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Abstract 

 

Atonal music includes each of the twelve pitch-classes repeated equally within a 

composition. The composer then gives no preference to a particular subset of the twelve 

pitch-classes and avoids key-structure in the music, which is a significant part of the structure 

in traditional tonal music. A particular piece of atonal music is often written to favor a group 

of symmetric permutations of a given 12-tone row reached via the operations transposition, 

inversion, and retrograde. Here, we investigate symmetry in twelve-tone rows and apply 

these ideas to n-tone rows for microtonal systems. In terms of algebra, the goal is to count the 

unique groupings of permutations, or orbits, which can be reached via combinations of the 

three possible operations that preserve symmetry. 
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Introduction: Tonal vs. Atonal Music 

 Traditional Western-European style music contains twelve possible notes. These 

twelve notes, or pitch-classes, are {C, C#/Db, D, D#/Eb, E, F, F#/Gb, G, G#/Ab, A, A#/Bb, B}. 

In moving from one note to the next, we take a step of one semitone. Additionally, an entire 

jump of twelve semitones at a time increases a tone by one octave. Stepping by an octave 

occurs on a piano when jumping between successive C keys. As a note raises one octave the 

pitch of the note doubles in frequency, the speed of the sound vibration. Notes a whole 

number of octaves apart sound similar to the ear, and so we give them the same name 

forming a pitch-class. Finally, traditional tonal music is equal tempered meaning each step of 

a semitone increases the frequency by equal amounts. In the case of a twelve note system 

each step increases the pitch by a factor of 21/12 which is further discussed in AsKew, 

Kennedy, and Klima’s work [1]. Labeling the pitch-class C as 0, C#/Db as 1, D as 2 and so 

on, the twelve pitch-classes may be represented algebraically by the group ℤ12, the set              

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} together with the operation of addition modulo 12. 

However, in Western tonal music a given composition would typically emphasize repetitions 

of a particular subset of seven notes as dictated by the key of the music. A piece could be 

written according to the key of C-major which would feature only the white keys on a piano. 

In this instance, as shown in figure 1 to the left, 

the subset of notes {0, 2, 4, 5, 7, 9, 11} would be 

favored and arranged in the music along with the 

occasional sharp or flat. 

Atonal music by contrast does not showcase a favored key structure. Instead atonal 

music strive to maintain an even distribution for the occurrence count of each pitch class 

Figure 1: C-Major Scale 
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within a composition. As an example Hunter and Hippel [5] consider Schoenberg’s Serenade 

opus 24 movement 5 which was composed to feature symmetries of the prime row, shown in 

figure 3. The prime row represents a specific permutation or ordering of the twelve pitch-

classes. We may also think of this permutation as a bijection, p: Positions  Pitch Classes. 

Here we number the positions zero through eleven. For example, in figure 3 we see A = 9 

occurs in position 0 so then p(0) = 9. Similarly, since C = 0 occurs in position 2, p(2) = 0, etc. 

Therefore the prime row permutation, p, determines in what order the twelve notes are to be 

played. In this manner, the particular permutation p may be represented in the 2-row array 

notation format shown in figure 2. 

[
0     1     2     3     4     5     6     7     8     9     10     11
9    10    0     3     4     6     5     7     8    11     1        2 

] 

 

 Here the first row represents the positions, 0 through 11, and the second row 

showcases the outputted order of the notes. Alternatively, we can represent the prime row p 

using cycle notation, p = (0  9  11  2)(1  10)(5  6). The cycle notation indicates position 0 

maps to the 9th pitch-class, position 9 maps to the 11th pitch class, position 1 maps to the 10th 

pitch class, position 2 wraps back around to the 0th pitch class etc. Equivalently in one-row 

notation we have p = [9  10  0  3  4  6  5  7  8  11  1  2]. This indicates that the pitch class A 

will be played first, followed by A#/Bb, then C etc. Finally, this prime row p may be 

visualized geometrically as in figure 3. 

 

 

Figure 2: 2-Row Array Notation for the prime row p 
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The notes 0 through 11 go around clockwise to create a musical clock. The arrows 

represent the progression of notes in the prime row p = [9  10  0  3  4  6  5  7  8  11  1  2]. 

Starting from 9, 10 follows, then 0, and so on. As presented in figure 3 the dodecagon shape 

is equivalent to the treble clef representation of the prime row as it would appear on sheet 

music. Schoenberg’s Serenade then contained and sometimes favored permutations that 

resulted in shapes symmetric via operations of transposition, inversion, and retrograde to the 

one shown in figure 3. In this manner, permutations that result in geometric shapes 

symmetric to the one created in figure 3 will be a part of the same collection of elements 

which we define as RowClass12(p). For a more detailed history of atonal music see Haimo [3] 

and Headlam’s [4] writings on Schoenberg and Alban Berg’s atonal musical compositions. 

 

 

 

 

Figure 3: Prime Row p from Schoenberg’s Serenade [5] 

[9   10     0     3     4     6     5     7     8   11     1     2] 
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Introduction: The Problem 

 Since atonal music is built around reorderings of the same twelve notes, what we 

really care about are the possible permutations of twelve elements (i.e., the algebraic group 

S12). As explained by Fraleigh [2], Sn is of size n! where in our case n indicates the number 

of notes in our microtonal system. For the twelve note system, the goal is then to examine the 

RowClass constructed from a given element of S12. In their work Hunter and Hippel [5] 

describe the musical actions that result in symmetries of a given RowClass. These include 

transposition, inversion, and retrograde as possible operations. They then counted the number 

of unique RowClasses, or geometric shapes, which could be constructed via the above 

mentioned operations. In this paper we review their work and duplicate the results with the 

aim of extending their calculations to generic n-note microtonal systems. For an alternative 

approach consider Reiner’s [6] work on enumeration in music theory.  
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Row Operations: Transposition 

 First, we will examine the transposition operation. The name transposition comes 

from the musical term transpose which means to uniformly increase or decrease the pitch of 

all of the notes. In other words, to apply a transposition by one semitone we take note 0 and 

raise it to note 1 i.e. C to C#, etc. Algebraically, each note is simply being raised by a single 

semitone. Continuing with Schoenberg’s prime row as an example: 

Position     =     [       0       1       2       3       4       5       6       7       8       9       10       11       ] 

p                =     [       9      10      0       3       4       6       5       7       8      11       1         2        ] 

T1p            =     [      10     11      1       4       5       7       6       8       9       0        2         3        ] 

Here T1 denotes the operation of transposing once as a left action on the prime row p. 

Observe T1p is a composition of functions; p occurs first, mapping positions to notes then T 

is applied, and the note passed through is increased (mod 12). Also notice there are twelve 

possible transpositions as transposing the twelfth time will result in the original prime row, 

for example, 9 + 12 mod 12 = 9. Alternatively, this same operation may be observed 

geometrically in figure 4. 

 

T1 

  

 

 T1p then is represented as [10  11  1  4  5  7  6  8  9  0  2  3] which is equivalent to the 

dodecagon on the right in figure 4. Here the shape of the permutation as drawn by the arrows 

Figure 4: Transposition by 1 represented geometrically 
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has not changed; however, the labels have rotated by (360
12⁄ )0 in the counter clockwise 

direction. The two permutations, p and T1p, are considered to be symmetric and belong to the 

same RowClass.  

 Finally, observe from the geometric picture that the musical clock has been rotated 

once counterclockwise. In general this is true as we continue to apply transpositions until the 

twelfth time when the clock has wrapped around full circle. Thus transpositions of n-note 

rows act as rotations in the Dihedral Groups Dn (see [2] for details). However, Dihedral 

groups concern the symmetries of a non-directed figure and so the directions of the arrows 

are ignored (i.e. remains fixed) when a rotation is applied. 

 

Row Operations: Inversion 

Next, we will examine the second row operation, inversion. As an introduction, first 

consider the more formal definition of a Dihedral group given in [2]: 

Dn = { x, y | xn = 1, y2 = 1, (xy)2 = 1 }. 

Here n denotes the number of nodes, x denotes a rotation, and y denotes a reflection. 

We have observed that transposition acts a rotation in Dn, inversion behaves similarly as a 

reflection. 

 Inversion is easier to describe geometrically rather than algebraically. First place an 

axis of rotation on the original row diagram then reflect the note labels across this line. Let l 

be the line of reflection passing through the note in the first position of our prime row, p.  We 

take reflection across l as our initial operation y in the Dihedral group. The other reflections 
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can then be reached by first transposing then applying this reflection. Figure 5 illustrates 

inversion as applied to the prime row from Schoenberg’s Serenade.  

 

I0 

  

 

 Here I0 denotes inversion as an operation being applied to the prime row p. Then the 

notes are reflected across the axis of reflection and so note 10 swaps with 8, note 11 with 

note 7, note 0 with note 6, note 1 with note 5, and note 2 with note 4. Notice 9 and 3 remain 

in their same position given that they lie on the line of reflection. 

We can represent this inversion algebraically as follows 

position = [ 0 1 2 3 4 5 6 7 8 9 10 11 ] 

p = [ 9 10 0 3 4 6 5 7 8 11 1 2 ] 

I0p = [ 9 8 6 3 2 0 1  11 10 7 5 4 ] 

 In general a prime row may be written as [P0, P1, …, P11] and when we apply I0 we 

may write the resulting row as [P0, 2P0 - P1,  …, 2P0 - P11] mod 12 [5]. Note that applying an 

inversion again will result in the same original prime row p. In this case the inversion 

operation is more clearly seen as being equivalent to a reflection operation.  

 

Figure 5: Inversion represented geometrically 
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Row Operations: Retrograde 

The retrograde operation simply reverses the arrows in our geometric representation of the 

prime row as seen in figure 6. 

 

 

 

R 

 

 

Because this operation directly deals with the arrows of our object, algebraically we 

must first apply retrograde to reverse the initial position row prior to applying the 

permutation for the prime row p. That is retrograde occurs as a right action on p. Retrograde 

may then be represented in cycle notation as R = (0  11)(1  10)(2  9)(3  8)(4  7)(5  6) which is 

equivalent to R = [11  10  9  8  7  6  5  4  3  2  1  0] in one row notation. So therefore, 

position = [ 0 1 2 3 4 5 6 7 8 9 10 11 ] 

R = [ 11 10 9 8 7 6 5 4 3 2 1 0 ] 

pR = [ 2 1 11 8 7 5 6  4 3 0 10 9 ] 

 Notice when pR is compared against the original p, pR is just p in the reverse 

direction. Again, the original shape created from the arrows has been maintained and the 

permutations are considered to be symmetric. Note that the Dihedral groups contain rigid 

nodes of non-directed regular n-gons. Here similarities with the Dihedral end; however, what 

correlations we have seen will be useful as we continue forward. More specifically, as we 

Figure 6: Retrograde represented geometrically 
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work towards calculating all of the permutations that belong to the RowClass12(p) we will be 

calculating the double coset DpR with Dihedral operations and retrograde operation 

occurring as left and right actions respectively on the original prime row p.  

 

Row Operations: Non-symmetric Permutations 

 As an example of a permutation that would not be symmetric to our prime row p, and 

so would not be an element of RowClass12(p), consider the row q = [0  1  2  3  4  5  6  7  8  9  

10  11]. Geometrically, we can plainly see that these two permutations are not symmetric, as 

illustrated in figure 7. 

  

 Additionally as a proof by exhaustion, this may be seen algebraically as we can 

calculate all of the possible operations’ results on the row q which is done in figure 8. 

 

 

 

Figure 7: Non-Symmetric Rows 
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Transpositions Inversions 

T0q = [0 1 2 3 4 5 6 7 8 9 10 11] 

T1q = [1 2 3 4 5 6 7 8 9 10 11 0] 

T2q = [2 3 4 5 6 7 8 9 10 11 0 1] 

T3q = [3 4 5 6 7 8 9 10 11 0 1 2] 

T4q = [4 5 6 7 8 9 10 11 0 1 2 3] 

T5q = [5 6 7 8 9 10 11 0 1 2 3 4]  

T6q = [6 7 8 9 10 11 0 1 2 3 4 5] 

T7q = [7 8 9 10 11 0 1 2 3 4 5 6] 

T8q = [8 9 10 11 0 1 2 3 4 5 6 7] 

T9q = [9 10 11 0 1 2 3 4 5 6 7 8] 

T10q = [10 11 0 1 2 3 4 5 6 7 8 9] 

T11q = [11 0 1 2 3 4 5 6 7 8 9 10] 

IT0q = [0 11 10 9 8 7 6 5 4 3 2 1] 

IT1q = [1 0 11 10 9 8 7 6 5 4 3 2] 

IT2q = [2 1 0 11 10 9 8 7 6 5 4 3] 

IT3q = [3 2 1 0 11 10 9 8 7 6 5 4] 

IT4q = [4 3 2 1 0 11 10 9 8 7 6 5] 

IT5q = [5 4 3 2 1 0 11 10 9 8 7 6] 

IT6q = [6 5 4 3 2 1 0 11 10 9 8 7] 

IT7q = [7 6 5 4 3 2 1 0 11 10 9 8] 

IT8q = [8 7 6 5 4 3 2 1 0 11 10 9] 

IT9q = [9 8 7 6 5 4 3 2 1 0 11 10] 

IT10q = [10 9 8 7 6 5 4 3 2 1 0 11] 

IT11q = [11 10 9 8 7 6 5 4 3 2 1 0] 

Retrograde 

qR = [11 10 9 8 7 6 5 4 3 2 1 0] = IT11q 

 

Here we have generated all of the elements of RowClass12(q), none of which equal        

p = [9  10  0  3  4  6  5  7  8  11  1  2]. Therefore, q and p are not symmetric. However, the 

figure 8 calculations also showcase another curiosity; we have overlap in results from our 

operations. As shown above, qR = IT11q. This occurred because for some RowClasses the 

retrograde operation will not be required as retrograde will be equivalent to some operation 

offered by the Dihedral group. Additionally, because the retrograde of q is captured each of 

the possible retrograde combinations will also be absorbed by some operation in the Dihedral 

group. We will see additional examples of this phenomenon in chapters 3 and 4. 

 

 

 

 

Figure 8: RowClass12(q) 
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RowClass Structure: RowClass Cardinality 

In this section we work to determine the cardinality of RowClass12(α). Let           

α ∈ S12, where the chosen α results in overlap between the retrograde operation and the 

Dihedral operations then |RowClass12(α)| = 24 [5]. We saw an example in figure 7 using the 

prime row α = q = [0  1  2  3  4  5  6  7  8  9  10  11]. The general case will follow a similar 

format, shown in figure 9. 

Transpositions Inversions 

T0α 

T1α 

T2α 

T3α 

T4α 

T5α 

T6α 

T7α 

T8α 

T9α 

T10α 

T11α 

IT0α 

IT1α 

IT2α 

IT3α 

IT4α 

IT5α 

IT6α 

IT7α 

IT8α 

IT9α 

IT10α 

IT11α 

 

 Here, just as it happened for q, αR will be equivalent to one of the above listed 

operations. In this case, where retrograde is equivalent to some operation in the Dihedral 

group, the number of symmetric permutations will be equal to the size of the Dihedral group 

which, depending on n, is 2n or 24 when working in a traditional 12-note microtonal system. 

 Finally we consider when a given α does not yield overlap between the retrograde 

operation and the Dihedral operations. In this case, for each of the Dihedral operations 

retrograde may be applied in addition as seen in figure 10. 

Figure 9: RowClass12(α) with Overlap 
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Transpositions Inversions 

T0α 

T1α 

T2α 

T3α 

T4α 

T5α 

T6α 

T7α 

T8α 

T9α 

T10α 

T11α 

IT0α 

IT1α 

IT2α 

IT3α 

IT4α 

IT5α 

IT6α 

IT7α 

IT8α 

IT9α 

IT10α 

IT11α 

Retrograde 

T0αR 

T1αR 

T2αR 

T3αR 

T4αR 

T5αR 

T6αR 

T7αR 

T8αR 

T9αR 

T10αR 

T11αR 

IT0αR 

IT1αR 

IT2αR 

IT3αR 

IT4αR 

IT5αR 

IT6αR 

IT7αR 

IT8αR 

IT9αR 

IT10αR 

IT11αR 

 

With retrograde applied we double the number of unique possible operations and 

|RowClass12(α)| = 48 [5]. In general when αR ≠ dα for any d ∈ Dn we have |RowClass12(α)| = 

2 * |Dn| = 4n. 

 

 

 

Figure 10: RowClass12(α) with no Overlap 
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RowClass Structure: Unique RowClasses 

 Now that we can count the number of permutations contained within a given 

RowClass, we work to calculate the number of unique RowClasses. In other words, we will 

determine the number of unique geometric shapes within a 12-note system that are not 

symmetric to one another. Using notation introduced by Hunter and Hippel [5], we define the 

set of all unique RowClasses as follows: 

T = { DαR | α ∈ S12 }. 

 For the DαR construction we have two possibilities: 1) Dα ∩ DαR = ∅ or 2) Dα = 

DαR. In other words, we either have no overlap between the Dihedral operations with the 

retrograde operation or there is complete overlap. For ease of calculation let us begin by 

supposing Dα = DαR and count the number of RowClasses in the case that there is complete 

overlap. It follows algebraically: 

Dα = DαR, 

D = DαRα-1. 

 So we are looking for the instances when αRα-1 ∈ D. The construction αRα-1 means R 

is conjugated with α; Remember R = (0  11)(1  10)(2  9)(3  8)(4  7)(5  6) and as Fraleigh 

explains in [2] conjugation preserves cycle structure. Hence conjugates of R must contain 

exactly six 2-cycles where a 2-cycle is simply a switching of two notes i.e. (0  1). First, we 

will count the number of distinct conjugates of R, then we can determine how many α’s yield 

a specific conjugate. To count the distinct conjugates we need to know how many distinct 

conjugates of six 2-cycles exist. For instance,  the cycle c = (0  11)(1  10)(2  9)(3  8)(4  7)(5  

6) and cycle d = (11 0)(1  10)(2  9)(3  8)(4  7)(5  6) are the same because (0  11) and (11  0) 
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are the two ways of notating the single permutation that switches 0 and 11. We then have two 

equivalent results and this can happen six times for each possible 2-cycle. At this point, we 

know we have no more than 12! / 26 distinct conjugates. Additionally, when g = (1  10)(0  

11)(2  9)(3  8)(4  7)(5  6) then c = g. This is because swapping two 2-cycles does not change 

the interpretation. We have 6! ways of writing the same conjugate via re-orderings, giving  

12!

26 ∗ 6!
 

 We now have 12! permutations being pigeon holed into 
12!

26∗6!
 distinct conjugates. 

Therefore 26 * 6! α’s map R to each of its conjugates. 

Next, we find the distinct conjugates of R within the Dihedral group. For this it will 

again be helpful to think about the cycle structure of retrograde where nodes are 

interchanged. In this respect, reflections would seem like promising conjugates of R; 

however, because twelve is even only half of the reflections will pass through two nodes and 

so leave them fixed. We then see only half of the reflections appear as conjugates of R. 

Among the rotations only the rotation by 180o, or T6, will result in nodes flipping with one 

another in the fashion we desire. Then 26 * 6! α’s conjugate R to each of the 7 possible 

Dihedral operations. 

Therefore, within a 12-note system we now know that there are 26 * 6! * 7 α’s for 

which Dα = DαR as αR is equivalent to some Dihedral operation. However, we are counting 

the number of RowClasses for which this happens and so we should divide by the number of 

α’s within each RowClass. As calculated in the last section, we know a single RowClass with 

distinct conjugates of R. 
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complete overlap contains 24 permutations. Therefore, within the 12-note system we have 

26∗6!∗7

24
 unique RowClasses containing complete overlap between R and D.   

Lastly, we have 12! – 26 * 6! * 7 elements of S12 left to consider. These are exactly 

the permutations, α, for when αR ∉ D. We take this as the number of α’s for which retrograde 

is needed to generate the RowClass and divide by 48, the number of α’s that would be 

contained within each RowClass. Putting our counts together leads to the count of the distinct 

RowClasses given in Theorem 1. 

Theorem 1 [5]: Let T = { DαR | α ∈ S12 } where D is the dihedral group associated with a 

regular 12-gon and R = (0  11) (1  10) (2  9) (3  8) (4  7) (5  6) then  

|𝑇| =
26∗6!∗7

24
+

12!−26∗6!∗7

48
= 13,440 + 9,972,480 = 9,985,920. 
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Examples: 3-note Microtonal System 

 As a concrete example, consider the 3-note microtonal system. Here all 3-tone rows 

are elements of 

S3 = { (0), (0  1), (0  2), (1  2), (0  1  2), (0  2  1) }. 

 Because S3 is so small we can simply calculate the elements in each RowClass as 

seen below: 

RowClass3(α1) for α1 = [0 1 2] 

T0α 

T1α 

T2α 

Iα 

IT1α 

IT2α 

=  [0 1 2]  = 

=  [1 2 0]  = 

=  [2 0 1]  = 

=  [0 2 1]  = 

=  [1 0 2]  = 

=  [2 1 0]  = 

(0) 

(0  1  2) 

(0  2  1) 

(1  2) 

(0  1) 

(0  2) 

 

 As seen in figure 11 all six permutations in S3 are elements of D3α, and here including 

retrograde will not add additional rows. More specifically αR = [2 1 0] = IT2α and so 

overlaps with a Dihedral operation. 

Therefore a 3-note microtonal system leads to only one RowClass represented 

geometrically in figure 12. 

 

Figure 11: RowClass3(α) 

Figure 12: RowClass3(α) geometrically 
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This result is not surprising. If we take a 3-node equilateral shape and draw two 

straight lines, the only possible shape is a triangle. Here the dotted line maps the last note in 

the 3-tone row back to the first.  

We can also conclude we have only one RowClass of 3-tone rows using a counting 

argument mirroring our 12-tone argument. We start by observing that in the 3-note system 

retrograde is given by R = (0  2). As before we take 3!, divide by the number of equivalent 

conjugates of R, and take the denominator 21 * 1! to indicate the number of α’s that conjugate 

with R to return R. 

Next we consider conjugates of R in D3, that is we look for elements of D3 with the 

same cycle structure as found in R. All of the reflections in D3 maintain this structure. 

However, because n = 3 is odd we have no rotation by 180o. Therefore, we have 21 * 1! * 3 

α’s that have complete overlap between D and R. Mirroring our construction of Theorem 1 

we then have a Theorem 2. 

Theorem 2: Let T = { DαR | α ∈ S3 } where D is the dihedral group associated with a 

regular 3-gon and R = (0  2) then 

|𝑇| =
21 ∗ 1! ∗ 3

6
+

3! − 21 ∗ 1! ∗ 3

12
= 1 + 0 = 1 . 

Our algebraic result agrees with our direct computations. We have only one unique 

RowClass in a 3-note microtonal system. 
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Examples: 4-note Microtonal System 

 Four-tone rows are elements of the group S4, a group of order 4! = 24. Here we will 

first consider a combinatorial argument so as to get an idea of how many RowClasses we 

should expect to find using direct calculations. Again, we start by considering R in cycle 

notation as it would appear in a 4-note microtonal system. Now R = (0  3) (1  2). As before 

we take 4!, divide by the number of equivalent conjugates, and take the denominator 22 * 2! 

to indicate the number of α’s that conjugate with R to return R. 

Next we consider the conjugates of R in D4, that is we look for elements of D4 with 

the same cycle structure as R. In the same manner as our 12-note system, only half of the 

reflections have this cycle-structure, giving 2 possible reflections. Additionally, because 4 is 

even D4 contains the rotation by 180o, or T2 = (0  2) (1  3). Therefore, we have 22 * 2! * 3 α’s 

that will have complete overlap between D and R. Mirroring our presentation of Theorem 1 

we have 

Theorem 3: Let T = { DαR | α ∈ S4 } where D is the dihedral group associated with a 

regular 14-gon and R = (0  3) (1  2) then 

|𝑇| =
22 ∗ 2! ∗ 3

8
+

4! − 22 ∗ 2! ∗ 3

16
= 3 + 0 = 3 . 

 Now we know to expect 3 possible unique RowClasses in the 4-note microtonal 

system. More than that, we also know to expect that all three RowClasses can be generated 

without retrograde due to the 0 term in Theorem 3. Direct calculations confirm this in figure 

13. 
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RowClass4(α1) for α1 = [0 1 2 3] RowClass4(α2) for α2 = [0 1 3 2] 

α1 

T1α1 

T2α1 

T3α1 

Iα1 

IT1α1 

IT2α1 

IT3α1 

=  [0 1 2 3]  = 

=  [1 2 3 0]  = 

=  [2 3 0 1]  = 

=  [3 0 1 2]  = 

=  [0 3 2 1]  = 

=  [1 0 3 2]  = 

=  [2 1 0 3]  = 

=  [3 2 1 0]  = 

(0) 

(0 1 2 3) 

(0 2)(1 3) 

(0 3 2 1) 

(1 3) 

(0 1)(2 3) 

(0 2) 

(0 3)(1 2) 

α2 

T1α2 

T2α2 

T3α2 

Iα2 

IT1α2 

IT2α2 

IT3α2 

=  [0 1 3 2]  = 

=  [1 2 0 3]  = 

=  [2 3 1 0]  = 

=  [3 0 2 1]  = 

=  [0 3 1 2]  = 

=  [1 0 2 3]  = 

=  [2 1 3 0]  = 

=  [3 2 0 1]  = 

(2 3) 

(0 1 2) 

(0 2 1 3) 

(0 3 1) 

(1 3 2) 

(0 1) 

(0 2 3) 

(0 3 1 2) 

 

 

RowClass4(α3) for α3 = [3 1 2 0] 

α3 

T1α3 

T2α3 

T3α3 

Iα3 

IT1α3 

IT2α3 

IT3α3 

=  [3 1 2 0]  = 

=  [0 2 3 1]  = 

=  [1 3 0 2]  = 

=  [2 0 1 3]  = 

=  [3 1 0 2]  = 

=  [0 2 1 3]  = 

=  [1 3 2 0]  = 

=  [2 0 3 1]  = 

(0 3) 

(1 2 3) 

(0 1 3 2) 

(0 2 1) 

(0 3 2) 

(1 2) 

(0 1 3) 

(0 2 3 1) 

 

As seen in figure 13, all 24 permutations are represented, and there is no crossover 

between these three unique sets. Geometrically, they create three unique shapes that are not 

symmetric to one another as displayed in figure 14.  

 

 

 

Figure 13: RowClass4(α1), RowClass4(α2), and RowClass4(α3) 

Figure 14: RowClass4(α1), RowClass4(α2), and RowClass4(α3) geometrically left to right 
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Examples: 5-note Microtonal System 

 As a final example we will examine the five-note microtonal system. Not only is this 

another odd n-note system, but five is the smallest n for which retrograde will be needed in 

order to generate all of our RowClasses. We then continue as before thinking of S5, a group 

of order 5! = 120, as the collection of all 5-note rows. 

 Again, we first consider a combinatorial argument to get an idea of how many 

RowClasses we should expect to find by direct calculations. We start by considering R in 

cycle notation as it would appear in a 5-note microtonal system. Now R = (0  4) (1  3). 

Following our previous work we take 5!, divide by the number of equivalent conjugates of R, 

and take the denominator 22 * 2! to indicate the number of α’s that conjugate with R to return 

R. 

Next, we consider the conjugates of R in D5, that is we look for elements of D5 with 

the same cycle structure. As in our 3-note system, each of the five reflections in D5 have this 

structure. But, because this is an odd Dihedral we do not have the rotation by 180o. 

Therefore, we have 22 * 2! * 5 α’s that will have complete overlap between D and R. 

Mirroring our presentation of Theorem 1 we have 

Theorem 4: Let T = { DαR | α ∈ S5 } where D is the dihedral group associated with a 

regular 5-gon and R = (0  4) (1  3) then 

|𝑇| =
22 ∗ 2! ∗ 5

10
+

5! − 22 ∗ 2! ∗ 5

20
= 4 + 4 = 8 . 
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 Now we know to expect 8 possible unique RowClasses in the 5-note microtonal 

system. More than that, we also know to expect four of them to not require retrograde and to 

expect four of them to require retrograde in order to generate the sets. 

 Again, we verify our combinatorial results using direct calculations. Figures 15 and 

16 give the four RowClasses that do not require retrograde to be generated. 

RowClass5(α1) for α1 = [0 1 2 3 4] RowClass5(α2) for α2 = [1 3 0 2 4] 

α1 

T1α1 

T2α1 

T3α1 

T4α1 

Iα1 

IT1α1 

IT2α1 

IT3α1 

IT4α1 

=  [0 1 2 3 4]  = 

=  [1 2 3 4 0]  = 

=  [2 3 4 0 1]  = 

=  [3 4 0 1 2]  = 

=  [4 0 1 2 3]  = 

=  [0 4 3 2 1]  = 

=  [1 0 4 3 2]  = 

=  [2 1 0 4 3]  = 

=  [3 2 1 0 4]  = 

=  [4 3 2 1 0]  = 

(0) 

(0 1 2 3 4) 

(0 2 4 1 3) 

(0 3 1 4 2) 

(0 4 3 2 1) 

(1 4)(2 3) 

(0 1)(2 4) 

(0 2)(3 4) 

(0 3)(1 2) 

(0 4)(1 3) 

α2 

T1α2 

T2α2 

T3α2 

T4α2 

Iα2 

IT1α2 

IT2α2 

IT3α2 

IT4α2 

=  [1 3 0 2 4]  = 

=  [2 4 1 3 0]  = 

=  [3 0 2 4 1]  = 

=  [4 1 3 0 2]  = 

=  [0 2 4 1 3]  = 

=  [1 4 2 0 3]  = 

=  [2 0 3 1 4]  = 

=  [3 1 4 2 0]  = 

=  [4 2 0 3 1]  = 

=  [0 3 1 4 2]  = 

(0 1 3 2) 

(0 2 1 4) 

(0 3 4 1) 

(0 4 2 3) 

(1 2 4 3) 

(0 1 4 3) 

(0 2 3 1) 

(0 3 2 4) 

(0 4 1 2) 

(1 3 4 2) 

 

RowClass5(α3) for α3 = [1 2 0 3 4] RowClass5(α4) for α4 = [4 1 2 3 0] 

α3 

T1α3 

T2α3 

T3α3 

T4α3 

Iα3 

IT1α3 

IT2α3 

IT3α3 

IT4α3 

=  [1 2 0 3 4]  = 

=  [2 3 1 4 0]  = 

=  [3 4 2 0 1]  = 

=  [4 0 3 1 2]  = 

=  [0 1 4 2 3]  = 

=  [1 0 2 4 3]  = 

=  [2 1 3 0 4]  = 

=  [3 2 4 1 0]  = 

=  [4 3 0 2 1]  = 

=  [0 4 1 3 2]  = 

(0 1 2) 

(0 2 1 3 4) 

(0 3)(1 4) 

(0 4 2 3 1) 

(2 4 3) 

(0 1)(3 4) 

(0 2 3) 

(0 3 1 2 4) 

(0 4 1 3 2) 

(1 4 2) 

α4 

T1α4 

T2α4 

T3α4 

T4α4 

Iα4 

IT1α4 

IT2α4 

IT3α4 

IT4α4 

=  [4 1 2 3 0]  = 

=  [0 2 3 4 1]  = 

=  [1 3 4 0 2]  = 

=  [2 4 0 1 3]  = 

=  [3 0 1 2 4]  = 

=  [4 2 1 0 3]  = 

=  [0 3 2 1 4]  = 

=  [1 4 3 2 0]  = 

=  [2 0 4 3 1]  = 

=  [3 1 0 4 2]  = 

(0 4) 

(1 2 3 4) 

(0 1 3)(2 4) 

(0 2)(1 4 3) 

(0 3 2 1) 

(0 4 3)(1 2) 

(1 3) 

(0 1 4)(2 3) 

(0 2 4 1) 

(0 3 4 2) 

 

Figures 15 and 16 represent 40 permutations, and there is no crossover between these 

four unique sets. We also know these four RowClasses do not require retrograde as α1R = [4 

Figure 15: RowClass5(α1) and RowClass5(α2) 

Figure 16: RowClass5(α3) and RowClass5(α4) 
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3 2 1 0] = IT4α1, α2R = [4 2 0 3 1] = IT3α2, α3R = [4 3 0 2 1] = IT3α3, and α4R = [0 3 2 1 4] = 

IT1α4. Geometrically, the RowClasses in figures 15 and 16 create four unique shapes that are 

not symmetric to one another as displayed in figure 17.  

 

  

Lastly, we will show the four remaining RowClasses within the 5-note system that do 

require retrograde. Because each of these RowClasses have 20 elements we will abbreviate 

their elements as seen in figures 18 and 19. 

RowClass5(α5) for α5 = [1 0 2 3 4] RowClass5(α6) for α6 = [3 1 2 0 4] 

α5 

… 

T4α5 

Iα5 

… 

IT4α5 

α5R 

… 

T4α5R 

Iα5R 

… 

IT4α5R 

=  [1 0 2 3 4]  = 

… 

=  [0 4 1 2 3]  = 

=  [1 2 0 4 3]  = 

… 

=  [0 1 4 3 2]  = 

=  [4 3 2 0 1]  = 

… 

=  [3 2 1 4 0]  = 

=  [4 0 1 3 2]  = 

… 

=  [3 4 0 2 1]  = 

(0 1) 

… 

(1 4 3 2) 

(0 1 2)(3 4) 

… 

(2 4) 

(0 4 1 3) 

… 

(0 3 4)(1 2) 

(0 4 2 1) 

… 

(0 3 2)(1 4) 

α6 

… 

T4α6 

Iα6 

… 

IT4α6 

Α6R 

… 

T4α6R 

Iα6R 

… 

IT4α6R 

=  [3 1 2 0 4]  = 

… 

=  [2 0 1 4 3]  = 

=  [3 0 4 1 2]  = 

… 

=  [2 4 3 0 1]  = 

=  [4 0 2 1 3]  = 

… 

=  [3 4 1 0 2]  = 

=  [4 3 1 2 0]  = 

… 

=  [3 2 0 1 4]  = 

(0 3) 

… 

(0 2 1)(3 4) 

(0 3 1)(2 4) 

… 

(0 2 3)(1 4) 

(0 4 3 1) 

… 

(0 3)(1 4 2) 

(0 4)(1 3 2) 

… 

(0 3 1 2) 

 

 

 

 

 

Figure 17: RowClass5(α1), RowClass5(α2), RowClass5(α3), and RowClass5(α4)  

geometrically left to right 

Figure 18: RowClass5(α5) and RowClass5(α6) 
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RowClass5(α7) for α7 = [2 0 1 3 4] RowClass5(α8) for α8 = [3 0 2 1 4] 

α7 

… 

T4α7 

Iα7 

… 

IT4α7 

α7R 

… 

T4α7R 

Iα7R 

… 

IT4α7R 

=  [2 0 1 3 4]  = 

… 

=  [1 4 0 2 3]  = 

=  [2 4 3 1 0]  = 

… 

=  [1 3 2 0 4]  = 

=  [4 3 1 0 2]  = 

… 

=  [3 2 0 4 1]  = 

=  [4 0 2 3 1]  = 

… 

=  [3 4 1 2 0]  = 

(0 2 1) 

… 

(0 1 4 3 2) 

(0 2 3 1 4) 

… 

(0 1 3) 

(0 4 2 1 3) 

… 

(0 3 4 1 2) 

(0 4 1) 

… 

(0 3 2 1 4) 

α8 

… 

T4α8 

Iα8 

… 

IT4α8 

α8R 

… 

T4α8R 

Iα8R 

… 

IT4α8R 

=  [3 0 2 1 4]  = 

… 

=  [2 4 1 0 3]  = 

=  [3 1 4 0 2]  = 

… 

=  [2 0 3 4 1]  = 

=  [4 1 2 0 3]  = 

… 

=  [3 0 1 4 2]  = 

=  [4 2 1 3 0]  = 

… 

=  [3 1 0 2 4]  = 

(0 3 1) 

… 

(0 2 1 4 3) 

(0 3)(2 4) 

… 

(0 2 3 4 1) 

(0 4 3) 

… 

(0 3 4 2 1) 

(0 4)(1 2) 

… 

(0 3 2) 

 

Figures 18 and 19 represent all 80 remaining permutations, and there is no crossover 

between these four unique sets. Geometrically, the RowClasses in figures 18 and 19 create 

four unique shapes that are not symmetric to one another as displayed in figure 20.  

 

 

 

 

 

 

 

Figure 20: RowClass5(α5), RowClass5(α6), RowClass5(α7), and RowClass5(α8) 

geometrically left to right 

Figure 19: RowClass5(α7) and RowClass5(α8) 
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Generalization: Equation for Even n-note Microtonal Systems (n ≥ 4) 

 We model our calculations for even n-note microtonal systems after the combinatorial 

approach taken in the 4 and 12 note systems. We know all of the possible permutations will 

be elements of Sn and have n! orderings. Additionally, we need the general cycle notation 

format for retrograde in the even case: R = (0  n-1) (1  n-2)…(
𝑛−2

2
   

𝑛

2
). As we can see from all 

previous examples, the first position swaps with the last position, the second position swaps 

with the next to last position, and so on until the two middle positions are swapped.  

 As before we begin by considering the case where Dα = DαR to determine the 

number of unique RowClasses with complete overlap between R and D. We start by 

determining the distinct conjugates of R. As seen from the general cycle notation of R there 

are n/2 2-cycles. For each of these 2-cycles flipping the elements result in the same 2-cycle 

(i.e., (0  n-1) = (n-1  0)) and so we get 2n/2 equivalent conjugate results. Additionally, if the 2-

cycles are rearranged then we still have equivalent results (i.e., (0  n-1) (1  n-2) = (1  n-2) (0  

n-1)). So because there are n/2 2-cycles, there are (n/2)! reorderings of a given conjugate 

result. Then it follows that we have 
𝑛!

2𝑛/2∗
𝑛

2
!
 distinct conjugates of R. 

 We have n! permutations being pigeon holed into 
𝑛!

2𝑛/2∗
𝑛

2
!
 possible conjugates. 

However, as we are counting for the case where retrograde completely overlaps with the 

Dihedral group, we more specifically care about the number of α’s that preserve R when 

conjugated. This equals the number of a’s that give results in a single pigeon hole, or         

2n/2 * 
𝑛

2
!. 
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Next, we also have to account for how many distinct conjugates of R are in the 

Dihedral group. For this it will again be helpful to think about the cycle structure of 

retrograde and take the number of reflections with this cycle structure. For even n, half of the 

reflections in Dn will pass through two nodes and so hold them fixed. The other half of the 

reflections have the same cycle structure of R. Among the rotations we again have the 

rotation by 180o, or T n/2. Thus yielding a total of 2𝑛/2 ∗ (𝑛
2⁄ )! ∗ ( 𝑛 2⁄ + 1) α’s that have 

complete overlap with R since 2n/2 * 
𝑛

2
! α’s conjugate to each of the 

𝑛

2
 + 1 possible Dihedral 

operations.  

However, we are trying to count the number of RowClasses for which this happens 

and so we should divide by the number of α’s that will belong to each RowClass. In this case 

we only have Dihedral operations, and so we know there will be 2n permutations contained 

in a single RowClass with complete overlap. Therefore within an even n-note microtonal 

system we have 
2𝑛/2∗(𝑛

2⁄ )!∗(𝑛
2⁄ +1)

2𝑛
  unique RowClasses containing complete overlap 

between R and D. 

 Finally, to account for the case where we have no overlap between R and D we 

simply remove from the n! elements of Sn all possible α’s that have already been counted to 

get 𝑛! − 2𝑛/2 ∗ (𝑛
2⁄ )! ∗ ( 𝑛 2⁄ + 1) α’s for which retrograde is needed to generate the 

RowClass. We then divide by the number of α’s that would be contained within each 

RowClass which would be 4n, double the Dihedral operations. Thus  
𝑛!−2𝑛/2∗(𝑛

2⁄ )!∗(𝑛
2⁄ +1)

4𝑛
  

unique RowClasses require R for generation within an even n-note microtonal system. 

Combining these two counts then leads to Theorem 5. 
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Theorem 5: Let T = { DαR | α ∈ Sn } where D is the dihedral group associated with a 

regular n-gon for even n and R = (0  n-1) (1  n-2)…(
𝑛−2

2
   

𝑛

2
) then 

|𝑇| =
2𝑛/2 ∗ (𝑛

2⁄ )! ∗ (𝑛
2⁄ + 1)

2𝑛
+

𝑛! − 2𝑛/2 ∗ (𝑛
2⁄ )! ∗ (𝑛

2⁄ + 1)

4𝑛
 . 
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Generalization: Equation for Odd n-note Microtonal Systems (n ≥ 3) 

We model our calculations for the odd n-note microtonal systems after the 

combinatorial approach taken in the three and five note systems. In general, we know all of 

the possible permutations will be elements of Sn and have n! possibilities. Additionally, we 

will need the general cycle notation format for retrograde in the odd case: R =                       

(0  n-1) (1  n-2)…(
𝑛−3

2
   

𝑛+1

2
). As we can see from all previous examples, the first position 

swaps with the last position, the second position swaps with the next to last position, and so 

on until the two positions on either side of the middle position are swapped leaving the 

middle position fixed.  

 As before, we begin by considering the case where Dα = DαR to determine the 

number of RowClasses with complete overlap between R and D. We first determine the 

number of distinct conjugates of R. As seen from the general cycle notation of R, retrograde 

contains (n-1)/2 2-cycles. For each of these 2-cycles flipping the elements result in the same 

2-cycle (i.e., (0  n-1) = (n-1  0)). This may happen for each 2-cycle and so this results in     

2(n-1)/2 equivalent conjugate results. Additionally, if the 2-cycles are rearranged we still have 

equivalent results (i.e., (0  n-1) (1  n-2) = (1  n-2) (0  n-1)). Then, because there are (n-1)/2  

2-cycles, there are ((n-1)/2)! reorderings of a given conjugate result. It follows that we have  

𝑛!

2(𝑛−1)/2∗
𝑛−1

2
!
  distinct conjugates of R. 

 We have n! permutations being pigeon holed into  
𝑛!

2(𝑛−1)/2∗
𝑛−1

2
!
  possible conjugates. 

However, as we are counting for the case where retrograde overlaps with the Dihedral group, 
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we more specifically care about the number of α’s that preserve R when conjugated which 

equals the number of a’s that give equivalent results in a single pigeon hole, or 2(n-1)/2 * 
𝑛−1

2
!. 

Next, we also have to account for how many distinct conjugates of R are in the 

Dihedral group. For this it will again be helpful to think about the cycle structure of 

retrograde and take the number of reflections with this cycle structure. For odd n, all of the 

reflections hold one node constant while swapping the rest. Thus, we have all n reflections 

since they maintain the cycle structure of R. We do not have the rotation by 180o as we are 

working with an odd n. Then 2(n-1)/2 * 
𝑛−1

2
! α’s conjugate to each of the n possible Dihedral 

conjugates of R and we have 2(n-1)/2 * 
𝑛−1

2
! * n α’s that have complete overlap with R. 

However, we are trying to count the number of RowClasses for which this happens 

and so we should divide by the number of α’s that will belong to each RowClass. In this case 

we will only have the Dihedral operations, and so we know there will be 2n operations or 

permutations contained in a single RowClass with overlap. Therefore, within an odd n-note 

microtonal system,  
2(𝑛−1)/2∗(𝑛−1

2⁄ )!∗𝑛

2𝑛
  unique RowClasses contain complete overlap 

between R and D. 

Finally, to account for the case where we have no overlap between R and D we 

simply remove from the n! elements of Sn all possible α’s that have already been counted to 

get 𝑛! − 2(𝑛−1)/2 ∗ (𝑛 − 1
2⁄ )! ∗ 𝑛 α’s for which retrograde is needed to generate the 

RowClass and divide by the number of α’s that would be contained within each RowClass 

which would be 4n, double the Dihedral operations. Thus within an odd n-note microtonal 
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system  
2(𝑛−1)/2∗(𝑛−1

2⁄ )!∗𝑛

2𝑛
  unique RowClasses require R for generation. Combining these 

two counts leads to Theorem 6. 

Theorem 6: Let T = { DαR | α ∈ Sn } where D is the dihedral group associated with a 

regular n-gon for odd n and R = (0  n-1) (1  n-2)…(
𝑛−3

2
   

𝑛+1

2
) then 

|𝑇| =
2(𝑛−1)/2 ∗ (𝑛 − 1

2⁄ )! ∗ 𝑛

2𝑛
+

𝑛! − 2(𝑛−1)/2 ∗ (𝑛 − 1
2⁄ )! ∗ 𝑛

4𝑛
 . 
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Generalization: Trivial Cases, n = 1 & 2 

 The symmetric groups S1 and S2 are so small (of orders 1 and 2 respectively) that our 

interpretations regarding Dihedral operations break down. Direct calculations, as seen in 

figures 21 and 22, quickly show that we have a single RowClass in both situations.  

n=1:  RowClass1(α) for α = [0] 

α =          [0]          = (0) 

 

 

n=2:  RowClass2(α) for α = [0 1] 

α 

T1α 

=          [0 1]          = 

=          [1 0]          = 

(0) 

(0  1) 

 

 

 

 

 

 

 

 

 

Figure 21: RowClass1(α) 

Figure 22: RowClass2(α) 



 
 

33 
 

Future Work: Inclusion of Cyclic Shift 

 In our work, we have only considered three symmetric row operations: transposition, 

inversion, and retrograde. However, within atonal music a rare fourth row operation may be 

applied, though infrequently, in order to maintain symmetric rows. This fourth and final row 

operation is the cyclic shift.  

 For the sake of simplicity, cyclic shift was not included in this research as it would 

have increased the complexity of the problem. If cyclic shift were to be included as an 

additional operation this would create more possible combinations of operations, or a larger 

RowClass cardinality. A larger RowClass cardinality would then in turn mean we would 

have fewer unique RowClasses as each RowClass could potentially contain additional 

permutations. For example, take the 4-note microtonal system. Without getting into the 

details of the cyclic shift operations, RowClass4(α2) and RowClass4(α3) would have been 

symmetric. Then for the 4-note system there would have only been two unique RowClasses. 

If cyclic shift were to be included, the possible RowClass cardinalities would have to 

be reconsidered and thus the number of unique RowClasses would need adjustment. These 

questions are worth examining in future work.  
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Future Work: Significance for Smallest Orbits 

 As a final thought, work could also be done in examining the unique RowClasses that 

are smallest by cardinality. Our RowClasses are orbits in Group theory. In our case of the 12-

note system, we have DS12R where D acts as a left action and R acts as a right action on the 

group S12. The RowClasses then perfectly partition S12 without duplicating permutations 

found in the other RowClasses. This is the same behavior found of orbits in Group theory. 

So for these smallest orbits we already know that when we have complete overlap 

between D and R then a given RowClass’s cardinality will equal 24, in the case of the 12-

note system. Given this additional structure of overlap, these smaller RowClasses are unique 

and may have other patterns not yet understood. Furthermore, this added structure may have 

some connections or resemblance to tonal music given that tonal music is inherently more 

structured.  

 While it is certainly true that there may not be any connection between tonal music 

and these smallest orbits, this is still a question work examining. In this respect, giving 

additional attention to these smallest orbits is another direction for possible future work. 
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