
 

 

 

 

 

 

 

 

WEARABLE SENSORS FOR PERSONAL TEMPERATURE EXPOSURE 

ASSESSMENTS: A COMPARATIVE STUDY 

 

 

 

 

 

 

 

A Thesis  

by 

ELIZABETH F. BAILEY 

 

 

 

 

 

 

Submitted to the Graduate School 

 at Appalachian State University 

in partial fulfillment of the requirements for the degree of 

MASTER OF ARTS 

 

 

 

 

 

 

 

 

 

May 2019 

Department of Geography and Planning 

 

 

 

 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345088497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

WEARABLE SENSORS FOR PERSONAL TEMPERATURE EXPOSURE 

ASSESSMENTS: A COMPARATIVE STUDY 

 

 

 

 

 

A Thesis  

by 

ELIZABETH F. BAILEY 

May 2018 

 

 

 

 

 

APPROVED BY:  

  

 

        

Margaret M. Sugg, Ph.D. 

Chairperson, Thesis Committee 

 

 

        

Christopher Fuhrmann, Ph.D. 

Member, Thesis Committee 

 

 

        

Jennifer Junkle, Ph.D. 

Member, Thesis Committee 

 

 

        

Max C. Poole, Ph.D. 

Dean, Cratis D. Williams School of Graduate Studies 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by Elizabeth F. Bailey 2019 

All Rights Reserved 

 

 



 iv 

 

 

 

 

 

 

Abstract 

 

WEARABLE SENSORS FOR PERSONAL TEMPERATURE EXPOSURE 

ASSESSMENTS: A COMPARATIVE STUDY 

 

Elizabeth F. Bailey 

B.A., Queens University of Charlotte 

M.A., Appalachian State University 

 

 

Chairperson: Margaret M. Sugg, Ph.D. 

 

 

Heat exposure is the leading weather-related cause of death in the United States. The 

impacts of heat on human health has sparked research on different approaches to measure, 

map, and predict heat exposure at more accurate and precise spatiotemporal scales. Personal 

heat sensor studies rely on small sensors that can continuously measure ambient temperatures 

as individuals move through time and space. The comparison between different types of 

sensors and sensor placements have yet to be fully researched. The objective of this study is 

to assess the validity of personal ambient temperature sensors. To accomplish this objective, 

we evaluate the performance of multiple low-cost wearable sensors (HOBOs, iButton 

Thermochrons, iButton Hygrochrons, and Kestrel DROP D3FW Fire) for measuring ambient 

temperature in a (1) field exposure study by varying the placement on human subjects and in 

a (2) field calibration study by co-locating sensors with fixed site weather station monitors. A 

secondary aim involved investigating consensus between validation metrics that can be used 

in future sensor comparison studies. Bland-Altman analysis, correlation coefficients, and 

index of agreement statistics were used to quantify the difference between sensor and 



 v 

weather station ambient temperature measurements. Results demonstrated significant 

differences in measured temperatures for sensors based on sensor type and placement on 

participants.  Future research should account for the differences in personal ambient 

temperature readings based on sensor type and placement. 
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Introduction 

Environmental heat exposure is a prevalent human health hazard. Heat-related illness, 

also called hyperthermia, is a condition that occurs when core body temperatures exceed 

ranges needed for physiological functioning (Kuras et al. 2017). Studies show a common 

trend of enhanced morbidity and mortality in populations when heat deviates above average. 

This effect is especially prevalent when heat ratings exceed the 95th percentile of 

experienced temperatures for a specific geographic location (Gosling et al. 2009). On 

average, heat waves cause more weather-related fatalities than any other type of natural 

disaster in the United States (Bernard and Mcgeehin 2004).  

Due to the adverse effects of heat on public health, a substantial reservoir of heat and 

health-related articles have been published in the last decades (e.g., Fuhrmann et al. 2016, 

Gosling et al. 2009, Hondula et al. 2012, Hondula et al. 2015, McGeehin and Mirabelli 2001, 

Noe et al. 2012). The impacts of heat on human health has sparked research on the best 

approach to map and predict heat exposure on more accurate and precise scales. This has led 

to a variety of personal heat sensor studies that have identified many factors, both physical 

and social, that contribute to an increased risk of increased heat exposure (Basu and Samet 

2002, Bernard et al. 2015, Kuras et al. 2017, Sugg et al. 2018). An analysis of previous 

research illustrates the gaps in the literature that currently exist, limiting the accuracy of 

current heat alert systems.  

One of the most common difficulties in the creation of adequate alert systems exists 

in the identification of spatial, physiological, and social differences in heat vulnerability and 

resilience (Kuras et al. 2017). People experience heat differently based on age, gender, body 

mass and surface area, hydration status, metabolic rate, preexisting health conditions, 
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psychological state, acclimatization, indoor heat exposure, time patterns, and outdoor 

microclimates (Bernhard et al. 2015, Chan et al. 2001; Chen and Ng 2012; Kuras et al. 

2017).  Personal exposure, time-activity patterns, and differential factors are not considered 

in population-based, large-scale studies. The understanding of personal heat exposure is 

essential to the identification of groups that are the most susceptible to heat-related illnesses 

and to prevent easily mitigated health impacts. Moreover, the identification of vulnerable 

populations and spatial vulnerability trends can provide useful tools for future policy and 

mitigation measures involving public health and heat (Hondula et al. 2012).  

Personal heat exposure studies are pilot in nature and focus on individual populations 

or sub-groups. These small scales are beneficial for identifying geographic, socioeconomic, 

and physiological vulnerabilities within populations. However, the small scales and 

inconsistent methods between studies make comparisons across space and time difficult. This 

lack of comparison eliminates the ability to establish larger spatial or socioeconomic trends 

between ambient temperatures and heat-related illness. A comprehensive set of standards 

within the field are needed to create a model that would allow for comparisons between 

studies, allowing broader personal trend questions to be answered (Kuras et al. 2017).  

Another limitation to the comparability between studies exists in the literature gap of 

personal sensor validation. A substantial literature gap exists in combining meteorological 

data and personal heat exposure methodology and technology (Kuras et al. 2017). To date, 

few studies compare personal temperature sensors (HOBO, Kestrel, iButton) with 

meteorological or remote sensed data. This literature gap creates difficulties in comparing 

past studies to each other that utilize different sensor types or placements on participants. 

Quantifying the differences in sensors will allow for error to be reduced in future studies. 
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There is also a literature gap in the variance between the different personal monitors and a 

gap in knowledge regarding what device is best suited for accurately mapping personal heat 

exposure.  

While no known studies have focused solely on personal heat sensor validation, 

multiple studies have been published in the field of personal air quality sensor validation. Air 

sensor validation studies have developed a comprehensive set of methodology for the 

identification of differences between studies (Dons et al. 2017, Lewis and Edwards 2016, 

Ueberham and Schlink 2018). Past validation studies have centered on Bland Altman 

analysis to quantify the differences between sensors and determine when sensors deviate 

from each other (Dons et al. 2017, Stahl et al. 2016, Ueberham and Schlink, 2018). Studies 

have also utilized Pearson’s correlations (Stahl et al. 2016), mean absolute percentage error 

(Stahl et al. 2016, Ueberham and Schlink, 2018), Lin’s concordance correlation coefficients 

(Dons et al. 2017) and Taylor diagrams (Ueberham and Schlink, 2018). To date, no studies 

utilize this set of methodology on the validation of personal temperature sensors. 

The objective of this study is to assess the literature gap in the validity of personal 

ambient temperature sensors. To accomplish this objective, we evaluate the performance of 

multiple low-cost wearable sensors (HOBOs, iButton Thermochrons, iButton Hygrochrons, 

and Kestrel DROP D3FW Fire) for measuring ambient temperature in a (1) field exposure 

study by varying the placement on human subjects and in a (2) field calibration study by co-

locating sensors with fixed site weather station monitors. A secondary aim involved 

investigating consensus between validation metrics that can be used in future sensor 

comparison studies.  
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Abstract 

Heat exposure is the leading weather-related cause of death in the United States. The 

impacts of heat on human health has sparked research on different approaches to measure, 

map, and predict heat exposure at more accurate and precise spatiotemporal scales. Personal 

heat sensor studies rely on small sensors that can continuously measure ambient temperatures 

as individuals move through time and space. The comparison between different types of 

sensors and sensor placements have yet to be fully researched. The objective of this study is 

to assess the validity of personal ambient temperature sensors. To accomplish this objective, 

we evaluate the performance of multiple low-cost wearable sensors (HOBOs, iButton 

Thermochrons, iButton Hygrochrons, and Kestrel DROP D3FW Fire) for measuring ambient 

temperature in a (1) field exposure study by varying the placement on human subjects and in 

a (2) field calibration study by co-locating sensors with fixed site weather station monitors. A 

secondary aim involved investigating consensus between validation metrics that can be used 

in future sensor comparison studies. Bland-Altman analysis, correlation coefficients, and 

index of agreement statistics were used to quantify the difference between sensor and 

weather station ambient temperature measurements. Results demonstrated significant 

differences in measured temperatures for sensors based on sensor type and placement on 

participants.  Future research should account for the differences in personal ambient 

temperature readings based on sensor type and placement. 
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Highlights 

• Differences in temperatures occur based on sensor placement on the participant’s 

body. 

• Differences in temperature occur between different types of sensors. 

• The Kestrel is the most correlated to the weather station out of all sensors. 

• Devices attached to the weather station facing towards solar radiation have higher 

rates of error. 
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1. Introduction 

Due to the adverse effects of heat on public health, a wealth of heat and health-related 

articles have been published in the last decades (e.g., Fuhrmann et al. 2016, Gosling et al. 

2009, Hondula et al. 2012, Hondula et al. 2015, McGeehin and Mirabelli 2001, Noe et al. 

2012). The impacts of heat on human health has sparked research on the best approach to 

measure, map, and predict heat exposure at the individual scale. Human exposure 

assessments are currently dominated by the use of data from expensive and fixed 

measurement stations that may be analyzed with modeling techniques like interpolation, 

land-use regression or dispersion models (e.g., Dong et al. 2014, Rhea et al. 2012, Sheridan 

and Kalkstein 2010, Williams et al. 2012, Zhou et al. 2014). These data are helpful for 

general conclusions related to population-level health inferences but have limitations when 

assessing individual exposure due to the diverse microclimates, difference in individual 

physiological conditions, and different activity levels that people experience in their daily 

lives that cannot be fully captured by coarse weather station data. Recent advances in 

wearable sensor and GPS technology has led to a variety of personal heat sensor studies that 

have identified many factors, both physical and social, that contribute to an increased risk of 

heat-related health outcomes (Basu and Samet 2002, Bernhard et al. 2015, Kuras et al. 2017, 

Sugg et al. 2018). Personal heat sensor studies often utilize small wearable technology that 

tracks an individual's microclimate and temperature throughout the day. These devices allow 

for the collection of data at more precise temporal and spatial scales than weather station data 

can provide, and results have shown significant heterogeneity among participants depending 

on job, demographics, and/or geographic location. 
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One of the most common difficulties in the mitigation of heat health impacts and the 

creation of adequate heat alert systems is the identification of spatial, physiological, and 

social differences in heat vulnerability and resilience at the individual level (Kuras et al. 

2017). Some of the differences that impact how people thermoregulate include, age, gender, 

body mass and surface area, hydration status, metabolic rate, preexisting health conditions, 

psychological state, acclimatization, and patterns of exposure (Bernhard et al. 2015, Chan et 

al. 2001; Chen and Ng 2012; Kuras et al. 2017).  Personal exposure and time-activity patterns 

are not considered at the individual level for large population-based studies. The 

understanding of personal heat exposure is essential to the identification of individuals that 

are the most susceptible to heat-related illnesses in order to prevent easily mitigated health 

impacts. Moreover, the identification of vulnerable populations can provide useful 

information for future policy and mitigation measures involving heat and public health 

(Hondula et al. 2012).  

To-date, the majority of personal heat exposure studies have been pilot in nature and 

focused on specific populations or sub-groups. These small scales are beneficial for 

identifying geographic, socioeconomic, and physiological vulnerabilities within populations. 

However, the small scales and inconsistent methods between studies make comparisons 

across space, time, and different populations difficult. This lack of comparison eliminates the 

ability to establish broader spatial or socioeconomic trends between ambient temperatures 

and heat-related illnesses (Kuras et al. 2017). A comprehensive validation study comparing 

different types of sensors and sensor placements is needed to compare studies that utilize 

different types of sensors. Broader personal temperature exposure trend questions cannot be 

answered until studies can be compared (Kuras et al. 2017).  
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A substantial literature gap not only exists in the comparison of different types of 

sensors but also in the comparison between standard meteorological data and personal heat 

sensor technology (Kuras et al. 2017). To date, few studies compare observations from 

personal temperature sensors (HOBO, Kestrel, Thermochron, Hygrochron) to meteorological 

or remote sensing data (Bernhard et al. 2015, Sugg et al. 2018, Kuras et al. 2015). While 

there are some studies that compare personal temperature sensors to meteorological data, the 

studies have not yielded consistent results. Bernhard et al. (2015) found that outdoor personal 

ambient temperature readings (PAT) predicted a 0.5 ℃ increase in temperature for each 1℃ 

increase at a neighboring weather station. Kuras et al. (2015) and Sugg et al. (2018) reported 

similar finding with less significant results than Bernhard et al. (2015). The influencing 

factors lending to significant differences between different types of sensors and weather 

station data has not yet been quantified. This literature gap creates difficulties in comparing 

past studies that utilize different sensor types or placements on participants. Quantifying the 

temperature differences will allow comparisons of different studies and the generation of 

recommendations as to which device is best suited for accurately mapping personal heat 

exposure during participant based studies.  

While no known studies have focused solely on personal heat sensor validation, 

multiple studies have been published in the field of personal air quality sensor validation. Air 

quality sensor validation studies have developed a comprehensive set of methodology for the 

identification of differences between sensors (Dons et al. 2017, Lewis and Edwards 2016, 

Ueberham and Schlink 2018). Past validation studies have centered on Bland Altman 

analysis to quantify the differences between sensors and determine when sensors deviate 

from each other (Dons et al. 2017 and Ueberham and Schlink, 2018). Studies have also 
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utilized mean absolute percentage error (Ueberham and Schlink, 2018), mean bias error 

(Ueberham and Schlink, 2018), Lin’s concordance correlation coefficients (Dons et al. 2017) 

and Taylor diagrams (Ueberham and Schlink, 2018). Ueberham and Schlink (2018) utilize 

mean absolute error (MAE) to gauge the precision of the sensors, and mean bias error (MBE) 

to determine the accuracy of the sensors (Ueberham and Schlink 2018). Accuracy is defined 

as a measurement that is very close to the correct value, while precision is a measurement 

exactness. Ueberham and Schlink (2018) tested two personal temperature sensors in their 

study (Testo testostor 171 and TSI Q-Trak 7565) illustrating that their methodology is well 

suited for validating personal ambient temperature sensors. The study found moderate to high 

agreement between devices outdoors (IA and r = 0.5-0.97). Bland Altman plots illustrate that 

the lowest levels of precision occur during higher temperatures, demonstrating a limitation of 

these sensors when they are potentially needed most. To date, no studies utilize this set of 

methodology on the validation of HOBOs, Kestrel DROP D3 Fires or iButtons.  

This study aims to fill these literature gaps by identifying which personal monitors 

and placements are the most valid and replicable for more extensive research that examines 

the best ways to map and predict personal temperature exposure. To accomplish this 

objective, we evaluate the performance of multiple low-cost wearable sensors for measuring 

ambient temperature in a (1) field exposure study by varying the placement on human 

subjects and in a (2) field calibration study by co-locating sensors with fixed site weather 

station monitors. A secondary aim involved investigating consensus between validation 

metrics that can be used in future sensor comparison studies. Results will provide 

recommendations to inform future personal heat studies. 
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2. Data and Methods 

2.1. Participant Recruitment 

Twenty-one participants from Appalachian State University (ASU) and seventeen 

participants from Mississippi State University (MSU) consented and were enrolled to 

participate in this study. Participants were recruited via recruitment emails, fliers, and an 

online ASU bulletins. The ASU participants signed up for one of two 5-day data collection 

periods from July 23rd through August 3rd (occurring Monday-Friday), while MSU 

participants signed up for a study period of September 21st through September 28th, or 

September 28th through October 5th. Devices were activated the night before and delivered 

to participants on the first day of their assigned study period. At the time of device drop off, 

all equipment was explained and baseline surveys, activity logs, and written equipment 

instructions were distributed and consent forms were signed. Researchers made sure to stress 

the importance of keeping devices in their designated placements and to record any changes 

in the daily activity logs. Participants did not receive any monetary compensation for their 

participation. This project received human subject’s approval from the institutional review 

board (IRB) at ASU (IRB #18-0325) and MSU (IRB #18-383). 

 

2.2. Data Collection 

2.2.1. Phase I: Participant Data Collection 

The data for this study were collected in two phases. In Phase I, personal environmental 

exposure data were collected for a total of thirty-eight participants from Appalachian State 

University (ASU) in Boone, North Carolina (𝑛 = 21) and Mississippi State University in 

Starkville, Mississippi (𝑛 = 17). Table 1 highlights the demographics of the participant 



 12 

portion of the study. Overall participants at ASU were older and less diverse than MSU 

participants, who were predominantly undergraduate students.   

The two locations are climatologically diverse rural towns with populations less than 

26,000 (US Census 2010). Boone, NC is located in the Appalachian Mountains with an 

elevation of 1016 meters, while Starkville, MS is located at 102 meters above sea level 

(Figure 1). The average daily maximum temperature during the study period (July-

September), using 30-year climate normals from 1981 through 2010, is 89.7°F/32.1°C in 

Starkville, MS and 76.3°F/24.6°C in Boone, NC.  The average temperature during was 

20.01°C during the Boone, NC study period and 23.98°C during the Starkville, MS study. 

The first week (July 23rd-27th) of the Boone, NC study period was predominantly sunny, 

while the second week of the study period (July 30th-August 3rd) was cloudy with heavy 

rain for four out of five days. There was no major precipitation events during the Starkville, 

MS study period (September 21st-October 5th). 

Participants wore up to six devices including 1.) A Garmin Vivoactive HR watch 2.) 

Two iButton Thermochrons 3.) An iButton Hygrochron 4.) A Kestrel DROP D3 Fire and 5.) 

A HOBO pendant. Participants at ASU were equipped with the highest number of 

devices.  HOBO devices (Pendant Temperature/Light Data Logger UA-002-64) were worn 

on the top of the shoe, and the Kestrel and Thermochron devices were attached to a backpack 

or purse with a carabineer, which served as a control for sensor readings on the body.  An 

additional Thermochron was worn on the collar with a safety pin, a common practice in other 

personal monitoring studies (e.g., Sugg et al. 2018, Runkle et al. 2019, Sugg et al. 2019). 

MSU participants wore the following devices: a HOBO (on the shoe), a Kestrel (on a 

carabiner), a Hygrochron (on shirt collar), and a Thermochron (on shirt collar), however, no 
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participants were equipped with multiple Thermochrons due to a resource shortage (Figure 

2). All devices at both universities were set to record data at five-minute intervals. Different 

sensor models are equipped with varying capabilities of monitoring (Table 2). All sensors 

utilized in this study record temperature data. Participants at MSU and ASU completed 

activity logs at thirty-minute intervals and baseline surveys that outline essential 

socioeconomic data. These activity logs provide individual context to the data and 

temperature anomalies.  

 

2.2.2. Activity Logs 

To quantify differences in microenvironments (e.g., indoor, outdoor, in-transit) and 

activity type (e.g., exercise, stationary), participants labeled their activities as low intensity, 

moderate intensity, or high intensity in their daily activity logs. Participants also indicated if 

they were outside, inside, or in-transit throughout their activity logs.  Activity log 

information was collected from 7:00 AM to 7:00 PM at a thirty-minute time scale.  

Responses to activity logs were numerically coded in excel and microenvironments/activity 

levels were stratified for statistical analysis. 

 

2.2.3. Phase II: Weather Station Data Collection  

In Phase II, at least two of each type of personal sensors (HOBOs, iButton 

Thermochrons, iButton Hydrochrons, and Kestrel Drop D3FWs) were attached to a weather 

station in Starkville, MS, and Boone, NC during the same time periods as the corresponding 

participant studies (Figure 3). One device was attached to the weather station facing up in 

direct sun exposure and one was attached hanging down at indirect sun exposure. The 
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different placements test the differences in measurements based on direct or indirect sun 

exposure. Data collection from this test is used to examine the accuracy of personal 

monitoring devices in relation to meteorological data from the two weather stations that are 

located in climatologically and geographically diverse locations (Starkville, MS, and Boone, 

NC), and the impact of direct solar radiation on sensor accuracy. The Boone, NC weather 

station records measurements at hour and one-minute intervals, while the Starkville, MS 

weather station only records data at an hourly rate. The weather stations in Starkville, MS 

and Boone, NC utilize thermistors that are housed in aspirated radiation shields.  

 

2.3. Statistical Analysis 

2.3.1. Comparison between Weather Station and Sensor Measurements 

Sensors in Boone, NC, and Starkville, MS, were set to record temperatures every 

five-minutes. Weather station data from Boone, NC was recorded at a one-minute scale and 

averaged to a five-minute scale. Sensor data from Starkville, MS was averaged to the nearest 

hour to match the weather station data that was recorded at an hourly scale.  

To initially evaluate the accuracy of personal wearable sensors in approximating 

weather station temperature measurements, Pearson's product moment correlation 

coefficients were calculated (𝛼 = 0.05) (Stahl et al. 2016). The mean absolute error (MAE) 

was also calculated to gauge the precision of the sensors, while mean bias error (MBE) and 

root mean square error (RMSE) were used to determine the accuracy of the sensors 

(Ueberham and Schlink 2018). Both accuracy and precision are important components in the 

assessment of which sensor is performing the best, and ideally, the best sensor should be both 
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highly accurate and highly precise (Ueberham and Schlink 2018). RMSE measures the 

average magnitude of error, weighting larger errors at a higher rate than MBE or MAE.  

Following the methodology of Stahl et al. (2016) and Ueberham and Schlink (2018), 

a Bland Altman plot was used to quantify the differences between sensors and the weather 

station. Bland Altman analysis allowed for both the appraisal of disagreements and the 

determination of when the disagreements occurred. For the sensors to be considered accurate, 

its line of equality within the Bland Altman plot must fall within the 95% confidence interval 

of the mean difference (Myles and Cui 2007). Bland Altman analysis and notched box plots 

were also utilized to identify the most significant differences within the data, both between 

sensors and by determining what times of day the sensors differ from each other and the 

weather station data the most.  

Lin’s concordance correlation coefficient (Pc) is calculated to determine the degree of 

variation between the various types of sensors and the weather station data (Dons et al. 

2017). Concordance correlation coefficients test how well a new measurement (personal 

temperature sensors) reproduce a gold standard (weather station data) (Lin 1989).  

 

2.3.2. Participant Personal Temperature Exposure Data 

Participant data was first examined using basic summary statistics, t-tests, and 

boxplots. These tests are used to determine which sensors observed temperatures warmer 

than others and to identify data outliers. Bland Altman analysis is then utilized to determine 

the average temperatures where the largest deviations between sensor temperature readings 

occur. Significant temperature differences occur between the various types of sensors and 

sensor locations when being worn by participants. Finally, a linear mixed effects model for 
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repeated measures with a random intercept for each participant is utilized to compare the 

participant sensor observations to the weather station readings at the same time. Linear mixed 

effect models are used to determine the degree of difference between the weather station and 

the participant sensor readings. 
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3. Results 

3.1. Participant Study 

Summary statistics illustrate that the Kestrel device has the lowest mean temperature 

for both the ASU and MSU participant studies. At ASU, the highest maximum temperature 

(57.2 °C) was recorded by the iButton 2, which was attached to a participant’s collar while 

the participant was indoors preparing a research lab. The highest temperature at MSU (48.9 

°C) was recorded by the HOBO device (Table 3). All T-tests between different types of 

sensors and placements were significant at both locations, even after adjusting for a 

bonferroni correction (0.05/sample size).  

Bland Altman plots show that iButton 1 (attached to bag) and iButton 2 (on collar) 

have the largest absolute mean difference at ASU (3.09), while the Hygrochron and HOBO 

have the largest absolute mean difference at MSU (1.76). The devices that have the lowest 

absolute mean difference are the iButton 1 (attached to bag) and Kestrel at ASU (0.18) and 

the iButton 2 (on collar) and HOBO at MSU (0.50). The largest measured temperature 

differences between sensor types occur between 32 − 49 °C at ASU and 24 − 29 °C at MSU 

(Figure 4). 

 

3.1.1. ASU Participant Study: Activity Log Analysis  

Summary statistics show that there is no type of environment (i.e. indoor, outdoor, in-

transit) that has the highest mean or max temperature readings. In-transit has the highest 

mean temperature for Hygrochrons, HOBO, and Kestrel devices. iButton 1 devices (attached 

to a bag) have the highest mean temperatures outdoors, and iButton 2 (attached to the collar) 

has the highest mean and max temperatures indoors (Table 4). The highest overall correlation 

coefficients between different sensors types occurred in the category of “in-transit”  
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(𝑅 = 0.513 −  0.796, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  0.001). Indoor and outdoor microclimates displayed 

average correlation values below 𝑅 = 0.5. There are no clear patterns as to what 

microenvironments experience the largest degrees of error between different types of sensors.  

Summary statistics illustrate that high intensity activity levels have the lowest mean 

and maximum temperatures for all devices except the HOBO maximum temperature. iButton 

1 (attached to bag) has the highest mean and max temperatures during moderate activity 

(𝑚𝑒𝑎𝑛 = 23.25 °𝐶, 𝑚𝑎𝑥 = 53.00 °𝐶), while iButton 2 (attached to collar) has the highest 

maximum and mean temperatures during low activity levels. The Kestrel, HOBO, and 

Hygrochron have highest max temperatures during low activity levels, and the highest mean 

temperatures during moderate activity levels (Table 5).  

To identify if activity type influenced sensor type and location temperature readings, 

we examined activity log data classifications of activity intensity. While the least extreme 

maximum and mean temperatures are recorded during high activity levels, the sensors have 

the lowest correlations during this category of activity with an average correlation of 𝑅 =

0.366 (𝑅 =  0.056 − 0.510). The lowest correlation (𝑅 = 0.056, 𝑝 = 0.202) in this category 

is between the Kestrel and iButton 1 (attached to Kestrel on a bag). Correlation coefficients 

are highest for low and moderate intensity activities ranging between 𝑅 =  0.26 to  

𝑅 = 0.829, with an average correlation coefficient of 𝑅 = 0.520 for low activity and 𝑅 =

0.449 for moderate activity. Box Plots illustrate that high activity intensity has the most 

variability between days throughout the study, while mean temperature during low activity 

levels are consistent across the study period (Figure 5).  

No patterns were found in the deviations between devices based on location (i.e. 

outdoor, indoor, in-transit). Results show that high intensity activities have the lowest mean 
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and maximum temperatures band the lowest correlations between sensors. This could be due 

to the majority of high intensity level activities occurring in air conditioned gyms. Although 

past studies have found differences in sensor accuracy based on outdoor and indoor 

microclimates, our study found inconclusive results for these sensor types (Ueberham and 

Schlink 2018).  

Table 6 illustrates the locations of participants during the maximum temperatures 

reached by each device. The majority of the temperature spikes recorded by iButton 1, 

iButton 2, and Kestrel devices match to the participant A7 during a variety of activities and 

locations. These spikes in activities were predominantly during moderate activity walking 

and low activity teaching and lab preparation. Participant A7 was not equipped with a 

Hygrochron, explaining why the participant was not listed for any spikes in this category. 

The participant was equipped with a HOBO and it is unclear why the device did not react 

with the same spikes in temperatures as the other devices worn by participant A7. These 

spikes throughout various locations and activity types show that there is not a specific 

environment that generates the differences in sensor readings.  

 

3.1. Participant Sensors and Weather Station Data Analysis 

3.1.1. Comparisons of Stationary Sensor Measures with Weather Station 

Wearable sensors have similar mean temperatures to weather stations at both locations, however, 

sensors have much higher maximum temperatures compared to the weather stations for both sites 

(Table 7). The HOBO sensor reported the highest peaks in both Boone, NC (46.72 °C) and 

Starkville, MS (46.08 °C).  All of the sensors in Boone, NC observed lower minimum temperatures 
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(12.5 °𝐶 −  13.61 °𝐶) than the weather station (15.16 °C), illustrating that the devices deviate from 

the weather station temperatures at multiple times of the daytime and nighttime hours (Figure 6).  

Testing the level of similarity between the sensors attached to the weather station and 

the in-situ weather station data in Boone, NC shows that all the devices, except the iButton 

Thermochron facing upwards (𝑅 =  0.06, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  0.01) were highly correlated. 

Although most correlations were highly significant, the correlation coefficients were low, 

ranging from 0.21 to 0.39. Stationary Kestrel measures were highly correlated with the 

weather stations, with values of 0.39 (𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  0.001) for the device hanging down 

(i.e., away from direct solar radiation) from the weather station and 0.25 (𝑝 − 𝑣𝑎𝑙𝑢𝑒 <

 0.001) for the device facing upwards (i.e., in direct solar radiation) attached to the weather 

station. While the correlations between the weather station and the sensors were low, the 

correlations between different types of sensors were much higher. The correlations between 

different types of sensors ranged from 0.81 to 0.98 (Figure 7). 

The Starkville, MS weather station and sensor correlations were significantly higher 

than those in Boone, NC (𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  0.01). The lowest correlation coefficient between a 

sensor and the Starkville, MS weather station is the HOBO facing up (0.88), while the 

highest are the Hygrochron (0.98) and Kestrel (0.98) that were protected by solar radiation 

shields (Figure 8). The results are congruent with results in Boone, NC, illustrating that the 

devices that are attached to the top of the weather station in direct sunlight have lower 

correlations in relation to the weather station. Both study areas illustrate the HOBO devices 

have the lowest correlation values while the Kestrel and Hygrochron have the highest 

correlation values.  
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The HOBO devices (facing upwards and downwards) have the highest MAE, MBE, 

and RMSE values at both study sites. HOBO devices also have the lowest Pc values at both 

Boone, NC, and Starkville, MS, with all values rating as “poor” by both Altman (1991) and 

McBride (2005) standards.  The Kestrel facing down and all Starkville, MS, devices 

protected by radiation shields have the highest Pc values. The highest Pc value in the Boone, 

NC, study is 0.36 (poor) while the highest Pc values in Starkville, MS are 0.93 −  0.98 

(excellent) (Altman 1991). While the Starkville, MS, and Boone, NC, values differ 

drastically, the same devices display the highest and lowest accuracies at both sites. During 

both studies Kestrel devices perform the best and HOBO devices perform the worst in 

comparison to the weather station data (Table 8).       

 

3.1.2. Comparison between Sensors Worn by Participants and Weather Station Data 

Mixed effects models show that weather station temperature measurements are 

significantly associated with personal heat exposure measured by all sensor types and 

placements. Across all participants at ASU, model results predict that personal sensor 

temperature readings increased by 0.20 − 0.27 for every 1 °C increase in temperature 

recorded by the weather station. The model results predicted that personal sensor temperature 

readings increases by 0.28 − 0.50 for every 1 °C increase in temperature recorded by the 

weather station at MSU. The marginal 𝑅
2

 values (0.040 − 0.059) for all devices at ASU are 

low, showing that the weather station data does not explain much of the deviations in PAT 

values (Table 9). Marginal 𝑅
2

 values are much higher at MSU ranging from 0.044 − 0.210 

(Table 10). 
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4. Discussion 

The first objective of this study was to quantify the differences in temperature 

measurements between different types of personal wearable sensors and sensor placements 

when worn by participants. The second objective of this study was to examine how closely 

personal ambient temperatures match weather station data in order to make recommendations 

on the best type of sensor for participant-based monitoring studies.  To the author’s 

knowledge, this is the first study that compares HOBO, iButton Thermochron, iButton 

Hygrochron, and Kestrel sensor data during participant based studies and relative to fixed 

weather station data. This study adds to the body of knowledge that works to validate 

personal temperature exposure sensors and draw comparisons between sensors and weather 

station data (Bernhard et al. 2015, Kuras et al. 2015, Sugg et al. 2018, and Ueberham and 

Schlink, 2018). We found significant differences between different types of sensors and 

sensor placements that underpin the need to quantify differences between devices before 

results from studies utilizing different devices or device placements can be compared.  

 

4.1. Sensor and In-Situ Weather Station Data 

Comparisons between sensor temperature readings and weather station readings show 

that sensors run predominantly warmer than the weather station during daytime hours, and 

colder than the weather station through the nighttime hours. While deviations in temperature 

between the sensors and weather station occur during the day and night, deviations are much 

greater during the daytime spikes than the nighttime hours. The HOBO has the highest 

overall recorded temperatures and deviations from the weather station at both locations. 
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These differences between temperature readings based on sensor placements show the 

sensitivity of the devices to direct solar radiation. To the author’s knowledge, this is the first 

study that attached these sensor types directly to a weather station to monitor when 

deviations occur.  

The Kestrel devices performed the best in relation to the weather station, with the 

lowest MAE, MBE and RMSE values and highest Pc value. The HOBO demonstrated the 

most variation from the weather station, with the highest degrees of error across all tests and 

a Pc values that rank below excellent at MSU and poor at ASU according to Altman (1991) 

standards and poor at both universities by McBride (2005) standards. Although both studies 

display the same trends, correlation coefficients and Pc values were significantly higher 

during the MSU study than the ASU study. This could be caused by a variety of factors 

including time of year, altitude, the direction that the sensors were oriented (i.e. north, south, 

east, west), weather conditions, and land use variability around the different weather stations. 

 

4.2. Participant Study  

The participant portion of the study shows larger differences between temperature 

sensor readings when worn by participants. This variability is caused by the variety of 

diverse microclimates and activity types that participants experience throughout their daily 

lives. Bland Altman plots show that the greatest level of difference between sensors occurs 

from 32-49 °C at ASU and 24-29 °C MSU. This disagreement could be due in part by the 

weather differences between MSU and ASU. The study period at ASU included multiple 

precipitation events, while MSU did not experience any precipitation during the study period. 
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This disagreement illustrates a need for more validation studies that examine when 

differences between different sensor types are most pronounced.  

Results from the participant study at ASU demonstrate the importance of both device 

type and device placements. iButton 1 (located on a bag) and iButton 2 (on the participant's 

collar) only have a correlation coefficient of 0.515. This placement of the device was the 

only differential factor, illustrating the importance of device location on temperature 

readings. The iButton Thermochrons and Hygrochrons located on participants collars ran 

warmer and had a larger standard deviation than any other placement. The devices with the 

lowest variability and mean temperatures were the iButton Thermochron and Kestrel devices 

attached to participants bags. This contradicts the findings of Dumas et al. (2016). Dumas et 

al. (2016) found consistent temperature readings between temperature placements on the 

shoe, collar, and waist. This difference may be due to differences in sample size between 

Dumas et al. (2016) (𝑛 = 2) and our study (𝑛 = 21), along with the longer length of our 

sampling periods.  

Participants were also more willing to carry devices on bags or keys then attached to 

shoes or clothing. Similar to the findings of Sugg et al. (2019), the HOBO devices were more 

burdensome to participants than any other device, which likely caused more participants to 

fail to wear the HOBO devices correctly. This sensor was especially problematic due to the 

number of participants that did not frequently wear shoes that had shoelaces that the HOBO 

could attach to. Multiple participants expressed frustration that they were limited to shoes 

with shoelaces for the week, especially participants that worked in a professional work 

environment with a business dress code. Devices that attach to keys or bags that are carried 
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with the participant were most favored by participants in professional work settings due to 

their more discrete nature and lack of impact on clothing and footwear options.  

 

4.2. Participant Sensors and Weather Station Data  

Results are comparable to other PAT and weather station model predictions. Bernhard et al. 

(2015) found that PAT sensors predict an average increase in temperature of 0.37°C (95% CI 0.35, 

0.39) for each 1°C increase in temperature was recorded at the weather station (Bernhard et al. 

2015). Our results found that sensors readings increased by 0.20 − 0.27 at ASU and 0.28 − 0.50 at 

MSU for every 1 °C increase in temperature recorded by the weather station. This trend is 

comparable for all studies that completed similar analysis (e.g. Kuras et al. 2015 and Sugg et al. 

2019). This suggests that the weather station temperatures are overall warmer than the temperatures 

experienced by participants in their daily lives. This is likely partly due to the time that participants 

spend indoors and the temperature differences across microclimates that scarce weather station data 

cannot account for.  

The marginal 𝑅2 values (0.040 − 0.059) for all devices at ASU are lower than the 

values for MSU (0.044 − 0.210). This is likely due to the diverse topography around the 

Boone, NC, weather station. Participants from Boone, NC, also traveled further distances 

around the study area than MSU participants and traveled through a greater variety of 

geographically diverse areas throughout their daily routines.  

 

4.3. Limitations 

The inherent limitations to this study exist in the realm of human error. Personal 

sensor studies rely on voluntary compliance and adherence to the study methods. Adherence 
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to methodology is especially important to this study when considering the placement of 

sensors and how that placement impacts temperature readings. It is not possible to ensure that 

participants wore their sensors correctly at all times. To account for this, we explained the 

importance of adherence to study methodology to participants when devices were distributed 

and asked participants to mark any changes in device locations on their activity logs. The 

quantification of human error in this study is nearly impossible and can only be addressed in 

the form of qualitative analysis through time-activity logs. One way we attempted to limit 

this potential bias is through the use of a large sample sizes from a repeated measures 

research design.  
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5. Conclusion 

In agreement with Sugg et al. (2019), our study found significant differences between 

sensor types and placements. Our study found that the Kestrel is the most accurate in relation 

to meteorological data. The major limitation to the Kestrel is the size of the device. The 

Kestrel device is the largest out of all devices in this study and therefore is best attached to a 

bag or keys that the participant carries with them. While the placement of devices on a bag 

was appreciated by participants at work, it is important for researchers to stress the 

importance of keeping the devices with them at all times and to not put the devices inside of 

a bag at any time. The iButton and Kestrel attached to each other were highly correlated, 

suggesting that placement of devices is a driving factor in the differences in temperature 

readings by personal sensors. This study illustrates the need for unity in the placement of 

devices by different studies and highlights a need for continued research on what device is 

not only the most accurate, but most convenient for participants to wear. Future work should 

also use sensor data to examine other heat stress metrics like heat index, wet bulb globe, and 

physiological equivalent temperature.  
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Table 1. Participant demographics for the MSU and ASU study sites. 

 ASU MSU 

n 21 17 

Age (mean / sd) 32.6 (13) 21.5 (3.0) 

Sex (n / %)   
Female 11 (52%) 8 (47%) 

Male 9 (42%) 9 (53%) 

Height (mean / sd) 68.1 (5.4) 66.1 (3.9) 

Weight (mean / sd) 159.6 (41.7) 164.7 (32.4) 

Race (n / %)   
Asian 1 (4.8%) 0 

Caucasian 20 (95.2%) 15 (88.2%) 

Biracial 0 1 (5.9%) 

Other 0 1 (5.9%) 

Education (n / %)   
Some high school 0 1 (5.9%) 

High school diploma 1 (4.8%) 13 (76.5%) 

Associate's degree 0 1 (5.9%) 

Bachelor's degree 10 (47.6%) 1 (5.9%) 

Graduate or professional degree 10 (47.6%) 1 (5.9%) 
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Table 2. Temperature Exposure Assessment Manufacturer Guidelines 

Sensor Type Data Collected 
Temperature 

Accuracy  
Manufacturer Notes 

iButton 

Thermochron  
Temperature 

 ± 1°𝐶 /  
± 1.80°𝐹 

N/A 

iButton 

Hygrochron  

Temperature, Relative 

Humidity  

 ± 0.5°𝐶 /  
± 0.9°𝐹 

N/A 

HOBO Temperature, Light Intensity  
 ± 0.53°𝐶 /  

± 0.95°𝐹 
N/A 

Kestrel DROP 

D3 Fire 

Temperature, Relative 

Humidity, Heat Stress Index, 

Dew Point, Wet Bulb 

Temperature, Station 

Pressure 

± 0.50°𝐶 /  
± 0.9°𝐹 

“For greatest accuracy, avoid 

direct sunlight on the 

temperature sensor and 

prolonged sunlight exposure 

to the unit in low airflow 

conditions.” 
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Table 3. Summary statistics for sensor temperature readings during the ASU and MSU 

participant study. 

 ASU     MSU     

Sensor Type 
Mean 
 (℃ ) 

Max 
 (℃ ) 

Min 
 (℃ ) 

Standard 

Deviation n 
Mean 
 (℃ ) 

Max  
(℃ ) 

Min  
(℃ ) 

Standard 

Deviation n 

Kestrel 22.51 39.11 14.78 2.59  20,196 22.76 40.39 18.11 2.26 21,356 

iButton 1  
(On bag) 22.52 53.00 15.00 2.42 24,986 NA NA NA NA NA 

iButton 2 
 (On collar) 25.15 57.50 15.50 3.29 21,345 23.80 37.00 16.00 3.21  10,240 

HOBO 23.31 43.83 15.94 2.70 23,191 23.18 42.89 16.44 2.78 33,188 

Hygrochron 24.68 38.06 17.56 3.53 7,348 23.95 41.06 17.11 3.40 23,928 
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Table 4. Summary statistics for three types of microenvironments (outdoor, indoor, in-

transit) experienced during the participant study at ASU. 

 iButton1   iButton2   Kestrel   HOBO   Hygro   

 Mean 
(℃ ) 

Max 
(℃ ) 

Std. 

Dev. 
Mean 
(℃ ) 

Max 
(℃ ) 

Std. 

Dev. 
Mean 
(℃ ) 

Max 
(℃ ) 

Std. 

Dev. 
Mean 
(℃ ) 

Max 
(℃ ) 

Std. 

Dev. 
Mean 

(℃ ) 
Max 
(℃ ) 

Std. 

Dev. 

Outdoor 23.64 41.0 3.35 25.26 43.50 3.37 23.43 40.67 3.15 24.69 43.83 3.38 26.58 33.17 2.97 

Indoor 22.83 48.0 3.35 25.61 57.50 3.37 22.86 49.11 3.15 24.03 38.83 2.71 26.41 35.06 2.97 

In 

Transit 23.55 53.0 3.11 25.57 40.00 3.27 23.52 38.28 2.92 24.70 43.72 3.71 27.08 38.06 3.54 
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Table 5. Summary statistics for different activity intensity levels (low, moderate, and high) 

during the participant study at ASU. 

 iButton1   iButton2   Kestrel   HOBO   Hygro   

Intensity 
Level  

Mean 
(℃ ) 

Max 
(℃ ) 

Std. 
Dev. 

Mean 
/℃ ) 

Max 
(℃ ) 

Std. 
Dev. 

Mean 
(℃ ) 

Max 
(℃ ) 

Std. 
Dev. 

Mean 
(℃ ) 

Max 
(℃ ) 

Std. 
Dev. 

Mean 

(℃ ) 
Max 
(℃ ) 

Std. 
Dev. 

Low 23.00 48.00 2.18 25.72 57.5 3.26 23.02 49.11 3.12 22.51 43.83 2.97 26.57 38.06 3.29 

Moderate  23.25 53.00 3.08 25.21 39.61 2.79 23.16 37.78 2.78 25.46 38.39 3.03 26.83 33.17 2.83 

High  22.57 37.00 2.41 24.12 34.5 2.95 22.31 34.5 1.71 23.76 39.39 2.60 24.15 30.11 2.29 
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Table 6. Quantitative analysis of participant activities during the maximum temperatures 

reached by each device during the ASU participant study 

Sensor Type Participant ID Date Time 

Max 

Temperature 
(℃ ) Location Activity Description 

 A7 7/25/2018 3:30 PM 53.0 In-transit Moderate Walking/Driving 

 A7 7/25/2018 3:50 PM 48.0 Indoor Low Lab preparation 

iButton 1 A7 7/27/2018 1:05 PM 44.5 Indoor Low Teaching 

 A7 7/27/2018 12:10 PM 41.0 Outdoor Moderate Walking 

 A3 7/26/2018 5:50 PM 38.0 Outdoor Low Sat outside 

 A7 7/25/2018 4:25 PM 57.5 Indoor Low Lab preparation 

 A7 7/27/2018 1:00 PM 44.0 Indoor Low Teaching 

iButton 2 A7 7/27/2018 12:10 PM 41.0 Outdoor Moderate Walking 

 A7 7/24/2018 4:00 PM 40.5 Indoor Low Lab preparation 

 A2 7/26/2018 5:05 PM 40.0 In-transit Moderate Walking/Driving 

 A7 7/25/2018 4:40 PM 49.1 Indoor Low Lab preparation 

 A7 7/27/2018 2:00 PM 47.7 Indoor Low Teaching 

Kestrel A7 7/25/2018 4:50 PM 47.5 Indoor Low Working in lab 

 A7 7/27/2018 12:15 PM 40.7 Outdoor Moderate Walking 

 A7 7/27/2018 3:20 PM 38.3 Outdoor Moderate Walking/Driving 

 A8 7/27/2018 2:45 PM 43.8 Outdoor Low Got tire replaced 

 A8 7/27/2018 3:05 PM 43.7 In-transit Low Driving 

HOBO A4 7/26/2018 4:10 PM 39.39 Outdoor Intense Running 

 A3 7/26/2018 2:45 PM  38.8 Indoor Low At dentist’s office 

 A6 7/26/2018 6:45 PM 38.4 Outdoor Moderate Walking 

 A1 7/25/2018 11:40 

AM 38.1 In-transit Low Ate lunch in car 

 A1 7/26/2018 2:50 PM 35.6 In-transit Low Driving 

Hygrochron A1 7/26/2018 4:05 PM 35.1 Indoor Low Indoor 

 A1 7/26/2018 12:55 PM 34.1 In-transit Low Cleaning 

 A1 7/25/2018 3:25 PM 34.1 Indoor Low Working at desk 

 



 40 

 

 

Table 7. Summary statistics for the weather station and wearable sensor devices in Boone, 

NC and Starkville, MS. 

 ASU    MSU    

Sensor Type Mean (℃ ) Max (℃ ) Min (℃ ) 

Standard 

Deviation Mean (℃ ) Max (℃ ) Min (℃ ) 

Standard 

Deviation 

Weather 

Station 

 
20.3 

 
26.9 

 
15.2 2.5 

 
24.5 

 
33.5 

 
16.1 3.6 

Hygrochron 

 (Down) 

 
20.0 

 
31.1 

 
13.1 3.8 

 
25.0 

 
39.6 

 
15.6 4.9 

Hygrochron 

 (Up) NA NA NA NA 
 

25.3 
 

42.6 
 

14.6 5.6 

Hygrochron 

 (Shield) NA NA NA NA 
 

24.9 
 

36.0 
 

21.0 4.1 

Thermochron 

 (Down) NA NA NA NA 
 

25.5 
 

38.0 
 

19.0 4.8 

Thermochron 

 (Up) 

 
20.9 

 
40.0 

 
13.0 5.1 NA NA NA NA 

Kestrel  

(Down) 

 
19.5 

 
30.7 

 
13.2 3.2 

 
24.5 

 
36.9 

 
15.4 4.2 

Kestrel  

(Up) 

 
20.1 

 
37.6 

 
12.5 4.6 

 
25.3 

 
45.4 

 
14.4 6.1 

Kestrel  

(Shield) NA NA NA NA 
 

24.3 
 

35.0 
 

15.9 3.7 

HOBO 

 (Down) 

 
21.6 

 
35.2 

 
13.6 5.2 

 
26.5 

 
46.1 

 
15.8 6.4 

HOBO 

 (Up) 

 
19.0 

 
46.7 

 
12.9 7.0 

 
26.4 

 
45.2 

 
15.1 6.4 
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Table 8. Measures of agreement between the stationary sensors and weather station. MAE = 

mean absolute error, MBE = mean bias error (negative values signify under prediction and 

positive values signify over prediction in comparison to the weather station), RMSE = root 

mean square error, Pc = Lin’s concordance correlation coefficient.   

 ASU    MSU    

Sensor 
Type MAE MBE RMSE Pc MAE MBE RMSE Pc 

Hygrochron 
 (Down) 5.92 -0.59 7.13 0.26 2.11 0.86 3.30 0.91 

Hygrochron 
 (Up) NA NA NA NA 2.98 1.46 4.65 0.85 

Hygrochron 
 (Shield) NA NA NA NA 1.18 0.75 1.86 0.96 

Thermochron 
 (Down) NA NA NA NA 2.18 0.44 3.34 0.90 

Thermochron  
(Up) 7.72 1.05 10.03 0.05 NA NA NA NA 

Kestrel 
 (Down) 5.18 -1.56 6.04 0.36 1.93 0.07 2.61 0.93 

Kestrel  
(Up) 6.89 -0.34 8.39 0.21 3.69 1.53 5.69 0.81 

Kestrel 
 (Shield) NA NA NA NA 0.87 0.21 1.20 0.98 

HOBO 
 (Down) 7.74 1.79 9.72 0.16 4.62 3.55 6.98 0.74 

HOBO  
(Up) 9.74 3.30 12.69 0.16 4.78 3.43 7.08 0.73 
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Table 9. A Linear mixed model with a random intercept for each participant comparing the 

fixed weather station data to participant sensor measurements at ASU. σ2 = variance of 

population values, τ00 = intercept variance, ICC= Intraclass Correlation Coefficient, Marginal 

R2 = the proportion of variance explained by the fixed factor (weather station), Conditional 

R2 = the proportion of variance explained by the fixed and random factors 

  HOBO Temp C iButton 1 Temp C iButton 2 Temp C Kestrel Temp C 

Predictors Estimates CI p Estimates CI p Estimates CI p Estimates CI p 

(Intercept) 17.95 16.96 
– 

18.95 

<0.001 18.65 17.79 
– 

19.51 

<0.001 18.82 17.42 
– 

19.98 

<0.001 17.56 16.45 
– 

18.66 

<0.001 

Weather 

Station Temp 

C 

0.27 0.23 – 

0.31 
<0.001 0.20 0.16 – 

0.23 
<0.001 0.27 0.22 – 

0.33 
<0.001 0.25 0.21 – 

0.29 
<0.001 

Random Effects 

σ2                  4.78 3.65 7.99 3.92 

τ00 1.42 ID 1.24 ID 1.30 ID 2.20 ID 

ICC 0.23 ID 0.25 ID 0.14 ID 0.36 ID 

Observations 1949 2099 1793 1697 

Marginal R2 / 

Conditional R2 
0.059 / 0.275 0.040 / 0.284 0.040 / 0.174 0.050 / 0.392 
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Table 10. A Linear mixed model with a random intercept for each participant comparing the 

fixed weather station data to participant sensor measurements at MSU. σ2 = variance of 

population values, τ00 = intercept variance, ICC= Intraclass Correlation Coefficient, Marginal 

R2 = the proportion of variance explained by the fixed factor (weather station), Conditional 

R2 = the proportion of variance explained by the fixed and random factors.  

  HOBO Temp C Hygro Temp C iButton 2 Temp C Kestrel Temp C 

Predictors Estimates CI p Estimates CI p Estimates CI p Estimates CI p 

(Intercept) 13.04 12.18 
– 

13.90 

<0.001 12.10 11.07 
– 

13.12 

<0.001 18.63 17.36 
– 

19.89 

<0.001 15.08 14.48 
– 

15.68 

<0.001 

Weather 

Station Temp 

C 

0.42 0.41 – 

0.44 
<0.001 0.50 0.48 – 

0.52 
<0.001 0.28 0.22 – 

0.33 
<0.001 0.32 0.31 – 

0.34 
<0.001 

Random Effects 

σ2                   5.59                  8.11 6.93 4.30 

τ00 2.21 ID 2.98 ID 1.39 ID 0.90 ID 

ICC 0.28 ID 0.27 ID 0. 17ID 0.17 ID 

Observations 24025 19492 1689 17179 

Marginal R2 / 

Conditional R2 
0.210 / 0.434 0.208/ 0.421 0.044 / 0.204 0.194/ 0.334 

  



 44 

 

 

Figure 1. Study area map showing the locations of Boone, NC and Starkville, MS. 
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Figure 2. Placement of sensors for ASU and MSU participant studies. At ASU, a HOBO was 

placed on the shoe, a Kestrel and an iButton Thermochron were placed on a backpack, and an 

iButton Thermochron and Hygrochron were placed on the shirt collar. At MSU, a HOBO 

was placed on the shoe, a Kestrel on a backpack, and an iButton Thermochron and 

Hygrochron were placed on the shirt collar. 
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Figure 3. Sensors attached to the weather station located in Starkville, Mississippi (above) 

and Boone, North Carolina (below). 
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Figure 4.1: iButton 1 and Kestrel at ASU 

 
Figure 4.2: iButton 1 and iButton 2 at ASU 
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Figure 4.3: iButton 2 and HOBO at MSU 

 
Figure 4.4: Hygrochron and HOBO at MSU 

 

Figure 4. Bland Altman plots for the sensors with the highest (Figures 4.2 and 4.4) and 

lowest (Figures 4.1 and 4.3) mean differences at ASU and MSU. 
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Figure 5.1: iButton 1 during all activity levels 

 
Figure 5.2: iButton 1 during low activity levels 

 



 50 

Figure 5.3: iButton 1 during moderate activity levels 

 
Figure 5.4: iButton 1 during high activity levels 

Figure 5. Box plots showing mean temperatures during low, moderate, and high activity 
levels throughout the ASU participant study. 
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Figure 6. A comparison of the Appalachian State University weather station and personal 

sensor temperature readings from July 26th, 2018 through July 29th, 2018. 
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Figure 7. Correlation values between weather station in-situ temperature readings and sensor 

temperature readings from sensors attached to the weather station in Boone, NC. 
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Figure 8. Correlation values between weather station in-situ temperature readings and sensor 

temperature readings from sensors attached to the weather station in Starkville, MS. 
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