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Abstract: 
 
Background: Pancreas ductal adenocarcinoma (PDAC) has the most dismal prognosis among 
all human cancers since it is highly resistant to chemotherapy, radiotherapy and immunotherapy. 
The anticipated consequence of all therapies is induction of tumor apoptosis. The highly 
resistance nature of PDACs to all therapies suggests that the intrinsic tumor cell factors, likely 
the deregulated apoptosis pathway, are key mechanisms underlying PDAC non-response to these 
therapies, rather than the therapeutic agents themselves. The aim of this study is to test the 
hypothesis that epigenetic dysregulation of apoptosis mediators underlies PDAC resistance to 
gemcitabine, the standard chemotherapy for human PDAC. 
 
Methods: PDAC cells were analyzed for apoptosis sensitivity in the presence of a selective 
epigenetic inhibitor. The epigenetic regulation of apoptosis regulators was determined by 
Western Blotting and quantitative PCR. The specific epigenetic modification of apoptosis 
regulator promoter chromatin was determined by chromatin immunoprecipitation in PDAC cells. 
 
Results: Inhibition of histone methyltransferase (HMTase) by a selective HMTase inhibitor, 
verticillin A, significantly increased human PDAC cell sensitivity to gemcitabine-induced 
growth suppression. Verticillin A treatment decreased FLIP, Mcl-1, Bcl-x and increased Bak, 
Bax and Bim protein level in the tumor cells, resulting in activation of caspases, elevated 
cytochrome C release and increased apoptosis as determined by upregulated PARP cleavage in 
tumor cells. Analysis of human PDAC specimens indicated that the expression levels of anti-
apoptotic mediators Bcl-x, Mcl-1, and FLIP were significantly higher, whereas the expression 
levels of pro-apoptotic mediators Bim, Bak and Bax were dramatically lower in human PDAC 
tissues as compared to normal pancreas. Verticillin A downregulated H3K4me3 levels at 
the BCL2L1, CFLAR and MCL-1 promoter to decrease Bcl-x, FLIP and Mcl-1 expression level, 
and inhibited H3K9me3 levels at the BAK1, BAXand BCL2L11 promoter to upregulate Bak, Bax 
and Bim expression level. 
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Conclusion: We determined that PDAC cells use H3K4me3 to activate Bcl-x, FLIP and Mcl-1, 
and H3K9me3 to silence Bak, Bax and Bim to acquire an apoptosis-resistant phenotype. 
Therefore, selective inhibition of H3K4me3 and H3K9me3 is potentially an effective approach 
to overcome PDAC cells resistance to gemcitabine. 
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Abstract

Background: Pancreas ductal adenocarcinoma (PDAC) has the most dismal prognosis among all human cancers
since it is highly resistant to chemotherapy, radiotherapy and immunotherapy. The anticipated consequence of all
therapies is induction of tumor apoptosis. The highly resistance nature of PDACs to all therapies suggests that the
intrinsic tumor cell factors, likely the deregulated apoptosis pathway, are key mechanisms underlying PDAC non-
response to these therapies, rather than the therapeutic agents themselves. The aim of this study is to test the
hypothesis that epigenetic dysregulation of apoptosis mediators underlies PDAC resistance to gemcitabine, the
standard chemotherapy for human PDAC.

Methods: PDAC cells were analyzed for apoptosis sensitivity in the presence of a selective epigenetic inhibitor.
The epigenetic regulation of apoptosis regulators was determined by Western Blotting and quantitative PCR. The
specific epigenetic modification of apoptosis regulator promoter chromatin was determined by chromatin
immunoprecipitation in PDAC cells.

Results: Inhibition of histone methyltransferase (HMTase) by a selective HMTase inhibitor, verticillin A, significantly
increased human PDAC cell sensitivity to gemcitabine-induced growth suppression. Verticillin A treatment
decreased FLIP, Mcl-1, Bcl-x and increased Bak, Bax and Bim protein level in the tumor cells, resulting in activation
of caspases, elevated cytochrome C release and increased apoptosis as determined by upregulated PARP cleavage
in tumor cells. Analysis of human PDAC specimens indicated that the expression levels of anti-apoptotic mediators
Bcl-x, Mcl-1, and FLIP were significantly higher, whereas the expression levels of pro-apoptotic mediators Bim,
Bak and Bax were dramatically lower in human PDAC tissues as compared to normal pancreas. Verticillin A
downregulated H3K4me3 levels at the BCL2L1, CFLAR and MCL-1 promoter to decrease Bcl-x, FLIP and Mcl-1
expression level, and inhibited H3K9me3 levels at the BAK1, BAX and BCL2L11 promoter to upregulate Bak,
Bax and Bim expression level.

Conclusion: We determined that PDAC cells use H3K4me3 to activate Bcl-x, FLIP and Mcl-1, and H3K9me3 to
silence Bak, Bax and Bim to acquire an apoptosis-resistant phenotype. Therefore, selective inhibition of H3K4me3
and H3K9me3 is potentially an effective approach to overcome PDAC cells resistance to gemcitabine.
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Background
Pancreas ductal adenocarcinoma (PDAC) is the most ag-
gressive malignancy with the most dismal prognosis
among all human cancers. The overall 5-year survival
rate of PDAC patients is only 6%, and the median sur-
vival time for PDAC patients with locally advanced or
metastatic disease, which accounts for over 80% of all
human PDAC cases, is about 6–10 months [1]. A major
cause of this poor prognosis is lack of effective therapies
as PDAC is highly resistant to chemotherapy, radiother-
apy and immunotherapy [2–4]. Gemcitabine has been,
for years, the standard therapy for PDAC patients. How-
ever, gemcitabine only increases the survival rate of
PDAC patients with advanced disease by a median dur-
ation of 5 weeks suggesting that human PDAC cells are
either intrinsically resistant or acquire resistance to gem-
citabine [1, 5].
The host immune system plays an important role in

pancreatic cancer growth control and progression [4, 6–8].
Cancer immunotherapy has made clinically significant ad-
vances in the treatment of human cancers in the last few
years. In addition to the first FDA-approved immune
checkpoint cytotoxic T lymphocyte antigen-4 (CTLA-4)
inhibitor, immune checkpoint programmed death-1 (PD-
1) and programmed death-1 ligand-1 (PD-L1) blocking
antibodies have been also recently approved for treatment
of many types of human cancers. Since 2014, anti-PD-1
and anti-PD-L1 antibodies have been shown to induce ob-
jective responses in about 20–30% of cancer patients and
many of these responses are durable [9, 10]. However,
PDAC stands out as one of the few cancers that do not re-
spond to checkpoint immunotherapy [10–15].
The anticipated consequence of all therapies, including

chemotherapy, radiotherapy and immunotherapy, is in-
duction of tumor apoptosis. The highly resistance nature
of PDACs to various therapies suggests that the tumor cell
intrinsic factor, likely the deregulated apoptosis pathway,
rather than the therapeutic agents themselves, is one of
the major mechanisms for the non-responsiveness of
PDAC to these therapies. Therefore, identification of the
deregulated apoptosis mediators and development of a
targeted therapy that acts through a different mechanism
of action than the currently existing therapeutic agents
will have the potential to suppress PDAC growth or over-
come PDAC resistance to current therapies.
It is well-known that genetic alterations [16–21] in con-

cert with inflammatory factors in the tumor microenviron-
ment [4, 7, 8] drive pancreatic cancer development. Recent
studies, however, have shown that epigenetic changes also
promote PDAC through aberrant gene expression patterns
[6, 22–25]. The methylation of N-terminal lysine residues
in histones H3 and H4 plays a fundamental role in the
regulation of gene expression through chromatin structure
modulation. Histone methyltransferases (HMTase) catalyze

the methylation of histones to modify chromatin structure,
thereby influencing gene expression patterns during
cellular differentiation and embryonic development [26].
Recent studies have shown a critical role of aberrant
HMTase expression in human cancers, including PDAC
[22–26]. Importantly, unlike genetic defects, which are
permanent and non-reversible mutations in the DNA
primary sequence of the cancer genome, epigenetic alter-
ations, including histone methylation, is a reversible
process that has made HMTases attractive as molecular
targets for novel cancer therapies [26–30]. Furthermore,
most of current chemotherapeutic agents target the gen-
etic program of cancer cells. Targeting HMTases may be
an effective alternative therapeutic approach for PDACs
that are refractory to therapies that target the tumor cell
genetic program [31–33].
In previous studies, we have developed the novel

HMTase inhibitor verticillin A, which selectively inhibits
six HMTases and suppresses 5-FU-resistant colon cancer
growth [34, 35]. Here, we showed that verticillin A in-
hibits HMTases to alter H3K9 and H3K4 methylation.
Thereby, it regulates the expression of a number of
apoptosis regulatory genes, including Mcl-1, FLIP, Bcl-x,
Bak, Bax and Bim, effectively sensitizing human PDAC
cells to gemcitabine. Our data suggest that targeting
HMTase is an effective approach to alter the apoptosis-
resistant phenotype of human PDAC and overcome their
resistance to chemotherapy.

Methods
Human cancer cells
Human pancreatic cell lines MiaPaCa2 (Cat# CRL-
1420), PANC1 (Cat# CRL-1469), CFPAC1 (Cat#CRL-
1918) and SW1990 (CRL-2172) were obtained from
American Type Culture Collection (ATCC, Manassas,
VA). ATCC has characterized these cells by morph-
ology, immunology, DNA fingerprint, and cytogenetics.
De-identified human normal pancreas and pancreatic
carcinoma tissues were obtained from Georgia Cancer
Center tumor bank. The treatment history of these pa-
tients is not available. Normal pancreatic tissues were
collected from the adjacent normal tissues of the tumor
tissues. All studies with human specimens were carried
out according to protocol (933148–1) approved by
Augusta University Institutional Review Board.

Cell viability assays
Cell viability assays were performed using the MTT cell
proliferation assay kit (ATCC, Manassas, VA) according
to the manufacturer’s instructions.

Western blotting analysis
Western blotting analysis was performed as previously
described [36]. Cells were collected and lysed in cytosol
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buffer [10 mM Hepes, pH 7.4, 250 mM Sucrose, 70 mM
KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, prote-
ase and phosphatase inhibitor cocktails (Calbiochem,
Billerica, MA), and 0.01% digitonin] for 10 min. The
supernatant was collected as cytosol fraction. The pellet
was then resuspended in mitochondria extraction buffer
(50 mM Tris-HCl pH 7.5, 100 mM NaCl, 10mMMgCl2,
2 mM EGTA, 2 mM EDTA, 1% NP40, and 10% gly-
cerol), incubated on ice for 10 min and centrifuged at
13,000 RPM for 10 min. The supernatant was collected
as organelle-enriched mitochondrial fraction. Tumor tis-
sues and normal pancreatic tissues were homogenized in
total lysis buffer (20 mM Hepes, pH 7.4, 20 mM NaCl,
1% glycerol, and 1% Triton x-100) with a tissue
homogenizer. Cytosolic and mitochondrial fractions and
total tissue lysate were resolved in 4–20% SDS polyacryl-
amide gel and analyzed by Western blotting. Sources of
antibodies are: Bax, Mcl-1, FLIP, Bcl-x and cytochrome C:
BD Biosciences (San Diego, CA); Bak, Bid, Bim, cleaved
Caspase 8, cleaved Caspase 3, cleaved Caspase 9, and
cleaved PARP: Cell Signaling Tech (Danvers, MA);
H3K9me3 (Abcam, MA); β-actin: Sigma-Aldrich (St Luis,
MO). Detailed antibody information is listed in Table 1.

Analysis of H3K9 methylation
Verticilin A was isolated, purified and characterized as
previously described [37]. Cells were treated with verti-
cillin A for 2 days and incubated in NETN buffer
(20 mM Tris-HCl, pH 8, 150 mM NaCl, 5 mM EDTA,
0.5% NP40, 1.5 mM PMSF, 1.7μg/ml aprotinin, 1mN

NaV, 0.5 mM NaF) containing protease inhibitor cock-
tails (Millipore) for 30 min, centrifuged at 13,000 RPM
for 5 min, resuspended the detergent-insoluble pellet in
0.1 M HCl, incubated on ice for 30 min and centrifuge
at 13,000 RPM for 10 min. Add 1 M Tris pH 9.0 into
the supernatant then do Western Blotting analysis. The
blot was probed with antibodies specific for H3K9me3
(Abcam) and anti-H3 (Cell Signaling) which was used as
the normalization control.

Chromatin immunoprecipitation (ChIP) assay
ChIP assays were carried out as previously described [6].
Briefly, cells were crosslinked and fixed and the sheared
chromatin fragments were immunoprecipitated using
anti-H3K9me3 (Abcam) and anti-H3K4me3 antibody
(Cell Signaling). The gene-specific promoter DNA was
detected by qPCR using promoter DNA-specific primers
as listed in Table 2.

Gene expression analysis
Normal human pancreas tissues and human pancreatic
tumor tissues were homogenized using a tissue
homogenizer in Trizol (Life Technologies) to isolate
total RNA. cDNA was synthesized from total RNA and
used for analysis of gene expression using gene-specific
primers (Table 2) in the StepOne Plus Real-Time PCR
System (Applied Biosystems). β-actin was used as an in-
ternal control.

Table 1 Antibodies

Antibody Source Cat number Application

H3K9Me3 Abcam ab8898 WB,ChIP

H3 Cell signaling technology 4499 WB

FLIPL Cell signaling technology 3210 WB

Mcl-1 Santa Cruz sc-819 WB

Bcl-2 BD Biosciences 610539 WB

Bcl-x BD Biosciences 610747 WB

Bax Abcam ab32503 WB

Bid Cell signaling technology 2002 WB

Bak Upstate 6536 WB

Bim Cell signaling technology 2933P WB

CoxIV Cell signaling technology 4844 WB

Cleaved caspase 8 R&D system AF705 WB

Cleaved caspase 9 Cell signaling technology 9501S WB

Cleaved caspase 3 Cell signaling technology 9661S WB

Cleaved PARP Cell signaling technology 9541S WB

Cytochrome C BD Pharmingen 556433 WB

β-actin Sigma A5441 WB

H3K4me3 Cell signaling technology 9751S ChIP
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Results
Inhibition of HMTase suppresses human PDAC cell growth
Verticillin A selectively inhibits SUV39H1, SUV39H2,
G9a, GLP, NSD2 and MLL1 [35]. These HMTases
catalyze the methylation of H3K4 and H3K9 [38–40]
and it is known that methylated H3K4 and H3K9 regu-
late PDAC progression [24, 26]. We therefore reasoned
that verticillin A might be effective in suppression of hu-
man PDAC cell growth. To test this hypothesis, human
PDAC cell lines MiaPaCa2, CFPAC1, SW1990 and
PANC-1 were cultured in the presence of various con-
centrations of verticillin A (0–200 nM) for up to 3 days.
Tumor cell viability was measured by MTT assay. Verti-
cillin A exhibited potent inhibitory activity to suppress
all four PDAC cell lines in a dose-dependent manner
(Fig. 1). Furthermore, the inhibitory level increased with
the time of treatment with verticillin A. A three-day
treatment completely killed MiaPaCa2 and PANC-1 cells
in vitro (Fig. 1).

Inhibition of HMTase overcomes human PDAC resistance
to gemcitabine
Most human PDAC cells are intrinsically resistant to
chemotherapeutic agents, such as gemcitabine. Indeed,
both MiaPaCa2 and PANC-1 cells exhibit minimal
sensitivity to gemcitabine at concentrations as high as
10 μg/ml in vitro (Fig. 2). Our above observations indi-
cate that verticillin A has potent inhibitory activity
against human PDAC cells (Fig. 1). However, verticillin

Table 2 PCR primer sequences

BCL-x-F GCACAGCAGCAGTTTGGATGC

BCL-x-B GAGGATGTGGTGGAGCAGAGAAG

MCL-1-F TCCCTTTTCCTTGGACTGGTATC

MCL1–1-B GATGACCTTATGGCTCTGAGATGG

FLIP-F CGAGGCAAGATAAGCAAGGA

FLIP-B CACATGGAACAATTTCCAAGAA

MIM-F TCTGAGTGTGACCGAGAAGGTAGAC

BIM-B CCGATACGCCGCAACTCTTG

BAK-F TACCGCCATCAGCAGGAACAGGAG

BAK-B AAGCCCAGAAGAGCCACCACAC

BAX-F CCCCCGAGAGGTCTTTTTCC

BAX-B ATCCAGCCCAACAGCCGCTC

BIM-ChIP-F GAGGAGGGACGGGGTATTTTG

BIM-ChIP-B TGCTGGGCTCGCAGATAACC

BAX-ChIP-F CCTGCCCGAAACTTCTAAAAATGG

BAX-ChIP-B CCAATGAGCATCTCCCGATAAG

BAK1-ChIP-F CCCCAATGCGACTACAGAACTG

BAK1-ChIP-B AGGCAGGAGAATCCCTTGAACC

MCL1-ChIP-F AACTTCCCCGTCCTCTTCCTTC

MCL-ChIP-B TTCTCGTGGCTACCTCTGTGCTTC

FLIP-ChIP-F CCGACGAGTCTCAACTAAAAGGG

FLIP-ChIP-B AAAGAAACCGAAAGCCTGGAAG

BCL-x-ChIP-F CTCTCCCGACCTGTGATACAAAAG

BCL-x-ChIP-B CACCTACATTCAAATCCGCCTTAG
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Fig. 1 Verticillin A inhibits PDAC cell growth alone. Human PDAC cells were cultured in the presence of various concentrations of verticillin A as
indicated. Cell growth was monitored by MTT assay at days 1, 2 and 3. The cell viability of untreated cells were set at 100% and used as reference
for the viability of the treated cells
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A targets six HMTases and therefore is potentially toxic
at high dose in vivo [34]. We therefore sought to test the
hypothesis that a sublethal dose of verticillin A is effect-
ive in overcoming human PDAC resistance to gemcita-
bine. We treated human PDAC cells with verticillin A at
20 nM and various concentrations of gemcitabine and
analyzed tumor cell viability. Although both MiaPaCa2
and PANC1 cells were highly resistant to gemcitabine, a
sublethal concentration of verticillin A significantly in-
creased the sensitivity of both tumor cell lines to gemci-
tabine (Fig. 2). We therefore conclude that a sublethal
dose of verticillin A is effective in overcoming human
PDAC cell resistance to gemcitabine.

Epigenetic regulation of apoptosis regulatory genes
HMTase-mediated methylation of H3K4 and H3K9
modulates chromatin structures to play an essential role
in gene expression [26]. The above observations that
verticillin A effectively suppressed human PDAC cell

growth and sensitized the tumor cells to gemcitabine-
induced cell growth inhibition suggest that verticillin A
may act through regulating the expression of apoptosis
regulatory genes. To test this hypothesis, we analyzed
the protein levels of the known apoptosis regulatory
genes. Western blotting analysis of cytosol and mito-
chondrial fractions indicated that treatment with verticil-
lin A altered the level of a number of apoptosis
regulatory proteins. The pro-apoptotic proteins Bak, Bax
and Bim increased, whereas the anti-apoptotic proteins
FLIP, Mcl-1 and Bcl-x decreased in the treated cells
(Fig. 3a & b). These observations suggested that multiple
apoptosis regulatory genes are regulated by HMTase-
mediated H3K4 and H3K9 methylation.

Verticillin A promotes human PDAC cell apoptosis
through the intrinsic apoptosis pathway
To determine whether the altered apoptosis regulatory
protein levels are translated into activation of apoptosis
signaling pathway, we then analyzed caspase activation.
Western blotting analysis of cytosol fractions indicated
that treatment with verticillin A increased the activation
of caspases 8, 9 and 3 as indicated by upregulated cleav-
age of the pro-caspases in both MiaPaCa2 and PANC1
cells. Increased caspase activation was accompanied by
elevated cytochrome C release and cleaved PARP (Fig. 4a
& b). Therefore, we conclude that inhibition of HMTases
alters the expression levels of a set of apoptosis regula-
tory genes to activate the intrinsic apoptosis pathways.

Verticillin A inhibits H3K9 trimethylation
Two of verticillin A targets are SUV39H1 and SUV39H2
[35], which has redundant functions in H3K9 trimethyla-
tion [38–40]. We next sought to determine whether
verticillin A inhibits H3K9me3 in human PDAC cells.
MiaPaCa2 and PANC1 cells were cultured in the pres-
ence of verticillin A for 2 days and analyzed for
H3K9me3 level. Western blotting analysis indicated that
treatment with verticillin A decreased H3K9me3 level in
a dose-dependent manner in both tumor cell lines
(Fig. 5a). Therefore, verticillin A functions in apoptosis
regulation and PDAC cell growth suppression at least in
part through inhibition of H3K9me3. Based on our pre-
vious observation, verticillin A does not alter the global
level of H3K4me3 in MiaPaCa2 cells. However, it signifi-
cantly reduces the H3K4me3 level on cd274 promotor
region in mouse pancreatic tumor cells [6].

Apoptosis regulatory mediator profiles in human PDAC
The above data demonstrate that human PDACs are
highly resistant to gemcitabine and that the HMTase in-
hibitor verticillin A modulates the expression of a panel
of apoptosis regulatory mediators to promote PDAC
apoptosis to suppress tumor cell growth. These
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Fig. 2 Verticillin A overcomes human pancreatic cell resistance to
gemcitabine. MiaPaCa2 and PANC1 cells were cultured in the presence
of gemcitabine alone at the indicated concentrations, or in the
presence of verticillin A (20 nM) and gemcitabine at the indicated
concentrations for 1 day. Cell viability was determined by MTT assay.
The cell viability of the control cells (0 μg/ml gembicine) of both the
gemcitabine treatment group and the combined gemcitabine and
verticillin A (20 nM) were arbitrarily set as 100%. *p < 0.1,**p < 0.01
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band intensities were quantified using NIH image J. The cytosol protein levels were normalized as the ratio over the intensity of β-actin.
The mitochondria protein levels were normalized as the ratio over the intensity of CoxIV. Column: mean; Bar: SD
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observations suggest that dysregulation of apoptosis
regulatory mediators might be a major mechanism of
PDAC chemoresistance. We next analyzed the mRNA
level of the six apoptosis mediators whose expression is
regulated by an epigenetic mechanism. RNAs were ex-
tracted from normal human pancreas tissues and PDAC
specimens and used for analysis of gene expression.
qPCR analysis indicated that the expression levels of
anti-apoptotic proteins Bcl-x, Mcl-1 and FLIP were sig-
nificantly higher in PDAC tumor tissues than in the nor-
mal pancreas tissues. In contrast, the expression levels
of pro-apoptotic proteins Bak, Bim and Bax were signifi-
cantly lower in the PDAC tumor tissues than in the nor-
mal pancreas tissues (Fig. 5b). The Bcl-x, Mcl-1, FLIP,
Bim, Bak and Bax protein levels were then analyzed by
Western blotting (Fig. 5c). Bcl-xL level is significantly
higher in the tumor tissues than in normal tissues. Mcl-
1 and FLIP proteins were undetectable in normal pan-
creas tissues but detected in the pancreatic tumor tissues
(Fig. 5c). Bax protein level is significantly lower in the
pancreatic tumor tissues as compared to normal
pancreas tissue (Fig. 5c). These observations suggested
that dysregulated expression of a panel of apoptosis

regulatory mediators exists in human PDACs, which
leads to the block of apoptosis.

H3K9me3 directly silences Bak, Bax and Bim expression and
H3K4me3 directly activates Bclx, Mcl-1 and FLIP expression
H3K9me3 is often associated with a transcriptionally re-
pressive chromatin structure to silence gene expression.
The observation that Bak, Bax and Bim expression levels
are lower in PDAC cells and verticillin A increases Bak,
Bax and Bim expression levels suggested that they might
be silenced by H3K9me3. To test this hypothesis, we use
ChIP assay to analyze the H3K9me3 level at the BAK1,
BAX and BCL2L11 (gene that encodes for Bim) pro-
moter region. Analysis of immunoprecipitated genomic
DNA by H3K9me3-specific antibody indicated that ver-
ticillin A indeed decreased H3K9me3 level at BAK1,
BAX and BCL2L11 promoter region in human PDAC
cells (Fig. 6a). In contrast, H3K4me3 is often associated
with a transcriptionally active chromatin structure to ac-
tivate gene expression. The observation that Bcl-x, Mcl-
1 and FLIP expression levels are higher in PDAC cells
and verticillin A decreases their expression level sug-
gested that they might be activated by H3K4me3. We
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again used ChIP assay to analyze the H3K4me3 level at
the BCL2L1 (gene that encodes for Bcl-x), MCL-1 and
CFLAR (gene that encodes for FLIP) promoter region.
Analysis of immunoprecipitated genomic DNA by
H3K4me3-specific antibody indicated that verticillin A

indeed decreased H3K4me3 level at BCL2L1, MCL-1
and CFLAR promoter region in human PDAC cells
(Fig. 6b). Taken together, our data determined that dys-
regulation of a panel of apoptosis regulatory genes by an
epigenetic mechanism underlies PDAC chemoresistance
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and targeting HMTases is an effective means of over-
coming human PDAC resistance to gemcitabine.

Discussion
Gemcitabine is a nucleotide analog that is rapidly metabo-
lized to the active triphosphate form of gemcitabine (2′,
2′-difluoro-2′-deoxycytidine triphosphate, or dFdCTP)
once inside the cells. dFdCTP is then incorporated into
DNA to stop DNA synthesis by a process known as
masked chain termination [41, 42]. Although many cellu-
lar responses to dFdCTP incorporation are known, the
downstream pathways leading to tumor cell death are

largely unknown [43]. However, it has been well-
documented that gemcitabine activates caspase-dependent
apoptosis signaling pathways in tumor cells [5, 43].
Gemcitabine has been the standard adjuvant therapy for
PDAC for the last two decades, but tumor cells are either
intrinsically resistant to gemcitabine or develop acquired
resistance to gemcitabine within weeks of chemotherapy
initiation [1, 5, 21]. To overcome PDAC resistance to
gemcitabine, nabpaclitaxel, and the folic acid, fluorouracil,
irinotecan, and oxaliplatin (FOLFIRINOX) have been
combined with gemcitabine and this combined protocol
has shown some improvement in efficacy and survival
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time compared to gemcitabine alone. Unfortunately, the
disease still rapidly advances [1, 5, 25]. Furthermore, al-
though targeted therapies, either alone or in combination
with gemcitabine, generate responsiveness in some PDAC
patients, the majority of PDAC patients do not respond to
targeted therapies or rapidly acquire resistance during
therapy [44]. In this study, we observed that the HMTase
inhibitor verticillin A dramatically suppresses human
PDAC growth. More interestingly, a sublethal dose of ver-
ticillin A effectively overcame human PDAC cell resistance
to gemcitabine. Verticillin A is a selective HMTase inhibi-
tor that inhibits SUV39H1, SUV39H2, G9a, GLP, NSD2
and MLL1 [35]. These observations suggest that human
PDAC cells use deregulation of HMTase to acquire a che-
moresistant phenotype.
Verticillin A inhibits PDAC growth at least in part

through activating the intrinsic apoptosis pathway as it
alters the levels of a panel of apoptosis regulatory genes,
mainly the pro-apoptotic Bak, Bax and Bim and the
anti-apoptotic Bcl-x, Mcl-1 and FLIP, in human PDAC
cells. All these six apoptosis regulatory genes are known
to be involved in PDAC growth and progression [45–49].
Analysis of PDAC tissues from human patients revealed
that Bak, Bax and Bim are significantly down-regulated,
whereas Bcl-x, FLIP and Mcl-1 are notably up-regulated
as compared to normal human pancreas tissues. There-
fore, it seems that human PDAC cells deregulate multiple
apoptosis regulators to confer an apoptosis-resistant
phenotype, which may explain the potency of verticillin A
in inhibition of PDAC cell growth and in sensitization of
tumor cells to gemcitabine-induced growth suppression
since it targets all these deregulated genes in the tumor
cells. Various inhibitors that selectively target individual
apoptosis regulators have been developed and tested in
suppression of PDAC growth and progression and show
efficacy [45–49]. In light of the observations that multiple
apoptosis mediators are deregulated in human PDAC and
that the HMTase inhibitor verticillin A simultaneously
targets these deregulated apoptosis regulators, it seems
that an epigenetic HMTase inhibitors may have an
advantage over these selective agents targeting a single
apoptosis regulator.
SUV39H1 and SUV39H2 catalyze H3K9me3 [50]. G9a

and GLP form a complex to catalyze H3K9Me1 and
H3K9Me2 [51]. NSD2 mediates H3K36Me2 [52], and
MLL1 catalyzes H3K4me3 [53]. H3K9me3 is often asso-
ciated with a transcriptionally repressive chromatin and
H3K4me3 is often linked to a transcriptionally active
chromatin. Consistent with their functions in gene tran-
scription regulation, we observed that verticillin A inhib-
ited H3K9me3 at the BAK1, BAX and BCL2L11
promoter chromatin, and H3K4me3 at the BCL2L1,
CFLAR and MCL-1 promoter chromatin in human
PDAC cells. Furthermore, inhibition of H3K9me3

resulted in elevated Bak, Bax and Bim expression level
and inhibition of H3K4me3 led to decreased Bcl-x, FLIP
and Mcl-1 expression levels in the tumor cells. These
observations suggest that PDAC cells use H3K4me3 to
increase Bcl-x, FLIP and Mcl-1 expression while using
H3K9me3 to silence Bak, Bax and Bim expression, which
results in an overall stable apoptosis-resistant phenotype
that confers PDAC cell resistance to gemcitabine.

Conclusions
We determined that a panel of apoptosis regulators was
deregulated by epigenetic mechanisms in PDAC cells,
suggesting that conventional approach to target individ-
ual molecular targets is unlikely to overcome PDAC che-
moresistance. Therefore, epigenetic targeting of both
H3K4me3 and H3K9me3 is an effective approach to
overcome human PDAC resistance to gemcitabine.
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