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There are multiple empirical issues and complications associated with vertical
scaling methods that have not been sufficiently explicated even though there has been
scanty research conducted within the general framework of the nonequivalent group with
anchor test (NEAT) design. Germane to any vertical scale study is the issue of optimal
characteristics of anchor tests whenever the preferred data collection design is NEAT.
The main focal point of this research study is to explore some of practical problems as
well as complexities that frequently emerge in the context of vertical scaling methods
under NEAT design. Specifically, the study investigated various study conditions and
comparison of their performance with different equating methods.

This study used both real and simulated data. The real data were from a large-
scale testing program for professionals. The simulated study was carried out using 162
conditions, where the major factors included: (1) total test length; (2) item a-
discrimination parameter; (3) between-grade mean ability difference; (4) distribution of
ability difference; and (5) anchor test mean difficulty difference. The results of the
simulation indicate that small between-grade mean ability difficult when considered
together with a short test length, a moderate item a-discrimination parameter, below

average distribution of ability difference, and below average anchor test mean ability

difference produce most reasonable results.



In addition, the results revealed that equating error somewhat depended on
satisfaction of the underlying equating assumptions that are related to a specific equating
method under each study condition. For instance, Braun/Holland, Frequency Estimation
Equating, keNEATPSE linear, and keNEATPSE equipercentile methods performed
almost similarly under all study conditions; however, a closer examination of the above
equating methods corroborate that when the equating relationship was linear,
keNEATPSE linear outperformed all linear-related equating methods considered in this
study. Similarly, when the equating relationship was non-linear, kkNEATPSE
equipercentile was more accurate in terms of total error, because it produced the smallest
RMSE values than all non-linear equating methods. Other results are summarized in

greater depth in Chapter V.



OPTIMAL CHARACTERISTICS OF ANCHOR TESTS IN VERTICAL SCALING:
A SPECIAL CASE OF NON EQUIVALENT GROUPS WITH ANCHOR

TEST (NEAT) DESIGN IN VERTICAL SCALING

by

Gilbert Njiru Ngerano

A Dissertation Submitted to
the Faculty of The Graduate School at
The University of North Carolina at Greensboro
in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Greensboro
2019

Approved by

Committee Chair



© 2019 Gilbert Njiru Ngerano



To my beloved wife Maria, my sons Dennis Mwaniki and Collins Kariuki, my daughter
Joy-Chiara Wanjiru, my mom Jane Mururi, and my late grandparents Zechariah Njiru
(aka Carani), Sarah Kiura (aka Ciarunji), and Betha Muthoni (aka Muringo)



APPROVAL PAGE

This dissertation, written by Gilbert Njiru Ngerano, has been approved by the
following committee of the Faculty of The Graduate School at The University of North

Carolina at Greensboro.

Committee Chair

Committee Members

Date of Acceptance by Committee

Date of Final Oral Examination



ACKNOWLEDGMENTS

The process of writing this dissertation was a special experience for me. The
experience that made me develop feelings of utter abandonment and loneliness, but
strangely enough, | came to understand and accept the fact that | was surrounded by an
extraordinary team of people who cared, loved, and supported me along the way, both in
small and big ways. This unique team comprised my dissertation committee members,
colleagues, friends, and family members.

First of all, I owe a huge debt of gratitude to the former chair and current chair-
cum-director of my committee: Dr. Terry Ackerman and Dr. Richard (Ric) Luecht. Until
Dr. Ackerman left the University of North Carolina at Greensboro, he was the chair of
my dissertation committee and Dr. Luecht as the director. Dr. Ackerman’s support and
open-door policy during his time in UNCG was valuable to me. I really appreciate that he
kept his promise to serve in the committee as a member even when he was not teaching at
UNCG. Dr. Luecht took over the mantle as a chair from Dr. Ackerman and combined the
role with that of a director. | am forever grateful for Dr. Luecht’s efforts, advice, and
encouragement from the time | conceived the dissertation topic. | am thankful too for his
willingness to assume the dual role of the chair and director for my dissertation, a task he
painstakingly undertook. His mentorship, immense experience, use of modern
technology—special thanks for encouraging me to use Webex platform during
dissertation defense—and penchant for high quality work and graphics shaped the

direction this dissertation took. You threw down the gauntlet! I learned a lot from you in

iv



class and outside class especially during the whole process of conducting my research
study; it would be remiss of me not to express my sincere gratitude for your outstanding
mentorship.

| am also grateful to all other dissertation committee members for their guidance,
time, and encouragement. Dr. Alina von Davier made sure | got real data and LOGLIN
software. Her comments and insight helped me not only clarify technical aspect of the
dissertation but also the practical part of it. Dr. Devdass Sunnassee encouraged me to take
more SAS programming skills, provided constructive comments, and feedback, which
were tremendous in the long run; Dr. John Willse gave valuable comments, thoughts, and
facilitated transitioning of my committee chairs. With their collaborative work, | was able
to complete writing and defending this dissertation satisfactorily.

| am also thankful to ERM department administrative assistant, Jewell Pradier, for
providing me with help whenever | needed it. Also, | am grateful to Sandra Hart for
training me on how to use Webex video conferencing equipment, which made my
dissertation defense run smoothly and effectively for committee members who were
remotely connected.

Also, let me sincerely express my gratitude to all my friends and colleagues who
supported and encouraged me in one way or the other throughout the entire process.
Thank you, Dr. Lori McLeod, for organizing lunches meant to give an update on my
progress and numerous emails of encouragement and hope, even when my spirits were at

the lowest ebb. In the same vein, | would like to thank all Educational Research



Methodology graduate students in that department who | interacted with in various
classes and for cheering me up to the finish line.

To my late grandparents—Carani, Sara, and Betha—for raising and providing me
with formal education, even though you did not have Western education. | know you are
smiling in the afterlife to see your first grandson finish writing this dissertation.

Lastly, to my beautiful and lovely wife, Maria, who is the mother of our three
children, for standing by me during the entire period of graduate school. Specifically, her
unconditional love for our family during the defining moment of writing this dissertation
is unmatched. To Dennis, Collins, and Joy-Chiara, you have a bright future; you have no
reason whatsoever not to excel in your school work and future endeavors—all of you
have unlimited potential!

A big THANK YOU to all of you for your support, encouragement, and believe in

me.

Vi



TABLE OF CONTENTS

Page
LIST OF TABLES ...ttt bbb X
LIST OF FIGURES ..ottt Xii
CHAPTER
[. INTRODUCTION ...ooiiiiieieiecest ettt bbb 1
1.1. Nature and Scope of Vertical Scales...........ccccceevvivieiiiiiiie e, 1
1.2. Practical Importance of Vertical Scaling .........cccoceveiiiinininiiicen, 3
1.3 Purpose of the Study and Research QUESLIONS...........cccccvvveveeiieireenenn, 6
1.3, 1 PUIPOSE. ...ttt 6
1.3.2 Research QUESHIONS.......c.cccveiivieiie ettt 8
1.4 Significance 0f the StUAY ........cccceiiiiiiiiie s 9
1.5 Description of Notations and Abbreviations............cccccoevevviieivennenne. 10
1.6 Operationalization Of TEIMS ........cccooiiiiiiieieee e, 13
[I. LITERATURE REVIEW ....ccoo ittt 15
2.1 OVEIVIBW ...ttt ettt ettt te e steestesneenne e e nneenreeneeareenneens 15
2.2 ANCNOE TS ittt ettt 17
2.3 Is There a Best Vertical SCale?.........cccocviiviiieieiieseee e, 22
2.4 Designs for Vertical Scaling: Types of Data Collection Designs........ 23
2.4.1 CommOon 1M DESIGN ....ocveiiiriiiiieiiiieee e 24
2.4.2 Equivalent Group Design/Random Group Design ............... 25
2.4.3 SCaling TSt DESIONS......ccveiviriiriiriieiieiee e 26
2.5 Equating Methods/ProCedures ...........coeivieeieeiieiieieess e, 27
2.5.1 Equivalent Groups Design/Random Groups Design

(RG) et 29
2.5.2 NEAT Design: Missing Data by Design.........cc.ccccvvvvvieienn. 33

2.6 General Observation on Equating Methods under NEAT
DBSIGN ...t 49
2.7 Perspectives 0N SCAlING.......c.cooveiieiiieiie e 52
2.8 Current Research on Vertical SCaling.........ccoocevviiieninininiiieeen, 53
2.9 SUMMAIY ..ottt e et e b e e e ssa e e e nsbeeeaneeanes 57

vii



[1l. DATA AND METHODOLOGY .....ccooiiiiiiiiiiiiiiniii s 59

3.1 S0UICES OF DALA......uccieiiieiieieiesie et 60
3.2 Importance of Stimulation STUIES...........ccooeveriiiiineeee 61
3.3 Design of Vertical Scale Panels..........cccccovevveve i, 63
3.4 Vertical Equating Design and Description of Study Conditions......... 65
3.5 Summary of Study ConditionS..........ccceeeviiieiierece e, 72
3.6 Data Generation Procedures and OUEPUL..........cccooereneiininieieieiene, 73
3.7 Test Forms and Equating Methods under NEAT and RG/EG
DESIONS ..ttt et 74
3.8 EQUALING STEPS ...vveuvieeiecieeie sttt 75
3.9 Evaluation of Equating Results and ACCUraCy........c.ccoecveveervereeneennnnn. 76
3. L0 REAI DALA......cviveieieiieiieieie e e 78
3.11 Analysis 0f REAI DAta ........cccccerveriiriiiiieieeese e 80
IV, RESULTS .ottt nneena s 82
4.1 OVEIVIBW ... ettt sttt e st st e e neesneeteeneesneeaeaneenneas 82
4.2 Results of Simulated Data: Bias and RMSE............cccocovviiviininiinnnnn 84
4.2.130_0.5_6 Test Study Design .........cceceereerererenenenisieeeeens 85
4.2.230 1.0 6 Test Study Design ........ccccevvevverieieeieeie e 96
4.2.330_1.5 6 Test Study Design .......c.ccevvereerererencnisesieienes 108
4.2.460 0.5 12 Test Study DeSign ......ccceevvevverreieiieieese e 120
4.2.560_1.0_12 Test Study DeSign .........ccevverrerereneninisieienes 131
4.2.6 60 1.5 12 Test Study DeSign ......ccceevveivevveiieiieie e 142
4.2.7120 0.5 24 Test Study DeSign........cccoeverereneniniiieienns 154
4.2.8 120 1.0 24 Test Study Design ........ccceevvevvevieiieieeriecieennn 165
4.2.9120 1.5 24 Test Study DeSign........cceoeverireneniininieiens 176
4.3 Summary of the Nine Test Study DeSignS.........ccccevvevevieereciieiienenn, 188
4.4 Results of the Real Data Analysis..........ccooviiiiiiinenenisseeeee, 192
V. CONCLUSION AND DISCUSSION ....c.coceiiriiiiiieieiesies e 204
5.1 Overview Of the Chapter ..., 204
5.2 Summary of Key Research FINdings .........ccccoevveviiieiecie e 205
5.2.1 Research Question NUumber 1 .........cccooeviviiniiennne e, 205
5.2.2 Research Question NUMDer 2 .........ccccoevveivieiiiiee e, 208
5.2.3 Research Question NUMDer 3 .........cccoovevviieiiereeie e, 211
5.3 Practical Implications of the ReSUItS...........cccceviiiiiiiiiiiic e 212
5.4 LIMITALIONS ..evveiieeie ettt 214
5.5 Suggestions or Recommendations for Future Research Study.......... 215

viii



REFERENCES ..o s 218

APPENDIX A. AVERAGE DESCRIPTIVE STATISTICS FOR ALL
VERTICAL SCALING PANELS BY TEST DESIGN ................. 237

APPENDIX B. STANDARD ERROR OF EQUATING FOR ALL TEST
STUDY DESIGNS ..o 318

APPENDIX C. TEST FORMS AND EQUATING METHODS UNDER NEAT
AND RG/EG DESIGNS ..ot 327



Table 1.1.

Table 2.1.

Table 2.2.

Table 2.3.

Table 2.4.

Table 3.1.

Table 3.2.

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

Table 4.5.

Table 4.6.

Table 4.7.

LIST OF TABLES

Page
Comprehensive Notational Listing and Descriptions: Test Forms,
Equating Methods, and Variables ..o 10
An lllustration of the Non-equivalent Groups with Anchor Test
(NEAT) DESIGN ...ttt sttt sna e naennees 33
NEAT Design: KE and Traditional Equating by Linear and Non-
linear EQUAting ProCEAUIES. .........coeiviiiiiiiiieeeee e 45
Divergent Viewpoints 0N SCAlING .........cccoviiiiininiiieee e, 52
Summary of Contemporary Research on Vertical Scaling............cccccvevennee. 54
A NEAT Design with On-Grade, Off-Grade and Anchor Items
BIOCKS ...ttt e 65
Factors Controlled in the Simulation Study...........ccccocevveiiiiie i, 67
BIAS, SEE, and RMSE Statistics for Test Study Design 30_0.5 6 by
Equating Method Under All CoNditioNnS..........cccccvvieieiencieniniceeeeee 88
BIAS, SEE, and RMSE Statistics for Test Study Design 30_1.0_6 by
Equating Method Under All Conditions...........cccocvevveiiiiciiece e, 99
BIAS, SEE, and RMSE Statistics for Test Study Design 30_1.5 6 by
Equating Method Under All ConditioNns............ccevvieneniienenineeee, 111
BIAS, SEE, and RMSE Statistics for Test Study Design 60_0.5 12
by Equating Method Under All Conditions...........ccccoceeieieeiieiecieenee 123
BIAS, SEE, and RMSE Statistics for Test Study Design 60 1.0 12
by Equating Method Under All Conditions..........ccccceveiiiininieiicnieen, 134
BIAS, SEE, and RMSE Statistics for Test Study Design 60_1.5 12
by Equating Method Under All Conditions............ccccceeviiiiiiiic e, 146
BIAS, SEE, and RMSE Statistics for Test Study Design 120 0.5 24
by Equating Method Under All Conditions..........ccoceviviiinenininieen, 157



Table 4.8.

Table 4.9.

Table 4.10.

Table 4.11.

Table 4.12.

BIAS, SEE, and RMSE Statistics for Test Study Design 120 1.0 24
by Equating Method Under All ConditionsS.........cccovvvienienieicnieeiene 168

BIAS, SEE, and RMSE Statistics for Test Study Design 120_1.5 24
by Equating Method Under All Conditions..........ccccecvvieevvevieiie e 180

Summary Descriptive Statistics for the Observed Score Equating
Using an External ANCNOT ... 193

Reliability of the Scale and Anchor-Test to Total-Test Score
COMTEIALIONS ...t nre s 195

Equated Scores and Standard Error of Equating Under Kernel

Equating for Both Chained Equating and Post-Stratification
Equating for NEAT DeSIgN ......c.cooveiiiiiiieie e 197

Xi



Figure 2.1.

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.

LIST OF FIGURES
Page

Demonstration of a Hypothetical Scenario of the Distribution of
Ability across the Three Grades with Overlapping Portions in a
ProfiCIENCY SCAlE ......ccvvevicieceee e 51

Construction of a Vertical Scaling Panel .............ccccccoveviiiieic e, 63

An lllustrative Diagram Depicting Vertical Scale Panel with
Multiple Linkages and Equating Designs across Grades and
Forms with Grade 5 (Form # 3) as a Base FOrm ..........c.cccceevvevvinennn, 66

Panel No. 1 Showing 8 Forms and Conditions ..........ccccccceeveveevecieeiveenenn, 73
Panel No. 1,620 Showing 8 Forms and Conditions ............cccccevveivecinennenn, 73

Bias for Test Study Design 30_0.5_6 for Small Between-grade
Mean Ability Difference (BGMAD) Conditions under Different
Equating Methods...........ccoveiiiiiiiic e 95

Root Mean Square Error (RMSE) for Test Study Design 30_0.5 6
for Small Between-grade Mean Ability Difference (BGMAD)
Conditions under Different Equating Methods .............cccccoevieieiiieneen, 96

Bias for Test Study Design 30_1.0_6 for Medium Between-grade
Mean Ability Difference (BGMAD) Conditions under Different
Equating Methods. ..........ccoveieeiiiiicce e 107

Root Mean Square Error (RMSE) for Test Study Design 30_1.0 6
for Medium Between-grade Mean Ability Difference (BGMAD)
Conditions under Different Equating Methods ...........c.ccceeevieiveneane. 108

Bias for Test Study Design 30_1.5 6 for Large Between-grade
Mean Ability Difference (BGMAD) Conditions under Different
Equating MethOdS.........c.ooiiiiiiciic e 119

Root Mean Square Error (RMSE) for Test Study Design 30 1.5 6

for Large Between-grade Mean Ability Difference (BGMAD)
Conditions under Different Equating Methods ...........ccccccovevieiieenee, 120

xii



Figure 4.7.

Figure 4.8.

Figure 4.9.

Figure 4.10.

Figure 4.11.

Figure 4.12.

Figure 4.13.

Figure 4.14.

Figure 4.15.

Figure 4.16.

Bias for Test Study Design 60_0.5 12 for Small Between-grade
Mean Ability Difference (BGMAD) Conditions under Different

Equating Methods. ..........ccoveiieiiicceee s

Root Mean Square Error (RMSE) for Test Study Design 60_0.5 12
for Small Between-grade Mean Ability Difference (BGMAD)

Conditions under Different Equating Methods .............ccccccvevieieennne

Bias for Test Study Design 60_1.0 12 for Medium Between-grade
Mean Ability Difference (BGMAD) Conditions under Different

Equating Methods. ..........ccoeiiiiiic e

Root Mean Square Error (RMSE) for Test Study Design 60_1.0 12
for Medium Between-grade Mean Ability Difference (BGMAD)

Conditions under Different Equating Methods ..............ccccceeveiieennnne

Bias for Test Study Design 60_1.5 12 for Large Between-grade
Mean Ability Difference (BGMAD) Conditions under Different

Equating Methods. ...........cceiveiiic e

Root Mean Square Error (RMSE) for Test Study Design 60_1.5 12
for Large Between-grade Mean Ability Difference (BGMAD)

Conditions under Different Equating Methods ..............ccccceevveinennnne

Bias for Test Study Design 120 _0.5_24 for Small Between-grade
Mean Ability Difference (BGMAD) Conditions under Different

Equating Methods. ...........coeiviiiiccece e

Root Mean Square Error (RMSE) for Test Study Design
120_0.5_24 for Small Between-grade Mean Ability Difference

(BGMAD) Conditions under Different Equating Methods...............

Bias for Test Study Design 120 1.0 24 for Medium Between-grade
Mean Ability Difference (BGMAD) Conditions under Different

Equating Methods. ...........coeiiiiiiccececc e

Root Mean Square Error (RMSE) for Test Study Design
120 _1.0_24 for Medium Between-grade Mean Ability
Difference (BGMAD) Conditions under Different Equating

IVEENOOS ..ttt e nennnn

Xiii



Figure 4.17. Bias for Test Study Design 120 _1.5 24 for Large Between-grade
Mean Ability Difference (BGMAD) Conditions under Different
Equating Methods. ..........ccoveiiiiiiieeee e 187

Figure 4.18. Root Mean Square Error (RMSE) for Test Study Design
120 _1.5 24 for Large Between-grade Mean Ability Difference
(BGMAD) Conditions under Different Equating Methods.................. 188

Figure 4.19. Relationship between Equated Scores and the x-score Scale under
Kernel Equating for Both Chained Equating and Post-
Stratification Equating for NEAT DeSign........cccccveveiieveeiieneeneeie s 201

Figure 4.20. Standard Error of Equating across the x-score Scale under Kernel
Equating for Both Chained Equating and Post-Stratification
Equating for NEAT DESIQN .....cccvciiiieiiiie e 202

Figure 4.21. Combination of Kernel Equating Functions and Standard Error of
Equating across the x-score Scale under Kernel Equating for
Both Chained Equating and Post-Stratification Equating for
NEAT DESIGN ..ottt 203

Xiv



CHAPTER |

INTRODUCTION

This introductory chapter presents the backbone of this study. Specifically, it
focuses on the context, nature and scope of the problem, importance of vertical equating,
purpose of the study, key research questions to be answered, and significance of this
study to test-score equating research and practice in constructing vertical scales.

1.1. Nature and Scope of Vertical Scales

There is a fundamental need to compare the test scores for different examinees
across multiple test forms. When test forms differ in difficulty and/or reliability—which
is almost always the case in practice to some extent—we need to equate the scores so that
they can be used interchangeably (Kolen & Brennan, 2004, 2014). There are many ways
to design and carry out equating studies; however, most fall under one of two basic
paradigms: (1) equating with randomly equivalent groups or (2) equating with common
persons or common items serving as data links between the test forms. Using randomly
equivalent groups, where feasible, therefore provides a sampling solution to the equating
problem. Using common persons (i.e., the same examinees taking both forms) or
common items appearing on the different forms provides a design solution. As noted,
there are multiple ways to actually design equating studies as well as there are many
ways to carry out the actual statistical equating steps (Dorans, Moses, & Eignor, 2011;

Holland & Dorans, 2006; Kolen & Brennan, 2004, 2014; von Davier, 2011b, 2011).



Intrinsic to equating is the notion of a score scale. In fact, virtually all classical
and item response theory (IRT) equating methods are intended to obtain scores on a
common scale to facilitate appropriate comparisons and other interpretations and uses. In
educational measurement, the term horizontal scale is sometimes used to characterize a
scale that is only used within a particular grade. Different grades would have different
scales. The term vertical scale is used when a single score scale spans many grades. In a
practical sense, the distinctions between these two types of tests are somewhat artificial
since a horizontal scale could be developed for each of several designated grade bands
(e.g., one English language arts or ELA scale that spans grades 4 and 5, another ELA
scale covering grades 6 to 8, and a third ELA scale including all examinees in grades 9 to
12). If we put all of those three grade-band specific scores on a single scale, the grade 4
to 12 ELA scale would qualify as a vertical scale.

However, there are substantive differences between horizontal and vertical scales.
A horizontal scale is typically preferred when the composite of knowledge, skills and
abilities (KSAs)—that is, learning—changes across grades or grade-bands, perhaps due
to maturation and emphasizing different KSAs within each grade. A vertical scale
assumes that the KSAs measured are the same across grades—with the items simply
incrementing in difficulty as we move from the lowest to the highest levels of
proficiency. Said another way, a horizontal scale may be used when there is a change in
the underlying construct across grades or grade bands. A vertical score scale may be

desired when the same underlying construct is assumed to be measured across all of the



grades. Vertical scales are typically used for academic assessments that claim to measure
student proficiency changes across grades or grade bands (Kolen & Brennan, 2014).
1.2. Practical Importance of Vertical Scaling

Developing and maintaining a vertical score scale requires some type of statistical
mechanism for placing scores from students taking different test forms within different
grades on a common metric. The mechanisms used fall under a general class of vertical
equating methods. The tests to be equated are often of possibly somewhat different
content and are usually of unequal difficulty even for adjacent grades.

Vertical scaling has been used in many large-scale educational testing situations
that employ a multilevel battery of tests characterized by increasing difficulty across the
grade levels. Examples include the lowa Tests of Basic Skills (ITBS) (Hoover, Dunbar,
& Frisbie, 2003), and the TerraNova (CTB/McGraw- Hill, 1997, 2001). The vertical
scales are maintained within each content domain (mathematics, ELA, science, etc.) The
scale may be used to report grade-level expectations as well as to assess so-called
academic growth. Kolen and Brennan (2004, 2014) conceptualize growth in two
dimensions—i.e., domain versus grade-to-grade definitions. On one hand, growth is
discerned as spanning the entire range of test content and, on the other hand, growth is
defined in terms of content appropriateness for a particular grade level. Further they
contend that there is interplay between definition of growth and types of content domain.
For instance, if test content is closely linked to curriculum, it is likely that there is more

academic growth with grade-to-grade definition than it is with domain definition.



However, developing and interpreting a vertical scale is characterized by unresolved

issues, as Briggs (2010) observes,

There are some rather thorny issues that need to be resolved to reconcile the
creation of vertical scales with the current operational perspectives deriving from
Lord’s imprint that dominate the research literature. First and foremost we need a
better answer to the question of why it is a good idea for large-scale assessments
to be placed onto a developmental score scale. If the purpose of vertical scaling is
different from the one | defined at the outset of this paper, what is the purpose? It
should be clear that any answer having to do with growth implicitly brings us
back to the intuition of Figure 1, and that intuition is grounded in an assumption
of interval scale properties. If the claim is that the purpose is to produce “quasi-
interval” scales this just skirts the issue. Finally, the notion that it should be up to
consumers to decide upon a conception of growth that must be met by a vertical
scale a priori is little more than an invitation for chicanery. (p. 27)

To address the challenge quite often encountered when implementing domain and grade-
to-grade conceptualization of a vertical scale using a common item-linking designs—Iike
overwhelming examinees in lower grades with hard items from upper classes or boring
examinees in upper class with too easy items—and adopting a learning progression (or
learning trajectory; Confrey, 2012) as a foundation for a common item-linking design has
been proposed by Briggs and Peck (2015). According to Briggs and Peck (2015) the
strength of learning progressions as a basis of constructing a vertical scale is that they are
developed by blending learning theories and empirical studies that are linked to how
student reasoning evolves over learning continuum, space, and time.

Despite the many potential pitfalls associated with vertical scales, they continue to
be used for largely pragmatic reasons. Patz and Yao (2007) contend that a properly
constructed vertical scales facilitate estimation of scores and tracking of growth in those

scores over time, allowing more robust comparisons (compared to horizontal scales), and



can lead to more efficient field testing of new content, because items targeted for one
grade might be of more appropriate difficulty for an adjacent level. They also contend
that vertical scales may make standard setting more reliable, specifically, due to a richer
set of items that might be ordered as the density of the items increases. There are,
however, many counter arguments to those claims (Briggs, 2013).

This study does not specifically take sides in the substantive debate about the
development and use of vertical scales or vertical equating methods. Rather, this study
explores some of the empirical issues and complications associated with vertical equating
methods for a particular class of equating designs known as the non-equivalent groups
with anchor test (NEAT) designs (von Davier, Holland, & Thayer, 2004). Also, this
design is called the common items non-equivalent group (CINEG) design or anchor test
design (Kolen & Brennan, 2004, 2014). Following some recent work (for example, von
Davier et al., 2004; also see Kolen & Brennan, 2014), this type of the NEAT equating
design is extended to apply the concept of vertical equating to multistage designs
popularized as a type of efficient computerized adaptive testing (CAT) design (Luecht &
Nungester, 1998; Zenisky, Hambleton, & Luecht, 2010; Yan, von Davier, & Lewis,
2014). Put differently, the special NEAT design is an amalgamation of some of the ideas
or thoughts in the common test designs and equivalent group designs and their new
versions. Ultimately, the goal is to merge the vertical scaling methodology with the test
design common for multistage adaptive tests (MST). In addition, this idea can help in

dealing with some of the missing data by design issues in vertical scaling or linking.



The strength of this research study is on the application of the MST design and
the use of panels for the anchors and tests in vertical scaling. This is an area in test score
equating, scaling, and linking that has not been adequately explored; therefore, this study
has been motivated by the need to address this gap. It is also important to note that
originally vertical scaling procedures were constructed primarily for use with the norm-
reference elementary achievement test batteries. Similarly, they are used with a few
standard-based state testing programs. Although the main goal of equating is to put scores
on different test forms on a common metric to facilitate score interchangeability (or
comparability for that matter), vertical scaling is not equating in the true sense of
equating because the content of the test given across grade levels differ not only on
content but also on item difficulties (and to some extent on other psychometric or
measurement and statistical properties).

1.3 Purpose of the Study and Research Questions
1.3.1 Purpose

The primary purpose of this study is to explore some of the empirical issues and
complications associated with vertical equating methods for a particular class of equating
designs known as non-equivalent groups with anchor test (NEAT) designs—i.e., using
real and generated data. Selected equating methods under NEAT design are:

1. Tucker linear method,

2. Levine true score method;

3. Braun & Holland linear;

4. Frequency estimation equipercentile equating method;



5. Chained equating linear method,;
6. Chained equating equipercentile method,;
7. Kernel NEAT post-stratification equating method with a large bandwidth
(KeNEATPSE_Linear);
8. Kernel NEAT post-stratification equating method with optimal bandwidth
(KeNEATPSE_Non-linear/equipercentile);
9. Kernel NEAT chained equating method with a large bandwidth
(KeNEATCE_Linear); and
10. Kernel NEAT chained equating method with optimal bandwidth
(KeNEATCE_Non-linear/equipercentile)
Even though the main focus of this dissertation is on NEAT design—and given the nature
and design of constructing the vertical scale (see Figure 3.2) herein—it is inevitable not
to integrate the Random Groups Design (or the Equivalent Groups design). For this
reason, two additional linear and nonlinear equating procedures are considered under
RG/EG design—that is, (1) linear equating and (2) equipercentile equating (more details
in Chapter I1).
Specifically, this study investigated the effect of different equating methods under
a variety of simulation conditions on certain properties of a vertical scale and anchor test
that was constructed under the NEAT design. For a comprehensive and practical
understanding of the impact equating methods may have on vertical scales, the study
utilized datasets from large-scale standardized tests for professionals. Further study of

these equating methods could give practitioners some practical, useful guidelines, and in-



depth insights regarding which equating method could be preferred under different
practical testing realities. The study used five different simulation conditions—(1) test
length; (2) item discrimination parameter (a-parameter); (3) between-grade mean ability
differences (0, examinee proficiency on the theta scale or the separation of grade ability
distributions); (4) distribution of ability difference (Pool information or grade-to-grade
ability variability); and (5) anchor test mean difficulty differences or anchor test difficulty
variability—to create nine test study designs that may influence the resulting vertical
scale. By examining twelve (12) equating methods together with the five simulation
study conditions and real data, this study can provide much-needed guidelines for
practitioners as to what the consequences of the interpretation and use of these equating
methods are on the vertical scales they construct—that is, where vertical scaling will
simply work or breakdown. In sum, to evaluate the vertical scale developed, this study
mainly focused on five fundamental properties of vertical scaling: test length, item
discrimination parameter, between-grade mean ability differences, distribution of ability
difference, and anchor test mean difficulty differences to investigate where there is small,
medium or large bias, SEE and RMSE under different equating methods for the nine test
designs.
1.3.2 Research Questions

In consideration of the preceding scenario, the aim of this study was to address
three overarching research questions. These are:

1. How do variations of multiple study conditions (i.e., test length, test mean

discrimination, between-grade mean ability difference, distribution of ability



difference, and anchor test mean difficulty differences) affect equating
errors—i.e., bias, standard error, and root mean square error—for different
equating methods when constructing a vertical scale using a special NEAT
design? This main question is partitioned into two sub-questions:
(i) How does this variation affect the equating accuracy across the five study
conditions?
(i) How consistent are the results across the five study conditions?
2. How much difference between anchor test difficulty and the other four study
conditions can be endured under each equating method?
3. Does the use of equating introduce more errors than it can be rationalized?
The first two questions were addressed by generated data while the last question was
addressed by real data from a large-scale testing program for business professionals.
1.4 Significance of the Study
Given lack of enough research on characteristics of anchor tests in the context of
vertical scaling and the scarcity of empirical studies for comparing anchor tests against
full tests with equating methods in the NEAT design, and ultimate merger of the vertical
scaling methodology with the test design common for MST, this study was motivated to
fill that gap. More importantly, blending of NEAT design, equivalent group design and
vertical scaling methodology with MST is a nascent idea that can contribute to discourse
on dealing with some of the missing data by design issues in vertical scaling or linking. It
is hoped that this study will make significant contributions in selecting common items to

be used in equating and eventually in constructing a vertical scale. Additionally, results
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from this study will provide more comprehensive guidance and insights for practitioners
in order to select appropriate vertical scaling methods based on their purposes, goals and
objectives. Finally, it is also expected that this study will inform equating practice by
suggesting anchor test characteristics under diverse conditions (i.e., both realistic and
extreme) that might lead to some equating procedures to either work or fail. Put
differently, study of conditions that might significantly contribute to failure in simulation
studies is a useful undertaking. This is because—in real world scenario—those failures
are not only disastrous but also expensive to examinees and other stakeholders. This risk
is not worth taking.
1.5 Description of Notations and Abbreviations

Table 1.1 provides a comprehensive listing of all possible variables in this

research study. Additionally, the generic test forms notation and equating methods are

shown at the beginning of the table.

Table 1.1

Comprehensive Notational Listing and Descriptions: Test Forms, Equating Methods, and
Variables

Notations and Descriptions

F=Base test form (regular test + anchor test)

G=Comparative alternate total test form (regular + anchor test)
RT=Regular (on-grade) test items

AT=Anchor test/Common items

RG=Random groups equating design

NEAT=non-equivalent groups with anchor test design
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Table 1.1

Cont.

Notations and Descriptions (cont.)

xt=0Observed TOTAL test scores on the BASE form

xa=0Observed anchor test scores on the BASE form

xr=Computed observed test scores, excluding anchor test, xr=xt-xa for the BASE form
yt=0bserved TOTAL test scores on the ALTERNATE form

ya=Observed anchor test scores on the ALTERNATE form

yr=Computed observed test scores, excluding anchor test, yr=yt-ya for the
ALTERNATE form

tt=True TOTAL test scores on the BASE form

ta=True anchor test scores on the BASE form

tr=Computed true test scores, excluding anchor test, tr=tt-ta for the BASE form
ut=True TOTAL test scores on the ALTERNATE form

ua=True anchor test scores on the ALTERNATE form

ur=True observed test scores, ur=ut-ua for the ALTERNATE form
eqxt=Equated TOTAL test scores on BASE form, eqxt=Equated_to_Y (xt)
egxa=Equated anchor test scores on BASE form, eqxa=Equated_to_Y (xa)

eqxr=Equated computed observed test scores, excluding anchor tests, on the BASE
form, eqxr=Equated_to_Y(xr)

eqyt=Equated TOTAL test scores on BASE form, eqxt=Equated_to_X(yt)
eqya=Equated anchor test scores on BASE form, egxt=Equated _to_X(ya)

eqyr=Equated computed observed test scores, excluding anchor tests, on the BASE
form, egxt=Equated_to_X(yr)

Other Abbreviations

a=Discrimination parameter
ATMDD=Anchor Test Mean Difficulty Differences
b=Test Difficulty parameter




12

Table 1.1

Cont.

Other Abbreviations (cont.)
BH=Braun&Holland Linear Equating Method
BGMAD=Between-Grade Mean Ability Differences
CE=Chained Equating Method

Chained_E=Chained equating Equipercentile method

CINEG=Common items non-equivalent groups

Chained_L=Chained equating Linear Method

Corr=Correlation

DAD=Distribution of Ability Difference (Pool Information)
FEEE=Frequency Estimation Equipercentile Equating

Ke=Kernel Equating Method

KeNEATCE_E= Kernel NEAT Chained Equating (Equipercentile) Method
KeNEATCE_L=Kernel NEAT Chained Equating (Linear) Method
KeNEATPSE_E=Kernel NEAT Post-Stratification Equating (Equipercentile) Method
KeNEATPSE_L=Kernel NEAT Post-Stratification Equating (Linear) Method
NEAT=Non-equivalent groups with anchor test design

P=New Form (Alternate) Population

PSE=Post-Stratification Equating Method

Q=0Id Form (Base) Population

RMSE=Root Mean Square Error

S=Synthetic population (or target population, which is combination of populations
P&Q)

SEE=Standard Error of Equating
T=Target Population (or synthetic population of P&Q)

V=Anchor test/Common items
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1.6 Operationalization of Terms

Alternate forms—only for grades 4 and 6, which is always RT(5.1), i.e., Form 1
of the grade 5 within-grade regular test.

Base forms—these are only for grade 4 and 6, i.e., the within-grade regular tests
(RT), plus the corresponding anchor tests (AT) that link those grade-specific scores to the
grade 5 scales.

Form—different set of test questions conforming to predefined content and
statistical specifications or different editions of a test

Performance levels—this is categorization of students depending on their scores
or proficiency categories (e.g., below basic, basic, proficient, and advanced)

Scaling—refers to the establishment of units for reporting measures of proficiency
(scale score) and scaling occurs in conjunction with the identification of measurement
models.

Score scale—these are scores produced by the process of scaling

Scaled score—these are scores used to reflect performance of an examinee or
transformed test score obtained after statistical adjustment to insure consistent
meaning, interpretation, and validity of test scores for all examinees.

Vertical scaling—this is the process of placing scores on tests that measure the
same domains, but at different levels of education, onto a common metric. The resulting
scale is called a vertical scale (developmental score scale). That means a vertical scale

encourages monitoring of students’ academic growth and achievement or it is a procedure



14

used to place test scores, across grades within a content area, on a common scale so that a

student’s progress can be compared over time.
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CHAPTER I

LITERATURE REVIEW

This chapter is about review of literature that is relevant to the current study. To
expand on this chapter, a general overview of vertical scaling is provided. Then a
discussion on criteria for selecting anchor test and whether there is any consensus on
what constitutes a best vertical scale follows. Next are the types of data collection designs
in vertical scaling and appropriate test score equating methods (or procedures) under
NEAT and EG/RG designs. The rest of the chapter delves into general observation on test
score equating methods under NEAT design, perspectives on scaling, current research on
vertical scaling, and a summary.

2.1 Overview

Johnson and Yi (2011) investigated common item stability check procedures to
arrive at vertical linking item sets that would produce constants for computing vertical
theta (ability or proficiency) estimates and scale scores on a vertical scale metric. In their
research study, they noted that in the context of vertical linking, it is expected that the
vertical linking items will display a difference in performance between on-level and off-
level examinees, an expectation which is irrelevant in horizontal equating studies. In
addition, they found that the presence of linking items that were remarkably easier at the
lower level than at the upper level lead to patterns of increasing achievement growth

starting at the lowest level to the highest level of the scale.
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In vertical scaling literature, there are a number of factors to consider when
researchers or practitioners are deriving vertical scale: (1) choice of scaling
methodologies which includes statistical methods—(a) Hieronymus scaling (Petersen,
Kolen, & Hoover, 1989); (b) Thurstone scaling (Gulliksen, 1950; Thurstone, 1925,
1938); and (c) IRT calibration and scaling—recent scalings have frequently applied IRT
and tend to replace the Thurstonian scaling which has got a long history in educational
and psychological testing; (2) vertical linking strategies across levels—(a) concurrent; (b)
separate level-groups; and (c) level-by-level; and (3) types of vertical equating methods
or scaling designs—(a) scaling test; (b) common items across levels; and (c) equivalent
groups design. An excellent treatment of this topic is found in the work of Kolen and
Brennan (2004, pp. 381-412). Other than considering scaling methods, strategies for
vertical linking and different types of vertical equating methods, other factors that are
important when designing a vertical scale have also been investigated; there are studies
that have analyzed these factors—that is, cross-grade scale expansion/shrinkage (lto,
Sykes, & Yao, 2008), test content, subject area, IRT scoring procedures, and proficiency
estimators (Tong & Kolen, 2007)—and demonstrated how multiple combinations of
these variables can have an effect on resulting vertical scales. Although these vertical
equating studies have tremendously enriched the equating literature, they have been
criticized for failing to give concrete direction on factors to consider in order to construct
a reliable and best vertical scale. Furthermore, practitioners or experts that are engaged in

vertical scales are left to decide which factors to combine and analyze in relation to how
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they affect the vertical scale within the general framework of unique testing and
assessment program (Johnson & Yi, 2011).

Kolen and Brennan (2004) have pointed out that a number of factors might affect
vertical scaling results in any of the scaling methodologies cited previously.
Fundamentally, these factors include: (1) the data collection design, (2) dimensionality—
the complexity of the subject matter area; (3) the curriculum dependence of the subject
matter area; (4) test characteristics—average item difficulty and discrimination, and
relationships of the item characteristics to group proficiency; (5) item type—multiple-
choice (MC) and constructed response (CR); (6) grade level; and (7) nonlinear scale
transformations following implementation of a scale method.

In the case of the common item approach, vertical linking items are assessed
within on-level test forms and within off-level test forms. The next section examines in
details anchor related studies.

2.2 Anchor Test

In the context of classical test theory (CTT), the common items are mainly meant
for adjusting proficiency differences in the groups of examinees (e.g., Angoff, 1968,
1971; Gulliksen, 1950; Holland & Dorans, 2006; Kolen & Brennan, 2004; Petersen et al.,
1989). An important aspect of the NEAT design is tied to the construction of an anchor
set of items (common items).Three important properties of an anchor test are length,
content, and statistical characteristics— these are some of the properties used as
guidelines for linking items for horizontal equating; they are also applicable in the

vertical scaling context with the goal of establishing a strong measurement link that
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enhances a tenable vertical scale (scale of growth) across all grades (Johnson & Yi,
2011). These features are discussed in detail in the proceeding paragraphs.

It is rather well-known that score scale reliability is directly associated with test
length; that is, adding more test items or measurement opportunities tends to increase the
reliability of the test scores. Angoff (1968) observed that longer tests are more reliable
than shorter ones that measure similar construct. Put differently, the statistical association
between reliability and test length has an impact on the quality of the linking
mechanism—in this case, anchor test or linking items for vertical equating. The impact of
test length has been explored and explicated in equating literature and has been shown to
have a direct effect on the reliability of test scores (Allen & Yen, 2002). Furthermore, it
can be argued that the magnitude of equating error—that is, random error expressed in
terms of the standard error of equating and systematic error decomposed into bias and
measurement errors—can be evaluated to assess the degree of accuracy of any equating
method when applied to test scores. Specifically, this can be done when observed test
scores are included in the process of equating. An example of this application is tied to
equating methods under NEAT design. The research literature recommends anchor test
lengths in comparison to the operational test—that is, how many items are required for
placing item parameters on the common scale. Most of the horizontal equating research
suggests a rule of thumb of having the anchor test represent at least 20% of the test or at
least 15 items in case of IRT equating framework (e.g., Kolen & Brennan, 2004).
Fitzpatrick (2008) concluded that shorter anchor test lengths seriously compromised the

integrity of the equating results under IRT equating methods. She suggests that instead of



19

lengthening the anchor test, we should use survey sampling techniques like optimal
allocation procedure (Sudman, 1976). Optimal allocation procedure involves sampling
more elements from strata with more sampling variability. When this technique is applied
to sampling items to be included in the anchor test, items from subsets known to have
more variability on the basis of content or statistical characteristics would be selected in
bigger proportions than subsets showing less variability given these attributes (Deng,
Sukin, & Hambleton, 2009).

Another important consideration for NEAT equating methods is the inclusion of
both the variances and correlation between the base form and the anchor test scores
whenever equating transformation functions are computed. For instance, as reliability
increases, the variances of observed test score decreases as the correlation of these scores
is somewhat strengthened. The equating literature further observes that wherever
distributions of the observed test scores are manipulated during equipercentile equating
or moments are used to approximate equating transformation constants like in the case of
linear equating, the effect of differences in reliability is not predicable.

For typical NEAT designs, it is rather common wisdom to design the anchor test
to be statistically similar and content proportional to the test specifications for the
operational test is an important consideration (Cook & Eignor, 1991; Cook & Petersen,
1987; Dorans, Kubiak, & Melican, 1998; Hambleton, Swaminathan, & Rogers, 1991,
Klein & Jarjoura, 1985; Kolen, 1988; Kolen & Brennan, 2004; Petersen et al., 1989;
Petersen, Marco, & Stewart, 1982; Sinharay & Holland, 2006, 2007, 2008). This wisdom

actually stems from a fundamental assumption about the equivalence of the regression of
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the total-test observed scores on the anchor test for NEAT designs (Kolen & Brennan,
2014). That is, we assume that we can use the regression of the anchor test to essentially
predict performance on the portion of the total test missing for each of the involved
groups. When a content area is omitted, over-represented, or under-represented and
growth actually occurs in this area; therefore, the amount of overall growth for the
construct being measured may be incorrectly estimated (Deng et al., 2009). Furthermore,
it can lead to threats to validity—construct underrepresentation and construct irrelevant
variance (AERA, APA, & NCME, 2014; Downing, 2002, 2005; Downing & Haladyna,
2004; Messick, 1989) and subsequently invalidate equating inferences, conclusions,
meaning, interpretation and use of test scores that are made. For this reason, the linking
of tests may be incorrect because any change that occurs over time should be reflected
only in the common items (Deng et al., 2009).

Supporting evidence to the recommendation that anchor and operational tests
contain equivalent proportions of items representing multiple content areas is well
documented in the equating literature. A widely cited work is that by Klein and Jarjoura
(1985). These authors conducted a study to compare a content representative anchor
against a long anchor without content representation. The result of their study was that
the shorter anchor with content representation outperformed the long anchor without
content representation under two classical test theory equating methods—Tucker linear
equating and Levine equating. Another study examined four anchor item sampling
designs and four equating methods—two of them used IRT designs (Yang, 2000). The

findings of this study indicated that equating accuracy was best when using the item-
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sampling scheme that chose items to be included in the anchor test in a manner that the
anchor items proportionally matched specifications of the content for the entire test.

Recommendations from content matching equating research studies propose that
the anchor test be made up of items that mimic the statistical characteristics of the
operational test (Angoff, 1968; Cook & Eignor, 1991; Dorans et al., 1998; Kolen, 1988;
Kolen & Brennan, 2004; Petersen et al., 1989; Petersen et al., 1982). In the equating
literature, this is referred to as a “mini-test.” The mini-test is made up of items with
similar mean difficulty and similar range of difficulty. Scholastic Aptitude Test (SAT)
and Test of Standard Written English (TSWE) were studied by using various equating
methods—mean difficulty similarity, external vs. internal, and content similarity
(Petersen et al., 1982). They concluded that matching the mean difficulty of test and
anchor test items—that is, based on equating a test using equipercentile methods for
example—was a more important factor to establish a reliable anchor test for equating test
forms. On the same vein, Petersen et al. (1982) found that when there are differences in
difficulty between the anchor and operational test forms the mini-test performs best as an
anchor and that equipercentile equating outperforms linear equating.

Although the “mini-test” can be applicable when using an internal anchor, some
researchers in test score equating have not agreed if the same ideas can be used when
considering the external anchor design. In their study, Sinharay and Holland (2006, 2007,
2008) proposed the “semi-midi and midi-test” forms as anchors instead of the mini-test
form. The semi-midi and midi-test are characterized by the spread of the item difficulties

which are more constrained to preserve items that are very easy or very difficult. When
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using post-stratification and equipercentile equating methods, these writers observed that
the semi-midi and midi-test performed better than the mini-test—although, at times they
might all perform reasonably well. When the mini-test and semi-midi and midi test were
correlated to the complete test, they found that the latter has a higher anchor-test-to-
complete test correlations. Another recommendation is that the anchor-test score should
be a proxy of the proficiency measured by the test and the equating should be conditional
on this score (van der Linden & Wiberg, 2010).

Linking item guidelines of horizontal equating, mentioned above, are applicable
in the vertical linking context so that a strong measurement link can be established that
will foster a reasonable scale of growth across all levels (Kolen & Brennan, 2004, 2014).
Kolen and Brennan (2004, 2014) observed that vertical scaling is “a very complex
process that is affected by many factors,” which includes the design for data collection,
the content area being studied, the test itself, a scaling method, and the computer program
used (p. 418). The same sentiment is echoed by Harris (2007) when she noted that
“vertical scaling is a complex process, involving philosophical, technical, and practical
issues” (p. 251). Reviewed literature suggests that vertical scaling is design-dependent
(Harris, 1991), group-dependent (Harris & Hoover, 1987; Skaggs & Lissitz, 1988; Slinde
& Linn, 1979a), and method-dependent (Kolen, 1981; Skaggs & Lissitz, 1986b).

2.3 Is There a Best Vertical Scale?

Yen (1986) contends that there is no best vertical scale. In the same vein, Harris

(2007) noted that despite the fact that it can be disconcerting that there is no agreement

on the best way to construct a vertical scale, it is comforting at the same time. They
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advise that “instead of arguing which single scaling method is the best, we might do
better to see which slate of options work for which purpose, under which conditions™ (p.
251). Similarly, Kolen and Brennan (2004) suggest that practitioners should embrace a
scale that they consider to reflect the nature of growth for their tests. Certainly, such
decisions will affect the nature of the scale construction; therefore, it behooves the test
developer to informed examinees and other stakeholders about this potential ambiguity in
scaling (Tong & Kolen, 2007). Although vertical scales are useful in tracking students’
academic growth and achievement from year to year and provide intervention where
required (Harris, 2007), Tong and Kolen (2007) advise to be cautious whenever the
interpretation of scores from a vertical scale is made.
2.4 Designs for Vertical Scaling: Types of Data Collection Designs

Three approaches to data collection for vertical scaling have been proposed in the
equating literature (e.g., Holland & Doran, 2006; Kolen, 2006; Kolen & Brennan, 2004,
2014; Young, 2006). In general, a data collection design may use one of these
approaches: (a) Common item or CINEG/NEAT design; (b) Equivalent group/Random
group designs; and (c) Scaling test designs. Each of the three designs is summarized here
for completeness; an in-depth and thorough treatment is provided by Kolen and Brennan
(2004, 2014). The current study focuses on the first and second vertical scaling designs—
common item and equivalent group designs in addressing issues and complications

encountered in vertical scaling.
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2.4.1 Common Item Design

In the common item design, each test level is administered to examinees at the
appropriate grade. When the common item set scores contribute to the total test scores the
common item set is said to be internal; otherwise, it is external if it doesn't contribute to
the total score (Kolen & Brennan, 2004, 2014). This design takes advantage of the
overlapping content of adjacent levels. This feature makes it possible to conduct scaling
in subjects like math and reading because some common or similar concepts are found in
adjacent levels. Its application is also in achievement and aptitude test batteries
administered in elementary schools in the United States.

It is important to note that item blocks that are common between adjacent grades
are used for linking purposes. This follows a chaining process where scores from all
grades are placed on the base grade. The design is easily implemented in standard
administration conditions with the standard test batteries (Kolen & Brennan, 2004). One
key issue associated with the common design is that it is affected by context effect. This
is because at the lower level the common items between the adjacent grades are placed at
the end of the test while they are placed at the beginning of the test for the higher grade
(Kolen & Brennan, 2004). To go around the issue of context effect in this study, all
anchor test items are put at the beginning of the test.

In summary, common item design produce vertical scale through a linking chain.
Common items are sampled from adjacent grades which are level appropriate to each
grade. In practice, selecting common items for this design is also based on: (1) content

representativeness of a set of items from the lower as well as the upper grade levels
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(Figure 2.1); (2) a range of grades—i.e., selection of items not necessarily from the
adjacent grades (Kolen, 2011). It is an empirical question whether these various ways of
selecting common items would produce different scaling results. However, this study
adopted the first approach of selecting common items based on psychometric
specifications like item difficulty and item discrimination parameters for adjacent grades
rather than content representativeness.
2.4.2 Equivalent Group Design/Random Group Design

From methodological and philosophical perspectives, equivalent group design and
random group design are the same; therefore, there is no distinction that has been made
between the two in this study. In fact, the two terminologies are used interchangeably in
this dissertation. It is important to note that the equivalent group or random group design
is another approach used to gather data for building a vertical scale. The equivalent
groups are obtained by spiraling, which results in groups that have a smaller variance
than they would have if they were random. In this design, randomly equivalent groups of
examinees are administered either the level appropriate test (on-level test) for their grade
or the level just below or above (the off-level test) their grade. Although in vertical
equating literature the off-level test is often associated with the test from the immediate
lower grade level, in this dissertation it is also considered as a test just above the given
grade. Specifically, random assignment using spiraling ensures that test questions
administered are not too difficult or too easy for each grade.

Except for the lowest grade, each group of examines per grade is administered

one of the two levels of the test. The data gathered for this administration is used to place
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scores from all of the test grades on a common metric by using chaining across grades.
The design does not use common items found in adjacent levels. In this study, equivalent
group design is used for equating within grade forms—specifically, with reference to the
base grade test forms—and to provide a linking mechanism to common item equating.
2.4.3 Scaling Test Designs

In the scaling test design, a special test is built that spans the content domain
across all grade levels and puts all the items on one form. The scaling test is administered
to all students across the grades alongside test level appropriate for their grade. Although
this design is hard to implement in a practice, it outshines the other two designs because
it ranks all students in all grades in one domain. This design has been criticized for
lacking useful information when students are tested with too easy or too difficult items
(Carlson, 2011).

Alternatives to the first two designs—common item and equivalent group
designs—have been proposed, discussed and illustrated by Carlson (2011). In case of the
common item design, a group of students at each grade level is identified to be
administered blocks of items that are composed of (1) the anchor blocks (common items)
shared with adjacent—that is, either below or above—qgrade levels, and (2) blocks of
unique items in their grade level. The only feature that distinguishes the common item
design postulated by Kolen and Brennan (2004) and the variant posited by Carlson
(2011) is that the latter incorporates in his design on-grade item block for each grade

level.
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2.5 Equating Methods/Procedures

There are a number of equating procedures under NEAT design from which a
practitioner or a researcher in vertical scaling can choose. In this dissertation, the
rationale for selecting multiple test score equating methods, which were previously
outlined in Chapter I, is based on the fact that they perform better when there are
substantive disparate group abilities in the context of horizontal equating. This notion can
be expanded and applied in vertical scaling and linking studies where non-equivalent of
target populations is prevalent. In the world of vertical scaling, it is assumed that the
group abilities (or even learner’s ability) vary across grades and within grades.
Additionally, Sinharay and Holland (2009) recommend that the operational testing
programs to apply different test score equating methods and study the variation (or
differences) among their equated score results. Also, research studies in vertical scaling
are popular with the NEAT data collection design. Even though these methods under
NEAT design are appropriate in vertical scaling situation, they have their faults. Further,
some of these equating methods make indefensible underlying assumptions about missing
data by design and score distribution, which often time are never tested in practice
(Holland, von Davier, Sinharay, & Han, 2006). The test score equating methods in this
subsection are revisited from Chapter | and re-classified according to data collection
designs, which are NEAT and EG/RG designs, and on basis of their nature of the
equating function—i.e., either linear or nonlinear. These are:
(a) Equating Methods Under NEAT Design

(1) Tucker linear method
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(i) Levine true score Method
(iii) Frequency estimation equipercentile equating (FEE) Method
(iv) Braun & Holland linear method
(v) Chained linear
(vi) Chained equipercentile
(vii) Kernel NEAT post-stratification equating (KeNEATPSE)
(@) Linear
(b) Non-linear
(viii) Kernel NEAT chained equating (KeNEATCE)
(@) Linear
(b) Non-linear
(b) Equating Methods Under Equivalent/Random Group Design
(@) Linear
(b) Equipercentile
Random groups and NEAT designs were used to compare and investigate
performance of twelve different equating methods under different study conditions.
These equating methods can be classified into two families—that is, linear and non-
linear. In the equating literature curvilinear methods are also referred to as equipercentile
or curvilinear. The equating methods under NEAT design that are linear are Tucker
method, Levine-true method, Braun-Holland method, chained linear method, kernel
NEATPSE linear method, and kernel NEATCE linear method. The equipercentile

methods under NEAT design include frequency estimation equipercentile equating
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method, chained equipercentile, kernel NEATPSE equipercentile method, and kernel
NEATCE equipercentile method. Linear and equipercentile equating methods are also
considered under equivalent groups design. Next is a description of linear and
equipercentile procedures under random group design and then each of the other methods
or procedures (outline above) are considered in the context of NEAT design.

2.5.1 Equivalent Groups Design/Random Groups Design (RG)

As noted previously, in the random group equating design, examinees are
randomly assigned the test form to be operationalized. A spiraling process can be used to
randomly assign different test forms under this design. This typically leads to
comparability of randomly equivalent groups that take Form X and Form Y. Under this
design, “the difference between group-level performance on the two forms is taken as a
direct indication of the difference in difficulty between the forms” (Kolen & Brennan,
2004, pp. 13-15). More discussion on practical features and issues involved in random
group equating design are explicated by Kolen and Brennan (2004, 2014).

2.5.1.1 Linear Equating Method. Linear and mean for the random groups design
is extensively covered by Kolen and Brennan (2004, 2014). In this design, the equations
use only the first two moments—mean and standard deviation—of the marginal
distributions for Forms X (alternate Form) and Y (the base form).

For mean equating, the equation function that puts raw scores for the new Form X on

the scale of the raw scores for the old Form Y is computed as follows:

my(x) = y=X-p(X) + u(Y). (Eq. 2.1)
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Similarly, for linear equating the function is governed by:

ly(x) =y = [6(Y)/o(X)]x + [ (Y) = {o(Y)/o(X)Iu(X)] (Eq.2.2)
= A+ B, (Eq. 2.3)
where
slope = B = o(Y)/o(X) and (Eq. 2.4)
intercept = A = p(Y) — Bu(X) (Eq. 2.5)

Remarkably, Equation 2.1 is similar to Equation 2.2 if and only if the slope is 1, i.e.,
o(Y)/o(X). That means ly(x) = my(x) give exactly the same results when o(Y)/o(X), B =
1.0. Linear equating adjusts one set of scores so that the first and second moments of the
score distribution are equal; therefore, it involves an adjustment to the center or location
of the scale and the unit size. For realized or observed scores, x on Form X and y on
Form Y are standardized—i.e., centered at the mean and normalized to the standard
deviation—and set equal. Under certain conditions, linear equating is no different than
linear regression. This is because when X and Y are perfectly correlated, linear equating

and regression produce similar results. Again, in linear regression, the slope is given by:

B=p(X,Y)o(Y)/o(X), (Eq. 2.6)

but

B=pB=B (Eq. 2.7)

when X and Y correlation is a unit.
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In other words, in the equating literature, it has been shown that p(X,Y), the correlation
between X and Y, impacts on both the slope (B) and intercept () in case of regression,
but does not affect the slope (A) and intercept (B) for linear equating.

2.5.1.2 Equipercentile Equating Method. What sets equipercentile equating
apart from mean and linear equating counterparts under random group design is the fact
that it adjusts the shape of the cumulative score distribution of Form X to match the
cumulative score distribution of Form Y in the target population. In fact, it allows for
differential changes across the score scale, rather than merely adjusting the first two
moments like it is the case with linear equating. The great challenge for adoption of
equipercentile equating fundamentally lies on its requirement for very stable distributions
which should essentially be truly randomly sampled groups from a common target
population.

Braun and Holland (1982; see also Kolen & Brennan, 2004, 2014) have
demonstrated that a symmetric equipercentile equating function, ey, is defined to be so if

G* = G and that x and y are continuous random variables or continuized, thus:

ey(x) = GF(X)], (Eq. 2.8)

where G* is the cumulative distribution function (cdf) of score on Form X converted to
the Form Y scale;

G is the cumulative distribution function of Y in the same population;

F is the cumulative distribution function of X in the same population; and

G1is the inverse of the cumulative distribution function, G.
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Stated differently, ey(x) is the score on the Y-scale associated with the percentile rank of
F(X).

2.5.1.3 Score Discreteness, Continuization Process, and Smoothing in
Equipercentile Equating. In practical equating realities, the x and y test scores are often
non-negative integers that correspond to the number of correct items scored by a test
taker. Score discreteness somewhat presents difficulties in obtaining percentile points on
the scale of Y. This is because it is problematic if not impossible to get an integer score
on Y that has a percentile rank exactly equal to F(x). The equating literature recommends
continuization of the densities for X and Y. Two popular methods of continuization are in
use: (1) linear interporation (Angoff, 1971; Kelly, 1923; Kolen & Brennan, 2004, 2014;
Otis, 1916; Petersen et al., 1989); (2) Gaussian kernel smoothing—to continuize the
discrete distributions (Holland & Thayer, 1989; von Davier et al., 2004).

Smoothing can be done before (presmoothing) or after (postsmoothing)
calculating the equipercentile equivalents, éy(x); the focus is to try to preserve the
moments after smoothing—this is an important consideration because it relates to one of
the properties of smoothing. That is accuracy. Other smoothing properties discussed by
Kolen and Brennan (2014) are flexibility, statistical framework and empirical research
base. In presmoothing, the scores are smoothed while in postsmoothing the equipercentile
equivalents are smoothed directly. Presmoothing methods include 2 or 4 parameter beta
(compound) binomial and log-linear. Commonly used postsmoothing method is cubic-

spline (Kolen & Brennan, 2004, 2014). Although the main purpose of smoothing in
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equipercentile equating is to reduce the equating error, it has been shown in the equating
literature that it can also introduce the same.
2.5.2 NEAT Design: Missing Data by Design

NEAT design involves administering Forms X and Y which share a set of
common items (anchor test) to a target population T, which is composed of two different
populations—population P and Q (see Eq. 2.9). Table 2.1 displays a visual pattern of the

data for the NEAT design (Sinharay & Holland, 2008).

Table 2.1

An lllustration of the Non-equivalent Groups with Anchor Test (NEAT) Design

Target Population  Population/Test Form X AT(A or V) Y
. P v v _
Q _ v v

Note. V-symbol indicates a test form administered to a sample of population. A dash (—) shows a test form
was never taken by either P or Q, hence missing data by design.

If Population P takes Form X, Population Q is administered Form Y’; both
Populations will take a common set of tests (AT or A or V) which is used for equating
purposes. That means when P and Q are different or non-equivalent the statistical role of
the common groups of items is: (i) to remove bias; (ii) increase precision in the
estimation of the equating function (Holland, Dorans, & Peterson, 2007); (ii) to adjust for
population differences or to account for any differences in ability between non-equivalent
groups taking the new and old test forms (Kolen & Brennan, 2014); and (iv) to adjust for

the differences in overall difficulty between X and Y (Ricker & von Davier, 2007; von
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Davier et al., 2004). Other uses of the information gleaned from the anchor test item
scores mentioned in the literature are: (i) it allows a new test to be used and equated at
each successive operational test administration; (ii) it facilitates formulation of
untestable, missing-data assumptions needed to interpret the linking results as
constituting an equating; (ii) it is used as a conditioning variable, for instance in the case
of the Tucker method and poststratification equating; (iv) it is used as a middle link, such
as in chained equating; (v) it is used together with classical test theory. In this case,
examples are Levine observed-score equating, hybrid Levine equipercentile equating and
poststratification equating for true anchor scores (von Davier & Chen, 2013).

In this design, population P will never take Form Y. Conversely, Form X scores
are never observed in population Q. For this reason, the NEAT design is a special case of
missing data by design—i.e., data are not missing due to examinees skipping questions or
any other type of testing situations (Sinharay & Holland, 2008; von Davier et al., 2004).
Similarly, Liou, Cheng, and Li (2001) pointed out that the NEAT design is a case of
missing data that are missing at random (MAR) in the technical usage advanced by L.ittle
and Rubin (2002). Missing data assumptions under NEAT design are essentially
untestable in practical equating realities. For more details about missing data by design in
NEAT, assumptions under poststratification equating (PSE), chained equipercentile
equating (CE), item-response-theory observed-score equating (IRT OSE) and the concept
of synthetic population (Braun & Holland, 1982) the reader is referred to the studies
conducted by Holland and Dorans (2006), Sinharay and Holland (2000), and Holland et

al. (2007).
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Braun and Holland (1982) define synthetic population (S) as a target population
(typically, S is never observed) for the NEAT design that is created by weighting

populations P and Q. Thus,

T=wP + (1-w)Q, (Eq. 2.9)

where the sum of w + (1-w) =0, i.e., the weights must function as proper density
(Gulliksen, 1950); and their values greater than zero (w, 1-w > 1). Various choices of
weights, w and (1-w) include use of 1 and 0, equal weights like 0.5, sampling weights for
the two populations and proportional probability weights. Considerable evidence has
been shown that the choice of w has a relatively insignificant impact on the equating
results (von Davier et al., 2004). This insensitivity to w has been cited as an example of
upholding the population invariance assumption—a requirement in equating (Lord, 1980;
Holland et al., 2007).

2.5.2.1 Tucker Linear Method. The Tucker method uses means and variances
(or standard deviation scores) to convert observed test scores on Form X to the scale of

observed scores on Form Y by use of the following linear function.

lys(x) = ¥s = [os(Y)/os(X)Ix + [us(Y) — {os(Y)/os(X)}us(X)]  (EQ. 2.10)

This linear function is exactly the same as Equation 2.2 except that the former has a
subscript s to denote synthetic population and that the four parameters— os(Y), os(X),
us(Y) and ps(X)—are unobserved; they can be estimated from the parameters computed

in Population P and Q (see Kolen & Brennan, 2014, Egs. 4.2-4.5, p. 104).



36

This method makes two types of assumptions—(1) linear regression assumptions
and (2) conditional variance assumptions—so that the four parameters can be estimated,
they are not directly observable.

Assumption 1:
The regression of X on V (or Y on V) is assumed to be the same linear function for
Populations P and Q. Setting a and B to represent regression slopes and intercept

respectively,

ap(X[V) = op(X, V)/op 2(V) (Eq. 2.11)

Br(X|V) = pp (X) — ap(X|V)ur(V) (Eq. 2.12)

The regression slope and intercept for the regression of Y on V can be computed in a
similar way as in Equation 2.11 and 2.12. The two quantities are observed because they
are calculated from realized data. Because Population Q never took Form X, the slopes

and intercepts can be estimated as:

aQ(X|V) = oo(X, V)/o (V) (Eq. 2.13)

Ba(XIV) = o (X) — 00 (X[V)ue(V) (Eq. 2.14)

Similarly, because Population P never took Form Y, the slope and intercepts can be
calculated as in Equation 2.13 and 2.14. In summary, the regression assumption for X and

V (orYandV)is

ao(X|V) = ap(X|V) (Eg. 2.15)
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and

Ba(X[V) = Br(X|V) (Eq. 2.16)

Assumption 2:
The conditional variance of X given V (or Y given V) is assumed to be the same for
Populations P and Q (see Kolen & Brennan, 2014, Eq. 4.12, p. 106).

The rationale for Tucker equating method is based on the fact that the means and
standard deviations (variances) are observed-score parameter estimates adjusted in the
synthetic population based on the anchor test—that is, test scores based on common items
given to different Populations P and Q. Furthermore, if pp(V) = o (V) and op(V) = 6g
(V), the corresponding synthetic parameter estimates would equal the observed test score
moment. Finally, the Tucker method works equally well with both internal and external
anchor tests.

2.5.2.2 Levine True Score Method. Under Levine true-score equating, three
assumptions are made about true test scores for Forms X and Y and the anchor test, V.
These assumptions are the same for Levine observed score equating method (Levine,
1955). The assumptions of classical congeneric model are added to the other three
assumptions such that the y, or (Ax /Av), the effective test length, for Levine observed-

score equating with an external anchor is

vr=[0% (X) + op (X, V)/[6% (V) + o (X, V)]; (Eq. 2.17)

and
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ve=[6%o(Y) + (Y, V)l[c% (V) + oo (Y, V)] (Eq. 2.18)

The effective test length, y, or Ax /A v, is proportional to both the reliability and error
variances. For the internal anchor case with Levine’s observed score method under the
classical congeneric model, see Kolen and Brennan’s (2014) Equation 4.53 and 4.54, p.
114.

Under the classical congeneric equating model—and to be consistent with Feldt
and Brennan (1989)—we assume that X and V (or Y and V) are linearly related with

slope, A, and intercept, J, such that

X =Tx+Ev=(xT +0x) + Ex (Eq. 2.19)
V=Tv+Ev=(0WT+dv) + Ev (Eq. 2.20)
0% (Ex) = Axc?(E) and o2 (Ev) = Avo*(E) (Eq. 2.21)

Assumption 1:

There is a perfect correlation between Tx and Tv (or Ty and Tv) in Population P and Q.
Assumption 2:

The regression of TxonTy (or Ty on Tv) is assumed to be the same linear function for
both Populations P and Q.

Assumption 3:

The measurement error variance for X (or Y) is the same for Populations P and Q under

the classical test theory model.
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Although the Levine observed score method makes assumptions on true scores on Tx, Ty
and Ty it uses Equation 2.10 to relate observed test scores on Form X to the scale of
observed test scores on Form Y (Kolen & Brennan, 2014).

Therefore, under classical test theory, observed scores are taken to be the same as
true scores and the following equation is used for Levine-true score equating with

observed scores (Kolen & Brennan, 2014).

lys(t) = 05(Ty)/os(T)[tx - us(X)] + ps(Y), (Eq. 2.22)

where T=true score and s=synthetic population.

2.5.2.3 Braun and Holland Linear Method. Braun-Holland linear method, as
the name suggests, was first proposed by Braun and Holland (1982). The method uses the
first two moments (or mean and standard deviation) to conduct linear equating under the
frequency estimation method (frequency estimation method is discussed next after Braun
and Holland method). The resulting synthetic population means and standard deviations

are substituted into the following general linear equating function for the NEAT design.

Tys(X) = (Y X)X - 0s(X)] + 0s(Y) (Eq. 2.23)

An equating that results from using Braun-Holland linear method is similar to the Tucker
linear method if the regressions are strictly linear and homoscedastistic—i.e., if
regressions of X on VV and Y on V are linear; and if the regressions of X on V and Y on V
are homogeneity such that 62 (X|v) and o2 (Y|v) are identical for all v (Braun & Holland,

1982). In other words, Braun-Holland method is a special case (or generalized form) of
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the Tucker method that works whether the regressions of the total test on anchor test
items are linear or nonlinear (Kolen & Brennan, 2014).

2.5.2.4 Frequency Estimation Equipercentile Equating Method (Frequency
Estimation). Frequency estimation can be defined as an equipercentile (nonlinear)
method of estimating the cumulative test score distribution for two or more forms within
the synthetic population, using a group of common items without using the moments of
the two forms (Angoff, 1971; Braun & Holland, 1982; Kolen & Brennan, 2004, 2014).
Percentile ranks are calculated from the cumulative frequency distributions and then the
forms are equated by equipercentile methods. The common items, V, is used to estimate
the distribution of Population Q taking Form X and Population P taking Form Y. Table 1
shows that Population P and Q never took Form Y and Form X, respectively. Therefore, a
key assumption—though tautological, but unavoidable in practice—is that the conditional
distribution of x on v (or y on v) are the same across the groups.

The underlying assumption for the FEEE method is that the conditional
distribution of the test score given the anchor test score is similar in the two test taker
groups doing the test. The probability of x given v in Population P is equal to probability
of x given v in Population Q, for all v. Conversely, the probability of y given v in
Population Q is equal to probability of y given v in Population P, for all v regardless of

internal or external anchor. This assumption can be expressed as

fP(x|v) = fQ (x|v), for all v and gP(y|v) = gQ (y|v), for all v. (Eq. 2.24)
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Synthetic population distributions are used to put X on the scale of Y whenever FE is

conducted under equipercentile equating. Thus,

fs(X) =we fr(X) + (1-wq)fa(X) (Eq. 2.25)

gs(y) = we ge(y) + (1-wq)fa(y), (Eq. 2.26)

where s stands for synthetic population, fp(x) and fo(X) represent distributions for

Form X in Population P and Q respectively while ge(y) and fo(y) denote distribution for
Form Y in Population P and Q; but, fo(X) and ge(y) are unobservable in Populations Q
and P, respectively.

The equipercentile function for the synthetic population (subscript, s) is

eys(x) = G-1s[Fs(X)] (Eq. 2.27)

2.5.2.5 Chained Equating (CE) Linear Method. The chained equating linear
method (Angoff, 1971; Holland & Dorans, 2006) involves a scaling of the total-to-anchor
scores in the base form and the alternate form and then chaining these scores together.
The method assumes that the anchor-to-total test correlation is perfectly. When this
assumption is violated—for example, in testing situations where the anchor test score is
weakly correlated to the total test score—then chained equating leads to a less accurate
equating results. According to Kolen and Brennan (2014), chained equating method
involves three underlying procedures. These key techniques are: first, transform X to the
scale of V to create ly(x); second, transform V to the scale of Y to create ly(v); and third

obtain Y-equivalents such that
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ly(x) = Iy[lv(x)] (Eq. 2.28)

2.5.2.6 Chained Equipercentile (CE) Equating Method. In chain equipercentile
equating (Angoff, 1971; Doran, 1990; Livingston, Dorans, & Wright, 1990; Marco,
Petersen, & Stewart, 1983), Form X test scores are converted to test scores on anchor test
using examinees from Population P. Then test scores on the anchor test are converted to
Form Y test scores using examinees from Population Q. This process of chain produces a
conversion of Form X test scores to Form Y test scores (Kolen & Brennan, 2014).

Therefore, the Form Y equipercentile equivalent of Form X test scores is a function of:

€y(chain) = €y2 [eva (X)], (Eq. 2.29)

where, ev1 (X) is the equipercentile transformation for converting test scores on X to the
scale of V in Population P while ey (v) (not directly visible in the chain) is the
equipercentile transformation for converting test scores on V to the scale of Y in
Population Q. In addition, the CE equating method assumes that the equipercentile
functions equating the test score to the anchor test score are similar in the two test taker
groups doing the test.

Equating literature (for example Harris & Kolen, 1990; Livingston et al., 1990;
Marco et al., 1983; Sinharay & Holland, 2007; Wang, Lee, Brennan, & Kolen, 2008)
indicated that CE methods have a propensity to produce less equating bias than that of
PSE methods when groups ability substantially differ. Although Harris and Kolen (1990)
proposed use of PSE methods because they have a better theoretical appeal vis-a-vis CE

methods, Marco et al. (1983) and Livingston et al. (1990) advocated the application of
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CE methods in testing situations where a large ability difference existed in the groups that
took both test forms. When groups differ in ability and the correlation between the total
test scores and anchor test scores is moderate, the PSE method adjusts form difficulty so
that the two groups are more similar than they should be; therefore, leading to a biased
equating (Livingston, 2004). But the CE method uses a symmetric scaling approach that
is not much affected by the size of the correlation between the anchor test scores and the
total test scores. For this reason, the CE method tends to produce less biased results
particularly when the groups differ in ability.

2.5.2.7 Kernel Equating (KE) Method. Kernel method of test score equating
(KE) can be conceptualized as a modified classical equipercentile observed-score
equating that uses a normal or Gaussian kernel—rather than using linear interpolation as
is the case in the traditional equipercentile equating method—for continuization of the
discrete observed score distributions (Holland & Thayer, 2000; von Davier et al., 2004;
von Davier, 2011a). It is a unified observed-score equating framework to test score
equating based on a flexible group of equipercentile equating functions that considers the
linear equating function as a special case (von Davier et al., 2004). Thus, the KE test

score equating is governed by the following equation.

eY(x) = GF(xX)], (Eq. 2.30)

where ey(x) is the equating function for equating test form X to Y—which means the test
score on test form Y that corresponds to the test score value x of test form X, while F(x)

and G(y) represent the cumulative distribution functions for test forms X and Y
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respectively. G is the inverse function of G after re-arranging the equation G(y)=F(X)—
i.e., after making y the subject of the equation.

As demonstrated in the excellent work of von Davier, Holland, and Thayer (2004)
and von Davier (2011b), KE is a sequential standard technique that encompasses five
fundamental steps. To summarize, these key procedures are: (i) pre-smoothing the data
using log-linear models; (ii) computing the marginal score probabilities for X, Y, and A,
in-case of for chained equipercentile; (iii) continuization of the frequency distributions
using the Gaussian kernel; (iv) computing the equipercentile equating function using
these continuous distribution functions; and (v) computing the accuracy measures—the
standard errors of equating (SEE) and the standard errors of equating differences (SEED).
The current simulation study did not focus on the fifth step in the framework—a general
formula for estimating the accuracy measures (SEE and SEED)—as conceived in the KE
equating methodology. Rather after applying step (i) through step (iv), the measures of
equating accuracy were calculated based on the assumption that truth or criterion of
equating is known (see Chapter I11 under sub-section titled: Evaluation of Equating
Results and Accuracy). However, the real data study embraced all the procedures in KE
framework and the criterion equating was constructed on the same Population T as the
equating functions of interest.

Table 2.2 juxtaposes KE and the traditional equating methods by the type of
equating function—that is, either linear or curvilinear that are considered in this study
under the general framework of NEAT design. Apart from Levine true score equating

method, the other traditional equating methods are matched with the KE equating
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methods to show their consanguinity. For example, the kernel version of PSE with large
bandwidth approximates the Tucker linear method when Tucker assumption about the
linearity of the regression holds—i.e., the Tucker method requires that the regression of
the test and the anchor is linear. This assumption is not met most of the time.
Specifically, in the vertical scaling scenario because the anchor test may be from a
different grade; therefore, this regression is probably going to be curvilinear. The
violation of linearity assumption would have profound consequences on the equating

results and accuracy.

Table 2.2

NEAT Design: KE and Traditional Equating by Linear and Non-linear Equating
Procedures

KE Method Type of Equating Function Traditional Equating Method

Linear Functions

PSE with large bandwidth Braun & Holland linear
Tucker? linear
Levine True Score

CE with large bandwidth Chained linear

Non-linear Functions

PSE with optimal bandwidth (curvilinear) Frequency estimation (FEEE)

CE with optimal bandwidth (curvilinear) Chained Equipercentile

Note. ®The kernel version of PSE with large bandwidth approximates the Tucker linear method if Tucker
assumption about the linearity of the regression holds.

Research studies in KE have shown that there are multiple ways of selecting

bandwidth. But before proceeding with bandwidth selection, it is noteworthy to provide
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two equations to put the concept of bandwidth across. According to von Davier et al.
(2004), when using a Gaussian kernel the continuized cumulative distribution function

for a score x (this is true for a score value of y in form Y) is given by

Fra () = Sy 7y (k) (Eq. 2.31)

axhy

where nx is the number of items on the test plus one, rj is the probability of obtaining the
score Xj, ¢(+) represents the standard normal cumulative distribution function, L is the
mean test score, ox is the standard deviation of the test scores (or o2 is the variance of the
test scores), and hy is the bandwidth such that ax—a scaling factor to ensure the variance
of the original distributions is the same even after continuization of discrete distribution

(this is also the case for form Y where the subscript x will be replaced by y)—is defined

by

o%

2 2
oxt+hy

a, = (Eq. 2.32)

Some of the approaches for selection of bandwidth are (1) minimizing penalty functions;
(2) plug-in methods; (3) Silverman's rule of thumb; (4) cross-validation; (5) adaptive
kernels (6) to achieve a particular goal—for example, linearity or not (equipercentile). In
this dissertation the first technique to bandwidth selection—i.e., minimizing penalty
function— was considered in order to obtain both linear and equipercentile functions.
2.5.2.7.1 Kernel NEAT post-stratification equating using linear method

(KeNEATPSE_L). von Davier et al. (2004) have demonstrated that the selection of
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bandwidth (hx or hy) somewhat determines the equating method under KE framework.
The kernel NEATPSE linear is achieved by selecting large bandwidths. When this is
done the kernel NEATPSE linear with bandwidths approximates the Braun and Holland
(1982) linear method of score equating. Further, the kernel NEATPSE linear method of
score equating approaches a linear method of score equating when using large bandwidth
values that are larger than 10 times the standard deviation of the continuized distribution.
Similarly, the larger the bandwidth parameter is the more likely the density at each
discrete score point spreads out.

2.5.2.7.2 Kernel NEAT post-stratification equating using equipercentile method
(KeNEATPSE_E). The procedure to achieve kernel NEAT poststratification equating
with optimal bandwidths (or keNEATPSE equipercentile method) has also been outlined
by von Davier et al. (2004). Research has demonstrated that the kernel NEAT post-
stratification equating equipercentile method is equivalent to the frequency estimation
equipercentile score equating method. In this case, the kekNEATPSE optimal
(equipercentile) equating method selects optimal values for hy (or hy) are automated by
reducing the difference between the probability distributions of X (or Y) before and after
continuization (and by using some additional penalty functions—for more details, see
von Davier et al., 2004).

2.5.2.7.3 Kernel NEAT chained equating using linear method (KeNEATCE_L).
Chained equating methods are described by Angoff (1984), Livingston (2004), and Kolen
and Brennan (2004). The kernel version of chained equating approximates the chained

linear method when large bandwidths are used (von Davier et al., 2004). The chained
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equating represents a chain of linking from test form X to anchor test form A and then
from anchor test form A to test form Y. In other words, chained linear equating assumes
that the linking relationship between X and A would be the same if it were observed on
population Q. Likewise, it assumes that the linking relationship between Y and A would
be similar if it were observed on population P. In general, if each of the two links is
linear, then the final equating is also linear (see Eq. 2.28).

2.5.2.7.4 Kernel NEAT chained equating using equipercentile method
(KeNEATCE_E). The kernel version of chained equating will approximate the chained
equipercentile method when the optimal bandwidths are used. It represents a chain of
linking from test form X to the anchor test form V and from the anchor test form V to test
form Y such that if each of the two links is equipercentile function, then the final
equating is equipercentile too. The equating function with a nonlinear equipercentile
equating function is derived using the same poststratification equating (PSE) assumptions
stated previously and then applied to the KE NEAT framework (von Davier et al., 2004).
To equate test form X to test form Y, it is presumed that the equipercentile equating
relationship between test form X and the anchor test form V (or between test form Y and
the anchor test form V) would be similar if it were observed on population Q (or on
population P). Then the method converts test form X to the anchor test form V and then
equates the resulting score for anchor test form V to the test form Y using equation 2.29

(Kolen & Brennan, 2004).
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2.6 General Observation on Equating Methods under NEAT Design

Equating methods used with NEAT design can be categorized into two main types
depending on the way they use the information from the anchor (Holland et al., 2007) and
the missing data in the design. First, poststratification equating (PSE) or frequency
equating is a type of missing data assumption. The PSE types of assumption is that the
conditional distribution of X given anchor (or Y given anchor) is the same for any S,
T =wP + (1-w)Q. According to PSE type of equating, it is assumed that the relationship
that generalizes from each equating sample to the target population is in fact a conditional
relationship. This means that conditioned on the anchor test score, A, the distribution of
X in Q, where it is missing and unobserved, is similar to P, where it is not missing, but it
is realized. Second, the chain equating (CE) assumption all have the form that a linking
function from X to anchor (or from Y to anchor) is the same for any S, T = wP + (1-w)Q.
In CE approach, the test scores on the new form are equated to test scores on the old form
through a chain created by these two linear equating links/functions—Linxy; (X) and

Linw:o(Vv). The CE linear function is given by:

CExv(x) = Linvv;q (Linxv:p(x)) (Eqg. 2.33)

In sum, PSE and CE approaches hypothesize that an important distributional property
that connects scores on X or Y to scores on the anchor test is invariant for any S,

T =wP + (1-w)Q—i.e., is population invariance (Holland et al., 2007). von Davier et al.
(2004) have shown that when P and Q are substantially different, PSE and CE

assumptions can result in equating functions that are different.
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In practice, the common items are assumed to be a representative of the whole
form in both content and statistical characteristics. Section 2.2 provides a thorough albeit
inexhaustive treatment of anchor studies in the context of NEAT equating design. The
forms are administered to different groups of examinees which may have a considerable
difference in their knowledge, skills and abilities. This design is most appropriate in
vertical scaling because the different test forms are constructed that include common
items sampled from either one of the adjacent grade levels or both grade levels (Tong &
Kolen, 2007). In vertical scaling literature, it is assumed that in theory student
progression (or growth and development) across grades “underlies a collection of test
items that have been written for the purpose of creating a vertical scale” (Briggs &
Domingue, 2013, p. 553). Figure 2.1 demonstrates a conceptual framework or a
hypothetical scenario of the distribution of ability across the three grades with
overlapping portions in a proficiency scale; grade 5 is designated as a base grade scale
and adjacent grades 4 and 6 are linked to this base scale. The sections marked common
items indicate the area assumed for sampling anchor test items—that is, common items
can be selected from the test for the grade below or for the grade above, or from both
combinations. The unique test items are sampled from the area where the graphs do not

intersect.
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A Conceptual Framework of Proficiency Distribution Across Grades 4,5 and 6
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Figure 2.1. Demonstration of a Hypothetical Scenario of the Distribution of Ability
across the Three Grades with Overlapping Portions in a Proficiency Scale.

Test takers performance in these anchor test items is crucial because they are used
to statistically adjust for any differences in ability between nonequivalent groups taking
the two forms; therefore, after a successful scaling or linking a common metric is
constructed that spans across grades. While there is a general consensus and assumption
that examinees in higher grade levels will outperform examinees in lower grade levels on
the anchor test items, there is an exception to this belief particularly in a scenario where
there is comparatively little or no curriculum overlap from grade to grade; this means
lower-grade students may perform better than higher-grade students on lower-grade items

probably due to the fact that they have been taught the curriculum more lately. In other
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words, when the content area that is tested is strongly curriculum-dependent, the choice
of anchor test items and students™ performance on those items can have far-reaching
consequences to the measurement, meaning, and interpretation of constructed vertical
scale. Next subsection delves into different viewpoints on scaling and linking.
2.7 Perspectives on Scaling

Equating literature and scaling theory over the decades seem sharply divided on
the meaning of a scale and its properties. This has created multiple perspectives on
scaling (Kolen, 2011; Kolen & Brennan, 2014). Table 2.3 summarizes some of the

predominant viewpoints on scaling theory and practice.

Table 2.3

Divergent Viewpoints on Scaling

Proponent Perspective

(Angoff, 1971; Lord, 1975, 1980) Proposes equal interval property of a scale.

(Coombs, Dawes, & Tversky, 1970;
Stevens, 1946; Suppes & Zinnes,
1963)

Scale Classification: Nominal, ordinal, interval
& ratio. Scale attributes should be clearly

defined
(Guttman, 1944; Thurstone, 1925; Scaling should be based on psychometric
Wright, 1977) models
(Lindquist, 1953) The scaling method should not influence the

content of the test or change the meaning of
objectives in a test.

(Petersen et al., 1989) The main goal of scaling is to facilitate
interpretation of a test score

(Yen, 1986) Choice of a scale should be driven by a specific
application. Choosing a scale and using it is a
must.
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2.8 Current Research on Vertical Scaling

Studies in vertical scaling can be classified into two main groups. The first group
deals with examination of the results from vertical scaling methods and designs to
compare and contrast the results. Research in this direction investigates whether general
differences in the scaling results exist or not and has produced different results and
conclusions. Vertical scaling literature—from the first group—suggests that vertical
scaling results: (1) depends on examinee groups; (2) are sensitive to linking design; and
(3) differ considerably depending on different statistical methods employed to construct
the scale. The second aspect is more specific because it delves into comparison of
methods and designs with e