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Abstract: 
 
The purpose of this paper is to present an approach that can help data owners select suitable 
values for the privacy parameter of a differentially private logistic regression (DPLR), whose 
main intention is to achieve a balance between privacy strength and classification accuracy. The 
proposed approach implements a supervised learning technique and a feature extraction 
technique to address this challenging problem and generate solutions. The supervised learning 
technique selects subspaces from a training data set and generates DPLR classifiers for a range 
of values of the privacy parameter. The feature extraction technique transforms an original 
subspace to a differentially private subspace by querying the original subspace multiple times 
using the DPLR model and the privacy parameter values that were selected by the supervised 
learning module. The proposed approach then employs a signal processing technique called 
signal-interference-ratio as a measure to quantify the privacy level of the differentially private 
subspaces; hence, allows data owner learn the privacy level that the DPLR models can provide 
for a given subspace and a given classification accuracy. 
 
Keywords: blind source separation | classification | differential privacy | logistic regression | 
privacy protections | random forest  
 
Article: 
 
1 INTRODUCTION 
 
The differentially private logistic regression is a useful technique to facilitate secure data sharing 
- an essential task that enhances interdisciplinary collaborations that are needed for modern 
scientific applications. In data sharing practices, an owner of a data set generates models and 
allows users to adopt the models and query the data set. In this application, the users of a data set 
want to achieve the maximum utility (e.g., high classification accuracy) from the data and the 
owners of the data want the maximum privacy protection on the data set. For this purpose, a 
DPLR approach has been proposed by Chaudhuri and Monteleoni [5] by incorporating the 
fundamental concept of differential privacy proposed by Dwork et. al.[6]. Since its introduction, 
a significant amount of studies have been conducted using this model for achieving privacy 
strength and prediction/classification accuracy [8, 9, 12, 16]. This is a parametric approach and 
the selection of its privacy parameter ϵ is a challenging problem. The purpose of the privacy 
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parameter is to achieve an acceptable balance between privacy strength and classification 
accuracy, and make the model ϵ-differentially private. 
 
One of the observed characteristic of ϵ is that the privacy strength decreases and classification 
accuracy increases when ϵ increases. Another observed characteristics is that it is possible that 
the same classification accuracy and distinct privacy strengths can be achieved with multiple 
values of ϵ. Similarly, we can also observe that it is possible the domain or the range of ϵ is 
arbitrary which makes it difficult to find the right value for the privacy parameter. These 
characteristics of ϵ make the selection of a set of suitable values for ϵ much harder. A significant 
research has been performed to address this problem in various perspectives [1, 2]; however, two 
main contributions that are closely related to the proposed study are selected and discussed in 
this section. For example, the authors of [7] studied the contributions of the privacy parameter 
and proposed a model that provides a balance between the objectives of a data owner and a data 
user, and studied its effectiveness by selecting several values of privacy parameter. 
 
The authors of [7] also stated that the privacy parameter has been studied using values from 0.01 
to 7 in the literature; however, there is no clear explanation for the selection of such as range for 
ϵ. Similarly, the authors of [11] also studied the contributions of the privacy parameter, and 
proposed two-parameters approach which adds confidence interval w and confidence level p to 
estimate the true value of the privacy parameter. Although it provides a wider range for the 
privacy parameter ϵ, they only focused on the balance between the noise added and the privacy 
strength, rather than the balance between the utility (e.g., classification) and privacy strength. 
However, there is a relationship between the noise added and the utility, which was not analyzed 
in their study. 
 
In the proposed study we introduce a machine learning approach that allows the owner of the 
data understand the characteristics (privacy strength and classification accuracy) of DPLR with 
respect to the privacy parameter ϵ and its classification performance. The proposed machine 
learning approach incorporates supervised learning and feature extraction modules [13]. Given a 
training data set for a binary classification with labels, the supervised learning module 
characterizes DPLR for its classification performance on the subspaces of the training data set 
with respect to a set of randomized values of the privacy parameter ϵ of DPLR. The feature 
extraction module transforms a subspace to a new ϵ-differentially private subspace by querying 
the subspace multiple times with the DPLR model and a privacy parameter values that are 
resulted from the supervised learning module. The well-known signal processing technique - 
called blind source separation - is then used and signal-interference-ratio [15] between the 
subspaces and their corresponding ϵ-differentially private subspaces are calculated to quantify 
the privacy levels. These results can allow a data owner learn the privacy level that a DPLR 
model can provide for a given subspace and a given classification accuracy. The randomized 
algorithm (Laplace noise) that is employed in DPLR helps one to perform multiple queries on a 
subspace and construct a new ϵ-differentially private subspace for privacy protection. 
 
2 PROPOSED METHOD 
 
The proposed method provides a framework that consists of two main modules: a supervised 
learning module, and a feature extraction module. The supervised learning module performs a 



DPLR classification task on a subspace (i.e., a subset of a training data set) using a set of 
randomly generated privacy parameter values. The feature extraction module transforms a given 
subspace to a new differentially private subspace that has the same dimension as the input 
subspace using DPLR model constructed for a privacy parameter. The proposed framework then 
calculates signal interference ratio between a differentially private subspace and the input 
subspace so that a set of suitable values for the privacy parameters that give a balance between 
privacy strength and classification accuracy can be generated. 
 

  
Figure 1: The proposed machine learning framework 
that can help data owners select the privacy parameter ϵ 
for DPLR models, analytically. 

Figure 2: Distribution (in the form of a histogram) of 
the privacy parameter ϵ by considering it a random 
variable for supervised learning. 

 
2.1 Supervised Learning Module 
 
Suppose S(cc′) is a subspace with class labels c and c′, and ϵ = {ϵ1, ϵ2, . . . , ϵk } is a set of random 
numbers drawn from a Gaussian Figure 2: Distribution (in the form of a histogram) of the 
privacy parameter ϵ by considering it a random variable for supervised learning. distribution, ϵi ∼ 
N(0, σ2), i = 1, . . . , k. The supervised learning module then accepts an input subspace S(cc′) 
from a training data set and the privacy parameter set ϵ, and applies DPLR modeling to classify 
the classes c and c′. The subspace is a subset of the training data set; hence, the labels are 
available for supervised learning. The classification accuracies for the elements of the set ϵ are 
the output of the module that uses the class labels for learning. Finally, the elements of ϵ that 
give the maximum classification accuracies are recorded by the supervised learning module. Let 
us denote this subset of ϵ by e, and assume there are d elements e1, e2, . . . , ed in the set. Note that 
we can also find the elements of ϵ that give a given range of classification accuracies, rather than 
the maximum, requested by the users of the data and DPLR model. The theoretical model of 
DPLR suggests the smaller the privacy parameter the larger the privacy strength and the larger 
the privacy parameter the smaller the classification error (or larger the classification accuracy). 
Therefore, the distribution of the privacy parameter is assumed to follow the Gaussian 
distribution with mean 0 and variance σ2. However, to capture the global characteristics of ϵ, it is 
recommended to select a large value for the variance (e.g., σ = 16 to satisfy 2σ-rule with a 
deviation of 32). 
 



2.2 Feature Extraction Module 
 
The purpose of feature extraction module is to construct a new subspace, called ϵ-differentially 
private subspace from the original subspace S(cc′) by querying the original subspace (i.e., the 
training data set) multiple times using the DPLR model associated with each ei, i = 1, 2, . . . ,d. 
Let us denote the ϵ-differentially private subspace constructed for ei by Sei (cc′), where i = 1, 2, . 
. . ,d. It serves the feature extraction objective of the proposed framework. It also adopts the well-
known signal processing technique, blind source separation, and constructs signal interference 
ratio between Si (cc′) and Sei (cc′) to quantify the privacy strength of the new differentially 
private subspace for each ei, i = 1, 2, . . . ,d: 
 

𝜌𝜌𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆 �𝑺𝑺(𝑐𝑐𝑐𝑐′),𝑺𝑺𝑒𝑒𝑖𝑖(𝑐𝑐𝑐𝑐
′)�, (1) 

 
where i = 1, 2, . . . ,d and the unit of this measure is decibel (dB). In this paper, the SIR function 
available in R-package JADE library, [10] is used. In signal processing [4], the SIR value is 
interpreted for signal recovery strength as follows: if the value is below 12dB then the recovery 
of the source signals cannot be recovered from their modulated signals and if the value is above 
20dB then the source signal can be definitely recovered from the modulated signals. Similarly, if 
the value is between 12dB and 20dB then it maybe possible to recover. Hence, in this paper, it is 
used for privacy measure as: if the value is below or closer to 12dB then the privacy strength is 
strong, if the value is above or closer to 20dB then the privacy strength is weak, and if the value 
is between 12dB and 20dB then the privacy strength is moderate. Therefore, the SIR measure is 
useful to quantify the privacy strength by inputing subspaces. 
 
3 EXPERIMENTAL RESULTS 
 
In this section, the characteristics and the performance of DPLR models are studied and 
experimented with using a subset of NSLKDD data set that was downloaded and used previously 
in a research [14]. Since the prposed method is mainly focused on the patterns in the data - rather 
than in intrusion detection itself - the features are simply represented by variables ɑ1, ɑ2, . . . , 
ɑ14, without describing their actual meaning in terms of network intrusion detection. In a 
previous study, we have used random forest classifiers to classify the same data set and extracted 
these (14) relevant features. Note that the NSL-KDD data set has altogether 41 features and we 
were able to extract 14 features as relevant features. 
 
3.1 Single Subspace Analysis 
 
To characterize the classification accuracy and the privacy strength of the DPRL model, a single 
three-dimensional subspace with binary classes is selected from the NSL-KDD data set. For 
simplicity, we can assume that the owner of the data wants to study the subspace that is formed 
by the three features (ɑ3, ɑ4, ɑ11) with the binary class (9, 10). However, the subspaces can be 
selected using automated approaches, such as random forest [3], that can output relevance 
features as a part of its classification objective. 
 
3.1.1 Supervised Learning. A set of random numbers from a Gaussian distribution with mean 0 
and a large variance σ2 = 256 is generated to define a wider domain so that it can capture a global 



characteristic of ϵ and its connection with classification accuracy of the DPLR model. The 
Gaussian random numbers are positive and negative; hence, their absolute values are assigned to 
the privacy parameter ϵ. Figure 2 shows the histogram of the values generated for the privacy 
parameter for supervised learning. It clearly provides more values within the range 0 and 7 to 
satisfy the testing range suggested in [7], and wider range up to 40 to capture the global 
characteristics with the Gaussian properties. 
 
Figure 3 shows the relationship between the classification accuracy and the privacy parameter ϵ 
when DPLR is applied to the subspace (ɑ3, ɑ4, ɑ11) with the binary class (9, 10). We can clearly 
see the global characteristics and determine the maximum accuracy of 0.9876543 (99%) can be 
achieved; however, there are multiple values for ϵ that produce the maximum accuracy: 
 

• e = {14.38466, 15.06771, 16.65124, 17.66038, 17.83741, 19.21488, 19.87036, 20.28188, 
20.46009, 21.61631, 22.01760, 23.48987, 24.00954, 24.54474}, 

 
where d = 14. Hence, these values can satisfy the users’ utility requirements (i.e., classification 
accuracy). The question now remains is that whether these values will provide privacy strength 
to satisfy owners’ requirements. Figure 4 shows the privacy strengths calculated using SIR 
measure (which will be discussed later in detail). Figures 3 and 4 confirm that a smaller privacy 
parameter means a stronger privacy strength, and a larger privacy parameter means a higher 
classification accuracy. 
 

  
Figure 3: Relationship between DPLR classification 
and the privacy parameter ϵ for the subspace (ɑ3, ɑ4, 
ɑ11) of NSL-KDD training data set. The maximum 
accuracy at the mean ϵ value of 19.779333 with 
standard deviation of 3.200298. 

Figure 4: Relationship between DPLR privacy strength 
(SIR) and the privacy parameter ϵ for the subspace (ɑ3, 
ɑ4, ɑ11) of NSL-KDD training data set. Privacy 
weakness increases with respect to the increase of 
privacy parameter. 

 
3.1.2 Feature Extraction. The experimental analysis is performed on three-dimensional 
subspaces; therefore, three queries are also performed on the same subspace (ɑ3, ɑ4, ɑ11) with the 
binary class (9, 10), using the same DPLR model for each ei in the set e to extract three features 
to construct its three-dimensional ϵ-differentially private subspace. The mean of all the values in 
e is 19.79333, and the standard deviation is 3.200291. Hence, for each ei, an ϵ-differentially 
private subspace is constructed using the DPLR model assuming the privacy parameter value of 
ei, i = 1, . . . , 14. Figure 5 shows the privacy strength of DPLR around the values of the mean ϵ. 



Hence, we have privacy strength for the ϵ values that recorded maximum classification accuracy 
for the subspace considered. 
 

  
Figure 5: Privacy strength for the values of ϵ that are 
closer to the mean of ϵ that gives the maximum 
classification accuracy - the statistical mean and the 
standard deviation of ϵ are 19.779333 and 3.200298, 
respectively. 

Figure 6: The privacy protection values that give the 
classification accuracies between 95% and 96% 
(assumed the user has requested this range) - the 
statistical mean and the standard deviation of ϵ are 4.45 
and 2.43, respectively. 

 

 
Figure 7: Privacy strength for the values of ϵ that are 
closer to the mean of ϵ that gives the classification 
accuracy range requested by the user. The mean of ϵ is 
4.45 and the standard deviation is 2.43. 

 
However, if the user requested classification accuracies between 95% and 96% then the data 
owner can provide a stronger privacy, because it can be achieved as demonstrated in Figure 6 
and Figure 7. The following privacy parameter values can provide DPLR classification 
accuracies between 95% and 96% as illustrated in Figure 6: 
 

• e = {0.642902, 0.753830, 0.818717, 1.263481, 1.877766, 2.170097, 2.362652, 2.656176, 
2.6786860, 2.812095, 2.857677, 3.072937, 3.232231, 3.288970, 3.340842, 3.384012, 
3.713874, 3.838053, 3.888140, 4.609097, 5.115693, 5.157392, 5.278286, 5.551264, 
5.631919, 6.056539, 6.079855, 6.329025, 7.201646, 7.703153, 7.890869, 7.918942, 
8.701562, 8.711461, 9.197012}. 

 



This subset of the ϵ values has 35 elements, i.e., d = 35. It also has the mean value of 4.45 with 
standard deviation of 2.43. Hence, it follows the range mentioned for ϵ in [7]. Figure 7 shows the 
SIR values between 6 and 14 with the center value of 10, which indicates a very strong privacy 
protection based on the SIR measure. 
 
3.2 Multiple Subspace Analysis 
 
In section 3.1, the supervised learning module and the feature extraction module of the proposed 
framework were evaluated using the subspace (ɑ3, ɑ4, ɑ11) of the NSL-KDD data set with binary 
classes (9,10) only. In a new experiment, the same subspace is again considered; however, the 
other classes (0,1), (0,5), (1,2), (1,9), (3,5), (3,9), and (6,8) are also studied. In addition, three 
other subspaces, (ɑ3, ɑ4, ɑ5), (ɑ3, ɑ4, ɑ7), and (ɑ4, ɑ7, ɑ10), are also included in the experiment to 
study the performance of the proposed analytical framework with DPLR. This experiment can 
allow data owners understand the characteristics of DPLR with respect to different feature and 
class characteristics using various values for ϵ of DPLR. 
 
3.2.1 Supervised Learning. In this experiment, the subspace (ɑ3, ɑ4, ɑ11) with different binary 
classes are used to evaluate the performance of DPLR for binary classification. The binary 
classes considered in this performance analysis are listed in the first column of Table 1. The 
second column lists the maximum classification accuracies recorded for each classification task. 
For example, DPLR classifies the classes (1, 9) with about 99% accuracy, whereas it classifies 
the classes (3, 5) with about 53% accuracy. Since, DPLR’s classification performance is poor for 
the binary class (3, 5), classification accuracies are obtained for other subspaces, (ɑ3, ɑ4, ɑ5), (ɑ3, 
ɑ4, ɑ7), and (ɑ4, ɑ7, ɑ10) other subspaces as well, and listed in the third, fourth, and fifth columns 
of the table. As we can observe, DPLR can improve it performance and achieve 92% accuracy 
within the subspace (ɑ4, ɑ7, ɑ10) for this binary class. Similarly, the maximum classification 
accuracy of 81% can be achieved for the binary classes (0, 5) within the subspace (ɑ4, ɑ7, ɑ10). 
Since, the maximum classification accuracies are recorded for the other class pairings within the 
subspace (ɑ3, ɑ4, ɑ11), the rest of the values are listed as dash (−) notation in this table, instead of 
leaving them blank. 
 
Table 1. Maximum classification accuracies with multiple binary classes and three-dimensional 
subspaces 

Binary Classes ACC(ɑ3, ɑ4, ɑ11) ACC(ɑ3, ɑ4, ɑ5) ACC(ɑ3, ɑ4, ɑ7) ACC(ɑ3, ɑ7, ɑ10) 
(0,1) 0.977865 – – – 
(0,5) 0.809062 – – 0.811912 
(1,2) 0.981599 – – – 
(1,9) 0.991828 – – – 
(3,5) 0.528645 0.528645 0.783854 0.924479 
(3,9) 0.873239 – – – 
(6,8) 0.870307 – – – 
(9,10) 0.987654 – – – 

 
Some of the classification results are presented in Figures 8 through 11 for performing visual 
analytics. Figure 8 illustrates the DPLR classification performance when the subspace (ɑ4, ɑ7, 
ɑ10) with the binary class (0,5) is used. It means that it explains the second row of the results 
presented in Table 1. Only a few values of the privacy parameter ϵ can give the highest 



classification accuracy 81%, but many values can give the accuracy closer to 80%. However, the 
maximum classification is achieved when much lower values are assigned to ϵ. Similar 
characteristics can be seen in Figure 9 when the same subspace with the binary class (3, 5) is 
used, but in this case the maximum accuracy is much higher (i.e., above 90%) with the lower 
value of ϵ. Figure 10 shows the classification results of the subspace (ɑ3, ɑ4, ɑ11) with the binary 
class (1, 9). It provides the best results with the classification accuracy of 99%; however, we can 
observe that this accuracy is achieved at much larger values of ϵ. Figure 11 shows the 
classification results of the same subspace with the binary class (3, 9). In this case, the accuracy 
is steadily increasing to about 87% but achieved at very large value of ϵ. 
 

  
Figure 8: Relationship between DPLR classification 
and the privacy parameter ϵ for the subspace (ɑ4, ɑ7, 
ɑ10) of NSL-KDD training data set. The maximum 
accuracy at the mean ϵ value of 1.263481 with standard 
deviation of 1. 
 

Figure 9: Relationship between DPLR classification 
and the privacy parameter ϵ for the subspace (ɑ4, ɑ7, 
ɑ10) of NSL-KDD training data set. The maximum 
accuracy at the mean ϵ value of 0.7538302 with 
standard deviation of 1. 

  
Figure 10: Relationship between DPLR classification 
and the privacy parameter ϵ for the subspace (ɑ3, ɑ4, 
ɑ11) of NSL-KDD training data set. The maximum 
accuracy at the mean ϵ value of 14.816290 with 
standard deviation of 5.400668. 

Figure 11: Relationship between DPLR classification 
and the privacy parameter ϵ for the subspace (ɑ3, ɑ4, 
ɑ11) of NSL-KDD training data set. The maximum 
accuracy at the mean ϵ value of 33.928860 with 
standard deviation of 4.283012. 

 
3.2.2 Feature Extraction. Feature extraction is performed, as discussed previously, by running 
queries multiple times on the training data (subspaces) for each experiment that has distinct 
subspaces and distinct binary classes. In Table 2, the class labels, the maximum classification 



accuracies, and the subspaces where these accuracies are recorded are listed in the first three 
columns, respectively. As previously discussed, multiple ϵ values can provided the same 
classification accuracy levels; hence, the averages of the ϵ values that give the maximum 
classification accuracies for the class pairings are listed in fourth column. Similarly, their 
statistical standard deviations are also calculated and listed in the fifth column of the table. The 
standard deviation value of 0 indicates the maximum classification accuracy is produced by only 
a single value of ϵ for that specific binary classes, and it is replaced with 1 in the experimental 
analysis to obtain a range of values for ϵ. Figure 12 shows a very strong privacy strength for the 
subspace (ɑ4, ɑ7, ɑ10) with the binary class (0,5). It shows the average SIR value of 1.75dB while 
showing the classification accuracy of 81% in Figure 8. Hence, the users cannot reach more than 
81% with using the DPLR that provides the strong privacy protection. 
 
Table 2. Maximum classification accuracies versus SIR with mean and standard deviations of ϵ 

Binary Classes ACC Subspace mean(ϵ) sd(ϵ) SIR 
(0,1) 0.977865 (ɑ3, ɑ4, ɑ11) 30.80703 0 0.926556 
(05,) 0.811912 (ɑ4, ɑ7, ɑ10) 1.263481 0 1.754037 
(1,2) 0.981599 (ɑ3, ɑ4, ɑ11) 25.385810 4.137129 5.360779 
(1,9) 0.991828 (ɑ3, ɑ4, ɑ11) 14.816290 5.400668 5.314713 
(3,5) 0.924479 (ɑ4, ɑ7, ɑ10) 0.7538302 0 4.873076 
(3,9) 0.873239 (ɑ3, ɑ4, ɑ11) 33.928860 4.283012 36.480850 
(6,8) 0.870307 (ɑ3, ɑ4, ɑ11) 22.693740 1.545736 0.406017 
(9,10) 0.987654 (ɑ3, ɑ4, ɑ11) 19.704820 2.575838 15.648030 

 

  
Figure 12: Privacy strength for the values of ϵ that are 
closer to the mean of ϵ that gives the classification 
accuracy range requested by the user. The mean of ϵ is 
1.263481 and the standard deviation is 1. 

Figure 13: Privacy strength for the values of ϵ that are 
closer to the mean of ϵ that gives the classification 
accuracy range requested by the user. The mean of ϵ is 
0.7538302 and the standard deviation is 1. 

 
Figure 13 shows the privacy strength of subspace (ɑ4, ɑ7, ɑ10) with the binary class (3,5). The 
lower average value 4.87dB of SIR indicates the privacy strength of the DPLR model in this 
subspace with the binary class. In addition, its associated classification results presented in 
Figure 9 indicate an acceptable maximum classification accuracy of 90%. Therefore, it 
characterizes the subspace (ɑ4, ɑ7, ɑ10) with the binary class (3,5) as the moderate subspace 
among the ones that are considered in this experiment.  
 
Figure 14 shows the privacy strength of subspace (ɑ3, ɑ4, ɑ11) with the binary class (1,9). The 
low average value 5.31dB of SIR indicates the privacy strength of the DPLR model in this 



subspace with the binary class. In addition, its associated classification results presented in 
Figure 10 indicate the maximum classification accuracy of 99% can be easily achieved. 
Therefore, it characterizes the subspace (ɑ3, ɑ4, ɑ11) with the binary class (1,9) as the best 
subspace among the ones considered in this experiment in terms of both classification accuracy 
and privacy strength. It also illustrates that larger values (above 7) of the privacy parameter ϵ can 
give a better balance between privacy strength and classification accuracy. 
 

  
Figure 14: Privacy strength for the values of ϵ that are 
closer to the mean of ϵ that gives the classification 
accuracy range requested by the user. The mean of ϵ is 
14.816290 and the standard deviation is 5.400668. 

Figure 15: Privacy strength for the values of ϵ that are 
closer to the mean of ϵ that gives the classification 
accuracy range requested by the user. The mean of ϵ is 
33.928860 and the standard deviation is 4.283012. 

 
Figure 15 shows the privacy strength of subspace (ɑ3, ɑ4, ɑ11) with the binary class (3,9). The 
high average value 36dB of SIR indicates the privacy weakness of the DPLR model in this 
subspace with the binary class. In addition, its associated classification results presented in 
Figure 11 indicate the maximum classification accuracy cannot reach more than about 87%. 
Therefore, it characterizes the subspace (ɑ3, ɑ4, ɑ11) with the binary class (3,9) as the weakest 
subspace among the ones that are considered in this experiment. 
 
4 CONCLUSION 
 
The machine learning can help the data owners to generate DPLR models that can meet the 
users’ expectation for the classification accuracy while satisfying their privacy protection 
expectation. The machine learning approach can also help them understand the relationship 
between the privacy parameter and the DPLR models; hence, they can share the data with greater 
peace of mind. The study also suggested a better privacy parameter values exist outside the 
regular interval used in the DPLR research, and they can provide a better balance between 
privacy protection and classification accuracy when DPLR is preferred for a data sharing 
application. It also provides a flexible approach that can be easily extended to larger-dimensional 
subspaces or the full feature space through multiple querying on the training data set. We can 
also extend this study by replacing the simple random number generator module that is used with 
more sophisticated approaches, such as the Monte Carlo simulation, Markov Chain Monte Carlo 
algorithm, Gibbs sampling, and Metropolis-Hastings algorithm. 
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