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Abstract 
Neurodegenerative diseases are collective diseases that affect different parts of 
the brain with common or distinct disease phenotype. In almost all of the 
Prion diseases, motor impairments that are characterized by motor derange-
ment, apathy, ataxia, and myoclonus are documented and again are shared by 
motor neuron diseases (MND). Proteins such as; B-Cell lymphoma 2 (BCL2), 
Copper chaperone for superoxide dismutase (CCS), Amyloid beta precursor 
protein (APP), Amyloid Precursor-Like Protein1/2 (APLP1/2), Catalase (CAT), 
and Stress induced phosphoprotein 1 (STIP1), are common interactomes of 
Prion and superoxide dismutase 1 (SOD1). Although there is no strong evi-
dence to show the interaction of SOD1 and Prion, the implicated common 
interacting proteins indicate the potential bilateral interaction of those pro-
teins in health and disease. For example, down-regulation of Heat shock pro-
tein A (HSPA5), a Prion interactome, increases accumulation of misfolded 
SOD1 leading to MND. Loss of Cu uptake function disturbs normal function 
of CCS. Over-expressed proteasome subunit alpha 3 (PSMA3) could fatigue 
its normal function of removing misfolded proteins. Studies showed the in-
crease in CAT and lipid oxidation both in Prion-knocked out animal and in 
catalase deficiency cases. Up regulation, down regulation or direct interaction 
with their interactomes are predicted molecular mechanisms by which Prion 
and SOD exert their effect. The loss of protective function or the gain of a 
novel toxic property by the principal proteins is shared in Prion and MND. 
Thus, it might be possible to conclude that the interplay of proteins displayed 
in both diseases could be a key phenomenon in motor dysfunction develop-
ment. 
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Neuron Diseases, Interactomes 

 

1. Introduction 

Neurodegenerative disease is a global concern and poses serious social and indi-
vidual challenges. Seen in light of financial limitations and resource allocation, 
developing countries are specifically currently challenged by a wide variety of 
neurodegenerative diseases [1]. Alzheimer, Parkinson, Huntington, and demen-
tia are the most common diseases that degenerate neurons. Apart from those, 
Prion diseases are characterized as the lethal form of neurodegenerative diseases 
with no clearly defined molecular mechanism and cure. Among the different 
types of Prion diseases, Kuru is one of the oldest that was discovered in New 
Guinea [2]. Later, Creudzfelt-Jacob Disease (CJD) was identified for the first 
time in the UK in late 1990s [3]. 

Here we attempt to focus on the predictable molecular mechanism of motor 
impairment which is manifested in patients of Prion diseases. The basis for the 
predicative pathomechanism is the absence of evidence of definite physiologic 
function of cellular Prion [4] [5] [6] [7]. There are knock-out and knock-down 
studies which show the gain and/or loss of Prion functions and its effect on the 
expression level of other proteins [8] [9] [10] [11]. Moreover, there is presump-
tion that the normal physiologic function of cellular Prion depends on other 
proteins that interact with it [8] [12]. For example, up-regulation of superoxide 
dismutase (SOD) by cellular Prion is one of the many pieces of evidence to illu-
strate the physiologic function of Prion [13] [14]. Some of the clinical features that 
are implicated in Prion diseases might be because of the same molecular pheno-
mena of other diseases which are explained by up-regulation, down-regulation or 
abnormal interaction with the specific protein. 

2. Prion and Prion Diseases Pathogenesis 

Prion protein is highly expressed in brain cells [15] by a single copy PRNP gene 
[16] and it is a transmembrane protein which undergoes multiple post-translational 
modifications [17] [18]. Cleavage of 22 aa from N terminal signal peptide, clea-
vage of 23 aa from C terminal and addition of GPI anchor, disulfide bond, and 
glycosylation are the well-documented post-translational modification which 
might affect its higher order structure and its interaction with its interactomes 
[19]. The sum total effect may contribute to species and strain specific barrier 
phenomenon [20] [21] [22].  

Prion diseases are among the very rear lethal disease of both humans and an-
imals [23]. Though there are a number of studies, there are still unconfirmed is-
sues about biological structure, defined molecular pathophysiology and the me-
chanism how selective cross-species infections take place [24]. Despite the low 
rate of prevalence, its non-curability, within and cross-species transmissibility 
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and lethality make Prion diseases one of the most debilitating diseases of our 
time. 

Prion diseases are principally caused by abnormally misfolded Prion proteins 
which are capable of replicating themselves by recruiting normal cellular Prion 
and later amyloidosis [25] [26]. vCJD, CJD, GSS, FFI are among the most cha-
racterized human Prion diseases classified based on whether they are sporadic, 
acquired or inherited [27]. In most instances, the duration of incubation varies 
for different variants of Prion [28]. Apart from that, the onset of the disease is 
the basis for classification of Prion diseases [29] [30]. Histological studies re-
vealed that thalamus, brain stem, and cerebellum are the most affected brain 
parts by the majority of Prion strain [27] [31]. Almost all of the human Prion 
diseases share common clinical features: anxiety, depression, hyperactivity are 
the commonest psychiatric clinical features while dementia [32], motor de-
rangement, apathy, ataxia, myoclonus tremor and at later stage mutism, Pyra-
midal, and extrapyramidal dysfunctions are the pronounced neurological dis-
orders [32] [33] [34]. 

3. Development of Motor Neuron Impairment 
3.1. Types and Etiology of Motor Neuron Diseases 

Among the most distinct clinical symptoms of Prion diseases, motor impairment 
is the commonest at the different stages of disease development. The symptom 
resembles clinical features of motor neuron diseases where both or either of 
Upper motor neuron (UMN) or lower motor neuron (LMN) that arise from 
spine and brain innervating muscles are degenerated [35]. Based on the cause, 
severity, clinical presentation and onset of the disease, motor neuron disease 
(MND) are classified as amyotrophic lateral sclerosis (ALS), primary lateral 
sclerosis (PLS), hereditary spastic paraplegias (HSP), and progressive bulbar 
palsy (PBP) [36] [37]. ALS is the most common that affect both UMN and LMN 
neurons. Majority of ALS cases are sporadic though it can also be familial [35]. 
ALS is caused by a number of mutations in Cu/Zn superoxide dismutase-1 gene, 
ALS, cytoplasmic dynein and dynactin, D-amino acid oxidase DAO and Opti-
neurin OPTN, Chromosome 9 open reading frame 72C9ORF72 and others [38] 
[39]. Mutation to superoxide dismutase1 (SOD) is the main cause of ALS next to 
mutation to C9ORF72 hexanucleotide repeat in the promoter region [38] [40] 
[41]. One of the most notable pathogenesis of this disease is glutamate-induced 
excitotoxicity that disrupts Ca2+ homeostasis to cause motor neuron death [42] 
[43] [44]. Apart from that, oxidative distress and axonal transport dysfunction 
cause neural injury through metal (Cu, iron, Zn) homeostatic disturbance [33] 
[45] [46]. BCL2-mediated Apoptosis, protein aggregation and autophagy are also 
part of pathomechanisms of ALS disease development [47] [48] [49]. As in fa-
milial Prion diseases, ALS is autosomal dominant [50]. The other type of MDN 
which mostly arises in the medulla is progressive bulbar palsy. Among inherita-
ble MDN disease, spinal muscular atrophy (SMA) is autosomal recessive that af-
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fects LMN [51] where its molecular basis is an alteration in the survival motor 
neuron gene [52]. 

3.2. Pathogenesis and Clinical Presentation of MND 

Neurons of the spinal cord, brain stem, cerebellum, cerebral cortex, and basal 
ganglia are most affected by MND [53] [54]. Like in Prion diseases, histological 
studies revealed that there is also vastrogliosis [55] and microglial activation in 
MND [56]. Moreover, spongiosis-microvaculation is frequently documented in 
frontal and temporal cortices particularly in FTLD [57]. Progressive skeletal 
muscle weakness, wasting, fatigability, the difficulty of movement and gait dis-
turbance, extrapyramidal diseases, tremor, atrophy, the difficulty of swallowing 
and other emotional disorders like anxiety, depression, excitability, dementia, 
and insomnia are all implicated in the majority of MND [58] [59] [60]. 

4. Motor Impairment in Prion Diseases that Resembles ALS 
4.1. Prion and SOD1 Interactomes in Health and Disease 

As indicated above, the function of Prion is studied in relation to loss or gain of 
functions. In some, in in-vivo studies the knocking out/knocking down of genes 
or challenging Prion expression had little to no effect on the normal cellular 
function and/or brings no known disease phenotype [30] [61]. As a result, its bi-
ological function may be through proteins that it interacts with under the nor-
mal physiologic conditions.  

Prion protein is implicated in several signaling pathways having a wide range 
of functions from cell differentiation [30] [62] [63] to apoptosis [64] [65] [66]. 
Prion protein forms interaction network with a wide variety of proteins intra-
cellularly (Figure 1, Figure 2). Findings showed that proteins such as Stress in-
duced phosphoprotein 1 (STIP1) [67], Heat Shock Protein A4 (HSPA4) Clustrin 
(CLU) [68], Heat shock protein family A (HSPA5) [69], Argonaute-1 (AGO1) 
[70], BCL2 Associated Athanogene 6 BAG6 [71], and N-myc and STAT interactor 
(NML) are the most characterized interactomes of Prion [72]-[79]. B-Cell lym-
phoma 2 (BCL2) [80] [81], Smith-Magenis syndrome chromosome region, can-
didate 8 (SMCR8), Proteasome subunit alpha 3 (PSMA3), Copper chaperone for 
superoxide dismutase (CCS) [82], Amyloid beta precursor protein (APP) [83] 
[84], Amyloid Precursor-Like Protein (1APLP1/2) [85], WD repeat domain 
(5WDR5), Homeobox (A1HOXA1) [86], and Catalase (CAT) [87] are identified 
to interact with Prion with a variety of cellular function. CCS and CAT are espe-
cially involved in oxidative stress [88]. BAG6, PSMA3, and SMCR8 are involved 
in proteolytic degradation of misfolded protein and autophagy. Heat shock pro-
tein family A44 and HSPA5 are chaperones that are involved in the folding and 
refolding of misfolded proteins in response to cellular stress [89]. BCL2, NML, 
and CLU, are mostly known for their role in either pro or anti-apoptosis activi-
ties [90] [91]. Copper chaperone for superoxide dismutase, CAT, HSPA4, 
SMCR8, Cone-rod homeobox (CRX), N-myc and STAT interactor (NMI), and  
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Figure 1. Interaction network based on experiment and gene co-occurrence [73].  

 

 
Figure 2. Interaction network with 1 - 23 evidence. Note—the thickness of the lines cor-
responds to the number of evidence [74]. 
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Ubiquitin C (UBC) [79] are common proteins that interact with Prion, SOD1, 
and C9ORF72. Similarly, Adenylate kinase 2 AK2, HSPA5, HSPA2 [78], HSPH1, 
SOD2 [73] are especially known to interact with SOD1. 

4.2. The Interplay of Interactomes in Motor Neuron Impairment  
(MNI) 

Considering the presumable and potential interaction between Prion and SOD 
in disease pathogenesis, it is worth to take into account the interplay between 
Prion and SOD1 through their interacting proteins which are common for both. 
The expression of SOD is somehow influenced by the level of PrPc [92]. In 
another way, the loss of SOD1 up-regulating property of Prion would rather ex-
acerbate oxidative stress which results in cell death. However, there are reports 
that show PrPc having no SOD activity whatsoever [93] [94]. If the loss of SOD1 
upregulating function of the Prion is indeed the cause for SOD1 dysfunction, then 
abrupt mitochondria-based oxidative stress and cell death would be expected. 

Both Prion and SOD1 have a role in metal regulation and homeostasis [94] 
[95] [96]. Conversions of cellular Prion to scrapie form cause derangement of 
Ca2+ homeostasis [97]. Further Ca2+ homeostatic imbalance continues to occur 
when the L-type voltage-sensitive Ca2+ channel is affected by oxidative stress. As 
part of the signaling process that Prion plays, infective form of Prion is assumed 
to disrupt Ca-activated K current [98] [99]. The sum total effects of electron im-
balance could be the cause of impaired neural excitability which leads to motor 
impairment. 

In some studies, Prion peptides are documented to cause down-regulation of 
HSPA5 expression. The same phenomenon can be extrapolated for misfolded 
protein to downregulate known chaperons [100]. Likewise, impaired chaperons 
could also lose their protective effect of firing signal under stressful condition 
[101]. That often could accompany with endoplasmic reticulum stress-associated 
cell death [102]. By the same mechanism, down-regulation of HSPA5 may in-
crease accumulation of misfolded SOD1 leading to MND. Thus, it might be 
possible to conclude HSPA5 regulation in both diseases is a key phenomenon in 
motor dysfunction development [103]. 

Experimental evidence confirms CCS maintains SOD [104]. The Cu served to 
SOD is taken up by the Prion. Loss of Cu uptake function disturbs normal func-
tion of CCS [30]. As a result, SOD is unable to perform its normal cellular func-
tions. Accumulation of Cu in cytosol causes up-regulation of cellular Prion un-
der physiologic conditions [96]. Misfolded Prion seed, according to Refolding 
Hypothesis, recruits cellular Prions as their own substrate [105]. It is possible to 
predict that upon up-regulation of Prion by Cu might further potentiate mis-
folded aggregate to form amyloid. In addition to this effect, either physical 
axonal transport blockage and/or an increase in oxidative stress kills neurons. 
Studies showed extracellular Cu also control expression and turnover of PrPc in 
neurons. The transport of Prion from neuron to astrocyte is somehow mediated 
by extracellular Cu [96]. In turn, PrPc participates in Cu transport from neuron 
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to astrocyte. This complementary function protects the cell from Cu toxicity 
[106]. When PrPc loses this protective function, the concentration of Cu might 
increase both in extracellular space, astrocytes and other neurons. An invitro 
study also showed Cu to enhance renaturation and stabilization of PrPSc, and 
again further boost its resistance and infectivity [107].   

PrPSc cause downregulation of PSMA3. In this case, there might be the bulk 
removal of cells [108]. Overexpressed PSMA3 could fatigue its own normal 
function of removing misfolded proteins [109]. Such condition brings in a toxic 
gain function of Prion and loss of protective function of SOD causing motor 
neuron death [30] [110] [111] [112] [113]. CAT is another very important pro-
tein in processing reactive oxygen species together with SOD [114]. Protein and 
lipid oxidation increase in Prion knocked out and catalase deficient model ani-
mals [111] [115]. The synergetic effect of a decrease in catalytic activity and in-
creased oxidation could result in neural death. 

Under the physiologic condition, Clusterin is a ligand for PrPc [68]. In Prion 
diseased sample, Clusterin is believed to form an aggregate with misfolded Prion 
[116]. That might suggest a structural change which challenges the interaction of 
Clusterin and Prion. As a result, removal of aggregates might be boldly jeopar-
dized. Aggregates and precipitations are the prominent cause of cell death. Pro-
teins in UPS and autophagy are the other molecular phenomenon that is fre-
quently mentioned in trafficking and maintaining the normal cellular function 
of Prion [101]. These systems are important machineries playing the role of re-
moving misfolded proteins. Dysfunctional proteins, misfolded proteins, are be-
lieved to possess structures that potentially challenge interactions with chape-
rones for degradation. Ub and NMI are among the many proteins that are dis-
played in UPS and autophagy of neurodegenerative disease [101] [116]. Those 
proteins are documented to interact with Prion and SOD. AGO is an interesting 
protein with a critical function in the regulation of miRNA. Ago regulate protein 
translation through its catalytic action by forming a complex called RISC with 
miRNA [117] [118]. It is also an interactome to Prion [119] and potentially to 
SOD. Any abnormal interaction with dysfunctional proteins can potentially 
subvert normal function of AGO and threaten cell survival. And again, the loss 
of interaction with those key proteins might be the reason for the development 
of the disease (Figure 3). 

5. Conclusion 

The molecular basis described in the review of cell death through a different 
mechanism in relation to either the loss of protective function or the gain of a 
novel toxic properties is shared by both Prion diseases and MND especially ALS. 
In conclusion, here we tried to show the similarity between the molecular basis 
of motor impairment in ALS and Prion diseases. Despite they are distinct from 
each other, the interplay of proteins displayed in both cases can tell a lot about 
pathomechanism of motor impairment in Prion diseases. Thus, with further ex-
perimental studies it is worth to confirm the molecular mechanism of motor  
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Figure 3. Predicted and experimentally supported interactions. Note-PrPc and SOD1 are 
predicted to influence each other under normal and disease conditions (indicated by 
double-headed arrow). They both have the common interactomes with distinct cellular 
function (indicated by solid arrows). PrPc and SOD1 are presumed to exert their effect 
through their interactomes to cause motor impairment in underlined diseases conditions 
when they are misfolded (indicated by broken arrows). 
 
impairments of Prion diseases in order to identify potential therapeutic ap-
proaches. 
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