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Abstract: 
 
Attentional control fluctuates in the presence of internal and external distractors, wandering on 
and off a given task. The current study investigated individual differences in attentional 
fluctuations in 250 preschoolers. Attentional fluctuations were assessed via intra-individual 
variability in response time in a Go/No-Go task. Greater fluctuations in attentional control were 
linked to lower task accuracy. In addition, greater attentional fluctuations predicted lower 
performance in a task of cognitive flexibility, the Dimensional Change Card Sort task. 
Attentional fluctuations were also associated with laboratory measures of academic readiness in 
preschool, as assessed by the Applied Problems and Letter–Word Identification subscales of the 
Woodcock–Johnson III Tests of Achievement, which in turn predicted teacher reports of 
academic performance in first grade. Attentional fluctuations also had indirect associations with 
emergent math skills in preschool, via cognitive flexibility, as well as indirect associations with 
first-grade teacher reports of academic performance, via the relations between cognitive 
flexibility and emergent math skills in preschool. These results suggest that consistency is an 
important aspect of attentional control during early childhood. 
 
Keywords: Attentional fluctuations | Intra-individual variability | Response time variability | 
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Article: 
 
Introduction 
 
Attentional control is the ability to sustain attention on a task in the presence of internal and 
external distractors (Engle & Kane, 2004). In children, attentional control is associated with 
foundational cognitive assets such as language, memory, and intelligence (Astheimer and 
Sanders, 2012, Astle et al., 2010, Rueda et al., 2005). Furthermore, it is a strong predictor of 
school readiness and success (Allhusen et al., 2003, Blair and Diamond, 2008, Rueda et al., 
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2010). Given the notable connections between attentional control and other critical cognitive 
functions and academic skills, it is important to advance our understanding of this fundamental 
ability during early childhood. To date, a rich body of research informs us about various aspects 
of attentional control in young children (for reviews, see Posner et al., 2014, Stevens and 
Bavelier, 2012). However, we still know very little about how a characteristic feature of 
attentional control, its susceptibility to fluctuations, manifests during early childhood. 
 
Attention wanders on and off a given task, fluctuating even in the absence of salient external 
distractors (Esterman, Noonan, Rosenberg, & Degutis, 2013). Previous work with adults 
demonstrated that greater fluctuations in attention predicted impairments in task performance 
(Bellgrove et al., 2004, Haynes et al., 2017, Unsworth and McMillan, 2014). Importantly, 
individuals who were more susceptible to attentional fluctuations showed poorer performance 
not only during the task in which fluctuations were measured but also in other fundamental 
cognitive functions, including working memory, prospective memory, and fluid intelligence (Ihle 
et al., 2017, Kane et al., 2016, Larson and Saccuzzo, 1989, Unsworth, 2015). Furthermore, 
fluctuations of attentional control are heightened in a wide spectrum of clinical populations such 
as in individuals with Alzheimer’s disease, schizophrenia, depression, and borderline personality 
disorder (Duchek et al., 2009, Kaiser et al., 2008). These findings suggest that heightened 
attentional fluctuations in adults are associated with impairments in broader cognitive 
performance. Such findings underscore the importance of characterizing attentional fluctuations 
during early childhood because this line of inquiry lays the groundwork for understanding 
pathways to consistent control of attention throughout development. Furthermore, such 
investigations can inform interventions meant to promote attentional control during childhood 
and beyond. The goal of the current study was to examine how individual differences in 
attentional fluctuations manifest during the preschool period, a pivotal time of rapid development 
in attentional skills (Posner et al., 2014). 
 
In adults, the frequency of lapses in attentional control during a task can be approximated via 
thought-probe measures that ask participants to report whether they are on- or off-task or to rate 
their attentional engagement at any given moment (Kam et al., 2013, Unsworth and McMillan, 
2014). Although such measures give a reasonable proxy for lapses in attentional control in 
adults, they are inevitably limited by subjective experiences of lapses and might not capture 
attentional fluctuations that occur outside of awareness yet still have behavioral consequences 
(Kane et al., 2016). Furthermore, such measures cannot be used with young children whose 
metacognitive abilities are still developing (Flavell, Green, & Flavell, 2000). Therefore, a simple 
and age-appropriate measure that does not rely on subjective experience is needed to index 
fluctuations in attentional control in young children. Previous work has shown that attentional 
fluctuations during a task can be measured via intra-individual variability in response time 
(Esterman et al., 2013, Fortenbaugh et al., 2015, Unsworth, 2015). Attentional fluctuations can 
contribute to response time variability through at least two mechanisms. First, lapses in 
attentional control can lead to goal neglect (Unsworth, Redick, Lakey, & Young, 2010). When a 
child is “in the zone,” task-relevant goals are maintained consistently. However, when lapses in 
attentional control happen—in other words, when the child is “out of the zone”—the goal of the 
task is not maintained efficiently and goal neglect occurs. In the presence of goal neglect, 
habitual responses can dominate the behavior. Thus, prepotent tendencies to respond take over 
and responses much faster than the average are observed. Second, lapses in attentional control 



can slow down cognitive processes. When a child is out of the zone due to lapses in attentional 
control, attention needs to be redirected to get back in the zone. This redirection of attention for 
task-relevant behavior takes time. In such cases, responses can occur much slower than the 
average. As such, fluctuations in attentional control at least partially account for much faster and 
slower responses. Such fluctuations might not be observable through mean response time values 
but rather might be observable through intra-individual variability in response time. Importantly, 
measures of response time variability taken from a variety of attentional control tasks all load 
onto a common factor, and this factor is considered to tap into the consistency of attentional 
control (Unsworth, 2015). 
 
An individual’s response time variability is thought to be a marker of how susceptible that 
individual is to frequently disengaging attention from task-relevant goals. As such, it is 
considered an index of executive attention abilities (Kane et al., 2016). Research with adults has 
demonstrated that greater response time variability predicts poorer cognitive performance in 
nonclinical populations (Haynes et al., 2017, Larson and Saccuzzo, 1989, Unsworth, 2015) and 
is a common characteristic across various adult clinical populations (Duchek et al., 2009, Kaiser 
et al., 2008). Such findings highlight the utility of using response time variability as an index of 
attentional fluctuations in typical and atypical populations alike. However, with children, 
response time variability has been primarily used in the context of developmental disorders 
(e.g., Adamo et al., 2012, Kofler et al., 2013, Nigg, 2013). This line of research has particularly 
centered on children and adolescents with attention-deficit/hyperactivity disorder (ADHD), and 
converging findings demonstrate greater response time variability in ADHD populations 
compared with controls (e.g., Borella et al., 2013, Drechsler et al., 2005, Epstein et al., 2011). 
Indeed, response time variability has been proposed as an endophenotype of ADHD (Castellanos 
et al., 2005) and observed as a common neuropsychological marker even across distinct 
subgroups of the disorder (Fair et al., 2012, Kofler et al., 2013). Furthermore, greater response 
time variability has been documented in other clinical or at-risk developmental populations such 
as children with autism spectrum disorder and children with or at risk for bipolar disorder 
(Geurts et al., 2008, Pagliaccio et al., 2017). Considering response time variability as an index of 
attentional fluctuations, these findings imply that vulnerability to attentional fluctuations is 
common across populations of atypically developing children or children who are at risk for 
atypical development. Yet, beyond the studies of children with or at risk for disorders, we know 
very little about how attentional fluctuations manifest in children. Several life-span studies that 
employed response time variability have demonstrated decreases in attentional fluctuations 
across childhood and adolescence and into young adulthood (Conners et al., 2003, Fortenbaugh 
et al., 2015, Williams et al., 2005). However, there is a paucity of information about individual 
differences in attentional fluctuations during the early years of childhood and how such 
individual differences relate to cognitive performance and emergent academic skills. The current 
study contributes to closing this gap in our knowledge by using response time variability as a 
measure of attentional fluctuations in a demographically diverse population of young children. 
 
Our work builds on the executive/supervisory control of attention framework (Engle and Kane, 
2004, Norman and Shallice, 1986, Unsworth and Robison, 2017). Within this framework, 
attentional control is defined as the ability to focus on task goals in the presence of internal and 
external distractors. This definition encompasses both the ability to sustain attention on a given 
task and the ability to select stimuli and responses that are relevant for that task. Executive 



control of attention is especially consequential during cognitive tasks that require the regulation 
of competing brain activity and the control of resulting behavior (Posner and Rothbart, 
2009, Posner et al., 2014). Attentional control can switch between a stable state of being in the 
zone (on-task) and an erratic state of being out of the zone (Esterman et al., 2013). In other 
words, attentional control fluctuates. As Unsworth (2015) proposed, such fluctuations index 
whether attentional control is deployed in a consistent manner or not. Specifically, although 
attentional control is generally discussed in terms of how attention is deployed on average in a 
given task, the consistency aspect of attentional control concerns intra-individual 
variability during a task (Unsworth, 2015, Unsworth and Robison, 2017). 
 
Here we assessed intra-individual variability in attentional control by measuring response time 
variability in a sustained attention to response task (Go/No-Go), which is commonly used to 
measure response time variability in older children and adolescents (e.g., Fair et al., 
2012, Simmonds et al., 2007, Sjowall et al., 2013). Using this measure, we investigated 
individual differences in attentional fluctuations during early childhood. First, we examined the 
link between attentional fluctuations and task performance. Greater fluctuations in attentional 
control have been associated with poorer task performance in adults (Bellgrove et al., 
2004, Haynes et al., 2017, Unsworth, 2015), suggesting the importance of consistency of 
attentional control for cognitive functioning during adulthood. We hypothesized that if 
consistency were an important aspect of attention during early childhood, then it would also 
strongly relate to task performance in young children. Accordingly, greater fluctuations in 
attentional control, as indexed by increased response time variability, would predict poorer 
overall task performance. 
 
Second, we assessed how attentional fluctuations measured by response time variability in one 
cognitive task related to performance in another cognitive task. We reasoned that attentional 
fluctuations measured in a cognitive task would be a proxy for a child’s general susceptibility to 
attentional fluctuations and, therefore, would be associated with performance in another 
cognitive task. This would imply that attentional fluctuations mark an underlying cognitive trait 
observable across tasks. Work with adults has found that response time variability measured in 
one task is linked to performance in other tasks that rely on attentional control, such as tests of 
working memory, long-term memory, and intelligence (Larson and Saccuzzo, 1989, Li et al., 
2004, Unsworth, 2015, Walhovd and Fjell, 2007). Here we focused on the association between 
attentional fluctuations measured in one task and performance on a separate task of cognitive 
flexibility, with the latter argued to be an ability relying on aspects of attentional control in 
children such as selective attention and attention shifting (Benitez et al., 2017, Kirkham et al., 
2003). We expected children with increased attentional fluctuations, as observed in the Go/No-
Go task, to show poorer performance in cognitive flexibility, as measured by a Dimensional 
Change Card Sort task (Espinet, Anderson, & Zelazo, 2012). 
 
Third, we investigated how attentional fluctuations assessed during the preschool years would 
relate to academic readiness prior to school entry as well as to later academic performance. 
Attentional fluctuations index inconsistency of attentional control. Because consistency is 
considered an important aspect of attentional control (Unsworth, 2015) and attentional control is 
a strong predictor of academic readiness and achievement (Duncan et al., 2007, Posner and 
Rothbart, 2014, Rueda et al., 2010), we inferred that the consistency of attentional control would 



relate to emergent academic abilities as well as early academic performance. Specifically, we 
predicted that preschoolers with greater attentional fluctuations would show poorer academic 
readiness, as measured by standardized tests of emergent literacy and numeracy skills in 
preschool, and poorer academic performance, as measured by teacher reports of school 
performance in first grade. Another plausible hypothesis concerns the indirect associations 
between attentional fluctuations and first-grade academic performance via early academic 
readiness. Frequent fluctuations in attention may lead to children missing information in their 
environment relevant to the acquisition of early math and reading skills. In turn, given that 
emergent math and reading skills in preschool constitute the building blocks of later academic 
performance, such setbacks in the acquisition of these skills in preschool may predict lower 
performance in elementary school (Aunola et al., 2004, Duncan et al., 2007, Guo et al., 2015). 
Thus, we also assessed indirect pathways whereby attentional fluctuations would relate to math 
and reading readiness prior to school entry, which in turn would directly influence academic 
performance in first grade. 
 
An additional goal of the current study was to assess the indirect associations between attentional 
fluctuations and academic outcomes via cognitive flexibility. It has been proposed that one 
mechanism through which attentional control contributes to academic outcomes is via other 
cognitive control processes commonly referred to as executive functions (Amso and Scerif, 
2015, Garon et al., 2008). Cognitive flexibility (also known as shifting) is considered an integral 
component of executive functions (Miyake and Friedman, 2012, Miyake et al., 2000) and has 
been linked to performance in tasks of math and reading (Purpura et al., 2017, Yeniad et al., 
2013). Therefore, we reasoned that, in addition to the hypothesized direct associations, 
fluctuations in attentional control would relate to school readiness and first-grade academic 
performance also through its contributions to cognitive flexibility. 
 
Method 
 
Participants 
 
Participants were recruited as part of a longitudinal study on trajectories of early academic 
success. The initial sample consisted of 278 children, between 45 and 70 months of age 
(mean = 56 months, SD = 5), from the southeastern United States. None of the children had 
started kindergarten at the time of recruitment or at the preschool data collection time point. 
Children were excluded from the current study if their parents reported atypical 
neuropsychological development in either the preschool or first-grade parent questionnaire 
(microcephaly: n = 1; absence seizures: n = 2). Because greater response time variability is 
commonly observed in children with ADHD (Fair et al., 2012, Kofler et al., 2013), to ensure that 
our results were not driven by children with ADHD and to test the utility of assessing attentional 
fluctuations beyond clinical populations, we excluded children whose parents reported a 
diagnosis of ADHD and related medication treatment (n = 12). An additional 12 children did not 
participate in the Go/No-Go task. Data from 1 child were missing due to equipment error. The 
final preschool sample consisted of 250 children (137 female; mean age = 56 months, SD = 5). 
Parent reports of race indicated that 61% of the children were White, 28% Black, 2% Asian, and 
9% multiracial. Of the children included in the preschool sample of the current study, 231 
returned for the first-grade assessment (mean age = 84 months, SD = 4). The first-grade sample 



was limited to the children for whom both the preschool response time data and first-grade 
teacher reports were available (n = 188). These children did not differ from children who were 
included in the preschool sample but not in the first-grade sample in terms of age, gender, 
minority status, or income-to-needs ratio. 
 
Procedure 
 
Preschool-aged children were recruited from daycare centers, from local community 
establishments (e.g., libraries, parks), and via participant referral. The preschool laboratory visit 
lasted approximately 2 hours and consisted of a battery of tasks assessing cognitive development 
and academic readiness as well as tasks of social-cognitive and emotional development that are 
not reported here. Informed consent was obtained from parents or legal guardians at the 
beginning of the visit. The first-grade data collection took place approximately 2 years after the 
preschool laboratory visit. During the first-grade data collection, parents were also asked 
permission to contact children’s first-grade teacher. Teachers were contacted via e-mail and 
asked to complete a series of questionnaires via Qualtrics during the spring semester of the first-
grade year. Children received a toy, and parents and teachers received monetary compensation, 
for their participation. 
 
Measures 
 
Demographics 
 
Primary caregivers provided information about their children’s age, gender, and ethnicity as well 
as the monthly family income via a questionnaire. Child ethnicity was recoded for analysis 
purposes to denote minority status (non-Hispanic White = 0, minority = 1). Preschool income-to-
needs ratio was used as a proxy for socioeconomic status during early childhood. Family 
monthly income was reported on an item that consisted of 15 ranges from which to choose (e.g., 
$1000–$1499). The midpoint of each range was used as the measurement of monthly income and 
was multiplied by 12 to compute annual income. The appropriate poverty threshold was based on 
the U.S. Census reports for the year in which annual income was earned and assessed by the total 
number of members in the household and the number of full-time children living in the home. 
We derived the income-to-needs ratio by dividing the annual family income by the poverty 
threshold. 
 
Attentional fluctuations 
 
Response time variability was used to measure fluctuations in attentional control. To capture 
response time variability, we used a computerized Go/No-Go task (Lahat, Todd, Mahy, Lau, & 
Zelazo, 2010). The task was presented via E-Prime Version 2.0 (Psychology Software Tools, 
Pittsburgh, PA, USA). Task stimuli consisted of animal drawings (cow, horse, bear, pig, and 
dog). At the beginning of each trial, a fixation point, accompanied by a “ding” sound, appeared 
in the middle of the screen and stayed for 1500 ms. This was followed by an animal stimulus that 
stayed on the screen for 1500 ms or until a response was registered. Children were instructed to 
respond via button press as soon as they saw an animal except for when they saw a dog. A 
yellow smiley face followed each correct answer. A red frowning face followed each incorrect 



response or any response that occurred after the 1500-ms stimulus window. Children completed 
10 practice trials consisting of 6 Go and 4 No-Go trials. The practice block was repeated until 
children responded to 9 of 10 trials correctly. All children included in the final sample passed the 
practice. The task consisted of 144 trials (75% Go and 25% No-Go) divided into four blocks. In 
a Go/No-Go paradigm, response time can be measured for correct Go and incorrect No-Go trials 
because no responses exist for incorrect Go trials when required responses were missed and 
correct No-Go trials when responses were successfully inhibited. Consistent with studies that 
used Go/No-Go paradigms (Fuentes-Claramonte et al., 2016, Kane et al., 2016), the index of 
attentional fluctuations was response time variability derived from only the correct Go trials. 
Response time variability was assessed via coefficient of variation (CoV), which has been a 
common measure of intra-individual variability used across a wide range of age groups 
(e.g., Borella et al., 2013, Fortenbaugh et al., 2015, Pagliaccio et al., 2017). CoV was computed 
by dividing the standard deviation of response time by the mean response time for each child. 
This measure allowed us to account for each child’s average response time when assessing 
variability. Greater scores on this measure corresponded to greater fluctuations in attentional 
control (i.e., poorer attentional control). 
 
A preliminary analysis revealed that greater response time variability in the Go/No-Go task was 
related to greater omission errors (missing responses for Go trials, r =  − .54, p < .001) as well as 
greater commission errors (failing to inhibit responses in No-Go trials, r =  − .74, p < .001). 
Therefore, for parsimony, an overall task accuracy score (% correct) was computed as the 
average of Go percentage correct and No-Go percentage correct. 
 
Cognitive flexibility 
 
A computerized version of the Dimensional Change Card Sort task (Espinet et al., 2012) was 
used to measure cognitive flexibility. On each trial, children were presented with a test stimulus, 
a blue rabbit or a red boat, at a central location above two target stimuli: a blue boat on the left 
and a red rabbit on the right. In the pre-switch block, which consisted of 15 trials, children were 
instructed to sort stimuli according to one dimension (i.e., shape). In the post-switch block, 
which consisted of 30 trials, children were instructed to sort stimuli based on the other dimension 
(i.e., color). The experimenter explained the instructions to children before the post-switch block 
began, and repeated them every 5th trial. Children responded by pressing one of the two buttons 
on a response pad. Each button had a laminated replica of one of the target stimuli (left button: 
blue boat; right button: red rabbit). Test stimuli remained on the screen until children responded. 
The experimenter initiated new trials after a minimum of 1000 ms. Cognitive flexibility was 
measured as the percentage of correct responses in the post-switch block. Children who 
performed at or below chance (< 8 correct trials out of 15) in the pre-switch block were 
considered to fail the pre-switch step (n = 4) and did not receive any points for the post-switch 
block regardless of their actual performance. 
 
Emergent academic skills 
 
To assess emergent mathematical and reading skills, we used two subscales from the Woodcock–
Johnson III Tests of Achievement: Applied Problems and Letter–Word Identification 
(Woodcock, McGrew, & Mather, 2001). In the Applied Problems subtest, children were shown 



pictorial mathematical problems and instructed to point to or say the answers. The Letter–Word 
Identification subtest included items that involved symbolic learning, matching pictographic 
representations of words with the actual pictures of objects, and reading identification skills in 
identifying isolated letters and words. For both Woodcock–Johnson subtests, raw scores were 
used in the analyses. 
 
Teacher reports of academic performance 
 
In first grade, teacher reports of children’s academic performance were assessed with the Mock 
Report Card (Pierce, Hamm, & Vandell, 1999). In the 19-item questionnaire, 6 items were 
selected to assess how children perform in major academic content: reading, oral language, 
written language, math, social studies, and science. Academic grades reported on these items 
have demonstrated good construct validity via their positive associations with standardized 
achievement test scores (Pierce, Bolt, & Vandell, 2010). Teachers rated children’s academic 
performance on a 5-point scale ranging from 1 (below: child is performing below grade level) to 
5 (excellent: child is performing beyond grade level). Items were highly correlated with each 
other at this grade level (rs > .74). Therefore, we created a composite school performance score 
by averaging across these items (α = .95). 
 
Results 
 
Preliminary analyses were conducted to examine outliers and normality of distributions. Outliers 
above or below 3.29 standard deviations were replaced with the next highest or lowest value 
(Castellanos et al., 2005). Such replacements were made for 4 children for the Woodcock–
Johnson Letter–Word Identification task, 1 child for the Woodcock–Johnson Applied Problems 
task, and 3 children for attention fluctuation values (i.e., CoV values). Descriptive statistics for 
all measures are reported in Table 1. 
 
Table 1. Descriptive statistics. 
Variable n Min Max M SD 
Preschool age (months) 250 45.00 70.00 56.43 4.70 
First-grade age (months) 183 75.70 96.23 83.57 4.27 
Income-to-needs ratio 243 0.10 6.40 2.17 1.43 
Mean response time 250 471.45 1052.25 802.41 100.92 
Attentional fluctuations (CoV) 250 0.18 0.71 0.33 0.10 
Task accuracy (%) 250 48.77 100.00 83.12 10.95 
Cognitive flexibility (%) 249 0.00 100.00 68.61 33.04 
Math readiness 250 2.00 27.00 14.77 4.16 
Reading readiness 250 1.00 28.00 11.06 5.09 
First-grade academic performance 188 1.00 5.00 3.60 0.91 
Note. CoV, coefficient of variation. 
 
Zero-order correlations are shown in Table 2 for the preschool and first-grade variables. These 
correlations showed the expected relationships between attention fluctuations and the outcome 



measures, with greater fluctuations (higher CoV values) relating to poorer performance across 
the tasks. 
 
Table 2. Correlations among preschool variables. 
Variable 1 2 3 4 5 6 7 8 9 10 11 12 
1. Age (preschool) – 

           

2. Age (first grade) .81*** – 
          

3. Gender −.10 −.08 – 
         

4. Minority status −.06 −.06 .04 – 
        

5. Income-to-needs ratio .09 .09 .09 −.28*** – 
       

6. Mean response time −.06 .06 .04 −.18** .16* – 
      

7. Attentional fluctuations −.15* −.17* −.12 .33*** −.33*** −.52*** – 
     

8. Task accuracy .25*** .20** .20** −.26*** .24*** .18* −.77** – 
    

9. Cognitive flexibility .20** .13 .07 −.19** .22** .02 −.29** .33*** – 
   

10. Math readiness .35*** .29*** .03 −.32*** .31*** .03 −.40** .48*** .45*** – 
  

11. Reading readiness .24*** .14* .10 −.05 .28*** .03 −.29** .37*** .28*** .55*** – 
 

12. First-grade academic performance −.01 −.04 .09 −.18* .19* .07 −.28** .26*** .21** .49*** .43*** – 
Note. Gender: 1 = female; minority: 1 = minority. For attentional fluctuations, higher scores 
indicate greater fluctuations in attentional control. 
*p < .05; **p < .01; ***p < .001. 
 
Table 3. Summary of regression analysis predicting task performance (Go/No-Go accuracy) 
from control variables and attentional fluctuations.  

Model 1 Model 2 
Variable B SE β p B SE β p 
Age 0.56 0.14 .24 < .001 0.35 0.09 .15 < .001 
Gender 4.78 1.28 .22 < .001 2.90 0.88 .13 .001 
Minority −4.58 1.32 −.21 .001 −0.44 0.93 −.02 .634 
Income-to-needs ratio 1.15 0.47 .15 .014 −0.27 0.33 −.04 .414 
Coefficient of variation 

    
−79.83 4.74 −.74 < .001 

ΔR2 
 

0.18 
 

< .001 
 

0.43 
 

< .001 
Note. Gender: 1 = female; minority: 1 = minority. Higher values in coefficient of variation 
indicate greater attentional fluctuations. 
 
First, we conducted a regression analysis to assess the extent to which fluctuations in attentional 
control were associated with task performance. This analysis was conducted in SPSS, and 
missing data (income-to-needs ratio: n = 7; cognitive flexibility: n = 1) were handled via 
expectation maximization. Age at which the outcome measures were collected (preschool or first 
grade), gender (0 = male, 1 = female), ethnicity (0 = not minority, 1 = minority), and income-to-
needs ratio were entered in Step 1 as control variables; the index of attentional fluctuations, CoV, 
was entered in Step 2 as the predictor. The covariates together explained a significant portion of 
variance in overall task accuracy in the Go/No-Go task, R2 = .19, F(4, 245) = 14.76, p < .001. 
The addition of attentional fluctuations significantly contributed to the model, ΔR2 = .43, ΔF(1, 



244) = 284.19, p < .001. Greater attentional fluctuations were associated with lower overall 
accuracy in the task. See Table 3 for a summary of this regression analysis. 
 
Then, we conducted path analyses to evaluate the hypothesized direct and indirect associations 
among attentional fluctuations, cognitive flexibility, and school readiness assessed in preschool 
and academic performance assessed in first grade. Analyses were conducted with Mplus Version 
8 (Muthén & Muthén, 1998–2017). Missing data (income-to-needs ratio: n = 7; cognitive 
flexibility: n = 1; age in first grade: n = 5) were handled via full information maximum 
likelihood. 
 
In the path model (see Fig. 1), the index of attentional fluctuations (i.e., CoV) was specified as an 
exogenous variable that predicted cognitive flexibility as well as emergent math and reading 
skills in preschool and predicted academic performance in first grade. Cognitive flexibility was 
also specified as predicting emergent math and reading skills in preschool and predicting 
academic performance in first grade. Finally, emergent math and reading skills in preschool were 
specified as predicting academic performance in first grade. 
 

 
Fig. 1. Path model predicting math and reading readiness in preschool and teacher reports of 
academic performance in first grade. Values are standardized coefficients. Statistically 
significant paths are solid lines. INR, income-to-needs ratio. *p < .05; **p < .01. 
 
Initially, the model controlled for age at testing, income-to-needs ratio, and minority status in 
preschool and first grade. As shown in Table 2, gender did not correlate with any of the outcome 
measures and was not included in this path model. This model had good fit, χ2(4, N = 250) = 



10.19, p = .037, comparative fit index (CFI) = .98, root mean square error of approximation 
(RMSEA) = .08, confidence interval (CI) = [.02, .14], standardized root mean square residual 
(SRMR) = .03. In this model, the following covariate paths did not have statistically significant 
coefficients: (a) minority status predicting cognitive flexibility, reading readiness, and first-grade 
school performance and (b) age and income-to-needs ratio predicting first-grade school 
performance. For parsimony, we adopted a model-trimming approach for respecification (Kline, 
2016) and removed these paths from the model. Removing these paths did not significantly 
change the model fit, χ2(4, N = 250) = 5.31, p = .256. Therefore, these covariate paths were 
excluded from the model. 
 
Fig. 1 shows this model with the standardized coefficients. The unstandardized coefficients and 
confidence intervals are presented in Table 4. This model fit well, χ2(8, N = 250) = 
15.50, p = .050, CFI = .98, RMSEA = .06, CI = [.00, .11], SRMR = .04. Independent of 
covariates, attentional fluctuations were associated with cognitive flexibility, emergent math 
skills, and emergent reading skills in preschool such that children who had greater fluctuations 
(i.e., less consistency) in attentional control had poorer cognitive flexibility and school readiness. 
However, contrary to prediction, attentional fluctuations in preschool were not directly 
associated with first-grade school performance. Similarly, cognitive flexibility was positively 
associated with emergent math and reading skills in preschool but was not associated with first-
grade school performance. 
 
Indirect associations were assessed using a bias-corrected bootstrapping approach (MacKinnon, 
Lockwood, & Williams, 2004) with 10,000 draws (see Table 4 for statistics). First, we evaluated 
the indirect effects of attentional fluctuations on emergent math and reading skills via cognitive 
flexibility. The indirect effect of attentional fluctuations on emergent math skills via cognitive 
flexibility was significant. The remaining direct effect of attentional fluctuations on emergent 
math skills was also significant, suggesting that consistency of attentional control was linked to 
math readiness both directly and through its association with cognitive flexibility. The indirect 
effect of attentional fluctuations on emergent reading skills via cognitive flexibility was not 
significant. 
 
Second, we evaluated the indirect effects of attentional fluctuations on academic performance in 
first grade, testing various possible paths. The indirect effect of attentional fluctuation on school 
performance via cognitive flexibility was not significant. However, attentional fluctuations had 
an indirect effect on first-grade academic performance via preschool math readiness and also via 
preschool reading readiness. The remaining direct effect of attentional fluctuations on first-grade 
academic performance was not significant. Thus, consistency of attentional control was linked to 
math and reading readiness during the preschool years, which in turn predicted first-grade 
academic performance. 
 
Cognitive flexibility had an indirect effect on first-grade academic performance via math 
readiness but not via reading readiness. The remaining direct effect of cognitive flexibility on 
first-grade academic performance was not significant. We also found that attentional fluctuations 
had an indirect effect on first-grade academic performance via its associations with cognitive 
flexibility, which in turn was linked to emergent math skills in preschool. However, we did not 



find a significant indirect effect of attentional fluctuations on first-grade academic performance 
via the path of cognitive flexibility to emergent reading skills. 
 
Table 4. Direct and indirect associations from path model.    

Confidence interval 
 

Path Est. SE Lower Upper p 
CoV → Flexibility −70.554 19.713 −109.192 −31.915 < .001 
CoV → Math readiness −7.212 2.531 −12.713 −2.251 .004 
CoV → Reading readiness −8.218 3.115 −14.323 −2.113 .008 
CoV → First-grade academic −.963 .654 −2.244 .318 .140 
Flexibility → Math readiness .036 .007 .023 .050 < .001 
Flexibility → Reading readiness .025 .010 .006 .044 .010 
Flexibility → First-grade academic .000 .002 −.004 .004 .918 
Math readiness → First-grade academic .073 .017 .039 .107 < .001 
Reading readiness → First-grade academic .042 .014 .014 .070 .004 
Age → CoV −.002 .001 −.005 .000 .045 
Age → Flexibility 1.072 .417 .255 1.889 .010 
Age → Math readiness .211 .048 .118 .305 < .001 
Age → Reading readiness .177 .066 .048 .305 .007 
INR → CoV −.018 .004 −.026 −.010 < .001 
INR → Flexibility 3.122 1.425 .329 5.915 .028 
INR → Math readiness .339 .172 .002 .677 .049 
INR → Reading readiness .606 .222 .171 1.041 .006 
Minority status → CoV .051 .012 .028 .074 < .001 
Minority status → Math readiness −1.614 .420 −2.437 −.792 < .001  
Indirect associations 
CoV → Flexibility → Math readiness −2.575 .854 −4.249 −.901 .003 
CoV → Flexibility → Reading readiness −1.750 .924 −3.562 .062 .058 
CoV → Flexibility → First-grade academic .014 .145 −.270 .298 .922 
CoV → Math readiness → 1st G. academic −.526 .229 −.974 −.078 .021 
CoV → Reading readiness → First-grade academic −.342 .173 −.681 −.003 .048 
Flexibility → Math readiness → First-grade academic .003 .001 .001 .004 .002 
Flexibility → Reading readiness → First-grade academic .001 .001 .000 .002 .086 
CoV → Flexibility → Math readiness → First-grade academic −.188 .079 −.343 −.032 .018 
CoV → Flexibility → Reading readiness → First-grade academic −.073 .052 −.175 .029 .161 
Note. Est., unstandardized estimate; CoV, coefficient of variation; flexibility, cognitive 
flexibility; First-grade academic, first-grade academic performance. 
 
Discussion 
 
The current study examined fluctuations in attentional control in preschoolers. We assessed the 
extent to which fluctuations in attentional control relate to (a) performance on the task in which 
the fluctuations were observed, (b) performance on a separate, but related, task of cognitive 



performance, and (c) emergent academic abilities. First, we found a strong relationship between 
fluctuations in attentional control and task performance. Greater fluctuations in attentional 
control during the task, as indexed by higher response time variability, were linked to more 
omission errors, that is, missing required responses. Similarly, greater fluctuations in attentional 
control were linked to more commission errors, that is, failing to withhold a prepotent response. 
These results are consistent with findings from a previous study linking response time variability 
to both omission and commission errors in a similar task in a study of ADHD (Simmonds et al., 
2007). Our finding that attentional fluctuations were related to both types of error in the task 
suggests that fluctuations in attentional control are associated with overall task performance in 
preschoolers. Previous studies with adults and older children reported similar associations 
between fluctuations in attentional control and task performance across a variety of tasks 
(Bellgrove et al., 2004, Epstein et al., 2011, Kane et al., 2016). Our results indicate that the 
strong relations between attentional fluctuations and task performance in adults and older 
children are already present during early childhood. 
 
Second, we found that children who showed greater attentional fluctuations in the Go/No-Go 
task demonstrated poorer performance in the cognitive flexibility task. This finding suggests that 
attentional fluctuations measured in one cognitive task could be a proxy for fluctuations in 
another cognitive task. Such a finding implies that the consistency aspect of attentional control 
may be a cognitive trait relating to performance across tasks. Several studies with adults 
demonstrated that individuals with greater attentional fluctuations showed poorer performance in 
various aspects of cognition such as working memory, prospective memory, and intelligence 
(Ihle et al., 2017, Kane et al., 2016, Unsworth, 2015). Here we demonstrated a similar link 
between individual differences in attentional fluctuations and cognitive flexibility during early 
childhood. In previous studies with children, features of attentional control, such as attention 
shifting and selective attention, were associated with cognitive flexibility (Benitez et al., 
2017, Hanania and Smith, 2010, Kirkham et al., 2003). Our results extend such findings to the 
consistency aspect of attentional control. These findings support the idea that consistency is an 
important aspect of attentional control during early childhood. 
 
Third, we investigated the associations between fluctuations in attentional control and academic 
readiness and performance. We found that children with greater fluctuations in attentional 
control performed worse in tests of math and reading readiness in preschool, which in turn 
predicted lower teacher ratings of academic performance in first grade. These findings suggest 
that consistency of attentional control has concurrent associations with emergent math and 
reading skills during the preschool years, which sets the stage for later academic outcomes. 
Several aspects of attentional control have been linked to academic readiness (Duncan et al., 
2007, Posner and Rothbart, 2014, Stevens and Bavelier, 2012). Our results link the consistency 
aspect of attentional control to emergent academic abilities. One reason for this may be that 
attentional fluctuations impair learning processes. Children who are more susceptible to frequent 
lapses in attentional control may often miss important information in the environment necessary 
to acquire academic skills. Furthermore, frequent lapses in attentional control can impede 
performance in academic tasks by leading to periods of goal neglect as well as recurrent failures 
in selecting stimuli and responses relevant for the task goals. As such, attentional fluctuations 
may impair both the acquisition and execution of early academic skills. Although the design of 
the current study precludes any claims of directionality, our findings lay the foundation for 



further investigation of the relations between attentional fluctuations and academic readiness and 
achievement. 
 
Another goal of the current study was to test the indirect relations between attentional 
fluctuations and academic performance via cognitive flexibility. Based on the premise that 
consistency is an important aspect of attentional control (Unsworth, 2015, Unsworth and 
Robison, 2017), which is foundational for executive functions such as cognitive flexibility 
(Amso and Scerif, 2015, Garon et al., 2008), and given the associations between cognitive 
flexibility and academic outcomes (e.g., Purpura et al., 2017, Yeniad et al., 2013), we reasoned 
that fluctuations in attentional control can relate to performance in academic tasks not only 
directly but also through cognitive flexibility. Therefore, we hypothesized indirect pathways 
whereby attentional fluctuations would predict lower performance in cognitive flexibility, which 
in turn would be associated with poorer math and reading readiness in preschool and lower 
academic performance in first grade. As hypothesized, we found that attentional fluctuations 
predicted cognitive flexibility, which in turn was associated with emergent math skills in 
preschool. Similarly, there was an indirect relation between attentional fluctuations and teacher 
reports of first-grade academic performance via the association between cognitive flexibility and 
preschool math readiness. These results are consistent with the argument that attentional control 
can contribute to academic outcomes not only directly but also via executive functions, such as 
cognitive flexibility (Amso and Scerif, 2015, Garon et al., 2008), and suggest that the 
consistency aspect of attentional control plays a role in these associations. However, contrary to 
prediction, we did not find indirect associations between attentional fluctuations and reading 
readiness via cognitive flexibility. Likewise, we did not find indirect associations between 
attentional fluctuations and first-grade academic performance via the association between 
cognitive flexibility and reading readiness. Cognitive flexibility also had an indirect association 
with academic performance at first grade via preschool math readiness but not via preschool 
reading readiness. These results may suggest that the cognitive flexibility component of 
executive functions is particularly important for early math abilities as children learn to shift 
flexibly between rules and concepts (Blair et al., 2015, Purpura et al., 2017). However, it has also 
been argued that although laboratory assessments of emerging math abilities may capture the 
processes that recruit cognitive flexibility, assessments of early reading skills may rely more on 
knowledge-based skills instead of comprehension and, thus, might not recruit flexible use of 
rules as much (Blair et al., 2015). Therefore, future studies with different reading readiness 
assessments may reveal pathways that we could not detect in this study. Furthermore, future 
research should consider assessing a more comprehensive assay of cognitive mechanisms 
through which attentional fluctuations may relate to academic outcomes. 
 
In this study, building on the executive attention framework (Engle and Kane, 2004, Unsworth, 
2015), which posits attentional control as the ability to focus on task goals in the presence of 
external and internal distractors, we demonstrated direct and indirect relations among the 
consistency aspect of attentional control, accuracy in cognitive tasks, academic readiness, and 
early school performance. Instead of how attentional control is deployed on average in a given 
task, consistency concerns intra-individual variability in attentional control (Unsworth, 
2015, Unsworth and Robison, 2017). When attention is tightly focused on a task, an individual 
engages in goal-directed behavior consistently. However, when goal-directed attention is not 
tightly focused, lapses of attention can manifest either in the form of very fast responses that are 



guided by prepotent tendencies to respond regardless of the task demands or by frequently 
occurring slow responses due to the redirection of attention to task-relevant stimuli and 
behaviors (Esterman et al., 2013, Unsworth, 2015, Unsworth et al., 2004). Therefore, intra-
individual variability in response time, driven by responses both much faster and slower than 
average, is considered an index of fluctuations in attentional control during the task (Esterman et 
al., 2013, Fortenbaugh et al., 2015, Unsworth, 2015). The current study demonstrated the utility 
of using response time variability as a marker of attentional fluctuations in young children. 
Although young children cannot be expected to report on their ongoing attentional engagement 
like adults can, response time variability provides an age-appropriate, unbiased alternative to 
measure attentional fluctuations during early childhood. Importantly, in our study average 
response time was not related to any of our outcome measures after taking the control variables 
into account. Intra-individual variability in response time, however, predicted performance in 
cognitive tasks in preschool and had direct and indirect associations with academic readiness in 
preschool and performance in first grade. Such findings emphasize the importance of taking 
intra-individual variability into account in studies of individual differences in cognitive 
development during early childhood. 
 
Here we discussed response time variability as an index of attentional fluctuations and 
demonstrated how increased response time variability relates to poorer outcomes in cognitive 
measures and academic skills. However, it is important to note that whether response time 
variability marks a deficit in cognitive processes depends on the task in question. In tasks where 
success depends on the stability in goal maintenance and exploitation of known rules and 
strategies, response time variability indexes whether attentional control is consistently deployed. 
The task we used to measure response time variability in this study, Go/No-Go, fits this category. 
However, many tasks, such as visual search, also involve trade-offs between exploiting known 
opportunities and exploring for better opportunities elsewhere, known as the exploration versus 
exploitation trade-off (Hills et al., 2015). In these circumstances, response time swings may mark 
exploratory strategies to gather information about the environment (Frank et al., 2009, Hills et 
al., 2015). Therefore, it is important to underscore that response time variability is to be 
considered an index of attentional fluctuations in tasks that require consistent control of 
attention, stability of goal maintenance, and using known rules and strategies. 
 
A limitation of the current study is that we used only one task during which response time 
variability could be measured accurately. Although this is a common approach in developmental 
studies that measure response time variability (e.g., Fair et al., 2012, Sjowall et al., 2013), it 
prevents us from assessing how task characteristics, such as task difficulty and response 
demands, may play a role in the extent to which attentional control fluctuates in young children. 
Work with adults demonstrated that response time variability measured across executive control 
tasks emerges as a single construct of attentional control (Kane et al., 2016, Unsworth, 2015). A 
similar unitary construct may emerge during early development as well. Future studies in which 
response time variability is measured across tasks in young children could elucidate the effects of 
task characteristics on attentional fluctuations in young children, if any. Moreover, such study 
designs would be important for teasing apart the effects of specific task demands (e.g., response 
inhibition) from influences of attentional fluctuations. 
 



Another important future direction is the investigation of underlying neurobiological 
mechanisms of attentional fluctuations in young children. Such investigations can help us to 
better understand what aspects of brain development interact with contextual factors to 
contribute to consistency of attentional control during early childhood. One of the proposed 
neurobiological mechanisms of consistency of attentional control centers on the functioning 
within the dorsal frontoparietal attentional network (DAN), which is generally involved in goal-
directed, top-down attention processes (Petersen & Posner, 2012), and the default mode network 
(DMN), which is considered an integrative network that adjusts its activity according to the 
functioning of other networks (Mittner, Hawkins, Boekel, & Forstmann, 2016), and how these 
two dynamic attentional systems work in tandem (Esterman et al., 2013, Esterman et al., 
2014, Kucyi et al., 2017). A second proposal focuses on the contributions of neurotransmitter 
systems to intra-individual variability in performance, including neurotransmitters such as 
dopamine and norepinephrine (MacDonald et al., 2006, Mittner et al., 2016, Unsworth and 
Robison, 2017). It remains to be investigated what aspects of these brain networks and 
neurotransmitter systems may contribute to individual differences in susceptibility to attentional 
fluctuations in children. 
 
Future studies in this line of research can also inform education and intervention efforts that aim 
to promote school readiness and early academic performance. To date, several training programs 
yielded promising results in improving cognitive abilities in preschoolers with diverse 
neurocognitive profiles, including children who are at risk for school failure or who have 
developmental disorders such as ADHD (e.g., Capodieci et al., 2017, Neville et al., 2013, Raver 
et al., 2011). It is plausible that such programs already include components that reduce 
attentional fluctuations. However, it is also possible that additional components of training may 
be needed to reduce attentional fluctuations, especially in children who are most susceptible to 
frequent lapses in attentional control. Furthermore, incorporating measures of attentional 
fluctuations into assessment batteries can be useful in determining which children may benefit 
from certain trainings more and which children may need supplementary programs. Given the 
direct and indirect associations we reported between attentional fluctuations and performance in 
tasks of cognition and academic skills, consistency of attentional control may be an important 
target for training programs that aim to improve cognitive development and academic 
achievement during childhood and beyond. 
 
In conclusion, in the current study we demonstrated that greater attentional fluctuations strongly 
predicted lower task accuracy. In addition, we found that attentional fluctuations measured in 
one cognitive task could be used as a proxy for attentional fluctuations in another cognitive task. 
Furthermore, we identified direct and indirect associations between attentional fluctuations and 
academic outcomes. Such findings highlight that consistency is an important aspect of attentional 
control during early childhood. Our study lays the groundwork for future research on how this 
important aspect of attentional control may relate to fundamental cognitive abilities and 
emergent academic skills throughout childhood. Our findings also highlight the need to 
understand the biological, psychological, and contextual mechanisms that account for individual 
differences in susceptibility to attentional fluctuations in children. Given the strong links 
between attentional control and performance in cognitive tasks as well as academic readiness and 
achievement (Duncan et al., 2007, Posner and Rothbart, 2014), this line of research carries the 
potential to have broader implications for cognitive development and academic performance. 
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