#### **INFORMATION TO USERS**

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

- The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
- 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
- 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again beginning below the first row and continuing on until complete.
- 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
- 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

**Xerox University Microfilms** 

• ···

300 North Zeeb Road Ann Arbor, Michigan 48106

# 75-23,150

1:

SIEGEL, Donald Steven, 1947-THE NATURE AND SIGNIFICANCE OF THE RESPONSE LATENCY ASSOCIATED WITH THE AMENDMENT OF MOVEMENTS OF VARYING COMPLEXITY.

The University of North Carolina at Greensboro, Ed.D., 1975 Education, physical

Xerox University Microfilms, Ann Arbor, Michigan 48106

. . .

)

1

÷

# THE NATURE AND SIGNIFICANCE OF THE RESPONSE LATENCY ASSOCIATED WITH THE AMENDMENT OF MOVEMENTS OF VARYING COMPLEXITY

by

Donald S. Siegel

A Dissortation Submitted to the Faculty of the Granuate School of The University of North Carolina at Greensbore in Partial Fulfillment of the Requirements for the Degree Doctor of Education

> Greensboro 1975

> > Approved by

rtation Advisor

# APPROVAL PAGE

This dissertation has been approved by the following committee of the Faculty of the Graduate School of The University of North Carolina at Greensbore.

> Dissertation Advisor

Committee Members

earc

Date of Acceptance by Committee

STEGEL, DONALD S. The Nature and Significance of the Response Latency Associated with the Amendment of Movements of Varying Complexity. (1975) Directed by: Dr. Pearl Berlin. Pp. 122.

This investigation examined variation in the reaction time  $(RT_{\alpha})$  to the second of two closely paired stimuli when responses were ordered according to relative degree of movement complexity. The sequences included: (a) executing a simple response following a simple response, (b) excouting a complex response following a simple response, (c) executing a simple response following a complex response. and (d) executing a complex response following a complex response. The interstimulus intervals were also varied over selected periods of 100, 200, 400, and 800 milliseconds for the purpose of requiring subjects to asend their initial responses at differing points of implementation. An additional question investigated was whether a relationship existed between reaction time measured in a single task situation and RTo. Measures of reaction time on single and sequential response tasks were generated from 24, female, right-handed volunteers from the University of North Carolina at Greensboro. Subjects were required to attend sessions on five different days.

During Days 1 and 2, each subject was administered 50 simple, and 50 complex response reaction time trials with each hand. The simple response consisted of lifting an index finger from a reaction time key. The complex response required a series of linear movements and reversals. Both were initiated by the sound of a stimulus buzzer and performed as quickly as possible. On Days 3 to 5 each subject was asked to perform four different blocks of trials baving differing sequences of response complexity utilizing the tasks practiced on the first two days.

Data for pays 1 and 2 consisted of mean reaction times for each subject, on each day, for each task. Data for pays 5 to 5 were similarly composed of means for each subject, on each day, for the initial and successive responses in each of the four different tasks. An analysis of the data revealed that the sequence of response complexity was the most important determiner of RTo. Posthoc tests among means across all conditions showed that RTo was significantly longer when the complex response was first in the sequence. Analogously, it reflected the complexity level of the second response, but to a lesser acgree. Fifty-seven percent of the variance in RT, was found to be attributable to this factor. Manipulating the interstimulus interval accounted for only two percent of the variation in  $kT_{g}$ . Post-hoc tests revealed that  $kT_{g}$ was elongated only at the 100 milliseconds interval. Finally, classifying subjects into fast and slow groups on the basis of single reaction time measures accounted for five percent of the variation in  $EF_2$ . Each group was found to remain intact across all experimental conditions, thus indicating generality of reaction time speed in the single and sequential tasks used in this experiment.

.

#### ACKNOWLEDGMENTS

The writer wishes to extend sincere appreciation to Dr. Pearl Berlin for the enthusiastic support and analytical thinking which she contributed during the planning, implementation, and analysis phases of this investigation.

Acknowledgments are also extended to Dr. Doris McKinney, Dr. Alex McNeill, Dr. Celeste Ulrich, Dr. Robin Pratt, and Dr. John Lawther for the many helpful recommendations offered throughout.

Finally, the writer wishes to acknowledge and thank Sharon Siegel for the numerous insights and thoughtprovoking suggestions which she generously made, and which were essential to the success of this study.

## TABLE OF CONTENTS

•

|                    |       |                                            |      |      |      |     |     |          |     |     |                |    |       |                 |        |   |    | •   |    |   | Page                  |
|--------------------|-------|--------------------------------------------|------|------|------|-----|-----|----------|-----|-----|----------------|----|-------|-----------------|--------|---|----|-----|----|---|-----------------------|
| ACKNO              | DMFI  | EDGMENTS                                   | •    | •    | •    | •   | •   | •        | •   | •   | •              | •  | •     | •               | •      | • | •  | •   | •  | • | iii                   |
| LIST               | 0F    | TABLES                                     | •    | •    | ۰    | •   | 0   | •        | •   | 0   | •              | •  | •     | 0               | •      | a | ٠  | •   | •  | • | vi                    |
| LIST               | 0F    | FIGURES                                    | ٥    | •    | •    | •   | 0   | •        | •   | •   | •              | •  | •     | •               | •      | ٠ | •  | •   | ٠  | • | viii                  |
| CHA P <sup>a</sup> | กมาว  |                                            |      |      |      |     |     |          |     |     |                |    |       |                 |        |   |    |     |    |   |                       |
| UIAT               | (L) R |                                            |      |      |      |     |     |          |     |     |                |    |       |                 |        |   |    |     |    |   |                       |
|                    | 1.    | INTROD                                     | UCI  | CI ( | ON   | ٥   | ٥   | ٥        | •   | ۰   | 0              | ۰  | 3     | •               | ٠      | ٠ | ٠  | •   | •  | ٥ | 1                     |
|                    |       | Sta                                        | ten  | ner  | )t   | of  | : t | the      | F   | r   | 5b1            | en | 1     |                 | •      |   | •  | 3   | 0  | • | 2                     |
|                    |       | De f:                                      | ini  | it:  | i or | 0   | f   | Ţe       | rn  | is  | •              | •  | •     | •               | ٠      | • | •  |     | •  | • | 5                     |
|                    |       | Bas                                        | ic   | As   | รรเ  | տր  | oti | lon      | S   |     | a              | ٠  | •     | •               | ٥      | , | •  | 0   | •  | • | 2<br>5<br>7<br>7<br>9 |
|                    |       | Sco                                        |      |      |      |     |     |          |     |     |                |    |       |                 |        |   |    |     |    | ۰ | 7                     |
|                    |       | Sig                                        | ni1  | fid  | car  | ice | c   | <b>f</b> | th  | ie  | St             | ud | ly    | •               | ,      | • | •  | •   | •  | • | 9                     |
| . I                | [].   | REVIEW                                     | Oł   | e 1  | LI'  | ER  | AI  | UR       | E   | •   | 0              | •  | •     | •               | 0      | • | ٠  | •   | •  | • | 11                    |
|                    |       | Rela                                       | ati  | i or | nst  | nin | 5 1 | et.      | we  | e   | <u>ار د</u>    | 66 | : 110 | m               | 9.0    |   |    |     |    |   |                       |
|                    |       |                                            |      |      |      |     |     |          |     |     | ple            |    |       |                 |        | m | Ψj | ime | 2  |   | 12                    |
|                    |       | Sequ                                       |      |      |      |     |     |          |     |     |                | •  |       |                 |        |   |    |     |    |   |                       |
|                    |       |                                            |      |      |      |     |     |          |     |     | •              |    |       |                 |        | • |    |     |    |   | 18                    |
|                    |       | Com                                        |      |      |      |     |     |          |     |     |                |    |       | Ū               | ·      | • | ·  | •   | ·  | • |                       |
|                    |       |                                            |      |      |      |     |     |          |     |     | $\mathbf{its}$ |    |       | i F             | RT.    |   | •  |     |    |   | 28                    |
|                    |       | Simj                                       | ple  | ÷ 1  | lea  | ct  | ic  | m        | Ţi  | ше  | e a            | nd | ŀŀ    | ΩT <sub>c</sub> | )<br>) |   | •  | •   | •  | • | 34                    |
| 11                 | Π.    | PROCEDU                                    |      |      | o    | •   | ٥   | •        | •   | •   | •              | •  | •     | •               | -      | • | •  | a   | 0  | 6 | 36                    |
|                    |       |                                            |      |      |      |     |     |          |     |     |                |    |       |                 |        |   |    |     |    |   | = (                   |
|                    |       | Sub                                        |      |      |      | ٩   | ٩   | •        | •   | ٠   | •              | ٠  | ٠     | ۰               | e      | • | ¢  | ٠   | ۰  | • | 36                    |
|                    |       | Stii<br>Resj                               | uu 1 | 1    | ۰    | •   | •   | ۰        | •   | 0   | •              | ۰  | ٠     | ٠               | Ģ      | ٠ | •  | ۰   | ۰  | ۰ | 37                    |
|                    |       | Res                                        | por  | ISE  | S.   |     |     |          |     |     |                |    |       |                 |        |   | ٠  | ٩   | •  | • | 37                    |
|                    |       | Equ:                                       |      |      |      |     | •   | ٩        | •   | •   |                | ۰  | ۰     | r               | •      | • | 0  | •   | ٠  | ۰ | 38                    |
|                    |       | $\mathbf{E}\mathbf{x}\mathbf{p}\mathbf{e}$ | eri  | m€   | ent  | al  | C   | on       | di  | .t] | lon            | S  | ٠     | •               | ٠      | ۰ | ٠  | ۰   | 0  | 0 | 42                    |
|                    |       | Trea                                       | a tr | ier  | 1 t  | of  | D   | at)      | a   | •   | •              | •  | ۰     | •               | ٠      | ٠ | •  | •   | ٠  | • | 48                    |
| 1                  | v.    | DATA AN                                    | IAL  | YS   | IS   | A   | ND  | D        | IS  | cu  | ISS            | 10 | N     | •               | •      | • | ٩  | •.  | ●, | • | 50                    |
|                    |       | Ass                                        | ign  | hir  | 1E   | th  | е   | Su       | b.i | еc  | ets            | i  | nt    | 0               |        |   |    |     |    |   |                       |
|                    |       |                                            |      |      |      |     |     |          |     |     | ips            |    |       |                 | 0      |   |    |     |    |   | 50                    |
|                    |       | Anal                                       |      |      |      |     |     |          |     |     |                |    |       |                 |        |   | -  | •   | 2  | - | -                     |
|                    |       | as                                         | 5 C  | lie  | e D  | eb  | en  | de       | nt  |     | /ar            | ia | .b.   | .e              | - 2    | ; |    |     |    | • | 57                    |
|                    |       | Dist                                       |      |      |      |     |     |          |     |     |                |    |       |                 |        | , |    |     |    | • | 78                    |

# CHAPTER

|    | ,   | v.  | SU   | MM  | AR  | έ,  | C   | ONC | 2L/         | US: | 101 | NS. | , <i>1</i> | 4NI | ) |   |   |   |   |   |    |   |   |            |
|----|-----|-----|------|-----|-----|-----|-----|-----|-------------|-----|-----|-----|------------|-----|---|---|---|---|---|---|----|---|---|------------|
|    |     |     |      | RE( | CON | AMI | ENI | DAI | <b>FI</b> ( | ON: | S   | •   | •          | •   | • | • | ń | • | • | • |    | ٠ | • | 84         |
|    |     |     |      |     |     |     |     | •   |             |     |     |     |            |     |   |   |   |   |   |   |    |   |   | 84         |
|    |     |     |      |     |     |     |     | ior |             |     |     |     |            |     |   |   |   |   |   |   |    |   |   | 88         |
|    |     |     |      | R   | eco | om  | шеі | nda | at.         | 102 | 15  | 0   | •          | ۰   | 9 | • | • | ٩ | ٠ | 9 | ٠  | • | • | 8 <b>9</b> |
| BI | BLI | OGR | A PH | Y   | •   | •   | •   | •   | ٠           | •   | ۰   | •   | •          | ٥   | • | • | • | ¢ | ٥ | đ | •. | • | • | 91         |
| AP | PEN | DIX | A    | •   | o   | •   | ۰   | •   | •           | ۰   | •   | •   | •          | ٠   | ٩ | • | • | • | • | ٠ | a  | ٠ | 3 | 96         |
| AP | PEN | DIX | В    | ۰   | 0   | v   | s   | 0   | .,          | •   | •   | •   | v          | ۰.  | • | ۰ | ۰ | • | u | c | ٥  | • | • | 103        |
| AP | PEN | DIX | С    | o   | •   | •   | •   | •   | •           | •   | •   | •   | 9          | •   | • |   | • | 3 | ٠ | 6 | •  | • | 3 | 117        |

Page

# LIST OF TABLES

| Table |                                                         | Page |
|-------|---------------------------------------------------------|------|
| 1     | Descriptive Data: Day 1                                 | 51   |
| 2     | Descriptive Data: Day 2                                 | 51   |
| 3     | Discriminant Analysis                                   | 54   |
| 4     | Descriptive Data for Fast and Slow Groups .             | 57   |
| 5     | Analysis of Variance                                    | 58   |
| 6     | Experimental Variance                                   | 77   |
| 7     | Newman-Keuls Test: Differences Between<br>Levels of SRC | 104  |
| 8     | Newman-Keuls Test: Differences Between<br>Levels of ISI | 104  |
| 9     | Newman-Keuls Test: Differences Between<br>Days          | 105  |
| 10    | Newman-Keuls Test: SRC at ISI 100                       | 105  |
| 11    | Newman-Keuls Test: SRC at ISI 200                       | 1.06 |
| 12    | Newman-Keuls Test: SRC at ISI 400                       | 106  |
| 13    | Newman-Keuls Test: SRC at ISI 800                       | 107  |
| 14    | Newman-Keuls Test: ISIs at SRC SS                       | 107  |
| 15    | Newman-Keuls Test: ISIs at SRC SC                       | 108  |
| 16    | Newman-Keuls Test: ISIs at SRC CS                       | 108  |
| 17    | Newman-Keuls Test: ISIs at SRC CC                       | 109  |
| 18    | Newman-Keuls Test: Days at ISI 100                      | 109  |
| 19    | Newman-Keuls Test; Days at ISI 200                      | 110  |
| 20    | Newman-Keuls Test: Days at ISI 400                      | 110  |
| 21    | Newman-Keuls Test: Days at ISI 800                      | 111  |

| Table |                                       | Page |
|-------|---------------------------------------|------|
| 22    | Newman-Keuls Test: ISIs at Day 3      | 111  |
| 23    | Newman-Keuls Test: ISIs at Day 4      | 112  |
| 24    | Newman-Keuls Test: ISIs at Day 5      | 112  |
| 25    | Newman-Keuls Test: SRCs at Day 3      | 113  |
| 26    | Newman-Keuls Test: SRCs at Day 4      | 113  |
| 27    | NewmanKeuls Test: SRCs at Day 5       | 114  |
| 28    | Newman-Keuls Test: SRC SS Over Days   | 114  |
| 29    | Newman-Keuls Test: SHC SC Over Days   | 115  |
| 30    | Newman-Keuls Test: SRC CS Over Days   | 115  |
| 31    | Newman-Keuls Test: SHC CC Over Days   | 116  |
| 32    | Haw Data for Day 1 and Day 2          | 118  |
| 33    | Kaw Data: KT <sub>1</sub> Group Means | 119  |
| 34    | Raw Data: RT <sub>2</sub> Group Means | 121  |

•

vii

.

.

· •

# LIST OF FIGURES

| Figure |                                                                                                                                           | Page       |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1      | Experimental Apparatus                                                                                                                    | 39         |
| 2      | Testing Situation                                                                                                                         | 41         |
| 3      | Non-technical Schematic of Wiring                                                                                                         | 43         |
| 4      | Experimental Design                                                                                                                       | 47         |
| 5      | Graphic Illustration of the SCR Effect<br>and the Separation of Fast and Slow<br>Speed Groups en Both RT <sub>1</sub> and RT <sub>2</sub> | 61         |
| G      | Graphic Illustration of the ISI Effect<br>and the Separation of Fast and Slow<br>Speed Groups on Both RT <sub>1</sub> and RT <sub>2</sub> | 63         |
| 7      | Graphic Illustration of the Day Effect<br>and the Separation of Fast and Slow<br>Speed Groups on Both RT <sub>1</sub> and RT <sub>2</sub> | б4         |
| 8      | Graphic Illustration of ISI-ShC Interaction.                                                                                              | <b>ú</b> 6 |
| 9      | Graphic Illustration of the Effect of<br>SRC Conditions on RT <sub>2</sub> at Each ISI Level .                                            | 69         |
| 10     | Graphic Illustration of RT <sub>2</sub> Times at<br>Each ISI over Days                                                                    | 70         |
| 11     | Graphic Illustration Showing Differing<br>RT <sub>2</sub> Patterns Across ISIs on Each Day                                                | 72         |
| 12     | Graphic Illustration of the SRC-Days<br>Interaction                                                                                       | 74         |
| 13     | Graphic Illustration of SNC-ISI<br>Interaction at Day 3                                                                                   | 75         |
| 14     | Graphic Illustration of SRC-ISI<br>Interaction at Day 4                                                                                   | <b>7</b> 5 |
| 15     | Graphic Illustration of SRC-ISI<br>Interaction at Day 5                                                                                   | 76         |

# CHAPTER I

#### INTRODUCTION

Although the theoretical import of an individual's ability to make corrective movements in various types of responses was recognized as early as Woodworth's classic study in 1899, much still remains unknown concerning this phenomenon. For the most part, skill theoreticians have acknowledged the need to utilize various types of stimuli to guide ongoing responses to their intended conclusions, but they have paid little attention to studying the processes involved when a performer amends one response in favor of another one which has an entirely different goal. In both cases, stimuli are processed by various receptors and transmitted via afferent nerve tracts to control centers in the brain where decisions are made to either maintain or modify the movement as planned. When corrective action is indicated, and the goal of the response is maintained, changes may be made in the executive motor program, or in the inclusion and ordering of subsequent subroutines. However, when the decision calls for a change in goal, different underlying processes would seem to be required. Current movement must be curtailed, a new executive program with different accompanying subroutines organized, and a new response initiated.

Henry's (1960) "memory drum" theory for neuromotor reactions predicts that program changes for a short and uncomplicated response requires a shorter latency than the alteration of a more complicated one. This is anticipated because theory posits that less stored information from the motor memory would have to be withdrawn, and fewer subcenters and channels in the nervous system modified. Although not specifically deduced by Henry, logically it would seem to follow that when another response is called for by the same stimulus signaling the amendment of an immediately previous one, the simple reaction time associated with the initiation of the second movement would be a function of the complexity of each neuromotor program.

#### Statement of the Problem

#### Purpose

This study analyzed variations in simple reaction time  $(RT_2)$  to a stimulus signaling subjects to amend one response and immediately begin the implementation of another one. In addition, the complexity level for each of the successive responses was systematically ordered so as to test the deduction that a longer latency is

associated with the amendment of a more complex motor program. The contribution made by each response to RT<sub>2</sub> was also examined.

The interstimulus interval (ISI), i.e., the period between the first stimulus  $(S_1)$  signaling the initial response, and the second stimulus  $(S_2)$  signaling curtailment of the first response and commencement of the second one, was also varied over intervals of 100, 200, 400, and 800 milliseconds. The literature consistently supports the notion that  $RT_2$  lengthens progressively as the IS1 shortens under about 300 milliseconds. This increase in  $RT_2$  has been attributed to what has become known as the "psychological refractory period" (PRP). By varying both the sequence of response complexity (SRC) and ISI, this study also examined the unique interaction between these factors.

Finally, the relationship between reaction time measures taken in a single task situation and  $RT_2$  was studied. An earlier investigation (Kroll, 1969) demonstrated that subjects who differed initially on simple reaction time and subsequently on initial paired reaction time ( $RT_1$ ), in a task requiring simple key lifting responses to successive signal stimuli, did not show differences in the absolute magnitude or pattern of response latencies to the second stimulus. This result suggested that the ability to execute responses consecutively when the ISI is short may be a unique skill factor. The present investigation partially replicated and also extended Kroll's study by analyzing differences between relatively fast and slow responders in a single reaction time situation and their  $RT_2$ s in a sequential task in which SRC and ISI were varied. Hypotheses

From past research it was deduced that the reaction time to a stimulus signaling the amendment of one motor plan and the initiation of another one is directly related to the complexity of each. Secondly, it was deduced that when the ISI is 300 milliseconds or less, the reaction time to the second stimulus should be inversely related to the length of the ISI. Finally, it was deduced that no relationship should exist between an individual's reaction time in a single response situation and his response latency to the second of two closely paired stimuli signaling different responses. These deductions gave rise to the following hypotheses:

<u>Hypothesis 1</u>. The reaction time to a stimulus signaling the amendment of a complex motor plan and the initiation of a simple one is longer than the reaction time to a stimulus signaling the amendment of a simple motor plan and the initiation of a simple one.

<u>Hypothesis 2</u>. The reaction time to a stimulus signaling the amendment of a simple motor plan and the initiation of a complex one is longer than the reaction time to a stimulus signaling the amendment of a simple motor plan and the initiation of a simple one.

<u>Hypothesis 3</u>. The reaction time to a stimulus signaling the amendment of one motor plan and the initiation of another one increases as the ISI decreases from 400 milliseconds to 200 milliseconds, and from 200 milliseconds to 100 milliseconds.

<u>Hypothesis 4</u>. No difference exists in reaction time to a stimulus signaling amendment of one response and the initiation of another one between those individuals grouped as fast and slow responders in a single, simple reaction time task situation.

#### pefinition of Terms

<u>Amendment of response</u>. Any correction made in an ongoing response, based on intrinsic or extrinsic feedback, intended to either increase the precision of or entirely alter the orginally planned movement.

Ballistic response. kesponse which is executed as a whole and cannot be influenced by information feedback.

<u>Complex response</u>. Response which requires a comprehensive motor program involving several muscle groups and

several specific areas of neuromotor coordination (Henry, 1960). For this study, a complex response was operationally defined as performing a task requiring a series of linear movements with reversals. This response was similar to the one used by Henry (1960).

Executive program. A plan conceived to control the selection and ordering of a sequence of operations.

Intermittency in skill. Discrete intervals at which time corrections can be made in an ongoing response.

Interstimulus interval (ISI). Time period between the onset of one stimulus and the onset of a subsequent one.

Motor program. A plan that can control the selection and ordering of a sequence of operations.

<u>Psychological refractory period</u>. The additional delay observed in the reaction time to the second of two successive signals when the interval separating stimuli is between 50 and 300 milliseconds.

<u>Reaction time</u>. The period between the initiation of a stimulus and the initiation of a response.

Sequence of response complexity (SRC). The ordering of successive responses by the spatial and temporal demands required by each one.

<u>Simple response</u>. Response in which neuromotor coordination centers and pathways are chiefly cerebellar or subcortical without or with minimal cortical involvement (Henry, 1960). For this study, a simple response was operationally defined as lifting a finger from a reaction key at the sound of a simple auditory stimulus.

Skilled response. Complex, intentional action involving a whole chain of sensory, central and motor mechanisms which, through the process of learning, have come to be organized and coordinated in such a way as to achieve predetermined objectives with maximum certainty (Whiting, 1972).

<u>Subroutines</u>. A unitary operation that may be selected and used by an executive program to achieve a specific purpose.

## Basic Assumptions

This investigation made the following assumptions:

1. The subjects responded to the stimuli, in all conditions, and on every trial, as quickly as possible.

2. None of the subjects used in this study ever performed the complex task prior to their initial experimental session.

3. Simple reaction time reflected the time taken to process stimuli and organize the implementation of a re-

# Scope of the Study

This study investigated the effects of SRC and ISI on  $RT_0$ . Additionally, the relationship between an

individual's reaction time in a single response situation and his reaction time to the second of two closely paired stimuli signaling different responses was examined.

The boundaries of this inquiry were established, in part, by 24, right-handed, female students, from the population in attendance at the University of North Carolina at Greensboro during the fall semester of 1974, who served as subjects.

The variables in this study consisted of the sequence and complexity of successive responses, and the interval between stimuli signaling the initiation of each reaction. The selected sequences and levels of complexity of successive responses were: (a) executing a complex response following a complex response (CC), (b) executing a simple response following a complex response (CS), (c) executing a complex response following a simple response (SC), and (d) executing a simple response following a simple response (SS). The intervals between stimuli were 100, 200, 400, and 800 milliseconds.

For the purpose of examining the relationship between simple reaction time in a simple task situation and the reaction time to the second of two successive responses, the 24 subjects were grouped on the basis of their reaction times on the simple and complex tasks performed alone. This provided for two levels of reaction time speed, one of which was relatively fast in relation to the other.

### Significance of the Study

Many motor skills require a performer to adapt quickly to a changing environment. Usually, this entails amending planned or initiated movements in favor of others having different purposes. In sport, the instances of a successful feint in basketball or a baseball pitcher throwing a "change-up" are examples in which individuals intentionally confuse their opponents, requiring them to amend responses with minimal delay. The skill of driving an automobile also entails the operator reacting to closely ordered stimuli signaling very different responses. Oftentimes the delay in initiating successive adaptive movements may prove fatal!

Experimental studies have confirmed the finding that a confusing uisplay frequently causes performers to select and process inappropriate environmental cues that ultimately lead to incorrect responses within the immediate situation. Amendment of these responses and implementation of correct ones must then be made. However, when the stimuli signaling each are closely paired temporally, the reaction time to the second is found to be inversely related to the ISI, and thus the probability of failure to implement the corrective action in time, to avert erring, is increased.

This investigation, in addition to the factor of ISI, examined the effect of the sequence of complexity of two successive responses on  $RT_2$ . Likewise, the interaction between IS1 and SRC was analyzed. The relationship between an individual's simple reaction time in a single situation, initial paired reaction time  $(RT_1)$ , and  $RT_2$  was also considered across all conditions of SRC and IS1.

#### CHAPTER II

#### REVIEW OF LITERATURE

The idea that response latency varies with the length of internal processing time is not novel. In fact, Woodworth and Schlosberg (1954) interpreted the measure of reaction time as an index of the complexity of planning future actions. They believed that as internal processes became more complicated, reaction time became longer.

Subsequently, evidence has accumulated in support of their contention. Simple reaction time has been fractionated (Weiss, 1965; Botwinick and Thompson, 1966; Schmidt and Stull, 1970; Wyrick and Duncan, 1974) into premotor and motor components. The literature indicates that the premotor component varies directly with, and accounts for over 50% of the variation observed in total reaction time, while the motor component remains relatively constant over different response conditions. Assuming that the duration of afferent and efferent neural transmission is similar, central processing may be attributed as the locus of variability in delay. Thus, manipulation of the characteristics of a response which a subject is required to execute, logically, should be reflected in the subsequent simple reaction time, since this measure indicates the amount of processing necessary to organize impending motor behavior.

#### Relationship Between Response Qualities

#### and Simple Reaction Time

Findings supporting the contention that the qualities of a response are related to simple reaction time have been in evidence for quite some time. Freeman (1907), for example, found that when a subject was required to react to a signaling stimulus by making geometric figures, the simple reaction time in initiating these responses varied with the increasing complexity of the representations. The tracing of a pentagon yielded a longer latency than that of a circle, and a circle a longer reaction time than that of a straight line.

Subsequently, Pacaud (1942) partially replicated Freeman's findings. He observed that when a movement resembling a circular path was required to be performed by a subject following a stimulus, the reaction time was longer than when only the response key had to be released.

In a more comprehensive study, Searle and Taylor (1948) examined the relationship between reaction and movement time in a target tracing task. They required subjects to follow a moving line through a narrow slit with a pencil. Searle and Taylor reported that when subjects had to shift their pencils ninety degrees in order to stay on target, reaction time averaged 257 milliseconds, which was well above simple reaction time values for any modality. An additional finding of importance was that movement time was generally shorter than reaction time. This suggested that intermittency existed in the stimulus-response loop. since each movement was brought to a halt before the visual signals of diminishing error had time to effect stopping. The authors interpreted this to mean that certain "openloop" phases of control were evident during successive corrections, although within the framework of a larger "closed-loop" system. Thus, the reaction time period was thought to deal with the perception of error and the organization of an integrated temporal pattern of nerve impulses which were triggered as a whole unit. In addition, Searle and Taylor suggested that it seemed unlikely that the planned neural pattern could be altered, during its channeling, in response to new stimuli. Hence, it was concluded that a subject does not start out toward a target and stop when the target becomes close, but instead programs an integrated motor pattern which approximately reaches the target. On approaching the goal, a better prediction of error between the initial movement and end point is made, and another movement intended to decrease the anticipated discrepancy is planned and initiated.

This analysis of the internal processes involved in ballistic movements supported the findings of an earlier

investigation which was conducted by Woodworth (1899). He performed a similar study in which tracings of various movements were recorded on a rapidly rotating kymograph. From his data, Woodworth suggested that the first impulse of the movements studied contained, in some way, the beginning of the entire movement. Thus, it was concluded that movements performed with such rapidity entailed the programming of spatially and temporally coded nerve impulses which controlled not only activation of the responses, but cessation as well.

In another study intended to investigate the parameters of movement length and direction on reaction and movement time, Brown and Slater-Hammel (1949) observed that reaction time was increased when a subject had to make more than a single finger lifting movement from a reaction key. They reported response latencies for the various distances moved, upon responding, at approximately .25 seconds. This was comparable to the times found by Searle and Taylor (1948) and appreciably longer than the accepted standard of simple auditory or visual reaction times which have been found to be 140 and 180 milliseconds respectively (Woodworth and Schlosberg, 1954). However, Brown and Slater-Hammel found no relationship between variations in the length or direction of the movements used and simple reaction time.

In a later study, Fitts and Peterson (1964) examined the effects of varying response amplitude and terminal accuracy on reaction and movement time. Although reaction time in all tasks approximated 300 milliseconds, which is appreciably greater than simple reaction time to light, no difference in response latency was found across conditions. These findings corroborated those of Searle and Taylor (1948), and Brown and Slater-Hammel (1949), but were not in full agreement with those of Freeman (1907) and Pacaud (1942) in that reaction time did not vary even though the movements did.

Henry (1960) analyzed earlier investigations related to the effect of response complexity on reaction time. He concluded that studies such as the one conducted by Brown and Slater-Hammel (1949) manipulated only length and direction of movements, not complexity. Henry predicted what Freeman (1907) and Pacaud (1942) had already observed, i.e., response latency increases as movements become more complex. Using three different responses, one which required simply releasing a reaction time key, one which demanded moving a hand from a reaction time key and grasping a tennis ball 30 centimeters away, and one which was similar to the previous one, with the exception that more linear movements and reversals were necessary, Henry found statistically significant increases in simple reaction time as the tasks became more complex.

These findings led to Henry's "memory drum" theory for neuromotor reactions. This hypothesis stated that acts of ballistic skill require the calling forth of stored programs from a neuromotor "memory drum" located in the brain. Once initiated, these programs were hypothesized to guide the released outburst of efferent neural impulses through the proper nervous centers, subcenters, and nerve tracts so as to produce the appropriate movements. Thus, the observed increased latency for more complicated movements simply reflected the additional time required to call forth from the "memory drum" and implement a more comprehensive program.

Henry's data were consistent with those of Freeman and Pacaud. In addition, the explanation offered for the phenomenon led to a number of testable deductions. The present study was based on Henry's model, and predicted that when a stimulus occurred which signaled a subject to amend one response and immediately begin the execution of another one, the reaction time of the second movement  $(RT_2)$  would reflect the degree of complexity involved in both responses. This seemed logical since preparation for the second response would additionally include the time required to

amend the first motor program. For example, in the case of a complex initial program, more subcenters and neural channels would have to be arrested, and thus the reaction time for a subsequent movement would be delayed beyond the time it would take to amend a simpler preceding response.

More recently, Glencross (1972; 1973) reported the relationship between various kinds of responses and their associated reaction times. He concluded from his first investigation (1972) that reaction time was not significantly influenced by whether a movement was short or long, or continuing or reversing. On the other hand, responses performed in more than one plane, including halts, took significantly longer to initiate than simpler finger and hand movements. Subsequently, Glencross (1973) found that performing similar movements against variable forces had no effect on reaction time. However, in contrast to his previous report (1972), he found that reaction time was longer for extended movements, provided that terminal accuracy was required. Again, having to reverse a movement performed in one plane had no significant effect on reaction time. An additional finding was that when bilateral movements were compared to unilateral ones, reaction time was longer. Glencross' overall conclusion was that reaction time is more influenced by variations in the spatial and

temporal organization of a movement than it is by the number of motor units that it requires.

In summary, it would seem that results from experiments that have been interpreted to demonstrate either a relationship or the lack of one between reaction time and movement complexity have been inconsistent in their findings. It would seem that complexity may be conceptualized in terms of either amount of movement, i.e., length and force, or the degree of spatial and temporal organization required. In the present study, the complex response was greater on both of these parameters than the simple one, and thus the contention that a sequence of response complexity did in fact exist seemed reasonable.

#### Sequential Responses and Reaction Time

Since Henry's (1960) "memory drum" theory applied only to ballistic movements (Norrie, 1974), the signal to amend a response  $(S_2)$  had to occur within approximately 300 milliseconds from the occurrence of the initial signal  $(S_1)$  indicating the subject to begin the first response. When two stimuli requiring different actions by a subject transpire within a temporal interval of approximately this magnitude, an increased reaction time to the second movement has been observed. Hence, this present study not only was designed to account for the effect of the sequence of response complexity (SRC) on  $RT_2$ , but also that of variation in the interstimulus interval (ISI).

In essence, the nature and locus of limitations in man's perceptual-motor systems were at issue in the present study. It has become widely accepted that man behaves as an intermittent correction servo in the performance of both continuous and discrete motor tasks. In relation to the delays observed in ongoing performance, which appear to signify intermittency. Craik (1948) stated:

We must . . . ask ourselves whether this delay is more likely to consist of transmission time of nerve impulses continuously traveling down an immensely long chain of nerve fibers and synapses connecting sensory and motor nerves, or of a "condensed" time lag occuring in one part of the chain. If the first hypothesis were correct, there would seem to be no reason why a continuous stream of incoming impulses should not evoke a continuous stream of motor ones. . . If, on the other hand, the time lag is caused by the building up of some single "computing" process which then discharges down the motor nerves, we might expect that new sensory impulses entering the brain while this central computing process was going on would either disturb or be hindered from disturbing it by some "switch" system. (p. 147)

Craik later suggested that his ideas could be tested, to some extent, by recording human responses to a series of discrete stimuli presented at various time intervals. He proposed that if a minimum interval was found in which stimuli could not be responded to, this would be evidence for a limited central processing mechanism.

Over the past half century, a relatively large number of investigations have been performed in which the ISI has

been manipulated for the purpose of determining the nature and extent of central limitations in executing responses when called forth in a fast, consecutive manner. Telford's (1931) study has been recognized as the first investigation designed to examine these theorized central processes. Не generalized from physiological evidence that a refractory phase appeared to be a universal, post-stimulation phenomenon of sensitive tissue. Using a simple response, reaction time task, Telford found that when RTo was calculated for ISIs of .5 to 4 seconds, the .5 second ISI resulted in the longest RT<sub>o</sub> latencies. Results from his study led to the conclusion that the inflated  $RT_9$  was indicative of a central refractory period, comparable to the refractory period found in neurons, but of a longer duration. Subsequently, this increased latency has become popularized as the "psychological refractory period." As in the case of simple reaction time however, speculation as to its central locus has been rife, but no theory has yet adequately accounted for the diversity of factual knowledge currently available pertaining to variables which are presumed to influence its magnitude.

Adams (1964) summarized that the British have attempted to explore man as a communications and computer model with a number of input channels, a short- and long-term memory, a limited decision mechanism, and effector apparatus to

which the decision processor issues orders. Based on evidence of an increased latency in RT<sub>2</sub>, from step-tracking and sequential key lifting or pressing experiments, skill theoreticians such as Craik (1947; 1948), Davis (1956; 1957; 1959; 1962; 1965), and Welford (1952; 1959; 1967) have accepted the concept of intermittency in skill, with the one-channel decision mechanism as its cause. As explained, only one stimulus event at a time may occupy the processor. Subsequent stimuli which follow toe soon after earlier ones were theorized to be delayed in some sort of buffer system within the brain until the previous response decisions had been completed and the mechanism cleared.

Data generated by Vince (1947), Poulton (1950), Elithorn and Lawrence (1955), Slater-Hammel (1958), Kay and Weiss (1961), Creamer (1963), Nickerson (1965), Kroll (1969), and Boddy (1972) illustrate the typical finding that when a second stimulus, to which a response must be made, follows an initial one by less than 300 milliseconds, the reaction time to the second stimulus is delayed beyond what would normally be the reaction time period for that response performed alone. In contrast to the single-channel hypothesis, which seems to provide the best fit for the data already available (Bertelson, 1966; Smith, 1967), an alternate explanation for this observed delay in RT<sub>2</sub> has

been proposed in terms of temporal expectancy. Hick (1948) and Poulton (1950) appear to be the earliest proponents of this position. Poulton concluded from two experiments that the lack of readiness to respond to  $S_2$ , as revealed by an inflated  $kT_2$ , may have resulted from either the subject not having prepared adequately, as he was not expecting  $S_2$  so soon after  $S_1$ , or that the time interval between stimuli was too short to allow the necessary preparation. To a large degree, this viewpoint is derived from an earlier study performed by Mowrer (1940) in which he found that stimuli occurring before or after a mean preparatory interval were responded to with a greater latency than those occurring at the mean. Smith (1967) related Mowrer's work to the expectancy theorists' position in writing:

Expectancy theorists, accepting the hypothesis that the mean ISI represents the point of peak expectancy, explain the observed delay in  $RT_0$  by stating that when the ISI between the two stimuli is randomly varied, as is usually done, Ss develop a high expectancy for the second stimulus  $(S_0)$  at the mean ISI. Consequently, when very short ISIs are presented, Ss expectancy of  $S_2$  is minimal, with the result that  $RT_0$  is very high. As the ISI increases the expectancy that  $S_0$  will arrive momentarily increases, with a corresponding decline in  $RT_0$ . (p. 204)

Adams (1962) tested the expectancy hypothesis of psychological refractoriness by manipulating the statistical structure of the ISI. Whereas single-channel theoreticians regarded refractoriness as a consequence of the absolute values of the ISI, expectancy theorists considered it a function related to the relative distributions for the arrival times of  $S_2$ . The results, however, seemed to support both positions in that although the increase in  $RT_2$  was smaller for groups provided with less uncertainty about the occurrence of  $S_2$ , the trend of progressively longer latency being associated with decreasing ISIs remained evident.

Creamer (1963) believed that event uncertainty, i.e., the occurrence or nonoccurrence of  $S_2$ , would produce delays in  $RT_2$  even when the time certainty of  $S_2$  was constant. Using five different groups of which each had fixed ISIs of 0, 100, 200, 400, and 800 milliseconds, he varied event uncertainty. A sixth group was administered trials in which both variables were uncertain. Creamer concluded from his results that the time certainty groups were comparable to the group in which the arrival of  $S_2$  was varied when  $RT_2s$ were contrasted. This led him to summarize that event uncertainty was a more important determiner of  $RT_2$  than was time uncertainty. However, even with fixed ISIs, as in Adams' (1962) study, delays were maximal at the smallest intervals, and decreased as the time between  $S_1$  and  $S_2$ increased.

In a later study, based on the work of Adams (1962) and Creamer (1963), Nickerson (1965) manipulated both the absolute and relative durations of the  $S_1-S_2$  interval in order to study their contributions to  $RT_2$ . Four different conditions provided for an overlapping of interval ranges, thus allowing comparisons among intervals with identical absolute, but different relative durations. The four ranges used were 100-500 milliseconds, 300-700 milliseconds, 500-900 milliseconds, and 100-900 milliseconds. Nickerson found, similar to Adams (1962) and Creamer (1963), that  $RT_2$ was a function of both the absolute and relative durations of the intervals used. At all intervals up to 500 milliseconds,  $RT_2$  decreased as the absolute length of the ISI increased. In addition, it was concluded that within conditions,  $RT_2$  was relatively large when the ISI was small relative to the equiprobable alternative durations that it could assume on a particular trial.

Davis (1965) attempted to ultimately determine which explanation, i.e., expectancy of  $S_2$  or that of a one-channel decision processor, was more tenable. He reasoned that those who favor the former attribute the inflated  $RT_2$  times to the distribution of ISIs, while those who support the latter account for refractoriness as a result of blocking a central mechanism by the occurrence of the first stimulus. Davis attempted to resolve this controversy by eliminating the first stimulus. Thus, he instructed subjects to initiate a trial by spontaneously pressing down on a reaction time key and closing a circuit. This event marked the commencement of an interval. The distribution of intervals was kept comparable to the more typical situation when two stimuli were successively presented. Any differences between  $\mathrm{RT}_2$  patterns in this experiment and those in which both stimuli occurred were attributed to the effect of the event which initiated the interval rather than the distribution of the ISIs used. When Davis' results were compared to data in which the ISI was begun by  $\mathrm{S}_1$ , no delays in  $\mathrm{RT}_2$ were evident. This seemed to support his contention that psychological refractoriness was essentially caused by a one-channel decision processor which must deal with  $\mathrm{S}_1$ before it can process  $\mathrm{S}_2$ .

These results were in basic agreement with an earlier study performed by Kay and Weiss (1961). They manipulated the degree of regularity in both the preparatory interval to  $S_1$  and the ISI. In addition, they varied conditions so that in some blocks of trials no response was required for  $S_1$ . Kay and Weiss found: (a)  $RT_2$  was significantly increased when a response was required to  $S_1$ , and (b)  $RT_2$  was greater when the preparatory interval for  $S_1$  was irregular than when the ISI was irregular. These results seemed to indicate that an increase in processing time for  $S_1$  was directly related to the phenomena of psychological refractoriness. Thus, additional support was given to the single-channel decision processing hypothesis.

In a recent study, Boddy (1972) attempted to identify the physiological correlates of psychological refractoriness. He examined the relationship between delays in  $RT_2$  and delays in the prominent nonspecific component of the evoked potential associated with S<sub>9</sub>. Boddy made the assumption that this measurement was indicative of the subject's state of attentiveness. Although he was unable to find the hypothesized relationship, i.e., delays in the nonspecific component analogous to delays in RT<sub>2</sub>, Boddy did find that in conditions which required subjects to respond to both  $S_1$  and  $S_2$ , amplitude, rather than temporal refractoriness was evident in the prominent nonspecific component associated with  $S_2$ . He surmised that this finding suggested that the portions of the evoked potential attributable to  $S_1$  and its associated response may have been additive sources in causing the observed delays in RTo. Boddy's conclusions, thus, seemed to conform to those reached by both Kay and Weiss (1961), and Davis (1965).

In summary, certain generalizations may be made from the findings of studies designed to investigate the theoretical aspects of the "psychological refractory period."

The following statements seem consistent with the literature: RT<sub>o</sub> increases as the ISI decreases below 300 milli-(a) seconds, (b) both the absolute and relative durations of the ISI effect  $RT_{0}$ , (c) the amount of processing required for  $S_1$  appears to vary directly with  $RT_9$ , and (d) responding to  $S_1$  causes a larger increase in  $RT_2$  than just attending to  $S_1$ . In addition, the two most prominent explanations which attempt to account for the delays observed in  $RT_0$  are known as the single-channel decision processing theory, and the expectancy theory. As Welford (1959; 1967), a strong exponent of the former position admitted, the crucial experiments have not yet been done to make one theory more tenable than the other. It seems today that if all the data alreadyaccumulated were to be accounted for, delays in  $\mathrm{RT}_2$  would seem to vary with circumstances according to principles as yet unknown.

The present study was primarily concerned with the time taken to amend and initiate successive responses of varying complexity. Since the time of the signal to curtail the first response usually occurred at an ISI in which  $kT_2$  has been shown to be prolonged because of the "psychological refractory period," the variation in  $RT_2$  resulting from this phenomenon was considered along with that variation due to SRC.

# Complexity of Amended and Successive

# Movements and RTo

Few investigations have examined the effect of the complexity of successive paired responses on  $RT_2$ . Typically, past research has been done with simple movements which began and ended at approximately the same time. The following studies were exceptions since they utilized tasks of differing degrees of complexity.

Poulton (1950) studied  $RT_9$  in relation to a task which required subjects to trace three successive Vs, as fast as possible, in response to an auditory stimulus. In some conditions a signal was given to stop at a certain point in the configuration, while in other conditions subjects were instructed to disregard the signal. In another condition, subjects had to trace only part of the pattern, but in response to another successive stimulus, continue. Poulton's data showed that stopping the planned response required a median of .25 seconds longer than an ordinary complex graded reaction time. In contrast, the median time for extending the movement was .35 seconds longer. Additionally, he found that if a preparatory signal to extend or amend was provided .6 seconds before the point to alter ongoing movement,  $RT_p$ was eliminated. When the same signal occurred .3 seconds before the stimulus indicating a change in planned action,

 $kT_2$  was found to be intermediately between no preparatory signal and one which sounded .6 seconds prior to  $S_2$ . From his data, Poulton concluded that the length of  $kT_2$  was a function of the degree of preparation for future action, and not recovery from a past response.

Vince and Welford (1967), similarly, investigated refractoriness in relation to speeding-up, slowing-down, or entirely arresting an ongoing response. The conditions in this experiment required subjects to trace a line on a revolving drum when a specific line came into view. While subjects were tracing the first line, another line of a different color occasionally appeared at ISIs of 25, 50, 75, 100, 150, 200, 250, and 300 milliseconds, after the occurence of the first line. Different groups had to then speed-up or slow-down their original movement. Contrary to Poulton's finding, the results indicated that longer RT<sub>9</sub>s were associated with the group required to slow their response. Vince and Welford explained these findings by reasoning that in order to slow a movement, subjects had to change the pattern of muscular innervation by bringing antagonists into play, while speeding-up merely seemed to require the intensification of the nervous pattern already in operation. As in previous studies,  $RT_2$  increased with a decreasing ISI.

Ten years after Poulton's experiment, Marrison (1960) recognized that the type of response used in studying psychological refractoriness could be a significant factor in the ultimate experimental findings. He deduced from Henry's (1960) "memory drum" theory, which was publicized the same year, that when stimuli are simple and the response movements short and uncomplicated, program changes should be easy to accomplish. However, if a movement was complicated, or required a great deal of neuromotor control, amendment would be difficult. In relation to the "psychological refractory period," he agreed with Davis (1956) who had theorized that the amount of motor control necessary for a particular response was a determiner of  $hT_2$ . Harrison, thus, designed an experiment in which he predicted that psychological refractoriness would be totally eliminated if both stimuli and responses were as simple as possible. The first response entailed pressing a button in response to a light, while the second one required moving the same finger a few millimeters, left or right, in response to either of two possible stimulus lights. He used both errors in direction of movement for the second response as well as RT<sub>o</sub> as criteria indicating refractoriness. Harrison concluded from his data that error rates were low for ISIs of 50 to 300 milliseconds, although they became inflated above this range. In contrast, RT<sub>2</sub> varied inversely with

the ISIs. The explanation given for these results was that as  $RT_2$  decreased with increasing ISIs errors increased since subjects became tense with the longer ISIs and too eagerly anticipated  $S_2$ . This, in turn, led to less accurate judgments of direction and less accurate, but faster responses. Conditions in the experiment also allowed comparison of  $RT_2$ s when a response was and was not required of  $S_1$ . The shorter latencies in the latter condition led Harrison to conclude, as Poulton had done previously, that the increased  $RT_2$  in the former condition was probably a foreperiod-expectancy phenomenon rather than true central refractoriness. Based on the error rate data, Harrison concluded that he had confirmed his hypothesis concerning simple stimuli, and short and uncomplicated movements.

Although the reasoning for Harrison's hypothesis appeared logical, his conclusions seemed unwarranted. Only simple responses were used, and no comparison was available for examining whether similar results would be evident for a more complicated response.

Subsequently, Henry and Harrison (1961) investigated whether, in contrast to the short movements used in Harrison's (1960) previous study, long ballistic movements would be refractory to alteration. They reasoned that a simple direct movement occurring over a long path, requiring maximal force, is covertly complex. They explained,

that not only are contraction of agonists involved in this type of movement, but stabilizers and antagonists. The authors tested the hypothesis which predicted that long movements would be refractory to amendment until the existing motor program associated with it was at least partially read out of neuromotor memory. To test this deduction, subjects were required to execute an arm swing over a distance of 91 centimeters as fast and as forcefully as possible in response to a visual stimulus  $(S_1)$ . However, 58% of the trials were accompanied by another visual signal  $(S_2)$ , which followed  $S_1$  at ISIs of .10, .19, .27, and .35 seconds. The results were somewhat ambiguous as Henry and Harrison concluded from their data that, when So occurred at an ISI of .10 or .19 seconds, deceleration of the movement was evident, but reversal was impossible. This was interpreted as being substantiation for their hypothesis of refractoriness for long movements. Again, RT<sub>9</sub> increased with decreasing ISIs.

In an attempt to clarify the previous research, Williams (1971a) replicated and more precisely analyzed the differing concepts of refractoriness that had been used by Henry and Harrison (1961). He pointed out that for the earlier experiment refractoriness had been defined in terms of error, i.e., inability to amend the movement in time to

avoid hitting a target, rather than in terms of inflated  $RT_2$  values. Williams examined both dependent measures and found that each led to different conclusions. When  $S_2$  occurred early in the response, fewer errors were made in stopping the movement before the end point, but at the same time,  $RT_2$  increased with smaller ISIs. His conclusion that experiments must distinguish between these two definitions of refractoriness was well taken, in that one is based on the characteristics of the movement response while the other is concerned with central processing.

In summary, it appears that although various movements have been used in studying the processes involved in executing corrective responses, no single investigation has systematically examined SRC in relation to ISI. Additionally, previous studies (Poulton, 1950; Henry and Harrison, 1961; Williams, 1971a; Williams, 1971b) have used initial and successive responses performed by a single anatomical structure. Consequently, this strategy may have inadvertently attenuated the precision of findings by peripheral confounding resulting from such factors as limb inertia.

The present study utilized contralateral limbs to execute separate responses varied according to ShC. ISIs were also varied for the purpose of examining the effect of the occurrence of  $S_0$  on amendment of simple and complex

motor programs at varying degrees of execution. The dependent variable selected was  $RT_2$ , which from past research seemed to be a valid indicator of the central processing time involved in responding to  $S_2$  after initially responding to  $S_4$ .

# Simple Reaction Time and RT<sub>2</sub>

Some of the previously reviewed experiments in which amending behavior was examined mentioned that intersubject variation across different conditions was significant (Boddy, 1972; Vince and Weldord, 1967; Davis, 1962). Kroll (1969) indicated that such information has, for the most part, gone unnoticed. However, the import of such findings, as he suggested, is considerable since the single-channel theory of psychological refractoriness holds that when  $S_2$  occurs before the response to  $S_1$  (RT<sub>1</sub>), RT<sub>2</sub> and RT<sub>1</sub> will be directly related by the formula:  $RT_2 = RT_1 + RT_N - ISI$ , where  $RT_N$  is equal to the single, simple reaction time of the second response (Davis, 1956). According to this formula, Kroll surmised that subjects with the same simple reaction time should exhibit identical delay patterns in the sequential response situation.

Hence, he conducted an experiment to investigate whether, in fact, individuals who differed initially on  $RT_1$ , differed subsequently when  $RT_2$  was analyzed. After

classifying individuals into relatively fast and slow groups, based on single, simple reaction time, he ran all subjects through a sequential response task in which ISIs ranged from 50 to 1000 milliseconds. Kroll concluded, from his data, that no difference existed in the absolute magnitude or pattern of  $\mathrm{RT}_2$  between groups. This finding was not only in serious conflict with the single-channel processing theory, but suggested that a subject's ability to perform fast, consecutive, paired responses might be a unique skill factor.

The present study, in addition to examining the effects of varying SRC and IS1 on  $RT_2$ , attempted to replicate Kroll's experiment by dividing subjects into relatively fast and slow groups based on separate, single measures of reaction time. The relationship between this hypothesized speed factor and  $RT_9$  was analyzed across all conditions.

# CHAPTER III

## PROCEDURES

This experiment was conducted for the purpose of studying the effects of varying the ISI and SRC on  $RT_2$ . In addition, the relationship among an individual's simple reaction time in a single situation, initial paired reaction time ( $RT_1$ ), and  $RT_2$  was examined across all conditions of SRC and ISI. For the purpose of assessing the effects of these factors on  $RT_2$  the following procedures were utilized.

#### Subjects

Data for this investigation were generated from 24, female, right-handed subjects who volunteered from the population of students in attendance at the University of North Carolina at Greensboro during the fall semester of 1974. Their ages ranged from 18 years to 35 years, with a mean of 19.7 and a standard deviation of 3.8 years.

All subjects were briefed on the tasks which they would be asked to perform prior to their initial sessions. This was done for the purpose of assuring them that no deception or aversive conditions would prevail during testing. On the first and third days of the experiment, each subject was read standard instructions (Appendix A) pertaining to the movements that they were required to perform. The experimenter then demonstrated the responses and answered questions. On Day 5 each subject was verbally debriefed and given a written explanation (Appendix A) related to the theoretical aspects of this study.

## Stimuli

In all conditions, the stimuli signaling the subject to execute a response consisted of a signal, lasting 30 milliseconds, generated from two 12 volt General Electric buzzers, which were wired in parallel. In addition, throughout this investigation, a red warning signal located on a partition directly in front of the subject, 26 centimeters above the table top upon which test apparatus were located, occurred prior to the initiation of each trial. This signal served as a warning to subjects that their index finger(s) should be placed upon the appropriate key(s), closing the contact(s). The preparatory interval for all days was presented in a constrained random order, i.e., each interval, 1, 2, 3, and 4 seconds, occurred an equal number of times in a block of trials.

## Responses

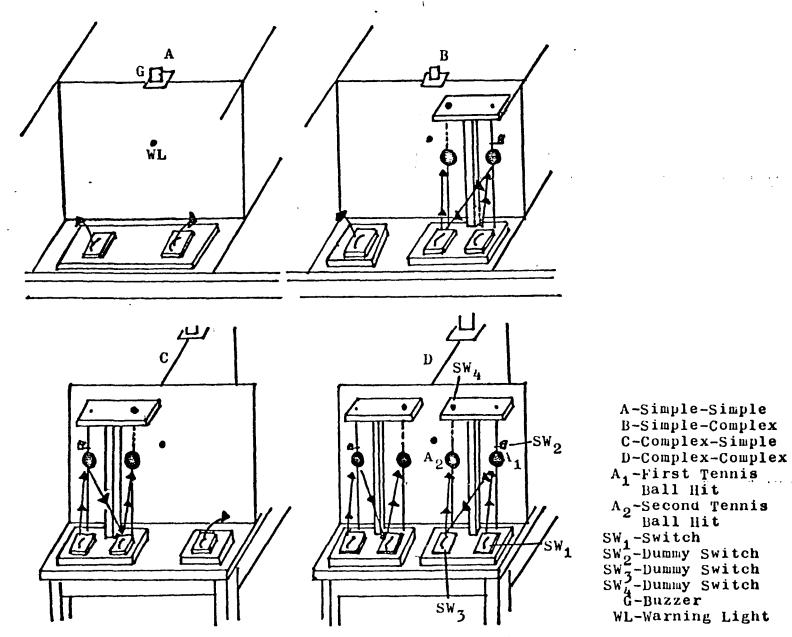
The responses which subjects were required to perform during this investigation were designed to be as much like those used by Henry (1960) as possible. Since data generated from these responses were used in formulating the "memory drum" theory for neuromotor control of well practiced movements, it seemed that they also could be used to test subsequent theoretical deductions.

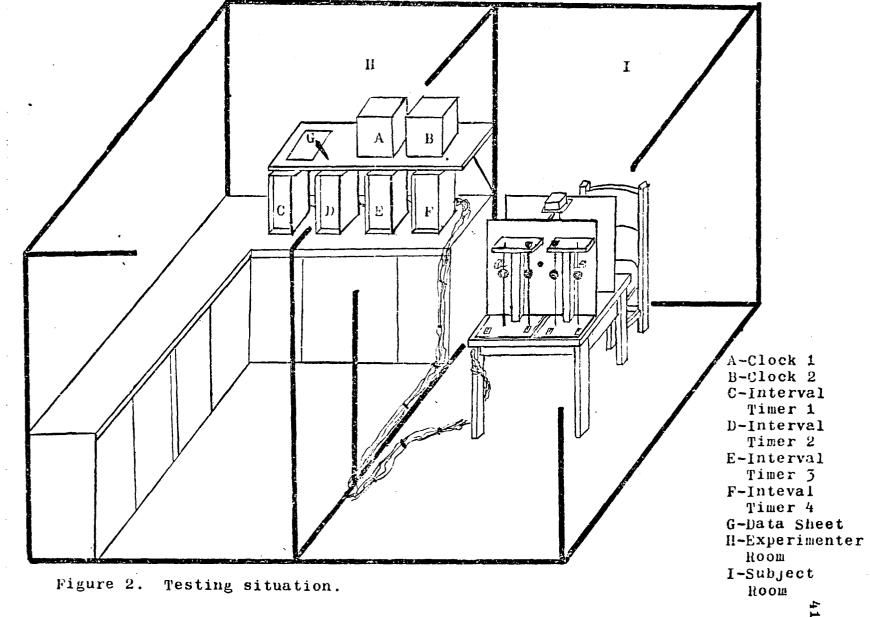
The complex response for this study consisted of the motor pattern that Henry adapted from Howell (1953), and labeled C. It entailed a subject, while seated, to move her hand off of a reaction time switch  $(SW_1)$ , reaching forward 30 centimeters, and upward 15 centimeters to strike a tennis ball  $(A_1)$  with the back of her hand, closing dummy switch  $(SW_2)$ , reversing direction to go diagonally back to another dummy switch  $(SW_3)$  on the baseboard, located parallel and 30 centimeters to the left or right of  $SW_1$ , and then reversing direction again and going upward 15 centimeters and forward 30 centimeters to pull down tennis ball  $A_2$ , which was attached by a cord to another dummy switch  $(SW_4)$ . The apparatus required for the left- and right-handed responses are diagrammed in Figure 1 on page 59.

The simple response consisted of the subject lifting her index finger off of a reaction time key, at the sound of the appropriate stimulus. This response is also illustrated in Figure 1.

# Equipment

The experimental equipment consisted of 4 complex response apparatus, and 4 simple reaction time keys. These were distributed among conditions as follows: (a) condition 1 (SS) -- 2 simple reaction time keys, (b) condition 2





Figure 1. Experimental apparatus.

(SC) -- 1 simple reaction time key for the initial response and a complex apparatus for the second one, (c) condition 3 (CS) -- 1 complex apparatus for the left hand and a simple reaction time key for the right one, and (d) condition 4 (CC) -- 2 complex apparatus. Diagrams of each condition are represented in Figure 1 on page 39.

All SRC conditions were located on a table 90 centimeters by 150 centimeters, and separated by plywood partitions. The equipment used to set intervals and measure  $RT_1$  and  $RT_2$  was located in a room which was adjacent to the one in which the subject performed. Figure 2 on page 41 illustrates the testing situation.

### Wiring

In order to control the length of the foreperiod, and the initiation and duration of stimuli, four interval timers were used. Interval Timer 1 started the warning signal, which was a visual stimulus mounted between apparatus in each condition and 26 centimeters from the table top. In addition, Timer 1, after a variable preparatory interval, ranging from 1-4 seconds, initiated interval Timers 2 and 3. The onset of Timer 3 caused  $S_1$  to buzz for 30 milliseconds, while Timer 2 began an ISI of either 100, 200, 400, or 500 milliseconds. Timer 4 was connected to Timer 2, and set off  $S_9$  at the end of the ISI. Timers 1, 3, and 4



were Hunter interval timers, model 111B, while Timer 2 was manufactured by Lafayette Electronics, model number 50013.

Clock 1 was attached to Timer 3, and was initiated simultaneously with  $S_1$ , while Clock 2 was wired to Timer 4, and began with the onset of  $S_2$ . The initiation of movement by the left hand resulted in stopping Clock 1, while a similar movement of the right hand stopped Clock 2.

All initial, left-handed reaction time keys were wired in parallel, and connected to Clock 1, while righthanded keys were identically wired and attached to Clock 2. The interval between the initiation of a stimulus and the releasing of an appropriate key was recorded as reaction time. Both clocks were model 54014 from Lafayette Electronics. A diagram illustrating the connections of the circuit is located in Figure 3 on page 43.

Data sheets for recording  $RT_1$  and  $RT_2$  for each subject, contained two sets of uniquely randomized intervals for each condition. The experimenter referred to these prerecorded preparatory intervals and ISIs on each trial, and manually set the necessary dials. In addition, data on each trial were recorded on these forms (Appendix A).

# Experimental Conditions

This study required five experimental sessions for each subject. Although every attempt was made to order these sessions for consecutive days and similar daily times,

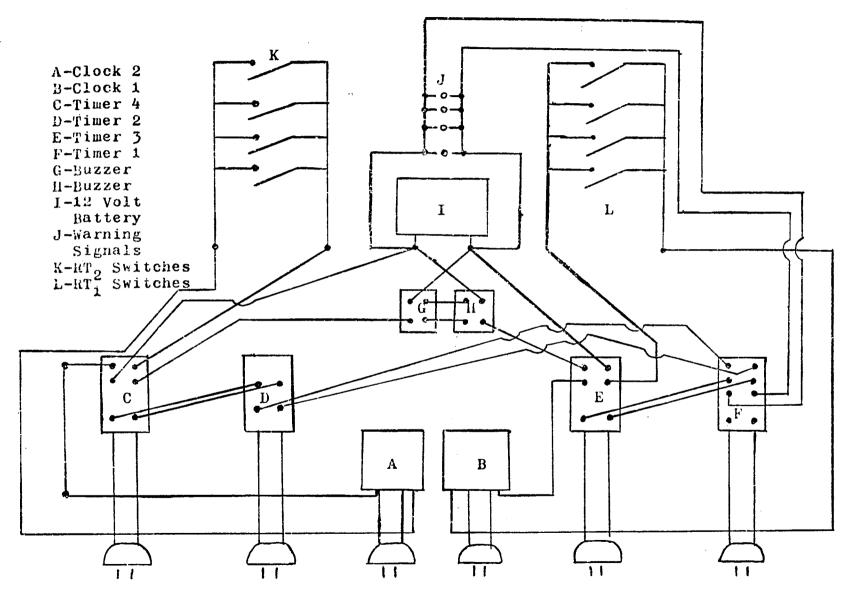



Figure 3. Non-technical schematic of wiring.

laboratory availability and subject schedules did not always coincide. However, no subject completed all five sessions over a period longer than eight days, and all performed daily within two hours of the time of their initial visit.

## Days 1 and 2

During Days 1 and 2 each subject was administered 50 simple and 50 complex response reaction time trials with each hand. These 200 trials were grouped into blocks of 25 and included 5 randomly placed catch trials, i.e., trials upon which the stimulus did not occur. The eight blocks were randomly assigned to subjects. This procedure allowed for each subject to perform two blocks of each task with each hand, on each of the first two days. Ten seconds were permitted between the end of one trial and the beginning of the next, while a two minute rest period was given between blocks. Hence, for each of the first two days, 40 trials for simple and 40 trials for complex response reaction time were available for calculating means, for each hand, in each condition.

These procedures were used to attain a well practiced measure of reaction time. On the basis of Kroll's (1969) study, and that of Slater-Hammel (1958), optimal measures of simple reaction time were found during the first two days

of practice, thus the methods used in this experiment seemed sufficient to guarantee well practiced measures of reaction time.

#### Days 3-5

On Day 3, subjects were read a different set of standard instructions (Appendix A) related to the tasks which they would be asked to perform over the next three sessions. Each subject was required to perform four different blocks of trials having different sequences of response complexity utilizing the tasks practiced on the first two days. Block 1 entailed executing the simple response following the simple response (SS), Block 2, executing the complex response following the simple response (SC), Block 3, executing the simple response following the complex response (CS), and Block 4, executing the complex response following the complex response (CC). Each block consisted of 45 trails containing 5 randomly assigned catch trials for the second, right-handed response. No catch trials were alloted to the initial, left-handed response. In all blocks, and over all trials, the left hand responded to the initial stimulus  $(S_1)_{i}$ while the right hand responded to the second stimulus  $(S_{0})$ .

The four SRC blocks were assigned randomly to each subject, on each of the three days. In addition, ISIs of 100, 200, 400, and 800 milliseconds were distributed within

each SRC block in a constrained random order. These intervals were primarily selected for the purpose of having So occur at various points of the initial response, while also covering the range of ISIs in which psychological refractoriness has been found. The 800 milliseconds ISI acted as a control condition, since under all other levels of ISI, subjects were required to amend their motor plans prior to completion of the entire first response. It therefore seemed that if subjects always had to amend their initial programs, they may have decided, after several trials, to only plan the initial portion of the first response. Henry's (1960) data for the complex movement time showed that college women had a mean movement time of 552 milliseconds, with a standard deviation of 95 milliseconds. Hence, inclusion of the 800 milliseconds ISI appeared sufficient to insure completion of the initial complex task on approximately 25% of the trials within the CS and CC blocks.

Ten seconds were allotted between the end of one trial and the beginning of the next one, while a two minute rest period was permitted between SRC blocks. In addition, five practice trials, on each day, preceded the 45 experimental trials in each SRC condition. Figure 4 on page 47 illustrates the overall design used in the experiment.

|                 | SRC <sub>1</sub>     | SRC <sub>2</sub>                                            | SRC3              | ShC4                                                        |
|-----------------|----------------------|-------------------------------------------------------------|-------------------|-------------------------------------------------------------|
|                 | $I_1 I_2 I_3 I_4$    | I <sub>1</sub> I <sub>2</sub> I <sub>3</sub> I <sub>4</sub> | $I_1 I_2 I_3 I_4$ | I <sub>1</sub> I <sub>2</sub> I <sub>3</sub> I <sub>4</sub> |
| s <sub>1</sub>  |                      |                                                             |                   |                                                             |
| •               |                      |                                                             |                   |                                                             |
| •               |                      |                                                             |                   |                                                             |
| •               |                      |                                                             |                   |                                                             |
| •               |                      |                                                             |                   |                                                             |
|                 |                      |                                                             |                   |                                                             |
|                 |                      |                                                             |                   |                                                             |
| •               |                      |                                                             |                   |                                                             |
| •               |                      | )                                                           |                   |                                                             |
|                 |                      |                                                             |                   |                                                             |
| s <sub>24</sub> |                      |                                                             |                   |                                                             |
|                 | $SRC_1 = Simple$     | e-Simple                                                    | $I_1 = ISI-10$    | 00 milliseconds                                             |
|                 | $SRC_2 = Simple$     | e-Complex                                                   | $I_2 = 1S1 - 20$  | )O milliseconds                                             |
|                 | $SRC_3 = Complexity$ | ex-Simple                                                   | $I_3 = ISI-40$    | 00 milliseconds                                             |

 $SRC_4 = Complex-Complex$   $I_4 = ISI-800$  milliseconds  $S_1-S_{24} = Subjects$ 

Figure 4. Experimental design.

For each session, the data consisted of arithmetic means for  $RT_1$  and  $RT_2$ , in each condition. Hence, 40 trials were available in calculating these measures at every SRC and ISI level, while 10 values were utilized in performing the calculation in each cell representing an interaction between factors.

# Treatment of Data

## Grouping the Subjects

A repeated measures, multivariate analysis of variance, using mean day, right-handed reaction time for both simple and complex response tasks was performed to determine whether a difference existed between overall daily performance on Day 1 and 2. This analysis was done for the purpose of deciding upon which of the first two day's scores, taken as a composite, represented the faster, and thus, better practiced measure of reaction time. The scores representing the fastest daily performance were then analyzed to determine which of the two variables had the higher correlation coefficient with the derived canonical Based on this comparison, the variable found to variable. be the best discriminator between days was used as the criterion variable for dividing subjects into two groups of 12 each, which were relatively fast and slow on this measure. A discriminant analysis was then performed using both measures of reaction time, on the faster day, to test

whether the groupings, which were based on a single predictor variable, remained intact when the less discriminating variable was simultaneously considered. All of the above analyses were computed using computer programs from the Statistical Analysis System (Service, 1972).

### Analysis of RT<sub>2</sub>

An analysis of variance for repeated measures, using HT<sub>2</sub> as the dependent variable was run via computer program OSV of the Biomedical Series of Computer Programs (Dixon, 1973). Previously determined fast and slow groups of subjects were nested in levels of speed, and completely crossed within the factors of SRC, ISI, and days. The analysis of variance followed the form taken by the experimental design located in Figure 4, on page 47.

All factors relevant to the purposes of this study, which were significant at the .05 probability level, were then analyzed using the Newman-Keuls post-hoc test for multiple comparisons among treatment means. Graphs were also constructed to aid in the interpretation of the data.

Finally, the percentage of variance attributable to each significant effect was calculated via Omega Square (Hays, 1965). This statistic provided a means for comparing the relative strength of each factor in determining RT<sub>2</sub>.

#### CHAPTER IV

# DATA ANALYSIS AND DISCUSSION

This study examined the effects of manipulating the SRC and ISI on  $RT_2$ . In addition, the question of whether an individual's simple reaction time in a single situation, initial paired reaction time, and  $RT_2$  were in any way related across all conditions of SRC and ISI was investigated. Hence, the dependent measures included single, simple and complex response reaction times, generated during the first two days, and  $RT_1$  and  $RT_2$  taken ever the following three days. Data for these dependent variables were produced by 24, female, right-handed volunteers.

### Assigning the Subjects into Fast and Slow Groups

Prior to performing the multivariate analysis of variance for determining whether single, simple and complex response reaction times, considered as a composite indication of speed, decreased significantly over the first two days, descriptive data related to each task were calculated. Tables 1 and 2 on page 51 collates these obtained data.

Indices reveal that all reaction time measures decreased from Day 1 to Day 2, while all correlations increased. This suggested that subjects, by becoming faster on Day 2, bonefitted from the first day's practice. Additionally, the increase in all correlations indicated that some of the

Descriptive Data: Day 1

| Response | Mean                                         | <u>SD</u>    | Pea            | arson Co | oorelat | io n      |
|----------|----------------------------------------------|--------------|----------------|----------|---------|-----------|
| <u></u>  |                                              |              | SR ·           | SL       | CR      | CL        |
| SR       | 153 ms.                                      | 25 ms.       | -              | .68*     | .40     | .52*      |
| SL       | 153 ms.                                      | 24 ms.       |                | -        | •34     | .40       |
| CR       | 219 ms.                                      | 30 ms.       |                |          | -       | .67*      |
| CL       | 224 ms.                                      | 34 ms.       |                |          |         | -         |
| S        | R=Simple Res<br>L=Simple Res<br>R=Complex Re | ponse-Left ] | land<br>t Hand |          |         | - <b></b> |

# Table 2

# Descriptive Data: Day 2

| Hesponse                               | Mean    |           | <u>SD</u> | Ре | arson Co | porelat | ion  |
|----------------------------------------|---------|-----------|-----------|----|----------|---------|------|
| ************************************** |         |           | <u> </u>  | SR | SL       | CR      | CL   |
| SR                                     | 141 ms. | 29        | ms.       | -  | .86*     | .70*    | .80* |
| SL                                     | 138 ms. | <b>28</b> | ms.       |    |          | .59*    | .66* |
| CR                                     | 195 ms. | 31        | ms.       |    |          | -       | .87* |
| CL                                     | 202 ms. | 34        | ms.       |    |          |         | -    |

<u>Note</u>. SR=Simple Response-Right Hand SL=Simple Response-Left Hand CR=Complex Response-Right Hand CL=Complex Response-Left Hand

\*p**<.**01

extraneous variance among the tasks had dropped out. It was, thus, assumed that the common variance on Day 2 more accurately represented a general speed factor among tasks. It must be noted that the simple reaction time values in this study were very similar to those given by Woodworth and Schlosberg (1954). The complex response means approximated Henry's (1960) data. These findings were in accord with the "memory drum" deduction of an increase in response latency for more complicated movements.

# Multivariate Analysis of Variance to

## Determine Day Effect

Since the primary dependent variable investigated for the sequential tasks on pays 3 to 5 was the mean reaction time for the second, right-handed response, the measures used in the multivariate analysis of variance to test improvement in reaction time over the first two days were mean reaction time values for each of the 24 subjects for their uaily righthanded, simple and complex response reaction times. This analysis was indicated by the presence of a Pearson productmoment correlation coefficient of .64,  $\underline{p} < 01$ , between these variables over both days. Unlike analysis of variance, which would test each variable separately and lead to inaccurate probability statements in determining the significance of an F ratio, multivariate analysis of variance

takes into account the relatedness of the dependent measures and determines the appropriate probability distribution for testing different effects while considering both variables simultaneously (Newell and Martens, 1974). In addition, correlations were run between each dependent variable and the calculated canonical variable.

The results yielded an approximate  $\underline{F}$  value of 9.58 which was significant at the .01 probability level. This statistic indicated that Day 2 values, when considered simultaneously, were faster than Day 1 measures. This supported the descriptive data in Tables 1 and 2.

The correlation coefficients between the canonical variable and each dependent measure were .46 and .99 respectively, for simple and complex response reaction times. This suggested that complex response reaction time was a more powerful discriminator between days than simple response reaction time, as it accounted for 98% of the variance in the canonical variable. This finding was in contrast to only 21% accounted for by simple response reaction time.

## Discriminant Analysis for Verifying

### Speed Classifications

Since complex response reaction time was found to be the better discriminator variable between days, its median value on Day 2 was determined, and used as the criterion

for dividing the 24 subjects into groups. To determine whether these fast and slow group classifications remained intact when both variables, i.e., simple and complex response reaction times for Day 2, were used together as group discriminators, a discriminant analysis was performed. This procedure based each subject's classificatory status on the generalized squared distance to each group's mean composite variable (Rao, 1965). The results affirmed the assignment of all subjects to their respective original group. Table 3, located below, provides data about the original group of each subject; the group to which she was classified, the generalized squared distances to each group, and their associated probabilities.

### Table 3

Discriminant Analysis

| Subject | Classi-<br>fieu by<br>CR | Classi-<br>fied by<br>Discrim-<br>inant<br>Analysis | Generalized<br>Squared Dis-<br>tance to<br>Fast Group/<br>Probability | Generalized<br>Squared Bis-<br>tance to<br>Slow Group/<br>Probability |
|---------|--------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
| 1       | Slow                     | Slow                                                | 25.7152<br>.0037                                                      | 14.5232<br>.9963                                                      |
| 2       | Tast                     | Fast                                                | 13.6016<br>.9959                                                      | 24.6100<br>.0041                                                      |
| 3       | Fast                     | Fast                                                | 16.6102<br>.5866                                                      | 20.7232<br>.1134                                                      |

| Subject           | Classi-<br>fied by<br>CR | Classi-<br>fied by<br>Discrim-<br>inant<br>Analysis | Generalized<br>Squared Dis-<br>tance to<br>Fast Group/<br>Probability | Generalized<br>Squared Dis-<br>tance to<br>Slow Group/<br>Probability |
|-------------------|--------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
| <i>l</i> <u>i</u> | Fast                     | Fast                                                | 16.9203<br>.9977                                                      | 29.0987<br>.0023                                                      |
| 5                 | Fast                     | Fast                                                | 11.8298<br>.9525                                                      | 17.8272<br>.0475                                                      |
| 6                 | Fast                     | Fast                                                | 12.3485<br>.9041                                                      | 16.8359<br>.0959                                                      |
| 7                 | Fast                     | Fast                                                | 12.1201<br>.9925                                                      | 21.9016<br>.0075                                                      |
| 8                 | Slow                     | Slow                                                | 63.4903<br>.0000                                                      | 20.5626<br>1.0000                                                     |
| 9                 | Slow                     | Slow                                                | 36.1939<br>.0000                                                      | 16.0917<br>1.0000                                                     |
| 10                | Fast                     | Fast                                                | 12.7336<br>.9191                                                      | 17.5936<br>.0809                                                      |
| 11                | Slow                     | Slow                                                | 27.7142<br>.0022                                                      | 15.4396<br>.9978                                                      |
| 12                | Fast                     | Fast                                                | 13.1735<br>.8520                                                      | 16.6740<br>.1480                                                      |
| 13                | Slow                     | Slow                                                | 15.3547<br>.4461                                                      | 14.9216<br>.5539                                                      |
| 14                | Slow                     | Slow                                                | 16.4403<br>.3234                                                      | 14.9644<br>.6766                                                      |
| 15                | Slow                     | Slow                                                | 38.2437<br>.0000                                                      | 16.9269<br>1.0000                                                     |
| 16                | Fast                     | Fast                                                | 13.5406<br>.9107                                                      | 18.1840<br>.0893                                                      |

Table 3--Continued

| Subject | Classi-<br>fied by<br>CR | Classi-<br>fied by<br>Discrim-<br>inant<br>Analysis | Generalized<br>Squared Dis-<br>tance to<br>Fast Group/<br>Probability | Generalized<br>Squared Dis-<br>tance to<br>Slow Group/<br>Probability |
|---------|--------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
| 17      | Slow                     | Slow                                                | 38.4369<br>.0000                                                      | 16.0950<br>1.0000                                                     |
| 1.8     | Slow                     | Slow                                                | 22.0527<br>.1227                                                      | 18.1192<br>.8773                                                      |
| 19      | Fast                     | Fast                                                | 12,4456<br>•9735                                                      | 19.6567<br>.0265                                                      |
| 20      | Fast                     | Fast                                                | 12,6646<br>.9605                                                      | 19.0446<br>.0395                                                      |
| 21      | Slow                     | Slow                                                | 23.5931<br>.0099                                                      | 14.3772<br>.9901                                                      |
| 22      | Slow                     | Slow                                                | 26.0251<br>.0036                                                      | 14.7513<br>.9964                                                      |
| 23      | Fast                     | Fast                                                | 13.0945<br>.8254                                                      | 16.2013<br>.1746                                                      |
| 24      | Slow                     | Slow                                                | 23.4077<br>.0282                                                      | <b>16.3285</b><br>.9718                                               |

Table 3--Continued

Table 4, located on page 57, shows the collated descriptive data for each group. It reveals that the slow group not only had higher reaction times on both responses, but greater variability. Additionally, the slow group had a low and insignificant correlation between tasks. These two indexes, when contrasted with those of the fast group, may indicate that, whereas the fast group was able to use innate speed to succeed at the tasks, the slow group had to resort to a variety of other strategies.

#### Table 4

| Group        | CK<br>Mean | CR<br>SD | SK<br>Mean | SH<br>SD | Pearson<br>Correlation |
|--------------|------------|----------|------------|----------|------------------------|
| Fast<br>N=12 | 171        | 16       | 123        | 15       | .73*                   |
| Slow<br>N=12 | 219        | 23       | 160        | 29       | .28                    |

Descriptive Data for Fast and Slow Groups<sup>a</sup>

a In milliseconds

\*p<.01

All the analyses used in categorizing the 24 subjects into fast and slow speed groups were run using computer programs from the Statistical Analysis System (Service, 1972).

# Analysis of Variance Using RT<sub>0</sub> as the

# Dependent Variable

An analysis of variance was then run in order to examine the effects of varying the SNC and ISI on RT<sub>2</sub>. Fast and slow groups of subjects were nested in levels of speed, while crossed within SNC, ISI, and days. The results of the analysis are located in Table 5, on page 58.

Table 5

| Analysis of variance | Anal | ysis | of | Variance |
|----------------------|------|------|----|----------|
|----------------------|------|------|----|----------|

| Source                  | SS                               | df              | MS                             | F                                  |
|-------------------------|----------------------------------|-----------------|--------------------------------|------------------------------------|
| etween Ss               |                                  |                 |                                | •                                  |
| A<br>Ss(A)              | 510133.8<br>952833.3             | <b>1</b><br>22  | 510133.8<br>43310.6            | 11.778 <del>5</del> *              |
| ithin Ss                |                                  |                 |                                |                                    |
| C<br>AC<br>CSs(A)       | 5364512.0<br>36866.0<br>566758.8 | 3<br>3<br>66    | 1788170.0<br>12288.7<br>8587.3 | 208.2353*<br>1.4310                |
| J<br>AI<br>ISS(A)       | 208854.7<br>11613.2<br>207866.6  | 3<br>5<br>66    | 69618.2<br>3871.1<br>3149.5    | 22.1046*<br>1.2291                 |
| D<br>AD<br>DSs(A)       | 132628.4<br>8040.8<br>131356.9   | 2<br>2<br>44    | 66314.2<br>4020.4<br>2985.4    | 22.2129*<br>1.3467                 |
| CI<br>ACI<br>CISs(A)    | 181552.3<br>11981.8<br>202753.6  | 9<br>9<br>198   | 20172.5<br>1331.3<br>1024.0    | <b>19.69</b> 95*<br><b>1.3</b> 001 |
| DI<br>ADI<br>DISs(A)    | 51518.2<br>1937.9<br>129642.1    | 6<br>6<br>1 32  | 8586.4<br>322.9<br>982.1       | 8.7425*<br>.3289                   |
| DC<br>ADC<br>DCSs(A)    | 53928.0<br>8188.2<br>319892.1    | 6<br>6<br>132   | 8988.0<br>1364.7<br>2423.4     | <b>3.</b> 7088*<br>.5631           |
| DCI<br>ADCI<br>DCISS(A) | 28729.8<br>10055.1<br>236140.8   | 18<br>18<br>396 | 1596.1<br>558.6<br>596.3       | 2.6766*<br>.9368                   |

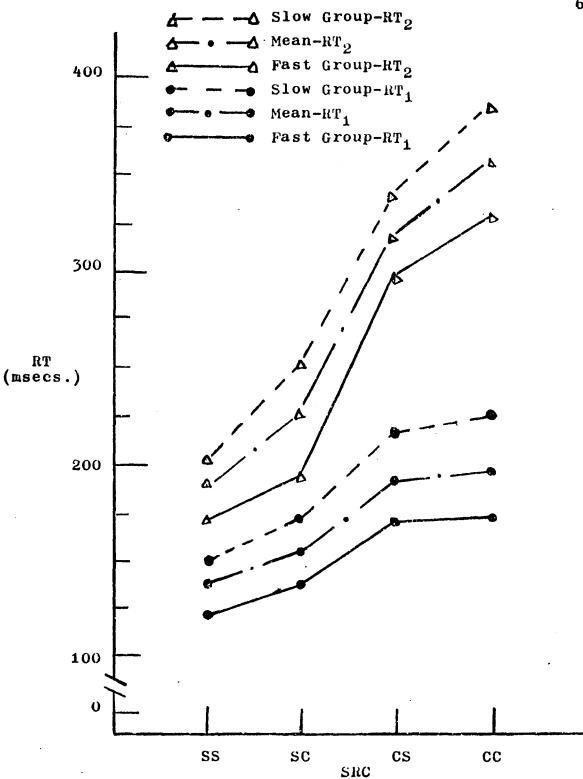
Note. A=speed, C=SRC, I=ISI, D=days, Ss=subjects, ()=Nesting

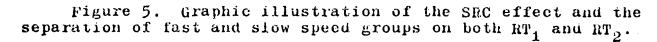
\*p<.01

## Sequence of Response Complexity

The analysis of variance reveals that SRC had a very significant effect on  $RT_2$ . The SRC <u>F</u> value was 208.2353, which for 3 and 66 <u>df</u> was significant beyond the .01 probability level.

In order to determine which of the four means for  $RT_{o}$ in the SNC conditions were significantly different, a Neuman-Keuls test was performed (Appendix B). The results led to the conclusion that all conditions were significantly different at the .01 probability level. The overall mean values for the four conditions were: (SS) 187 milliseconds, (SC) 225 milliseconds, (CS) 317 milliseconds, and (CC) 357 milliseconds. Hypothesis 1, which stated that reaction time to a stimulus signaling the amendment of a complex motor plan and the initiation of a simple one is longer than the reaction time to a stimulus signaling the amend-ment of a simple motor plan and the initiation of a simple one, was thus supported. In addition, as a result of the differing means between SC and SS, Hypothesis 2, which stated that the reaction time to a stimulus signaling the amendment of a simple motor plan and the initiation of a complex one is longer than the reaction time to a stimulus signaling the amendment of a simple motor plan and the initiation of a simple one, was also supported. It is also interesting


to note that CS was longer than SC; this suggests that recovery from the past response appears to be a more important determiner of  $RT_2$  than is the planning of the next response.


The percentage of total variance in  $\mathrm{RT}_2$  accounted for by SRC was calculated via Omega Square and found to be 57%. Figure 5 on page 61 illustrates the SRC effect and the separation of fast and slow speed groups on both  $\mathrm{RT}_1$  and  $\mathrm{RT}_2$ .<sup>a</sup>

### Interstimulus Interval

The data from Table 5 only partially supported Hypothesis 3, which stated that reaction time to a stimulus signaling the amendment of one motor plan and the initiation of another one, increases as the ISI decreases from 400 milliseconds to 200 milliseconds, and from 200 milliseconds to 100 milliseconds. Although the ISI factor resulted in an <u>F</u> value of 22.2129, which for 3 and 66 <u>df</u> was significant beyond the .01 probability level, the Neuman-Keuls post-hoc test revealed differences only between the mean for the 100 milliseconds ISI, which was 294 milliseconds, and those for ISIs of 200, 400, and 800 milliseconds, which were respectively 261, 268, and 262 milliseconds.

<sup>&</sup>lt;sup>a</sup>The graph is intended to illustrate the effects. It is acknowledged that the conditions illustrated are discrete.





The percentage of variance in  $RT_2$  accounted for by the factor of ISI was found to be 2%. Figure 6 on page 63 graphically respresents the effect of ISI on  $RT_1$  and  $RT_2$ .

# Speed Classification

Table 5 reveals that fast and slow speed groups, based on the composite reaction time measures from Day 2, remained fast and slow as groups on RT<sub>9</sub>. This finding was supported by the F value for the factor of speed, which was 11.77785. For 1 and 22 df this statistic was significant at the .01 probability level. Since speed did not interact with any other factors, it can be deduced that the two groups maintained their relative positions within all conditions. The overall mean values for the fast and slow groups were respectively 250 and 292 milliseconds. These data, in contrast to Hypothesis 4, indicate that a difference does exist in reaction time to a stimulus signaling the amendment of one response and the initiation of another one between those individuals grouped as fast and slow responders in a single, simple reaction time task situation. Omega Square was calculated for the factor of speed and found to account for 5% of the total variance in  $RT_0$ . Figures 5, 6, and 7, which respectively illustrate the main effects of SRC, ISI, and days, also include illustrations pertaining to fast and slow groups across these conditions.

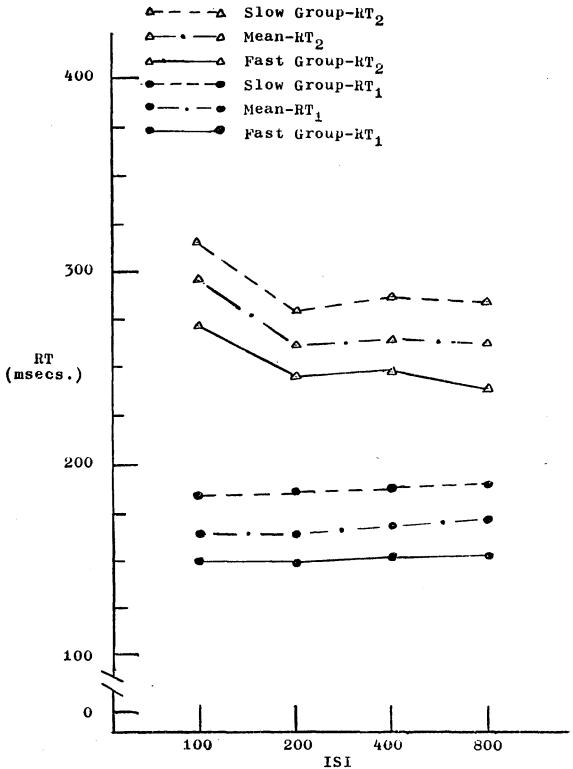



Figure 6. Graphic illustration of the ISI effect and the separation of fast and slow speed groups on both  $RT_1$  and  $RT_2$ .

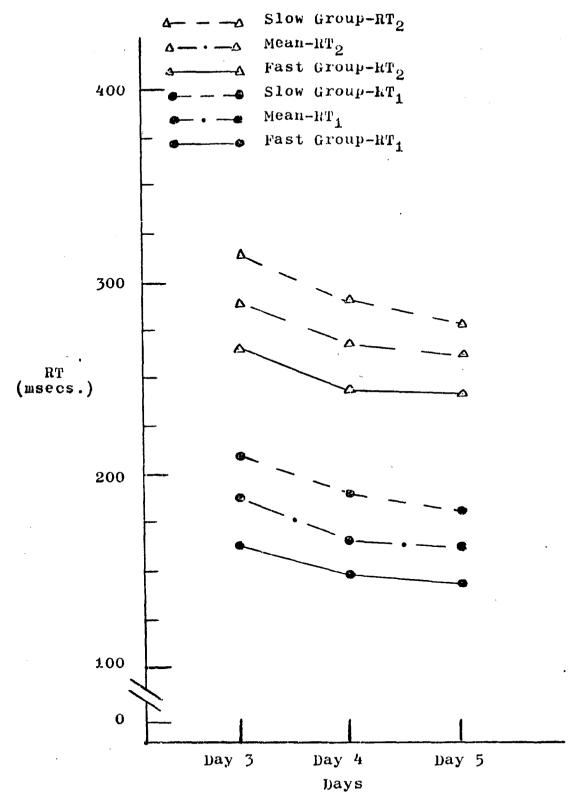



Figure 7. Graphic illustration of the day effect and the separation of fast and slow speed groups on both  $kT_1$  and  $kT_2$ .

# Day Effect

Since each of the last three sessions was run on different days, this effect was examined via the analysis of variance. An <u>F</u> value of 22.2129 was found for this factor which, for 2 and 44 <u>df</u>, is significant at the .01 probability level. The Neuman-Keuls test was performed on the overall means for Days 3, 4, and 5, which were respectively 286, 268, and 260 milliseconds. The mean of Day 3 was found to be significantly slower than the mean of Day 4 at the .01 level, while the mean of Day 4 was found to be significantly slower than the mean of Day 5, at the .05 level. This finding suggested that learning had taken place on each of the last three days. However, the percentage of variance in  $RT_2$  accounted for by this factor was only 1%. Figure 7, on page 64, graphs the day effect on  $RT_1$  and  $RT_2$  for fast and slow groups.

# Interaction of SRC and ISI

The analysis of variance revealed a significant interaction between the factors of SRC and ISI. The <u>F</u> value for this effect was 19.6995 which, for 9 and 198 <u>df</u>, was significant at the .01 probability level. This interaction indicated that all conditions of SRC did not follow a similar pattern over the 1S1s. Figure 8, on page 66, illustrates that the form of the curves in the SS and SC conditions

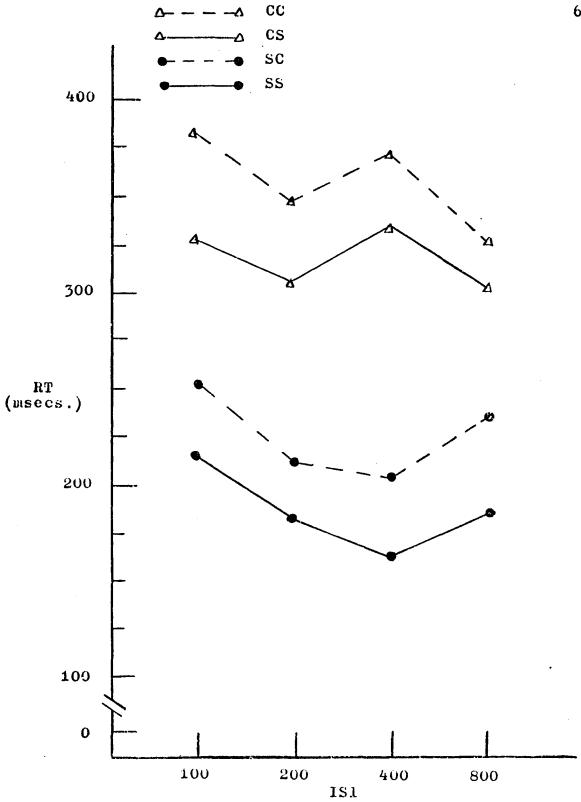



Figure 8. Graphic illustration of ISI-SkC interaction.

were similar, as were those in the CS and CC conditions. However, the latter pair, in which the complex condition occurred first, appeared to differ from the former pair, in which the simple response was first. The CS and CC conditions showed a decrease in  $\mathtt{RT}_2$  when  $\mathtt{S}_2$  occurred at 200 milliseconds, as compared when it occurred at 100 milliseconds, but when  $S_2$  occurred at 400 milliseconds,  $RT_9$  showed an inversion and reverted back to its ISI of 100 milliseconds level. In contrast, SRC conditions SC and SS appeared to show a declining  $RT_2$  with increasing ISI, until the 800 milliseconds interval, at which time RT<sub>2</sub> increased. The Neuman-Keuls test for the simple effects of the SRC-1SI interaction revealed the following: (a) for the SRC of SS,  $RT_9$  decreased progressively from the ISI of 100 milliseconds to the ISI of 200 milliseconds, and from the ISI of 200 milliseconds to the ISI of 400 milliseconds, but increased at the 800 milliseconds ISI to become longer than the 400 milliseconds ISI, and comparable to that  $RT_9$  at the 200 milliseconds ISI, (b) for the SRC of SC, RT<sub>o</sub> was longest for the 100 milliseconds ISI, equivalent for the 200 and 400 milliseconds ISIs, and longer for the 800 milliseconds ISI than the 200 or 400 milliseconds ISI, (c) for CS, RT<sub>9</sub> was equivalent at the 100 and 400 milliseconds ISIs, and 200 and 800 milliseconds

ISIs, but the former pair had  $RT_2$ s which were both longer than those of the latter pair, and (d) for the CC SRC,  $RT_2$  was equivalent at the 100 and 400 milliseconds ISIs, and progressively shorter at the 200 and 800 milliseconds ISIs. Additionally, Figure 8, on page 66, graphically illustrates the effect of each interval on  $RT_2$  for each SRC condition. On the other hand, Figure 9, on page 69, demonstrates the effect of SRC conditions on  $RT_2$  at each ISI level.

From both figures and the Neuman-Keuls tests, it was clearly evident that the effect of SRC was a much more influential determiner of  $RT_2$  than was ISI. The percentage of variance in  $RT_2$  accounted for by the SRC-ISI interaction was found to be  $2\frac{1}{2}$ .

# Interaction of Days with ISI

Over the three days in which data were generated, the patterns of decreasing  $\mathrm{RT}_2$  at each ISI were different. As illustrated in Figure 10, on page 70, and supported by a Neuman-Keuls test, the largest decrease in  $\mathrm{RT}_2$  occurred at the 800 milliseconds ISI. Significant decreases in  $\mathrm{RT}_2$ took place at this interval, from Day 3 to Day 4 and from Day 4 to Day 5. However,  $\mathrm{RT}_2$  at other ISIs snowed less dramatic decreases. At the 100 and 200 milliseconds intervals,  $\mathrm{RT}_9$  decreased from Day 3 to Day 4, but Day 5 values

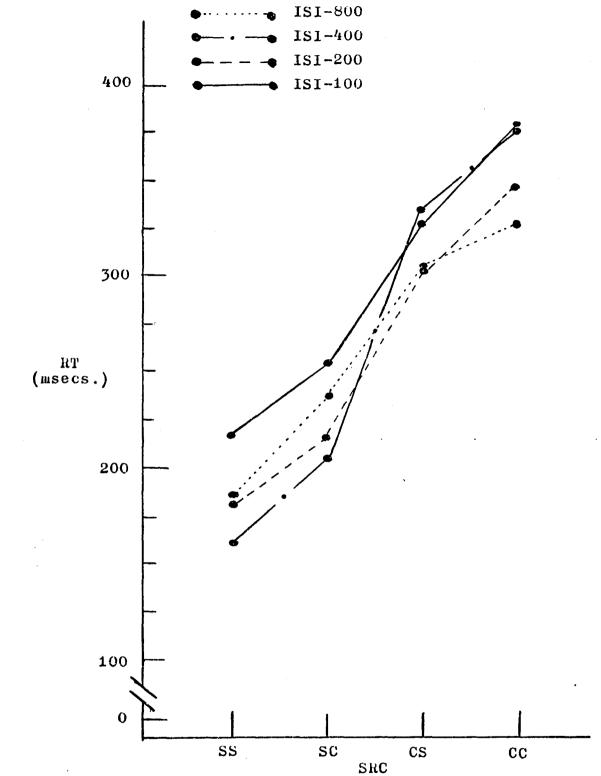



Figure 9. Graphic illustration of the effect of SRC conditions on  $kF_2$  at each ISI level.

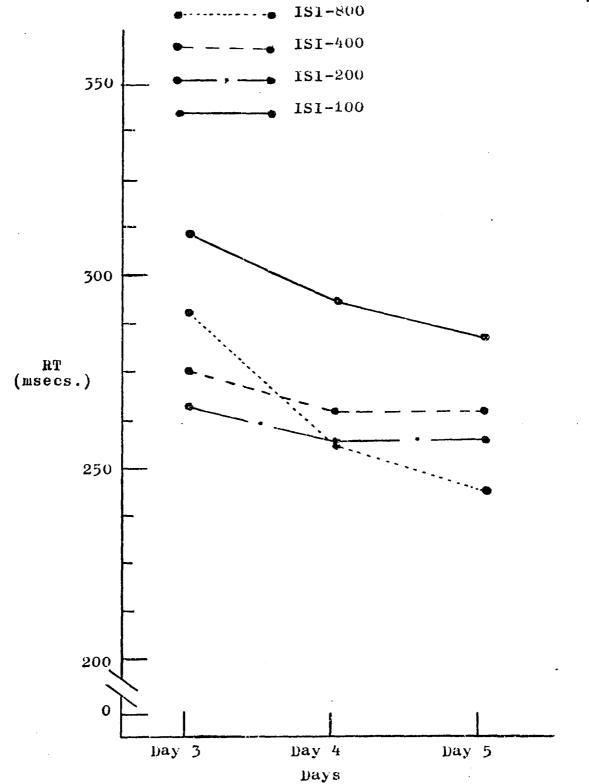



Figure 10. Graphic illustration of  $\mathrm{RT}_2$  times at each ISI over days.

70.

were equivalent to those of Day 4. RT<sub>2</sub> at the 400 milliseconds 1SI remained statistically equivalent over all the days, although it seemed to have a decreasing trend from Day 3 to Day 4.

Figure 11, on page 72, illustrates daily times for  $RT_{9}$ at each ISI. The Neuman-Keuls post-hoc test revealed the following: (a) for Day 3,  $RT_2$  decreased from the 100 milliseconds ISI to the 200 and 400 milliseconds ISIs, where it was equivalent, and then it increased at the 800 milliseconds 1SI, (b) for Day 4,  $kT_0$  decreased from the 100 milliseconds ISI to the 200, 400, and 800 milliseconds ISIs, where it was equivalent, and (c) for Day 5,  $RT_9$ decreased from the 100 milliseconds IS1 to the 200 and 400 milliseconus 1SIs, where it was equivalent, and then decreased at the 800 milliseconds ISI. Thus, it seemed that the dramatic decrease in  $\mathrm{RT}_2$  at the 800 milliseconds 1SI, over the three day period, was primarily responsible for the 1SI-days interaction. This was anticipated, since subjects probably learned to perform the complex response task, each day, with less extraneous movement, and thus, by Day 5, were entirely through with it when S<sub>2</sub> occurred. However, when Omega Square was calculated for this interaction effect, it was found to account for only .5% of the variance of RT<sub>9</sub> in the entire experiment.

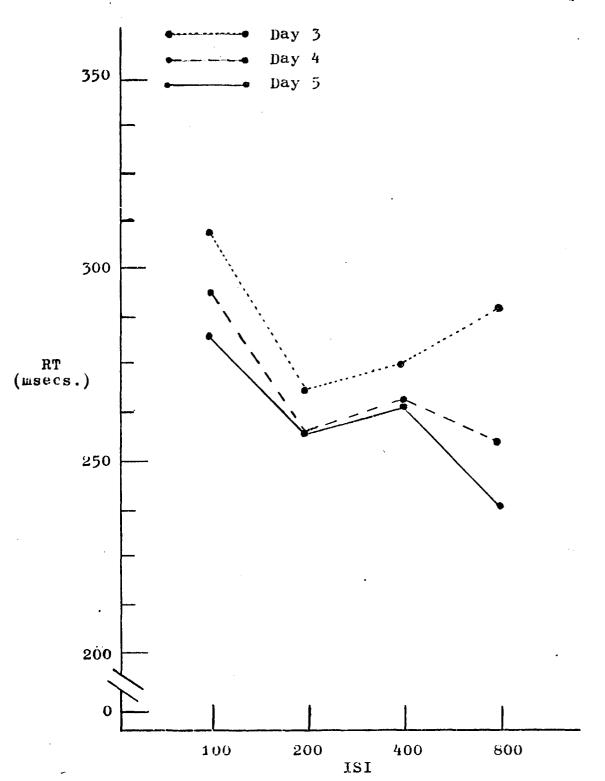



Figure 11. Graphic illustration showing differing  $RT_2$  patterns across ISIs on each day.

# Interaction of Days and SRC

Figure 12, on page 74, illustrates the days-SRC interaction. The graph and Neuman-Keuls test indicate that the CC condition showed the greatest decrease in  $RT_2$ over all three days. For this condition, Day 4 was faster than Day 3, and Day 5 faster than Day 4. Conditions SS and SC showed decreasing  $RT_2$ s only between Day 3 and Day 4, while condition CS showed no improvement at all. The percentage of variance of  $RT_2$  accounted for by this interaction was .5%.

## Interaction of Days, SkC, and ISI

The final significant finding from this experiment was the triple interaction among days, SRC, and ISI. Figures 13, 14, and 15, on pages 75 and 76, illustrate the changing pattern of the CS condition as  $RT_2$  decreases at the 800 milliseconds ISI from Day 3 to Day 4. Figures 14 and 15 show that the patterns of all conditions on Days 4 and 5 are similar to those represented by the SRC-ISI interaction in Figure 8, on page 66. This suggested that the interaction among these factors was primarily a result of the decrease in  $RT_2$ , in the CS condition at the 800 milliseconds ISI, between Days 3 and 4. The percentage of variance of  $RT_2$  accounted for by this effect was .5%.

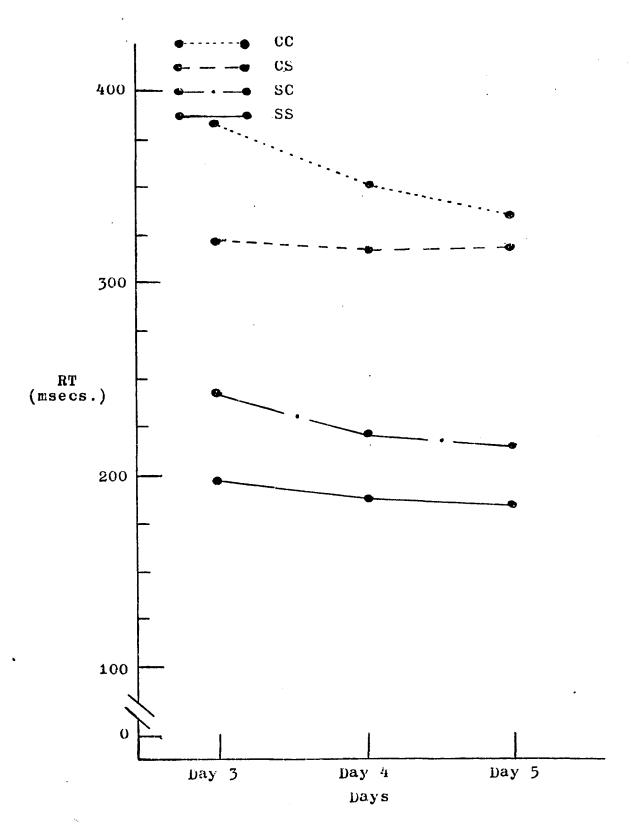
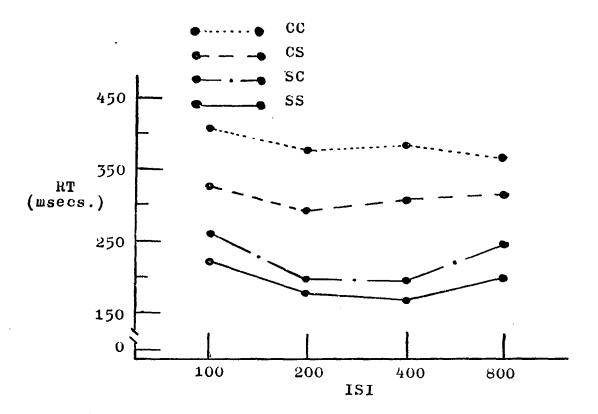
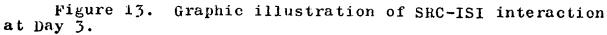





Figure 12. Graphic illustration of the SRC-days interaction.





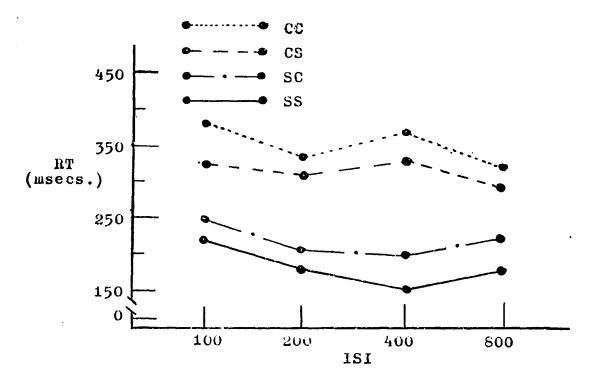



Figure 14. Graphic illustration of SRC-ISI interaction at Day 4.

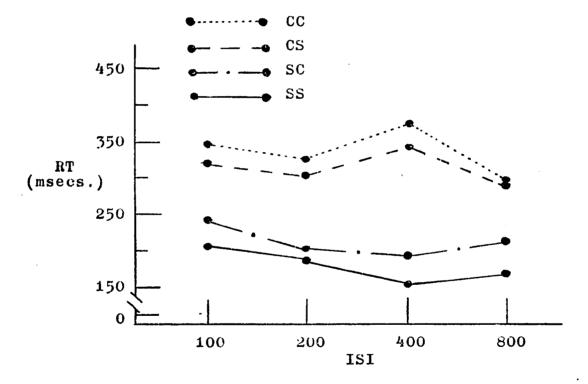



Figure 15. Graphic illustration of SRC-IS1 interaction at Day 5.

# Variance Accounted For

Table 6 provides the collated Omega Square values for all significant sources of variation in the experiment. Obtained values indicate that SRC was unquestionably the most important factor in determining  $RT_2$  because it accounted for 57% of its observed variance. When all orthogonal effects in the experiment were considered cumulatively, experimental factors accounted for 68.4% of the total variation in  $RT_9$ .

| Ta | b | 1 | е | - 6 |
|----|---|---|---|-----|
|    |   |   |   |     |

#### Experimental Variance

| Source | Omega Square                                               |
|--------|------------------------------------------------------------|
| C      | 57.0%<br>5.0%<br>2.0%<br>2.0%<br>1.0%<br>.5%<br>.5%<br>.4% |
| A      | 5.0%                                                       |
| Ĩ      | 2.0%                                                       |
| ĒI     | 2.0%                                                       |
| D ·    | 1.0%                                                       |
| DI     | .5%                                                        |
| DCI    | .5%                                                        |
| DC     | 140%                                                       |

Note. C=SkC, A=speed, I=ISI, D=days.

#### Discussion

The results of this study were in accord with the deductions generated from Henry's (1960) "memory drum" theory of neuromotor reactions. The time taken to amend one response and implement another one was increased when the initial movement task was complex. In addition, given similar responses for the first task,  $RT_2$  was longer when the second response required the more complex movement. When the effects of both successive responses were compared in terms of their relative influence on  $RT_2$ , it appeared that amending the first movement was more important than preparing for and initiating the subsequent movement.

In addition to supporting the deductions from Henry's theory, the pattern of delays in  $RT_2$  resulting from the SRC-ISI interaction seem to offer some insight into the underlying processes involved in initiating and amenuing neuromotor programs. For example, excluding the SOO milliseconds interval, the SC and SS conditions appeared to follow a trend of decreasing  $kT_2$ s with increasing ISIs, while the CS and CC conditions showed an inversion in this pattern at the 400 milliseconds interval. A possible explanation for this disparity in trends may be offered in terms of the number of processes required in each pair of conditions

prior to the initiation of the second movement. When  $S_2$  occurred at the 400 milliseconds ISI, subjects in those tasks having an initial simple response could immediately begin to organize and implement the successive movement since the first one had been completed. However, when  $S_2$  signaled at the 400 milliseconds ISI, for those tasks having a complex initial response, movement was still ongoing, and probably only about a third of the way finished. Thus, in addition to having to organize and implement a subsequent program, an inhibitory response had to first be prepared to arrest the ongoing one. Hence,  $RT_2$  was incremented by this additional processing time, which amounted to about an average of 170 milliseconds between pairs of conditions.

By similar reasoning, an explanation for the inflated  $RT_2s$  at the 400 milliseconds ISI, in contrast to the 200 milliseconds ISI within tasks with an initial complex response, may be suggested. However, in such a comparison of  $RT_2s$  at these ISIs, the number of processes between the signaling of  $S_2$  and the initiation of the successive response would not seem to differ in that, at both intervals, an inhibitory program would be required to stop the first response. Rather, the quality of each program is at issue. Considering that the initial reaction times for the CC and CS conditions were 198 and 194 milliseconds respectively,

while the total movement time was approximately 552 milliseconds (Henry, 1960), when S<sub>2</sub> occurred at the 400 milliseconds interval, the overt response would have already been ongoing for between 202 and 206 milliseconds. It seems likely that by this time, subjects would have already struck the first tennis ball with the back of their hand and begun the series of linear movements and reversals necessary to complete the task. However, the occurence of  $S_{0}$  signaled subjects to arrest their initial response as quickly as possible, and begin the next one. According to Hick (1948) this would require the nervous system to assess the present limb position, determine its direction, and project its future pattern so that the appropriate response units, i.e., simple movements, effected by a muscle, or group of muscles, represented centrally in the brain (Glencross, 1975), may be selected, temporally organized, and subsequently initiated as a motor program that will activate the proper antagonists. Considering that a reaction time would be required for this assessment and programming, the limb would have continued to move through the originally planned response, and begun to enter its final stages when the inhibitory program was implemented. In the complex movement this entailed grasping the ball and pulling it down. In relation to the rest of the task this action would seem to require the finest control, in

that spatial and temporal demands for grasping would appear. to be more stringent than for the grosser movements of swinging the arm through the specified pattern. Hence, the inhibitory motor program for arresting movement at its point of greatest complexity was probably reflected by the increased RTos at the 400 milliseconds ISI. In comparison, the amending program for S<sub>p</sub> at the 200 milliseconds ISI would have been relatively uninvolved. At this point in initial complex response, subjects could have only the been starting their response. Since the initiation of an inhibitory program would have occurred a reaction time later, it probably was organized to amend a linear movement or change of direction in the ongoing response. Glencross' (1972;1973) results indicated that neither of these response characteristics greatly affect response latency, and thus it may be presumed that the assembling, organizing, and implementing of an inhibitory program was relatively expeditious, and thus, reflected by the shorter RTos at the 200 milliseconds IS1.

The import of this analysis of amending ongoing responses would seem to be significant in that not only are complexity differences recognized between programmed movements, but also within them. Henry (1960) recognized that the position of complexity within a programmed response might

have a bearing on its associated response latency. The present study seems inadvertently to support such a contention. Hence, it would seem that simple reaction time, as a criterion for the complexity level of a programmed movement, may not reflect the complexity of the entire response, but rather the placement of the most highly organized response units.

Finally, the finding that individuals grouped into different categories of speed, based on single measures of reaction time generated during Day 1 and Day 2, maintained their relative positions across all SKCs, all ISIs, and on all days when  $\mathtt{RT}_{o}$ s were compared was diametrically opposed to Kroll's (1969) results. Subsequent inspection of initial paired reaction times for each group resulted in a similar finding. In contrast to Kroll's conclusions, this would seem to indicate a general speed factor in making fast, consecutive responses. A possible, although not probable, explanation for this discrepancy in results may be offered in terms of learning. Kroll allowed four days of practice in the single situation, and six days in the dual one. Additionally, SRC was not a factor in his study, thus, each subject had more practice time on the SS SRC, which was used exclusively. The overall trend in the present study was for the two groups to merge from Day 3

to Day 5. However, even at Day 5 the two groups differed substantially. Subsequent research investigating the differing  $kT_2$  patterns between fast and slow groups over an extended time period would seem to be needed to adequately resolve these conflicting conclusions.

### CHAPTER V

# SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

#### Summary

This investigation examined the effects of the sequence of response complexity (ShC), interstimulus interval (ISI), and the subject speed classification based on reaction time in a single response situation, on the variation in reaction time to the second of two successive responses. The following hypotheses were posed for this study:

<u>Hypothesis 1</u>. The reaction time to a stimulus signaling the amendment of a complex motor plan and the initiation of a simple one is longer than the reaction time to a stimulus signaling the amenament of a simple motor plan and the initiation of a simple one.

<u>Hypothesis 2</u>. The reaction time to a stimulus signaling the amendment of a simple motor plan and the initiation of a complex one is longer than the reaction time to a stimulus signaling the amendment of a simple motor plan and the initiation of a simple one.

<u>Hypothesis 3</u>. The reaction time to a stimulus signaling the amendment of one motor plan and the initiation of another one increases as the IS1 decreases from 400 milliseconds to 200 milliseconds, and from 200 milliseconds to 100 milliseconds. <u>Hypothesis 4</u>. No difference exists in reaction time to a stimulus signaling the amendment of one response and initiation of another one between those individuals grouped as fast and slow responders in a single, simple reaction time task.

### Procedures

Measures of reaction time on single and sequential response tasks were generated from 24, female, righthanded volunteers from the University of North Carolina at Greensboro during the fall semester of 1974. Subjects were required to attend sessions on five different days.

During Day 1 and Day 2, each subject was administered 50 simple, and 50 complex response reaction time trials with each hand. The simple response consisted of lifting an index finger off of a reaction time key. The complex response required a series of linear movements and reversals. Both were initiated by the sound of a stimulus buzzer, and performed as quickly as possible.

On Days 5 to 5 each subject was asked to perform four different blocks of trials having different sequences of response complexity utilizing the tasks practiced on the first two days. The sequences included: (a) executing a simple response following a simple response (SS), (b) executing a complex response following a simple response (SC), (c) executing a simple response following a complex response (CS), and (d) executing a complex response following a complex response (CC).

Data for Days 1 and 2 consisted of mean reaction times for each subject, on each task, for each day. Data for Days 3 to 5 were similarly composed of means for each subject, on each day, for the initial and successive responses in each of the four different tasks. Findings

A multivariate analysis of variance was performed on right-handed, simple and complex response reaction times for all subjects over the first two days. A significant <u>F</u> ratio was found indicating that Day 2 scores were significantly faster than Day 1 scores. Complex response reaction time was also found to be a better discriminator between day times, than was simple response reaction time.

On the basis of Day 2 scores for complex response reaction time, the 24 subjects were divided into two groups of 12, with one being relatively fast on this variable in relation to the other.

A discriminant analysis was then calculated using both simple and complex response reaction times of Day 2 as group predictor variables. The findings, based on the generalized squared distance to each group's mean composite variable, resulted in all subjects having been classified correctly.

An analysis of variance for repeated measures was performed to test the effects of SRC, ISI, speed classification, and days on  $\mathrm{KT}_2$ . The analysis revealed that SRC was the most important determiner of  $\mathrm{RT}_2$ . Post-hoc tests among means for each SRC level, across all conditions, showed that  $\mathrm{RT}_2$  was significantly longer when the complex response was first in the sequence. Similarly,  $\mathrm{RT}_2$  reflected the complexity level of the second response, but to a lesser degree. Based on these findings, Hypotheses 1 and 2 were accepted.

The factor of ISI accounted for only 2% of the explained variance in  $RT_2$ . In addition, post-hoc tests revealed that when ISI was considered in relation to  $RT_2$ , times were elongated only at the 100 milliseconds interval. On this basis, Hypothesis 3 was rejected.

Classification of subjects into fast and slow groups helped to explain 5% of the variance of RT<sub>2</sub>. Each group was found to remain intact across all experimental conditions; thus Hypothesis 4 was rejected.

In addition, a significant interaction was found to exist between the factors of ISI and SRC. This was unanticipated, but indicated that the effect of SRC determines to a large extent the effect that ISI will have on RT<sub>2</sub>.

Finally, the day effect, the day-SRC interaction, the day-ISI interaction, and the day-SRC-ISI interaction, all

indicated that  $RT_2$  decreased as the experiment progressed from Day 3 to Day 5, with greatest improvement occurring between Day 3 and Day 4.

### Conclusions

Within the limitations of this study, the following conclusions seem justified:

1. The reaction time to a stimulus signaling the amendment of a complex motor plan and the initiation of a simple one is longer than the reaction time to a stimulus signaling the amendment of a simple motor plan and the initiation of a simple one.

2. The reaction time to a stimulus signaling the amendment of a simple motor plan and the initiation of a complex one is longer than the reaction time to a stimulus signaling the amendment of a simple motor plan and the initiation of a simple one.

3. The sequence of response complexity was more important in determining  $kT_0$  than was the interstimulus interval.

4. The initial response determined  $RT_2$  to a greater extent than the successive one.

5. The reaction time to a stimulus signaling the amendment of one motor plan and the initiation of another one decreases from an ISI of 100 milliseconds to an ISI of 200 milliseconds. 6. Individuals classified as fast and slow responders in a single, simple reaction time task situation remain fast and slow in reaction time to a stimulus signaling the amendment of one response and the initiation of another one over a sequence of trials and days.

7. Reaction time in a single task situation, and in one requiring fast, consecutive responses to closely paired stimuli, decreases with practice.

### Recommendations

The present investigation led to the following recommendations for future study:

1. Measure the time interval between deceleration of the first response and initiation of the second one in order to quantify the relative importance of each as determiners of  $RT_2$ .

2. Divide subjects into fast and slow responders based on reaction time in a single task situation, and examine each group's decreasing  $RT_2$ s over an extended period.

3. Study the effect of response selection on  $RT_2$  by changing the experimental set-up so that each of the two responses must be selected from a pool of other possible ones.

4. Using three successive responses, each initiated by a separate stimulus event, determine the relative magnitudes of  $RT_1$ ,  $RT_2$  and  $RT_3$ . 5. Determine the spatial position of the limb performing the initial response at the time  $S_2$  occurs through the use of a photographic method.

6. Replicate this study controlling for the degree of hand dominance in addition to hand preference.

### **BIBLIOGRAPHY**

- Adams, J. A. Test of the hypothesis of psychological refractory periou. <u>Journal of Experimental Psychology</u>, 1962, 64, 280-287.
- Adams, J. A. Motor skills. <u>Annual Review of Psychology</u>, 1964, 15, 181-202.
- Bertelson, P. Central intermittency twenty years later. Quarterly Journal of Experimental Psychology, 1966, 18, 155-165.
- Boddy, J. The psychological refractory period and vertex evoked potentials. <u>Quarterly Journal of Experimental</u> Psychology, 1972, 24, 175-192.
- Botwinick, J. and Thompson, L. N. Premotor and motor components of reaction time. <u>Journal of Experimental</u> <u>Psychology</u>, 1966, 71, 9-15.
- Brown, J. S. and Slater-Hammel, A. T. Discrete movements in the horizontal plane as a function of their length and direction. Journal of Experimental Psychology, 1949, 59, 84-95.
- Craik, K. J. W. Theory of the human operator in control systems. I. The operator as an engineering system. British Journal of Psychology, 1947, 58, 56-61.
- Craik, K. J. W. Theory of the human operator in control systems. II. Man as an element in a control system. British Journal of Psychology, 1948, 38, 142-148.
- Creamer, L. R. Event uncertainty, psychological refractory period, and human data processing. Journal of Experimental Psychology, 1965, 66, 187-194.
- Davis, R. The limits of the "psychological refractory period." <u>Quarterly Journal of Experimental Psychol-</u> ogy, 1956, 8, 24-38.
- Davis, R. The human operator as a single-channel information system. <u>quarterly Journal of Experimental Psychology</u>, 1957, 9, 119-129.

- Davis, R. The role of "attention" in the psychological refractory period. <u>Quarterly Journal of Experimental</u> Psychology, 1959, 11, 211-220.
- Davis, R. Choice reaction times and the theory of intermittency in human performance. <u>Quarterly Journal of</u> <u>Experimental Psychology</u>, 1962, 14, 157-106.
- Davis, R. Expectancy and intermittency. <u>Quarterly Journal</u> of Experimental Psychology, 1965, 17, 75-78.
- Dixon, W. J. <u>Biomedical computer programs</u>. <u>Berkeley: Uni-</u>versity of California Press, 1975.
- Elithorn, A. and Lawrence, C. Central inhibition--some refractory observations. Quarterly Journal of Experimental Psychology, 1955, 7, 116-127.
- Fitts, P. M. and Peterson, J. R. Information capacity of discrete motor responses. <u>Journal of Experimental</u> Psychology, 1964, 67, 103-112.
- Freeman, F. N. Preliminary experiments on writing reactions. Psychological Monographs, 1907, 8, 301-333.
- Glencross, D. J. Latency and response complexity. <u>Journal</u> of Motor Behavior, 1972, 4, 251-256.
- Glencross, D. J. Response complexity and the latency of different movement patterns. Journal of Motor Behavior, 1973, 5, 95-104.
- Harrison, J. S. Psychological refractoriness and the latency of two consecutive motor responses. <u>Research Quarterly</u>, 1960, 31, 590-600.
- Hays, W. L. <u>Statistics</u>. New York: Holt, Kinehart, and Winston, 1965.
- Henry, F. M. Increased response latency for complicated movements and a "memory drum" theory of neuromotor reaction. <u>Research Quarterly</u>, 1960, 31, 448-458.
- Henry, F. M. and Harrison, J. S. kefractoriness of a fast movement. <u>Perceptual and Motor Skills</u>, 1961, 13, 351-354.

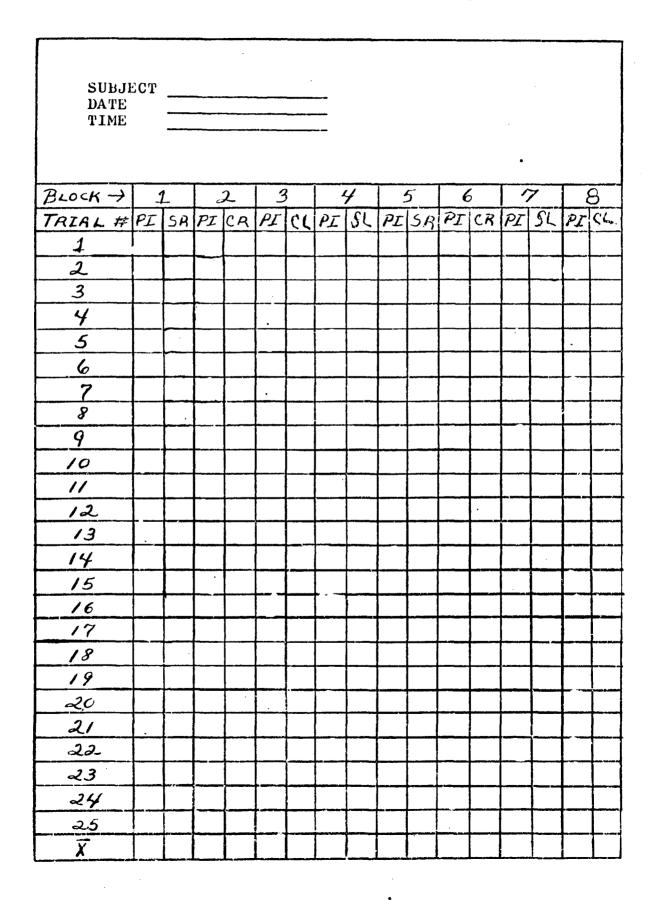
- Hick, W. E. Discontinuous functioning of the human operator in pursuit tasks. <u>Quarterly Journal of</u> <u>Experimental Psychology</u>, 1948, 1, 36-57.
- Howell, M. L. Influence of emotional tension on speed of reaction and movement. <u>Research Quarterly</u>, 1953, 24, 22-52.
- Kroll, W. Quality of simple reaction time and the psychological refractory period. <u>Research Quarterly</u>, 1969, 40, 105-114.
- Kay, H. and Weiss, A. D. Relationship between simple and serial reaction time. Nature, 1961, 191, 790-791.
- Mowrer, D. H. Preparatory set (expectancy) some methods of measurement. <u>Psychological Monographs</u>, 1940, 52, (2, Whole No. 233).
- Newell, K. and Martens, R. Applications of multivariate analysis of variance in motor behavior research. In M. G. Wade and R. Martens (Eds.), <u>Psychology of</u> <u>motor behavior and sport</u>. Urbana: <u>Human Kinetics</u> <u>Publishers</u>, 1974.
- Nickerson, R. S. Response time to the second of two successive signals as a function of the absolute and relative duration of intersignal interval. <u>Perceptual</u> and Motor Skills, 1965, 21, 3-10.
- Norrie, M. Effects of movement complexity on choice reaction and movement times. <u>Research Quarterly</u>, 1974, 45, 154-161.
- Pacaud, S. Contribution a l'etude des movements volontaires. Annals of Psychology, 1942, 40, 152-170.
- Poulton, E. C. Perceptual anticipation and reaction time. <u>Quarterly Journal of Experimental Psychology</u>, 1950, 2, 99-113.
- Rao, C. R. Linear statistical inferences and its applications. New York: John Wiley and Sons, Inc., 1965.
- Schmidt, R. A. and Stull, G. A. Premotor and motor reaction time as a function of preliminary muscular tension. Journal of Motor Behavior, 1970, 11, 96-110.

- Searle, L. V. and Taylor, F. V. Studies of tracking Lehavior. I. Rate and time characteristics of simple movements. Journal of Experimental Psychology, 1948, 38, 615-631.
- Service, J. <u>A user's guide to the statistical analysis</u> system. <u>Raleign: Sparks Press, 1972</u>.
- Slater-Hammel, A. T. Psychological refractory period in simple paired responses. <u>Research Quarterly</u>, 1958, 29, 468-481.
- Smith, M. C. Theories of the psychological refractory period. Psychological Bulletin, 1967, 67, 202-213.
- Telford, C. W. Refractory phase of voluntary and associative responses. Journal of Experimental Psychology, 1931, 14, 1-55.
- Vince, M. A. Intermittency of control movements and the psychological refractory period. <u>British Journal</u> of Psychology, 1947, 38, 149-157.
- Vince, M. A. and Welford, A. T. Time taken to change the speed of a response. Nature, 1967, 213, 532-533.
- Weiss, A. D. The locus of reaction time change with set, motivation, and age. <u>Journal of Gerontology</u>, 1965, 20, 60-64.
- Welford, A. T. The "psychological refractory period" and the timing of high-speed performance: a review and a theory. British Journal of Psychology, 1952, 43, 2-19.
- Welford, A. T. Evidence of a single-channel decision mechanism limiting performance in a serial reaction task. <u>Quarterly Journal of Experimental Psychology</u>, 1959, 11, 193-210.
- Welford, A. T. Single-channel operation in the brain. Acta Psychologica, 1967, 27, 5-22.
- Whiting, H. T. A. Overview of the skill learning process. Research quarterly, 1972, 45, 266-291.
- Williams, L. R. T. Refractoriness of a long movement. Research quarterly, 1971a. 42, 212-219.

- Williams, L. N. T. Refractoriness of an extended movement to directional change. Journal of Motor Behavior, 1971b, 3, 289-300.
- Woodworth, R. S. The accuracy of voluntary movement. <u>Psychological Heview Monograph Supplement</u>, 1899, 3, 54-59.
- Woodworth, R. S. and Schlosberg, H. Experimental psychology. (hev. ed.) New York: Henry Holt and Company, 1954.
- Wyrick, W. and Duncan, A. Electromyographic study of reflex premotor, and simple reaction time of relaxed muscles to joint displacement. Journal of Motor Behavior, 1974, 6, 1-10.

APPENDIX A

#### INSTRUCTIONS - DAY 1


This experiment will require five sessions, each lasting approximately 30-40 minutes. It is essential that you schedule these sessions as close together as possible, i.e., consecutive days would be preferable.

During the first two sessions you will be asked to do two tasks, with each hand. One task will require the lifting of your index finger off of a reaction time key at the sound of a buzzer. The second task will require the lifting of your index finger off of a reaction key, and a subsequent movement routine requiring a series of linear movements and reversals. At each movement reversal a switch is located that must be closed by you in order to obtain movement times at the various locations. Success at this task will be determined by quickness in initiating the movement. 1 will demonstrate how this may be done in a moment.

The last three sessions will require you to combine combinations of these two responses in close temporal sequences, using alternate hands. A more detailed description of this part of the experiment will be given to you during the third session.

I will now demonstrate the two responses that you will be asked to perform.

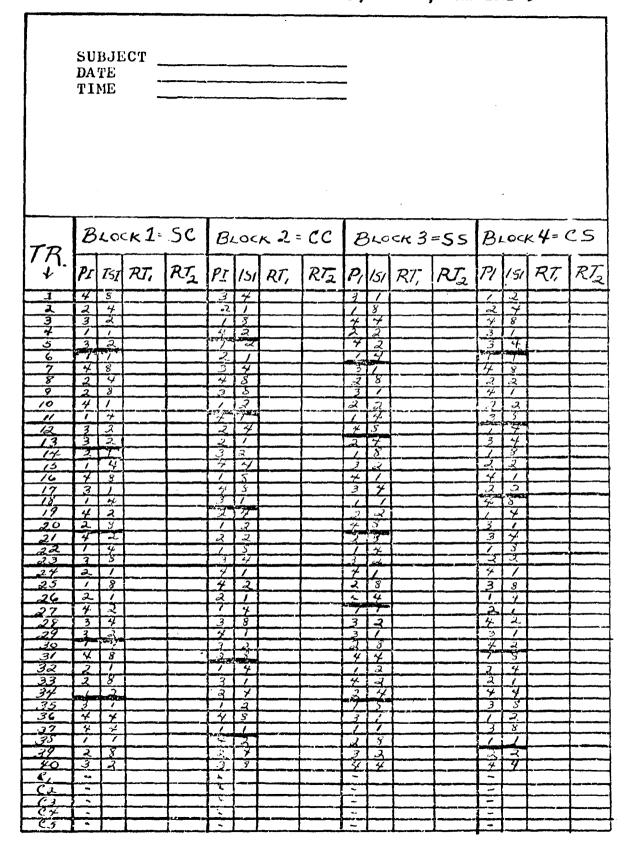
Do you have any questions?



98

This is an experiment to determine your reaction and movement speeds under various task conditions. There will be four separate tasks which you will be asked to perform within each daily session. All trials, within a particular task condition will commence when the red warning light comes on. In order to be prepared to make your responses, you should have your left and right hands pressing the appropriate reaction time keys during this period. A variable interval will follow the red warning light's initiation, and then two buzzes will follow one another at variable intervals. In response to the first buzz you will be asked to make a particular response with your left hand, while the second buzz will require a response from your right hand. Often, the second buzz will occur too soon after the first to allow either the initiation or completion of the initial, left-handed response. In this event you are asked to curtail your first response and immediately begin the implementation of the second one. In all trials the second task should be completed. The degree of success of the curtailed first task will be determined by the speed from which you initiate your response, and by the number of switches you successfully close. Frequently, the entire first response may be completed before the second buzz sounds.

By previous research, and an earlier pilot study with this equipment, it has been found that some subjects have a tendency to respond with both hands to the first stimulus. It is emphasized that each hand's response should be performed as quickly as possible, only to the appropriate buzzer, i.e., the left hand responds to the first huzz, and the right hand to the second. Hence, while performing the tasks, pay particular attention to the independence of responses with each hand!


The simple task will simply require the lifting of your finger from the key at the sound of the buzzer.

The complex task will require you to move your hand from the appropriate key, hit a tennis ball directly in front of the key with the back of the same hand, closing a switch attached to the supporting string, reversing direction to hit another reaction time key on the baseboard, and reversing direction again, moving forward and upward to grasp and pull down a second tennis ball, closing another switch.

Each task will have different combinations of these two responses.

Are there any questions?

SAMPLE DATA SHEET-DAY 3, DAY 4, AND DAY 5



100

Subject

#### Subject Debriefing

The experiment in which you have just taken part deals with your capacity to amend a movement once begun in favor of one that follows in very close temporal succession. buring the last three sessions the second stimulus buzzer followed the first one at random intervals of between 1/10and 5/10 of a second. The response latencies of the first and second responses were recorded, and will be analyzed subsequently. Briefly, an increased response latency to the second response, above that of a normal reaction time to that task alone (Sessions 1 and 2) has been observed when the second stimulus buzzer occurs during the reaction time period to the first stimulus (the reaction time period to the first stimulus is the interval between the time you heard the first buzzer, and the beginning of your first response). One hypothesis that attempts to explain this phenomenon likens the brain to a single-channel decision processor, i.e., a computer that can deal with only one piece of stimulus or response information at a time, and will hold additional new information, such as the second buzzer, in limbo until it has finished dealing with the first bit of information. Other theories have been posited hypothesizing that the observed increased latency to the second response is due to an expectancy or preparatory state of the subject, i.e., the subject does not expect the second stimulus so soon after the first and thus, is not ready to respond even though, if the subject was ready, a response equivalent to one that is separate could be made. Another theory proposes that perception takes place in quantums, i.e., a sample is taken, and a period exists in which no other sampling can take place, then a perceptual gate opens and another sample taken. Hopefully, the data accumulated from you will aid in resolving which of the above hypotheses fits the results of the experiment best.

Unfortunately, at this time only the simple reaction times to each of the tasks that you performed during the first two sessions are available. In order for you to obtain some information about your own performance, mean values for each of your hands on each of the tasks are given below.

> Mean RT-Right Hand Simple Key Release

Mean RT-Left Hand Simple Key Release

Mean RT-Right Hanu Complex Movement Mean RT-Left Hand Complex Movement

### Subject Debriefing--Continued

For your comparison, the mean reaction time to sound, for a simple key lift response, is approximately 140 milliseconds. In an earlier experiment, that used the same complex movement, reaction time was 219 milliseconds.

Thank you very much for your cooperation.

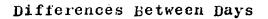
Donald S. Siegel

APPENDIX B

Table 7

### Differences Between Levels of SRC

|    |    |      |       |               | Critical<br>.05 | Values<br>.01 |
|----|----|------|-------|---------------|-----------------|---------------|
|    | СС | CS   | SC    | SS            |                 |               |
| CC | -  | 40** | 132** | 170**         |                 | 25.11         |
| CS |    | -    | 92**  | <b>1</b> 30** |                 | 23.36         |
| SC |    |      | -     | . 38**        |                 | 20.52         |
| SS |    |      |       | -             |                 |               |
|    |    |      |       |               |                 |               |


\*\*<u>p</u><01

## Table 8

Newman-Keuls Test:

## Differences Between Levels of 1SI

|     |     |            |      |      |   | Critic<br>.05 | al | values<br>.01 |
|-----|-----|------------|------|------|---|---------------|----|---------------|
|     | 100 | 400        | 800  | 200  |   |               |    |               |
| 100 | -   | 26**       | 32** | 33** | ÷ |               |    | 15.23         |
| 400 |     | -          | - 6  | ~~ 7 |   | 11.25         | -  | 14.17         |
| 800 |     | 1 <b>-</b> | -    | ``1  | - | 9.37          | -  | 12.45         |
| 200 |     |            |      | -    |   |               |    |               |



|        |       |       |         |                                         |       | Critical<br>.05 | Values<br>.01   |
|--------|-------|-------|---------|-----------------------------------------|-------|-----------------|-----------------|
|        | Day 3 | Day   | 4       | Day 5                                   |       |                 |                 |
| Day 3  | -     | 1     | 8ž*     | 26**                                    |       |                 | 12.19           |
| Day 4  |       |       | -       | <b>` ~</b> 8*                           |       | - 7.98 -        | 10.66           |
| Day 5  |       |       |         |                                         |       |                 |                 |
| *p<.05 | 5     |       | *****   |                                         |       | <u></u>         |                 |
| **p<01 | L     |       |         |                                         |       |                 |                 |
|        |       |       | Tal     | ble 10                                  |       |                 |                 |
|        |       | N     | ewman-] | Keuls To                                | est:  |                 |                 |
|        |       |       | SRC a   | t ISI 10                                | 00    |                 |                 |
|        |       |       |         | 99 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - |       | Critica<br>.05  | l Values<br>.01 |
|        | сс    | CS    | SC      | S                                       | 8     |                 |                 |
| CC     | -     | 51.** | 127**   | * 16                                    | 2** - |                 | 29:26           |
|        |       |       |         |                                         |       |                 |                 |

SC - 35\*\* - - - - - 23.91 SS -

\*\*£<01



.

Neuman-Keuls Test;

SRC at ISI 200

|    |    |      |       |                | Critical<br>.U5 | Values<br>.01 |
|----|----|------|-------|----------------|-----------------|---------------|
|    | CC | CS   | SC    | SS             |                 |               |
| cc |    | 44** | 129** | 165**          |                 | 29.26         |
| CS |    | - `  | 91**  | <b>` 121**</b> | ~ ~ _ ~ ~ ~ ~   | 27.22         |
| sc |    |      | - `   | ` ~ 36**       |                 | 23.91         |
| SS |    |      |       | -              |                 |               |

\*\*<u>P</u><01



Newman-Keuls Test:

SRC at ISI 400

|         | الاستعار الشامسية والشرامي وتروعت |                                        |       |            |   |                 |                                        |
|---------|-----------------------------------|----------------------------------------|-------|------------|---|-----------------|----------------------------------------|
|         |                                   |                                        |       |            |   | Critical<br>.05 | Values<br>.01                          |
|         | СС                                | CS                                     | SC    | SS         |   |                 |                                        |
| cc      | -                                 | 36**                                   | 166** | 209** -    | - |                 | 29.26                                  |
| CS      |                                   | - `                                    | 130** | ` ~173** - | · |                 | 27.22                                  |
| SC      |                                   |                                        | **    | ~ ~43** -  |   |                 | 23.91                                  |
| SS      |                                   |                                        |       | -          |   |                 |                                        |
| <b></b> |                                   | ······································ |       |            |   | ·····           | ************************************** |

Table 13

SRC at 151 800

|    |    |      |      |          | Critical<br>.05 | Values<br>.01 |
|----|----|------|------|----------|-----------------|---------------|
|    | CC | CS   | SC   | SS       |                 |               |
| cc | -  | 26** | 95** | 143** -  |                 | 29.26         |
| CS |    | -    | 69** | <u> </u> | ~ ~ ~ ~ ~ ~     | 27.22         |
| SC |    |      | - `  | 48** -   |                 | 23.91         |
| SS |    |      |      | -        |                 |               |

\*\*<u>p</u><01



Newman Keuls Test:

ISIs at SRC SS

Critical Values .05 .01 100 800 200 400 100 32\*\* 35\*\* 55\*\* 20.93 - 3 800 23\*\* - 15.62 -19.53 200 17.21 <u>20\*\*</u> -400

\*\*£<01

ISIs at SRC SC

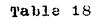
|     |     |      |      |        | Critical<br>.05 | Values<br>.01 |
|-----|-----|------|------|--------|-----------------|---------------|
|     | 100 | 800  | 200  | 400    |                 |               |
| 100 | -   | 19** | 40** | 47** - |                 | 20.93         |
| 800 |     | -    | 21** | 28** - |                 | 19.53         |
| 200 |     |      | -    | ~ 7 -  | 13.02           |               |
| 400 |     |      |      | -      |                 |               |

\*\***p~**<sup>01</sup>



Newman-Keuls Test:

ISIS at SRC CS


$$\begin{array}{c} \text{Critical Values} \\ 0.05 & .01 \\ \hline 400 & - & 7 \\ - & 32** & 33** - - - - & 20.93 \\ 100 & - & 25** & 26** - - & - & 19.53 \\ 200 & - & 1 & - & 13.02 \\ 800 & - & - & - & - \\ \end{array}$$

\*\*EC.01

ISIS at SEC CC

|     |     |     |      |        | Critical<br>.05 | Values<br>.01 |
|-----|-----|-----|------|--------|-----------------|---------------|
|     | 100 | 400 | 200  | 800    |                 |               |
| 100 | -   | 8   | 32** | 51**   |                 | 20.93         |
| 400 |     | -   | 24** | 26**   |                 | 19.53         |
| 200 |     |     | -    | 19** - | 13.02           | 17.21         |
| 800 |     |     |      |        |                 |               |
|     |     |     |      |        |                 |               |

\*\*£<01



Newman-Keuls Test:

Days at ISI 100

|              |       |       | Critical Values<br>.05 .01 |
|--------------|-------|-------|----------------------------|
|              | Day 3 | Day 4 | Day 5                      |
| <u>Бау</u> З | -     | 18**  | 29** 16.75                 |
| Day 4        |       | -     | - 11 11.08 14.75           |
| Day 5        |       |       | -                          |
|              |       |       |                            |

\*\*2<01

# Table 19

.

Newman-Keuls Test:

Days at ISI 200

|             |       | Critical Val | ues<br>01 |
|-------------|-------|--------------|-----------|
|             | Day 3 | Day 4-Day 5  |           |
| Day 3       | -     | 12 13.32     |           |
| Day 4-Day 5 | 5     | -            |           |

Table 20

5

Newman-Keuls Test:

Days at ISI 400

|             |       | Critical Values<br>.05 .01 |
|-------------|-------|----------------------------|
|             | Day 3 | Day 4 -Day 5               |
| Day 3       | -     | 10 13.32                   |
| Day 4-Day 5 |       |                            |

Table 21

Days at ISI 800

|                  |       |              |       | Critical                               | Values<br>.01 |
|------------------|-------|--------------|-------|----------------------------------------|---------------|
|                  | Day 3 | Day 4        | Day 5 |                                        |               |
| Day 3            | -     | <u> 54**</u> | 50**  |                                        | 16.75         |
| Day 4            |       | -            | -16*  | 11.08 -                                | 14.75         |
| Day 5            |       |              | -     |                                        |               |
| * <u>p</u> <.05  |       |              |       | ************************************** |               |
| ** <u>P</u> <•01 |       |              |       |                                        |               |



Newman-Keuls Test:

ISIs at Day 3

Critical Values .05 .01 100 800 400 200 100 20\*\* 35\*\* 41\*\* 19.03 800 15× 21\*\* 17.72 6 11.83 -15.62 400 200

\*£<05

\*\*£<01

ISIs at Day 4

|     |     |      |      |      | Critical Values<br>.05 .01 |
|-----|-----|------|------|------|----------------------------|
|     | 100 | 400  | 200  | 800  |                            |
| 100 | -   | 27** | 35** | 36** | 19.03                      |
| 400 |     | -    | 8    | 9    | 14.19                      |
| 200 |     |      | -    | 1    | 11.83                      |
| 800 |     |      |      | -    |                            |
|     |     |      |      |      |                            |

\*\*<u>p</u>**<**.01



Newman-Keuls Test:

ISIs at Day 5

|     |     |     |                                 |                 | Critical<br>.05                                                            | Values<br>.01 |
|-----|-----|-----|---------------------------------|-----------------|----------------------------------------------------------------------------|---------------|
|     | 100 | 400 | 200                             | 800             |                                                                            |               |
| 100 |     | 15* | 23**                            | 41** -          |                                                                            | 19.03         |
| 400 |     | -   | <u></u>                         | <b>~</b> 26** - |                                                                            | 17.72         |
| 200 |     |     | -                               | 18** -          | - 11.83                                                                    | 15.62         |
| 800 |     |     |                                 | -               |                                                                            |               |
|     |     |     | محودها المتله المتحدين ويواقعون |                 | ويستعرب والمترية بين والمارية والمراجع والمراجع والمراجع والمراجع والمراجع |               |
| *E< | :05 |     |                                 |                 |                                                                            |               |

\*\*E<.01

SRCs at Day 3

|         |                     |      |       |               | Critical<br>.05 | Values<br>.01 |
|---------|---------------------|------|-------|---------------|-----------------|---------------|
|         | сс                  | CS   | SC    | SS            |                 |               |
| сс      | -                   | 64** | 143** | 186**         | <br>            | 30.94         |
| CS      |                     | - `  | 79**  | <b>`122**</b> | <br>            | 28.89         |
| sc      |                     |      | -     | ~ ~ 43**      | <br>~           | 25.41         |
| SS      |                     |      |       | -             |                 |               |
| <b></b> | وروار و المراجع الم |      |       | ·             | <br>            |               |

\*\*<u>P</u><01



Newman-Keuls Test:

SRCs at Day 4

Critical Values .05 .01 CC CS SC SS - 30.94 168\*\* CC 37\*\* 129\*\* 92\*\* - 28.89 CS 146\* - 25,41 SC 39\*\* -~ -SS

113

\*\*2501

SRCs at Day 5

|    |    |    |       |         |   | Critical<br>.05 | Values<br>.01 |
|----|----|----|-------|---------|---|-----------------|---------------|
|    | cc | cs | SC    | SS      |   |                 |               |
| сс | -  | 18 | 120** | 155**   |   |                 | 30.94         |
| CS |    | -  | 102** | `137**  |   |                 | 28.89         |
| SC |    |    | -     | 35**    | : | 19.19           | 25.41         |
| SS |    |    |       | -       |   |                 |               |
|    |    |    |       | <u></u> |   |                 |               |

\*\***P**<01



Newman-Keuls Test:

SRC SS Over Days

|       |       |       |       | Critical<br>.05 | Values<br>.01 |
|-------|-------|-------|-------|-----------------|---------------|
|       | Day 3 | Day 4 | Day 5 |                 |               |
| Day 3 | -     | 15* 、 |       | - 17.37         | 21.71         |
| Day 4 |       | -     |       | - 14.48         | 19.13         |
| Day 5 |       |       | -     |                 |               |
|       |       |       |       |                 |               |

\***e<**05

Newman-Keuls Test:

Table 29

SHC SC Over Days

|                            |       |       |       | Critical<br>.05 | Values<br>.01 |
|----------------------------|-------|-------|-------|-----------------|---------------|
|                            | Day 3 | Day 4 | Day 5 |                 |               |
| Day 3                      | -     | 19*   | 27**  | <br>            | 21.71         |
| Day 4                      |       | -     | - 8   | <br>14.48 -     | 19.13         |
| Day 5                      |       |       | -     |                 |               |
| * <u>p</u> <b>&lt;</b> .05 |       |       |       |                 |               |
| ** <u>p</u> <.01           |       |       |       |                 |               |

Table 30

Newman-Keuls Test:

SRC CS Over Days

|       |       |       |       | Critical<br>.05 | Values<br>.01 |
|-------|-------|-------|-------|-----------------|---------------|
|       | Day 3 | Day 4 | Day 5 |                 | •             |
| Day 3 | -     | 4     | 6     | 17.37           |               |
| Day 4 |       | -     | 2     | 14.48           |               |
| Day 5 |       |       |       |                 |               |
|       |       |       |       |                 |               |

Table 31 Newman-Keuls Test: SRC CC Over Days

|       |       |       |       | Critical<br>.05 | Values<br>.01 |
|-------|-------|-------|-------|-----------------|---------------|
|       | Day 3 | Day 4 | Day 5 |                 |               |
| Day 3 | -     | 33**  | 50**  | <br>            | 21.71         |
| Day 4 |       | -     | 17*   | <br>14.48 -     | 19.13         |
| Day 5 |       |       | -     |                 |               |

\*<u>p</u>**<**.05

\*\*<u>₽</u><01

APPENDIX C

Table 32

Raw Data for Day 1 and Day 2

| Day 1     |                 |                |                  |                 |  |  |  |
|-----------|-----------------|----------------|------------------|-----------------|--|--|--|
|           | Simple<br>Right | Simple<br>Left | Complex<br>Right | Complex<br>Left |  |  |  |
| Mean      | 153             | 153            | 219              | 224             |  |  |  |
| <u>SD</u> | 25              | 24             | 30               | 34              |  |  |  |
|           |                 | Day 2          |                  |                 |  |  |  |
| Mean      | 141             | 138            | 195              | 202             |  |  |  |
| SD        | 29              | 28             | 31               | 34              |  |  |  |

<u>N</u>=24

Raw Data: RT1

Group Means

| Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SRC | 151   | 100 | 200                                                  | 400      | 800 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|------------------------------------------------------|----------|-----|
| <b>Colored Holder</b> Holder Holde |     | Day 3 | ,   | , ya ya da ku ya |          |     |
| Fast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS  |       | 128 | 134                                                  | 131      | 141 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SC  |       | 145 | 144                                                  | 145      | 142 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CS  |       | 184 | 178                                                  | 186      | 187 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CC  |       | 188 | 180                                                  | 185      | 190 |
| Slow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS  |       | 166 | 163                                                  | 166      | 171 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SC  |       | 179 | 193                                                  | 203      | 198 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CS  |       | 223 | 220                                                  | 231      | 236 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CC  |       | 233 | 233                                                  | 228      | 232 |
| ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Day 4 |     |                                                      | <u> </u> |     |
| Fast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS  |       | 117 | 118                                                  | 122      | 113 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sc  |       | 131 | 131                                                  | 135      | 136 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CS  |       | 167 | 168                                                  | 161      | 164 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CC  |       | 173 | 168                                                  | 169      | 174 |
| Slow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS  |       | 143 | 141                                                  | 153      | 155 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SC  |       | 162 | 169                                                  | 166      | 172 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CS  |       | 208 | 203                                                  | 213      | 216 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CC  |       | 222 | 229                                                  | 220      | 221 |

.

| Group | SRC                  | ISI   | 100                      | 200                                                        | 400                      | 800                                        |
|-------|----------------------|-------|--------------------------|------------------------------------------------------------|--------------------------|--------------------------------------------|
|       |                      | Day 5 |                          | <del>400 - 1999 - 1999 - 200 - 200 - 200 - 200 - 200</del> |                          | <del>,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del> |
| Fast  | SS<br>SC<br>CS<br>CC |       | 109<br>127<br>158<br>173 | 111<br>124<br>164<br>166                                   | 115<br>123<br>173<br>166 | 116<br>126<br>170<br>169                   |
| Slow  | SS<br>SC<br>CS<br>CC |       | 138<br>150<br>213<br>208 | 143<br>158<br>207<br>208                                   | 141<br>155<br>205<br>207 | 135<br>161<br>212<br>212                   |

Table 33--Continued

Note. Data are in milliseconds.

.

.

.

۰.

.

Raw Data: RT2

Group Means

| Group | SRC                                        | 151   | 100                      | 200                                    | 400                      | 800                      |
|-------|--------------------------------------------|-------|--------------------------|----------------------------------------|--------------------------|--------------------------|
|       | and an | Day 3 |                          |                                        |                          |                          |
| Fast  | SS<br>SC<br>CS<br>CC                       |       | 207<br>234<br>324<br>378 | 169<br>192<br>283<br>355               | 152<br>184<br>313<br>365 | 191<br>219<br>299<br>337 |
| Slow  | SS<br>SC<br>CS<br>CC                       |       | 239<br>302<br>341<br>451 | 203<br>246<br>304<br>403               | 198<br>252<br>337<br>396 | 225<br>299<br>361<br>391 |
|       |                                            | Day 4 |                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                          |                          |
| Fast  | SS<br>SC<br>CS<br>CC                       |       | 201<br>226<br>306<br>339 | 171<br>186<br>291<br>315               | 143<br>177<br>306<br>347 | 160<br>197<br>270<br>291 |
| Slow  | SS<br>SC<br>CS<br>CC                       |       | 233<br>273<br>349<br>412 | 187<br>230<br>320<br>357               | 170<br>229<br>358<br>390 | 200<br>255<br>315<br>362 |

| Group | SRC      | IST   | 100        | 200        | 400        | 800        |
|-------|----------|-------|------------|------------|------------|------------|
|       |          | Day 5 |            |            |            |            |
| Fast  | SS<br>SC |       | 193<br>219 | 174        | 145<br>172 | 161<br>191 |
|       | CS<br>CC |       | 313<br>314 | 303<br>304 | 339<br>339 | 258<br>273 |
|       |          | 11    |            |            |            |            |
| Slow  | SS       |       | 229        | 189        | 164        | 174        |
|       | SC       |       | 261        | 226        | 212        | 237        |
|       | CS       |       | 336        | 31.6       | 355        | 307        |
|       | CC       |       | 383        | 351        | 390        | 316        |

Table 34--Continued

Note. Data are in milliseconds.

WARK NO. CON

Contraction of the second second