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Abstract: 
 
Postural control is commonly assessed by quantifying center of pressure (CoP) variability during 
quiet stance. CoP data is traditionally filtered prior to analysis. However, some researchers 
suggest filtering may lead to undesirable consequences. Further, sampling frequency may also 
affect CoP analysis, as filtering CoP signals of different sampling frequencies may influence 
variability metrics. This study examined the influence of sampling frequency and filtering on 
metrics that index the magnitude and structure of variability in CoP displacement and velocity. 
Healthy adults (N = 8, 27.4 ± 2.6 years) balanced on their right foot for 60 s on a force plate. CoP 
data recorded at 100 Hz was then downsampled and/or filtered (2nd order dual-pass 10 Hz low-
pass Butterworth) to create six different CoP time series for each participant: (1) original, (2) 
filtered, (3) downsampled to 50 Hz, (4) downsampled to 25 Hz, (5) downsampled to 50 Hz and 
filtered, and (6) down-sampled to 25 Hz and filtered. Data were then analyzed using four 
common variability metrics (standard deviation [SD], root mean square [RMS], detrended 
fluctuation analysis α [DFA α], and sample entropy [SampEn]). Data processing techniques did 
not influence the magnitude of variability (SD and RMS), but did influence the structure of 
variability (DFA α and SampEn) in CoP displacement. All metrics were influenced by data 
processing techniques in CoP velocity. Thus, when interpreting changes in CoP variability, one 
must be careful to identify how much change is driven by the neuromotor system and how much 
is a function of data processing technique. 
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Article: 
 
1. Introduction 
 
Upright stance is inherently unstable because two-thirds of the body's mass is located in the 
head/arms/trunk, creating an inverted pendulum effect [1]. Insight into how upright stance is 
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maintained has been garnered from computerized posturography, which can be used to quantify 
how the center of pressure (CoP) is moving during stance. Typically, a less variable CoP is 
considered a more stable system; a definition rooted in classic mechanical systems. 
 
Research over the past three decades on human systems (e.g., postural control, gait, heart rate) 
suggests that increased variability may not be synonymous with dysfunctional (i.e., less stable) 
systems [2]. That is, some variability may actually serve a functional purpose [3]. Thus, 
researchers have begun to employ metrics that quantify both the magnitude (e.g., standard 
deviation [SD], root mean square [RMS]) and the structure (e.g., detrended fluctuation analysis 
alpha [DFA α], sample entropy [SampEn]) of a CoP time series to more fully characterize 
system variability [2], [4], [5]. 
 
While data acquisition guidelines have been published for CoP data collection [6], there is much 
variance in how data are processed after acquisition [7]. Prior to a variability analysis, traditional 
signal processing guidelines for human movement data, including postural control data, 
recommend that a signal is filtered to remove any artifacts unassociated with neuromotor 
control [8]. In biomechanics research, digital filters are often employed, which requires the 
selection of an order parameter (i.e., the desired smoothness of the data) and frequency threshold 
(i.e., point at which data above a certain frequency are removed). However, filtering the data 
may add a deterministic component to the signal, altering metrics that index the structure of 
variability within the signal [3], [9]. It is also possible that filtering the signal may remove parts 
of the signal (both deterministic and random) that are actually rooted in the postural control 
process [3], [10]. Thus, digital filtering of the data may influence estimates of dependent 
measures for the structure of variability. Accordingly, some researchers use non-filtered postural 
control signals [5], [9], [10], while others continue to filter the signal. Furthermore, there are a 
variety of sampling frequencies used for data collection, some of which have been shown to 
influence the structure of variability in postural control signals [4], and it is unclear how filtering 
signals at different sampling frequencies may influence metrics of postural control variability. 
Lastly, while variability in CoP displacement is a commonly measured postural control variable, 
it has been suggested that CoP velocity is the variable attended to by the neuromotor system to 
maintain upright stance [11], [12]. This study examined whether different sampling frequencies 
and/or filtering affect the magnitude and structure of variability in CoP displacement and 
velocity signals. 
 
2. Methods 
 
CoP data from healthy adults (N = 8; 27.4 ± 2.6 years; 1.73 ± 0.08 m; 71.9 ± 9.6 kg) who 
participated in a recently published study [5] were reanalyzed for this paper. Participants stood 
on their dominant limb for 60 s with eyes open while their CoP displacement was collected at 
100 Hz with a force platform (AMTI, Watertown, MA). Only anterior–posterior (AP) data were 
analyzed for this paper. Filtering (dual pass 2nd order 10 Hz low-pass Butterworth) and 
downsampling techniques were then applied to create six different CoP time series for each 
participant: (1) original, (2) filtered, (3) downsampled to 50 Hz, (4) downsampled to 25 Hz, (5) 
downsampled to 50 Hz and filtered, and (6) downsampled to 25 Hz and filtered. Time series 
were then analyzed using four common variability metrics (SD, RMS, DFA α, and SampEn 
[m = 2, r = .15]). The methods for DFA and SampEn have been previously 



published [13], [14] separate 3 × 2 (sampling frequency [100, 50 or 25 Hz] × filtering [not 
filtered or filtered]) repeated measures analyses of variance (ANOVAs) were used for each 
variability metric to examine the main effect of sampling frequency or filtering, as well as their 
interaction. Statistical significance was set at p ≤ .05. Bonferroni corrected paired t-test was used 
as post hoc tests when appropriate. 
 
3. Results 
 
Two seconds of each 60 s time series are presented in Fig. 1 (CoP displacement) and Fig. 2 (CoP 
velocity) to show the qualitatively different characteristics in each time series. The values for 
3 × 2 repeated measures AVOVA and the post hoc findings are presented in Table 1. The main 
effects and interactions can be visually observed in Fig. 3. 
 

 
Figure 1. A two second sample of the 60 s time series for center of pressure (CoP) displacement 
for the 100 Hz (A), 50 Hz (B) and 25 Hz (C) time series. The unfiltered data are shown with a 
black line and the filtered data are show with a gray line. 



 

 
Figure 2. A two second sample of the 60 s time series for center of pressure (CoP) velocity for 
the 100 Hz (A), 50 Hz (B) and 25 Hz (C) time series. The unfiltered data are shown with a black 
line and the filtered data are show with a gray line. 
 
4. Discussion 
 
Three main themes were observed across the data processing techniques: (1) CoP velocity 
metrics are more affected than CoP displacement metrics, (2) structure of variability metrics are 
more sensitive than magnitude of variability metrics, and (3) filtering the data produced the 
largest differences in the structure of variability metrics of the CoP velocity time series. Specific 
to the last point, downsampling had a rather linear effect on the structure of variability metrics, 
while combing downsampling with filtering led to a curvilinear effect. The findings support an 
earlier suggestion that filtering CoP data alters variability characteristics of the time series [9]. 
Given that changes in the variability metrics were observed in CoP velocity, and that CoP 
velocity is likely to serve as a control variable to maintain upright stance [11], [12], these 



findings are consistent with a previous assertion that certain data processing techniques may 
remove components of the CoP time series related to the postural control process [10]. 
 
Table 1. Statistical values for each metric and factor. Post hoc results are listed below the table. 
Metric Factor df F p-Value Partial eta squared 
SD of CoP displacementa Sampling frequency 2,14 2.65 .11 .28 
 Filtering 1,7 4.61 .07 .40 
 Sampling frequency × filtering 2,14 0.87 .44 .11  
RMS of CoP displacementb Sampling frequency 2,14 8.15 <.01 .54 
 Filtering 1,7 8.52 .02 .55 
 Sampling frequency × filtering 2,14 7.74 <.01 .53  
DFA α of CoP displacementc Sampling frequency 2,14 135.09 <.01 .95 
 Filtering 1,7 139.24 <.01 .95 
 Sampling frequency × filtering 2,14 114.12 <.01 .94  
SampEn of CoP displacementd Sampling frequency 2,14 356.39 <.01 .98 
 Filtering 1,7 35.12 <.01 .83 
 Sampling frequency × filtering 2,14 46.37 <.01 .87  
SD of CoP velocitye Sampling frequency 2,14 94.23 <.01 .93 
 Filtering 1,7 77.09 <.01 .92 
 Sampling frequency × filtering 2,14 100.00 <.01 .94  
RMS of CoP velocityf Sampling frequency 2,14 94.36 <.01 .93 
 Filtering 1,7 77.10 <.01 .92 
 Sampling frequency × filtering 2,14 99.89 <.01 .94  
DFA α of CoP velocityg Sampling frequency 2,14 57.36 <.01 .89 
 Filtering 1,7 384.90 <.01 .98 
 Sampling frequency × filtering 2,14 276.87 <.01 .98  
SampEn of CoP velocityh Sampling frequency 2,14 49.00 <.01 .88 
 Filtering 1,7 2007.02 <.01 .99 
 Sampling frequency × filtering 2,14 71.64 <.01 .91 
a No significant differences. 
b Although a sampling frequency × filtering interaction is reported, no differences were observed between conditions 
after accounting for the Bonferroni correction. 
c All conditions significantly different from each other except downsampled (50 Hz) vs. downsampled (25 Hz) and 
filtered. 
d All conditions significantly different from each other except original (100 Hz) vs. filtered (100 Hz). 
e All conditions significantly different from each other except filtered (100 Hz) vs. downsampled (25 Hz) and 
downsampled (25 Hz) vs. downsampled (50 Hz) and filtered. 
f All conditions significantly different from each other except filtered (100 Hz) vs. downsampled (25 Hz) and 
downsampled (25 Hz) vs. downsampled (50 Hz) and filtered. 
g All condition significantly different from each other except original (100 Hz) vs. downsampled (25 Hz) and filtered 
and filtered (100 Hz) vs. downsampled (25 Hz) and filtered. 
h All conditions significantly different from each other except original (100 Hz) vs. downsampled (50 Hz) and 
filtered (100 Hz) vs. downsampled (25 Hz) and filtered. 



 
Figure 3. Mean values for SD (A and B), RMS (C and D), DFA α (E and F), and SampEn (G 
and H) for CoP displacement and CoP velocity. The error bars are standard error. 



 
Previous work has suggested that 100 Hz is suitable to appropriately characterize CoP 
variability [5], [6], [7], [15]. Our data show that lower sampling frequencies (50 Hz and 25 Hz) 
in CoP displacement and velocity led to lower DFA α and higher SampEn values, consistent with 
previous work [4]. The combination of these directionalities is typically interpreted as a move 
toward a less-structured signal. A DFA α value of 0.5 reflects a randomly organized time series. 
Healthy adults exhibit an underlying structure in their CoP variability (DFA α > 0.5), but 
typically shift toward a more random, less-structured pattern after natural aging or disease [2]. 
Thus, our data show that a healthy adult may present with a normal variability pattern 
(DFA α = 0.67) if their CoP velocity was collected at 100 Hz, but that same person may be 
classified as having an unstructured, random pattern (DFA α = 0.50) if their CoP velocity was 
collected at 25 Hz (Fig. 3). This observation is corroborated by increases in SampEn as a 
function of lower sampling frequencies in CoP velocity. It should be noted that many studies 
look for relative directional changes between groups or conditions to identify neuromotor 
functional ability (i.e., older adults typically present with a lower DFA α relative to younger 
adults). However, as more data from studies using nonlinear techniques become available, there 
will be an opportunity to develop normative data along with cutoff scores to indicate when a 
person is at risk of injury due to neuromotor dysfunction. Thus, it is important to not only have a 
strong understanding of how data processing may influence nonlinear analyses within each 
study, but also to report the specific data processing techniques used so that those developing 
normative data in the future can be better informed. Lastly, we note that similar DFA α values 
are observed in CoP velocity when comparing the original data collected at 100 Hz (0.67 ± 0.07) 
to the downsampled (25 Hz) and filtered data (0.67 ± 0.06). Thus, while downsampling reduces 
the underlying structure in the time series, filtering artificially adds structure back into the time 
series, leading to a DFA α value that is similar to the original data, even though the time series 
are qualitatively different (Fig. 2A and F). In summary, these results suggest care must be taken 
when attempting to make interpretations about the postural neuromotor system from 
downsampled and/or filtered CoP data. 
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