions, and human 

limitations on observation. However, the importance of language, the effect of 

professional training and paradigmatic beliefs were not communicated by the subjects. The 

subjects were not cognizant of the extensive involvement of theory in observation. Thus, 

subjects tended to put a great deal of confidence in observation as a firm basis for scientific 

inquiry. This positivist perspective of "seeing is believing" would have implications on 

teaching methodologies. If observation is presented to students as a simple process of 

validating experimental findings, the products of that process (facts, theories, laws) would 

be viewed as firm and unchanging. Only when the theory dependency of observation is 

realized can students begin to understand the complex, involved nature of observation and 

the tentative nature of the resulting scientific knowledge structures. 

Moreover, subject's conceptions that scientific instruments produce objective 

observations have similar implications. In promoting this viewpoint, the human factor 

behind the design and construction of instrumentation is neglected. It is just another way in 

which the human element of science is removed from the awareness levels of students. In 
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addition, it presents a false impression in students of the validity of the data. It is important 

for students to understand that instruments are as fallible as the theory on which they are 

based. 

Furthermore, the teachers tended to see the various methodologies in science in a 

simplistic way. Most subjects tended to view science as more credible than other types of 

disciplines because of its methodology. Even though they admitted there is not one 

scientific method, the subjects described the typical step-by-step textbook description of 

"the" scientific method upon being asked to depict scientific inquiry. In addition, they used 

the terminology "the scientific method" not realizing the connotations of their word choice. 

The subjects also believed the method produced objective data that proved scientific 

knowledge. Subjects tended to use the term "proven" in describing knowledge that had 

resulted from the use of "the" scientific method. 

The implications of portraying scientific inquiry as a single methodology are 

significant. By thinking scientific inquiry is done in that way, students would think there is 

a simple relationship between observation and theory. In addition, the impression of a 

straightforward, step-by-step method of deriving knowledge discounts the elements of 

creativity, imagination, and the communal arbitration of knowledge production. The 

method is seen by students as legitimizing objective knowledge proving that it is truthful 

and absolute perpetuating a positivist view of science. It creates excessive confidence in 

scientific knowledge by students. Furthermore, the method is viewed as the criterion that 

demarcates science from other disciplines. The many processes of scientific inquiry are 

negated creating the belief in students that there is only one procedure for conducting 

scientific research. Lastly, the idea of a special method is also detrimental because it 

discounts the theory ladenness of observations, factual relativism, and dependency on 

paradigmatic beliefs. Since there was no understanding by the subjects of the 
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inductive/deductive elements of scientific inquiry, there could be no effective classroom 

instruction on the reasons for the probabilistic nature of scientific knowledge. 

To ascertain subjects' conceptions of natural reality, they were asked about the 

relationship of scientific knowledge structures (facts, theories, and laws) to reality. The 

subjects tended toward a realist position that advocates a direct ontological relationship 

between scientific knowledge and reality. However, it was encouraging that they also 

portrayed a pluralistic realist view by their responses about the changeable nature of 

scientific knowledge. It was in discussing natural reality in relation to the knowledge 

structures that the subjects again revealed their positivist viewpoint by using the words 

"true" and "proven." Scientific facts were seen as "true", whereas theories were 

"unproven" and laws were "proven." The use of such "terms of absoluteness" by the 

teachers has consequential implications for students. Teachers that use such terminology in 

portraying scientific knowledge are giving students the false impression that there are tests 

of absolute validity. Instead of representing scientific knowledge as fallible, human 

constructions, such positivist language used by teachers characterizes knowledge as 

absolute with a proven, existential status. This view portrays scientific knowledge as 

representing "the way it really is". Such a dogmatic portrayal discounts any awareness of 

the tentativeness of knowledge. Thus, students might be confused when new information 

contradicts traditional scientific principles. A complacency about scientific knowledge 

might result in students which would discourage confidence to question statements in 

science or critically analyze scientific decisions. 

Moreover, subjects viewed hypotheses as an intermediate step to theory formation 

which finally results in the formation of scientific laws. The science teachers were not 

cognizant of the difference between a law and theory. Theories explain whereas laws 

describe relationships. Theories do not become laws. The significance of this lack of 
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understanding of laws and theories is that the misconception about a maturational 

relationship between laws and theories will be transmitted to students. 

By asking subjects about the uniqueness of scientific knowledge, insights were 

obtained into subjects' views of knowing scientifically. It was interesting that most 

subjects did not recognize other ways of knowing, and thus had difficulty thinking of 

alternative kinds of knowledge. The implication of not being cognizant of other ways of 

knowing relates to teachers advocating wrongfully the application of scientific criteria to all 

types of knowledge. There are questions science cannot answer. Students need to 

recognize that there are many ways of knowing, each based on its own goals, methods of 

accumulating evidence, ways of decision making and sets of assumptions. It is in the 

recognition of the different and plural ways of knowing that scientific knowledge can be 

viewed with humility. 

In addition, subjects did view the experimental, predictive, and replicative nature of 

scientific knowledge as attributes of uniqueness. However, they tended to contribute those 

attributes to the objectivity of science through the use of "the scientific method". They 

viewed other types of knowledge as being based on subjective factors such as faith and 

emotions. Again, the positivist perspective of the subjects was revealed through their 

conceptions of scientific knowledge as being proven and truthful as compared to other 

types of knowledge. By integrating the human influences on the production of scientific 

knowledge, teachers could illustrate to students the subjective nature of science. 

In discussing the influences of subjects' conceptions of the nature of scientific 

knowledge on their teaching methodologies, an attempt was made to ascertain the origin of 

their science world views. The most often mentioned factor that influenced subjects 

conceptions was their experiences in college course work. According to the 

Biographical/Professional Background Questionnaire (see Appendix A) completed by the 
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subjects, the average number of undergraduate science courses taken was seven (number of 

courses ranged from five to nine) and the average number of graduate science courses taken 

was eight (four of the subjects took no graduate science courses). Viewing the seemingly 

adequate number of science courses taken by the subjects in college and their deficiencies in 

conceptions, the implication is that these courses are not addressing the elements of the 

nature of scientific knowledge. In addition, none of the subjects indicated on their 

questionnaires that they had taken any philosophy or history of science courses. Thus, 

there is the need for the integration of ideas about the nature of scientific knowledge in the 

preservice and inservice training of teachers. Presently, the science courses taken by 

science education majors are very content driven. In order to improve teachers' 

conceptions about the nature of scientific knowledge, courses need to be designed that 

integrate the eight dimensions of the model elaborated in this dissertation with pedagogy. 

Therefore, preservice/inservice teachers would not only leam about the humanistic, 

sociological, historical, and experimental elements of scientific knowledge but also 

investigate instructional methodologies to incorporate them in the classroom setting. 

Moreover, the next significant finding is the influence of actual work in a laboratory on 

conceptions of scientific knowledge. The one teacher who worked in a national laboratory 

possessed many insights that the other teachers did not. Thus, working in a laboratory 

setting for a period of time for preservice/inservice teachers would provide valuable 

insights into the nature of scientific knowledge. 

The one instructional methodology to improve the teaching of the nature of scientific 

knowledge most often mentioned by the subjects was an increase in hands-on/laboratory 

activities. They did realize that teaching just content was not the best method of teaching 

the nature of scientific knowledge. Teaching the processes of science through hands-

on/experimental activities would help promote a better understanding of the dimensions of 
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scientific knowledge. However, teachers need to distinguish between experimental 

activities in schools which are designed for pedagogical purposes and authentic scientific 

research. In addition, there was no indication by subjects of the incorporation of the 

humanistic, historical, or social aspects of the nature of scientific knowledge into their 

instructional methodologies. Thus, these areas of the nature of scientific knowledge need 

to be explored by teachers. 

Moreover, the subjects listed many barriers to the improvement of science education 

including scheduling, class size, parental expectations, resources, textbooks, testing, and 

state curriculum requirements. Planning and instructional time limitations seem to be real 

problems for the subjects who sincerely wanted to integrate more hands-on/laboratory 

student activities. It takes time to plan and implement hands-on activities and due to the 

lack of time, teachers rely on the textbook. In order to institute teaching strategies and a 

new curriculum that incorporates the dimensions of the nature of scientific knowledge as 

outlined in this dissertation, these conceived barriers must be addressed. 

Thus, these middle school science teachers were poorly prepared to present an 

adequate view of the nature of scientific knowledge to students. The deficiencies in the 

teachers' conceptions of the nature of scientific knowledge have many implications for 

students' understanding and current instructional strategies. The findings of this study 

indicate the need for changes in the preservice/inservice training of teachers in order to 

improve their conceptions of the nature of scientific knowledge. 

Recommendations 

Based on the findings of this study into middle school science teachers' conceptions 

of the nature of scientific knowledge and the implications of those findings as described 

above, recommendations for the improvement of preservice as well as inservice teachers' 



155 

conceptions are proposed. In addition, curricular concerns are addressed in the 

recommendations. 

The goals of the recommendations for the improvement of teachers' conceptions of 

the nature of scientific knowledge are identified below. The preserviceAnservice middle 

school science teacher should: 

1. View scientists in a realistic manner understanding their full range of behaviors. 

2. Understand the effects of a paradigmatic view of nature and the functions of 
scientific communities in the arbitration of the acceptability of scientific 
knowledge. 

3. Demarcate the social roles of science and technology. 

4. Convey the revolutionary perspective of the history of science accounting for the 
conflict of paradigms and the tentativeness of knowledge using historical 
examples. 

5. Be aware of the basic assumptions of science. 

6. Recognize the theory dependency of observation. 

7. Be cognizant of the many methodologies used in science discounting the concept 
of "the scientific method." 

8. Portray scientific knowledge not in absolute terms but as tentative and fallible. 

9. Use language that is appropriate in conveying an accurate view of the nature of 
scientific knowledge. 

10. Comprehend the functions of the knowledge structures of science and their 
relationship to natural reality. 

11. Understand that science is only one way of knowing. 

12. Integrate the basic dimensions of the nature of scientific knowledge into teaching 
methodologies and cuniculum materials. 

In order to obtain the stated goals, the following recommendations are proposed. 

These recommendations refer to middle school preserviceAnservice science teachers. In 

these recommendations, the term "academic work" refers to college courses for preservice 
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teachers or inservice teachers who return to an academic institution whereas "teacher 

training" refers to training sessions conducted for inservice teachers. In addition to science 

content courses, the preservice/inservice science teacher should participate in: 

1. Academic work/teacher training in the history and philosophy of science. This 
experience should include reading pertinent literature such as the works of Kuhn, 
Popper, Lakatos, Feyerabend, and Chalmers as well as the biographies of 
scientists. In addition, the philosophical and historical perspectives of scientific 
discoveries should be examined through the use of case studies as well as the 
review of scientists' original work. It is essential that the content of these courses 
be tailored to the needs of science educators. 

2. Academic work/teacher training in the sociology of science. This experience 
should include reading the works of Kuhn, Latour and Woolgar, and Chalmers. 
The content of this course must be tailored to the needs of the science educator. 

3. Academic work/teacher training that integrates with pedagogy the dimensions of 
the nature of scientific knowledge as outlined in this dissertation. Particular 
instructional methodologies should be investigated as well as the implications of 
teacher behaviors and language on students' understanding of the nature of 
scientific knowledge. 

4. Academic work/teacher training in the development of curriculum materials that 
accurately portray the dimensions of the nature of scientific knowledge. 

5. Academic work/teacher training in the examination of existing science curriculum 
materials for their portrayal of the nature of scientific knowledge and the 
modification of these materials to integrate the dimensions of the nature of 
scientific knowledge as outlined in this dissertation. 

6. A full-time internship with research scientists for at least eight weeks. This 
internship would involve intensive interaction with research scientists in all 
phases of experimentation and analysis of data. 

The implementation of these recommendations will enhance middle school science 

teachers' conceptions of the nature of scientific knowledge. Previous studies (Billeh & 

Hasan, 1975; Carey & Stauss, 1968,1970; Lavach, 1969) of programs to enhance 

teachers' views that incorporated some of the recommendations did improve teachers' 

views of the nature of scientific knowledge. It is realized that the conceived barriers 

outlined by the subjects to the improvement of science education such as state curriculum 
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requirements and end-of-course testing will also need to be addressed to assist in teachers' 

delivery of their enhanced and more sophisticated views of the nature of scientific 

knowledge to students . However, it is believed that much improvement of students' 

conceptions of the nature of scientific knowledge through improved teacher conceptions 

can be accomplished in the current institutional framework of schools. 

Recommendations for Further Studies 

The science teacher is pivotal to the improvement of students' conceptions of the 

nature of scientific knowledge. Therefore, it is imperative that further studies be done into 

the conceived views of science teachers. It would be informative for the format of this 

study to be replicated with other samples of middle school science teachers to compare the 

results. In addition, the scope of this study did not allow an in-depth probing of subjects' 

views on each dimension of the model of the nature of scientific knowledge. Therefore, it 

is recommended that studies be done on each model dimension individually to ascertain 

teachers' conceptions of that particular area of scientific knowledge. Moreover, it is 

recommended that studies need to be completed on the extent present curricular materials 

represent the nature of scientific knowledge as depicted in the study's model. Finally, 

studies should be conducted into the degree that teachers' language and teaching 

methodologies reflect the study's model of the nature of scientific knowledge. Further 

studies into teachers' conceptions are necessary to ascertain the adequacy of their views and 

to plan specific strategies to improve their conceptions of scientific knowledge. 

Conclusion 

This research study has investigated the conceptions of the nature of scientific 

knowledge of six middle school science teachers. The findings of this study support the 

results of previous studies by suggesting that science teachers possess a less than adequate 

view of the nature of scientific knowledge. Teachers are the key to the improvement of 
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students' views of the nature of scientific knowledge as well as the integration of these 

concepts into the curriculum. However, teachers cannot be expected to teach adequately 

concepts they do not understand or of which they are not cognizant. Therefore, it is 

important that teacher training programs examine these findings and institute the 

recommended strategies to increase the cognition of their science education graduates about 

the dynamic nature of scientific knowledge. In addition, inservice science teachers need to 

be trained by school districts in all areas of comprehension of the nature of scientific 

knowledge. It is in the understanding of the many dimensions of scientific knowledge as 

outlined in this study that teachers can begin to enhance students' understanding of this 

very important dimension of scientific literacy. 

In conclusion, there exists a crisis in science education. As practitioners of the 

discipline, science teachers possess a limited view of the nature of scientific knowledge 

which translates into restricted and inaccurate student conceptions. The human, 

sociological, historical and experimental aspects of scientific knowledge have been negated 

by the objectification and reification of scientific knowledge by teachers in the schooling of 

science. Students are alienated by present methodologies that separate them from any 

personal meaning with scientific knowledge because it is experienced as external to them. 

Students need to understand that science is a dynamic interaction between nature and 

humankind in which humans will never know "for sure." More than any other time in 

human history, a recognition of the fallibility and tentativeness of scientific knowledge is 

necessary to influence the future of humankind. Science educators have a professional 

obligation to present to students as authentic view as possible of the nature of the scientific 

knowledge. This dissertation is important because it has delineated those deficiencies in the 

conceptions of science teachers as well as created an interpretive model of the nature of 

scientific knowledge. A transformation of teacher training needs to occur in order to 
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enhance teachers' views of the nature of scientific knowledge. A radically different school 

science could result enabling students to view science as problematic resulting in the 

confidence to examine what it means to know scientifically. 
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APPENDIX A 

BIOGRAPHICAL/PROFESSIONAL BACKGROUND QUESTIONNAIRE 

Please complete the following questionnaire and return in the pre-stamped addressed 
envelope. Please use the reverse side to complete any answers. Thaiik you for your 
cooperation. 

NAME 

ADDRESS 
Street 

City State Zip 

HOME PHONE NO. BIRTHYEAR 

EMPLOYER 

CERTIFICATION AREA(S) LEVEL 

SCHOOL NAME 

SCHOOLPHONE NO. 

WHAT GRADE LEVEL ARE YOU PRESENTLY TEACHING? 

HOW MANY STUDENTS DO YOU TEACH DAILY? 

WHAT GRADE LEVEL(S) HAVE YOU PREVIOUSLY TAUGHT? 

HOW LONG HAVE YOU TAUGHT AT YOUR PRESENT SCHOOL? 

TOTAL NUMBER OF YEARS OF TEACHING EXPERIENCE 

DO YOU HAVE TENURE? 

HONORS, AWARDS, AND PUBLICATIONS 

PROFESSIONAL MEMBERSHIPS 

RECENT INSERVICE ACTIVITIES 
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EDUCATIONAL BACKGROUND 
UNDERGRADUATE: 

School Year Graduated Degree Maior 

GRADUATE: 
School Year Graduated Degree Major 

POSTGRADUATE: 
School Type of Coursework 

TYPE OF COLLEGE COURSEWORK 
UNDERGRADUATE: 

Number of science courses completed? 
Number of science education courses completed? 

GRADUATE: 
Number of science courses completed? 
Number of science education courses completed? 

DID YOU COMPLETE A COURSE IN THE HISTORY OF SCIENCE IN: 
UNDERGRADUATE SCHOOL? GRADUATE SCHOOL? 

DID YOU COMPLETE A COURSE IN THE PHILOSOPHY OF SCIENCE IN: 
UNDERGRADUATE SCHOOL? GRADUATE SCHOOL? 

HAVE YOU PARTICIPATED IN ANY INSERVICE ACnvmES THAT INVOLVED 
DISCUSSIONS OF THE HISTORY AND/OR PHILOSOPHY OF SCIENCE? IF 
SO, WHAT TOPICS WERE DISCUSSED? 

HAVE YOU PARTICIPATED IN ANY INSERVICE ACTIVITIES THAT INVOLVED 
DISCUSSIONS OF THE NATURE OF SCIENTIFIC KNOWLEDGE? 
IF SO, WHAT TOPICS WERE DISCUSSED? 

WHY DID YOU BECOME A SCIENCE TEACHER? 
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WHY DOES SCIENCE INTEREST YOU? 

DO YOU HAVE ANY RELATIVES WHO ARE INVOLVED IN SCIENCE EDUCATION 
OR SCIENCE AS A PROFESSION? 

DO YOU SEE YOURSELF AS A SCIENTIST? WHY OR WHY NOT? 
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APPENDIX B 

INTERVIEW THEME AND QUESTION GUIDELINE 

The unstructured interview themes and questions listed below served as a guideline to 

ensure that all themes and questions were addressed during the interview sessions. The list 

indicates types of questions that were asked rather than the actual questions. The questions 

were rephrased and reordered during the actual interviewing process. 

Introduction 

1. Why did you become a science teacher? 

2. Describe your work situation -grade, class schedule, number of students. 

The Importance of Science Education 

1. How would describe the purposes of science education? 

2. What is meant by scientific literacy? What are its elements? 

3. Do you believe the purposes of science education are being achieved? Why or 

why not? 

4. What are the purposes of middle school science education? 

The Humanistic Nature of Scientific Knowledge 

1. Define a scientist. 

2. What are the characteristics of scientists? What motivates a scientist? 

3. Are scientists objective? 

4. What consumes most of a scientists time? 
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The Social Dimension of the Nature of Scientific Knowledge 

1. How do scientists interact to determine scientific knowledge? How do these 

interactions affect scientific knowledge? 

2. Describe a scientific community. Are there levels of hieraichy within a scientific 

community? 

3. How does communication between scientists affect knowledge? 

4. How does scientific knowledge become acceptable? 

5. What is science? What is technology? Are they the same? 

6. How does science interact with other social institutions? 

7. Does scientific knowledge have a morality? 

The Historical Nature of Scientific Knowledge 

1. How has scientific knowledge developed throughout history? 

2. Why does scientific knowledge change? How does it change? 

3. Describe scientific progress. 

Basic Beliefs About the Natural World 

1. What are your beliefs about nature? 

2. What are scientists' beliefs about the natural world? 

Observation-Based 

1. Explain the act of observing. 

2. What is the role of observation in science? 

3. What factors affect what one observes? 

4. What is the role of instrumentation in scientific observation? 
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A Result of Inquiry 

1. Describe scientific inquiry. What are its dimensions? 

2. Is there a particular type of methodology in scientific inquiry? 

3. Does scientific knowledge have a special kind of reliability ? 

4. Explain deductive or inductive reasoning. What are their roles in scientific 

inquiry? 

Knowledge Structures 

1. Explain your understanding of scientific facts, theories and laws. What is the 

function of each? 

2. What is a scientific hypothesis? 

3 What is the relationship of these knowledge structures and reality? 

4. What are scientific models? Do they reflect reality? 

Uniqueness of Scientific Knowledge 

1. Is science the only way of knowing? 

2. How is science different from other ways of knowing? 

3. Is science the best way of knowing? 

Instructional Methodologies 

1. How do you teach science? 

2. Describe your impression of the important of the classroom teacher. 

3. What influenced your views of the nature of scientific knowledge? 

4. Do you think your views of the nature of scientific knowledge affect the way you 

teach? If so, in what ways? 
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5. Do you think textbooks influence conceptions of the nature of scientific 

knowledge? 

6. What role does laboratory activities play in understanding the nature of scientific 

knowledge? What percentage of your class time do you do laboratory activities? 

7. If you could improve the way you teach science and the nature of scientific 
j 

knowledge, how would you do it? 

8. What are the barriers, if any, that prevent you from teaching science and the 

nature of scientific knowledge as you would like? 


