
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345088887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

Acknowledgments  

 I would like to acknowledge the Appalachian State University Honors College, the 

Appalachian State University Office of Student Research, and the A.R. Smith Department of 

Chemistry and Fermentation for providing financial support towards this research, as well as the 

NSF Chemical Oceanography Award. Thank you to Dr. Chris Thaxton and Dr. Brett Taubman 

for agreeing to act as secondary readers for this thesis work, and for always being available and 

willing to answer my many questions. This work would not have been possible without the love 

and support of my parents, who have always encouraged me to be the best possible version of 

myself. Thank you. I also need to acknowledge the other members of the “Bobbing for 

Knowledge” research group for their assistance with method development and data analysis, as 

well as for their steadfast support and friendship over these past four years. Finally, I would like 

to thank Dr. Robert Swarthout. Your faith in me as both a student and a scientist has been 

unwavering, and I am incredibly grateful for your continued advice, patience, and mentorship.  

 

 

 

 

 

 



 

 

Abstract 

Atmospheric emissions of biogenic volatile organic compounds (BVOCs), including 

benzene, toluene, and xylene, have implications for climate change through the potential to form 

secondary organic aerosol (SOA) as well as their ability to impact the oxidative capacity of the 

atmosphere. Despite the importance of BVOCs, there have been relatively few measurements 

conducted in remote locations where biogenic sources may dominate, leading to a discrepancy 

between modeled and observed SOA yields. Recent, albeit sparse, evidence has suggested that 

marine phytoplankton have the ability to produce measurable quantities of BVOCs, particularly 

toluene, which may be an unaccounted source in aerosol models.  

This work discusses the results of atmospheric VOC measurements over the remote 

North Atlantic Ocean during the May 2017 Phosphorus, Hydrocarbons, and Transcriptomics 

cruise aboard the R/V Neil Armstrong. Whole air canister samples (n = 160) were collected along 

a transect through the North Atlantic from Woods Hole, MA to Bermuda and back with 24 hour 

stops at nine stations encompassing different cyanobacterial populations. At each station, a 

diurnal time series of samples was collected, and samples were analyzed on a five-detector gas 

chromatography system. 

 Analysis of selected BVOCs indicated an additional biogenic source of toluene and other 

BVOCs such as isoprene, with high mixing ratios correlating with a Synechococcus bloom event 

encountered at station 9. The elevated mixing ratios identified at station 9 were found to increase 

both hydroxyl reactivities and potential SOA yields compared to the dataset, indicating marine 

cyanobacteria emissions of VOCs may have a large impact on marine environments.  
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1.0 Introduction 

 The purpose of this study was to determine the magnitude of biogenic emissions in the 

North Atlantic marine atmosphere through measurements of traditional biogenic volatile organic 

compounds (BVOCs) such as isoprene and dimethyl sulfide, as well as less widely studied 

BVOCs including the aromatic hydrocarbons (AH) benzene, toluene, and xylene. Concurrent 

measurements of abiotic oceanic parameters and phytoplankton cell counts were also collected. 

A secondary aim was to calculate the secondary organic aerosol (SOA) formation potential of 

these observed BVOCs, as well as their impact on the oxidative capacity of the atmosphere; both 

of which are important implications for global climate.  

1.1 Biogenic Volatile Organic Compounds 

1.1.1 Definitions and Types 

Volatile organic compounds (VOCs) are any organic compound with a high enough 

vapor pressure to exist in the gas phase in appreciable amounts. They are emitted by both 

biogenic and anthropogenic sources and play a dominant role in atmospheric chemistry. 

Emissions of VOCs from biological sources are classified as BVOCs, and globally, biogenic 

sources are the largest known producer, with biogenic emissions equating to approximately 90% 

of total emissions.1,2 

BVOCs are separated into several groupings based on their structure and chemical 

properties (Figure 1). Globally, the most abundant BVOC in the atmosphere and the building 

block of AH is the hemiterpene isoprene (2-methyl-1,3-butadiene), a five-carbon chain whose 

function in the synthesis of other BVOCs is comparable to that of amino acids in protein 

synthesis; both are relatively simple molecules used to create quite complex compounds.1 Two 
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isoprene units create a monoterpene (C10H16) while three isoprene units create a sesquiterpene 

(C15H24). Monoterpenes and sesquiterpenes may be either linear or cyclic, and are well-known 

for their aromatic properties, with compounds such as α-pinene and limonene contributing to the 

familiar scents of pine and citrus.3 These terpenoid compounds are the most widely studied 

BVOCs.   

Lesser studied BVOCs include non-aromatic BVOCs such as short chain alkanes, 

collectively known as green leaf volatiles, long chained alkanes such as heptadecane, and AH 

such as toluene.4,5 This work will focus on AH, hydrocarbons with a conjugated pi-system that 

increases the stability of a molecule and subsequently decreases reactivity. Aromatic compounds 

can be identified by their alternating single and double bonds, depicting the ability of delocalized 

electrons to form resonance structures.  

 

 

 

 

 

 

 

 

Figure 1- Various BVOC compounds  
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1.1.2 General Biosynthesis Mechanisms 

Terrestrial plants release BVOCs as a byproduct of metabolism; Figure 2 shows a 

generalized diagram for the formation pathways of different BVOC classes. However, the exact 

mechanisms for the formation of many individual BVOC molecules are mostly unknown.2,3 

 

 Figure 2 - Primary metabolic pathways for various BVOCs 2 

The biosynthetic pathway of isoprene and other isoprenoid compounds (Figure 3) are a 

result of two major metabolic pathways; the cytosolic mevalonate pathway and the plastidic 

methylerythritol phosphate pathway.3,5 Both will produce isopentenyl pyrophosphate (IPP) and 

its isomer dimethylallyl pyrophosphate (DMAPP). The two main precursor molecules also 

contain five carbons and are condensed and modified to create other predecessor compounds. For 

example, the combination of an IPP with an DMAPP by a plastidic prenyltransferase will create 

geranyl pyrophosphate (GPP). The production of many monoterpene compounds is the result of 

enzymes known as terpene synthases (TPSs), which modify precursor molecules such as 



4 

 

DMAPP and GPP to produce isoprene and monoterpenes, respectively.3 For production of all 

isoprenoid compounds through these pathways, the first step will be the removal of the 

pyrophosphate group through catalyzation with terpene synthases (TPSs). This will create a 

carbocation, which is an unstable intermediate available for a multitude of other reaction steps.3 

Biogenic synthesis of long-chain alkanes and alkenes, another category of BVOCs, have 

been identified as the result of another two major metabolic pathways. The first involves acyl-

ACP reductase and aldehyde deformylating oxygenase enzymes to produce alkanes such as 

pentadecane and heptadecane, while the production of biosynthetic alkenes like nonadecene is 

due to polyketide synthase enzymes.6 Other BVOCs may be synthesized from coenzyme-A using 

type III polyketide synthases.3 

  

 Figure 3 – Summary schematic of isoprene biosynthesis 7 
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The majority of metabolic pathways leading to the formation of other aromatic BVOCs, 

such as benzene, toluene, and xylene, are less well understood.8 Labeling experiments have 

shown that plants transform carbon into toluene, xylene, phenol, and a variety of other 

compounds.2 For the majority of benzenoid compounds, the Shikimate pathway is an early 

metabolic step in production, with over 20% of carbon estimated to flow through this pathway.2 

This seven-step pathway has been nicknamed the “common aromatic biosynthetic pathway” in 

previous literature; however, not all biogenic AH are synthesized through this pathway.9 The 

Shikimate pathway is used to produce amino acids in plants, but high stress can activate other 

secondary metabolic pathways and cause production of different BVOCs. The initial precursor 

molecule for production of AH is phenylalanine. The enzyme phenylalanine ammonia lyase will 

catalyze phenylalanine, forming ammonia and cinnamate.2,5  

The emissions of BVOCs from many plants and other photosynthetic organisms may be 

the result of stress, which can cause enhanced production of secondary metabolites. For example, 

increased ozone concentrations can lead to an increase the emissions of certain isoflavonoids. 

Plants may also emit compounds as a signaling mechanism or as a biochemical defense method. 

For instance, in some grasses increased grazing can lead to a higher production of indole and/or 

estragole, which will attract wasps to drive off the herbivores. The biological purpose of many 

emitted BVOCs, such as toluene, is still unknown. 2 

1.1.3 Terrestrial and Marine BVOC Sources 

Natural sources of VOCs include soil and water emissions, with terrestrial sources 

including trees, crops, grasses, marches, and microbial decomposition responsible for many 

BVOC emissions. Anthropogenic sources of VOCs include evaporation of solvents, burning of 

biomass and combustion of fossil fuels.4,10 Biological sources represent a far greater source of 
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atmospheric VOCs than anthropogenic sources, with terrestrial vegetation the largest of the 

biogenic sources.7 Anthropogenic emission rates of VOCs are approximated at 100 Tg per year 

of carbon, while biological sources are estimated to emit 1150 Tg per year of BVOCs.10,11  The 

composition of global VOC emissions has been estimated at 44% isoprene, 11% monoterpenes, 

22.5% VOC, and 22.5% other reactive compounds.4,10 

Previously, it had been believed that atmospheric AH were primarily emitted by 

anthropogenic sources from the incomplete combustion of fossil fuels. Studies by Misztal et. al 

(2015) found that biological emissions of AH are much higher than formerly thought and may be 

a large contribution source to global VOC concentrations, with evidence of both terrestrial and 

marine biogenic sources.  

Another possible source of BVOCs are marine phytoplankton, primary producers that 

have been approximated to produce up to 50% of global net primary production.12 Two of the 

most abundant marine phytoplankton are the cyanobacteria genera Prochlorococcus and 

Synechococcus, which have approximate population sizes of 2.9 x 1027 and 7.0 x 1026 cells, 

respectively.6 Together, they have been estimated to be responsible for over one fourth of net 

marine primary production, with Prochlorococcus producing around 8.5 % and Synechococcus 

producing approximately 16.7 %.12  

Prochlorococcus and Synechococcus are both found in different habitats within the 

ocean. Synechococcus tends to dominate in cold, nutrient rich waters but requires high sunlight 

input and is found closer to the surface in the photic zone. Prochlorococcus is more prominent in 

warmer, low light, low nutrient waters. Prochlorococcus is the most abundant group of marine 

cyanobacteria species found in the lower latitudes (between 40° north and south), oligotrophic 
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oceans and can survive in water columns down to 200 m that receive less than 0.1% of surface 

irradiance.12,13 

Much of the BVOC work on these two cyanobacteria has focused on production of long-

chain hydrocarbons. Prochlorococcus and Synechococcus were determined to emit between 269 

to 539 and 39 to 323 million tons of nC15 and nC17 alkanes a year, respectively.6 A laboratory 

study identified pentadecane as the most abundant hydrocarbon emitted by Prochlorococcus and 

Synechococcus at 96% of total emissions, with heptadecane making up the other 4%. 6 Multiple 

studies identified heptadecane as the most abundant hydrocarbon emitted, with Prochlorococcus 

found to produce mainly heptadecane and pentadecane while Synechococcus was not found to 

produce any alkanes.14,15  

Elevated concentrations of long-chain hydrocarbons have been quantified in tropical 

areas of the Pacific Ocean, where marine cyanobacteria thrive due to high sunlight and warm 

waters. Branched alkanes and other hydrocarbons were mainly identified in the North Atlantic 

oceans, where eukaryotic bacteria dominate.16 Lea-Smith et. al (2015) attempted to quantify the 

amount of nC15 and nC17 hydrocarbon production from Prochlorococcus and Synechococcus 

over the open ocean, and extrapolated that production may range from 308 to 771 million tons of 

these two hydrocarbons every year.6  

Dimethyl sulfide (DMS) and isoprene are the two other BVOCs that are known to be 

emitted by marine phytoplankton, which are accredited with being the largest biological 

producer of DMS. 17 A few laboratory studies have examined the ability of marine 

phytoplankton to emit isoprene and other monoterpenes, with some success. Shaw et al. (2003) 

identified both Prochlorococcus and Synechococcus as emitting isoprene, and Yassaa et al. 

(2008) actually observed high monoterpene levels above a phytoplankton bloom in the Southern 
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Atlantic Ocean. 18,19 However, the potential for these cyanobacteria to produce other BVOCs 

including AH such as toluene or the xylenes is practically unknown. 

1.1.4 Marine Cyanobacterial Emissions of VOCs  

 Researchers have determined that marine phytoplankton have the ability to emit certain 

BVOCs as secondary metabolites, such as DMS, isoprene, and long-chain alkanes.6,18,19 As noted 

above, the production of long chain alkanes, specifically n-C15 and n-C17, by cyanobacteria has 

been reported by a first order estimate and represents a globally significant source of 

hydrocarbons. Multiple other field studies and laboratory experiments have examined alkane and 

alkene emissions by cyanobacteria, and two specific metabolic pathways have been identified. 

One pathway uses the deformylaion of fatty aldehydes, while the other involves decarboxylation 

of fatty acids to synthesize n-C15 and n-C17. 
14,20 However, marine phytoplankton are capable of 

emissions of other compounds such as isoprene and dimethyl sulfide (DMS), all though these 

data represent an area of study that is not well understood. 21,22 

1.2 Atmospheric Impacts of VOCs 

1.2.1 Oxidation Capacity: Hydroxyl Reactivity  

The hydrocarbons released by marine phytoplankton are classified as trace gases due 

their low atmospheric concentrations, usually in the parts per billion or trillion range.23 They also 

have short lifespans due to high atmospheric reactivity.23,24 VOCs are susceptible to oxidation by 

reactions with hydroxyl radicals (OH), the products of which have the ability to form ozone and 

SOA.23 Hydroxyl radicals are the “dominant tropospheric oxidizer” and remove most trace gases 

from the atmosphere. The term “oxidizing capacity of the atmosphere” refers to the ability of 

atmospheric oxidants to oxidize trace pollutants and is largely a function of OH availability.25  
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The primary source of OH is the reaction of singlet oxygen with water vapor.25 This 

pathway is started by the photolysis of ozone gas by UV light (that is less than 0.32 µm), 

resulting in the creation of a diatomic oxygen molecule and an electronically excited singlet 

oxygen atom. The singlet oxygen atom will then go on to react with water vapor to form two 

OH.24,26 This pathway is illustrated in the reaction scheme below: 

O3 (g) + hν  O2 (g) + O(1D) 

O(1D) + H2O (g)  2 OH 

There are two possible pathways available for an oxidation reaction between a 

hydrocarbon and a hydroxyl radical; the first involves an addition of the radical to a multiple 

bond, while the other involves the abstraction of a hydrogen atom. Both oxidation pathways will 

eventually result in the production of a hydroperoxy radical (HO2), which can then react with 

nitric oxide (NO, generated by the photodissociation of nitrogen dioxide) to regenerate the 

hydroxyl radical and complete the HOx cycle, according to the reaction scheme below.   

OH + CO  CO2 + H 

H + O2 (g)  HO2  

HO2 + NO  NO2 + OH 

The addition of a hydroxyl radical across a multiple bond results in a carboxyl radical, 

due to the addition of the hydroxyl group to a carbon atom, which can then bond with an 

additional oxygen molecule to create the hydroperoxy radical (along with carbon dioxide). The 

alternative pathway involves the replacement of the hydroxyl radical with a hydrogen atom, 
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creating water and a carbocation. The carbocation can react with an oxygen molecule, and 

eventually will also result in a hydroperoxy radical. Both pathways are shown below.  

Addition across a bond: 

C O OH+ OH C O
 

OH CH OH + O O OH O + O O

 

Hydrogen Abstraction: 

CH4 + OH CH3 + OH2
 

CH3 O O
OH O + C O

 

 

Atmospheric oxidation of VOCs can lead to the formation of new compounds, such as 

aldehydes and organic radicals. The new molecules formed can oxidize nitric oxide and lead to 

the production of tropospheric ozone due to the formation and dissociation of nitrogen dioxide 

(see Figure 4).27  
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Figure 4- Simplified scheme of atmospheric processes involving BVOCs 28 

Hydroxyl radicals have been found to be significant in the determination of the chemical 

composition of the atmosphere. A majority of studies have focused on carbon monoxide and 

methane because of their high atmospheric concentrations; however, other VOCs may be of 

equal or greater value in the creation or consumption of hydroxyl radicals because, while they 

have lower concentrations, they undergo a faster reaction rate with hydroxyl radicals (Table 1).29 

The hydroxyl radical reactivity of an air mass is found by summing the concentrations of VOCs 

(Ci) multiplied by the hydroxyl rate constant (ki), as defined by equation 1, and does not consider 

any secondary reactions that may occur.30  

                                                            𝑂𝐻 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  ∑ 𝑘𝑖𝐶𝑖                                            [𝑒𝑞. 1] 
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Table 1- kOH values for various VOCs  

Parent Compound kOH x 1012 

(cm3 molecules-1 s-1) 

Source 

Benzene 1.2 Shaw, 1995 

DMS 4.7 Pszenny et al, 1999 

Toluene 6.4 Greenman & Zimmerman, 1984 

o-xylene 13.6 Atkinson & Arey, 2003 

p-xylene 14.3 

m-xylene 23.1 

α-Pinene 53.7 Griffin et al., 1999 

β-Pinene 78.9 

Isoprene 92.6 Shaw, 1995 

 

The presence of VOCs can also prolong the lifetime of important greenhouse gases such 

as methane. This is due to the decrease of hydroxyl radicals from reactions with the VOCs 

instead of gases such as methane, as some non-methane trace gases are over a hundred time more 

reactive than methane.31 Poisson et al. (2000) estimated that the impact of these chemical 

reactions can increase the lifetime of methane by approximately 15%, from an original lifetime 

of 6.5 to 7.4 years.32 In spite of the importance of marine emissions on reactive VOCs on 

greenhouse gas lifetimes, relatively few measurements have been reported and more data are 

needed to better constrain these impacts. 
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1.2.2 SOA Formation 

An aerosol is a solid or liquid particle suspended in a gaseous substrate. Aerosols can 

cause a variety of climatic effects, such as directly reflecting or absorbing solar radiation or 

indirectly reflecting solar radiation by acting as cloud condensation nuclei.23 The presence of 

such fine particulate matter in the atmosphere has been linked to negative health effects such as 

pulmonary inflammation, suppression of certain immune defenses, and excess stimulation of the 

airways.30 

Primary aerosols are directly emitted from a source (such as the black carbon particles 

from the combustion of fossil fuels or sea salt particles suspended by wave action), while 

secondary aerosols are created from condensation of gas phase molecules. If the secondary 

aerosol was initially formed by an organic compound, it is classified as SOA. There are a number 

of ways SOA can form in the marine boundary layer (MBL), the defined layer of the atmosphere 

with a height between 100 to 1000m that is direct contact with the ocean surface and thus allows 

for air-sea exchange of species.30,33 One possibility is the oxidation of VOCs, leading to the 

creation of new compounds through the nucleation of small clumps of particles, which can be 

enlarged through condensation or coagulation. VOCs and their respective oxidation products can 

also collect and condense on other preexisting particles, allowing for the accumulation of mass.34 

Aromatic compounds such as benzene, toluene, and traditional BVOCs such as isoprene 

and monoterpenes are all compounds with a high potential to form SOA, because of the ease in 

which they can be oxidized and the relatively low volatility of their oxidation products. A 

previous study by Misztal et al. (2015) found that AH have a high potential for production of 

both SOA and tropospheric ozone, with a first order estimate of formation potential at 

approximately 10 Tg per year.2   
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Table 2 gives SOA yields from oxidation chamber studies for specific BVOC and AH 

compounds. SOA formation can vary depending on the NOx conditions and relative humidity 

(RH) of the atmosphere; in order to mimic marine atmospheres, SOA values under low NOx and 

high RH conditions were examined. The wide range of SOA yields shown in the table below is 

due to the discrepancies in the laboratory experiments used. There are a number of variables that 

can differ when examining SOA yields, such as source of the hydroxyl radical, the seed particle 

used, the nitric oxide and nitrogen dioxide concentrations, and the type of chamber used. For 

example, Stirnweis et al. (2017) used a variation of seed particles in their work, including acidic, 

neutralizing, and hydrophobic particles, while Zhang et al. (2001) used only ammonium 

sulfate.35,36  

The BVOCs released by marine phytoplankton have been suggested to be important 

precursor molecules for SOA formation. Measurements over the North Atlantic Ocean during 

phytoplankton blooms determined that marine organic matter contributes 63% to the sub-

micrometer aerosol mass.37 However, current models are thought to underestimate biogenic 

(AH) emissions, thus potentially underestimating the contribution of BVOCs to SOA formation, 

especially in remote marine environments where measurements are sparse.2,4 
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Table 2 – SOA yields for certain aromatic hydrocarbons under low NOx conditions 

Compound SOA yield (%) References 

Isoprene 11.5 Zhang et al., 2001 

α-Pinene 1.5 Stirnweis et al., 2017 

Benzene 36.9 (± 0.9) Ng et al., 2007 

Toluene 30.2 (± 0.7) – 30.8 (± 1.7) Ng et al., 2007 

m-xylene 35.7 (± 1.0) – 37.7 (± 0.8) Ng et al., 2007 

MVK 3.9 – 9.9 Liu et al., 2012 

MACR 1.6 – 11.7  Liu et al., 2012 

 

1.3 Underprediction of SOA and Measurement - Model Discrepancies 

1.3.1 Uncertainty in SOA Modeling  

Overall, there is a high uncertainty in global SOA approximations, with global estimates 

ranging from 120 to 1820 Tg/year.38 Numerous factors contribute to this uncertainty, as 

modeling hydroxyl concentrations is difficult due to complex reaction pathways that govern 

atmospheric processes. It can also be difficult to determine VOC concentrations due to a high 

diversity of compounds, differences in sampling and analysis techniques between studies, and a 

lack of source-specific emission factors.4 This is particularly relevant for biological sources of 

VOCs, as models must take into account compound-specific emission estimates for each source, 

as well as how different factors such as temperature or light affect each source individually and 

their corresponding reactivity with other atmospheric compounds.10 



16 

 

The difficulty with measurements and high uncertainties in VOCs parallels complications 

in modeling SOA yields, as there are severe discrepancies in the modeled concentrations for 

SOA when compared to the observed concentrations, especially within the MBL. For example, 

Gantt et al. (2015) notes an underprediction of approximately 36% (normalized mean bias) by 

the GEOS-CHEM model when compared to observed marine organic aerosols. Gantt concludes 

that additional information involving organic aerosol precursor emissions is needed into order to 

improve futures marine models.39 Another modeling experiment performed by Myriokefalitakis 

et al. (2010) found that simulated SOA values in the MBL, estimated by the TM4-ECPL model 

with marine VOC sources included, showed a clear underprediction of marine SOA compared to 

measurements. The simulated values showed even higher discrepancies when marine sources 

were not included (Figure 5).40 These studies clearly demonstrate that a better understanding of 

marine sources of SOA is vital to improving the accuracy of our current climate models.   

 

 

Figure 5- Modeled versus observed values of methanesulphonate at Finokalia Research 

Station (35° 19’N, 25° 40’E and particular Organic Carbon at Azores Research Station 

(38° 41’N, 27° 21’W). The red line represents the simulated values estimated by the 

TM4-ECPL model with marine sources included, the green line represents modeled 

values without marine sources, and the blue squares represent observed values for marine 

organic aerosols. 40 
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1.3.2 Missing Source of VOCs 

 One possibility for the underprediction of modeled SOA concentrations in the MBL may 

be the result of one or more missing VOC sources. Previous reports of VOCs in the remote MBL 

are scarce and typically lack either spatial or temporal resolution. This lack of measurements, 

particularly a lack of concurrent measurements in phytoplankton communities, is a major hurdle 

in improving marine VOC emissions estimates. This is especially relevant given that models 

have predicted changes in phytoplankton abundances due to increasing surface temperatures of 

seawater from climate change, with predicted increases of Prochlorococcus and Synechococcus 

of 28.7% and 13.9%, respectively.12 Given their current and future predicted abundance, 

understanding the roles of cyanobacterial populations on VOC emissions from the ocean is 

critical to understanding the future oxidative capacity of the remote marine atmosphere and 

climate feedback cycles involving SOA.  

 To address uncertainties related to VOC concentrations and impacts in the remote MBL 

and their relationships to phytoplankton communities, this thesis uses concurrent atmospheric 

VOC and phytoplankton abundance data collected aboard a May 2017 research cruise in the 

Northern Atlantic Ocean. Specifically, this work addresses two questions:  

1) What is the impact of the observed VOCs on OH reactivity and SOA formation? 

2) What are the sources of the observed VOCs and is there a relationship with phytoplankton cell 

counts? 

This study adds to the sparse dataset of VOC observations over oceans and is one of the 

first to include concurrent in-situ measurements of phytoplankton community composition.  
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2.0 Methods  

2.1 VOC Sampling and Collection   

In May of 2017, the Phosphorous, Hydrocarbons, and Transcriptions cruise aboard the 

R/V Neil Armstrong conducted a round-trip transect from Woods Hole, MA to Bermuda (Figure 

6). The cruise sampled at a total of nine stations, each for 24-hours, along the transect that 

encompassed various cyanobacteria populations and different nutrient regimes. Whole-air 

samples (n = 160 total) were collected en route and at each station with 2-liter electropolished 

stainless steel canisters for collection of OVOC’s and VOC’s. The canisters were flushed before 

field sampling by being evacuated to 0.01 torr, refilled to 760 torr with ultrapure helium passed 

through an activated charcoal/molecular sieve and then re-evacuated to 0.01 torr. Before 

collection of the field samples, the canisters were flushed five times with ambient air from a 100-

ft stainless steel sample line on the bow of the ship pulled by a metal bellows pump. All canisters 

were pressurized to 26 psi over approximately five minutes.  
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Figure 6- Cruise transect for the R/V Armstrong, with sampling stations marked  

 The ship’s crew made an effort to constantly orient the ship into the prevailing wind, and 

care was taken to not sample when the wind was blowing from the stern of the ship to avoid 

sampling ship exhaust. Additional source samples of ship exhaust and fuel tank venting were 

collected, and no evidence of either source was indicated in any samples through the presence of 

higher hydrocarbons or high acetylene values. Samples were collected roughly every four hours 

with higher frequency sampling at some stations and during Gulf Stream wall transits. No 

samples were collected from May 5th to May 7th due to inclement weather.  

2.2 Instrumental Analysis and Data Processing 

Canister samples were analyzed on a five-detector gas chromatograph equipped with two 

flame ion detectors (FID), two electron capture detectors (ECD), and a quadrupole mass 
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spectrometer (MS), and is depicted in Figure 7. The FID channel used a VF-1ms column with 

dimensions of 60 m x 0.32 mm x 1µm thick film and the EDC used a CP-PoraBond-Q column at 

25 m x 0.25 mm x 3 µm thick film coupled to a Restek XTI-5 column with dimensions of 30 m x 

0.25 mm x 0.25 µm thick film. A 700 torr aliquot (approximately 1500 cm3) of each sample was 

cryogenically trapped using liquid nitrogen on a 5 cm3 sample loop filled with glass beads and 

then desorbed by immersing the loop in boiling water and injected onto the instrument. 

 

 

 

 

 

 

 

 

  

Figure 7- Photograph of the five-detector GC/ECD/ECD/FID/FID/MS system 

Generated chromatograms were examined for over 80 VOC’s, including C2 – C10 

alkanes, C2 – C5 alkenes, C1 – C2 halocarbons, C6 – C9 aromatic hydrocarbons, traditional 

BVOCs, and oxygenated VOCs (OVOCs).  
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 For each compound to be quantified, multiple NIST-tracable standard cylinders were 

used to calculate response factors. The concentrations of the standard cylinders covered a broad 

range of concentration values in order to cover a variety of possible sample mixing ratios. 

Equation 2 outlines how mixing ratios for specific compounds [X] were calculated from the 

standard response factor (RF) and the chromatogram peak area (A):  

[X] = A / RF                                                             [eq. 2] 

 While over 80 VOCs were analyzed, many were consistently below the detection limits 

of the instrument, including the majority of the alkenes. This analysis will focus primarily on the 

compounds known or suspected to have biogenic sources and a high potential to contribute to 

SOA formation: the traditional BVOCs, OVOCs, and AH.  

2.3 Biological Ancillary Data  

2.3.1 Phytoplankton Cell Counts  

 Water samples were collected at each of the nine stations to examine phytoplakton 

populations present. At each station, samples were taken at various depths throughout the photic 

zone ranging from 10 – 90 m to cover a range in photosynthetically active radiation values. 

These samples were analyzed for cell counts including Prochlorococcus, Synechococcus, and 

other eukaryotic species using flow cytometry by the Chisholm Lab at the Massachusetts 

Institute of Technology. No cell count data was available for station 2 due to a lack of sampling 

caused by inclement weather. Table 3 gives the mean cell counts for both species of 

cyanobacteria.  
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Table 3- Mean cell counts for Prochlorococcus and Synechococcus at each sampling 

station, with the range for each value indicated in parentheses 

Station Prochlorococcus (cells/mL) Synechococcus (cells/mL) 

1 0.00 344 (369 – 308) 

3 76554 (15192 - 120252)  5824 (590 - 12910)  

4  43558 (21111 - 81362)  14150 (10331 – 19006) 

5 35458 (4913 – 83021) 12347 (10533 – 15766) 

6 33235 (2325 – 73949) 7953 (9630 – 6857) 

7 19564 (5162 – 33966) 6829 (6441 – 7218) 

8 37895 (11017 – 59346) 9789 (4145 – 13557) 

9 0 186090 (155554 – 199858) 

Note: No cell count data was collected at station 2 

2.3.2 Oceanographic and Meteorological Variables   

Throughout the research cruise, various meteorological and oceanographical data was 

collected. Seawater variables measured by a real-time flow through system including sea surface 

temperature (SST), fluorescence (FLR), and nitrate and phosphate concentrations. 

Meteorological variables measured by two Visala weather stations located at the forward mast of 

the ship included wind speed and direction, photosynthetically active radiation (PAR), relative 

humidity, and air temperature. These data were compiled at one-minute sampling frequency and 

data were averaged over the five-minute interval during which each canister collected.  
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3.0 Results 

3.1 Comparisons to Previous Values  

Table 4 gives the average mixing ratios for selected VOCs that may contribute to SOA 

formation sampled during the R/V Armstrong research cruise, compared to previously measured 

values. Samples showed a large range of concentration values and most compounds displayed 

high variability within their individual data.  

Examination of the small dataset available of previous observations of VOCs over marine 

atmospheres led to the values given in Table 4. Isoprene, α-Pinene, β-Pinene, MEK, methanol, 

OCS, methacrolein, acetonitrile, and ethanol fell within the previously reported concentration 

ranges by Lewis et al. (2001), Yassaa et al. (2008), Montzka et al. (2007), Gilman et al. (2008) 

and Singh et al. (2004), with MEK and β-Pinene technically within the range.19,33,41–43  

Acetone, benzene, toluene, and all the xylenes observed during this study were lower 

than values reported by other researchers. Greenberg & Zimmerman (1984) gave ranges for these 

compounds in units of parts per billion (ppb); however, we report mixing ratios with values in 

the parts per trillion (ppt) range.27 The variation in concentration may be a consequence of 

sampling location, as Greenberg & Zimmerman (1984) reported values of samples collected in 

the South Pacific Ocean along the coast of Peru, while our sampling took place in the North 

Atlantic. These low values indicate that this study sampled clean air masses with little 

anthropogenic influence. Both studies used GC/FID-MS for analysis and used similar 

mechanisms for sample collection, making it unlikely that the discrepancies are a result of 

differences in methodology.  
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Table 4- Previously measured concentrations from aromatic BVOCs in marine 

atmospheres compared to previously measured values  

Compound Average Mixing Ratio 

(pptv) ± standard 

deviation 

Range (pptv) Previously 

Reported Values 

Methanol 1010 (± 699) 0 – 6150  1096 (± 1246) 

pptv  
(Singh et al., 2004) 

Ethanol 311 (± 659) 0.12 - 5105 165 (± 246) pptv 
(Singh et al., 2004) 

Isoprene 4 (± 6) 0 – 57  26 (0 - 48) pptv 
(Yassaa et al., 2008) 

Acetone 1558 (± 946) 0 – 9081  4 (± 354) pptv 
(Singh et al., 2004) 

DMS 272 (± 274) 0 – 1229  2 -7 pptv 
(Carslaw et al., 

1999) 

Acetonitrile 42 (± 14) 0.18 – 75  --- 

Methacrolein 8 (± 8) 0.29 – 64  0.008  
(Gilman et al., 

2008) 

Methyl vinyl ketone 24 (± 8) 0 – 144  --- 

Methyl ethyl ketone 29 (± 32) 0 – 260  74 (± 90) pptv 
(Singh et al., 2004) 

Benzene 42 (± 18) 0 – 116  0.04 – 2.96 ppbv 
(Greenberg & 

Zimmerman, 1984) 

Toluene 28 (± 123) 0 – 1104  0.05 – 1.49 ppbv 
(Greenberg & 

Zimmerman, 1984) 

m + p xylene 9 (± 29) 0 – 213  0 – 0.31 ppbv 
(Greenberg & 

Zimmerman, 1984) 

o-xylene 5 (± 16) 0 – 119  0.04 – 0.77 ppbv 
(Greenberg & 

Zimmerman, 1984) 

α-Pinene 3 (± 7) 0 – 70  5 (0 – 15) pptv 
(Yassaa et al., 2008) 

β-Pinene 1 (± 1) 0 – 10  Not detected  
(Gilman et al., 

2008) 

OCS 221 (± 38) 77.31 – 391  478 (± 8) ppt 
(Montzka et al., 

2007) 

MBO 4 (± 4) 0 - 39 --- 
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3.2 Temporal and Spatial Variation 

Figure 8 shows time series created for each of the selected VOCs sampled, with mixing 

ratios of each compound plotted against the entire transect. The red bar shown in the figure 

indicates station 2, where no sampling took place.  All of the compounds (excluding benzene) 

show a similar trend, with elevated concentrations appearing towards the end of the transect 

(shown highlighted in green). While there is a bump in the acetone concentrations at those same 

dates (approximately May 22nd), the acetone concentrations actually dip slightly at the end of the 

series, a singularity not demonstrated in the other samples shown below.  

While benzene, toluene, and DMS show the elevated mixing ratios towards the end of the 

research cruise, the concentrations are more variable; toluene only has three points that really 

differ from the baseline and benzene concentrations drop after the initial peak in concentration. 

The DMS time series shows the most variability within these three compounds, with several 

large spikes in concentration followed by a sharp drop. DMS also shows a wide peak around the 

middle of May, a trend that is not shown in the other compounds. Marine sources of DMS are 

thought to be the largest in the world, with multiple species of phytoplankton known for 

producing and emitting DMS, which may explain some of the variability and higher 

concentrations shown in the time series below.17  

The high mixing ratios shown at the end of the cruise transect may correspond to a 

Synechococcus bloom that was sampled at the end of the research cruise at station 9. Diurnal 

variability was examined but showed no consistent trends.  
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Figure 8- Time series for selected VOCs. Red bar indicates no sampling, green bar 

indicates elevated mixing ratios at station nine  
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3.3 Evidence for Biogenic Production of Toluene 

3.3.1 Correlations to Tracer Compounds  

Various organic compounds are emitted from similar sources together, and thus will be 

found in similar ratios together. For example, the ratio of benzene and toluene is often used as a 

tracer for anthropogenic emissions, due to their presence in gasoline compounds.44 Figure 9 

shows the linear correlation plot between the concentrations of measured toluene and benzene, 

with the green line representing the background ratio present in the samples. The red line 

indicates a theoretical additional source of toluene, as the high toluene values correspond to 

lower benzene concentrations.  

 

 Figure 9- Comparison of toluene and benzene mixing ratios  
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 Chlorinated hydrocarbons are another organic compound that are often used as tracer 

molecules. Tetrachloroethylene (C2Cl4) is often used, as it is an extremely long-lived compound 

that is commonly used in industrial solvents. Figure 10 displays correlation plots created to 

compare the concentrations of toluene and benzene to tetrachloroethylene. Benzene shows a high 

correlation to the tracer compound, indicating an anthropogenic source of benzene. Again, 

toluene seems to display two possible trendlines; one corresponding to a background ratio of 

toluene to the tracer and a second indicating an additional, biogenic source of toluene.  

 

 

 

 

 

 

Figure 10- Comparison of toluene and benzene to tetrachloroethylene 
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 Back-trajectories were calculated for station 9, in order to confirm that the elevation in 

mixing ratios is not due to a source other than the Synechococcus bloom, the results of which are 

shown in Figure 11 below.  

 

Figure 11- Results of the back trajectories at station 9, created using the NOAA 

HYSPLIT Model and NAM meteorological data with a final altitude of 10 m 

 

The trajectories shown above show two patterns of air mass movement. Canisters 1424 

and 0432 both show air masses originating in the south west before reaching the sampling point, 

with both masses containing little to no toluene. Canisters 0331 and 0504 sampled air masses 

starting in the north over land, both of which contained higher mixing ratios of toluene. The 
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variability in the mixing ratios of the samples may indicate that the ship moved within the 

bloom, despite best efforts to remain stationary. However, prior to the 24-hour sampling period, 

none of the four air masses spent a large amount of time over land masses, and thus the toluene 

values are most likely not due to anthropogenic sources.  

Isoprene and DMS are both compounds known known to be emitted by phytoplankton 

and cyanobacteria, and thus can be used for biological tracers of phytoplankton emissions, as 

there should be a constant background ratio present in atmospheric samples.17,18 The plots shown 

in Figures 12 and 13 compare toluene to both compounds, with the background ratio shown by 

the blue trendline and higher toluene values shown by the red trendline. Figure 12 indicates that 

the additional source of toluene is shared by isoprene, due to the correlation between the two 

with the higher toluene values. This is corroborated by the correlations examined previously with 

anthropogenic tracers, all of which showed a supplementary source beyond the background 

ratios. Meanwhile, figure 13 shows no such correlation of toluene to DMS, indicating they do not 

share a similar source at station 9.  

 

 Figure 12- Comparison of toluene to isoprene as a tracer compound  
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Figure 13- Comparison of toluene to DMS as a tracer compound 
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lower latitudes where Prochlorococcus thrive, due to the lower nutrient content of the waters and 

higher temperatures.  

 

 

Figure 14- Correlations between mixing ratios and cell counts for isoprene, DMS, 

toluene, and benzene.  
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Synechococcus, which is due to a large Synechococcus bloom that was encountered during the 

last leg of the research cruise. This bloom may be responsible for the elevated mixing ratios seen 

in many of the compounds at station 9.   

Stations 3 and 4 contain the highest Prochlorococcus cell counts yet tend to associate 

with lower mixing ratios for isoprene and toluene. Within these two compounds, there is variety 

in the range of concentrations for the different stations. Station 7 was the south most station 

sampled, and waters may have been either too warm due to higher PAR levels (which might 

explain the lower cell counts). However, several of the boxplots show high outliers for the 

mixing ratios at station 7, which may be the result of an added source of isoprene and toluene. 

Benzene and DMS show elevated mixing ratios at station 1, which also happened to 

contain the lowest Synechococcus and Prochlorococcus cell counts. Due to the proximity of 

station 1 to land, these higher concentrations may be a result of terrestrial air masses 

contaminating the sampled air. DMS shows a large range of values at station 1 as well, which 

may be a result of terrestrial and marine air mixing. The time series for DMS also shows only a 

few outliers at higher concentrations, which may explain the larger variability seen for DMS. 

Benzene and DMS also show more variety with the variability of the mixing ratios than isoprene 

and toluene. For example, benzene and DMS show a wide spread for station 5 while isoprene 

shows none. The variability in benzene values may be associated with anthropogenic sources as 

well as biogenic ones, as benzene is known to enter the atmosphere through combustion of fossil 

fuels.2 

Overall, the mixing ratios for toluene and isoprene seem to be positively correlated to 

Synechococcus cell counts, with the highest mixing ratios associated with the Synechococcus 

bloom at station 9. There seems to be no visible correlation with the Prochlorococcus cell data, 



34 

 

with the highest mixing ratios occurring from stations 5 to 7. This data seems to indicate 

increased production of isoprene and toluene from Synechococcus.  

3.4 Implications of Biogenic Production 

3.4.1 Impacts on Hydroxyl Reactivity  

 Emissions of VOCs by biogenic sources have the potential to extend the life of various 

greenhouse gases such as methane. Given the elevated mixing ratios of various VOCs in the 

Synechococcus bloom, calculations were performed to identify the relative contribution of these 

higher mixing ratios compared to the transect values as a whole. Figure 15 compares the 

differences in hydroxyl reactivities for selected VOCs for the regional mean values and the 

Synechococcus bloom. The potential for phytoplankton blooms to increase relative hydroxyl 

reactivities by increased emissions of VOCs may be small, but the calculated differences 

between the average reactivity and that of the Synechococcus bloom demonstrates the ability of 

these blooms to affect global reactivity values. 

 

 Figure 15- Comparison of VOC hydroxyl reactivities to the Synechococcus bloom 

0.0

0.2

0.4

0.6

0.8

1.0

Regional Mean Syn. Bloom

A
ve

ra
ge

 O
H

 R
e

ac
ti

vi
ty

 
(1

/s
e

c)

CH4

CO

Sum Xylene

Toluene

Benzene

DMS

a-Pinene

isoprene

Sum OVOCs



35 

 

As seen in Figure 15 above, the majority of the hydroxyl reactivity comes from methane 

and carbon monoxide, which is expected in areas without large point sources of VOCs such as 

urban areas. Compounds such as toluene, isoprene, and the OVOCs in the Synechococcus bloom 

demonstrated increased hydroxyl reactivities compared to the regional bloom, with differences in 

relative contribution at 0.047, 0.260, and 0.021%, respectively.  However, the relative 

contribution of DMS hydroxyl reactivities decreased between the two groups by 0.013%; which 

corresponds to the low DMS mixing ratios sampled at station 9, as seen in the time series shown 

above in section 3.2. The relative contribution of compounds such as α-Pinene and the xylenes 

also increased by a minimal amount in the bloom, with a difference of 0.0007 and 0.0053 %, 

respectively.  

3.4.2 Impacts on Potential SOA Formation 

 The ability of marine cyanobacteria to emit VOCs and thus undergo attacks by hydroxyl 

radicals will have a corresponding effect on the potential for SOA formation. Previous SOA 

yields for specific VOCs measured by other researchers are given in Table 2 in section 1.2.2. 

These yields were used to calculate the potential for SOA formation above marine atmospheres, 

given the observed mixing ratios of various VOCs sampled by this research cruise. In order to 

examine the effect that emissions from marine phytoplankton may have on SOA formation, the 

potential maximum for SOA yields was calculated for only the Synechococcus bloom, to 

compare to the dataset as a whole. Figure 16 visually demonstrates this comparison.  
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 Figure 16- Calculated potential maximum SOA yields for various VOCs  
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4.0 Conclusions and Implications for Future Work 

Biological sources represent the largest source of VOCs to the atmosphere; however, our 

current understanding of the biosynthesis mechanisms behind BVOCs is severely lacking. 

BVOCs have a high potential for oxidation by hydroxyl radicals, and thus are a large source for 

SOA formation. Current climate models underpredict the amount of marine SOA formation, 

possibly due to a missing BVOC source. Marine cyanobacteria are known to emit various BVOC 

compounds such as isoprene, yet there is a deficiency of observed BVOC concentrations over 

marine atmospheres This work attempted to quantify certain BVOC concentrations and examine 

possible correlations to various marine cyanobacterial populations.  

Overall, increased emissions of BVOCs from marine cyanobacteria likely play an 

influential role in marine atmospheres, due to the increase in both hydroxyl reactivities and 

potential SOA yields during a Synechococcus bloom event. The VOCs sampled during this study 

are predicted to have biogenic origins due to relationships with tracer compounds, and were 

shown to be strongly associated with Synechococcus, with elevated mixing ratios corresponding 

to high cell counts around station 9.  

 The VOCs analyzed by this study will add to a scarce dataset of trace gases over marine 

atmospheres, as well as provide some insight into the possibility of marine cyanobacteria acting 

as a missing source for SOA formation. Future work will include more accurate source 

identification and apportionment, as well as eventual inclusion of these data into modeling 

systems.  
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