INFORMATION TO USERS

This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which.may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

University Microfilms

AN ANALYSIS OF THE QUALIFICATIONS OF THE
MATHEMATICS INSTRUCTORS AND OF THE CONTENT OF THE MATHEMATICS COURSES

IN THE COMLUNLTY COLLEGES
OF NORTH CAROLINA
by
Ruth Youngblood Sharrock

A Dissertation Submitted to the Faculty of the Graduate. School at The University of North Carolina at Greensboro
in Partial Falfillment
of the Requirements for the Degree
Doctor of Edacation

Greensboro
1972

APPROVAL PAGE

This dissertation has been approved by the following committee of the Faculty of the Graduate School at The University of North Carolina at Greensboro.

$\frac{\text { Helene a } 141472}{\text { Date or } 14 \text { marination }}$

PLEASE NOTE:

Some pages may have
indistinct print. Filmed as received.

SHARROCK, RUTH YOUNGBIOOD. An Analysis of the Qualifications of the Mathematics Instructors and of the Content of the Mathematics Courses in the Community Colleges of North Carolina. (1972) Directed by: Dr. Lois V. Edinger. Pp. 131.

It was the purpose of this study to investigate the qualifications of the mathematics instructors in the community colleges of North Carolina and to determine the content of the mathematics courses in the college transfer programs at these institutions. The increase of the number of students transferring from the community colleges to the senior institutions of North Carolina created the need for a study to be made of the mathematics departments of these two year institutions in the state. The criteria used in the analysis of the qualifications of the instructors and of the content of the courses were recommendations made by the Committee on the Undergraduate Program in Mathematics of the Mathematical Association of America and guidelines prepared by the Joint Committee on College Transfer Students of North Carolina.

The data relative to the mathematics instructors were collected by a questionnaire constructed by the investigator. The academic preparation and the professional activities of the instructors were the two major categories in the questionnaire sent to the instructors teaching college transfer courses in the community colleges of North Carolina during the fall of 1971. These instructors, the chairman of the mathematics department of each of the fifteen institutions, and the catalogue of the individual institutions were the sources of the data collected relative to the mathematics courses taught in the college transfer programs.

The findings indicated that the academic preparation of the mathematics instructors varied widely. All of the instructors had earned a master's degree of some type. The average instructor had taken less than nine of the eighteen courses recommended by CUPM. The professional activity participation data showed that the majority of the instructors had participated in three of the six categories of activities which are indicative of professional growth.

The content of the freshman level mathematics courses was different between schools. Approximately seventeen courses of this type were described in the catalogues of the institutions. The calculus sequence was nearly standard in the number of hours credit offered but the topics of the calculus and the siequence of the topics were divergent. Eight courses, designed by an institution to meet a need which is peculiar to the commanity of the institution, are offered.

As a result of the analysis of the data recommendations were made by the investigator. The universities should be cognizant of the academic needs of the present two year college mathematics teacher and of the prospective instructors of this level of education, and then their curriculum should be planned to meet these needs. The commanity colleges of North Carolina should evaluate the mathematics curriculum in the college transfer programis and bring them more close to the recommendations of CUPM. The administrators of both levels of higher education should provide support to the instructors for activities conducive to professional growth.

ACKNOWIERDGEMINTIS

I wish to express my appreciation to the director of this study, Dr. Lois V. Edinger, for her guidence and encouragement. The other comaittee members, Dr. Donald W. Rassell, Dr. Andrew F. Iong, Jr., and Kr. James J. Hagood, Jr., have been most helpful to me in this investigation.

My sincere thanks are extended to husband, W. Roger, and to wy children, Barry, Susan, Mark, and Renee, for their patience, understanding, and assistance to me during the time of this study. I wish to express gratitude to my parents for motivation to learn and succeed which they instilled in me.

TABLE OF CONTENTS
Page
CHAPTER I. INTRODUCTION 1
I. Problem and Its Significance 1
Significance of the Study 6
Questions to Be Answered by This Study 8
II. Definitions of Terms Used 10
III. Limitations 12
IV. Organization for the Remainder of the Study 12
CHAPTER II. REVIEW OF THE IITBRATURE 13

1. Literature on the Academic Cualifications of the Two Year College Mathematics Teacher 13
Mathematics Courses 14
Apprenticeship in Two Year College Teaching 15
Degreed Earned 17
II. Literature on the Professional Growth of the College Mathematics Teacher 19
III. Iiterature on the Mathematics Curriculum of Two Year Colleges 20
CHAPTER III. NETHODS AND PROCEDURES OF THE STUDY 25
I. The Study Population 25
II. Methods of Collecting Data 26
III. Procedures Used in Reporting Data 29
CHAPTER IV. ANALYSIS OF THE DATA COLLECTED 31
I. Presentation of Data Related to the Instructiors 31
Page
Academic Qualifications 32
Professional Qualifications 54
II. Presentation of Data Related to the
Mathematics Courses in the College Transfer Programs 76
Courses Recommended by CUPM for Two Year Colleges 76
Guidelines Recommended by JCCTS 98
Other Mathematics Courses in the College Transfer Programs 99
CHAPTER V. SUMMARY, CONCLUSLONS, . GECOMMENDATIONS, AND NEEDS FOR FURTHER STUDY 105
I. Summary 105
II. Conclusions 106
Mathematics Instructors of the College Transfer Programs 106
Mathematics Courses of the College Transfer Programs 108
III. Recommendations 110
Mathematics Instructors of the College Transfer Programs 110
Mathematics Courses of the College Transfer Proarams 111
IV. Further Studies Needed 112
BIBLIOGRAPHY 1.14
APFENDIX A. LISF OF COMUNITY COLLGES INCLIDED IN THE SIUDY 117
APPENDIX B. LETTER SENT TO PRESIDENTS OF COMMUNITY COLLEGES INCIUDED IN THE STUDY 118
APPENDIX C. FORM SENT TO PRESIDENTS OF COMIUNITY COLLEGES INCLJDED IN THE STUDY 119
Page
APPENDIX D. COVER LETTER SENT WITH QUESTIONNAIHE TO MEMBRERS OF STUDY POPULATION 120
APPENDIX E. QUESTIONNAIRE SENT TO STUDY POPULATION 121
APPENDIX F. FOLLOW-UP LETTER ON QUESTIONNAIRE 127
APPRNDIX G. COVER LETTER SENT WITH FORM TO MATHEMATICS DEPARTMENT CHAIRMEN OF COMINNITY COLLEGES 128
APFENDIX H. FORM SENT TO MATHEMATICS DEPARTMENT CHAIRMIEN OF COMMUNITY COLLEGES 129
APFENDIX I. ARTICULATION GUIDELINES 131

LIE OF TABLES

I. Analysis of Acadamic Qualifications Data in Terms of CJPM Recommandations Met by Mathematics Instructors at Institution Number 1 36
II. Analysis of Academic Qualifications Data in Terms of CJPM Recomondations Mot by Mathematics Insbractors at Institution Number 2 37
III. Analysis of Academic Qualifications Data in Terms of CUPM Recomandations Mot by Mathematics Inatructors at Institution Number 3 38
IV. Analysis of Aoadonic Gualifications Data in Forms of CUPM Recomendations Met by Mathenatics Instructors at Institution Number 4 39
V. Analysis of Academic Qualifications Data in Terms of CUFM Recommendations Mat by Mathematics Instructors at Institution limimer 5 40
VI. Analysis of Acadamic Qualifications Data in Tarms of CUPM Recommendations Mat by Mathematics Instructors at Institution Number 6 41
VII. Analysis of Academic Qualifications Data in Terms of CUPM Recomendations Met by Mathematics Instructors at Institntion Number 7 42
VIII. Analysis of Acadomic Qualifications Data in Terms of CUPM Recommondations Mot by Mathematics Instructors at Institution Number 8 43
IX. Analyais of Academic Qualifications Data in Tarms of CUPM Recomendations Mat by Mathematics Instractors at Institution Mumber 9 44
X. Analysis of Academic Qualifications Data in Torms of CUFM Recomandations Mat by Mathenatics Instructors at Institution Namber 10 45
XI. Analysis of Academic Qualifications Data in Terms of CUPM Recommondations Mot by Mathematics Instructors at Institution Number 11 46
XII. Analysis of Acadomic Qualifications Data in Terms of CUFA Recomenendations Met by Mathematics Instructors at Institution Kumber 12 47
XIII. Analysis of Aademic Qualifications Data in Terms of CUFM Recommendations Met by Mathematics Instructors at Institution Number 13 48
XIV. Analysis of Academic Qualifications Data in Terms of COPM Recomendations Met by Mathematics Instructors at Institubion Number Il4 49
XV. Analysis of Academic Qualifications Data in Terms of CUYM Recomandations Mot by Mathematics Instructors at Institution Number 15 50
XVI. Types and Number of Degrees Earned by Members of Study Popralation by Institution 53
XVII. Namber and Fereentage of Qmestionnaires Returned by Mathematics Instructors at Each Institution 55
XVIII. Analysis of Professional Grouth Data in Torms of CUPM - Recomendations Met by Mathematics Instructors at Institution Namber 1 57
XIX. Analysis of Professional Growth Data in TGrms of CUPM Recomendations Mot by Mathematics Instructors at Institution Number 2 58
XX. Analysis of Professional Grouth Data in Terms of CUPM Recomendations Mot by Mathematics Instructors at Institution Number 3 59
XXI. Analysis of Professional Growth Data in Terms of CUPM Recommendations Mat by Mathematics Indtructors at Institution Number 4 60
XXII. Analyois of Profesaional Growth Data in Terms of CUFM Recomendations Met by Mathematics Instructors at Institution Rumber 5 61
XIIII. Analyais of Profesmional Growth Data in Terms of CUPM Recomendations Hot by Mathematics Instructors at Institution Number 6 62
TABLE Page
XXIV. Analysis of Professional Growth Data in Terms of CUPM Recommendations Met by Mathematics Instructors at Institution Nomber 7 63
XXV. Analysis of Professional Growth Data in Terms of CUPM Recommendations Met by Mathematics Instructors at Institution Number 8 64
XXVI. Analysis of Professional Growth Data in Terms of CUPM Recommendations Met by Mathematics Instructors at Institution Number 9 65
XXVII. Analysis of Professional Growth Data in Terms of CUPM Recommendations Met by Mathematics Instructors at Institution Number 10 66
XXVIII. Analysis of Professional Growth Data in Terms of CUPM Recomendations Met by Mathematics Instructors at Institution Number 11 67
XXIX. Analysis of Professional Growth Data in Terms of CUPM Recomendations Met by Mathematics Instructors at Institution Number 12 68
XXX. Analysis of Professional Growth Data in Terms of CUPM Recommendations Met by Mathematics Instructors at Institution Number 13 69
XXXI. Analysis of Professional Growth Data in Terms of CUPM Recomendations Met by Mathematics Instructors at Institution Number 14 70
XXXII. Analysis of Professional Growth Data in Terms of CUEM Recomendations Met by Mathematics Instructors at Institution Number 15 71
XXXIII. Mamber and Per Cent of Respondents Participating in Activities Reflecting Professional Growth 72
DXXIV. Membership in Professional Mathematics Organizations 73
XXXV. Experience of Respondents Prior to Becoming Two Year College Mathematics Teachers 75
XXXVI. College Transfer Courses Recomended by CUPM Being Taught or Taught During the Past Two Years at Institution Number 1 79
XXIVI. College Transfer Courses Recomended by GUPM Being Taught or Taught During the Past Two Years at Institution Number 2 80
XXXVIII. College Transfer Courses Recomanded by CUFA Being Taught or Taught During the Past Two Years at Institution Number 3 81
XXXIX. College Transfer Courses Recomended by CUPM Being Taught or Taught During the Past Two Years at Institution Number 4 82
XI. College Transfer Courses Recommended by CUPM Being
Taught or Taught During the Past Two Years at Institution Number 5 83
XII. College Transfer Courses Recommended by CUPM Being Taught or Taught During the Past Two Years at Institution Number 6 84
XLII. College Transfer Courses Recomended by CUPM Boing Taught or Taught During the Past Two Years at Institution Number 7 85
ILIII. College Transfer Courses Recommended by CUPA Being Taught or Taught During the Past Two Years at Institution Number 8 86
XIIV. College Transfer Courses Recommended by CUPH Being Taught or Taught During the Past Two Years at Institution Number 9 87
ILV. College Transfer Courses Recomended by CUPM Being Taght or Taught During the Past Two Years at Institution Number 10 88
XLVI. College Transfer Courses Recomended by CUPM Being Taught or Taught During the Past Two Years at Institution Number 11 89
IIVII. Collége Transfer Courses Recomended by CUPM Being Taught or Taught During the Past Two Years at Institution Number 12 90
ILVIII. College Transfer Courses Recomended by CUPY Being Taught or Taught During the Past Two Fears at Institation Number 13 91
'TAML: Page
IL. College Transfer Courses Hecommended by CUPM Being Taught or Taught During the Past T'wo Years at Institution Number 14 92
L. College Transfer Courses Recommended by CUPM Being Taught or Taught During the Past Two Years at Institution Number 15 93
II. Summary of Basic College Transfer Courses Recommended by CUFM Offered by Each Institution 95
LII. Summary of Optional College Transfer Courses Recommended by CUPM Offered by Each Institution 96
IUII. Courses Which Are in the Guidelines of JCCTS Offered by Each Institution 100
LIV. Mathematics Courses Offered in College Transfer Programs of the Institutions of the Study Population Which Are Not on the CUPM List 101

CHAPTER I

INTRODUCTION

I. Problon and its Significance

In the fall of 1970 the number of transfers from two year colleges in North Garolina to four year institutions comprised forty-four per cent of all transfers made within the state. ${ }^{1}$ The transfers from commenity colleges to public institations increased in 1970 over 1969 by thirtyfive and three tenths per cent. ${ }^{2}$ The stadents who tramsfer expect a minimm loss of credits and to be able to complete a baccalaureate degree in two years after graduation from a commuity college.

Efforts within the past two decades have resulted in better preparation of public school mathematics instructors and in the upgrading of the pablic school curricnlum in mathematics. The open door policy of admission to a commity college of North Carolina enables a person to enter with a minima set of requirements; that is, to be admitted to a commaity college of North Carolina a person must be

[^0]eighteen years of age and have a high school diploma or its equivalent. Because of this minimm set of requirements it is to be expected that some potential transfer students will have doficiencies to be made up before going into a major program at a senior institution even though instruction in high school mathematics has improved in the past twenty years.

Several concerns of the educators and students of the commanity colleges and senior institutions provide the basis for this study. Those concerns are: the increase in the number of students transferring from commanity colleges to sonior colleges, the students transferring who have deficiencies to be made up, the studants transferring who plan to major in mathematics or science at a senior institution, the qualifications of the mathematics instructors of the commanity colleges of North Carolina and the content of the college transfer courses of the commanity colleges of North Carolina.

Statement of the Problem. -- The investigator had one primary purpose in making this study of the commonity college in North Carm olina: to exmine and evaluate the academic qualifications of the mathematics instructors and the content of the mathematics courses in the college transfer programs, using as criteria the recommendations of the Committee of the Undergraduate Programs in Mathematics of the Mathematical Association of America and the guidelines of the Joint Committee on College Transfer Students of North Carolina.

The Comnittee on the Undergraduate Program in Mathematics (CUPM) of the Mathematical Assooiation of Amerion is composed of leading mathomaticians who make recomendations concerning the mathematics curricuIum in colleges and universities. The studies made by this comittee (CUPM) ware begun in the 1950's and ware funded by the National Science Foundation. The comaittee soon found that it needed to turn its attention to the qualifications and preparation of teachers of undergraduate programs. More recently the increase in the sumber of two yoar inetim tutions, the grouth of the student population in two jear colleges and the resultant iscrease in enrollment in two year colleges indicated the need for a panel of CUPM to be created to study and make recommondations relative to the mathematics programs in these two year institutions. The Panel of the Mathematics Programs in Two Year Colleges conducted a study and, in 1969, made recomendations for the academic qualificstions of the teachers of university parallel courses. The academic preparation of the teachers is not the only concarn of COPM, as the following indicates:

It should be understood that no academic program or degroe in itself qualifies an individual to teach effectively at an level unless this preparation is accompanied by a geamine interest in teaching and by professional activities reflecting contimuing mathematical growth. ${ }^{3}$

Concurrently with the study of the teacher qualifications, the content

[^1]of the university parallel courses in mathematics has been studied by CUFM and recomendations made relative to the curricula of the two year colleges in the United States.

In 1963 the General Assembly of North Carolina enseted a law establishing a system of post-high-school ecucational institutions throughout the atate of North Carolina. These institutions were to offer courses of instruction in one or more of the areas of tro year college parallel, technical, vocational and adult education programs. The institutions were to be supported by state funds, local taxes and local bonds. An institution was to be established only if an education need existed within the proposed administrative area which was not being mot by existing public and private post-high-school institutions in the area. 4 It the present time, December, 1971, there are fifteen comanity colleges which have been established in North Carolina under this act. As far as this investigator can determine no study has been made as to the qualifications of mathematics instructors (in college transfer programs) and of the content of the mathematics courses in the college transfer prograns of the publicly supported comanity colleges in North Carolina.

Becsuse of the variety of problems encountered by students as they transfer from one college to another, a study comaittee of the
$4_{\text {Thad Eure, Pablic School Laws of North Carolina (Charlottes- }}$ Ville, Virginia: tie líchie Company, 1965), pp. 172-173.

North Carolina Association of Colleges and Universities made recommendations concerning the problems of the transferring student. These recommendations, which were made in 1963, sought to eliminate unnecessary variability in transfer procedures. In order to deal with the increase in transfers and the accompanging problems, the Joint Comaittee on College Transfer Students (JCCTS) was created by the North Carolina Association of Colleges and Universities, State Board of Higher Edacation, and North Carolina Association of Junior Colleges. After two state-wide articulation conferences, articulation comittees for nine different areas (mathematics was one of the nine) recommended guidelines. The guidelines for all areas were approved by the Joint Committee on College Transfer Students on November 1, 1967.5 The gaidelines for mathematics were reviewed and revised on May 14, 1971.

The guidelines approved by the Mathematics Articulation Committee of JCCTS have also been used in this study as criteria for the content of college transfer mathematics programs of the comanity colleges of North Carolina. As far as can be determined a study of this concern has not been previously made.

The criteria of the Panel on Two Year Colleges of CUPM and of the Joint Comaittee on College Transfer Students (JCCTS) will be used
5^{5} John F. Corey and Gordon B. Pyle, nJoint Committee Approves Articulation Guidelines, ${ }^{n}$ Higher Education in North Carolina, II (December 1, 1967), 1-3.
in evaluating the content of the college transfer programs in minthematies.

Significance of the Study

The revisions made in the mathematics programs of the public schools during the 1950's and 1960's required more training for beginning teachers and the upgrading of academic preparation of the teachers in servic. Until CUPM turned its attention to the small colleges in 1963 very little had been done concerning the development of a mathematics curriculur that would be feasible for snall four year colleges and two year colleges. By the middle of the 1960's the problem of the upgrading of college faculties and curriculur became acute because of the lack of trained personnel. The colleges and universities intensified their programs and, as a result, the lack of trained people is now not so evident. In fact, in some areas of the country and some areas of the curriculun there is an overabundance of prepared teachers even at the doctorate level.

There are various programs in mathematics in the two year colleges. Some of those are remedial mathematics, basic courses in mathematics for general education, teacher training courses, technical mathematics, and the pre-calculus and calculus series. The focus of this investigation was concerned with the university parallel courses in mathematics taught in the coweunity colleges of North Carolina, basic courses in mathematics for general education, teacher training courses, and the pre-calculus and calculus series.

Many of those teaching in the community colleges are wellqualified and yet there has been no study made comparing the academic preparation of the community college mathematics instructors of North Carolina and their professional growth to the guidelines and recommendations of CUPM.

Since the enrollment in community colleges is increasing, the number of students transferring from community colleges is also increasing. As the student transfers a problem arises as to which courses in the community colleges are comparable to courses that are offered in the senior institutions to which the student expects to transfer. This study will make an analysis of the content of the college transfer courses in mathematics in all of the commity colleges in North Carolina using recommendations of CUPM as published in A Transfer Gurriculum in Mathematics for Two Year Colleges as criteria. ${ }^{6}$ In addition the college transfer programs for each institution will be compared to the guidelines which have been set up by the Mathematics Articulation Committee of the North Carolina Joint Committee on College Transfer Students. ${ }^{7}$ At the meeting of the Committee, in May 1971, one of the questions discussed was: are courses listed in the North Carolina community colleges:
${ }^{6}$ Committee on the Undergraduate Program on Mathematics, Report of the Conmittee, A Transfer Curriculum in Mathematics for Two Year Colleges, (Berkeley, Calif., Mathematical Association of America. 1969) pp. 6-9.
$7_{\text {nArticulation }}$ Guidelines, ${ }^{n}$ Higher Education in North Carolina, II (December 1, 1967), 9.
catalognes as college credit courses although the content of the courses is on the secondary school level of mathematics? This question is to be considered in this investigation.

Questions to be answered by this study.
A. The first set of questions to be answered relates to the instructors of mathematics of the college transfer courses in the comanity colleges of North Carolina.

1. What are the qualifications of these instructors?
2. How many of these instructors qualify on the basis of the CJPM recomendations for academic preparation?
3. What type of degrees have these instructors earned? What per cent of the instructors held a masteris degree different from the Masteris in Education?
4. At what level do these instructors participate in activities which reflect professional growth in their field?
5. Do they encounter obstacles to professional growth? If so, what are some of those obstacles?
6. What was the work experience of these instructors inmediately prior to their present position?
7. What are some of the actions which could be taken to improve the acadenic background of the individual instructor and to promote his professional growth?
B. The second set of questions to be answered relates to the content of the college transfar programs in mathenatics in the commenity colleges of North Carolina.
8. How many of the schools participating in the study offer the basic courses as recomended by CUPM for university parallel courses?
9. How many of these schools offer the optional courses as recomanded by CUPM for university parallel courses?
10. What are the mathematics coarses offared by the schools covered by this study in addition to those in the recommandations of CUPM?
11. What per cent of the schools covered by this study offer the mathematics cour ses required by the gaidelines of JCCTS?

This study will be of significance to: 1) the two year college administrators as they evaluate their present staff and as they plan their future staffing needs, 2) the univeradity mathematics departments as they plan prograns for the tratning and upgrading of the two year college mathematics teachers, and 3) the senior institutions in the evaluation of the mathematics courses which students wish to transfer from a commonity colaege.

II. Definitions of Terms Used

The term community oollege is defined by the action of the General Assembly of North Garolina as an educational institution operating under the provision of Chapter 115A of the Public School Laws of North Carolina issued in 1965 by Thad Bure, Secretary of State. The commanity college is dedicated primarily to the educational needs of the particular area for which it was established, and
a. which offers the freshman and sophomore courses of a college of arts and sciances,
b. which may offer organized curricula for the training of technicians,
c. which may offer rocational, trade and technical specialty courses and programs, and
d. which may offer courses in general adult education. 8

The Comanittee on the Undergraduate Program in Mathematics (CUPM) is defined as a committee of the Mathematical Association of America which directs its attention to the improvement of the mathematics curricula of colleges and universities and to the qualifications of mathematics teachers for the curricula at all levels.

The Joint Comittee on College Transfer Students (JCCTS) is defined as a comaittee which seeks to reduce problems of students' transferring from junior and commaity colleges to senior institutions or transferring from one senior institution to another senior institution. JCCTS is sponsored by the Iorth Comolima Association of Colleges and Universities, the Morth Carolina Association of Junior Colleges, the State

8mare, Peblic School Lans of Morth Gmolina p. 172

Board of Higher Education, and the State Board of Education.
General Gurriculum in Mathematics for Colleges is a report. of the Committee on the Undergraduate Program in Mathematics which recommends a program for general mathematics which is compract enough to be within the means of a small four year college. The program is designed to be flexible enough to meet the needs of students taking mathematics for various reasons.

University parallel mathematics courses are defined to be those courses tanght in a two year college which a student con expect to transfer to a senior institution with minimum loss of credit.

College trensfer prograns in any of the North Carolina commanity colleges are the courses which a student can expect to transfer from a commanity college to a senior institution with minimum loss of credit.

Qualifications for teaching university parallel mathematics courses in two year colleges are recommendations which are made by CUPM. The qualifications are composed of two distinct components: 1) an undergraduate foundation of courses in analysis and algebra with additional courses in geometry, computer science, and probability to provide a broad biackground, and 2) the graduate component of courses needed to provide competency to teach university parallel courses and to develop new courses as the need arises. 9

Apreanticeship in teaching is defined to be a supervised teaching activity which will help provide for prospective teachers an

[^2]understanding of the teaching and learning processes as these processes apply to the two year college program. ${ }^{10}$

Mean as used in this paper is defined to be the arithmetic mean.

III. Limitations

This study was confined to the mathematics instructors in community colleges of North Carolina who were teaching at least one college trensfer mathematics course in the fall of 1971. No attempt was made to evaluate the classroom performance or the actual competence and efficiency of individual instructors or departments as a whole except as might have been indicated by comparisons made with the data collected. The premcollege courses and technical mathematics courses were not considered in this study except as they were parallel to courses described in the guidelines of the Joint Committee on College Trandfer Students. The analysis of the textbooks and syllabi of the college transfer courses is limited to those schools which supplied this data.
IV. Organization for the Remainder of the Study

The second chapter is devoted to a review of the related literature. Procedures used in the study, including the sources, the methods of collection and the treatment of the data are outlined in chapter three. In the fourth chapter the analysis of the data on academic qualifications and professional growth of the instructors and on the content of the courses in the college transfer courses is presented. The final chapter contains the investigatoris summary, conclusions and recommendations.

CHAPTER II

REVUIEN OF THE LITRRATURS

Much work has been done to determine the proper qualifications for mathematics instructors by the professional organizations but the amount of published material on the subject is relatively small. Sinilarly, the curriculum of the college mathematics departments and that of the two year college departments has been investigated and updated but very little research on the content and implementations of recomendations has been reported. The literature on the qualifications of a two year college teacher of mathematics and of the courses in the mathematics curriculum of the two year college is for the most part linited to professional publications, journals and reports.

In this chapter the investigator has reviewed the literature ons 1) the academic qualiflications of the two year college mathematics teacher, 2) the professional growth of the college teacher, and 3) the mathematics curriculum of the two year colloge.
I. Literaturo on the Academic Qualiflications of

Four phases of the academic qualifications of the teacher of the lower dividion courses in mathematics were treated in the literature: the mathamatics courses, an apprenticeship program, the type of degree
earned, and certification and accraditation.

Mathematics Courses

Sneed ${ }^{l}$ reviewed the literature on the problems of acaderic qualifications and preparation of junior college teachers of mathematics. The report of CUPM on the qualifications for college mathematics teachers was the most comprehenivive publication which he found concorning the mathematics courses in a college teacher's preparation.

The Comadtee on the Ondergraduate Progran in Mathematics, Coon, Laible, Pikaart, Pising, and Scandura ${ }^{2}$ have indicated courses in wathenatics that a prospective two year (or junior) college teacher should have as the subject matter background in his preparation. The courses recomended by CUPM are used as criteria in this study and will be included in a later chapter. The courses listed in the publications of these
${ }^{1}$ Billy Ray Snced, "A Study of the Qualifications of Mathomatics Instructors in the Regionally Accredited Public Junior Colleges of Mississippi" (mpublished Ed.D. dissertation, Oniversity of Mississippi, 1969), pp. 21-26.
${ }^{2}$ Ad Hoc Comittee on Qualifications for a Two Year College Faculty in Mathematics, Report of the Comittee, Qualifications for Teaching Oniversity Parallel Mathematics Courses in Two Ioar Colleges (Boriceley, Calif. 8 Mathematical Association of Niorica, 1969), pp. 6-8.; Lewls Coon, Whe Doctor of Rducation Degree in Higher Education - Mathenatics at Oklahoma State University," American Mathematical Monthly, 72 (March,1965), 307309; J. M. Laible, Niew Graduate Dogree:in Nathematics," American Mathematical Monthly, 76 (June-July, 1969) 687-689; Len Pikaarit, "merging Doctoral Programs in Mathomatics Education, "Arerican Mathematical Monthly, 72 (August-September, 1965) 772-773; G. R. Bising; Thih at Advanced Degree without Mathematics Research?" American Mathematical Monthly, 74 (October, 1967) 999-1001; J. M. Scandura, "A New Doctoral Program in Mathematics Education," American Mathematical Monthly, 74 (January, 1967) 150-151.
indifiduals ace sdinilar to those of CUPM but vary in number. All six of the recommanded programs include an undergraduate major in mathematics with from ten to fifteen semestor courses to be taken at the graduate level. Hone of the programs suggests more than three courses in one area of mathematics, which enforces the CUPM recomendation that the two year college teacher have a broad background of courses rather than a background which concentrates in one or two areas of mathematics.

Sneed reperted that the population of his study did not measure up to the recomsendations of CUPM. No member of the population had taken all of the twelve courses recomended in the undergraduate program and less than one-tenth of the population had taken any of the courses listed in the graduate component. ${ }^{3}$

Apprenticeship in Two Year College Teaching

In addition to courses in mathamatios the prospective teacher's training program often includes courses in related flelds. CUPM, Bumich, Gleazner, Kuechle, Laible and Wilson ${ }^{4}$ recommandod an apprenticeship in two year college teaching or in teaching lower level courses in matheatics
${ }^{3}$ Billy Bay Sneed, "A Study of the Qualiflications of Mathematics Instructors, ${ }^{n}$ p. 96.

4
${ }^{4}$ Ad Hoc Comaittee on Qualifications for a Two Year College Faculty in Mathematics, Qualifications for Toaching University Parallel Mathematitos Courses, pp. 10-II; AIFIn C. Bumch, "Staffing Junior Colleges, n Jumior College Journal, 33 (March, 1963), 10; Edund J. Gleazner, Jr., "AAJC Approach," Junior College Journal, 35 (September, 1964), 4; Richard Kuechle, "Improving Instruction and Upper Level Ondergraduate Mathomatics;" Amorican Mathomatical Monthly, 73 (Fobruary, 1966), 194; J. M. Laible, Mow Graduate
at a collage or university. Eurich, Gleazner and Wilson ${ }^{5}$ made proposals which apply to the preparation of all junior college teachers. These writers encouraged the universities to establish programs for the training of the two year college teadher. The administration of such a program would involve the subject area departments, the departments of education and paycholagy at the university and the teachers in a nearby junior college.

CUPM and Laible ${ }^{6}$ recomended that the prospective mathenatics teacher be involved in the apprenticeship activities for as much as onequarter of his graduate program. Laible presented a plan for a three year program with the amount of teaching responsibility increasing from observation and asaistance in one class in the flrst semester to the full responsibility of two classes in the last semester of his program.

The reviewed literature reparted no statistics on the amount of preparation in an apprenticeship progran in two year college teaching. Eckert and Neale in a reviow of the research on teaching and teachers reported that, in 1964, 91 leading universities were offering courses on

[^3]college teashing or other phases of higher learning which was three times as many as were doing so in 1944. ${ }^{7}$

Dagrees Earned

CUFA, the Research Difision of M. E. A. and Sneed ${ }^{8}$ reported that the highest degree held nost comonly by two year college teachers was the master's degree. A survey by N. F. A. showed that for the academic years of 1961-62 and 1962-63, of the four hundred mathenatics teachers in the study 26.0 per cent had the doctorate or a master's degree plus one year's work. During the same period of tine 12.3 per cent of the mathomatics instructors had less than the master's degree. ${ }^{9}$ Sneed reported that ninety-one per cent of the instructors in his study had earned some type of masteris degree. 10

In the literature reviewed, several new type degrees have been proposed for the prospective college teacher of mathematics. These degreas are at a higher level than the master's degree. Some are at the doctorate level and others are between the master's degree and the dootorate. Laible outlined the program for a Specialist of College Teaching (SCT)

Thuth Fehert and Daniel C. Neale, "Teachers and Teaching," Paviow of Pducational Research, 35 (October, 1965), 305.
${ }^{8}$ Comittee on the Undergraduate Progran in Mathematics, Roport of the Comittoe, \triangle Transfor Curriculw in Pathenatics, (Berkeloy, Calif. $:$ Mathematical Association of therica. 1969), p. 5; mifeeds for college Teachers Grows," I. B. A. Rosearch Bullotin, 41 (Decenber, 1963), 110; Sneed, "A Study of the Qualifications of Yathematics Instructors;" p. 58. 9
Ibid., N. E. A.g p. 114.
${ }^{10}$ Snead. "A Study of the Qualifleations of Mathematics Instructors, n p. 97.
with a major in mathematics. 11 Coon described a Doctor of Education in Higher Education - Mathematics offered at Oklahoma State University ${ }^{12}$ and Scandura reviewed the propeaal fora doctoral program in mathematics education research. 13 Pikaart reported that the emerging doctoral programs in mathematics education were preparing teachers of mathematics for junior college and four year liberal arts colleges but gave no statistics supporting his clain. ${ }^{1 / 4}$ coon stated that, at the time of whiting his articles, recipients of the degree he described were in every state college in Oklahoma.

Although the master's degree is the degree most commonly held by two year college teachers the degree is of varying quality. This implies that the degree earned is not the best measure of qualification for appointwant of two year college teachers, their promotion, or granting tenure. 15 The question of accreaitation of institutions with prograns for preparing college teachers and of certification of individuals who have completed such a program has been raised by the editors of the Amorican Mathematical Monthly. No standards have been set

[^4]up to begin such prograns. Modified versions of the CUPM recomendations have been used as templates in assessing the preparation of individual teachers and in guiding the universities in the construction of their programs. 16
II. Literature on the Professional Growth of the

College Rathempics Teacher

The reconmendations of CUPM which relate to activities conducive to professional growth are presented in a later chapter of this study. A CUPM Newsletter of September, 1970, gave a sumary of ideas being used by sone colleges in order to provide favorable conditions for the scholarly growth of their faculties. The ideas reported were reduced teaching load for one semester for specific study time, strengthening the library, providing seminars and colloquia, visiting lecturers, providing expenses for attending professional meetings, establishing a policy on leaves, sabbatical and sumuer programs with stipends and promoting research and publications. The newsletter pointed out the value of small colleges grouping together for seminars and workshops. Some of the universities mich were included in the survey indicated that they were beginning programs to use the two year college instructors on a parttime basis at the university while the instructor was upgrading his own background in mathematics. 17

[^5]Christie and Wells ${ }^{18}$ offered sone suggestions as alternatives to research: reading, experimenting with new courses, work with talented students and doing research in mathematics education as well as minor research in mathematics.

Sneed used the six activities recomended by CUPM as criteria to determine the professional growth of his study populations. The highest level of participation was in professional reading and the least anount of participation was in publications. Sixty per cent of respondents had done additional coursework and sixty-eight per cent indicated they would have preferred to take nore coursework. Insufficient funds and lack of time were the most frequent reasons for not taking more coursework and for not attending more professional meetings. 19
III. Litorature on the Mathematics Curriculum of

The recomendations of CUPM for the mathematics curriculum were made by the comattee after an examination of the catalogues of three hundred colleges. The sumary of the survey pointed out that in an attempt to analyad course content by college catalogues three things

[^6]should be kept in mind:
i) a catalog description of a course may not be a faithful description of the course that was actually given;
ii) the available catalog may be out of date, and thus not represent the present program of a college;
iii) the course listed may be given infrequently, if at all. 20

In the same report the junior college courses offered with the greatest frequency were: "elementary algebra, plane geometry, intermediate algebra, trigonometry, analytic geometry, mathematics of finance, and even such as shop mathematics, industrial mathematics and slide rule." ${ }^{21}$

Aheart ${ }^{22}$ made a survey of the curriculum of institutions of higher learning in West Virginia. The junior colleges in his study offered the same courses as those listed in the previous study.

Linquist ${ }^{23}$ made a survey of the undergraduate programs in mathenatics for the United States Office of Education in 1961 with information gathered concerning the enrollment of the fall of 1960. The freshman mathematics courses offered most frequently were college algebra, trigonometry, and mathematical analysis. College algebra was offered

[^7]by 65.2 per cent of the responding institutions with trigonometry being offered by 62.9 per cent and mathematical analysis by 42.9 per cent. Twenty-eight and one-tenth per cent of those replying offered a course in basic concepts including topics in flnite mathematics. The sixteen courses listed most frequently by the 877 institutions were: plane geometry, solid geometry, elementary algebra, intermediate algebra, college algebra, trigonometry, analytic geometry, analytic geometry calculus, mathematical analysis, basic concepts, general mathematics, calculus, mathematics of flnance, elementary statistics, mathematics for elementary school teachers, business mathematics. 24

Averill made a survey in Michigan of the curricular offerings at sixteen Michigan community colleges which revealed that elementary statistics had been included in only one institution for any extended langth of time. He also surveyed the graduates of that community college and the industry of the community. The conclusion of this survey was that an elementary statistics course was of value to the patrons of this college and its comanity because of the employment conditions. 25

Zant reported that CUPM had made the most consistent and widespread contribution of any professional organization in the upgrading of the curriculum in college mathematics. 26

[^8]Fisher and Lightner ${ }^{27}$ exvmined the effects and the extent of implemantations of the recomendations of CUPM relative to the wathematics omprienin.

Msher mado a survey of approximatoly one-seventh of the institutions listed in Gulda to Undergradunto Prograns in Mathomatics. His study was liwitad to the implemantation of the racomendations of the CUPM panel of teacher training for Level I and Lavel III. The conclusions of this study ware that there had been an increase in the number of institutions requiring pre-service courses in mathonatics for prospective teachers of elementary school. More of the institutions had a requiremant of six hours than any other number of hours required in mathematics but were far from the number of hours recomended by CUPM. ${ }^{28}$

Lightner used the mathod of interview to survey the mathomatics curricula of the colleges of Maryland. In the perion of 1962-1967 there was reported an increasa in the offerings of linear algebra, real and complex analyois and a second course in abstract algebra. A few more colleges were offering logic, geonetry, topology and computer

[^9]science; while a decrease was noted in the offorings in probability and statistics and in the arom of numorical analysis. Inghtner found that a few of the large schools had fully implemented the recomendation of CUPM and that the small schools believed the recomendations to be unrealistic for the amall school. 29

The literature reviewed by this investigator presented proposed programs for training the prospective college mathematics teacher but there was not offored a national plan for certification of teachers of mathemtics nor one for accraditation of the training institutions. The professional growth activities were in the form of auggestions with no indication of empirical research on the number of mathematics instructors or the number of institutions involved in the suggested activities. The most recent nation-wide study on the mathenatics prograns in highor education was over ten years ago and only a few specialised studies of the mathomatics curriculum content have beon reportod.

[^10]
MEIHODS AND PROCEDURES OF THE STUDY

I. The Study Population

The study population includes the fifteen publicly supported commanity colleges of North Carolina and the mathematics instructors of the college transfer courses at those institutions. As far as could be determined by the list of instructors furnished by the administration of each institution a total of fifty-nine mathematics instructors of college transfer courses were employed by the fifteen commanity colleges of North Carolina during the fall term of 1971. The range of the number of instructors per institution was from a low of two to a high of seven with a mean of 3.93 and a mode of four.

The mathematics courses considered in this study were those listed as college transfer courses in the catalogue of the individual institutions. These varied somewhat between institutions. Remedial work is offered in almost all of the institutions as the lowest level of mathematics. The mathematics courses recommended by CUPM as university parallel courses and/or by JCCTS as guidelines for college transfer courses are used as criteria in analyzing the programs of the fifteen institutions in the population.

11. Method:: ol Gollecting Main:1

'Io collect the data for this study the investigator contacted by mail three groups of people at each institution of the study population.

The first mailing was to the president of each institution: a cover letter and form asking him to list the mathematics instructors of the college transfer courses and the head of the mathematics department. The letter assured the president that anonymity would be maintained for the institution and for the individual instructor. These lists were completed and returned by all but one of the institutions. The name of that institution's department chairmar was sent with the request that the questionnaires for the instructors be sent to the department chaimen which was the procedure for that institution alone.

The second group contacted was the mathematics instructors of the college transfer programs. A letter was sent to each instructor explaining the need for the study to be made concerning the qualifications of the mathematics instructors in the community colleges of North Carolina who were teaching the college transfer courses. The instrument used in collecting the data from the instructors was a closed questionnaire of three parts: academic preparation, professional activities, and teaching assignments. A copy of this questionnaire is in Appendix E.

The portion of the questionnaire on academic preparation was constructed by the investigator by listing the courses recomended by

CUFA for teachers of university parallel courses in two year colleges. ${ }^{1}$ The coursework which was recomended consisted of two components, the madregeaduate level and the graduate level. The undergraduate component is subdivided into the lower division courses and the upper division courses. Space was provided for the respondent to list any course which he had taken that was not one of those recomended. Two other measures of an instructor's preparation included in the question naire were an apprenticeship in two year college teaching and the degree earned. The respondent was given the opportunity to make any unstructured coment that he wished to make.

The data on the professional activities was collected by a closed form questionnaire. It was constructed in a manner similar to a questionnaire used by Sneed in an unpubliuhed dissertation. ${ }^{2}$ His questionnaire was constructed using the recommendations for profes sional growth in a 1967 publication of the Mathematical Association of Americas but this investigator used those in the 1969 publication of
$1_{\text {Ad }}$ Hoc Comittee on the Qualifications for a Two Year College Faculty in Mathematics, Report of the Comaittee, Committee on the Undergraduate Program in Mathematics, Gualifications for Teaching University Parallel Yathematics Courges in Two Year colleges (Berkeley, Calif.: Mathematicai Association of America, 1969), p.4.
${ }^{2}$ Billy Ray Sneed, "A Study of the Qualifications of Mathematics Instructors in the Regionally Accredited Public Junior Colleges of Mississippi,n (nnpublished D.Ed. dissertation, University of Mississippi, 1969) pp. 112-115.

3Ad Hoc Comittee on the Qualifications of College Teachers, Report of the Comaittee, Comaittee on the Undergraduate Progran in Mathematics, Qualifications for a College Faculty in Mathematics (Berkeley, Calif.: Prathematical Association of Tmerica, 1967), p.2.
the Mathematical Association of America concerning the qualifications or the mathematics instructors of two year colleges. 4 Statements related to the recommended professional activities were designed to obtain measureable data in this subject.

A third portion of the questionnaire was a check list of the courses recomended by CUPM as college transfer courses. The respondent was to designate the recommended college transfer courses that he was teaching in the fall term of 1971 and those he had taught during the previous two academic years, 1969-70 and 1970-71.

Concurrently with the mailing to the individual instructors, one was sent to the department chairman or to the division chairman if the institution did not designate a department chairman. Each chairman was sent a letter citing the need for a study to be made concerning the content of the college transfer programs in mathematics in the community colleges in North Carolina. A check list of the college transfer courses recommended by GUPM in the publication of the transfer curriculum in mathematics of two year colleges ${ }^{5}$ was enclosed with the letter.
$4_{\text {Ad }}$ Hoc Committee on the Qualifications for a Two Year College Faculty in Mathematics, Qualifications for Teaching University Parallel Mathematics Courses, p. 4.
${ }^{5}$ Committee on the Undergraduate Program in Mathematics, Report of the Comittee, A Transfor Curriculum in Mathematics for Two Year Colleges (Berkeley, Calli.: Mathematical Association of America, 1969), pp. 6-9.

A copy of this form can be found in Appendix H. The inventigator ablied that lists of textbooks used in the college transfor courses and any available syllabi for these courses which would be usefui in the analysis of the data on the mathematics curriculum in the commiky colleges of North Carolina be sent to the investigator.

III. Procedures Used in Reporting Data

The emphasts of this study was the extent to which the CUPM recomendations are met by the instructors and the institutions in the study population. Each institution was assigned a number at random and each instructor within each institution was asaigned a number at random also.

The recomendations of academic qualifications for the instructos are presented in tabular form for each institution the recommendations met by each instructor of college transfer courses in mathematics is indicated in the table as well as the summary for the institution. Footnotes were added where needed for ciarification.

Since CUPM did not establish a minimam level of participation in activities which are indicative of professional growth, the investigator tabulated any activity that the respondents recorded on the questionnaire. Six different forms of the professional activities were considered by the investigator and an attempt to quantify the extent of participation in these activities was presented in tabular form.

The teaching assignments of the instructors were presented by a table for each institution. The university parallel courses recommended by CUPM were listed in a table for each institution. The courses taught during the fall term of 1971 and the academic years of 1970-71 and 1969-70 are indicated in the table. The community colleges of North Carolina offer mathematics courses in addition to or in lieu of those in the CUFM recommendations. The courses offered by each institution were determined either by the form returned by the department chairman or by the catalogue of the institution. A summary of the courses offered other than those in CUPY!s recomendations is presented in a separate table.

In addition to the CUPM recommendations the course offerings in the college transfer programs of the institutions of the study population were compared to the guidelines of JCCTS.

The investigator made no analysis of the textbooks used in the commaty colleges of North Carolina nor of the syllabi of the courses at these colleges since only 26.6 per cent of the study population supplied this information.

CHAPTER IV

ANAIFSIS OF THE:DATA COLIDCTED

The major emphases of this study are the qualifications of the mathematics instructors and the content of the college transfer programs in mathematics of the commaity colleges of North Carolina. The qualifications of the instructors as determined by the data collected are compared to the recomendations of the Committee on the Undergraduate Programs in Mathematics (CUPM) of the Mathematical Association of America. CUPM has made recomendations as to the transfer curriculum of two year colleges and this study makes a comparison of these recomendations to the courses offered in the college transfer program of the commanity colleges in North Carolina. Another analysis is made of the college transfer programs in the study population by comparing these offerings to the guidelines dram up by the Joint Committee of College Transfer Students (JCCTS) for the state of North Carolina. The purpose of this chapter is to present these comparisons.

I. Presentation of Data Related to the
 Instractors

The recomendations of CUPM were of two types: 1) academic training of the instructor and 2) in-service activities which promote continuing professional growth. In structuring the instrument to collect
measurable data, other items which help to characterize the instiructors of the study population were included.

Academic Qualifications

Fifty of the fifty-nine mathematics instructors returned their quesionnaires. One instructor chose not to respond to any item on the form. The academic qualifications considered were courses recommended by CUPA, other mathematics courses, and the type of degree earned.

Academit qualifications recommended by CURII

To facilitate the understanding of the data which are to be presented, the specific recomendations fo CUPY are reviewed. The academic recomendations are given in terms of specific courses and a short description of each course is given.

The courses in the two year college curriculum for which the instructor should have the background for teaching are referred to as the university parallel courses (elementary functions, elementary functions with algebra and trigonomotry, introductory calculus, mathematical analysis, linear algebra, probability and statiatics, and the structure of the number system). ${ }^{1}$ It is the recomendation of the CUPM committee on

1 Ad Hoc Comanttee on Qualifications for a Two Year College Faculty in Mathematics, Report of the Committee, Committee on the Undergraduate Program in, Mathematics, Qualifications for Teaching University Parellel Kathematics Courses in Two Year Colieges (Berkeley, Calif.: Yathematical lissociation of America, 1969) pp. 1-2.
qualiflcations for two year college teachors that the following courses (undergraduate and gradurit) provide a mathematical background for the two year college teacher:

* Calculue courses in one and several variables including an introduction to differential equations. . . .
* The fundamentals of computer acionce, including axperience in progremang as well as the use of the computer. . . .
* A semestor course in linear algebra omploying both matrices and a basis-free, Linear transformation approach. . . .
* A course in probability and statistics that presupposes a course in calculus. . . .
* A semeater course in edranoed multivarlable calculus, covering differential and integral vector calculus, including the theorans of Green and Stokes, and an introduction to Fourier series and boundary ralue problens. . . .
* A Jear's work in abstract algobra, treating the important algebraic systems (groupa, rings, modules, vector spaces, and fields) and thoroughly doveloping the basic concepts of homcoorphim, kernol and quotiont construction with applications and consequonces of these ideas.
* A thorough year's course dealing with the important theorems in roal analyais, with aphasis on rigor and detailed proofs. The treatment shovid use matric space notions and should lead to a dotailed exarination of the Bicmann-Stieltjes integral.
* A semester course in complex ankilyais, covering Canchy!s Theorem, Taylor and Laurent expanoions, the cilculus of residues, and analytic continuation, with application of these ideas to trensforms and boundary valuo problems. . . .
* A semester course in applied mathematics. The student should be introduced to applications of matheastics in order that his teaching might better reflect the relevance of mathenatical ideas. . . .
* A semaster course in which the student studies some geometric subject such as topology, convexity, affine and projective geomotries, differential geometry or a comparative investigation of Buclidean and non-Luclidean geomotilies. . . .
* A semostor course ia probability and statistics that builds on the student's lowor diviaion course in probability and atatistics and reflects the growing importance of this subject to the biological and socifal sciences, the management soiences and ongineoring. . . . 2
${ }^{2}$ Ibld., pp. 5-7.

These courses are considered to be undergraduate courses; but if a prospective teacher has not completed them at the undergraduate level, then he should cover the material in graduate courses to make up his dificiency.

Three graduate courses are specifically recommended for each prospective two year college teacher: measure and integration, general topology, and advanced ordinary differential equations with applications. Other graduate courses which are appropriate for the two year college teacher of mathematics are functional analysis, complex analysis, homology and multivariable integration, topology and geometry of manifolds, Galois and field theory, ring theory and multilinear algebra, problem-oriented numerical analysis, and a seminar in applications. These courses are described in detailed outlines in the CUPM report, A Beginning Graduate Program in Mathematics for Prospective Teachers of Undergraduates. ${ }^{3}$

Since various colleges and universities place courses at different levels, CUPM recommends that the undergraduate and graduate levels of coursework in mathematics be considered together. The questionnaire sent to the instructors was constructed with this in mind, and thus the list of suggested courses was summarized by listing eighteen courses without designating undergraduate and graduate level. The
${ }^{3}$ Committee on the Undergraduate Program in Mathematics, Report of the Conmittee, A Beginning Graduate Program in Mathematics for Prospective Teachers of Underyraduatos, (Berkeloy, Calif.: Mathematical Association of America, 1969) pp. 20-53.

CUPM report of qualifications for two year college teachers does not designate a ninimum muber of courses which a person mast take to qualify himself as a two year college teacher.

A program of apprenticeship in teaching is of value to the prospective two year college teacher. This apprenticeship is a means by which a teacher of mathematics for two year colleges can gain an understanding of the teaching and learning processes which are peculiar to these institutions. The program of apprenticeship as recommended by CUPM would involve teaching of lower diviaion courses in a university with the supervision of a senior colleagne or teaching in a two year college under the supervision of an experienced two year teacher. This portion of the acadonic preparabion of a two year college teacher could possibly involve as mach as one quarter of the graduate work load. 4

CUPM recomendations relative to mathematics coursework met

A table was constructed listing eighteen courses which were recommended by CUFM and which were on the questionnaire sent to the study popralation of instructors. Courses which were listed at both the undergraduate and graduate level were listed only one time. The data collected from this questionnaire is presented in Tables I - XV, a table for each institution in the study. Each table contains a summary of the CUPM recomendations met, and the muber of semester courses in mathematics

[^11]TABLE I
ANALYSIS OF ACADEMIC QUALIFICATIONS DATA IN TEFMS OF CUPM RECOMMENDATIONS MET* BY MATHEMATICS INSTRUCIORS AT INSTITUTION NUMBER 1

*An x indicates that one of the eighteen academic courses recommended by CUPM has been completed.

TABLE II
ANALYSIS OF ACADEMIC QUALIFICATIONS DATA IN TERMS OF CUPM RECOMMENDATIONS MET* BY MATHEMATICS INSTRUCTORS

AT INSTITUTION NUMBER 2

Courses Recommneded by CUPM	Courses Completed by Instructor Number			
	1	$2^{\text {a }}$	3	$4^{\text {a }}$
Calculus	x		x	
Linear Algebra	x			
Probability and Statistics	x			
Computer Science	x			
Abstract Algebra			x	
Theorems of Real Analysis	x		\mathbf{x}	
Applied Mathematics			\mathbf{x}	
Complex Analysis			x	
A course in some Geometric subject	\mathbf{x}			
Measure and Integration			X	
Homology and Multivariable Integration				
Galois and Field Theory				
Advanced Ordinary Differential Equations				
Functional Analysis			x	
General Topology			x	
Topology and Geometry of Manifolds;			\mathbf{x}	
King Theory and Multi-linear Algebra				
Problem-oriented Numerical Analysis	x			
Total CUPM Recommendations Met	7		9	
Total Number of Semester Courses in Mathematics	10		22	
Range of Recommendations Met 7-9				
Mean Number of Recommendations Met	8.0			
Mean Number of Semester Courses in Mathe	tics	6		

[^12]TABLE III
ANALYSIS OF ACADEMIC QUALIFICATIONS DATA IN TERMS OF CUPM RECOMMENDATIONS MET* BY MATHEMATICS INSTRUCTORS

AT INSTITUTION NOMBER 3

* An x indicates that one of the eighteen academic courses recommended by CUPM has been completed:
$a_{\text {No }}$ return from this instructor.

TABLAS: [V
ANALYSTS OF ACADEMIC QUALTF'TCATIONS DATA IN TETMS OF' CUTM RECOMMENDATIONS MET* BY MATHEMATICS INSTRUCTORS AT INSTITUTION NUMBER 4

| Courses Reconmended by CUPM | Courses Completed by |
| :--- | :---: | :---: | :---: |
| Instructor Number | |,

*An x indicates that one of the eighteen academic courses recommended by CUPM has been completed.

T'ABLE V
ANALYSIS OF ACADENIC QUALIFICATIONS DATA IN TERPMS OF CUPM RECOMMENDATIONS MET* BY MATHEMATICS INSTRUCTORS AT INSTIIUTION NUMBER 5

| Courses Recommended by CUPM | | Courses Completed by |
| :--- | :---: | :---: | :---: | :---: |
| Instructor Number | | |

*An x indicates that one of the eighteen academic courses recommended by CUPM has been completed.

TABLE VI
ANALYSIS OF ACADEMIC QUALIFICATIONS DATA IN TERMS OF CUPM RECOMMENNATIONS MET* BY MATHEMATICS INSTRUCTORS AT INSTITUTION NUMBER 6

Courses Recommended by CUPM	Courses Completed by Instructor Number					
	1.	2	$3^{\text {a }}$	4	5	6
Calculus		x		X	x	x
Linear Algebra	x	x			x	x
Probability and Statistics :	\mathbf{x}	x		X	x	x
Computer Science	X	\mathbf{x}			x	x
Abstract Algebra	x	x		x		x
Theorems of Real Analysis				X		x
Applied Mathematics						x
Complex Analysis	x	X		x		x
A course in some Geometric subject	x	X		\mathbf{x}		
Measure and Integration				X	x	x
Homology and Multivariable Integration**	X			X		X
Galois and Field Theory	x			x		x
Advanced Ordinary Differential Equations						
Functional Analysis		x		x		x
General Topology	x			x	x	x
Topology and Geometry of Manifolds						
Ring Theory and Multi-linear Algebra				\mathbf{x}		\mathbf{x}
Problem-oriented Numerical Analysis	\mathbf{x}			x		x
Total CUPM Recommendations Met	10	8		13	6	15
Total Number of Semester Courses in Mathematics	1424	4		18	13	23
Range of Recommendations Met 6-15						
Mean Number of Recommendations Met	12.4					
Mean Number of Semester Courses in Mathema	atics		8.4			

*An x indicates that one of the aighteen academic courses recommended by GUPM has been completed.
ano return from this instructor.

TABLE VII

ANALYSIS OF ACADEMIC QUALIFICATIONS DATA IN TERMS OF CUPM RECOMMENDATIONS MEI* BY MATHEMATIES TNSTRUCTORS AT INSTITUTION NUMBER 7

Courses Reconmended by CUPM	Courses Completed by Instructor Number						
	1	2	3	4	5	6	7
Calcuius	x		x		x	X	
Linear Algebra	x				x	x	
Probability and Statistics	X	X	x	x	x		x
Computer Science	X				x	x	
Abstract Algebra	X	X			X	x	
Theorems of Real Analysis	x				X	x	x
Applied Mathematics	X		x		X	x	
Complex Analysis	\mathbf{x}	\mathbf{x}		x		x	x
A course in some Geometric subject					x	\mathbf{x}	X
Measure and Integration						X	X
Homology and Multivariable Integration						x	
Galois and Field Theory							
Advanced Ordinary -Differential Equations	x	x			x	x	
Functional Analysis							x
General Topology		X			x		
Topology and Geometry of Manifolds							
Ring Theory and Multi-linear Algebra					x	x	
Problem-oriented Numerical Analysis					x	\mathbf{x}	
Total CUPM Recommendations Met	9	5	3	2	12	13	6
Total Number of Semester Courses in Mathematics	16	7	15	8	23	19	9
Range of Recommendations Met 2							
Mean Number of Recommendations Met	7						
Mean Number of Semester Courses in Mat	mat		13				

[^13]TABLE VIII
ANALYSTS OF ACADEMIC QUALTFICATIONS DATA IN TERRS OF CUPM RECOMMENDATIONS MET* BY MATHEMATICS .INSTRUCTIORS AT INSTITUTION NOMBER 8

Courses Recommended by CUPM	Courses Completed by Instructor Number			
	1	2	$3^{\text {a }}$	4
Calculus				x
Linear Algebra		x		
Probability and Statistics				x
Computer Science				
Abstract Algebra				
Theorems of Real Analysis				
Applied Mathematics				\mathbf{x}
Complex Analysis				x
A course in some Geometric subject	x			
Measure and Integration				\mathbf{x}
Homology and Multivariable Integration				
Galois and Field Theory				
Advanced Ordinary Differential Equations	x			x
Functional Analysis				
General Topology				
Topology and Geometry of Manifolds	x			
Ring Theory and Multi-linear Algebra				
Problem-oriented Numerical Analysis				
Total CUPM Recommendations Met	3	1		6
Total Number of Semester Courses in Mathematics	17	3		13
Range of Recommendations Met 1-6				
Mean Number of Recommendations Met	3.3			
Mean Number of Semester Courses in Math	tics	11		

*An x indicates that one of the eighteen academic courses recommended by CUPM has been completed.
${ }^{a_{\text {No }}}$ return from this instructor.

TABLE IX
ANALYSIS OF ACADEMIC QUALIFICATIONS DATA IN TERMS OF CUPM RECOMMENDATIONS METY BY MATHEMATICS INSTRUCTORS AT INSTITUTION NUMBER 9

Courses Recommended by CUPM	Courses Completed by Instructor Number			
	1	2	3	4
Calculus	X		x	x
Linear Algebra	x	x	x	X
Probability and Statistics	x	X	x	x
Computer Science	X			
Abstract Algebra	x	x	x	x
Theorema of Real Analysis	x		X	
Applied Mathematics,		x	\mathbf{x}	
Complex Analysis	x	\mathbf{x}	x	x
A course in some Geometric subject	$\therefore \mathbf{x}$		x	\mathbf{x}
Measure and Integration	x			
Homology and Multivariable Integration				
Galois and Field Theory				x
Advanced Ordinary Differential Equations				
Functional Anaiysis,	X			x
General Topology		x		x
Topology and Geometry of Marifolds				x
Ring Theory and Multi-.linear Algebra	x	x		x
Problem-oriented Numerical Analysis	x			
Total CUPM Recommendations Met	12	7	8	11
Total Number of Semester Courses in Mathematics	17	20	12	18
Range of Recommendations Met 7-12				
Mean Number of Recommendations Met	9.5			
Mean Number of Semester Courses in Mathema	tics	11.7		

[^14]TABLE X
ANALYSIS OF ACADEMIC QUALIFICATIONS DATA IN TERMS OF CUPM RECOMMENDATIONS MET* BY MATHEMATICS INSTRUCTORS AT INSTITUTION NUMBER 10

Courses Recommended by CUPM	Crurses Completed by Instructor Number				
	1	2	3	4	5
Calculus	x	x	x	x	x
Linear Algebra	X	X	x	X	x
Probability and Statistics	x			x	
Computer Science	x		x		$\boldsymbol{*}$
Abstract Algebra	x	x	X		\boldsymbol{x}
Theorems of Real Analysis	x			x	
Applied Mathematics	x				\mathbf{x}
Complex Analysis	$\underline{\chi}$	x		x	
A course in some Geometric subject	x	x	x	x	x
Measure and Integration	x				x
Homology and Multivariable Integration			x		
Galois and Field Theory				x	
Advanced Ordinary Differen'jial Equations	x				
Functional Analysis	x		x		x
General Topology	x		x	x	\star
Topology and Geometry of Manifolds					
Ring Theory and Hulti-linear Algebra					
Problem-oriented Numerical Analysis	x		x		
Total CUPM Recommendations Met	14	5	9	8	9
Total Number of Semester Courses in Mathematics	21	9	17	17	15
Range of Recommendations Met 5-14					
Mean Number of Recommendations Met	9.0				
Mean Number of Semester Courses in Mathema	tics	16			

*An x indicates that one of the eighteen academic courses recommended by CUPM has been completed.

TABLE XI

ANALYSIS OF ACADENIC QUALIFICATIONS DATA IN TERMS OF CUPM RECOMMENDATIONS MET* BY MATHEMATICS INSTRUCTORS AT INSTITUUTION NUMBER 11

Courses Recommended by CUPM	Courses Completed by Instructor Number			
	1	$2^{\text {a }}$	3	$4^{\text {a }}$
Calculus			x	
Linear Algebra	x		x	
Probability and Statistics	\mathbf{x}		x	
Computer Science			x	
Abstract Algebra				
Theorems of Real Analysis			x	
Applied Mathematics			x	
Complex Analysis	\mathbf{x}		\boldsymbol{x}	
A course in some Geometric subject	\mathbf{x}			
Measure and Integration.	x		\mathbf{x}	
Homology and Multivariable Integration				
Galois and Field Theory			\mathbf{x}	
Advanced Ordinary Differential Equations	x			
Functional Analysis				
General Topology				
Topology of Manifolds				
Ring Theory and Multi-linear Algebra				
Problem-oriented. Numerical Analysis				
Total CUPM Recommendations Met	6		9	
Total Number of Semester Courses in Mathematics	9		14.	
Range of Recommendations Met 6-9				
Mean Number of Recommendations Met				
Mean Number of Semester Courses in Math		11.5		

[^15]TABLE XII

ANALYSIS OF ACADEMIC QUALIFICATIONS DATA IN TERRS OF CUPM RECOMMENDATIONS MET'* BY MATHEMATICS INSTTUCTORS AT INSTIIUTION NUMBER 12

| Courses Recommended by CUPM | Courses Completed by |
| :--- | :---: | :---: | :---: |
| Calculus - | Insructor Number |

[^16]TABEE XIII
ANALYSIS OF ACADEMIC QUALIFICATIONS DATA IN TERMS OF CUPM RECOMMENDATIONS MET* BY MATHEYATICS INSTRUCIORS AT INSTITUTION NUMBER 13

Courses Recommended by CUPM	Courses Completed by Instructor Number		
	1	2	3
Calculus	X	X	x
Linear Algebra		x	x
Probability and Statistics	X	X	x
Computer Science		x	x
Abstract Algebra	X	x	x
Theorems of Real Analysis	x		x
Applied Mathematics		x	
Complex Analysis			
A course in some Geometric subject	x	x	x
Measure and Integration		X	
Homology and Multivariable Integration		X	
Galois and Field Theory			
Advanced Ordinary Differential Equations	x		
Functional Analysis	X	\mathbf{x}	
General Topology	X		x
Topology and Geometry of Manifolds			
Ring Theory and Multi-linear Algebra			
Problem-oriented Numerical Analysis			x
Total CUPM Recommendations Met	8	10	9
Total Number of Semester Courses in Mathematics	14	13	12
Range of Recommendations Met 8-10			
Mean Number of Recommendations Met	9.0		
Mean Number of Semester Courses in Mathema	tics	3	

[^17]TABLE XIV
ANALYSIS OF ACADFMIC QUALIFICATIONS DATA IN TERMS OF CUPM RECOMMENDATIONS MEI* BY MATHEMATICS INSTRUCTORS AT INSTITUTION NUMBER 14
$\left.\begin{array}{lcc}\hline \text { Courses Reconmended by CUPM } & \text { Courses Completed by } \\ \text { Instructor Number }\end{array}\right]$
*An x indicates that one of the eighteen academic courses recommended by CUPM has been completed.

TABLE XV
ANALYSIS OF ACADMYIC QUALIFICATIONS DATA IN TERESS OF CUPM RECOMIENDATIONS MEHZ BY MATHEMATICS INSTRUCTORS AT INSTITUTION NUMBER 15

*An x indicates that one of the eighteen academic courses recommended by CUPM has been completed.
completed by each instructor. The summary also indicates the range of recommendations met, the mean number of recommendations met and the mean number of semester courses in mathematics for the instructors of each institution.

Analysis of the data for the forty-nine respondents revealed that the number of CUPM courses taken ranged from a low of one to a high of sixteen. The mean number of course recommendations met by the instructors of the population was 8.5. The mean number of course recommendations for the institutions ranged from 3.3 to 12.5. The mean for ten of the fifteen institutions exceeded the mean for the instructors. Institution number fifteen had the greatest institutional mean, 12.5, in terms of the recommendations met by the instructors of that institution. All of the institutions had at least one instructor who had net one-half of the course recommendations.

Of the three graduate courses specifically recommended by CUFA for the two year college teacher, twenty-five instructors had received credit for measure and integration, twenty-five for general topology, and sixteen for advanced ordinary differential equations with applications.

CUFM recomendations relative to apprenticeship met

Only forty-four of the instructors of the study population made a.response to the question concerning apprenticeship in two year college
teaching. Of that number three indicated that they had participated in an apprenticulify program. Three other instructors had worked as a teaching graduate assistant in a university but gave no indication that the assistantship was supervised by a college or university professor.

Coursemork in mathenaties

The total number of credits, undergraduate and graduate, in mathematics for an individual instructor ranged from a low of three semester courses to a high of thirty-one semester courses with 15.8 as the mean number of semestar courses completed by the respondents of the study population. The man number of semester courses of mathematics for the instructors of an individual institation had a range of eleven to 22.3. Institution eleven and institution fifteen had institutional means of more than twenty semaster courses in mathematics.

Types of degrees earned

The forty-nine respondents indicated fifty-one post-baccalaureate degrees earned. All had earned some type of master's degree. A sumary of these data is presented in Table XVI. The most popolar degree earned by the study population was the Master of Arts degree. Each of tivo respondents earned two types of master's degrees one earned both the Master of Arts and Mastar of Science while the other earned the Master of Arts and the Master of Education. None of the population had earned the Doctor of Arts or one of the other newer degrees structured for the college teacher. Two respondents had

TYPES AND NUMBER OF DEGREES EARNED BY MEMBERS OF STUY POPULATION BY INSTITUTION

Institution Number	Highest Degree Earned					
	Ph.D	Ed.S.	Mos.	M.A.	$\begin{aligned} & \text { M. Ed. } \\ & \text { \& in Ed. } \end{aligned}$	M.A.T.
1				2		
2			1			1
3.				2		
4^{2}			1	2	1	
5		1		2		1
6		1	1	2		1
7			4	2	2	
8			1	2		
9			2	1		1
10			2	2		1
11	1			1		
$12^{\text {b }}$				3	1	1
13				2	1.	
14			1	1		
15			1	1		
Totals	1	2	14	25	3	6
Per Cent of Total	1.9	3.9	27.4	49.0	5.7	11.7
$\begin{aligned} & \text { one ins } \\ & \text { bone ins } \end{aligned}$	$\begin{aligned} & \mathrm{r} \text { hol } \\ & \text { hol } \end{aligned}$	$\begin{aligned} & \text { both } \\ & \text { both } \end{aligned}$	$\begin{aligned} & \text { the M.A } \\ & \text { the M.A } \end{aligned}$	$\begin{aligned} & \text { and } M_{.} \\ & \text {and } M_{0} . \end{aligned}$		

earned the Educational Specialist degree but in areas other then college teaching.

Professional Qualifications

Forty-nine of the fifty-one mathematics instructors of the study population returned a completed or partially completed questionnaire. One of these instructors did not complete any of the section on professional activities. Table XVII presents the number of questionnaires returned by each institution and the per cent of return for the study population of instructors.

Professional activities recommended

Academic preparation of a two year college teacher is not the only means of qualifying an individual to teach effectively. Professional activities of various forms contribute to continuing mathematical growth. The committee on the qualifications for two year college teachers in mathematics of CUPM suggested several forms of these mrofessional activities. The forms of activities which were included in the questionnaire designed for this study are:
(a) taking additional course work,
(b) reading and studying to keep aware of new developments and to explore new fields,
(c) engaging in research for new mathematical results (even when unpublished)
(d) developing new courses, new ways of teaching and new classroom material,
(e) publishing expository or research articles,

TABIE XVII

NUMBER AND PERCENTAGE OF QUESTIONNAIRES RETURNED BY MATHEMATICS INSTRUCTORS AT EAGH INSTITUTION

Institution Number	Number of Mathematics Instructors	Number of Questionnaires Returned	Per Cent
1	2	2	100
2	4	2	50
3	3	2	67
4	3	3	100
5	4	4	100
6	6	5	83
7	7	7	100
8	4	3	75
9	4	4	100
10	5	5	100
11	4	2	50
12	6	4	67
13	3	3	100
14	2	2	100
15	2	2	100
Totals	59	50	85*

*This figure represents the overall percentage of returns and is not a colum total.
(f) participating in the activities of professional mathematical organizations. ${ }^{5}$

Professional activities of the study population

The purpose of the second portion of the questionnaire was to determine the extent to which members of the study population engaged in activities which are conducive to professional growth. Tables XVIII XXXII are designed to present the data collected by the questionnaire on professional growth. The respondent was to indicate any of the activities in which he had participated within the previous five years.

A review of the tables indicated that for the population of instructors the number of activities in which any one instructor was involved ranged from one to six activities. Only one instructor had been engeged in all six of these forms of activities. The highest mean of suggested activities for an institution was four and the mean for the forty-eight instructors responding to this portion of the questionnaire was 3.0.

Table XXXIII summarizes the data collected by listing the six activities and noting the number participating in each activity and the per cent of participation. The activities are ranked according to participation. Professional reading was the most frequently indicated activity of the list. The least amount of participation was in the

[^18]
TABIE XVIII

ANALISIS OF PROFESSIONAL GROWTH DATA IN TERMS OF CUPM RECOMIENDATIONS MEI* BY MATHEMATICS INSTRDCTORS AT INSIITUTION NOIBER 1

Activities Recommended by CUPM	Instructor Number
	12
Additional Coursework	- -
Semester hours in mathomatics	
Semester hours in education	
Semester hours in other areas	
Publications	- -
Number of articles published in mathematics journals	
Number of articles published in other journals	
Professional Affiliations	$x \quad x$
Number of memberships	$2 \cdot 2$
Number of meetings attended	11
Professional Reading	$x \quad x$
Humber of journals read regularly	14
Average number of books on mathematics read regularly	28
Original Research Number of research projects	- -
Development of New Courses Number of new courses developed	$\begin{aligned} & x \\ & 1 \end{aligned}$
Total Number of CUPM Recommandations Met	32
Range of Recommendations Het 2-3	
Mean Rumber of Recommendations Met 2.5	

*An x indicates that one of the six CUFM recomendations on professional growth has been met.

ANALYSIS OF PROFESSIONAL GROWTH DATA IN TERYS OF CUPM RECOMALENATIONS HET* BY MATHEHAMICS INSSRNCTORS AT INSITTUMION NOIBER 2

Activities Recommended by CUPM	Instructor Number		
	I	3	4^{3}
Additional Coursework x x Somestar hours in mathematics 6 40 Somester hours in education 2 50 Semester hours in other areas			
Publications Number of articles published in mathematics Joumals Number of articles published in other journals			
Professional Affiliations	x	x	
Number of memberships	1	2	
Number of meetings attended	2	4	
Professional Reading Number of journals read regularly Average number of books on mathematics read regularly	x	${ }^{x}$	
	3	5	
	8	10	
Original Research Number of research projects	-	-	
Development of New Courses Number of new courses developed	-	x 7	
Total Number of CUPM Recommendations Met	3	4	
Renge of Recomendations Yet 3-4			
Mean Mumber of Recommendations Met 3.5			

*An x indicates that one of the six CUPM recomendations on professional growth has been met.

No return from this instructor.

TABLE XX
ANALISIS OF PBOFESSIOMAL GBOWIH DATA IN TERYS OF CUPM RECOMITENDATIONS MET* BY MATHEMAIICS INSIRUCTORS AT INSIITUTION NOMEER 3

Activities Recommended by CUFM	Instructor Mumber		
	1	2^{8}	3
Additional Coursework	x		-
Smestar hours in mathematics	6		
Semestor hours in education			
Semester hours in other areas			
Publications	-		-
Number of articles pablished in mathomatics journals			
Number of articles published in other journals			
Professional Affiliations	X		-
Niumber of memberships	1		
Number of meetings attended	1		
Professional Reading	X		x
Number of journals read regularly	1		2
Average mumber of books on mathematics read anmally	2		2
Original Research	-		-
- Number of research projects			
Development of New Courses	x		-
Humber of new courses developed	1		
Total Number of CUPM Recomendations Met	4		1
Range of Recommendations Mot 1-4			
Mean Number of Recomsandations Met 2.5			

*In x indicates that one of the six CUPM recommendations on professional growth has bsen met.
so return from this instructor.

ANALYSIS OF PROFESSIONAL GROWTH DATA IN TERMS OF CUFM RECOMMENDATIONS MEI* BY MATHPMATICS INSTRUCTORS AT INSTITUTION NUMBER 4

*An x indicates that one of the six CUPM recommendations on professional growth has been met.

TABIE XXII

ANAITSIS OF PROFESSIOMAL GROWTH DATA IN TERMS OF CUFM rigcomicidations mitn by hatheylitics instructors AT INSTITUTION NURBER 5

Activities Recommended by CUPM

Instructor Number
143

Additional Coursework
Somester hours in mathematics
x
Semester hours in edacation 2

Semester hours in other areas
Publications
Number of articles published in mathematics journals
Number of articles published in other journals

9
$\begin{array}{lll}\text { Professional Affiliations } & \text { - } \\ \text { Fumber of manberships } & 3 \\ \text { Number of meetings attended } & 3\end{array}$
Professional Reading
Number of journals read regularly
$\boldsymbol{x} \quad \mathbf{x} \quad \boldsymbol{x} \quad \boldsymbol{x}$
Average number of books on mathematics read annually
$\begin{array}{llll}2 & 5 & 2\end{array}$
Original Pesearch
Number of research projects
Development of New Courses
Namber of new courses developed 1

Total Number of Recomendations Met
$\begin{array}{llll}3 & 3 & 1\end{array}$
Range of Recomendations Met 1-3
Mean Number of Recomendations Met 2.0
*in x indicates that one of the six CUFM recommendations on professional growth has been met.

TABLS RXIII
 ABAIISIS OF PROFESSIONLL ARONTH DATA IN TERNS OF CUPM AT IISTITUNTOM ROYETR 6

Activities Recommonded by CUFM	Instructor Mumber				
	1	2	4	5	6
Mdditional Coursework	-	\pm	-	x	x
Somester hours in mathematics		18		6	15
Semestar hours in education		39			45
Somester hours in other areas					
Pablications	-	-	-	-	
Number of articles prblished in mathenatics journals					
Number of articles published in othor journals					
Professional Affiliations	x	x	x	-	
Sumber of memberships	1	1	1		
Mumber of meetings attended		2			2
Profescional Reading	x	-	x	-	x
Number of journals rad regularly	2		1		2
Averige maber of books on	10		2		10
Original Research	x	-	-	-	-
Nunber of research projects	2				
Develppment of New Courses Nhaber of net courses developed	-	x	-	-	-
		3			
Total Houber of CuFA Recommondations Met	3	3	2	1	3
Range of Recommendations Met 1-3					
Mem Mumber of Recormondations Yet 2.4					

*An x indicates that one of the six CUPM recomendations on professional growth has been met.

Wo raturn from this instructor.

ANAITSIS OF PROFEGSIOMAL GROWTH DATA IN TERNS OF CUPM
 AT INSTITUTION NOMEBER 7

Aetivities Recommended by CJPM	Instructor hamber						
	1	2	3	4	5	6	7
```Additional Coursework Sameater hours in mathematis Semestar hours in education: Semester hours in other areas```							
Pablications   Nomber of articles published in mathomatics joumals   Number of articles pablished in other journals	-	-	-	-	-	-	x
							1
Professional Affiliations	$x$	$x$	$x$	${ }^{x}$	$x$	$x$	x
Numiser of momberships	1	1	1	1	1	1	1
Number of meeting attended				3	3	1	1
Professional Reading   Number of journals read regularly   Average mumer of books on mathematies read annally	1	X	x	x	x	5	$\underline{x}$
	1	3	1	3	2	5	1
	2	5	5	2	10	10	5
Original Research   Number of research projects	-	-	-	-	-	$x$ 3	$x$ 3
Development of New Courses lhamber of new courses developed	-	-	-	-	-	-	$x$ 2
Total Ifumber of CUFM Recornendations Met	2	2	2	2	2	4	6
Range of Recommendations Met 2-6							
Mean Number of Recommendations Mot 3.0							

*An $x$ indicates that one of the six CUPM recomendations on professional growth has been met.

## anatysis of professiomal grouth data in teris of cupm RECOMIERDATIOMS MET* BY MATHE1ATICS DNSTRJCTORS at misitiotion nombir 8

Activities Recommended by OUSM	Instructor Hamber			
	1	2	$3{ }^{3}$	4
Additional Coursework	$x$	${ }^{\text {x }}$		-
Somestor hours in mathematics	6	26		
Somester hours in education	3			
Semester hours in other areas				
Publications	-	-		$\mathbf{x}$
Number of articies published in mathematies journals				
Number of articies prblished in other journals				9
Professional Affiliations	x	$x$		-
Mamber of memberships	1	3		
Number of meetings attonded		1		
Professional Reading	I	x		$x$
Number of journala read regularly	3	4		
Average muber of books on mathomatics read mmally	5	5		8
Original Hesearch   Number of resaareh projects	-	$x$ 2		-
Development of Mew Courses	$x$	$x$		x
Number of new courses developed	1	1		1
Total Ihumeer of CUFM Recommendations Met	4	5		3
Range of Recomaendations Mat 3-5				
Mean Mumber of Recommendations Met 4.0				

*An $x$ indicates that one of the six CUFM recomendations on professional growth has been met.
aifo return from this instructor.

TABIE XXVI

## aHALISIS OF PBOFESSIONAL GROWTH DATA IN TERYS GFGUEA RECOMAIHDATIONS METH BY MATHEMMTICS DNSTRUCTORS AI IHSTITUTIOM KUNBER 9

| Activities Recomanded by cupar |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |

*An $x$ indicates that one of the six COPM recommendations on professional growth has been met.

## TABIE XXVII

ANALISIS OF PROFEBSIONAL GROWTH DATA IN TERMS OF CUPM FIGCOMNENDATIONS MEI'* BY MATHEMATICS INSTRUCTORS AT INSTITUTION NUYBER 10

Activities Recommended by CUPM	Instructor Nuraber				
	1	2	3	4	$5{ }^{\text {a }}$
Additional Coursework	x	x	$x$	$x$	
Semester hours in mathematics	21	4	6	18	
Semester hours in education			45		
Semester hours in other areas			6		
Publications	-	-	-	$\mathbf{x}$	
Number of articles published in mathematics journals				4	
Number of articles published in other journals					
Professional Affiliations	-	$\times$	x	x	
Number of memberships		1	5	2	
Number of meetings attended		2	10	10	
Professional Reading	$\boldsymbol{x}$	x	${ }^{x}$	${ }^{\mathbf{x}}$	
Number of journals read regularly	1	2	5	4	
Average mumber of books on mathomatics read annually	5	2	5	5	
Original Research	-	-	$x$	x	
Number of research projects			2	2	
Development of New Courses	-	x	-	-	
Number of new courses developed		1			
Total Mamber of Recommendations Met	2	3	4	5	
Renge of Recommondations Met 2-5					
Mean Number of Recommendations Mot					

*An $x$ indicates that one of the six CUPM recomendations on professional grouth has been met.
${ }^{\text {a }}$ Instructor did not respond to this section of the questionnaire.

## TABLE XXVIII

## AMALISIS OF PRDFESSIONAL GROWTH DATA IN TERNS OF CUPM RECOMRIENDATIONS METH* BY MATHEMATICS INSTRUCTORS AT INSTITUTION NOHBER 11

Activities Recommended by CUFM	Instructor Number				
	1	$2^{8}$	3	$4^{2}$	
Additional Coursework	x		$x$		
Somoster hours in mathematics	12		9		
Somostar hours in education					
Somester hours in other areas	6				
Publications	-		x		
Number of articles published in mathematics journals					
Number of articies published in other jourals			2		
Professional Affiliations	x		-		
Number of memberships	2				
Number of meetings attended					
Professional Reading	x		-		
Number of journals read regularly	1				
Average number of books on mathomatics read anmually	2				
Original Research	-		-		
Number of research projects					
Development of New Courses Number of new courses developed	-		-		
Total Kumber of CUPM Recommendations Met	3		2		-
Range of Recommendations Met 2-3					
Mean Number of Recommendation Met 2.5					

*An $x$ indicates that one of the six CUPM recomendations on professional growth has been met.

2Mo return from this instructor,

## AHALYSIS OF PROFESSIONAL OROWTH DATA IN TERMS OF CUPM RECOMMENDATIONS MET* BI MATHEHATICS INSTRUCTORS AT INSTITUTION NUMESR 12


*An $x$ indicates that one of the six COPM recommendations on professional growth has been met.

No return from this instructor.
$b_{\text {Instructor }}$ declined to complete the questionnaire.

TABLE XXX

## ANALISIS OF PROFRSSIONAL GROWTH DATA IN TERMS OF CUPM RECOMAENDATIONS MET* BY MATHBLATICS INSTRUCTORS AT INSTITUTION NUNBER 13

Activities Recomended by CUPM	Instructor Mumber		
	1	2	3
Additional Coursework	-	$x$	-
Somestor hours in mathematics		18	
Semester hours in education		1	
Semester hours in other areas			
Publications	--	-	-
Number of articles published in mathematics journals			
Number of articies published in other journals			
Professional APfiliations	-	x	x
Number of memberships		1	1
Number of meeting sattended	5	3	
Professional Reading	x	x	$x$
Kumber of journals read regalarly		2	1
Average mumber of beoks on rathematics read anmally	2	2	2
Original Research	$x$	$x$	-
Number of research projects	1	1	
Development of New Courses	x	x	-
Number of new courses developed	2	2	
Total Mumber of CUFM Recommendations Met	3	5	2
Range of Recommendations Met 2-5			
Mean Number of Recomendations Met 3.3			

*An $x$ indicates that one of the six CUPM recomendations on professioanl growth has been met.

## TABLE RXXI

ANAITSIS OF PROFESSIONAL GROWTH DATA IN TERNS OR CUFM HECOMNIENDATIONS MET* BY MATHEMATICS INSIRUCTORS

AT INSIITUTION EOMBER I4

*An $x$ indicates that one of the six CUPM recomendations on professional growth has been met.

*an $x$ indicates that one of the six CUPM recomendations on professional growth has been met.
publication of articles or books. Research had been done in the past five years by only 18.4 per cent of the popalation.

TABLE PXIII
NUMBER AND PER CENT OF RESPONDENTS PARY'ICI PATIMG IN ACTIVITIES REFLDCTING PROFESSIONAL GROWIH

Activities Recommended   by CUPM	Mumber of Respondents   Participating to Some   Extent in Each Activity	Per   Cent	Rank
Professional Reading	46	93.8	1
Professional Affiliations	35	71.4	2
Additional Courcework	29	59.1	3
Development of New Courses	21	42.8	4
Original Research	9	18.4	5
Publications	6	12.2	6

The structure of the questionnaire provided additional informetion in the rarions forms of professional activities.

Professional reading. -Two types of reading materials were included in the questionnaire, professional journals and books of mathematical nature. The Mathematics Teacher and the Junior College Journal were read by more of the study popalation than any other professional journal. Twenty-one respondents indicated that they read one to three books annually, thirteen read four to oix books annually, three read seven to nine books and seven read ten or more books of a mathematical nature.

Professional affiliations.--Table XXXIV presents the data collected concerning the population's membership in professional mathematical organizations. The table shows that more instructors (who responded to this item) were members of the National Council of Teachers of Mathematics than any other pofessional mathematical organization. Three instructors indicated that they were members of the North Carolina Council of Teachers of Mathematics. Approximately one-fourth of the respondents were not members of any mathematical professional organization.

TABLE XXXIV
MEMBERSHIP IN PROFESSIONAL MATHEMATICAL ORGANIZATIONS

Organization	Number of Respondents Holding Memberships	Per   Cent
Mathematical Association of America	20	40.8
American Mathematical Society	1.	2.0
National Council of Teachers of Mathematics	21	42.9
Others	10	20.4
None of the above	13	26.5

Additional coursework.--Fifty-nine and one tenth per cent of the respondents indicated that they had earned additional credit in mathematics during the past five jears. Fifty-eight per cent of these indicated that they had earned some credit while paying their own way. The mean number of semester hours of coursework completed was 13.4.

Thirty-two of the respondents indicated that they would have preferred to have taken more coursework over the past five years. The most frequent reasons given for not taking additional coursework were the lack of time and financial considerations.

Development of new courses.--The majority of the respondents had developed new courses within the past five years. Most of these had worked on the new courses individually but some new courses were developed by the entire department of a given institution. One individual reported that he had developed seven new courses. In the development and teaching of the new courses for a community college, the instructors reported that they wrote their own class notes.

Original research.--The eight instructors who reported doing original research worked on a total of fourteen projects. Two instructors had worked on three projects each, tiree had worked on two projects, and the othar two had each worked on one project.

Publications.--The articles published by the study population were published in mathematics journals, education journals and space science pablications. Each of two of the respondents indicated that they had pablished a total of nine or more articles. None of the instructors had textbook published within the period of time covered by this study.

Experience prior to becoming a commanity college mathematics instructor

Table XXXV presents the information collected from the population pertaining to the experience of the instructors before they began teaching in a community college. Not all of the returned questionnaires had a response for this item. Of those responding, the largest percentage, 24 of 47, had been teachers at the senior high school level. The next largest group was those who had served as graduate assistants. This group comprised 21.3 per cent of the respondents. As previously noted, the graduate assistantship: did not, ini every case, involve work as an apprentice in two year college teaching.

## TABLE XXXV

EXPERIENCE OF RESPONDENTS PRIOR TO BECOMING TWO mear coldrge mathematics teachers

Type of Experience	Number of   Respondents	Per   Cent
Senior High School Teacher	24	51.5
Full-time Student	2	4.2
Junior High School Teacher	3	6.3
Graduate Assistant	10	21.3
Full-time Four Year College   or University Instructor	4	8.4
Other*	4	8.4
Total	47	

*Includes a mathematics cousultant, a space engineer, a quality control engineer, and a technical institute instructor.

## II. Presantation of Data Related to the Mathematics

 Coursos in the College Iranafer ProgramsEach of the instructors of the study population who returned his quesionnaire completed a form indicating the courses which were recommended by CUPM that he had taught in the two previous academic years and that he was teaching in the fall term of 1971. Two other sources were used to analyze the offerings in the college transfer programs in mathematics. Those were the form returned by the department chairman and the catalogue of each institution.

The analysis of the data collected relative to the mathematics courses in the college transfer programs will be discussed in this portion of this chapter. The outline of the topics is:
A. Courses recomended by CUPM for two year colleges

1. Courses recommended by CUPM being taught
B. Guidelines recommended by JCCTS
2. Courses recommended by JCCTS being taught
©. Other mathematics courses in the college transfer programs

Courses Recomended by CUPM for Two Year Colleges

The minimal set of offarings which is recommended by CUPM is described in four categories: 1) calculus preparatory, 2) calculus and linear algebra, 3) business and social science and 4) teacher training. The courses in the various categories are described in
the report of CUPM relative to the transfer curriculum in mathematics. ${ }^{6}$ To facilitate the understanding of the analysis of the data these courses are outlined here. Additional offerings, which may be used to complete the curriculun of a two year college with stadents who have special interests, are described also. In this outline of the course offerings the term "GCMC" refers to the booklet, A General Curriculum in Mathematics for Colleges. ${ }^{\text {? }}$

## BASIC OFFERINGS

I. Calculus Preparatory
(a) Elementary Functions and Coordinate Geometry, Mathematics 0 (as in GCMC).
(b) Elementary Functions and Coordinate Geometry, with Algebra and Trigonometry, Mathematics A.
One or both of these should be offered by every two-year college.
II. Calculus and Linear Algebra
(a) Introductory Calculus, Mathematics B. (An intuitive course covering the basic concepts of single variable calculus. Similar to GCMC Mathematics 1.)
(b) Mathematical Analysis, Mathematics C. (A more rigorous course completing the standard calculus topics, as in GCMC Mathematics 2, 4.)
(c) Linear Algebra, Mathematics L. (An elementary treatment similar to GCKC Mathematics 3, but parallel to, rather than preceding, the last analysis course.)
Categories I and II constitute the basic premscience offerings and shaild be offered by every two-year college with a transfer program.
${ }^{6}$ Cominittee on the Undergraduate Program in Mathematics, Report of the Comonittee, A Transfor Curriculum in Mathematics for Two Year Colleges (Berkeley, Calif.: Kathematical Association of Arerica, 1969).

7
Comaittee on the Undergraduate Program in Mathematics, Report of the Consittee, A Genoral Gurriculum in Mathentios for Oolleges (Berkeley, Calif.: Mathematical Association of merica, 1965).

```
III. Business and Social Science
 Probability and Statistics, Mathematics PS. (An intro-
 ductory course stressing basic statistical concepts.)
 IV. Teacher Training
 Structure of the Number System, Mathenatics NS. (A
 year course as recommended by the Panel on Teacher Train-
 ing for the preparation of elementay school (Level I)
 teachers.
 The second year of preparation algebra and geometry
 should also be offered wherever possible.)
 1. Finite Mathematics, Mathematics FM (A course of considerable
 interest and utility, especially for students of the non-
 physical sciences.)
 2. Intermediate Differential Equations, Mathematics DE.
 3. Differential Equations and Advance Calculus, Mathematics
 DA.
 4. Probability Theory, Mathematics PR. (A calculus based
 course in GCMC, Mathematics Np.)
 5. Numbrical Analysis, Mathematics NA. \({ }^{8}\)
```

Courses recommended by CUPM being taught

Tables XXXVI through L present the courses taught by the instructors of the study population during the fall term of 1971 and the two preceding academic years. An entry in a column indicates that at least one of the instructors who responded had taught the course.

The investigator, using the course descriptions in the CUPM publications, and in the catalogue of each institution, compared the lists of courses offered by each institution with the courses recommended by CUPM. Where a catalogue description varied in many items with the descriptions of a CUPM course, the investigator did not count this course

[^19]COLLEGE TRANSFER COURSES REGOMMENDED BY CUPM BEIMG
TAUGHT OR TAUGHT DURING THE PAST TWO YEARS
AT INSTITUTION NOMBER 1

'IABLE XXXVTI

## COLLEGE TRANSFER COURSES RECOMMENDED BY CUPM BEING TAUGHT OR TAUGHT DURING THE PAST TWO YEARS AT INSTITUTION NUMBER 2

Name of Course	Fall 1971	1970-71	1969-70
Elementary Functions and Coordinate Geometry (1 semester)	X	X	
Elementary Functions and Coordinate Geometry with Algebra and Trigonometry (2 semesters)	X	X	X
Introductory Calculus (1 semester)			X
Mathematical Analysis (2 semesters)			
Linear Algebra			
Probability and Statistics			
Stracture of Number Systems (2 semesters)	X	X	X
Algebra and Geometry (2 semesters)	X	X	X
Numerical Analysis			
Finite Mathematics		X	X
Intermediate Differential Equations			
Differential Equations and Advanced Calculus			
Probability Theory (based on calcul			

COLLEGE TRANSFER COURSES RECOMMENDED BY CUPM BEING TAUGHT OR TAUGHT DURING THE PAST TWO YEARS AT INBTITUTION NOMBISR 3

Name of Course Fall 1971	1970-71	1969-70
Elementary Functions and Coordinate Geometry (1 semster)		
Elementary Functions and Coordinate Geometry with Algebra and Trigonometry (2 semesters)	X	X
Introductory Calculus (1 semester)	X	X
Mathematical Analysis (2 semesters)		
Linear Algebra		
Probability and Statistics		
Structure of Number Systems   (2 semesters)	X	X
Algebra and Geometry		
Numerical Analysis		
Finite Mathematics		
Intermediate Differential Equations	$X$	
Differential Equations and Advanced Calculus		
Probability Theory (based on calculus)		

TABLE XXXIX
COLLEGE TRANSFER COURSES RECOMAENDED BY CUPM BEING TAUGHT OR TAUGHT DURING THE PAST TWO YEARS AT INSIITUTION NONBER 4

Name of Course	Fall 1971	1970-71	1969-70
Elementary Functions and Coordinate Geometry (1 semester)	X	X	X
Elementary Functions and Coordinate Geometry with Algebra and Trigonometry (2 semesters)	I	X	X
Introductory Calculus (1 semester)	X	X	X
Mathematical Analysis (2 semesters)	I	X	X
Linear Algebra			
Probability and Statistics			
Structure of Number Systems (2 semesters)	X	X	X
Algebra and Ceometry (2 semesters)			
Numerical Analysis			
Finite Mathematics			
Intermediate Differential Equations			
Differantial Equations and Advanced Calculus			
Probability Theory (based on calculus)			

TABLE XL
COLLEGE TRANSFER COORSES RECOMMENDED BY CUPM BEING
TAUGHT OR TAUGHT DURING THE PAST TWO YEARS AT INSTITUTION NUMBER 5

Name of Course	Fall 1971	1970-71	1969-70
Elementary Functions and Coordinate Geometry (1 semester)	X	X	X
Elementary Functions and Coordinate Geometry with Algebra and Trigonometry   (2 semesters)	X	X	X
Introductory Calculus (1 senester)		X	X
Mathematical Analysis (2 semesters)		X	$x$
Linear Algebra			
Probability and Statistics		X	X
Structure of Number Systems (2 semesters)			
Algebra and Geometry (2 semesters)	X	X	
Numerical Analysis			
Finite Mathematics			
Intermediate Differential Equations			X
Difierential Equations and Advanced Calculus			
Probability Theory (based on calculus)			

## COLLEGE TRANSFER COURSES RECOMENDED BY CUPM BEING tajght or tadohit durina the past two years AT INSIITUTION NOMBER 6

Name of Course	Fall 1971	1970-71	1969-70
Elementary Functions and Coordinate Geometry (1 semester)	X	X	X
Elementary Functions and Coordinate Geometry with Algebra and Trigonometry (2 semesters)	X	X	$X$
Introductory Calculus (1 semester)	$\mathbf{X}$	$\mathbf{X}$	X
Mathematical Analysis (2 semesters)			
Linear Algebra			
Probability and Statistics	X	X	X
Structure of Number Systems (2 semesters)	X	X	X
Algebra and Geometry (2 semesters)	X	X	X
Numerical Analysis			
Finite Mathematics			
Intermediate Differential Equations			
Differential Equations and Advanced Calculus			
Probability Theory (based on calculus)			

# COLIEGE TRANSFER COURSES RECOMMENDED BY CUPM BEING TAUGHT OR TAUGHT DURING THE PASI TWO YEARS AT INSTITUTION NOMBER 7 

Hame of Course	Fall 1971	1970-71	1969-70
Elementary Functions and Coordinate Geometry (1 semester)	X	X	X
Elementary Functions and Coordinate Geometry with Algebra and Trigonometry (2 semesters)	X	X	X
Introductory Calculus (1 semester)		I	X
Mathematical Analysis (2'semesters)	X	X	X
Linear Algebra		X	
Probability and Statistics	X		
Structure of Number Systems (2 semesters)			
Numerical Analysis			
Finite Mathematics			
Intermediate Differential Equations			
Differential Equations and Advanced Calculus			
Probability Theory (based on calculu			

TABLE XLIII

## COLLEES TRANSFER COURSES RECOMMINDED BI CUPM BEING TAUGHT OR TAUGHI DURING THE PASI TWO YEARS AT INSIITUTION NUMBER 8

Name of Course	Fall 1971	1970-71	1969-70
Elementary Functions and Coordinate Geometry (1 semester)			
Elementary Functions and Coordinate Geometry with Algebra and Trigonometry (2 semesters)	X	X	X
Introductory Calculus (1 semester)	X	X	X
Mathematical Analysis (2 semesters)			
Linear Algebra			
Probability and Statistics		X	
Structure of Number Systems (2 semesters)	X		
Algebra and Geometry (2 semesters)	X	$\mathbf{X}$	
Numerical Analysis			
Finite Mathematics	$\mathbf{X}$	$\mathbf{X}$	X
Intermediate Differential Equations			
Differential Equations and Advanced Calculus			
Probability Theory (based on calcul			

TABLE XLIV

## COLLEGE TRANSFER COURSES RECOMMENDED BY CUPM BEING TAUGHT OR TAUGHI DURING THE PAST TWO YEARS AT INSTITUTION NOMEER 9

Name of Course	Fall 1971	1970-71	1969-70
Elementary Functions and Coordinate Geometry (1 semester)		X	
Elementary Functions and Coordinate Geometry with Algebra and Trigonometry (2 semesters)	X	X	X
Introductory Calculus (1 semester)	X	X	X
Mathematical Analysis (2 semesters)		X	X
Linear Algebra			
Probability and Statistics		;	X
Structure of Number Systems (2 semesters)	X	X	X
Algebra and Geometry (2 semesters)			
Numerical Analysis			
Finite Mathematics			
Intermediate Differential Equations			
Differential Equations and Advanced Calculus			
Probability Theory (based on calculas)			

## COLLEGE TRANSFER COURSES RECOMNENDED BY CUPM BEING TADGHT OR TAUGHT DURING THE PAST TWO YEARS AT INSTITUTION NUMBER 10

Name of Course	Fall 1971	1970-71	1969-70
Elementary Functions and Coordinate Geometry (1 semester)	X	X	
Elementary Functions and Coordinate Geometry with Algebra and Trigonometry   (2 semesters)		I	
Introductory Calculus (1 semester)	X	X	X
Mathematical Analysis (2 semesters)		X	
Linear Algebra			
Probability and Statistics			
Structure of Number Systems	X	X	X
Algebra and Geometry (2 semesters)			
Numerical Analysis			
Finite Mathematics	X	X	
Intermediate Differential Equations			
Differential Equations and Advanced Calculus			
Probability Theory (based on calculus)			

## TABLE XLVI

COILEGE TRANSFER COURSES RECOMEHNDED BI CUPM BEING TADGHT OR TADGHT DURTHG THE PAST TWO FEARS AT INSIITUTION NUNBER 11


TABLE XLVII
COLTEAE TRANSFER COURSES RECOKAENDED BY CUPM BEING
TAUGHT OR TAUGHT DURING THE PAST TWO YEARS AT INSTITUTION NOMBER 12

Neme of Course	Fall 1971	1970-71	1969-70
Elementary Functions and Coordinate Geometry (1 semester)			
Elementary Functions and Coordinate Geometry with Algebra and Trigonometry (2 semesters)	X	X	I
Introductory Calculus (1 semester)	I		X
Mathematical Analysis (2 semesters)		X	
Linear Algebra			
Probability and Statistics	X		
Stracture of Number Systems (2 semesters)			
Algebra and Geometry (2 semesters)	I	I	
Numerical Analysis			
Finite Mathematics	X		
Intermediate Differential Equations	X		
Differential Equations and Adranced Calculus			
Probability Theory (based on calculus)			

## TABLE XLVIII

COLIDGE TRANSFER COURSES RECOMITENDED BY CUPM BEIMG TAUGHT OR TAUOHT DURING THE PAST TWO YEARS

AT INSTITUTION NUMBER 13

Name of Course	Fall 1971	1970-71	1969-70
Elementary Functions and Coordinate Geometry (1 semester)			
Elementary Functions and Coordinate Geometry with Algebra and Trigonometry (2 semesters)			
Introductory Calculus (1 semester)	$\mathbf{X}$	X	X
Mathematical Analysis			
Probability and Statistics		$\mathbf{X}$	X
Structure of Number Systems (2 semesters)	X	X	X
Algebra and Geometry (2 semesters)			
Numerical Analysis			
Finite Mathematics	X	X	X
Intermediate Differential Equations			
Differential Equations and Advanced Calculus			
Probability Theory (based on calcu			

## TABLE IL

COLLEGE TRANSFGR COURSES RECOMNENDED BY CUPM BEIMG
TAUGHT OR TAUGHI DURING THE PAST TWO YEARS AT INSTITUTION NUMBER II

Name of Course	Fall 1971	1970-71	1969-70
Elementary Functions and Coordinate Geometry (1 semester)	X		
Elementary Functions and Coordiante Geometry with Algebra and Trigonometry (2 semesters)	X	X	
Introductory Calculus (1 semester)	X	X	X
Mathematical Analysis (2 semesters)			-
Linear Algebra			
Probability and Statistics		X	
Structure of Humber Systems (2 semesters)	X	X	X
Algebra and Geometry (2 semesters)	X	X	X
Numerical Analysis			
Finite Mathematics			
Intermediate Differential Equations			
Differential Equations and Advanced Calculus			
Probability Theory (based on calculus)			

TABLE L
COLIEGE TRUNSFER COURSES RECOMMENDED BY CUPM BEING
TAUGHI OR TAUGHT DURING THE PAST TWO YEARS AT INSTITUTION NUMBER 15

Name of Course	Fall 1971	1970-71	1969-70
Elementary Functions and Coordinate Geometry (1 semester)	X		X
Elementary Functions and Coordinate Geometry with Algebra and Trigononetry (2 semesters)	X	X	
Introductory Calculus (1 semester)	X		X
Mathematical Analysis (2 semesters)	X		
Linear Algebra			
Probability and Statistics (2 semesters)	X	X	
Algebra and Geometry (2 semesters)			
Numerical Analysis			
Finite Mathematics			
Intermediate Differential Equations			
Differential Equations and Advanced Calculus			
Probability Theory (based on calculus)			

as one which met the recomendations of CUPM. Thas there are some discrepancies between the information in the tables for each institution, Tables XXXVI through L, and Tables II and LII. The information presented in Fables II and LII sumarises the data collected from the instructors, the department chairnen, and the catalogues of the institutions. The pre-calculus courses offored by most institutions did not have the same description as the pro-calculus courses in the report of CUPM. The topics concerning functions are to be given a central role in the content of the two semester pre-calculus course. The catalogue descriptions of some of the institutions! pre-calculus courses were of the traditional algebra and trigonometry sequence even though the sequence was labeled as "Integrated Algebra and Trigonometry." The pre-calculus course deacriptions also omitted topios in coordinate geometry and basic logic. Few of thom apecifically listed the goal of developing the ability to understand and use deductive reasoning.

The course, Mathomatics 0 , is taught as a five quarter course in some of the institutions but a majority of them required a jearis work in pro-calculus.

The calculus sequence varied greatly within the study popalation. One of the institutions offers three quarters of five quarter hours credit, one has four quarters in the sequence with three terms of work carrying five quartor hours credit and the fourth term carrying three quartar hours credit, and thirteen institutions offor twenty quarw ter hour credit for the cikionins sequence. Other courses taught in

TABLE LI
SUMMARI OF BASIC COLLIGE TRANSFER COURSES RECOYMENDED
BY CUPM OFFERED BY EACH INSIITUTION

Course Title	Institution Number														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Elementary Functions and Coordinate Geometry (1 semester)	x	x		x	x	x	x					$\mathbf{x}$	X		
Elementary Punctions and Coordinate Geometry with Algebra and Trigonometry (2 sepesters)	x	$x$	x	x	x	x	x	x		$x$					x
Introductory Calculus (1 semester)	$x$	$x$	$\mathbf{x}$	$x$	x	x	x	x	$x$	$\mathbf{x}$	x	$x$	$x$	$x$	$x$
Mathematical Analysis (2 semesters)	x	x	x	x	x	x	x	x	x	x	x	x	$x$	$x$	x
Linear Algebra	x						X						x		
Probability and Statistics			$x^{* *}$									x			x
Steucture of Number Systems	x	x	x	x		$x$		$x^{*}$	$x$	x					x

*A one quarter course at this institution.
**Taught by the Business Department at this institution.

## TABLE LII

## SUMMARI OF OPTIONAL COLLAGE TRAMSFRR COURSES RECOMMENDED BI CUPM OFFERED BI EACH INSTITUTION

Course Title	Institution Number														
	1	2	3	4	5	6	7	8	9	10	11	12	13		15
Finite Mathematics															
Intermediate Differential Equations	x		x	$x$		$\mathbf{x}$					x			$x$	
Probability Theory															
Numerical Analysis															

calculus and analysis are presented on page 102 of this study.

The Probability and Statistics course recommended by CUPM is offered as a mathematics course by two institutions and in one other institution the course is taught by the business department.

Linear Algebra is offered by only three institutions of the study population, but some topics in linear algebra are included in the Calculus IV course at one institution.

The Structure of the Number System is offered by eight institutions as the first year of preparation for prospective elementary school teachers as recomended by CUPM. One other institution offers a one quarter course in the number systems. The two types of courses are designated in the summary table.

Three courses of the optional offerings recommended by CUPM, Probability Theory, Numerical Analysis, and Finite Mathematics, are not offered by any institution of the study population. One institution stated that Numerical Analysis had been dropped from their curriculum because of the lack of interest in the course. Another institution indicated that Probability Theory had been dropped for the same reason. Finite Mathematics is offered as a one term course in none of the institutions. Some instructors indicated that they had taught the course but an analysis of the catalogue descriptions of their institutions showed that topics in finite mathematics were included in some of the
courses at the freshman level yet a course, Finite Mathematics, was not in the catalogue.

Differential Equations is offered at various levels in six institutions. One department chariman commentrd that his institution was considering the possibility of dropping the courses from its curriculum and another commented that this had been done. At least one of the institutions indicated that its course was at the elementary level instead of at the intermediate level.

Guidelines Recommended by JCCTS

The articulation guidelines approved by JCCTS in the area of mathematics are reported in Appendix I. These guidelines are set up as optional requirements for the two year college student whose program will lead to an associate degree. Two types of students are considered in these guidelines: 1) those whose curriculum requires a sequence of two or more calculus courses and 2) those whose curriculum does not require the calculns sequence. For students who do require the calcuIus sequence, the guidelines state that the courses in their program should be nine senester hours of calculus and three semester hours of linear algebra, or the equivalent in quarter hours. The content of the calculus sequence is to be the same as that of the courses recomended by CUPM listed in category II above. Since many of the students of the commaity colleges of North Carolina are not prepared to take the calculus when they enroll at the two year institution the pre-calculus work is the first mathematics coursework those students will take. For those
students and for those whose curriculum does not require the calculus sequence the guidelines list a requirement of six semester hours or nine quarter hours of mathematics with topics similar to those covered in the course labeled as Mathematics A in the CUPM recommendations for a two year college curriculum. Some students will be ready for the calculus sequence after only one semester of pre-calculus work.

Courses recommended by JCCTS being Eaught

The guidelines of JCCTS recomended at least a year's work in mathematics infer that as many as four freshman tracts are needed: 1) the pre-calculus course, 2) introductory calculus, 3) prospective elementary and secondary teachers: courses and 4) all other freshmen. Each of the fifteen institutions offered courses which would satisfy the suggested guidelines for the pre-calculus course, for the year's basic course in mathematics, and for the calculus sequence. However, only three of the institutions offer a course in linear algebra. The data collected concerning the freshman level courses in mathematics revealed much variation in the content of these courses. Table LIII presents the data on the courses in the JCCTS guidelines.

Other Mathematics Courses in the College Transfer Programs

Table IIV presents the data collected relative to the mathematics courses in the college transfer programs which are not parallel to the courses recommended by CUPM. One of the basic tenets in the

## TABLE LIII

COURSES WHICH ARE IN THE GUIDEIINES OF JOers OFFERED BY FAGH INSITIUTION

Course Title	Institution Inmber														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Basic Mathenatics ( 2 semesters)	X	$x$	X	$\mathbf{x}$	$\mathbf{x}$	X	x	x	x	$x$	$\mathbf{x}$	$\mathbf{x}$	$\mathbf{x}$	$\mathbf{x}$	X
Caiculus (3 semesters or 4 quarters)	$\mathbf{x}$	X	x	X	$\mathbf{x}$	X		$\mathrm{x}^{*}$	x	$x$	$x$	x	X	X	$\mathbf{x}$
Linear Algebra (1 semester)	$x$						X						$x$		

${ }^{*}$ A fifteen quarter hour course at this institution.

TMBLE IIV
PEOGRAYS OF THE IDSTITUTIOIS OF THE STUDI
POPULATIOS kEIGH ABE EOT OM THE CUPM LIST


Table LIV (Continued)
matientics COUESES OAhatad

Course Title	Institutioh lumber															
	1	2	3	4	5			7	8	9	10	11	12		14	15
Analytic Cocmotry	x															
Topics in Analysis																x
Business Mathematics			$x$	$x$					$x$			$x$			x	
Introductory Yathenatics Modern Concepts of Mathematics									$\mathrm{x}^{*}$			x			x	x
Statiatics						$x$		x		x		x		$x$	$x$	

*This is a one quarter course.
philosophy of the comanity college asatem in Morth Carolina is that each institation be adapted to its commanity. This is roflected in the mathematics coarses wich are unique in content but are relevant in madr individacl institation.

Mine of the institutions offer separate coarses in college algebra and trifonomotry in the traditional form. The descriptions of these courses do not incinde as meh wark in coordinate geometry as the COMA course Mathenaties 0 nar is the comeept of fanctions the emphasis of the courses. Three institations offer a two quartor sequence in integrated algelva and trigonometry. As described by the catalogaes this course was of traditional form, that is, greater focus seomed to be on compatation thm on conceptasilation. Onlr one institution offers analytic geonetry as a soparate course instead of ita being included in oithor apro-caloulns sequence or a calcalns sequence. Topics in Analysis is a comese offared in one institation for those students who have completed the calculas sequence. The content of this course varies frol year to Jear. Boareas Mathonatics is tangh at Iive institutions with college tranafor aredit given for the course.

Four institutions have doveloped a three quarter soqueace of mathenaties for the freshmm conrse. These have different titles of similar content and are designed primarily for the non-science majors. The topics incinde sets, elematary logic as well as algebra, number ayatens and trigonometry.

Statistics, with a minimum of work in probability, is oflered in seven institutions. Applications which are relevant to the degree program of the individual institution are an integral part of these courses.

## CHAPIER V

SUNDARI, COMCLUSIOMS, RRCOMIRNDATIONS
ARD WEENS FOR FURTHER STUDY

## I. Sumonary

The investigator's purposes of this atudy were to determine the qualifications of the mathematics instructors of the college transfer courses and the content of the college transfer courses in the community colleges of North Carolina.

The qualiflcations of the instructors were examined in terms of 1) mathematics courses for which the instructor of the population had received credit, 2) the professional activities in which the instructor participated, 3) the types of degrees earned, and 4) the instructor's experience imodiately preceding his position as a community college instructor. The first two facets were compared to the recomendations of the Comaittee on the Undergraduate Program in Mathematics of the Msthematical Association of America. The data on each of the four items were gathered by use of a questionnaire sent to each instructor.

The content of the mathematics courses in the college transfer programs of the community colleges of Morth Carolina was compared to the recomandations for the Comaittee on Undergraduate Progran in Mathematics for the two year college curriculum. The college transfer curriculum of each institution was determined by: 1 ) the courses the
instructors had taught, 2) analysis of the institution's catalogue, and 3) a form completed by the department chairman of each institution.

IT. Conclusions

The following conclusions were derived from the analysis of the data reported in the preceding chapters.

> Mathematios Instructors of the College Transfer Progrems.

The conclusions pertaining to the instructors of the study population are listed in two areas: the academic qualifications and the professional qualifications.

## Academic qualifications

1. The mathematics instructors of the commanity colleges of North Carolina are at a minjmum level of preparation as measured by the criteria of CUPM.
2. No one instructor of the population had taken all of the recommended courses. The greatest number of courses taken by an individual instructor was sixteen.
3. Less than onewhalf of the population had taken the three graduate courses recommended for the two year college teacher.
4. The mean number of CUPM recommendations met by the population, 8.5 , is less than onewhalf of the eighteen suggested courses.
5. Institution fifteen had the largest institutional mean number of recommendations met, 12.5 .
6. All of the institutions had at least ane instructor whe had mot ome-half of the course recomandations.
7. Only three of the population indicated participation in an apprenticeahip progran in two year college teaching.
8. Ten instructors in the study population have had less than twolve semester courses in mathomatics.
9. The instructors in institution twolve were better propared in terms of coursowork in mathomatics and in CUPN recommendations mot (according to the data collected) than any other institution. However, only fifty per cent of the instracters listed by the presidont of this institution responded.
10. All of the instructors had earned a mastor's dogree of same typo.
11. Three inatructers had earned the M. Ed. or the M.A. with a major in Education and six had earned the M. A. T.
12. Three instrectors had degrees above the mater's degree.

## Profossicmal qualifications

1. The mubar of activities recemmonded by CUPM for prefessiomal growth in which the population participated ranged from ano to gix.
2. The profeasional growth activity participated in by most of the population was prefossional reading.
3. Only one instruator had engaged in all of the suggested activitios.
4. The maan number of activitios for the population was 3.0.
5. The least anount of participation was in publications.
6. Indications are that some instructors are not interested in participating in professional actioities.
7. Tvanty-four of the population had been high school instructors before they became instructors in the comunity colloges.
8. Twelve of the respondents had been students or graduate assistants before thoir presant position.
9. Three of the respondents had not been teaching imeodiately prior to thoir becoming two year college mathematics teachers.

## Mathomatics Courses of the College <br> Tranafer Programs

The conclusions concerning the mathematics courses of college transfor prograns include stataments which refer to the CUPM reconmended courses, the courses in the gaidelines of JCCTS and other mathematics courses teught in the institutions of the study population.

1. The pre-celculus course taught at most of the institutions of the popalation did not include"all of the topics of the CUPM courses Mathematics $0 \mathrm{md} /$ or Mathematics A.
2. The introductory course in calculus is taught in all of the institations.
3. One institation offered a course in introductory calculus for those who need no other work in calculus.
4. Fourteen of the institutions offered three additional quarters in calculus.
5. Most of the institutions included analytic geometry in the caloulus sequence instead of including it in the pre-calculus sequence.
6. Probability and Statistics is taught by the business department in one institution.
7. Iinear Algebra is taught in three institutions.
8. The Structure of the Number Systen is offered in eight institutions.
9. Probability Theory, Numerical Analysis, and Finite Mathematics, as described by CUPM, are not offered in any of the institutions.
10. A course in Differential Equations is offered in six institutions.
11. At least one course is offered in each institution which will satisfy the year's work in mathematics listed in the guidelines of JCCTS.
12. The calculus sequence recomended by JCCTS is taught by each institution.
13. College Algebra and Trigonometry are taught as separate courses in aine of the institutions.
14. Bight mathematics courses are unique courses taught only by their institution to satisity a community need.
15. The freshman level mathematics course varies in content betwoen institations.
16. Business mathematics is taught as a college level course in flive institutions.
17. Statistics is taught at various levels of difficulty at seven institutions.

## III. Recomondations

The fladings of this study have led to the following recosmendationss

Mathematics Instructors of the College Transfor Programe

Academic qualifications

1. The comunity college adninistrators provide aid and encouragemant to the instructor who needs to upgrade or to fill in the gaps in his acadauic background using the racomendations of CUPM as a goal.
2. The mathematics departments of the universities actively plan courses which will serve as in-service work for those presently employed as commaity college teachers. The curriculun of each college and university should be compared to the recomendations of CUPM.
3. The universities implement a program in apprenticeship for the two year colliege teacher following the recomendations of CUPM. This progran should be an inter-school effortg education-mathematicspsychology at the university level, and comanity college - university effort between institutions.

## Professional qualiflcations

1. The administrator of the commanty college provide financial assistance and/or released time for the instructors to participate in professional activities.
2. The departasent in the commaity college seek to build a good professional library and plan to establish a mathenatics laboratory.
3. Bach university and the commanity colleges nearby plan lectures and colloquia together.
4. The mathematics ingtructors activoly support an organization for two year college mathematics teachers.

Mathenatics Courses of the College
Transfer Programs

1. The administrator of each comunity college lead the mathematics department in revising the curriculum of the college transfer program using the recomendations of CUPM, and of JCCTS, and the needs of the commaity as guides. He should be willing to provide assistance of any type needed to accomplish this goal.
2. The department ohairman in each institution encourage his instructors to use innovative materials and techniques to inprove their courses even before a curriculum revision is implemented.
3. The instractors use the course deseriptions in the CUPM publications to rarise their class presentations.
4. The comunity colleges, colleges and universities exchange textbook lists and syllabi as an aid in articulation between the ingtitutions.
5. Where needed, the department of the institution develop a course in remedial mathematics, For suggestions in the construction of such a course the departwont chairman should refer to a recent CUPM report. ${ }^{1}$

## Purther Studies Meoded

The data collected has revealed other areas which need to be studied. Studies need to be made to guide in better articulation between the two year colleges and the sanior institutions and to aid in the plaming for preparations of the two year college mathematics instructors.

The specific stadies which this investigation has indicated ares

1. The prograns for training the college mathamatics teachers be exanined.
2. The content of the following mathamatics courses of the commaity colleges be analyzed and evaluated using the recomendations of CUPYz
a. Homedial mathematics courses
${ }^{1}$ Comaittee on the Undergraduate Program in Mathematics, Report of the Comaittee, A Course in Basic Mathematics for Colleges, (Boriceley, Calif.: Mrthematical Assoctation of herica, 1971), pp.2-4,9-15.
b. Basic freshman mathematics courses
c. The calculus sequence
3. A study of the methods of instruction in the mathematics classes of North Carolina commity colleges be made.
4. A study be made by each institution of the mathematics curriculum of the public schools from which the institution recruits students.

## BIIBLIOGRAPHY

"A Survey of CUPM Activities," CUPM Newsletter, Berkeley, Calif.: Mathematical Association of America, May, 1968, 1-8.

Ad Hoc Committes on the Qualifications of College Teachers. Report of the Committee. Comaittee on the Undergraduate Program in Mathematics. Qualifications for a College Faculty in Mathematics. Berkeley, Calif.: Mathematical Association of America, 1967.

Ad Hoc Committee on Qualifications for a Two Year College Faculty in Mathematics. Report of the Committee. Qualifications for Teaching University Parallel Mathematics Courses in Two Year Colleges. Berkeley, Calif.: Mathematical Association of America, 1969.

Aheart, Andrew N. "The Mathematics Gurriculum of the Junior Colleges and Universities of West Virginia," American Mathematical Monthly, 71 (January, 1964), 82-85.
"Articulation Guidelines," Higher Education in North Carolina, II (December 1, 1967), 6-12.

Averill, Edgar. "Why Offer Elementary Statistics," Junior College Journal, 34 (December, 1963),21-25.

Blocker, Clyde. "Cooperation Between Two and Four Year Colleges," School and Science, 94 (April, 16, 1966), 218-222.

Buck, R. C. "The CUPM Catalog Survey," American Mathematical Monthly, 69 (April, 1962), 304-306.

Cbristie, D. E., and Wells, J. H. "Alternatives to Research, " American Mathematical Monthly, 74 (October, 1967), 1001-1004.

Comittee on the Undergraduate Program in Mathematics. Report of the Committee. A Beginning Graduate Program in Mathematics for Prospective Teachers of Undergraduates. Berkeley, Callf.: Mathematical Association of America, 1967.

Committee on the Undergraduate Program in Mathematics. Report of the Committee. Course in Basic Mathematics for Colleges. Berkeley, Calif.: Mathematical Issociation of America, 1971.

Committee on the Undergraduate Program in Mathematics. Heport ol the Comittee. A General Curriculum in Mathematics for Colleges. Berkeley, Calif.: Mathematical Association of America, 1967.

Comaittee on the Undergraduate Program in Mathematics. Report of the Committee. A Transfer Curriculum in Mathematics for Two Year Colleges. Berkeley, Calif.: Mathematical Association of America, 1969.

Coon, Lewis. "The Doctor of Education in Higher Education-Mathematics at Oklahoma State University," American Mathematical Monthly, 72 (March, 1965), 306-310.

Corey, John F. and Pyls, Gordon Be "Joint Committee Approves Articu:lation Guidelines," Higher Education in North Carolina, II (December 1, 1967), 1-5.

Eckert, futh and Neale, Daniel C. "Teachers and Teaching," Journal of Educational Research, 35 (October, 1965), 304-314.

Eure, Thad. Public School Laws of North Carolina. Charlottesville, Va.: The Michie Company, 1965.

Eurich, Alvin C. "Staffing Junior Colleges," Junior College Journal, 33 (March, 1963), 8-12.

Fisher, J. J. "The Extent of Implementation of Level I and Level II CUPM Recommendations, Panel on Teacher Training, " American Mathematical Monthly, 75 (March, 1968), 290-292.

- Flanders, Harley. "A Survival Kit for the College Mathematician," American Mathematical Monthly, 78 (March, 1971), 291-292.

Gleazner, Edmund J., Jr. "AhJC Approach: Preparation of Junior College Instructors," Junior College Journal, 35 (September, 1964), 3-4.

Kuechle, Richard. "Improving Instruction in Graduate and Upper Level Undergraduate Mathematics," American Mathematical Monthly, 73 (February, 1966), 192-196.

Laible, J. M. "New Graduate Degree in Mathematics," American Mathematical Monthly, 76 (June-July, 1969), 687-689.

Lightner, J. E. "The Effect of the Recomendations of CUPM Upon the Mathematics Curricula of the Colleges of Maryland," American Mathematical Monthly, 76 (June-July, 1969), 681-686.

Lindquist, Clerence B. "Fntering Levels and College Courses in Freshman Mathematics," School Life,45 (April, 1963), 14-17.
"Maintaining Mathematical Momentum," CUPM Newsletter. Berkeley, Calif.: September, 1970.

MLanpower Problems in Teaching," American Mathematical Monthly, 71 (February, 1964), 199-202.
"Need for College Teachers Grows," N. E. A. Research Bulletin, 41 (December, 1963), 108-115.

Pikaart, Lan. "Emarging Doctoral Programs in Mathematics Education," American Mathematical Monthly, 72 (Auguat-September, 1965), 772-773.

Rising, G. R. "What Advanced Degree Without Mathematical Research?" American Mathematical Monthly, 74 (October, 1967), 999-1001.

Scandura, J. M. MA New Doctoral Program in Mathematics Education Research," American Mathematical Monthly, 74 (January, 1967), 149-150.

Sneed, Billy Ray. "A Study of the Qualifications of Mathematics Instructors in the Regionally Accredited Public Junior Colleges of Mississippi." Unpublished Ed.D. Dissertation, University of Mississippi, 1969.
"The Question of lecreditation and Certification," American Mathemstical Monthly, 77 (Beptember, 1970), 749-750.
"Undergraduate Transfers in North Carolina Colleges and Universities, Fall, 1970, " Higher Education in North Carolina, VI (February, 1971), 1-12.

Wilson, Robert H. "Junior College Student Teachers," Junior College Journal, 32 (November, 1961), 142-146.

Zant, James. nTeaching of Mathematics at the College and University Level," Review of Educationgl Research, 34 (June, 1964), 347-353.
APPENDIX A
LIST OF COMANITY COLIDAES INCLUDED IN THE STUDY
Caldwell Commuity College and Technical Institute Hudson, North Carolina
Central Piedmont Community College Charlotte, Horth Carolina
Coastal Carolina Community College Jacksonville, North Carolina
College of the Albemarle
Elisabeth City, North Carolina
Davidson County Community College
Iexington, North Carolina
Gaston College
Dallas, North Carolina
Isothermal Commanity College
Spindale, North Carolina
Lenior Community College
Kinston, North Carolina
Rockingham Community College
Wentworth, North Carolina
Sandhills Community College
Southern Pines, North Carolina
Southeastern Commuity College
Whiteville, North Carolina
Surry Community College
Dobson, North Carolina
Wayne Commaity College
Goldsboro, North Carolina
Western Piedmont Community College
Morganton, North Carolina
Wilkes Community College
Wilkesboro, North Garolina

P. O. Box 438 Jamestown, North Carolina September 30, 1971

As reported in the Febraary 12, 1971, issue of Higher Education in North Carolina the maber of transfers from commuity colleges to senior institutions has increased within the past few years and this trend is expected to continue. Therefore, some of the mathematics departments of the senior colleges and universities are interested in (I) the qualifications of the mathematics instructors in the com munity colleges of North Carolins and (2) the content of the college transfer courses in Mathematics. Articulation guidelines for math ematics courses approved by the Joint Committee on College Transfer Students in November, 1967, were reviewed and revised in May, 1971, at a conference at East Carolina State University. One of the re commendations was that a formal study be made to determine the current content of mathematics programs in the commnity colleges in North Carolina.

I have chosen to study these two areas in the community college system of North Carolina as a dissertation project for the completion of ny studies at the University of North Carolina at Greensboro. I plan to use pablications of the Committee on Undergraduate Prograns in Mathematics (CUPM) of the Mathematical Association of America as well as the guidelines mentioned in the above paragraph in the analysis of the data collected.

I am asking the cooperation of each comunity college president in securing the information needed in this study. Will you assist me by completing the enclosed form? I need the names of those in your Mathematics Department who teach the college transfer courses and the name of the chaimman of the department so that I may send to each of then a questionnaire to be completed and returned to me.

The report of the results of this study will not include the names of the schools but each may request a copy of the results along with instructions for identifying that school in the report.

Thank you for your cooperation.

> Sincerely,

# APPENDIX C <br> FORM SENT TO PRESIDENNTS OF COMMUNITY COLIEAES INCLUDED IN THE STUDY 

Please complete and return in the enclosed envelope. Institution

Names of the instructors who teach the college transfer courses in mathematics:

Name of the head of the department or division: -

APPENDIX D
COVER LETTER SENT WITH QUESTIONHAIRE TO NIEMERES OF gIUDI POPULATION

P. O. Box 438<br>Jamestown, North Carolina<br>October 10, 1971

Dear Mathenatics Instructor:
In 1969 the Comittee on the Undergraduate Programs in Math ematics (CUPM) published a booklet in which they made recommendations concerning the qualifications for the teachers of university parallel (college transfer) mathematics courses in two year colleges. While the academie work is important to the successful teacher, the comuittee believes that professional activities which reflect continuing mathematical growth are also important to the successful teacher.

As a part of my dissertation project for the completion of my studies at the University of North Carolina at Greensboro, I am attempting to examine these two phases of qualifications for the instructors of college transfar courses in the community colleges of North Carolina. In order to help me I am asking you to take a few minutes and to complete the enclosed questionnaire. As a teacher I understand your busy schedule and I apologize for this imposition but I know of no other way to get this information.

Simply for purposes of checking of $f$ each teacher as his ques tionnaire is returned, I have mumbered each questionnaire. (I may need to send a reminder to some.) If you object to this procedure simply erase the mmber on your questionnaire before returning it. You may be assured that under no circumstances will any individual or school be identified in the report of the findings. Complete anonymity will be maintained.

Space is designated for any pertinent comment which you would like to make.

A stamped, addressed envelope is enclosed for your convenience and I would greatly appreciate it if you would complete and mail this questionnaire within ten days.

Thank you for your cooperation.
Sincerely,

Ruth Y. Sharrock (Mrs W. Roger)

## APFWMBIX E

QUESTIONNAIRE SENT TO STUDY POPULATION

## Academic Preparation

Courses listed in this form are recommended in the CUPM publication, Qualifications for a Two Year College Faculty Teaching University Parallel Courses. Iist other courses in your undergraduate and graduate program which do not parallel any of those in the recommendations. Descriptions of the undergraduate component are in the CUPM booklet, A Generial Curriculum in Mathematics for Colleges and those of the graduate component are in A Beginning Graduate Program in Mathematics for Prospective Teachers of Undergraduates.

Basic Component (undergraduate preparation)
Lower Division
Calculus courses in one and several variables including introduction to differential equations. 3 or 4 semesters

1 semester $\qquad$ 2 semesters $\qquad$ 3 semesters $\qquad$ 4 semesters $\qquad$
Fundamentals of computer science, including experience in programming as well as use of the computer.

Semester in linear algebra employing both matrices and a basismfree, linear transformation approach。

A course in probability and statistics which presupposes a course in calculus.

Upper Division
A year's work in abstract algebra.
A thorough year's course dealing with the important theorems of real analysis with emphasis on rigor and detailed proofs.

A semester course in complex analysis.
A semester course in applied mathematics.
A semester course in some geometric subject (topology, affine and projective geometries, comparative investigations, etc.)

## Questionnaire (Continued)

A semester of probability and statistics which builds on the previous course in the subject.

Other undergraduate courses.
Graduate Component (one semester courses which are especially appropriate)
___ Measure and Integration
___ Complex Analysis
__ Homelogy and Maltivariable Integration
___Galois and Field Theory
___ Advanced Ordinary Differential Equations
_ Functional Analysis
___General Topology
_Topology and Geometry of Menifolds
___ Ring Theory and Multi-linear Algebra
_ Problem-oriented Numerical Analysis
Other Craduate Courses in Mathematics

Degree(s) earned and date received:
Did you participate in an apprenticeship in two year college teaching?

If so, at what institution did you receive this training?

Questionnaire (Continued)

## Professional Activities

Please answer the following questions by checking or filling in the blank spaces provided with each question. Specific instructions are given where appropriate.

1. Have you taken additional course work (other than that required to get and/or to hold your present position) within the last five Jears?
Yes
No $\qquad$
If yes, indicate the number of hours (semester or quarter) taken in each of the following areas: Semester hours Quarter hours

## Mathematics

Education
——
Other (give department designation)

If additional course work has been taken within the last five years, please indicate the number of hours earned in each category listed belows Semester hours Quarter hours

In an academic fear institute
In a sumper institute
While on fellowship
While peying your own way
Other (please specify)


Would you have preferred to have taken more additional course work than was taken within the last five years?
Yes
No $\qquad$
If yes, check the appropriate reasons for not taking more coirse work.
Lack of time
Financial considerations $\qquad$
Other (please explain)
2. Have you had published any articles or research reports within
the last five years?
Yes
No
$\qquad$
$\qquad$

Questionnaire (Continued)
If yes, indicate the number of articles published in each of the following types of publications.
Mathematics journals
Educational journals
Other (please name publication and give number of articles)
3. Check each of the following professional organizations of which you are a member and indicate the number of professional meetings of each organization which you attended in the last five years. Mathematical Association of America $\qquad$ , meetings attended $\qquad$ ; American Mathematical Society , meetings attended , meetings National Council of Teachers of Mathematics _, meetings attended ___ Other (name of organization and number of meetings attended $\qquad$
Would you have preferred to attend more meetings of the professional organizations?
Yes $\qquad$
4. Please check each of the following professional journals which you read regularly:

American Mathematical Monthly Mathematics Teacher Junior College Journal
Two Year College Mathematics Journal
Other (please name)
Please indicate the approximate average number of books of a mathematical nature read each year for the last five years or since you have been a comanity college teacher (whichever is the shorter period of time). Check one of the following:

1-2 books annually
4-6 books annually
7-9 books annually
10 or more books annualizy $\qquad$
5. Are you now or have you, within the last five years, been engaged in any research for new mathematical results (whether published or unpublished)?

Yes
No $\qquad$

## Questionnaire (Continued)

If yes, please indicate total number of such research projects on which you worked in this period. $\qquad$
6. Heve yod, within the last five years, developed a new course in your community college?
Yes
No $\qquad$
If yes, how mariy? $\qquad$
Did you write your own notes for class presentation?
Yes
No $\qquad$
Have you had a textbook published within the last five years?
Yes
No


If yes; for what course or courses?
Have yous within the last five year made use of any techniques of instruction which were new to you in teaching one of your courses?
Yes
No
$\qquad$

If yes, please give a short deseription of your procedures.
7. Please indicate the nature of the jub you were holding immediately prior to becoming a commanity college teacher. Check one of the following:

Elementary school teacher Junior high schoul teacher $\qquad$ Senior high school teacher $\qquad$ Four-year college or university teacher (full-time) $\qquad$ Ûraduate assistant $\qquad$ Full-time student Other (please specify) $\qquad$

## Questionnaire (Continued)

Teaching Assigments
Which of these college transfer courses recommended by CUPM are you teaching or have taught in the last two years. Please check.

Filementany Functions and Coordinate Geometry (1 semester)

Elementary Functions and Coordinate
Geometry with Algobra and Trig-
Elementary Functions and Coordinate
Geometry with Algebra and Trigonomotry (2 sams stars)
Introductory Calculus (1 semester)
Mathematical Analysis (2 semesters)
Linear Algebra
Probability and Statistics
Fall-71 1970-71 1969-70


Structure of Number Systems (2 semesters)

Algebra and Geometry
Numerical Analysis
Finite Mathematics
Intermediate Differential Equations
Differential Equations and Advanced Calculus

Probability Theory (based on Calculus)

## APPENDIX F

FOLIOWLUP LETTER ON QUESTIONNAIRE

P. O. Box 438<br>Jamestown, North Carolina November 3, 1971

## Dear Mathonatics Instructors

I have been pleased with the response to the questionnaire I recently sent to the commanity college mathematics instructors of North Carolina. However, I have not received a response from you. As a college instructor I can well realize that you are very busy and I apologize for taking up your time this way, but it is very important to ny study that your response be included. I also realize that this may be a particularly busy time of the year for you, but I would greatly appreciate your taking the necessary few minutes to complete and retarn the enclosed questionnaire as soon as possible.

A stanped, addressed envelope is enclosed for your convenience. I am also enclosing a copy of the original letter of explanation in case you somehow failed to get the first one.

Thank you for your cooperation.

P. O. Box 438<br>Janestown, North Carolina October 5, 1971

## Dear Department Chairman:

The Panel on Mathematics in Two Year Colleges of the Committee on Undergraduate Programs in Mathematics (CUPH) has made recomendations for basic offerings in the university (college) transfer prograns. These were published in 1969 in the booklet, A Transfer Curciculum in Mathematics for Tho Year Colleges. Since each year in North Carolina the number of students transferring from community colleges to senior institutions is more than the previous year a need exists for the determination of the content of the mathematics courses in the college transfer programs of the commuity colleges. Also such a study was recomended by a conference on college transfer programs in mathematics in May, 1971, at East Carolina State University, Greenville, North Carolina.

Thus as a dissertation project for the completion of my studies at the Oniversity of North Carolina at Greensboro, I am attempting to determine the content of the university (college) transfer courses in mathenatics which are offered by the community colleges of North Cara lina. I am asking for your cooperation in securing information needed for this study. I apologize for this imposition but I know of no other way to obtain the information. On the enclosed form please indicate the courses which are offered at your institution and give the title by which each is listed in your current catalogue. Please list those courses which you offer for college transfer credit that do not parallel any of the courses recommended by CUPM.

It would be an aid to my analysis if you would also send me a list of the textbooks used in these courses and any syllabi for the courses which your department may have developed.

The number on the form is for identification purposes only. The report of the results of this study will not include the names of the schools but each may request a copy of the results along with the instructions for identifying that school in the report.

Thank you for jour cooperation.
Sincerely,

Buth Y. Sharrock (Mrs. W.Roger)

## FORM SENT TO MATHEMATICS DEPARTMENT

 CHAIRIEN OF COMINNITY COLLEGESPlease indicate the courses which your institution offers.
Description of these courses is given in A Transfer Curriculum in Mathematics for Tur Year Celleres published by the Committee on the Undergraduate Programs in Mathematics in 1969. Space is provided for you to fill in the title of any courses which parallel the course listed.

Basic Offerings

## Calculus Preparatory

_ Elementary Functions and Coordinate Geometry. A study of elementary functions, their graphs and applications, including polynomials, rational and algebraic functions, exponential, logarithmic and trigonometric functions, and introduction to three dinensional analytic geometry. One semester.
_- Elementany Eunctions and Coordinate Geometry, Hith Alcebra and Triponometrix. Reviews of topics from arithmetic, algebra and geometry including the topics listed in the course above. Two semestars.

Calculus and Linear Algebra

- Introductory Calanjus. An intuitive course covering the basic concepts of single variable calculus.

Mathematical Analysis. A more rigorous course completing the standard calculns topics. Two semesters.

- Linear Alrebra. An elementary treatment similar to GCMC* Mathematics 3, but parallel to, rather than preceding the last analysis course. One Semester.
* A General Curriculum in Mathenatics for Colieges. CUPM, 1965.


# Form (Continued) 

Business and Social Science
Probability and Statistias. An introductory course stressing basic statistical concepts. One semester.

Teacher Training
> - Structure of the Number System. A year course is recommended by the Panel on Teacher Training for the preparation of elementary school teachers. Two semesters.

Additional Offerings (Optional)
Finite Mathometies.

Intermediate Differential Emations.
_ـ Differential Equations and Advanced Calculus.

Probobility Theory. A calculus based course.

- Numerical Analysis.

List college transfer courses offered at grar institution which are not listed above.

## APPENDIX I

ARTICULATION OUIDELINES
Approved by the Joint Committeie on College Transfer Students November 1967

MATHEMATICS

## Freabman and/or Sophomore Fears

1. For non-science majors whose curriculum does not require a sequence of two or more calculus courses:
Requirement of six semester hours or nine quarter hours of math ematics for graduation with content selected from most of the following topics: fundamentals of algebra; sets, relations, and functions; the real number systems; finite mathematical systems (modulo arithmetic); logic; statistics and probability with simple applications to the social sciences; analytic geometry of the plane; graphs of relations; other geometries; basic notions of elementary integral and differential calculus.
2. For students whose curriculum requires a sequence of two or more calculus courses: The offering is to follow the Mathematical Association of Americals A General Curriculun in Mathematics for Colleges (1965), page 9 (see Guideline 3 below);
calculus with analytic geometry (nine semester hours or oquivalent quarter hours)
linear algebra (three semester hours or equivalent quarter hours)

## Other Guidelines

1. The topics in item 1 above are to be covered at a level sufficient to prepare the student to take either 1) a moderately rigorous calculus course, 2) a moderately rigorous course in modern algebra or linear algebra, or 3) a moderately rigorous course in modern algebra.
2. For science and mathematics majors it is desirable that the minimum high school pre-requisite for the course content be two years of algebra, one year of geometry, and one-half year of trigonometry.
3. Mathematics 1, Introductory Colcnins (three semester hours or equivalent quartar hoars).

Mathematics 2, 4, Mathanitical Analysils (three semester
hours or equivalent quarter hours each).
Mathematics 3, Ifnear Algehre (three semester hours or equivalent quarter hours). 1
3. "Articulation Guidelines," Hicher Education in Nomh Carolina, II (December 1, 1967), 9.


[^0]:    $I_{\text {nondergradaate }}$ Tranafers in North Carolina Colleges and Universities, Fall, 1970," Higher Education in North Caroling, VI (February 12, 1971) 1.
    ${ }^{2}$ Ibid., 2.

[^1]:    3Ad Hoc Comittee on the Qualifications for a Two Fear College Faculty in Mathomatics, Report of the Comaittee, Committee on the Undergraduate Progran in Mathematics, Qualifications for Teachers of Univarsity Parallel Coursees in Two Year colleges (Berireley, Calif.: Hstienatical Astociation of Tmarica, 1969), p. 4.

[^2]:    9ad Hoc Comittee on the Qualifications for a Two Fear College Faculty in Mathematics, Qualifications for Teaching University Parallel Mathematics Courses, pp 5-9.

[^3]:    Degree in Mathematics," pp. 687-698; Robert H. Wilson, "Junior College Student Teachers, " Junior College Journal, 31 (November, 1961), 143-145.
    $5_{\text {Eurich, }}$ nStaffing Junior Colleges,n p. 10; Gleazner, "AAJC Appraach," p. 35; Vilson, "Junior College Student Teachers,n p. 1
    $6_{\text {Two }}$ Year College Faculty in Mathematics, Qualifications for Teaching Univeriaity Parallel Mathematics Courses, pp. 10-11; J. F. Laible, Mivew Graduate Dogree in Kathematics," p. 689.

[^4]:    ${ }^{11}$ Laible, Miew Graduate Degree in Matheratics," p. 688.
    ${ }^{12}$ Coon, nThe Doctor of Education in Higher Education - Mathematics," pp. 306-310.
    ${ }^{13}$ Scandura. "A New Doctoral Program in Mathematics Education Besearch," pp. 149-150.
    $14_{\text {Pikart, "Energing Doctoral Prograns in Mathematics Education," }}$ pp. 772-773.

    15 Ad Hoc Comettee on Qualifications for a Two Year College Faculty in Mathematics, Qualifications for Teaching Oniversity Parallel Mathenatics, pp. 3-4.

[^5]:    $16_{\text {"The }}$ Question of Accreditation and Certification, " American Mathematical Monthly, 77 (September, 1970), 749.

    17"Maintaining Mathematical Momentw, " CUPM Mewsletter (Berkeley, Calif.: Mathematical Association Of America, September, 1970).

[^6]:    18D. E. Christie and J. H. Wells, "Alternatives to Research," Anerican Mathematics Monthly, 74 (October, 1967), 1002-1004.
    ${ }^{19}$ Sneed, "A Study of Qualifications of Mathematics Instructors," pp.98-99.

[^7]:    ${ }^{20}$ R. C. Buck, "The CUPM Catalog Survey," American Mathematical Monthly, 69 (April, 1962), 305.

    21
    Mbid., p. 305.
    22
    Andrew N. Aheart, "The Yathematics Curriculue at the Junior Colleges and Universities in West Virginia, " American Mathematical Yonthly, 71 (January, 1964), 83.
    ${ }^{23}$ Clarence B. Lindquiat, "Intering Levels and College Courses in Freshman Mathematics, " School Life, 54 (April, 1963) 14-17.

[^8]:    $24_{\text {Ibid. }}$, p. 16.
    25 Edgar Averill, "Why Offer Elementary Statistics," Junior College Journal, 34 (December, 1963), 22-25.
    $26_{\text {James Zant, "The Teaching of Mathematics at the College and }}$ University Level," Review of Educational Research, 34 (June, 1964), 352.

[^9]:    27J. J. Fisher, "The Extent of Implementation of Lovel I and Level III CUPM Decomendations, Panel of Teachor Training;" American Mathomatical Monthly 75 (Karch, 1968), 290-292; J. E. IAghtiner, Wrhe Eifect of 5000 mandations of CUPM upon the Mathematics Curricula of the Colleges of Maryland," American Mathematical Yonthly, 76 (June-July, 1969), 681-686.

    28
    Dotia., Fisher, p. 292.

[^10]:    ${ }^{29}$ Inightnor, "The Fefect of the Rocommendations of CUPM, $n$ pp. 681, 682, 686.

[^11]:    $4_{\text {Ad }}$ Hoc Comittee on Qualifications for a Two Year College Faculty in Mothematics, Qualifications for Teaching University Parallel Mathematics Courses, P. II.

[^12]:    *An $x$ indicates that one of the eighteen academic courses recommended by CUPM has been completed.
    *No return lrom this insitructor.

[^13]:    *An $x$ indicates that one of the eighteen academic courges recommended by CUPM has been completed.

[^14]:    *An $x$ indicates that one of the eighteen academic courses recommended by CUPM has been completed.

[^15]:    *An $x$ indicates that one of the eighteen academic courses recommended by CUPM has been completed.
    ${ }^{a_{N o}}$ return from this instructor.

[^16]:    *ln $x$ indicates that one of the eighteen academic courses recommended by CUPM has been completed.
    ${ }^{a_{\text {No }}}$ return from this instructor
    $\mathrm{b}_{\text {This }}$ instructor declined to complete the questionnaire.

[^17]:    *An $x$ indicates that one of the eighteen academic courses recommended by CUPM has been completed.

[^18]:    ${ }^{5}$ Ad Hoc Committee on Qualifications for a Two Year College Faculty in Mathematics, Qualifications for Teaching University Parallel Mathematics Courses, p. 4 .

[^19]:    $8_{\text {Committee on }}$ on Undergraduate Program in Mathematics, A Transfer Curriculum, pp. 6-8.

