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Abstract 
 

INTERNAL AND EXTERNAL VALIDATION OF VULNERABILTY INDICES: A CASE 
STUDY OF THE MULTIVARIATE NURSING HOME VULNERABILITY INDEX 

 
Matthew J. Wilson 

B.S., Appalachian State University 
M.A., Appalachian State University 

 
 

Chairperson: Margaret M. Sugg, Ph.D. 
 

As the frequency of natural disasters increases, there has been an emphasis on 

vulnerability index creation studies. To test the validity of the most common models used in 

these studies, an interdisciplinary approach is used to assess the vulnerability of nursing 

homes throughout the Southeast (U.S). Using an inductive-hierarchical index structure; 

underlying community characteristics, natural hazards frequency, and nursing home facility 

data are combined to create the Multivariate Nursing Home Vulnerability Index (MNHVI). 

To internally validate these indices; a manual construction method and Monte Carlo 

simulations are used to create multiple unique versions of the MNHVI. Each iteration of the 

MNHVI considers alternative model structures for insight into regions of precision within the 

model and the average amount of variation for each census unit. External validation is used 

to determine if the indices are accurately predicting harm and mortality caused by storm 

events. Harm is identified at the county scale as reported by emergency management 

personnel, damage surveys, and local news outlets. Additionally, ICD codes from North 

Carolina death certificates are evaluated at the Census Tract scale with a pre/post-storm 



 v 

analysis to determine natural disasters’ impact on mortality at 30/90-days pre/post-storm. 

Identifying accuracy and precision for vulnerability indices provides additional assurance on 

the appropriate identification of at-risk regions. Internal validation processes show that none 

of the indices were determined to be appropriately precise for either spatial resolution. The 

external validation processes show the hazard level analysis to be the most accurate predictor 

of harm/mortality for county and census tract scales.  
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Foreword 
 

The main body of this thesis is formatted to the guidelines for manuscript submission 

to Applied Geography, an official journal published quarterly by Elsevier which publishes 

studies that utilize geographic approaches (human, physical, and GIScience) to resolve 

human problems that have a spatial dimension.
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Introduction 

In the first three months of 2018, the United States experienced 3 billion-dollar 

disasters and 2017 saw fifteen different billion-dollar disasters (NOAA, 2017; NOAA, 2018). 

Since 1980 there was been an observable increase in the frequency and number of annual 

billion-dollar weather disasters occurring within the United States (NCEI, 2018). The 

increase in these hazardous events has prompted a shift in preparation strategies from 

emergency management personnel and response programs (Cutter, Boruff, & Shirley, 2003; 

FEMA, 2018). This emphasis on disaster preparation method reanalysis has resulted in a 

required collaborative effort between healthcare facilities and their community partners using 

an “all-hazards” approach (DHHS, 2016). Subsequently, natural hazards and social 

vulnerability fields of research have responded to these disastrous events and new public 

policies by analyzing social vulnerability to extreme weather events (Chakraborty, Tobin, & 

Montz, 2005; Cutter & Emrich, 2006; Cutter & Finch, 2008; DHHS, 2016; Flanagan, 

Gregory, Hallisey, Heitgerd, & Lewis, 2011; Montz & Tobin, 2011).  

The body of existing literature on natural hazards is a combination of research from 

various social and natural sciences, public policy and safety, health and human services, and 

information technology (Montz & Tobin, 2011; Tobin & Montz, 2004). The culmination of 

these various fields into one collective field of natural hazard and social vulnerability 

research allow for more than theoretical models to be created. Instead, models have been 

adapted and implemented in such a way that emphasizes the importance of understanding 

and studying the intersection between geophysical conditions, community and social 

systems, and vulnerable demographics (e.g., nursing homes). A unifying and unavoidable 
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aspect of this area of research is the need to identify the influence of spatial location on 

vulnerability distribution across a region. 

Natural hazards are a spatial phenomenon. The spatial distribution of certain hazards 

will result in regions of vulnerability that are different for each category of hazard (e.g., 

tropical cyclone, flooding, freezing, winter storm). Geographic research on this topic has 

helped investigators cross the human-environment divide as well as incorporate researchers 

from outside disciplines. The ability to study vulnerability with an interdisciplinary approach 

provides an opportunity to investigate physical processes, human populations and 

demographics, socio-ecological vulnerability, statistical modeling processes, and 

geovisualization strategies (Adger, Hughes, Folke, Carpenter, & Rockstrom, 2005; Andrew, 

Mitniski, & Rockwood, 2008; Cutter & Emrich, 2006; Cutter, Gall, & Emrich, 2008; Dosa, 

Hyer, Thomas, Swaminathan, Feng, Brown, & Mor, 2012; Emrich & Cutter, 2011; Evans, 

2010; Feizizadeh & Blaschke, 2014; Haines, Kovats, Campbell-Lendrum, & Corvalan, 2006; 

MacEachren & Kraak, 2001; Montz & Tobin, 2011; Perdikaris, Gharabaghi, & McBean, 

2011; Tate, 2012). Previous research has focused on the identification of a social systems’ 

vulnerability to specific natural hazards such as hurricanes (Cutter & Emrich, 2006), flooding 

(Adger et al., 2005; Perdikaris, Gharabaghi, & McBean, 2011), and wildfire (Wigtil, 

Hammer, Kline, Mockrin, Stweard, Roper, & Radeloff, 2016). Other studies, however, have 

taken a multi-hazard approach to identifying vulnerability of social systems to multiple 

climatic and socially-sensitive hazards (Berrouet, Machado, & Villegas-Palacio, 2018; 

Cutter, Boruff, & Shirley, 2003; Emrich & Cutter, 2011; Füssel, 2007; McLaughlin & Dietz, 

2008; Nguyen, Bonetti, Rogers, & Woodroffe, 2015). 
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An increasingly useful and implemented method for quantitatively and visually 

identifying regions of vulnerability is through vulnerability indices. Hames, Stoler, Emrich, 

Tweary, & Pandya (2017) identified the need to spatially identify socially and medically 

vulnerable older adult populations through a vulnerability index creation study which was a 

derivative of Cutter’s Social Vulnerability Index (SoVI) (2003) and Morath’s MedVI (2010). 

Cutter’s SoVI has since become the most spatial assessment of vulnerability at the national 

and sub-national level. The quantitative assessment of vulnerability (which is typically 

understood as a subjective experience and therefore better studied qualitatively) makes the 

SoVI a relatively simple method to visually and numerically convey complex underlying 

processes (Tate, 2012). The SoVI uses the socio-economic variables within a region to assess 

their potential hazard vulnerability, preparedness, response, and recovery at a static point in 

time (Emrich & Cutter, 2011). The SoVI model has been reproduced in many of the 

aforementioned articles and its design produces an easily distributable and palatable product 

to the general public. 

The need to validate indices stems from a problem inherent in multi-criteria decision 

analysis (MCDA). MCDA is primarily concerned with identifying how to combine data from 

multi-source, multi-temporal, multi-scale, and multi-spatial sources into a singular index 

(Chen, Yu, & Khan, 2010; Green, Devillers, Luther, & Eddy, 2011). The culmination of 

multiple data sources into a singular index requires the creator to make subjective decisions 

about the appropriate stages of index development (e.g., model structure, analysis scale, 

variable transformation, variable normalization, weighting of factors, data aggregation) 

which will add uncertainty into the results (Crosetto & Tarantola, 2001; Tate, 2012). Each 

stage of model construction should be repeated thousands of times using a Monte Carlo 
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simulation to create a baseline index which can be compared to the GIS-MCDA output to 

evaluate confidence in the index (Tate, 2013). A recent study examining vulnerability to 

landslides demonstrated how a GIS-MCDA uncertainty analysis increased the level of 

confidence in the GIS-MCDA process by identifying confidence intervals for the model 

output using AHP-Monte Carlo methodology (Feizizadeh & Kienberger, 2017). 

Implementing GIS-MCDA for vulnerability analysis helps researchers create easily 

distributable and palatable outputs that can be incorporated into public policy and emergency 

management procedures. When vulnerability index results are combined with external 

validation (e.g., age-adjusted rates of mortality), uncertainty analysis, and sensitivity 

analysis, a final vulnerability index can be created that can help facilitate appropriate 

responses from emergency management personnel and nursing home administrators. 
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Abstract 

As the frequency of natural disasters increases, there has been an emphasis on 

vulnerability index creation studies. To test the validity of the most common models used in 

these studies, an interdisciplinary approach is used to assess the vulnerability of nursing 

homes throughout the Southeast (U.S). Using an inductive-hierarchical index structure; 

underlying community characteristics, natural hazards frequency, and nursing home facility 

data are combined to create the Multivariate Nursing Home Vulnerability Index (MNHVI). 

To internally validate these indices; a manual construction method and Monte Carlo 

simulations are used to create multiple unique versions of the MNHVI. Each iteration of the 

MNHVI considers alternative model structures for insight into regions of precision within the 

model and the average amount of variation for each census unit. External validation is used 

to determine if the indices are accurately predicting harm and mortality caused by storm 

events. Harm is identified at the county scale as reported by emergency management 

personnel, damage surveys, and local news outlets. Additionally, ICD codes from North 

Carolina death certificates are evaluated at the Census Tract scale with a pre/post-storm 

analysis to determine natural disasters’ impact on mortality at 30/90-days pre/post-storm. 

Identifying accuracy and precision for vulnerability indices provides additional assurance on 

the appropriate identification of at-risk regions. Internal validation processes show that none 

of the indices were determined to be appropriately precise for either spatial resolution. The 

external validation processes show the hazard level analysis to be the most accurate predictor 

of harm/mortality for county and census tract scales.  
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1. Introduction 

Since the 1980s, the United States has experienced a measurable increase in the 

frequency and severity of billion-dollar disasters (NCEI, 2018). In 2018 there were 11 

weather-related disasters, which resulted in at least one billion dollars in losses; 2017 

experienced 15 such events (NOAA, 2017; NOAA, 2018). The increasing frequency of these 

events has prompted research in hazards and vulnerability fields that seeks to identify relative 

vulnerability to these disasters. This field of study has resulted in new mitigation strategies 

for emergency management personnel as well as an emphasis on collaborative efforts 

between public officials, communities, and healthcare facilities (Cutter, Boruff, & Shirley, 

2003; DHHS, 2016; FEMA, 2018). A seemingly inevitable and encouraging result from this 

outpouring of vulnerability research is that natural hazards and social vulnerability fields of 

research have responded through research, public discourse, and legislation in an attempt to 

diminish societal vulnerability to extreme weather events (Chakraborty et al., 2005; Cutter & 

Emrich, 2006; Cutter & Finch, 2008; DHHS, 2016; Flanagan et al., 2011; Montz & Tobin, 

2011).  

This area of study is inherently interdisciplinary which allows for unique perspectives 

into the needs and weaknesses of potentially marginalized populations. Previous studies have 

identified older adults as having a higher likelihood to experience harm from natural disasters 

than their younger neighbors (Brunkard, Namulanda, & Ratard, 2008; Cutter & Finch, 2008; 

Malik, Lee, Doran, Grudzen, Worthing, Portelli, Goldfrank, & Smith, 2018). The source of 

this disproportionate vulnerability can be explained by a variety of reasons, most of which 

fall into the broad categories of existing physical and cognitive conditions — which are often 

present in older adults residing in skilled nursing facilities. These physical and cognitive 
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conditions can make recovering from stressful situations difficult, causing prolonged harm on 

this vulnerable demographic long after the storm ends. Dosa et al. (2012) calculated that at 

30-days post-Katrina there were an additional 277 deaths and 872 hospitalizations; at 90-

days, 579 deaths and 544 additional hospitalizations for nursing home residents aged 65+ 

which could be attributed to the storm. Similarly, 50% of the post-Katrina deaths were adults 

aged 75+ (Rothman & Brown, 2007), and 12% of deaths from Katrina and Rita were from 

nursing home residents (Brunkard, Namulanda, & Ratard, 2008).  

The body of existing literature on natural hazards is a combination of research from 

various social and natural sciences, public policy and safety, health and human services, and 

information technology (Montz & Tobin, 2011; Tobin & Montz, 2004). The ability to study 

vulnerability with an interdisciplinary approach provides an opportunity to investigate 

physical processes, human populations and demographics, socio-ecological vulnerability, 

statistical modeling processes, and geovisualization strategies (Adger et al., 2005; Andrew et 

al., 2008; Cutter & Emrich, 2006; Cutter & Finch, 2008; Dosa et al., 2012; Emrich & Cutter, 

2011; Evans, 2010; Feizizadeh & Blaschke, 2014; Haines et al., 2006; MacEachren & Kraak, 

2001; Montz & Tobin, 2011; Peduzzi, 2009; Perdikaris, Gharabaghi, & McBean, 2011; 

Pielke, Rubiera, Landsea, Fernandez, & Klein, 2003; Tate, 2012). Previous research has 

focused on the identification of a social systems’ vulnerability to specific natural hazards 

such as hurricanes (Cutter & Emrich, 2006; Pielke et al., 2003), flooding (Adger et al., 2005; 

Perdikaris, Gharabaghi, & McBean, 2011), and wildfire (Wigtil et al., 2016). Other studies, 

however, have taken a multi-hazard approach to identifying vulnerability of social systems to 

multiple climatic and socially-sensitive hazards (Berrouet, Machado, & Villegas-Palacio, 
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2018; Cutter, Boruff, & Shirley, 2003; Emrich & Cutter, 2011; Füssel, 2007; McLaughlin & 

Dietz, 2008; Nguyen et al., 2015; Peduzzi, 2009). 

The culmination of these various fields into one collective field of natural hazard and 

social vulnerability research allows for more than theoretical models to be created. Instead, 

models have been adapted and implemented in such a way that emphasizes the importance of 

understanding and studying the intersection between geophysical conditions, community and 

social systems, and vulnerable demographics (e.g., nursing home residents). A unifying and 

unavoidable aspect of this area of research is the need to identify the influence of spatial 

location on vulnerability distribution across a region. An increasingly useful and 

implemented method for quantitatively and visually identifying regions of vulnerability is 

through vulnerability indices. 

Specifically relating to older adults, which is a point of emphasis of this paper, there 

was an article written (Hames et al., 2017) which identified the need to spatially identify 

socially and medically vulnerable older adult populations through a vulnerability index 

creation study which was a derivative of Cutter’s Social Vulnerability Index (SoVI) (2003) 

and Morath’s MedVI (2010). The quantitative assessment of vulnerability (which is typically 

understood as a subjective experience and therefore better studied qualitatively) makes the 

SoVI a relatively simple method to visually and numerically convey complex underlying 

processes (Tate, 2012). The SoVI uses the socio-economic variables within a region to assess 

their potential hazard vulnerability, preparedness, response, and recovery at a static point in 

time (Emrich & Cutter, 2011). The SoVI model has been reproduced in many of the 

aforementioned articles and its design produces an easily distributable and palatable product 

to the general public. 
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While index creation studies have become increasingly used, and the outputs they 

produce can be helpful for emergency management agencies and nursing home 

administrators, there has been an identified need to attribute confidence intervals and 

uncertainty within each index (Tate, 2012). Validation of indices can be done internally or 

externally. External validation of vulnerability indices has been done using mortality data 

(Gall, 2007; Knowlton, Rotkin-Ellman, King, Margolis, Smith, Solomon, & English, 2008) 

and economic losses (Schmidtlein, Schafer, Berry, & Cutter, 2010; Cutter, Gall, & Emrich, 

2008; Gall, Borden, & Cutter, 2009). For an analysis of nursing home vulnerability, mortality 

is likely the most plausible form of external validation. Internal validation is more difficult. 

However, despite this difficulty, it is pertinent to verify that each model is performing 

precisely before vulnerability index results can be confidently implemented into public 

policy and emergency management decisions (Tate, 2013). 

The need to validate indices stems from a problem inherent in multi-criteria decision 

analysis (MCDA). MCDA is primarily concerned with identifying how to combine data from 

multi-source, multi-temporal, multi-scale, and multi-spatial sources into a singular index 

(Chen et al., 2010; Green et al., 2011). The culmination of multiple data sources into a 

singular index requires the creator to make subjective decisions about the appropriate stages 

of index development (e.g., model structure, analysis scale, variable transformation, variable 

normalization, weighting of factors, data aggregation) which will add uncertainty into the 

results (Crosetto & Tarantola, 2001; Tate, 2012). Each stage of model construction should be 

repeated thousands of times using a Monte Carlo simulation to create a baseline index which 

can be compared to the GIS-MCDA output to evaluate confidence in the index (Tate, 2013). 

A recent study examining vulnerability to landslides demonstrated how a GIS-MCDA 
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uncertainty analysis increased the level of confidence in the GIS-MCDA process by 

identifying confidence intervals for the model output using AHP-Monte Carlo methodology 

(Feizizadeh & Kienberger, 2017).  

Previously, the authors have created a multivariate index which considers variables of 

three categories (Community/Social, Hazards, and Nursing Facilities), we have created an 

inductive-hierarchial index which is titled the Multivariate Nursing Home Vulnerability 

Index (MNHVI). The model structure follows an inductive-hierarchical design since it 

combines a Principal Component Analysis (PCA) with the Analytical Hierarchy Process 

(AHP) to identify rates of relative vulnerability across the Southeastern United States (SEUS) 

to hazards related to the three categories listed above (Figure 1). The purpose of this study is 

to implement both the external and internal modes of validation of the MNHVI which 

previous peer-reviewed literature has suggested. By testing these statistical validation 

techniques, the authors hope to add to the discourse on the validity of vulnerability index 

creation studies being used in emergency management plans and legislation as well as 

provide an easily replicated framework for internally and externally validating future indices. 
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2. Data and Methods 

The study area chosen for this study is composed of ten states within the Southeastern 

United States: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South 

Carolina, Tennessee, Virginia, and West Virginia. These states were selected due to their 

proximity to the Gulf and Atlantic coasts, where tropical cyclone and other extreme weather 

events are common (e.g., tornadoes, flash floods). Flooding and events associated with 

flooding (e.g., tropical cyclones) have been previously identified as a major concern for 

nursing home residents (Time, 2017). The emphasis on flood-related disasters makes the 

SEUS the optimal region for this analysis. 

 Data were collected at the nursing home facility level (n=2,824) and census tract level 

(n=16,284) to assess fine-scale patterns of vulnerability across the study area. Map outputs 

were aggregated to the county level (n=924) to aid visual interpretation when appropriate. 

         Data were compiled from various sources and multiple vulnerability indices were 

created and then combined to create a composite vulnerability index (Table 1). The three 

indices create a triangulated approach to identifying multivariate vulnerability for nursing 

home facilities. One sub-index was created to examine socioeconomic and community 

characteristics for each census tract which is titled the Community Level Index (CLI) (Figure 

1.1). The second sub-index examines the frequency of natural hazard occurrences for each 

tract which is titled the Hazard Level Index (HLI) (Figure 1.3). The third sub-index examines 

the vulnerability of nursing homes using facility-level data which is titled the Nursing Home 

Level Index (NHLI) (Figure 1.2). The composite index created from the CLI, HLI, and NHLI 

is titled the Multivariate Nursing Home Vulnerability Index (MNHVI) (Figure 1.4). Drivers 

of each CU are calculated and visualized in Figure 2. 
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The inductive structure is chosen for the HLI and the CLI due to a lack of consensus 

on which variables are most influential on vulnerability and multicollinearity within the 

variables, as well as its frequency of use within previous studies (Cutter, Boruff, & Shirley, 

2003; Hames et al., 2017; Rygel, O’Sullivan, & Yarnal, 2006; Schmidtlein, Deutsch, 

Piegorsch, & Cutter, 2008). The HLI was created with 15 natural hazard variables (Table 1.1) 

selected from the Homeland Infrastructure Foundation Level Database (HIFLD), the 

National Oceanic and Atmospheric Administration (NOAA), and the Federal Emergency 

Management Agency (FEMA) and 23 socioeconomic variables (Table 1.2) are selected for 

the CLI from the U.S. Census 2015 American Community Survey (ACS) 5-year estimates. 

The hierarchical structure is chosen for the NHLI, and not for the CLI and the HLI, 

due to an existing literature of organizational theory, which identifies the variables most 

influential on resident vulnerability (Dosa et al., 2012; Laditka, Laditka, Xirasagar, Cornman, 

Davis, & Richter, 2008; Morris, Fries, Mehr, Hawes, Phillips, Mor, & Lipsitz, 1994; Morris, 

Fries, & Morris, 1999). This body of literature, in conjunction with the ability to incorporate 

nuanced opinions from current and former experts within fields relating to the care of older 

adults, make the hierarchical approach, with AHP methodology most appropriate for the 

NHLI. Variables for this sub-index were chosen from a freely available database titled the 

Nursing Home Compare Minimum Data Set (MDS) from the Centers for Medicare & 

Medicaid Services (CMS). 

These data for the NHLI provide insight into the functional, emotional, cognitive, and 

disease status for all long-term residents within CMS Nursing Homes across the nation, as 

well as public use staffing files and ownership information (Table 1.3). The AHP methods 

used for this index poll expert opinions (n = 5) on variable importance using ranks 1-9 (least 
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critical to most critical). Experts were chosen according to a convenience sample of persons 

with current or previous occupational or research experience in long-term care facilities. 

Averaged expert ranks are used in the AHP to reduce complexity of a decision according to a 

pairwise comparisons matrix which evaluates each variable compared to one another. 

 The values with the comparison matrix are normalized in order to calculate the 

eigenvalues. The largest eigenvalue in the matrix is isolated and placed into a formula titled 

the Consistency Index (CI). The CI value is compared with the Random Consistency Index 

(RI) value given by Saaty (1980) to determine if the weights calculated by summing the rows 

are appropriate. The process of comparing the CI with the RI is done by calculating the 

Consistency Ratio (CR). If the CR value is acceptable (CR < 0.1) then the variable weights 

calculated above are considered appropriate and can be used in the hierarchical structural 

approach (Alonoso & Lamata, 2006; Saaty, 1980; Teknomo, 2017). 

 Each variable associated with nursing home facilities, collected from the Centers for 

Medicare and Medicaid Services Nursing Home Compare database, was standardized using 

z-score standardization producing a mean of 0 and a standard deviation of 1. Upon 

determining that the AHP devised weights are appropriate for this model construction, the 

corresponding weights are applied to the variables. The subsequent NHLI vulnerability 

scores for each nursing home facility are identified as the summation of the products between 

each standardized variable and its corresponding AHP derived weight. 

Each nursing home facility is ascribed an NHLI vulnerability score. The nursing 

facilities are geocoded and layered on top of both the census tract and county level U.S. 

Census Tiger/Line shapefiles.  To test the hypothesis that nursing home residents and 

facilities are potentially more vulnerable due to their geographic location and not only from 
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residents’ pre-existing physical and cognitive conditions; the three sub-indices must be 

combined. Without an existing body of literature to support any unequal weighting method, 

an equal weights hierarchical structure is used. CLI, HLI, and NHLI scores are standardized 

using z-score standardization so that the mean = 0 and the standard deviation = 1. Each index 

has previously been joined to the corresponding geographic unit and therefore all that needs 

to be done is to sum the three standardized index values. The resultant value is the MNHVI 

score. 

2.1 Internal Validation 

 After the creation of the three sub-indices (i.e., CLI, HLI, and NHLI) and aggregating 

them to multiple scales, using an equal weights hierarchical model, we validated the sub-

indices internally by identifying how model stage alteration impacted vulnerability 

classification for each independent Census Unit (CU). 

The internal validation is used to identify the consistency of index rankings for each 

CU regardless of which model structure decision is made (e.g., precision, Tate 2012). Model 

stage choices which were evaluated are: Analysis Scale (i.e., County or Census Tract), 

Normalization (i.e., Z-Score or Min-Max Linear Scaling), and Weighting (i.e., Equal 

Weights or Expert Ranks). Similar to previous research, we used a Monte Carlo simulation to 

evaluate index precision under varying model stages (Feizizadeh & Blaschke, 2014; Tate, 

2013). 

 The hypotheses which the internal validation is working under are: 1) Manual 

construction of each sub-index and the composite index will show similar variability in 

results as the Monte Carlo simulation, regardless of the number of simulations which are run 

(n = 4, 100, or 1000); and 2) Identification of variability from internal validation will 
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highlight that index results are least precise in the “highest” vulnerability classes (Tate, 

2012).  Manual construction, for internal validation, is the process of calculating index scores 

for each CU without the use of simulations or estimations. Therefore, an index score was 

manually calculated for each alternative stage choice (i.e., normalization, weighting) so that 

every possible model stage combination was considered once. 

 The absolute value of the average index score from every possible model structure is 

taken and ranked. As index ranks increase, vulnerability classification also increases (e.g., a 

rank of 1 = Very Low Vulnerability and 924 = Very High Vulnerability). These rankings are 

done for both analysis scales. The points on the curve which lay below the x-axis are 

representative of CUs which are below average (low and very low vulnerability). Likewise, 

points on the curve which lay above the x-axis are representative of CUs which are above 

average (high and very high vulnerability).  

 The y-axis is the measure of variation which is determined by the Coefficient of 

Variation (CV) for each CU (Brown, 1998). The smaller the value on the y-axis, the more 

precise the CU is across all possible model structures. Precision implies repeatability and 

consistency of vulnerability rankings regardless of model construction processes.  In other 

words, the internal validation asks the question: if changes are made in the index creation 

process, does the vulnerability ranking stay relatively the same? If vulnerability rankings are 

found to stay consistent across various model construction processes, then that CU is 

determined to be precise. Accuracy is determined through external validation and will be 

outlined in the next section. 

 Similar to Tate (2013) we identified that CV values less than 12 indicated high 

precision while CV values less than 40 indicated moderate precision. Any CV values above 
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40 were classified as low precision.  Due to non-normality, a Spearman’s Correlation 

Coefficient (SCC) is calculated for the CV value and the median vulnerability score 

calculated from every possible model structure for each CU. All internal validation was 

conducted in R and R studio (R Core Team, 2018). 

2.2 External Validation: NOAA Storm Events 

 Data: The NOAA Storm Events database allows for a broad view of harm, at the 

county scale, attributable to natural disasters through emergency management personnel, 

damage surveys, local news outlets, and skywarn spotters, and serves as an effective source 

for validating the indices (i.e., CLI, HLI, NHLI, MNHVI), it is also desired to get more 

detailed data for validation purposes (NOAA Storm Events, 2019). Direct and indirect deaths 

were combined to determine the total number of deaths, likewise, direct and indirect injuries 

were combined to determine the total number of injuries. Totals for deaths and injuries were 

combined to calculate the total harm caused either by a storm or over a selected period of 

time at the county level. These data were accessed through the noaastormevents package, in 

conjunction with the hurricaneexposuredata package in R (Anderson & Chen, 2017; 

Anderson, Schumacher, Crosson, Al-Hamdan, Yan, Ferreri, Chen, Quiring, & Guikema, 

2017). 

Statistical Analysis: To determine the external validity of each sub-index as well as 

the composite index (i.e., MNHVI), multiple stages of analysis are necessary. Initially, a 

count of occurrences of harm are created at the county scale. Those instances of harm (i.e., 

Direct/Indirect Deaths, Direct/Indirect Injuries, Total Deaths, Total Injuries, Total Harm) are 

then categorized by the vulnerability grouping, which was previously ascribed to each CU. 

Percentages of harm are calculated for each sub-index and the MNHVI (Table 3). Lastly, to 
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determine which index was the best predictor for all-harm (all death and injuries) a hurdle 

model with a negative binomial distributed was constructed to account for excess zeros and 

over-dispersion. Rootograms and traditional model-comparison criteria such as, AIC 

confirmed model selection compared to other count based models (i.e., Poisson, Zero-

Inflated Poisson, Zero-Inflated Negative Binomial). Hurdle models were constructed using 

the pscl package (Zeileis, Kleiber, & Jackman, 2008). 

2.3 External Validation: Death Certificates 

 Data: The second data source for the external validation portion of the study was from 

the North Carolina Department of Health and Human Services, State Center for Health 

Statistics. Data were collected for each instance of mortality across a 14 year period (2000-

2013) for specified ICD and ACMECOD codes (Table 2) and geocoded in R according to the 

individuals place of residence and then aggregated to the Census Tract (Kahle & Wickham, 

2013). Data were then grouped into various categories according to the causes of death and 

analyses conducted on each of the groups (Table 2.1-2.4). 

As previous research has suggested, post-disaster rates of mortality can be observed 

with a lag period (Dosa, 2012). To account for this lag period, a comparison of total of 

mortality for each Census Tract across North Carolina, pre- and post-disaster, for each sub-

index vulnerability class for two lag periods (30-days post disaster and 90-days post disaster). 

Average mortality per Census Tract and total mortality across the state are compared across 

the two lag periods. A Wilcoxon signed rank test with continuity correction is used to 

determine if there is a significant difference between the occurrences of mortality, pre- and 

post-storm, for both lag periods. 
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Two spatial scales were examined for external validation across the same time period. 

The storm selected was Hurricane Irene (2011), which made landfall in northeast NC, on the 

coast of the Outer Banks and resulted in estimates of $15.8 billion dollars in damage 

(Freedman, 2012). This storm was selected for its coastal flooding and hurricane level 

winds.  The initial spatial scale was for the entire state of North Carolina at the Census Tract 

level. The second spatial scale was as subset of North Carolina tracts which were directly 

exposed to the storm (Figure 3).  Results were consistent among both spatial scales.  

Occurrences of mortality are subset according to each category of mortality type (i.e., 

socioeconomic causes of death, deaths within nursing homes, external causes) for the first 

time period (Hurricane Irene), are isolated for 90 and 30 days pre- and post-storm. The 

average deaths per CU as well as total deaths across North Carolina are calculated at 90 and 

30 days pre- and post-storm by using the formula where X represents the number of deaths 

prior to the storm, Y represents the number of deaths post storm: X - Y = Z.  Therefore, any 

number displayed as a negative means that there were more deaths in the period after the 

storm, and any number displayed as a positive means that there were more deaths in the 

period before the storm. 
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3. Results 

3.1 Internal Validation 

3.1.1 Community Level Index (CLI) 

The CLI, at the County level, had 20 CUs, which had CV values <|40| for both the 

manual construction method and the Monte Carlo simulation (2.16% of the study area) 

(Table 1). All of the CUs that were found to be moderately precise were classified as Very 

High vulnerability. 

The CLI, at the Census Tract level, had 378 CUs which had CV values <|40| for both 

the manual construction method and the Monte Carlo simulation (2.39% of the study area) 

compared to 20 counties at the county level (2.16% of the study area) (Table 1). This 

indicates that CLI is only slightly more precise at the Census Tract level than at the County 

level. Of the CUs which were found to be moderately precise, 377 were classified as Very 

High vulnerability and 1 was classified as Very Low vulnerability. 

Graphic outputs for the Monte Carlo simulation and the manual construction method 

were made for each of the four indices. Figure 6 displays the output for the CLI at both CU 

scales, using both methods. Points below the x-axis are for CUs with negative CV values, 

indicating that the mean vulnerability score for that CU was negative, placing it in the Very 

Low, Low or Average vulnerability class, depending on the quartiles for the specific index. 

The closer to the x-axis that a point lies, the more precise that index is considered to be. Each 

sub index displays graphic outputs comparable to Figure 6, therefore, only the Monte Carlo 

for the CLI will be shown, but readers should be aware that this trend is constant across all 

indices. 

The SCC for the County level is 0.43 for both the manual construction and the Monte 

Carlo and the SCC for the Census Tract level is 0.45 for both the manual construction and the 
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Monte Carlo (p-value < 0.01). The slight positive SCC values show that as vulnerability 

ranks increase, the precision also increases.  

3.1.2 Hazard Level Index (HLI) 

 The HLI, at the County level, had 25 CUs (2.71% of the study area) which had CV 

values <|40| for both the manual construction method and the Monte Carlo simulation (Table 

1). All of the CUs which were found to be moderately precise were classified as Very High 

vulnerability. Only one HLI CU at the County level had a CV value <|12| for both the manual 

construction method and the Monte Carlo simulation. This CU is Miami-Dade County, FL 

which was also had the highest HLI vulnerability across the SEUS at the County level as 

well. 

At the Census Tract level, the HLI had 559 CUs which had CV values <|40| for the 

manual construction method (3.55% of study area) and 574 CUs for the Monte Carlo 

simulation (3.65% of study area) (Table 1). Similar to the County level HLI, all of the CUs 

which were found to be moderately precise were classified as Very High vulnerability. Of all 

HLI CUs, 13 had a CV value <|12| for both the manual construction method and the Monte 

Carlo simulation, which equates to 0.1% of the study area, similar to the HLI at the County 

level. These 13 CUs are predominantly coastal; 12 of which are located across Florida, and 1 

is located in Hyde County, NC. 

The SCC for the County level HLI is 0.378 for both the manual construction and the 

Monte Carlo and the SCC for the Census Tract level is 0.414 for the manual construction and 

is 0.441 for the Monte Carlo (p-values < 0.01). Similar to the CLI, the positive SCC values 

for the HLI suggest that as vulnerability ranks increase, the precision also increases. 
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3.1.3 Nursing Home Level Index 

 The NHLI, at the County level, had 65 CUs (7.03% of the study area), which had CV 

values <|40| for the manual construction method and 66 CUs (7.14%) for the Monte Carlo 

simulation (Table 1). All of the CUs which were found to be moderately precise were 

classified as Very High vulnerability. 

At the Census Tract level, the NHLI had 1412 CUs (8.97% of the study area) which 

had CV values <|40| for the manual construction method and 1370 CUs (8.70%) for the 

Monte Carlo simulation (Table 1). Similar to the CLI and the HLI, all of the CUs which were 

found to be moderately precise were classified as Very High vulnerability. 

A Pearson’s correlation was used for NHLI since the distribution of these data were 

found to be normally distributed. The Pearson’s correlation coefficient for the County level 

NHLI for the manual construction and the Monte Carlo is -0.215 and the Pearson’s 

correlation coefficient for the Census Tract level manual construction is -0.19 and is -0.18 for 

the Monte Carlo, all values are found to be significant (p<0.01). 

3.1.4 Multivariate Nursing Home Vulnerability Index (MNHVI)  

 The MNHVI, at the County level, had 27 CUs (2.92% of the study area) which had 

CV values <|40| for the manual construction method and 26 CUs (2.81%) for the Monte 

Carlo simulation (Table 1). All of the CUs which were found to be moderately precise 

classified as Very High vulnerability. 

The MHNVI, at the Census Tract level, had 591 CUs (3.75% of the study area) which 

had CV values <|40| for the manual construction method and 549 CUs (3.49%) for the Monte 

Carlo simulation (Table 1). All CUs which were found to be moderately precise were 

classified as Very High vulnerability. 
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The SCC for the manual construction at the County level is 0.254 and the SCC for the 

County level Monte Carlo is 0.272 (p-value < 0.01). The SCC for the manual construction at 

the Census Tract level is 0.321 and the SCC for the Monte Carlo is 0.356 (p-value < 0.01). 

The slight positive SCC values show that as vulnerability ranks increase, the precision also 

increases, however, the trend is so low that it suggests no real relationship exists.  

3.2 External Validation: NOAA Storm Events 

The external validation process is used to identify if (and where) each index is 

accurate. To examine external validity of each index seven dependent variables were 

considered: Direct Death, Indirect Death, Total Death, Direct Injury, Indirect Injury, Total 

Injury, All Harm (Table 4). The HLI is the most accurate with 46% of all harm occurring in 

CUs classified as Very High vulnerability and 66% of harm occurring in CUs with above 

average vulnerability. The MNHVI is the second most accurate index with 30% of harm 

occurring in CUs classified as High vulnerability and 51% occurring in CUs with above 

average vulnerability. The CLI experienced 30% of all harm in CUs classified as Average 

vulnerability and only 33% of harm occurring in CUs with above average vulnerability. The 

NHLI experienced 38% harm in CUs identified as Low vulnerability and only 26% of harm 

occurring in CUs considered to have above average vulnerability. 

3.2.1 NOAA Storm Events Death 

The HLI was the best predictor of death with over 45% of all deaths found to be 

caused by a storm event occurring in CUs classified as Very High vulnerability according to 

the HLI (Supplementary Table 1). The NHLI was the worst predictor of deaths associated 

with vulnerability across the SEUS. Approximately 32% of deaths in this category occurred 

in CUs classified as Low vulnerability according to the NHLI. For the remaining two indices, 
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the largest percentage of death which occurred across the region occurred in CUs classified 

as High in the CLI (26%) and in CUs classified as Very High for the MNHVI (34%). The 

proportion of direct and indirect deaths for each vulnerability class can be seen in 

Supplementary Table 1. 

3.2.2 NOAA Storm Events Injuries 

Likewise, the HLI was the best predictor of injury found to be caused by a storm 

event (45% in CUs classified as Very High vulnerability) (Supplementary Table 2). The 

NHLI was the worst predictor of injuries across the SEUS. Just under 40% of all injuries 

associated with a storm event occurred in CUs classified as Low vulnerability for the NHLI. 

The MNHVI observed 32% of injuries associated with a storm in CUs classified as High 

vulnerability and the CLI observed 32% of injuries in CUs classified as Average 

vulnerability. The proportion of direct and indirect injuries for each vulnerability class can be 

seen in Supplementary Table 2. 

3.2.3 NOAA Storm Events Regression Results 

Each sub-index was assessed as a predictor for all-harm counts (i.e., all deaths and 

injuries) using a hurdle model with a negative binomial model distribution. To account for a 

large number of zeroes, the hurdle model reports two types of coefficients, one that predicts 

the presence or absence of a zero and another that accounts for greater than 1 death or injury. 

In both cases, the HLI predicted the greatest increase in self-harm with incidence rate ratios 

of 2.38 (CI: 1.79-3.16) and 2.02 (CI:1.50-2.73), respectively. Surprisingly, the NHLI and 

CLI were protective factors in the zero-hurdle model, and thus did not contribute to self harm 

death or injuries with incidence rate ratios of less than 1.0 (NHLI CI: 0.37-0.96, CLI CI: 

0.86-0.97). NHLI was also insignificant when predicting more than one self-harm event (CI: 
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0.00-5.09), highlighting the subindices inability to accurately predict death/injury NOAA 

events accurately. 

3.3 External Validation: NC Death Certificates 

 Considering socioeconomic causes of death for Hurricane Irene, we see a significant 

difference between occurrences of death 90 days prior to the storm and 90 days post storm 

for each vulnerability class in each index across North Carolina (p-value <0.01) (Table 6). In 

general, deaths categorized as socioeconomically caused and occurring 30 days prior/post 

Hurricane Irene were not determined to be significant different (p-value > 0.10). However, 

there was an increase in the occurrences of mortality 30 days after Hurricane Irene for CUs 

identified to have Very High vulnerability for the HLI (p-value < 0.10). 

 Deaths categorized as occurring within nursing homes were found to have a 

significant increase in deaths 90 days after Hurricane Irene (Table 7). No vulnerability class 

for any of the four indices were found to have a significant difference in occurrences of death 

within nursing homes 30 days pre- and post-storm.   

 Differences in deaths categorized as having external causes, 30 days before and after 

Hurricane Irene, were not found have any significant differences. At the 90 day scale, 

however, each vulnerability class in each of the four indices were found to be significant to 

either the 90th, 95th, or 99th percentile with the exception of Average and Very High 

vulnerability in the NHLI (Table 7). 

 Considering the subset of CUs exposed to Hurricane Irene which experienced 

socioeconomic causes of death, we see a significant difference between occurrences of death 

90 days prior to the storm and 90 days post storm for the majority of vulnerability classes in 

each index across North Carolina (p-value<0.01 and p-value<0.05) with the exception of the 
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NHLI High vulnerability class (p-value>0.1) (Supplementary Table 3). In general, deaths 

categorized as socioeconomically caused and occurring 30 days prior/post Hurricane Irene 

were not determined to be significant different (i.e., p-value>0.10). However, there was an 

increase in the occurrences of mortality 30 days after Hurricane Irene for CUs exposed that 

were identified to have Very High vulnerability for the HLI (p-value<0.05), Low 

vulnerability for the NHLI (p-value<0.05), and Very Low vulnerability for the MNHVI (p-

value<0.01) (Supplementary Table 3). 

Of deaths categorized as occurring within nursing homes, in CUs which were 

exposed to Hurricane Irene, some were found to have a significant increase in deaths 90 days 

after Hurricane Irene (Supplementary Table 4). The HLI and MNHVI were found to be more 

significant as vulnerability increased, whereas the NHLI decreased in significance as 

vulnerability increased. The CLI was significant for all vulnerability classes. No vulnerability 

class for any of the four indices were found to have a significant difference in occurrences of 

death within nursing homes 30 days pre- and post-storm.   

 Differences in external causes of deaths (30 days before and after Hurricane Irene) for 

CUs exposed to Hurricane Irene were not found have any significant differences. At the 90-

day scale, however, seven vulnerability classes in the four indices were found to be 

significant (p-value<0.01, p-value<0.05, or p-value<0.10). These significant increases in 

death are found in the CLI: Low, HLI: Very High, NHLI: Very Low, and Low, MNHVI: 

Low, Average, and Very High vulnerability classes (Supplementary Table 4).  
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4. Discussion 

Vulnerability indices with varying topics of emphasis (e.g., wildfire, coastal, flood) 

continue to be created and implemented at various scales worldwide (Balica, Douben, & 

Wright, 2009; McLaughlin, McKenna, & Cooper, 2002; Wigtil et al., 2016). The ability to 

visually and quantitatively identify sources and clusters of vulnerability across a geographic 

region make these indices a desirable asset for local governments and emergency 

management personnel. Previous studies have taken a multi-hazards approach of 

vulnerability identification (Berrouet, Machado, & Villegas-Palacio, 2018; Cutter, Boruff, & 

Shirley, 2003; Emrich & Cutter, 2011; Füssel, 2007; McLaughlin & Dietz, 2008; Nguyen et 

al., 2015) while others have taken a hazard-specific approach (Adger et al., 2005; Cutter & 

Emrich, 2006; Perdikaris, Gharabaghi, & McBean, 2011; Wigtil et al., 2016). Coinciding 

with this breadth of literature, there are various accepted index creation methodologies which 

has resulted in a lack of validation to ensure results are robust, accurate, and precise (Gall, 

2007; Tate, 2012). As indices continue to be incorporated in discussions about public policy 

decisions, it is vital to identify areas of uncertainty and imprecision within vulnerability 

indices to ensure appropriate decisions are made (Tate, 2013).  

In this study, precision is calculated through internal validation of an index. Internal 

validation tests the repeatability of index values when incremental changes occur at different 

stages in the model structure. It is important to verify that the model is repeatable, and 

therefore precise, before the vulnerability index can be confidently implemented into public 

policy and emergency management discussions (Tate, 2013). In this study, we examined the 

precision for the three sub-indices (CLI, HLI, NHLI) and the composite index (MNHVI) to 

understand the CUs with vulnerability scores that can be repeated across various model 
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structure alterations. None of the indices, as a whole, were found to be precise. However, we 

did observe slight trends of increased precision as vulnerability increases. 

 In general, the NHLI was determined to have the highest percentage of moderately 

precise CUs of the indices. These results correspond to the lack of variability within the 

nursing home dataset where many CUs have either no nursing homes or only one nursing 

home, making the NHLI more consistent due to the small sample size. The HLI was the only 

index which contained CU(s) within the highly precise grouping (CV values <|12|), showing 

that, at the extremes, the HLI is more precise than any of the other indices. Likewise, Figure 

6 displays a decreases in CV values as average ranks increase, suggesting that the 

vulnerability extremes are comparatively more precise compared to other lower vulnerability 

levels. The CUs found to be highly precise in the HLI were the CUs determined to be the 

most vulnerable for this index, further confirming this trend. The MNHVI was found to have 

higher percentages of moderately precise CUs than both the HLI and CLI, which is likely do 

to the incorporation of the more consistent NHLI variables within the MNHVI. 

 Our precision results contrast with Tate (2013) who found for SoVI, a strong 

significant decrease in precision as index rank increases (R=-0.71).  Instead, we found for 

similar indices, like the CLI, which uses the same variables as SoVI a SCC of 0.43 or an 

increase in precision as index rank increases. Several reasons may explain our contradictory 

findings, including the use non-parametric statistical techniques (e.g., Spearman’s 

Correlation Coefficient), a smaller subset of model alterations under examination, or a larger 

study region (e.g., 924 counties). Moreover, the spread of CV values in Tate (2013) is much 

smaller than the spread of CV values used in our study. Therefore, CV values considered to 

be at the extremes of Tate’s study (i.e., CV’s 100-160) are relatively frequent for our 
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analysis. Lastly, the imprecision experienced in specific indices, like the NHLI, may also be 

attributed to the use of the AHP process, which has been criticized due to its subjectivity in 

comparison judgments made by experts (Feizizadeh & Kienberger, 2017). 

 Precision was consistently higher when data were aggregated to the Census Tract 

level, likely due to the modifiable areal units problem (MAUP), which typically results in 

significant results at more aggregate levels. While the differences in percentages of moderate 

precision between the county level and the Census Tract level were not always significant, 

the higher rates of consistency for the Census Tract level, even if only a few tenths of a 

percentage, show that estimating vulnerability is potentially better suited for smaller 

geographies. 

Previous studies have recommended using a Monte Carlo simulation to evaluate 

index precision under varying model stages and typically include more model stage iterations 

than this study (Feizizadeh & Blaschke, 2014; Tate, 2013). Since there were fewer 

alternatives for this analysis, we evaluated the necessity of incorporating a Monte Carlo 

simulation, with several numbers of repetitions (n = 4, 100, and 1000) versus manually 

comparing each alteration through the manual construction method. Overall, there is no 

significant difference between the rates of precision between the manual construction method 

and the Monte Carlo Simulation. However, depending on the number of stages which a 

researcher wants to consider, the manual construction method may be more desirable and 

would require little to no knowledge of advanced statistical processes. In contrast, in 

scenarios where the number of index stages increases, the manual construction method may 

become too labor intensive and would, therefore, be more suited for the Monte Carlo 
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simulation method (Feizizadeh & Kienberger, 2017). Regardless of which methodology is 

chosen, our findings suggest results will remain consistent between the two options.  

In our study, accuracy was calculated through external validation of each index, using 

categorical mortality data through death certificate ICD-10 codes as well as instances of 

harm from severe storms according to emergency management personnel, damage surveys, 

and local news outlets (NOAA Storm Events, 2019).  Previous studies have attempted 

external validation of indices using mortality data (Gall, 2007) and economic losses (Cutter, 

Gall, & Emrich, 2008; Gall, Borden, & Cutter, 2009; Schmidtlein et al., 2010). The 

incorporation of external validation allows for insight into good indices and bad indices 

(Gall, 2007). A good index is one which correlates highly with the external source of 

validation (i.e., occurrences of mortality/harm) and its indicators whereas a bad index is one 

which does not correlate to the external data (Booysen, 2002; Gall, 2007). 

 Overall, all harm (i.e., Direct Death, Indirect Death, Total Death, Direct Injury, 

Indirect Injury, Total Injury) validated the HLI index best, with 66% occurred in CUs 

classified as above average vulnerability, 46% of which occurred in the Very High 

vulnerability class. The NHLI was the least accurate of the sub-indices with only 27% of 

harm being accurately predicted. This is, however, unsurprising since the data used in the 

NHLI are not specific to natural hazards and are, instead, intended to identify the 

comparative vulnerabilities of nursing homes due to facility-level data. External validation 

results were confirmed with hurdle regression analysis, which found the HLI was the only 

predictor of NOAA all-harm events that increased the risk of having a death/injury 

significantly (Incidence Rate Ratios > 1.0).  In contrast, the CLI, and NHLI were protective 

factors (Incidence Rate Ratios < 1.0) that decreased risk of self-harm. 
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 When broken down into subcategories (i.e., types of Death and types of Injury) we 

observe the same general pattern. Again, the HLI is most accurate of the four indices for 

predicting death and injury at the county level for the SEUS. Since the MNHVI is mostly 

driven by the HLI, it is expected and observed that the MNHVI would be the second best 

predictor. The fact that the HLI and the MNHVI are the most accurate of the indices supports 

the hypothesis that geographic location, and the location of frequent natural hazards, has a 

large impact on a regional vulnerability. 

 To examine external validation at both the census tract and county level, death 

certificate data were compiled for North Carolina and categorized according to cause of 

death. Socioeconomic causes of death were considered the most comprehensive grouping and 

held the largest sample size (containing deaths within nursing homes and external causes of 

death), which may account for some of its significance. The comprehensive grouping 

method, which considers all types of mortality, has been considered a promising external 

validation proxy (Gall, 2007), nonetheless, dividing the deaths into sub-groups was 

appropriate due to the nature of the sub-indices. Despite the perceived necessity of mortality 

groupings, both of the spatial scales for the pre- and post-Hurricane Irene analysis display 

comparable findings across all groups. For deaths categorized as socioeconomic (considered 

our most comprehensive grouping), the 90-day pre/post-storm analysis shows a significant 

increase in deaths 90 days after the storm for all North Carolina CUs as well as the majority 

of North Carolina CUs, which were directly exposed to the storm.  

Our accuracy results confirm the findings of Dosa et al. (2012) where there was an 

increase in overall hospitalizations and mortality rates for nursing home residents post-storm. 

Our results differ from, and add to, these previous findings by analyzing the occurrences of 
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mortality per vulnerability class. The increases in death post-storm identified in this study 

help to identify which indices are more accurate, however, there is an understood need for 

more accurate death certificate data, especially for deaths from natural hazards which often 

go unreported or incorrectly reported (Gall, 2007). While the large significant differences in 

pre/post-storm deaths in above average vulnerability tracts provide evidence that the indices 

are accurate, the equally large significant differences in below average tracts counteract this 

hypothesis. Despite the potential inaccuracies in death certificate data, the findings from this 

study suggest that when a region experiences a hurricane, there will be an increase in the 

occurrences of mortality across all vulnerability classes. These findings, in conjunction with 

the impossibility of preventing storms from occurring, show that it may be in researchers best 

interest emphasize hazard vulnerability models instead of social vulnerability models, for 

future adaptation strategy, and vulnerability assessment studies (Pielke et al., 2003).  

 Deaths in nursing homes were predicted best by the MNHVI and the HLI; a finding 

which is supported by the NOAA Storm Events portion of the external validation. The 

MNHVI and HLI showed a significant difference in deaths 90 days after Irene for CUs which 

were exposed to the storm and classified as above average vulnerability. These findings are 

congruent to the findings of Dosa et al. (2012), which observed an increase in overall deaths 

and hospitalizations experienced by nursing home residents both 30- and 90-days post-storm. 

Whereas the NHLI was the worst predictor of nursing home deaths with below average 

vulnerability CUs finding a larger significant difference in the number of deaths than CUs 

with above average vulnerability. This is made evident when examining the number of post-

storm deaths within nursing homes; 828 deaths in CUs with below average NHLI 

vulnerability and only 91 deaths in CUs with above average NHLI vulnerability. The lack of 
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accuracy in the NHLI suggests that facility-level data may not be the most appropriate scale 

of analysis, especially when data are aggregated to a larger CU. It is also not expected that 

determining vulnerability among nursing home residents would lend itself to being a good 

predictor of harm from natural disasters. It is not logical to expect that a CU that has low 

NHLI vulnerability is less likely to experience a natural disaster.  

 Similar to deaths in nursing homes, the HLI is the most accurate predictor of deaths 

from external causes and the NHLI is the least accurate predictor of these deaths. These 

findings, along with the results from the initial, County level external validation, using 

NOAA Storm Events, seem to suggest that it may be most appropriate to encourage 

vulnerability index creation studies which emphasize the prediction and detailed analysis of 

nuances of natural disasters and their likelihood at smaller scales, instead of only 

emphasizing social systems (i.e., Peduzzi et al., 2009). Studies of this nature are likely to 

experience higher rates of accuracy for predicting occurrences of mortality and may contain 

less confounding variables when compared to socioeconomic/demographically driven 

datasets.  
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5. Limitations 

This study contains several accepted limitations. First, the selection of data for index 

creation, while supported by relevant literature (i.e., Cutter et al., 2003; Tate, 2012; 

Schmidtlein et al., 2008), was subjective and subject to scrutiny. Likewise, the selection of 

model stages to consider for the internal validation portion of the study could be expanded to 

include other uncertainties, such as the choice of indicator sets used for the CLI. The amount 

of uncertainty from the American Community Survey (ACS) is up to 75% more than the 

decennial census (Spielman, Folch, & Nagle, 2014); the use of ACS data undoubtedly limited 

the amount of potential precision within our model. Additions to (or omissions of) model 

stages will certainly have an impact on the observed precision of each index. Death 

certificate data were only available to researchers for the state of North Carolina, which 

reduced the scale at which the external validation at the census tract scale. The external 

validation would be benefited by incorporating additional proxy sources (i.e., hospitalization 

data, insurance claims, property damage, etc.), which could provide a more detailed picture 

of harm caused by natural hazards. 
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6. Future Research 

Our study is one of the first to provide a comprehensive validation of multiple 

vulnerability indices across a large geographic region. In order to enhance the results found 

in this study, future research should incorporate additional natural hazard events into the HLI 

in order to create an all-encompassing disaster risk index. The identification of the HLI to be 

the most accurate of the indices is a key finding that emphasizes further research into the 

geographic prediction of harm specifics to natural hazards. The creation of a disaster risk 

index at a sub-national scale will enable researchers to better predict where instances of harm 

will occur from severe storm events. Additionally, harm from other natural hazards (i.e., 

tornados, wildfire, tropical cyclones, severe flooding events) should be assessed for external 

validity as well. Future research should also consider additional model stages (i.e., decennial 

census data as another indicator set) to further understand the impact of methodology on the 

precision of vulnerability indices. Lastly, a key methodological finding of this study 

demonstrates that future indices do not necessarily require the use of a Monte Carlo 

Simulation to determine index precision when the Manual Construction method is plausible 

(i.e., sample sizes are small enough to reasonably replicate for each alteration in model 

structure). This finding gives researchers the ability to validate their indices even if they do 

not have extensive experience in advanced computational processes and statistical coding. 
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7. Conclusion 

Ultimately, the lack of overall precision among our indices illustrates that index 

creation and uncertainty calculation needs to be confidently implemented into public policy 

and discourse. Indicator sets used in the creation of these indices should also be more 

thoroughly examined as uncertainty is embedded within these datasets, and researchers are 

often given few alternatives for data collection (Feizizadeh & Kienberger, 2017). The visual 

and quantitative products, which vulnerability index creation studies produce, are extremely 

helpful tools, but only to the extent that the results are precise and repeatable. More work is 

needed to determine the most appropriate model stages for precisely identifying vulnerability 

and how to ensure, at least, moderately precise results. Investigation of how these indices 

would have predicted real-world mortality is another vital step in index validation that also 

incorporates the accuracy or ability to successfully externally validate an index.  

This study of internal and external validation adds to the discourse on the validity of 

vulnerability indices for public policy implementation. This analysis also provides an easily 

replicated methodology, which may be implemented in future studies to determine the 

efficacy of previously made indices, as well as indices yet to come. While vulnerability 

indices certainly make effective visual and quantitative products, it is suggested that 

researchers, local officials, and public policy makers alike take pause to internally and 

externally validate their findings before putting these results into policy actions. The HLI, 

being the most accurate of the indices, provides evidence that it may be more appropriate to 

emphasize the creation of disaster risk indices as opposed social vulnerability indices when 

attempting to predict and mitigate loss and harm from natural disasters. While the HLI may 

have predicted harm most accurately, there was little precision across all indices. The overall 

imprecision of these models suggests that officials should seek further evidence of 
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vulnerability (social or physical) before altering disaster mitigation strategies. Ultimately, the 

intent of this study is to benefit past and future index creation studies with the ultimate goal 

of preventing loss of property and lives, which can only be done with accurate and precise 

models.  
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Table 1. Indicator sets for the three subindices (CLI, HLI, and NHLI) 

 

Table 1. Indicator Set 

Subindex Variables 
Hazard Level Index 

(HLI) 
Table 1.1 

Historic Tornado Tracks (1851-2013) Category 1-3 Hurricane Tracks (1851-2005) 
Tropical Storm Tracks (1851-2005) Category 4-5 Hurricane Tracks (1851-2005) 
Tropical Depression Tracks (1851-2005) Storm Surge (2017 SLOSH MOM Model) 

Community Level 
Index (CLI) 

Table 1.2 

Median age % households receiving Social Security benefits 
Median gross rent % ESL population 
Median dollar value of owner-occupied 
housing % employed in extractive industries 
Per capita income % children living in married couple families 
Average people per household % female 
% of each nationality % female headed households 
% Hispanic % population living in mobile homes 
% unemployed % housing units with no car 
% population over 25 with under 12 year 
education % families earning $200,000+ per year 
% population in poverty % employed in service industries 
% renter occupied housing units % population living in nursing homes 
% unoccupied housing units   

Nursing Home Level 
Index (NHLI) 

Table 1.3 

% of long-stay residents whose need for 
help with daily activities has increased 

% of long-stay residents experiencing one or more 
falls with major injury 

% of long-stay residents who self-report 
moderate to severe pain 

% of long-stay residents assessed and 
appropriately given the seasonal influenza vaccine 

% of high risk long-stay residents with 
pressure ulcers 

% of long-stay residents assessed and 
appropriately given the pneumococcal vaccine 

% of long-stay residents who lose too much 
weight 

% of long-stay residents who received an 
antipsychotic medication 

% of low risk long-stay residents who lose 
control of their bowels or bladder 

% of long-stay residents whose ability to move 
independently worsened 

% of long-stay residents with a catheter 
inserted and left in their bladder 

% of long-stay residents who received anti 
anxiety or hypnotic medication 

% of long-stay residents with a urinary tract 
infection 

Staffing hours per resident per day (CAN, LPN, 
RN, Total staffing) 

% of long-stay residents who have 
depressive symptoms 

Organization type (For-profit, governmental, non-
profit) 

% of long-stay resident who were physically 
restrained   
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Table 2. North Carolina mortality groups collected from ICD10 codes on North Carolina 
death certificates. 

 
Table 2. North Carolina Mortality Groups 

Category ICD10 Codes Reference Article(s) Sample Size 

Deaths Caused by  
Stress (2.1) * 

F43.0, F43.1, F43.2, F62.0, F94.1, 
F94.2 

Dosa et al. 2010, Maercker et al. 
2013 n = 13 

External Causes of 
Death (2.2) V01 - Y89 CDC 2002, Thacker et al. 2008 n = 76,296 

Socioeconomic 
Deaths (2.3) 

B20-24, C00-97, E10-14, G00-98, 
I00-I09, I11, I13, I20-51, I60-69, J10-
18, J40-47, K70, K73-74, V01-Y09, 
Y85-86, Y87.0, Y87.1 

Galea, Aherna, & Karpatic 2005, 
Dosa et al. 2010 n = 806,882 

Deaths within 
Nursing Homes 
(2.4) 

All codes from the three categories 
above 

Brown, Rothman, & Norris 2007, 
Brunkard, Namulanda, & Ratard, 
2008, Cutter & Finch, 2008, Dosa 
et al. 2010, Malik et al. 2018 

n = 147,205 

*Prior research demonstrates that older adults experience negative stressful reactions brought forth by natural disasters, 
however the sample size for deaths caused by stress for the time period is too small to be used in subsequent analysis. 
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Table 3. Comparison of index precision for counties versus census tracts as well as a 
comparison of the Monte Carlo Simulation versus the manual construction method for each 
subindex. 

 
 

Table 3. Comparison of Index Precision for Counties versus Census Tract and Monte Carlo 
Simulation versus Manual Computation for each subindex 

  High Precision 
(CV <|12|) 

Moderate Precision 
(CV<|40|) 

Low Precision  
(CV>|40|) 

  # of CUs % of CUs # of CUs % of CUs # of CUs % of CUs 

  (Manual / 
Monte Carlo) 

(Manual / 
Monte Carlo) 

(Manual / 
Monte Carlo) 

(Manual / 
Monte Carlo) 

(Manual / 
Monte Carlo) 

(Manual / Monte 
Carlo) 

CLI 
County 0 / 0 0% / 0% 20 /20 2.16% / 

2.16% 904 / 904 97.84% / 
97.84% 

Tract 0 / 0 0% / 0% 378 / 378 2.39% / 
2.39% 

15,364 / 
15,364 

97.61% / 
97.61% 

HLI 
County 1 / 1 0.1% / 0.1% 25 / 25 2.71% / 

2.71% 899 / 899 97.28% / 
97.28% 

Tract 13 / 13 0.1% / 0.1% 559 / 574 3.55% / 
3.65% 

15,125 / 
15,168 

96.45% / 
96.34% 

NHLI 
County 0 / 0 0% / 0% 65 / 66 7.03% / 

7.14% 859 / 858 92.97% / 
92.86% 

Tract 0 / 0 0% / 0% 1412 / 1370 8.97% / 
8.70% 

14,330 / 
14,372 

91.03% / 
91.30% 

MNHVI 
County 0 / 0 0% / 0% 27 / 26 2.92% / 

2.81% 897 / 898 97.08% / 
97.19% 

Tract 0 / 0 0% / 0% 591 / 549 3.75% / 
3.49% 

15,151 / 
15,193 

96.25% / 
96.51% 
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Table 4. The results of the comparison of All Harm from NOAA Storm Events compared to 
each subindex vulnerability class. 

 
Table 4. All Harm (Deaths and Injuries) 

Vulnerability 
Class 

CLI  
Harm 

CLI  
Harm % 

HLI  
Harm 

HLI  
Harm % 

NHLI 
Harm 

NHLI 
Harm % 

MNHVI 
Harm 

MNHVI 
Harm % 

Very Low 2070 19.64% 591 5.61% 2077 19.71% 1609 15.27% 

Low 1846 17.52% 931 8.83% 4008 38.03% 2062 19.57% 

Average 3161 30.00% 1990 18.88% 1625 15.42% 1544 14.65% 

High 1754 16.64% 2133 20.24% 1946 18.46% 3147 29.86% 

Very High 1708 16.21% 4894 46.44% 883 8.38% 2177 20.66% 

Above Average 3462 32.85% 7027 66.48% 2829 26.84% 5324 50.52% 
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Table 5. Coefficients for HURDLE model of Total Harm for each subindex 

 
 

Table 5 Coefficients for HURDLE model of Total Harm 
Predictors Incidence Rate Ratios CI 

Count Model Coefficients   
(Intercept) 0.48 0.00 - 173.86 

CLI 0.80 *** 0.75 - 0.85 
HLI 2.02 *** 1.50 - 2.73 

NHLI 0.54 0.29 - 1.03 
Log(theta) 0.01 0.00 - 5.09 

Zero-Hurdle Model Coefficients   
(Intercept) 2.46 *** 1.97 - 3.07 

CLI 0.91 *** 0.86 - 0.97 
HLI 2.38 *** 1.79 - 3.16 

NHLI 0.60 *** 0.37 - 0.96 
* p<0.05   ** p<0.01   *** p<0.001 

First coefficients are for the count model coefficient (Truncated negbin with log link) 
Second coefficients are for the zero hurdle model coefficients 
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Table 6. The results from a Wilcoxon signed rank test with continuity correction for the 
30/90-day pre- and post-storm analysis for Socioeconomic causes of death during Hurricane 
Irene. 

Table 6. Hurricane Irene, Wilcoxon Signed Rank Test with Continuity Correction 

   # of 
Tracts 

Difference in 
Deaths 90 
Days Pre-

Storm vs. Post-
Storm (Mean) 

Difference in 
Deaths 90 
Days Pre-

Storm vs. Post-
Storm (Sum) 

Difference in 
Deaths 30 
Days Pre-

Storm vs. Post-
Storm (Mean) 

Difference in 
Deaths 30 
Days Pre-

Storm vs. Post-
Storm (Sum) 

Socioeconomic 
Causes of Death 

CLI 

Very 
Low 519 -2.03 *** -1051 *** 0.05 27 

Low 473 -2.43 *** -1149 *** -0.06 -31 

Average 442 -2.06 *** -909 *** 0.07 33 

High 411 -2.69 *** -1104 *** -0.11 -46 

Very 
High 338 -2.52 *** -853 *** 0.15 50 

HLI 

Very 
Low 569 -2.02 *** -1150 *** 0.11 65 

Low 478 -2 *** -956 *** -0.67 -32 

Average 492 -2.39 *** -1178 *** 0.12 60 

High 343 -2.59 *** -891 *** 0.05 18 

Very 
High 301 -2.96 *** -891 *** -0.26 * -78 * 

NHLI 

Very 
Low 212 -3.45 *** -732 *** 0.24 51 

Low 1845 -2.06 *** -3804 *** -0.001 -2 

Average 50 -3.66 *** -183 *** 0.04 2 

High 42 -3.17 *** -133 *** -0.38 -16 

Very 
High 34 -6.29 *** -214 *** -0.06 -2 

MNHVI 

Very 
Low 543 -1.9 *** -1030 *** 0.09 48 

Low 488 -2.46 *** -1200 *** 0 0 

Average 443 -1.81 *** -800 *** 0.05 23 

High 391 -3.12 *** -1220 *** -0.06 -23 

Very 
High 318 -2.57 *** -816 *** -0.05 -15 

* p<0.05   ** p<0.01   *** p<0.001 
90 day pre- and post-storm temporal scale for Hurricane Irene is May 23, 2011 - December 19, 2011. 
30 day pre- and post-storm temporal scale for Hurricane Irene is July 22, 2011 - September 20, 2011. 

ICD10 Codes:  B20-24, C00-97, E10-14, G00-98, I00-I09, I11, I13, I20-51, I60-69, J10-18, J40-47, K70, K73-74, V01-Y09, Y85-86, Y87.0, 
Y87.1 



 54 

 
Table 7. The results from a Wilcoxon signed rank test with continuity correction for the 
30/90-day pre- and post-storm analysis for external causes of death and deaths in nursing 
homes during Hurricane Irene. 

Table 7. Hurricane Irene, Wilcoxon Signed Rank Test with Continuity Correction 

   Difference in Deaths 90 Days 
Pre-Storm vs. Post-Storm 

(Mean / Sum) 
 

  
Difference in Deaths 90 

Days Pre-Storm vs. Post-
Storm 

 (Mean / Sum) 

External 
Causes of 

Death 

CLI 

Very 
Low -0.21 / -109 *** 

Deaths in 
Nursing 
Homes 

CLI 

Very 
Low -0.34 / -178 *** 

Low -0.23 / -108 *** Low -0.28 / -133 *** 

Average -0.19 / -83 *** Average -0.44 / -194 *** 

High -0.19 / -77 *** High -0.6 / -248 *** 

Very 
High -0.13 / -43 * Very 

High -0.61 / -205 *** 

HLI 

Very 
Low -0.16 / -90 *** 

HLI 

Very 
Low -0.49 / -277 *** 

Low -0.12 / -55 * Low -0.44 / -212 *** 

Average -0.28 / -139 *** Average -0.23 / -114 *** 

High -0.21 / -72 *** High -0.37 / -127 *** 

Very 
High -0.21 / -64 *** Very 

High -0.757 / -228 *** 

NHLI 

Very 
Low -0.34 / -72 *** 

NHLI 

Very 
Low -1.01 / -215 *** 

Low -0.17 / -306 *** Low -0.33 / -613 *** 

Average -0.1 / -5 Average -0.78 / -39 ** 

High -0.6 / -25 *** High -0.97 / -41 ** 

Very 
High -0.35 / -12 Very 

High -1.47 / -50 *** 

MNHVI 

Very 
Low -0.16 / -88 *** 

MNHVI 

Very 
Low -0.26 / -142 *** 

Low -0.27 / -132 *** Low -0.39 / -192 *** 

Average -0.19 / -83 *** Average -0.32 / -143 *** 

High -0.17 / -67 *** High -0.78 / -304 *** 

Very 
High -0.16 / -50 ** Very 

High -0.56 / -177 *** 

* p<0.05   ** p<0.01   *** p<0.001 
90 day pre- and post-storm temporal scale for Hurricane Irene is May 23, 2011 - December 19, 2011. 
30 day pre- and post-storm temporal scale for Hurricane Irene is July 22, 2011 - September 20, 2011. 

External Causes of Death ICD10 Codes: V01 - Y89 
Deaths in Nursing Homes ICD10 Codes: B20-24, C00-97, E10-14, F43.0, F43.1, F43.2, F62.0, F94.1, F94.2, G00-98, I00-I09, I11, I13, 

I20-51, I60-69, J10-18, J40-47, K70, K73-74, V01-Y89 
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Supplementary Table 1. The results of the comparison of Deaths from NOAA Storm Events 
compared to each subindex vulnerability class. 

 
Supplementary Table 1. Deaths from Storms -- NOAA Storm Events Database 

Supplementary Table 1.1 Direct Deaths 

Category CLI 
Deaths 

CLI  
Death % 

HLI 
Deaths 

HLI  
Death % 

NHLI 
Deaths 

NHLI 
Death % 

MNHVI 
Deaths 

MNHVI 
Death % 

Very Low 247 17.73% 86 6.17% 370 26.56% 194 13.93% 

Low 275 19.74% 166 11.92% 444 31.87% 336 24.12% 

Average 280 20.10% 196 14.07% 251 18.02% 177 12.71% 

High 226 16.22% 318 22.83% 195 14.00% 213 15.29% 

Very High 365 26.20% 627 45.01% 133 9.55% 473 33.96% 

Supplementary Table 1.2 Indirect Deaths 

Category CLI 
Deaths 

CLI  
Death % 

HLI 
Deaths 

HLI  
Death % 

NHLI 
Deaths 

NHLI 
Death % 

MNHVI 
Deaths 

MNHVI 
Death % 

Very Low 25 20.66% 13 10.74% 19 15.70% 18 14.88% 

Low 13 10.74% 10 8.26% 40 33.06% 17 14.05% 

Average 26 21.49% 18 14.88% 25 20.66% 15 12.40% 

High 30 24.79% 28 23.14% 30 24.79% 33 27.27% 

Very High 27 22.31% 52 42.98% 7 5.79% 38 31.40% 

Supplementary Table 1.3 All Deaths 

Category CLI 
Deaths 

CLI  
Death % 

HLI 
Deaths 

HLI  
Death % 

NHLI 
Deaths 

NHLI 
Death % 

MNHVI 
Deaths 

MNHVI 
Death % 

Very Low 272 17.97% 99 6.54% 389 25.69% 212 14.00% 

Low 288 19.02% 176 11.62% 484 31.97% 353 23.32% 

Average 306 20.21% 214 14.13% 276 18.23% 192 12.68% 

High 256 16.91% 346 22.85% 225 14.86% 246 16.25% 

Very High 392 25.89% 679 44.85% 140 9.25% 511 33.75% 
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Supplementary Table 2. The results of the comparison of Injuries from NOAA Storm 
Events compared to each subindex vulnerability class 

 
Supplementary Table 2. Injuries from Storms -- NOAA Storm Events Database 

Supplementary Table 2.1 Direct Injuries 

Category CLI 
Injuries 

CLI 
Injuries % 

HLI 
Injuries 

HLI 
Injuries % 

NHLI 
Injuries 

NHLI 
Injuries % 

MNHVI 
Injuries 

MNHVI 
 Injuries % 

Very Low 1736 20.21% 483 5.62% 1530 17.81% 1348 15.69% 

Low 1525 17.75% 723 8.42% 3429 39.91% 1665 19.38% 

Average 2810 32.71% 1716 19.97% 1305 15.19% 1319 15.35% 

High 1349 15.7% 1715 19.96% 1598 18.6% 2835 33.00% 

Very High 1171 13.63% 3954 46.02% 729 8.49% 1424 16.58% 

Supplementary Table 2.2 Indirect Injuries 

Category CLI 
Injuries 

CLI 
Injuries % 

HLI 
Injuries 

HLI 
Injuries % 

NHLI 
Injuries 

NHLI 
Injuries % 

MNHVI 
Injuries 

MNHVI 
 Injuries % 

Very Low 62 14.29% 9 2.07% 158 36.41% 49 11.29% 

Low 33 7.60% 32 7.37% 95 21.89% 44 10.14% 

Average 45 10.37% 60 13.82% 44 10.14% 33 7.60% 

High 149 34.33% 72 16.59% 123 28.34% 66 15.21% 

Very High 145 33.41% 261 60.14% 14 3.23% 242 55.76% 

Supplementary Table 2.3 All Injuries 

Category CLI 
Injuries 

CLI 
Injuries % 

HLI 
Injuries 

HLI 
Injuries % 

NHLI 
Injuries 

NHLI 
Injuries % 

MNHVI 
Injuries 

MNHVI 
 Injuries % 

Very Low 1798 19.92% 492 5.45% 1688 18.70% 1397 15.48% 

Low 1558 17.26% 755 8.37% 3524 39.05% 1709 18.94% 

Average 2855 31.63% 1776 19.68% 1349 14.95% 1352 14.98% 

High 1498 16.60% 1787 19.80% 1721 19.07% 2901 32.14% 

Very High 1316 14.58% 4215 46.70% 743 8.23% 1666 18.46% 
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Supplementary Table 3. The results from a Wilcoxon signed rank test with continuity 
correction for the 30/90-day pre- and post-storm analysis for Socioeconomic causes of death 
during Hurricane Irene. 

 
Supplementary Table 3. Hurricane Irene, Exposed Tracts,  Wilcoxon Signed Rank Test with Continuity Correction 

   # of 
Tracts 

Difference in 
Deaths 90 Days 

Pre-Storm vs. Post-
Storm (Mean) 

Difference in 
Deaths 90 Days 

Pre-Storm vs. Post-
Storm (Sum) 

Difference in 
Deaths 30 Days 

Pre-Storm vs. Post-
Storm (Mean) 

Difference in 
Deaths 30 Days 

Pre-Storm vs. Post-
Storm (Sum) 

Socioeconomic 
Causes of Death 

CLI 

Very 
Low 125 -1.81 *** -226 *** 0.14 17 

Low 88 -3.06 *** -269 *** -0.25 -22 

Average 97 -2.94 *** -285 *** -0.37 -36 

High 90 -2.77 *** -249 *** -0.23 -21 

Very 
High 66 -3.27 *** -216 *** -0.08 -5 

HLI 

Very 
Low 17 -1.76 -30  0.64 11 

Low 18 -2.44 ** -44 ** -0.28 -5 

Average 52 -2.21 *** -115 *** 0.08 4 

High 94 -2.29 *** -215 *** -0.02 -2 

Very 
High 285 -2.95 *** -841 *** -0.26 ** -75 ** 

NHLI 

Very 
Low 39 -3.77 *** -147 *** 0.15 6 

Low 394 -2.40 *** -947 *** -0.21 **  -82 ** 

Average 12 -4.17 ** -50 ** 0.5 6 

High 10 -2.9 -29 0.6 6 

Very 
High 11 -6.55 *** -72 *** -0.27 -3 

MNHVI 

Very 
Low 47 -0.83 -39 0.68 *** 32 *** 

Low 51 -2.55 *** -130 *** -0.08 -4 

Average 77 -2.12 *** -163 *** -0.32 -25 

High 129 -3.29 *** -425 *** -0.26 -34 

Very 
High 162 -3.01 *** -488 *** -0.22 -36 

* p<0.05   ** p<0.01   *** p<0.001 
90 day pre- and post-storm temporal scale for Hurricane Irene is May 23, 2011 - December 19, 2011. 
30 day pre- and post-storm temporal scale for Hurricane Irene is July 22, 2011 - September 20, 2011. 
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Supplementary Table 4. The results from a Wilcoxon signed rank test with continuity 
correction for the 90-day pre- and post-storm analysis for external causes of death and deaths 
in nursing homes during Hurricane Irene. 

 
Supplementary Table 4. Hurricane Irene, Exposed Tracts, Wilcoxon Signed Rank Test with Continuity Correction 

   
Difference in Deaths 90 Days 

Pre-Storm vs. Post-Storm 
(Mean / Sum) 

 

  
Difference in Deaths 90 

Days Pre-Storm vs. Post-
Storm 

 (Mean / Sum) 

External 
Causes of 

Death 

CLI 

Very 
Low -0.22 / -27 

Deaths in 
Nursing 
Homes 

CLI 

Very 
Low -0.49 / -61 *** 

Low -0.28 / -25 ** Low -0.31 / -27 ** 

Average -0.18 / -17 Average -0.68 / -66 *** 

High -0.18 / -16 High -0.66 / -59 *** 

Very 
High -0.21 / -14 Very 

High -0.80 / -53 ** 

HLI 

Very 
Low -0.18 / -3 

HLI 

Very 
Low -0.47 / -8  

Low -0.17 / -3  Low -0.61 / -11  

Average -0.21 / -11 Average 0 / 0 

High -0.23 / -22 High -0.32 / -30 * 

Very 
High -0.21 / -60 *** Very 

High -0.76 / -217 *** 

NHLI 

Very 
Low -0.56 / -22 *** 

NHLI 

Very 
Low -1.28 / -50 *** 

Low -0.18 / -70 *** Low -0.41 / -162 *** 

Average 0.25 / 3 Average -2.08 / -25 ** 

High -0.5 / -5 High -1.80 / -18 

Very 
High -0.45 / -5 Very 

High -1.00 / -11 * 

MNHVI 

Very 
Low 0.09 / 4 

MNHVI 

Very 
Low -0.02 / -1 

Low -0.45 / -23 ** Low -0.43 / -22 ** 

Average -0.29 / -22 * Average -0.29 / -22 * 

High -0.19 / -24 High -0.81 / -105 *** 

Very 
High -0.21 / -24 *  Very 

High -0.72 / -116 *** 

* p<0.05   ** p<0.01   *** p<0.001 
90 day pre- and post-storm temporal scale for Hurricane Irene is May 23, 2011 - December 19, 2011. 
30 day pre- and post-storm temporal scale for Hurricane Irene is July 22, 2011 - September 20, 2011. 
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Fig. 1. Inductive Hierarchical Model used to construct the MNHVI. The NHLI is created 
using the Analytical Hierarchy Process and is represented at the County level (Figure 1.2). 
The CLI and HLI is created using a Principal Components Analysis and are represented at 

the Census Tract level (Figures 1.1 and 1.3). The MNHVI is created using the AHP process 
and is represented at the Census Tract level (Figure 1.4) 
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Fig. 2. Trivariate map of vulnerability in the SEUS. Symbology is represented by the main 
driver of vulnerability for each CU. If there is no definite driver of vulnerability, ‘grey’ is 

ascribed to the CU to denote either equal influence by all three indices. 
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Fig. 3. Census Tracts within exposed counties are subset as tracts directly exposed to 
Hurricane Irene 
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Fig. 4. Community Level Index Precision. Left: County Level using Manual Construction 
Method. Right: Tract Level using Monte Carlo Simulation. Negative and positive values 

represent values above and below mean vulnerability (i.e., negative CV values = below mean 
vulnerability, positive CV values = above mean vulnerability). 
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