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ABSTRACT 

AINE, CHERYL JANICE. Visual Event-related Potentials to Colored Patterns 
and Color Names: Attention to Feature, Dimension, and Meaning. (1983) 
Directed by: Dr. M. Russell Harter. Pp. 105 

The present study utilized visual event-related brain responses to 

investigate the nature of representation of colors and color names in the 

nervous system. It was hypothesized that the initial processing of 

sensory colors and linguistic stimuli occurs at different levels of the 

brain, while later in time, these features may be synthesized into a 

unitary representation (e.g. sensory color along with its linguistic 

label) in central cortical regions. A final prediction was that the 

processing of sensory colors would elicit greater responses over the 

right hemisphere while the processing of word stimuli would elicit 

greater enhancement of the brain response over the left hemisphere. 

Pairs of stimuli were presented to the central retina. The first 

stimulus of a pair (SI) consisted of either a circular red or blue 

diffuse flash. The second stimulus of a pair (S2) was either a red or 

blue pattern or the words "red" or "blue" printed in black against a 

white surround. Selective attention to either the color or word 

dimension was manipulated by instructing the subjects (four right-handed 

males and four right-handed females) to respond to the S2 (reaction-time 



task) when it matched SI in terms of the relevant dimension. Brain 

responses were obtained from both SI and S2 stimuli and were recorded 

from over the left and right hemispheres of occipital, central, and 

frontal cortical regions. 

The results indicate the following: 1) The time-course and scalp 

distribution of a relatively early component of the brain response 

suggests different source generators or brain regions mediating the 

processing of colors and words; 2) The selection of a specific dimension 

(colors versus words) was evident relatively early in time (17 2 msec) 

over occipital regions and was followed by the selection within the 

relevant dimension—a specific color (229 msec) or a specific word (370 

msec); 3) The earliest attention effect associated with the processing 

of specific words was evident over frontal regions (274 msec); 4) An 

enhancement of the brain response to task irrelevant but semantically 

related stimuli was evident very early in time (229-274 msec) and in 

different cortical regions for colors versus words; and 5) Selective 

attention to a specific color resulted in greater enhancement of the 

brain response over the right hemisphere while attention to a specific 

word resulted in a greater enhancement over the left hemisphere. 
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CHAPTER I 

INTRODUCTION 

An aspect of perception which has long been a theoretical stumbling 

block for theories of perception is an account of how objects and events 

become meaningful (Neisser, 1976). The British Associationists of the 

seventeenth century believed that all mental life could be analyzed into 

specific ideas (the elements of mind) and the association between these 

ideas (Boring, 1957; Lowry, 1971). Associations, as expressed by 

Aristotle and maintained by the associationists, develop when events or 

objects occur in the same time or space (Doctrine of Association by 

Contiguity), when events or objects are similar (Doctrine of Association 

by Similarity), and when objects and events are opposites (Doctrine of 

Association by Contrast). 

William James rejected the elementarism of associationism (Watson, 

1968). Similar to the associationists, James proposed that objects 

experienced together tend to become associated by law of neural habit; 

elementary brain processes occurring in immediate succession or 

simultaneously tend to propagate excitement into one another. However, 

analyses of mind which treat the mind as mere congeries of elements fail 

to consider the global processes such as the innate capacity of the mind 

to perceive relations and categories. Consciousness is a continuous 
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affair, not discrete elements or ideas (Boring, 1957; Watson, 1968). 

The Gestalt movement, subsequent to James and the Functionalists, 

also rejected the notion that our perceptions are mere aggregations of 

sensations. Perceptions are organized as meaningful wholes through the 

Principle of Isomorphism; the form of experience corresponds to the form 

or configuration of the stimulus pattern (i.e., Gestalten)Gestalten 

are not photographic copies of the physical word but are true 

representations of the physical world. Kohler has suggested that 

Gestalten develop via electrical fields in visual cortex which are 

isomorphic with stimulus configurations (Chaplin and Krawiec, 1974). 

In contemporary psychological theories of perception and cognition, 

this controversy takes the form of "data driven" or "bottom-up" 

processing versus "conceptually driven" or "top-down" processing. Is 

meaning added, to a representation of the stimulus configuration after the 

features have been analyzed (data driven) or before the stimulus details 

have been processed (conceptually driven)? "Data driven" processing is 

initiated by the arrival of sensory data at the receptor which then 

proceeds through successive stages of analysis until "meaning" becomes 

attached at some higher level of processing (e.g., after contact is made 

with memory). "Conceptually driven" processing begins with a general 

knowledge of events that are being experienced and with specific 

expectations which guide the stages of analysis at all levels (Lachman, 

Lachman, and Butterfield, 1979; Lindsay and Norman, 1977; Treisman and 

Gelade, 1980). 
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The controversy between "bottom-up" and "top-down" processing also 

has its counterparts in the neuroscience literature. It is unlikely that 

neural processes resemble "bottom-up" processing in absolute terms since 

attention, for example, has been shown to influence neural processing of 

afferent information at all levels of the visual system including the 

retinal level (Eason, Oakley, and Flowers 1983). However, these terms 

suggest basic differences in the organization of the visual system. 

"Bottom-up" processing implies that complex processes result from the 

integration of afferent information as if information is processed in a 

serial and/or hierarchical fashion. "Top-down" processing, on the other 

hand, does not presuppose that higher-order processes are dependent upon 

lower-order processes. In fact, it implies the opposite. - From a 

neurophysiological perspective, "top-down" processing suggests that 

complex processes such as the processing of "meaning" can occur very 

early in time and in parallel with lower-order processes. 

The work of Hubel and Wiesel on cats has led to the classical 

conception of the geniculostriate system as being a serial and 

hierarchical pathway from retinal through striate and extrastriate 

regions (Hubel and Wiesel, 1965; Kuffler and Nicholls, 1976, pp. 

61-73). This conceptualization is reminiscent of "bottom-up" processing 

where information processing is carried out in hierarchically arranged 

levels, proceeding from one functionally related group of cells to the 

next. Some researchers (Gross, 1973, pp. 451-482)) consider 

inferotemporal cortex as the highest level of the serial and hierarchical 

pathway. In general, there is a trend for the receptive-fields to 
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increase in size from striate to extrastriate regions; this progressive 

increase in size appears to correlate with higher levels of visual cortex 

(Zeki, 1978). Inferotemporal cortex, for example, has larger 

receptive-fields and generally has more converging inputs than striate 

and prestriate areas (Gross, Rocha-Miranda and Bender, 1972; 

Rocha-Miranda, Bender, Gross, and Mishkin, 1975). Its receptive-fields 

are sensitive to complex stimulus features in comparison to 

receptive-fields in occipital cortex (Gross, 1973). This region has been 

implicated in higher forms of information processing such as the 

categorization of information, object representation, retrieval of visual 

information, discrimination learning, and selective attention (Bagshaw, 

Mackworth, and Pribram, 1972; Butter, 1969; Gross, Rocha-Miranda, and 

Bender, 1972; Sahgal and Iversen, 1978). 

The adequacy of this serial hierarchical conceptualization may be, 

in part, questioned in light of recent neurophysiological and 

neuroanatomical data on parallel visual pathways and areas, Lieb and 

Karmel (1974) have utilized ERPs in the rhesus monkey (via implanted 

electrodes) to show that the earliest and most significant signs of 

sensitivity to checkerboard patterns of varying sizes was evident in 

parafoveal striate cortex (70 msec poststimulus) rather than foveal 

striate cortex. Subsequent changes in the ERPs were noted in foveal 

striate, foveal prestriate, and inferotemporal cortex, respectively 

(190-400 msec). 
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Data on neuroanatomical pathways, in general, suggest that there are 

several •visual pathways from the retina to cortex with many subcortical 

feedback loops as well as cortical feedback loops (Graybiel, 1974; Lund 

and Boothe, 1975; Macko, Jarvis, Kennedy, Miyaoka, Shinohara, Sokoloff, 

and Mishkin, 1982; Singer, Tretter, and Cynader, 1975; Sprague, Levy, 

Diberardino, and Berlucchi, 1977; Wilson, 1978; Zeki, 1978). At the 

cortical level there are many different visual areas which are not 

arranged in a strict serial order (Van Essen, 1979). "Each visual area in 

primates receives input from more than one cortical area and projects to 

more than one cortical target. Zeki (1978) suggests that these different 

visual areas perform a simultaneous analysis of different types of visual 

information which is why a visual field must be represented separately in 

each of the different areas. 

Consequently, the role of the parallel tectopulvinar and 

geniculostriate systems in perception has been questioned. The 

tectopulvinar system may provide the first stage of simple coarse pattern 

perception rather than striate cortex (Sprague, Levy, Diberardino, and 

Berlucchi, 1977). Parietal areas are another likely candidate for 

providing the first stage of analysis given the large multimodal cells in 

this region which are highly interconnected with other regions 

(Mountcastle, Lynch, Georgepoulos, Sakata, and Acunia, 1975; Yin and 

Mountcastle, 1977). Striate cortex may be necessary only for limited 

aspects of perception such as rapid learning, selective attention, and 

fine stereopsis (Cowey, 1981; Berlucchi and Sprague, 1981; Rodieck, 

1979). 
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In addition to the early single-unit data of Hubel and Wiesel, 

Geschwind's neuropsychological model of the representation of language 

(1972) also favors a hierarchical conceptualization of the nervous 

system. Geschwind hypothesized that the angular gyrus integrates sensory 

information from various modalities to form an abstract or symbolic 

representation of this sensory information. Clinical studies on anomic 

aphasia (i.e., difficulty in finding names of objects) support the notion 

that such deficits result from lesions in the angular gyrus or 

parietal-occipital regions (Geschwind, 1967; Luria, 1973). Ojemann (in 

press), in contrast, has presented a model of cortical organization of 

language, derived from stimulation mapping techniques, which stresses 

parallel processes. Association cortex is organized in discrete mosaics 

or columns each of which seems to be related to a distinct language 

function. A particular language function, however, is re-represented 

from frontal to parietal-temporal areas. 

The asymmetry of neural responses associated with various types of 

processing has yielded additional information related to the serial 

versus parallel nature of the visual system and the temporal sequence in 

which different types of information (e.g., processes of varying levels 

of complexity) are processed. Harter, Aine and Schroeder (1982) reported 

an early (172 msec) enhancement of a negative component in occipitally 

recorded event-related potentials over the hemisphere contralateral to 

the visual field of the attended stimulus. This enhancement was 

associated with attention to the location of the evoking flash. Later in 

time, an enhancement of the brain response over occipital regions (N272) 
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was greater over the right hemisphere regardless of the location of the 

evoking flash. Differences in the time-course (i.e., temporal sequence) 

of asymmetries associated with various types of processing and the 

cortical regions in which these asymmetries were evident, were 

interpreted as reflecting different underlying mechanisms and suggests 

both the serial and parallel nature of different processes. 

The primary purpose of this study is to address the following 

questions 'related to the serial verus parallel nature of different types 

of neural information processing at the cortical level: Are verbal and 

nonverbal information processed serially in the same system or in 

parallel in different systems? Does the labeling of percepts (i.e., 

linguistic and nonlinguistic) occur in the same or different cortical 

regions? At what point in time is the "meaning" of a stimulus reflected 

in the brain response? Is there an interaction between the sensory and 

linguistic representations of information? Furthermore, is one 

hemisphere better suited for the processing of one type of information 

than another (e.g. colors versus words)? 

ERPs as a. Measure of Neural Processine 

The&e questions are addressed in the present study by utilizing the 

ERP (event-related potential) methodology. The ERP methodology has a 

potential advantage over behavioral measures of processing (e.g., 

reaction-times) in that it may reflect the temporal sequence of 

information processing, the general brain regions involved in such 

processing, and whether this processing is occurring in series or in 
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parallel with other processes. 

The present study tested a number of hypotheses related to the 

neural processing of colors and color names which were based on the 

neural specificity model of selective attention proposed by Harter and 

Aine (in press). This model proposes that selective neural processing 

due to attention is mediated by the efferent modulation of neural 

channels. Neural channels are defined as an aggregate of neurons with 

similar receptive-field properties. Selective processing is indicated by 

enhanced neural activity to a stimulus when it does versus does not have 

features in common with the relevant stimulus. This negative enhancement 

was termed "selection negativity" by Harter and colleagues and was used 

as a measure of neural processing. The specificity of selection is 

determined by the information-processing properties of each neural 

channel subjected to modulation. This theoretical framework allows one 

to predict the relative time-course and scalp distribution of enhanced 

neural responses associated with processing different features and 

conjunction of features defining the relevant stimulus. 

In support of this model, Harter and colleagues present ERP data 

which they interpret as indicating that attention to spatial location is 

mediated, in part, by activity in the tectopulvinar-parietal system 

(Harter, Aine and Schroeder, 1982), whereas, attention to spatial 

orientation is mediated by activity in the geniculostriate projection 

system (Harter and Guido, 1980). Within the geniculostriate system, 

Harter and Previc (1978) have shown that selective attention to a 

specific check size modulates a negative component in the ERP which was 
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interpreted as resulting from the modulation of the neural channels 

responsible for the processing of the attended check size. Similarly, 

Harter and Guido (1980) have suggested that selective attention to 

pattern orientation modulates the activity of orientation-specific 

channels. 

Color and word processing.—It follows from the above 

neurophysiological model that colors may be processed before words. In 

this context, "processing" refers to the increased "activation of the 

neuronal aggregates responsive to features of a relevant stimulus. Data 

indicate that color is represented in the visual system as early as the 

retinal level and through parietal and inferotemporal cortical regions 

(De Valois and De Valois, 1975; Fuster and Jerve.y, 1981; Gross, 

Rocha-Miranda, and Bender, 1973; Zeki, 1973, 1978, 1980). Single-unit 

studies on Rhesus monkeys indicate that receptive-fields in Area V4 

(occipital-parietal regions) contain the central 20-30 degrees of the 

retina and are specialized for the analysis of color (Zeki, 1973, 1978, 

1980). The foveal prestriate areas also project to inferotemporal 

cortex, an area apparently necessary for the discrimination and selection 

of essential cues from a visual stimulus (Cowey and Weiskrantz, 1967; 

Gross, 1973; Kolb and Whishaw, 1980, pp. 273; Manning, Gross, and 

Cowey, 1971; Sahgal and Iversen, 1978; Wilson, 1978). The 

receptive-fields in this region usually include the central retina and 

are sensitive to color, contrast, shape and orientation (Gross, Bender, 

and Rocha-Miranda, 1974; Gross, Rocha-Miranda, and Bender, 1972). 

Fuster and Jervey (1981) found that the reaction of some cells in 
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inferotemporal cortex depend critically on whether the animal paid 

attention to the colored stimulus. Furthermore, a substantial number of 

cells showed differences in frequency of discharge when monkeys were 

required to retain information on the colored stimulus. 

Words, in contrast, should be processed later in time since they 

presumably are represented in parietal-temporal cortical regions 

(Geschwind, 1972). The integration of sensory information from various 

modalities to form an abstract or symbolic representation presumably 

takes time. Similarly, Ojemann (in press) has found a cluster of 

cortical sites in the posterior temporal lobe which appears to mediate 

"naming" of common objects. Ojemann suggests that parietal-temporal 

sites most likely contain the store of neural representations of words 

("engrams"?). 

Several studies have assessed color and word processing using ERPs. 

Early ERP studies investigating the effects of color on ERPs revealed 

color specific changes around 150-300 msec over occipital areas (Eason, 

Oden, and White, 1967; Shipley, Jones, and Fry, 1965). These studies 

utilized simple color flashes rather than color embedded in pattern or 

color/word stimuli and reported changes in the ERP as a function of 

wavelength, intensity, and retinal location. Harter and Salmon (1972) 

demonstrated ERP changes as a function of attention to colors (i.e., 

changes in the ERP to one color flash when it was attended versus 

ignored). 
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Neville (1980) attempted to investigate the nature of linguistic 

processing utilizing ERPs as a measure. She instructed subjects .to 

recall either dichotically presented words (verbal-auditory task), 

4-letter words presented visually (verbal-visual task), or to recall 

melodies or line drawings (nonverbal auditory and visual tasks). ERPs 

were recorded over both hemispheres of parietal and central cortex. The 

results indicated a greater left hemisphere effect for linguistic tasks 

over parietal regions. 

Her study, however, contained a number of methodological problems. 

First, the linguistic and nonlinguistic stimuli varied in their physical 

characteristics. Such variations are known to influence the ERP; one 

cannot be sure whether the differences reported above were due to 

nonlinguistic versus linguistic processing or due to stimulus differences 

per se. Secondly, the nature of stimulus presentation (i.e., sequential 

versus simultaneous) and the nature of the tasks (i.e., recognition 

versus recall) were confounded with the type of stimuli. These 

methodological problems are commonly found in ERP studies on Linguistic 

processing (Donchin, Kutas, and McCarthy, 1977). 

Aine and Harter (A and B, in press) investigated the neural 

processing of colors and words in a series of studies while controlling 

for stimulus differences and other confounds. The nature of the 

selection process was assessed by investigating the effects due to 

attending either a single dimension (i.e., the sensory color or 

word—;Study A) or both dimensions (i.e., a particular conjunction of 

colors and words or the stimulus per se—Study B) of color/word stimuli. 
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ERPs were recorded to the same physical stimulus (Stroop and Nonstroop 

color/word stimuli) and compared under these different task instructions; 

therefore, resultant changes in the ERP were due to the task instruction 

and not the nature of stimulation per se. This change in ERP waveform, 

associated with task relevance, consisted of an early enhanced negativity 

(termed selection negativity) followed by a later enhanced positivity 

(termed P300). 

Aine and Harter (Study A) predicted that the effects of selective 

attention to colors would be associated with earlier neural processing 

than attention to words and would be most prominent over occipital 

regions. In contrast, they predicted that effects due to attending words 

would be most prominent over the left central electrode. In support of 

the predictions, the results indicated that enhanced color processing 

over occipital regions, as indicated by selection negativity, began 

sooner in time (onset latency=150 msec, peak latency=273 msec) than 

enhanced word processing (onset latency=273 msec, peak latency=326 msec). 

Reaction-time data also supported this trend; RTs to colors (386 msec) 

were faster than RTs to words (420 msec). The second prediction was not 

supported, however, in that the central data did not show effects due to 

attending words. 

Aine and Harter (Study B) reported that the selection negativity 

during the processing of colors, began sooner in time than the selection 

negativity associated with the processing of words (225 msec versus 273 

msec poststimulus) at both occipital and central electrode locations. 

The selection negativity, associated with color processing continued for 
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the duration of the neural processing of words (peak=326 msec). 

The data from central regions indicated that the selection 

negativity associated with word processing was dependent on attention to 

the color dimension. If the evoking stimulus shared the same color as 

the task relevant stimulus, then the ERP showed an enhanced response to 

the word dimension of the color/word stimulus. This result was 

interpreted as indicating that the left central electrode was recording 

activity primarily associated with the processing of a conjunction of 

features which defined the relevant stimulus. The behavioral data were 

consistent with this interpretation. The mean RT of 428 msec, when 

responding to both dimensions of conjunction stimuli, paralleled the mean 

RT to words when responding to a single dimension of conjunction stimuli 

(Study A). The occipital electrodes, in contrast, showed an enhanced 

negativity to the relevant word dimension regardless of whether or not 

the color of the stimulus was relevant. 

The results of Aine and Barter (Studies A and B) suggest that color 

and word processing were initiated in a serial order, but once initiated, 

they continued in parallel. When the word dimension was relevant, ERPs 

to stimuli recorded from central regions did not show an enhancement of 

the selection negativity unless the color dimension was also relevant. 

This dependency of the word effect on the processing of the relevant 

color implies a serial and hierarchical organization. This 

interpretation is consistent with the view that representations of 

complex stimuli are a result of the integration of sensory information 

from various cortical areas. 
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It is proposed here that the failure of obtaining a word processing 

effect from central regions in the first Aine and Harter study was a 

result of the conjunction stimuli having been perceived as a single 

dimension—that is, a word. Perhaps activation of central regions is 

associated only with attention to multiple dimensions and/or relevant 

stimulus per se. If central regions are activated by attention to the 

relevant stimulus per se then "meaning" of these conjunctions may also be 

represented in this region. The relationship between the processing of 

features versus "meaning" is examined in the present study along with an 

examination of the serial or parallel nature of these processes. 

The Stroop Phenomenon. The Stroop effect is a delay -in color naming 

of incongruent as compared to congruent color/word stimuli. This effect 

has provided considerable information on color and word processing (see 

reviews by Dyer, 1973; Jensen and Rohwer, 1966). A thorough 

understanding of color and word processing should account for Stroop 

interference effects. The Stroop effect generally is viewed as the 

competition between a reading response to the irrelevant word aspect of 

incongruent color/word stimuli and a color naming response to the 

relevant aspect of the stimulus. The reading response is presumably 

stronger than the color naming response and acts to delay color naming. 

Several studies have, in fact, shown that naming colors takes more time 

than reading words (Fraisse, 1969; Lund, 1927; Stroop, 1935). 

Variants of the Stroop test, however, have shown Stroop interference 

effects when the reading of words and naming of colors were not required. 

Interference effects were reported with card-sorting tasks (Treisman and 
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Fearnley, 1969), a Sternberg paradigm (Hock and Egeth, 1970), and when 

responding with keypresses (Aine and Harter, C; Pritchatt, 1968; Schmit 

and Davis, 1974). These studies point to the generality of the 

phenomenon which needs to be taken into consideration. An interpretation 

based solely on the notion of competing vocal responses cannot account 

for the interference effects noted in the variants of the Stroop test. . 

Color naming may take longer than reading a color name, but color 

processing per se does not take longer than the processing of words. 

Speed of recognition is faster for colors than for words when the task 

involves finding colors versus words in a display (Lund, 1927) and when 

giving reaction-times to colors versus words (Aine and Harter, A; Schmit 

and Davis, 1974). If this is the case, then word meaning must interfere 

with color processing in the later stages of processing (i.e., after the 

word is processed). This prediction is a major concern in the present 

study. 

Logan (1980) and Marscharck (1982) have treated the Stroop paradigm 

as a subset of the priming paradigm in general, where one dimension cues 

another. Logan stated that the relation between the two sources of 

information (i.e., the physical color and word in color/word stimuli) is 

influenced by three factors: 1) the nature and strength of prior 

associations between the two features; 2) the nature and strength of 

current predictive relations between the two features; and 3) the 

temporal factors between the two features. 
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The nature of prior associations (to be addressed in Hypothesis III) 

is considered by this author to be of primary importance since 

interference effects are reported in the psychological literature 

whenever highly associative stimuli are involved (i.e., semantically 

related). Interference effects are not unique to colors and words; they 

have been demonstrated for other associative stimuli such as directions 

(e.g., an arrow pointing upwards associated with the word "south"; the 

word "north" placed in an incongruent position within a square) and are 

not unique to one modality (Cohen and Martin, 1975; Logan and Zbrodoff, 

1979; Seymour, 1977; Shor, 1970; White, 1969). From a physiological 

perspective, relatedness between stimuli implies that they are processed 

at similar points in time and/or share the same neuronal space. 

Two studies have utilized the ERP methodology for investigating 

Stroop interference effects and have reported insignificant results 

(Duncan-Johnson and Kopell, 1981; Warren and Marsh, 1979). ERPs to 

Stroop and Nonstroop stimuli did not differ when subjects responded to 

the color of the stimuli. These failures may be attributed to 

methodological difficulties. For example, Dunean-Johnson and Kopell 

utilized P300 latency as a measure of Stroop effects. According to the 

neural specificity model, the selection negativity (between 300-400 msec) 

should reveal a difference in the ERPs to Stroop versus Nonstroop stimuli 

during the neural processing of words. The interference effect may 

result from one parallel channel inhibiting another (e.g., neural 

channels mediating word processing may inhibit neural channels mediating 

color processing when activated) or when the color and color name are 
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processed in the same' brain region. 

Aine and Harter (A) did show that ERPs can reflect Stroop 

interference effects; the amplitude of the selection negativity to 

Stroop stimuli was smaller at 225 msec over occipital regions when 

compared with the amplitude of the selection negativity to Nonstroop 

stimuli. Their paradigm, however, was not a Stroop paradigm in that 

subjects did not respond to a color on every trial. In addition, 

subjects were required to respond as quickly to Stroop stimuli as 

Nonstroop stimuli; therefore, the RTs did not vary and a behavioral 

Stroop effect was precluded. 

Consequently, Aine and Harter (Study C, in preparation) addressed 

the above methodological concerns in a third study. It was hypothesized 

that the negative results in Study A was due to the emphasis on response 

speed. Requiring subjects to respond quickly to the color of Stroop 

stimuli may not have provided sufficient time for processing the word 

aspect of the stimulus and thus precluded the Stroop effect. In Study C, 

therefore, response speed was manipulated as an independent variable. 

The results of Study C can be summarized as follows. The two RT 

intervals in which subjects were required to respond (i.e., 300-500 msec 

and 550-750 msec) influenced the behavioral Stroop effect; but, contrary 

to the hypothesis, responding quickly did not lessen this effect. Both 

Stroop and the Reverse Stroop (i.e., the color influences the word 

response) effects were evident in the behavioral data during the short RT 

interval. Only the Stroop effect was noticeable at the long RT interval. 

Interestingly, the majority of studies on the Stroop effect did not 
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report a Reverse Stroop effect (see review by Dyer, 1973). In most of 

these studies, however, subjects were not required to respond rapidly, 

which may account for the lack of obtaining the Reverse Stroop effect. 

In general, the amplitude of the late selection negativity over central 

cortical regions correlated highly with the behavioral results.. 

In summary, the results of two of the Aine and Harter studies (A and 

C) indicate that the selection negativity reflected an interference 

effect at 225-250 msec poststimulus when subjects responded to the 

colors. The ERP enhancement associated with attending color was less for 

Stroop stimuli than for Nonstroop stimuli. This result was interpreted 

as reflecting either a decrease or delay in processing the color of 

Stroop stimuli. The early onset of the Stroop effect suggests a paradox, 

however, since the onset of word processing was not evident in the ERP at 

this early latency (225-250 msec). How could word meaning influence 

color processing as early as 225 msec when the onset of word processing 

was first reflected in the ERP at 273 msec (Aine and Harter, A)? This 

paradox has served to direct the kinds of questions asked in the present 

study concerning color and word processing in general. It suggests that 

word meaning was processed earlier in time than indicated by the ERP data 

in these studies. One possibility is that the earliest effects of word 

processing may not be reflected by the occipital electrodes or regions. 

Ojemann (in press) has shown that frontal regions are involved in many 

different language functions. Frontal regions, therefore, could reflect 

the word processing effects very early in time. Another possibility is 

that words may be processed "automatically", as suggested by some 
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psychological investigators (Shiffrin, Dumais, and Schneider, 1981). If 

so, the processing of word stimuli may not require sustained attention. 

These two alternative possibilities will be addressed in the present 

study. 

The preceding discussion was a review of the studies investigating 

the processing of color and word information from the psychological, 

neurophysiological, and neuropsychological perspectives. The present 

study is a continuation in the examination of color and word processing 

with an emphasis on the serial versus parallel nature of color and word 

processing. In addition, an attempt to relate previous and present 

findings on color and word processing to current psychological constructs 

will be made when there appears to be a correlation between the ERP and 

the behavioral measures. 

Hypothesis I.* The internal representation of colors and color names 

is considered as the activation of different neuronal aggregates 

responsive to individual color or word features or conjunctions of 

features. The general hypothesis tested is that the initial internal 

representation of linguistic versus nonlinguistic stimuli are not located 

in the same britin region, but rather, are represented at different levels 

of the brain depending on the location of neuronal aggregates responsive 

to that particular feature or dimension of the stimulus (e.g., colors). 

On the basis of the above discussion, it is hypothesized that colors 

are represented more peripherally than words. The modulation of the ERP 

due to processing colors should be evident first over occipital regions; 

the modulation of the ERP associated with the processing of words should 
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be localized in occipital-parietal or temporal regions. Central cortical 

regions, in contrast, should reflect the processing of complex features, 

the conjunction of features, or the "meaning" of the stimulus. Activity 

associated with processing complex features or "meaning" should be 

evident later in time when compared with occipital regions. The 

prediction that activity in occipital regions will precede activity in 

central regions is based on the conceptualization of the visual system as 

having some hierarchical organization. If the visual pathway is 

organized in a serial fashion, then the processing occurring in central 

regions (presumably representing complex processes) should occur later in 

time thau the processing in occipital regions. This conceptualization is 

consistent with Geschwind's model of language representation and 

"bottom-up" theories of information processing in the psychological 

literature. 

The predictions for ERP measures (e.g., selection negativity) over 

occipital regions are as follows. The early portion of the ERP 

associated with the onset of color and word processing should show 

different time-courses and scalp distributions. Previous data (Aine and 

Harter, A) suggest that the enhancement of the ERP negativity associated 

with color processing should be evident between 200-300 msec 

poststimulus. The enhancement of the ERP negativity associated with the 

processing of words should be evident between 300-400 msec poststimulus. 

It was suggested that the processing of color/word conjunctions may be 

more localized to left central regions (Aine and Harter, B). Given the 

results of Aine and Harter (B) and Geschwind's model of the 
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representation of language, it is possible that a color (a single 

feature) becomes synthesized with its appropriate linguistic label (i.e., 

its color name) due to an automatic neural association between the two 

representations at higher levels of the nervous system. In other words, 

perhaps the neural association between the representation of a sensory 

color and its name occurs in central regions ("meaning"?). This 

hypothesis presupposes that colors and words are processed both 

physically and linguistically at the same brain region. Jhis suggestion 

is consistent, in part, with Geschwind's view that the angular gyrus 

integrates "sensory" information from different areas of the cortex. A 

different time-course for the late portion of the ERP negativity (at 

300-400 msec) reflecting color and word processing, therefore, would 

indicate that colors and word meaning were not synthesized in the same 

brain region. 

Hemispheric Asymmetries 

The study of aphasic disorders (i.e., disorders of language 

resulting from cortical damage) has demonstrated that lesions in the left 

frontal lobe (Broca's area) and lesions in the left temporal lobe 

(Wernicke's area) account for most of the aphasic disorders. This 

association between disorders of language with left hemisphere lesions 

has been a basis for the concept of cerebral dominance of language in the 

left hemisphere. Anatomical differences between the hemispheres (e.g., 

the planum temporale is larger in the left brain) has provided further 

support for the concept of laterality of language function in the left 



22 

hemisphere (see Kolb and Whishaw, 1980, pp. 153-183). 

Tachistoscopic studies, in the psychological literature, have also 

been successful in attempts to demonstrate cerebral laterality for 

language. In general, individuals who are left-hemisphere dominant tend 

to exhibit shorter RTs to linguistic stimuli presented to the right 

visual field or to the right ear (Hines, 1978; Kimura, 1961, 1966; 

Pirozzolo, 1977). 

Neville (1980) utilized ERPs to show a left-hemisphere effect (i.e., 

the amplitude of the "raw" ERP was greater over the left hemisphere) when 

subjects were engaged in the processing of linguistic stimuli. A 

right-hemisphere effect was noted when subjects were attending to line 

drawings. However, the methodological difficulties associated with this 

study (as mentioned in a previous section) may suggest an alternative 

interpretation. 

Several studies have investigated the possibility that color 

processing is lateralized to the right hemisphere. Reaction-time studies 

(Davidoff, 1976; Pennal, 1977; Pirot, Pulton, and Sutken, 1977; Schmit 

and Davis, 1974) have shown that subjects typically give shorter 

responses when colored stimuli are presented in the left visual field. 

However, this finding has not always been replicable (Guiard, 1981). 

Clinical studies have also yielded inconsistent results; it is not clear 

as to which lesion sites produce the various color deficits (e.g., color 

matching, color memory, or color naming) or which hemisphere may be 

implicated in these deficits of color perception (Critchley, 1965; De 

Renzi, and Spinnler, 1967; Oxbury, Oxbury, and Humphrey, 1969). 



23 

Harter, Aine, and Schroeder (1982) and Aine and Harter (A) utilized 

the ERP methodology and reported a left-hemisphere effect when attending 

to one of many features presented to one point in space. It is unclear, 

however, whether this effect was associated with attending a conjunction 

of features (a particular feature at a particular location), associated 

with attention to one of many stimuli sequentially presented to one 

location in space, or whether this effect was associated with particular 

types of processing per se (e.g., processing of linguistic stimuli). In 

Aine and Harter (A), effects due to attending color were greater over the 

left hemisphere which may have been a consequence of color being embedded 

within linguistic stimuli. Therefore, the present study utilized color 

stimuli consisting of a conjunction of color embedded within a 

nonlinguistic pattern. 

Hypothesis II. It is hypothesized that attention to colored 

patterns will result in greater amplitude of the ERP (e.g., selection 

negativity) recorded from the right hemisphere of occipital cortex. This 

prediction is based on psychological and neuropsychological studies which 

suggest that the right hemisphere is more responsive than the left 

hemisphere to the processing of colors. The asymmetry should be evident 

in the ERP around 200-300 msec which is when color processing effects 

have been noted previously. Conversely, a greater enhancement of the ERP 

should be evident over the left occipital hemisphere when subjects are 

engaged in the processing of linguistic stimuli. This interaction 

between the asymmetry of the neural responses when processing linguistic 

versus color stimuli would yield further support for the hypothesis that 
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different neural generators are mediating the effects associated with 

color and word processing. 

Separate Versus Unitary Coding Systems—Meaning 

This aspect of the study focuses on when and where the "meaning" of 

a stimulus is reflected in the ERP. In this study, "meaning" will be 

operationally defined in a behavioral classification paradigm. The 

paradox of how word meaning can influence color processing (as reflected 

in the ERPs) when the onset of word processing occurs later than the 

onset of the interference effect, needs to be reconciled. 

The present study attempts to address this issue in three ways. 

First, according to the Geschwind model of language representation, one 

might expect that later activity over central regions may be comparable 

in terms of time-course for both color and word-processing effects. This 

may imply that both the physical and semantic aspects of the stimulus are 

represented in this region. This model resembles "bottom-up" processing 

where sensory aspects are synthesized into a "meaningful" percept. This 

possibility was already discussed under Hypothesis I. 

Secondly, it is conceivable that occipital regions may not be 

suitable for recording activity associated with word meaning per se. 

Perhaps occipital regions are more sensitive to the physical 

characteristics of the words, whereas, the processing of "meaning" may 

occur in parallel with the occipital activation and be localized in more 

frontal regions. Previous results have already shown that central 

locations were not sensitive to neural activity associated with the 
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processing of words (Aine and Harter, A and B). Frontal electrodes will 

be used in the present study in order to provide additional information 

about the neural generators mediating word processing or word meaning. 

Johnston and Chesney (1974) and Kutas and Hillyard (1980) provide 

support for the position that neural activity associated with the 

"meaning" of a stimulus may be more localized to central-frontal cortical 

regions. Johnston and Chesney have shown that neural activity correlated 

with the "meaning" of the stimulus, started as early as 160 msec and was 

reflected over frontal, not occipital, areas. They recorded ERPs from an 

ambiguous stimulus (13) when it was to be perceived as a "13" or a "B". 

It was concluded that visual cortex is more concerned with the 

representation of physical characteristics of the stimuli and that 

frontal areas may be more involved in the subsequent representation of 

"meaning". 

Kutas and Hillyard reported a late negativity in the ERP which was 

evident when subjects performed higher-order linguistic tasks. Subjects 

were instructed to read 160 different seven-word sentences presented one 

at a time. The seventh word of each sentence was either semantically 

appropriate or semantically inappropriate (i.e., out of context with the 

general meaning of the sentence). Semantically deviant words elicited a 

late selection negativity occurring around 400 msec which was greater in 

amplitude over central regions; whereas, physically aberrant stimuli 

(i.e., the seventh word was larger in size) elicited a late positivity 

(P3) showing a slightly larger effect over parietal regions. 
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Although "meaning" in both of these studies was reflected in the ERP 

over central-frontal regions, the time-course of these effects are not 

comparable (i.e., 160 msec versus 400 msec). "Meaning" was not clearly 

defined in these two studies. For example, perhaps the late negativity 

over central regions in Kutas and Hillyard was an orienting reaction of 

some kind due to the presentation of a novel stimulus (e.g., an inverted 

P3). 

A final way in which "meaning" can be examined in the present study 

is to record ERPs to irrelevant stimuli (i.e., they do not require a 

behavioral response) that are semantically related to the target stimulus 

(e.g., the color red versus the word "red"). If subjects are instructed 

to respond to a particular color of a colored flash will the ERP show an 

enhancement to the related color name? If such enhancement is reflected 

in the ERP then it says something about the neural association between 

the processing of two dimensions (linguistic and noniinguistic) of highly 

associative stimuli. This enhancement in the ERP would be considered as 

reflecting the "meaning" of a stimulus per se (e.g., "redness" or 

"blueness"). 

The relationship between the processing of colors versus words and 

the "meaning" of a stimulus can be assessed by examining the time-course 

and scalp distribution of these effects. For example, is color and its 

"meaning" processed in the same cortical channel or is the "meaning" of a 

color flash processed in a separate but parallel cortical channel from 

the processing of the feature? 
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Hypothesis III. If the "meaning" of an object or a word becomes 

attached (i.e., neural association) in some way after the stimulus 

features have been processed (e.g.j "bottom-up" theories of perception or 

theories based on a hierarchical visual pathway), then the time-course of 

color processing, for example, and the effect associated with the 

"meaning" of the colored stimulus should differ. Effects in the ERP 

associated with the "meaning" of the stimulus should be evident later in 

time than effects associated with color processes. A hierarchical model 

would also suggest a difference in the source of origin of this effect. 

For example, an enhancement of the ERPs associated with the "meaning" of 

a colored stimulus would most likely be more pronounced over central or 

frontal regions than occipital regions. Effects associated with the 

processing of particular words may correspond more in terms of 

time-course and scalp distribution with the effects in the ERP associated 

with word "meaning" if words are assumed to reflect higher-order 

processes. 
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CHAPTER II 

METHOD 

Subiects 

Four right-handed males and four right-handed females ranging in age 

from 26 to 40 years participated in the study. All of the subjects 

eiither were college graduates or were currently graduate students. Seven 

of the subjects had had prior experience in an ERP laboratory and all of 

the subjects had had practice in the experimental conditions. 

Several Stroop studies have shown that "females are better at naming 

colors (i.e., shorter naming latencies) than males (jorgenson, Davis, 

Opella, and Angerstein, 1980; Stroop, 1935). Jorgenson et al. also 

have demonstrated shorter reading latencies for males. Although sex 

differences were not the focus of this study, the design enabled such 

differences to be assessed with the limitation of small group sizes. 

Stimuli 

The SI stimuli consisted of two colored diffuse flashes (red and 

blue). The four S2 stimuli were two colored patterns (red and blue) 

against a white background, and two words ("red" and "blue") printed in 

black against a white background. The color of the flashes was 

determined by Kodak Wratten color filters (No. 45-blue and No. 29-red). 

The words were flashed randomly in upper and lower case; ERPs to both 

the upper and lower case print of a particular word were averaged 

together. As an additional control for pattern differences, the lettar 
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"E" was left off the word "blue" so that both words were three letters in 

length. ERPs to one color were averaged across the two patterns. 

The stimuli were presented on a 25 mm in diameter rear projection 

screen (Lehigh Valley Electronics Model 1346) subtending 1.92 degrees at 

the viewing distance of 75 cm. The circular screen was placed in a 

salmon-colored surround. The words subtended a vertical visual angle of 

.69 degrees and a horizontal visual angle of 1.69 degrees. Flash 

intensities were equated at threshold by adding Kodak neutral density 

filters to the stimuli when necessary. The resulting flash intensities 

were 2.3-2.8 log units above the background luminance of .06 mL. 

Stimulus duration was 40 msec (20 msec rise and fall time). 

Pairs of, stimuli (SI and S2) were presented foveally at a rate of 

one pair per 1200 msec. The S1-S2 interval was 500 msec. A total of 

eight equiprobable pairs of stimuli were presented randomly. 

Experimental Design and Procedure 

Subjects were seated in a dimly lit, electrically shielded room and 

binocularly fixated the centrally located stimuli. White noise was 

utilized to mask any noise extraneous to the experimental setting. 

Subjects were instructed to respond (i.e., by pushing both thumbs down on 

a switch box) to one of two possible matches between SI and S2: 1) match 

for sensory color and 2) match for word meaning. The subjects were 

informed as to the nature of the match condition before the beginning of 

each trial-block (i.e., color-color or color-word). The first flash 

(either red or blue) determined which S2 was relevant (i.e., which S2 was 
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to be responded to behaviorally). , For example, if the task was to "match 

for word meaning" and the randomly determined Si was a red flash, then 

the subject was required to respond bimanually to S2 only if it was the 

word "red". Similarly, if SI was a blue flash, then the word "blu" was 

the relevant S2. 

A trial-block consisted of presenting at least 200 pairs and 

resulted in four averaged ERPs (to each of the four possible S2s), each 

of which were based on 50 individual neural responses. There were a 

total of 24 trial-blocks for each subject: all combinations of two match 

conditions (color-color or color-word), three electrode locations 

(occipital, central, and frontal), two hemispheres (left and -right), and 

two replications. The order of presentation of the two match conditions 

and electrode locations were counterbalanced across replications and 

subjects. 

All the subjects were verbally informed before the first testing 

session (during a practice session) on how to start and stop the stimuli 

when necessary. Control of stimulus presentation was provided to the 

subjects in case they needed to blink, swallow or adjust their position. 

The experimenter also had control over stimulus presentation. The actual 

running time for one replication took approximately 2.0-2.5 hours. This 

time was extended somewhat in order for the experimenter to record the 

ERP and behavioral data after each trial-block. This also provided the 

subjects with a few minutes of rest between trial-blocks. 
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Selective Attention and Task Relevance 

Attention was manipulated by having subjects make either a color or 

word match as signaled by a response to relevant (matches) S2s. To 

insure that subjects were selectively attending to the appropriate 

stimuli, criteria were imposed on the behavioral responses. 

Reaction-times occurring before and after 440 msec to relevant S2s were 

counted as "Hits" and "Misses", respectively. Subjects were informed of 

a "Miss" immediately by a negative feed-back tone. The value of 440 msec 

was chosen since the mean RT to words from a previous study was 428 msec. 

Subsequent pilot data indicated that matching responses (present study) 

were faster than RTs in an attention paradigm (previous study). 

Additional criteria of attaining a minimum percentage of "Hits" and a 

maximum percentage of "False Alarms" were also imposed. If these 

criteria were not met, the data from that trial-block were discarded and 

the condition was repeated. Different criteria (percentage of "Hits" and 

"False Alarms") were set for the match "color-word" versus "color-color" 

conditions. These criteria were based on speed and accuracy data 

obtained in a practice session with each subject (to be discussed later). 

The percentage of "Hits" and "False Alarms" were adjusted in an effort to 

hold subjective task difficulty constant: a minimum of 85% "Hits" and a 

maximum of 15% "False Alarms" in the color-color condition and a minimum 

of 75% "Hits" and a maximum of 25% "False Alarms" in the color-word 

condition. 
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To control for handedness effects, subjects were required to respond 

bimanually. Reaction-time was recorded from the slower of the two thumb 

responses. Mean RTs consisted of an average of individual RTs to the 

total number of relevant stimulus presentations (approximately 50 

responses) during a single trial-block. 

A practice session was mandatory for each subject to aid in 

controlling for practice effects and setting criteria. This was 

especially important for the "match color-color" conditions. Since one 

aspect of the study was to look at the nature of associations between 

colors and words, it was necessary to look at pure perceptual matches (if 

at all possible). An attempt was made to train subjects not to label the 

color flashes as "red" or "blue" but to make perceptual matches in this 

condition. A total of six conditions (three color-color matches and 

three color-word matches) were practiced. This training session was 

scheduled on a day different from an actual experimental session. 

Visual Event-related Responses 

Electrical activity was recorded monopolarly from six electrode 

positions (01, 02; C3, C4; F7, F8) as defined by the International 

10-20 System. All electrodes were referenced to linked ears. Grass 

gold-cup electrodes were held to the scalp with Grass electrode cream. 

Skin resistances were below 15K ohms. A ground electrode was placed on 

the left mastoid. Electrical activity was amplified with a Grass AC 

differential amplifier (7P5A pre-amplifier and 7DAC driver amplifier). 

The low and high frequency filters were set on 0.3 Hz and 35.0 Hz, 



33 

respectively. 

Cortical ERPs to task relevant and task irrelevant stimuli were 

recorded on-line with a Fabri-Tek Instruments signal averager (Model 

1062). Cortical activity was measured for a duration of one second 

following Si onset; therefore, one sweep of the computer encompassed 

ERPs to both Si and S2. Each pair of stimuli was presented until all of 

the pairs had been presented 50 times. When one pair had been presented 

50 times, for example, the averaging of ERPs to that pair- was stopped 

even though that particular pair may have been presented again. 

During a single trial-block, the ERPs to eight pairs of stimuli were 

sorted into the four computer channels according to the degree of 

similarity between the S2 ERP and the task relevant stimulus (i.e., same 

feature, same dimension, semantically related-different dimension, 

unrelated-different dimension). If the task instruction was "match 

sensory colors", then the ERPs to the two appropriate color-color matches 

(i.e., the task relevant S2 stimuli) were averaged together into one of 

the four channels (e.g., blue-blue plus red-red). Similarly, ERPs to the 

task irrelevant color matches (i.e., the S2 stimuli shared the same 

dimension as the task relevant S2) were also averaged together into one 

channel of the computer (e.g., blue-red plus red-blue). The remaining 

two channels were utilized for recording 1) the ERPs to task irrelevant 

but semantically related color-word combinations (e.g., red-"red" plus 

blue-"blue") and 2) the ERPs to the task irrelevant and semantically 

unrelated color-word combinations (e.g., red-"blue" plus blue-"red"). A 

similar recording procedure was implemented for the "match word meaning" 
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conditions (See Table 1). 

Averaged ERPs were recorded on graph paper with a Hewlett-Packard 

X-Y Plotter (Model 7035B). Difference potentials, showing the difference 

in ERP waveform due to the four types of "similarity" conditions, were 

obtained electronically with the signal averager. 

Quant if icat ion and Statistical Analysis of ERP and RT Data 

The mean voltage level of the first 75 msec following the 

presentation of both SI and S2 was utilized as a baseline from which all 

amplitude measures were taken. The latency of the first SI amplitude 

measure was defined for each subject as the maximum positivity occurring 

after 100 msec poststimulus over occipital cortical regions. Amplitude 

was measured every 40 msec thereafter up to the maximum late positivity 

occurring after 350 msec (measure 8). S2 ERP amplitudes were also 

measured at specified latencies for each subject, including N2 selection 

negativity which is known to reflect effects due to attention. The 

difference potentials referred to above, alpng with data from previous 

studies and the "raw" ERP waveforms of the present study aided in 

determining the latencies of all the S2 amplitude measures. The 

latencies of all amplitude measures, although comparable across subjects 

(+/- 40 . msec from the mean), were not identical for all subjects due to 

individual differences. The SI and S2 amplitude measures for each 

subject are displayed in Table 2. 



TABLE 1 

Procedure for Recording ERPs to S2 Stimuli 

SIMILARITY BETWEEN 
TASK S2 AND TASK 

TASK CHANNEL (S1-S2) + (S1-S2) S2 RELEVANCE RELEVANT STIMULUS 

Hatch Color 1 (red-red) + (blue-blue) C Rel Sane Feature 
2 (red-blue) • (blue-red) C Irr Sane Dinension 
3 (red-"red") +(blue-"blue") U Irr Senantic (Different Dinension) 
4 (red-"blue"> + (blue-"red") U Irr Unrelated (Different Dinension) 

Hatch Uord 1 (red-"red") +(blue-"blue") U Rel Sane Feature 
Meaning 2 (red-"blue") + (blue-"red") U Irr Sane Dinension 

3 (red-red) + (blue-blue) C Irr Senantic (Different Dimension) 
4 (red-blue) + (blue-red) C Irr Unrelated (Different Dinension) 

Note: S2 ERPs were sorted into four channels during a single trial-block 
according to the sinilarity between the S2 stimulus and the task relevant 
S2 stimulus. One of the S2 stinuli was task relevant. The other three 
S2 stinuli were irrelevant to the behavioral task but shared either the 
attended dimension (i.e. color or word), senantic neaning, or was 
totally unrelated to the task relevant stimulus. 
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TABLE 2 

SI and S2 Amplitude Heasures for Each of Eight Subjects 

SUBJ. 1 

SI 

2 

AMP 

3 

UTUC 

(mse 

4 

)E M 

:) 

5 

EASU 

6 

RES 

7 8 9 

CA 130 170 210 250 290 330 370 380 500 

"KL 150 190 230 270 310 350 390 430 500 

MM 140 180 220 260 300 340 380 460 500 

VJ • 140 180 220 260 300 340 380 440 500 

GM 140 180 220 260 300 340 380 400 500 

R8 130 170 210 250 290 330 370 400 500 

TM 150 190 230 270 310 350 390 410 500 

RP 150 190 230 270 . 310 350 390 4-40 500 

MEAN 
LAT. 

(msec) 
141 181 22! 261 301 341 381 420 500 

SU8J. 1 

S2 

2 

WPLI 

3 

TUDE 
msec) 

. 4 

ME; 

5 

^SURE 

6 

:s 

7 8 

CA 140 220 270 300 360 410 460 480 

KL 180 230 270 320 380 420 450 480 

MM 170 220 280 320 390 420 450 480 

VJ 190 230 270 330 390 420 460 480 

GM 170 240 280 320 370 420 450 480 

RB 180 220 250 280 320 360 430 48Q 

TM 170 230 270 320 360 390 420 480 

RP 180 240 300 350 390 450 460 480 

MEAN 
LAT. 

(msec) 
172 229 274 318 370 411 450 480 

Note: Nine latencies were designated for each individual at which all 
Measures of S1 amplitude were taken. S2 anplitudes were Measured at 
eight designated latencies for each subject. Mean latency of each S1 and 
S2 amplitude Measure is shown below the individual latencies. 



37 

Repeated, measures analysis of variance (ANOVA) was performed on each 

dependent measure (i.e., the amplitude measures at each designated 

latency) for the three electrode locations (occipital, central, and 

frontal). Therefore, each ANOVA for SI amplitude measures consisted of 

the following factors: 1) match conditions (color versus word), 2) 

hemisphere (left versus right)', 3) replications (8), and 4) four subjects 

nested under each group (male versus female). Each ANOVA for S2 

amplitude measures consisted of the following factors: 1) match 

conditions (color versus word), 2) similarity to the task relevant 

stimulus (related versus unrelated), 3) hemisphere (left versus right), 

4) evoking flash (color or word), 5) replication (2), and 6) four 

subjects nested under each group (male versus female). 

Mean RTs were computed for the two match conditions and subjected to 

an ANOVA consisting of the following factors: 1) match condition, 2) 

evoking flash, 3) replication (12), and 4) four subjects nested under 

each group (male versus females). Separate analyses were performed on 

the "Hits" and "False Alarm" data. 
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CHAPTER III 

RESULTS 

General Effects of Selective Attention and Definition of Effects 

The terms Interdimension (Direct) and Intradimension (Direct and 

Indirect) effects are utilized to describe changes in the ERP as a 

function of task instruction (i.e., match colors versus words), 

similarity of the evoking flash to the task relevant S2 (i.e., related 

versus unrelated), and the dimension of the evoking flash (i.e., color 

versus word). If the above interaction was statistically significant for 

an amplitude measure, then portions of these data were analyzed 

separately to partition out the statistical significance of each of these 

effects. 

Interdimension effects of attention reflect changes in ERP waveform 

to task-irrelevant stimuli when the task dimension (match colors versus 

words) interacted with the dimension of the evoking flash. For example, 

ERPs to S2 colors were compared when colors versus words were being 

matched. Intradimension Direct effects of attention reflects changes in 

ERP waveform when task dimension was held constant and the task relevance 

of S2 (relevant versus irrelevant) interacted with the nature of the 

evoking flash. For example, if subjects were instructed to match colors 

then ERPs to S2 colors were compared when the S2 color was task relevant 

(i.e., the S2 color matched the color of SI) versus when the S2 color was 

not task relevant (i.e., the S2 color did not match the color of SI). 

Intradimension Indirect effects of attention reflect changes in ERP 
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waveform when task dimension and task relevance (i.e., ERPs were to task 

irrelevant S2s) were held constant but the semantic similarity between 

the task-irrelevant evoking flash and the task relevant stimulus varied. 

For example, if the task instruction was to match colors then ERPs to S2 

words were compared when the S2 word was semantically related to the SI 

color versus when the S2 word was semantically unrelated to the SI color. 

See Table 3 for a summary of how these different attention effects were 

derived. 

ERPs from one representative subject are displayed in Figure 1. SI 

was always a colored diffuse flash; therefore, any consistent changes in 

the SI ERP waveform across the two columns of Figure 1 were due to the 

type of processing required by the task (i.e., processing of sensory 

colors or word meaning). Effects associated with Sis will be discussed 

in a later' section. S2 ERPs were responses to either colored patterns 

(left column of Figure 1) or color names (right column of Figure 1). 

Changes in the S2 waveforms within each column (i.e., solid and dashed 

lines) were a function of varying the attentional set of the subject 

(i.e., by varying the attended feature and dimension of the S2 stimuli). 

For example, the S2 ERPs within the left column were responses to colored 

patterns when 1) the S2 colored pattern did or did not share the same 

dimension (i.e., color or word) as the task instruction (Interdimension 

effects), and when 2) the specific feature of the S2 colored pattern 

(i.e., color red or blue) of the attended dimension (i.e. colors) did or 

did not match the preceding Si (Intradimension effects). 
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TABLE 3 

Derivation of Interdinension, Intradinension, and Indirect Effects of 

Attention fron ERPs to S2 Stinuli 

SIMILARITY lETUEEtf  

TASK S2 AHD TASK 

TTK OF ATTENTTOH TASK S2 £XP 0IHEHS10H RELEVANCE t  RELEVANT STIHULUS 

IKfERDtHEHSlQM • 

t inct i  ' 

Hatch Color-Color Color 61u« Color IRR (Sad* OlAtosion) 

Color a I r td-r td)  * iaus vs.  vs.  

Hatch Co lor-Uord Color b luo Uord IRR (Di f foront Di junsioa) 

• Hatch Color-Uord Uord "b lut"  Uord IRK (SaM Dinension) 

Uord • I rod- ' r td")  ninus vs.  vs.  

Hatch Color-Color Uord "b lut*  Color IRR (Bl f f t r tnL Dintnsioa) 

( rod-r tdJ AE** 

XMtmiHEHSlQ* 

Sir tct :  

Hatch Color-Color Color red Color RELEVANT 

Color • ( rod-rod) ainus vs.  vs.  

Hatch Color-Color Color r*d Color IRR (San* Otnonsion) 

(b lut-bluo) AERP 

Hatch Color-Uord l lord "rod" Uord RELEVANT 

Uord a I red- ' rod")  ninus vs.  vs.  

Hatch Color-Uord Uord *r«d" Uord 
<bluo-#bUo'> A&Kf 

Iadir tcts 

Hatch Color-Color Uord *r td" Color IRR (Stnant ic -  Oif f t r tot  Oincnsioa) 

Color a ( r td-Ttd) ninus vs.  vs.  

Hatch Color-Color Uord "rod* Color IRR (Unrt laWd *  Dif foront Dinoosion) 

(b luo-bluo) AlkP 
Hatch Color-Uord Color red Uord IRR (St i taf l t ic  -  Oif for tnt  DUoasion) 

Uord • <rtd-"r td -> vs.  vs.  

Hatch Color-Uord Color red Uord IRR <Uor«l»t«d *  daff i r tnt  DinotJUoa) 

(Muo- 'b luf")  

Note: Interdinensign effects are changes in ERP waveforn associated with 
changing the relevant dinension and following irrelevant S2s (e.g., ERPs 
to task irrelevant stinuli not sharing the sane dimension as the task 
relevant stirtulus was subtracted fron ERPs to task irrelevant stimuli 
sharing the sane dimension as the task relevant stimulus). 
iBiradinension Bir§ct effects are changes, in the ERP waveforn associated 
wlttTchanging the relevant stinulus within a dimension and following 
relevant versus irrelevant S2s (e.g., ERPs to task irrelevant stinuli 
sharing the the sane dinension as the task relevant stinulus were 
subtracted fron ERPs to the task relevant stinuli). Intradinension 
Indirect effects are changes in ERP waveforn when both the relevant 
dimension and stirtulus was held constant but the senantic sinilarity was 
varied (e.g., ERPs to the task irrelevant and senantically unrelated 
stinuli of a different dinension fron the task relevant stirtulus were 
subtracted fron ERPs to task irrelevant but senantically related stinuli 
of a different dinension fron the task relevant stinulus). 
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Figure 1. Changes in SI and S2 ERP waveforms as a function of varying 
the attended feature and/or dimension of the SI and S2 flashes. "Raw" 
ERPs for one subject (CA) recorded from over the left hemisphere of 
occipital, central, and frontal cortical regions. Left column: ERPs 
were averaged to color diffuse flashes (SI) during a color-color matching 
task and to colored patterns (S2) when: 1) the color of the pattern was 
task relevant (solid lines) during a color-color matching task (a 
behavioral response was required); 2) the color was task irrelevant 
(large dashed lines) during a color-color matching task (the S2 shared 
the same dimension as the' task relevant S2); and 3) the color was 
totally irrelevant (small dashed lines) during a color-word matching task 
(the S2 did not share the same dimension as the task relevant S2). Right 
column: ERPs were averaged to color diffuse flashes (SI) during a 
color-word matching task and to color names (S2) when: 1) the word was 
task relevant (solid lines) during a color-word matching task (a 
behavioral response was required); 2) the word was task irrelevant 
(large dashed lines) during a color-word matching task (the S2 shared the 
same dimension as the task relevant S2); and 3) the word was totally 
irrelevant during a color-color matching task (the S2 did not share the 
same dimension as the task relevant S2). Each SI and S2 tracing is an 
average of 50 brain responses. There were a total of eight replications 
to SI and two replications to S2 for a single attention condition. The 
latency measures represent latencies at which all amplitude measures were 
taken for this particular subject. 
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Visual inspection of the occipital data in Figure 1 reveals an 

enhanced negativity (220-300 msec) of the ERP following Relevant S2s 

(i.e., the evoking stimuli contained the attended or task relevant 

feature; Solid lines) when compared with ERPs following Irrelevant S2s 

(i.e., stimuli not containing the task relevant feature; Dashed lines). 

This enhanced negativity following Relevant stimuli, referred to as 

selection negativity, was followed by an enhanced positivity occurring at 

(300-460 msec), referred to as P300. The enhancement of the ERP 

following Relevant S2s over frontal regions was reflected as an increase 

in positivity, rather than a negativity, when compared . with ERPs 

following Irrelevant S2s. 

Differences in ERPs following Irrelevant S2s (differences between 

the two dashed lines in Figure 1) are a function of whether or not the 

Irrelevant S2 shared the same dimension as the task instruction 

(Interdimension effects). For example, the ERPs labeled as 

"Irrelevant-Same Dimension" were responses to either a color when the 

opposite color was relevant to the behavioral task (left column) or were 

responses to a word when the opposite word was task relevant (right 

column). In contrast, the ERPs labeled as "Irrelevant-Different 

Dimension" were responses to either a color when a nonrelated word was 

task relevant (left column) or a word when a nonrelated color was task 

relevant (right column). The quantified data averaged across subjects 

for these S2 conditions are shown in Figure 2. The latency measures 

represent the mean latency of each amplitude measure across eight 

subjects. 
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Figure 2. Quantified group data demonstrating changes in S2 ERP 
waveforms as a function of varying the attended feature and/or dimension 
of S2 flashes. Same as Figure 1 except that each tracing represents the 
ERP amplitude measures for S2s averaged across two replications, two 
hemispheres and eight subjects. Latencies depicted at the bottom of this 
figure and all remaining figures of S2 ERPs represent the mean latency 
for each of the eight amplitude measures. 
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Inter- and Intradimension: Direct Effects 

Changes in S2 ERP amplitude in the quantified group data (Figure 2) 

as a function of similarity between the evoking flash (colored pattern 

versus word) and the attended feature and/or dimension of S2 stimuli 

(i.e., task relevant stimuli) were statistically significant over 

occipital regions at the following latencies: 172 msec (F=5.91; df=l,6; 

p=.051), 229 msec (F«10.65; df=l,6; p<.025), 274 msec (F=15.53; 

df=l,6; p<.01), 370msec (F=51.48; df=l,6; p<.001), and 411 msec 

(F=32.0; df=l,6; p<.01). This same interaction was statistically 

significant over central regions at 274msec (F=l2.19; df=l,6; p<.025) 

and at the following latencies over frontal regions: 274 msec (F=20.5; 

df=l,6; p<.01), 450 msec (F=7.8; df=l,6; p<.05) and 480 msec (F=10.11; 

df=l,6; p<.025). 

Difference potentials C^ERPs) were used to illustrate the effects of 

two types of attention on the ERPs (Interdimension and Intradimension 

effects; Figure 3). Difference potentials showing Interdimension 

effects were derived by subtracting S2 ERPs which were not task relevant 

and did not share the same dimension as the task relevant stimulus 

(Irrelevant-Different Dimension; Figure 2) from S2 ERPs which were not 

task relevant but shared the same dimension as the task relevant stimulus 

(Irrelevant-Same Dimension; Figure 2). Difference potentials showing 

Intradimension effects of attention were derived by subtracting the S2 

ERPs which were not task relevant but shared the same dimension as the 

task relevant stimulus (Irrelevant-Same Dimension; Figure 2) from the S2 

ERPs which were task relevant (Relevant; Figure 2). 



47 

Figure 3. Inter- and Intradimension effects of attention. Same as 
Figure 2 except difference potentials (AERPS) were utilized for 
demonstrating changes in the S2 ERP as a function of task instruction. 
Left column: Interdimension color effects (dashed lines) - ERPs to the 
task irrelevant color during a color-word matching task were subtracted 
from the ERPs to the task irrelevant color during a color-color matching 
task (i.e., the difference between the two dashed lines in Figure 2). 
Intradimension color effects (solid lines) - ERPs to the task irrelevant 
color during a color-color matching task were subtracted from the ERPs to 
the task relevant color during a color-color matching task (i.e., the 
difference between the large dashed lines and solid lines in Figure 2). 
Right column: Interdimension word effects (dashed lines) - ERPs to the 
task irrelevant word during a color-color matching task were subtracted 
from the ERPs to the task irrelevant word during a color-word matching 
task (i.e., the difference between the two dashed lines in Figure 2). 
Intradimension word effects (solid lines) - ERPs to the task irrelevant 
word during a color-word matching task were subtracted from the ERPs to 
the task relevant word during a color-word matching task (i.e., the 
difference between the large dashed lines and solid lines in Figure 2). 
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Interdimension Effects. For the occipital ERPs, the Interdimension 

effect following S2 words (Interdimension word effect) was reflected in 

the ERP as an increase in negativity at 172-411 msec (right portion of 

Figure 3-dashed lines). An Interdimension effect following S2 colors 

(Interdimension color effect) was also reflected in the ERPs at 172 msec 

as an increase in negativity and was immediately followed by an increase 

in positivity at 229 msec (left portion of Figure 3-dashed lines). 

For the central ERPs, the Interdimension effects following S2 colors 

and words were statistically significant at 274 msec. Interdimension 

color and word effects occurred at the same point in time over this 

cortical region, as was the case for the occipital regions, but occurred 

later in time when compared to occipital regions (17 2 msec over occipital 

areas versus 274 msec over central areas). The Interdimension effects 

were not statistically significant over frontal regions. 

Intradimension Effects. For the occipital ERPs, the Intradimension 

effect following a specific word was evident as an increase in positivity 

at 370-450 msec (right portion of Figure 3-solid lines). The 

Intradimension color effect was reflected by the change in ERPs following 

a specific S2 color as an increase in negativity at 229-318 msec followed 

by an increase in positivity at 370-411 msec (left portion of Figure 

3-solid line). This Intradimension color effect began earlier in time 

when compared with the Intradimension word effect (229 versus 370 msec, 

respectively). 
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The central electrodes did not reflect an Intradimension word 

effect. This is consistent with previous findings from this laboratory 

and will be discussed more fully later. The Intradimension color effect, 

in contrast, was evident as an enhanced negativity at 274 msec which 

occurred later in time when compared with the Intradimension color effect 

recorded from over occipital regions (229 msec). 

The Intradimension word effect recorded over frontal regions was 

reflected as an enhanced positivity at 274 msec (Figure 3 - solid line) 

which occurred earlier in time than the Intradimension word effect 

recorded over occipital regions (370-450 msec). The Intradimension color 

effect recorded over frontal regions was inverted in polarity when 

compared with the Intradimension color effect recorded from over 

occipital regions. The time-course of this Intradimension color effect 

was the same for these two cortical regions; however, this effect did 

not reach statistical significance over frontal regions until 274 msec 

(left bottom portion of Figure 3). In general, the onset of the 

Intradimension color effect over frontal regions began before the onset 

of the Intradimension word effect (229 msec versus 274 msec, 

respectively) but both peaked at the same point in time (274 msec). 

Intra- Versus Interdimension Effects. The ERPs over occipital 

regions to colors and words (Figure 3) clearly reveal the progressive 

nature of the selection process (i.e., the sequence in which various 

types of information is processed temporally). First, an increase in 

negativity was evident at 172 msec following both S2 colors and words 

when the evoking flash shared the same dimension as the task relevant 



stimulus (Interdimension effect). This increase in negativity following 

words continued up to 411 msec but terminated at 229 msec following 

colors. Later in time, the relevant versus irrelevant color and word was 

selected within the color and word dimension, respectively (229-450 msec 

for colors and 370-450 msec for words—Intradimension effects). In 

general, the processing of colored patterns and word patterns per se 

(Interdimension effects) began at the same time (172 msec) and was 

followed by the subsequent selection of a specific color (229 msec) and a 

specific word (370 msec). Separate analyses performed on the 

Interdimension and Intradimension data indicate that Interdimension 

effects were statistically significant very early in time (172 msec: 

F=271.12; df=l,6; p<.0001) while Intradimension effects, in contrast, 

were not statistically significant at this point in time. 

The tendency for Interdimension effects to precede Intradimension 

effects did not hold true for central cortical regions. The 

Interdimension color effect began at the same time as the Intradimension 

color effect (274 msec), both of which occurred later in time when 

compared with Interdimension and Intradimension color effects in the 

occipital ERPs. There was no Intradimension word effect in the central 

data so a comparison cannot be made between the onset of Interdimension 

and Intradimension effects following S2 words. 
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Intradimension: Indirect Effects of Attention 

Separate ANOVAs were performed on the ERPs to task irrelevant S2s to 

determine whether they were influenced by their semantic relatedness to 

the relevant S2 (semantically related versus unrelated). An enhancement 

of the ERPs was found over occipital regions and is reflected by the 

difference potentials for the color-word matching task (Figure 4c). This 

Indirect effect was statistically significant at the following latencies: 

229 msec (F=13.06; df-1,6; p<.025), 274 msec (F=7.85; df=1,6; p<.05), 

and 318 msec (Fss10.09; df=l,6; p<.025). The time-course of this effect 

was consistent with the Intradimension color effect over occipital 

regions reported above (compare Figure 4a with 4c). These results 

suggest that when subjects were instructed to match word meaning they 

were differentially attending to the related color even though it was 

irrelevant to the behavioral task. 

The Indirect effects of attention, following.S2 colors and words were 

not statistically significant over central and frontal regions. However, 

the Indirect effects following S2 words recorded over central regions 

were statistically significant when gender of the subject- was taken into 

consideration (see below). The main Indirect effects of attention 

following S2 colors did not approach statistical significance. 

Hemispheric Differences 

Hemispheric differences were reflected in occipital ERPs for the 

Intradimension Direct effects following colors and words (Figure 4a and 

4b, respectively) and Indirect effects following S2 colors and words 

(Figure 4c and 4d, respectively). Intradimension effects of attention 

(Direct and Indirect—Figure 4e) were statistically significant at 274 
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Figure 4. Hemispheric differences in Intradintension Direct (top row) and 
Indirect (bottom row) effects of attention recorded from over occipital 
regions. S2 difference potentials (&ERPs) in 4a and 4b show differences 
in the magnitude of the response for Direct color and word effects (left 
and right columns, respectively) over left and right hemispheres (solid 
versus dashed lines, respectively). Difference potentials in Figure 4c 
and 4d show differences in the magnitude of the response for Indirect 
effects of attention (i.e., enhancement of the ERPs to task irrelevant 
but semantically related colors—4c or words—4d when compared with the 
ERPs to task irrelevant and semantically unrelated colors or words) over 
the two hemispheres. Difference potentials in 4e show differences in the 
magnitude of response over left and right hemispheres (dashed and solid 
lines, respectively) when the difference potentials were collasped across 
the Direct and Indirect effects of attention for colors (circles) and for 
words (squares). 
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msec (F=7.94; df=l,6; p<.05) and 318msec (F=9.25; df=l,6; p<.02). 

The negativity to color patterns was of greater magnitude over the right 

hemisphere while the negativity to words was of greater magnitude over 

the left hemisphere. It should be noted that these particular 

interactions were marginally significant in the occipital data and were 

not statistically significant in the central or frontal data. Subsequent 

analyses indicated that the Intradimension Direct effects were 

statistically significant at 318 msec (F=13.59; df=l,6; p<.025); 

whereas, hemispheric differences were not statistically significant for 

the Indirect effects of attention. 

Hemispheric differences due to attention per se, as recorded over 

frontal regions, were not dependent on task dimension nor type of flash. 

When subjects were instructed to attend there was a greater positivity 

over the right hemisphere at 274 msec (F=23.95; df=l,6; p<.01) and 318 

msec (F=9.72; df=1,6; p<.025) regardless of the particular feature or 

dimension attended. Attention effects over frontal regions are of 

opposite polarity from attention effects recorded over occipital regions; 

therefore, greater positivity over this region most likely indicates 

increased processing. 

Sex Differences 

Although it was not the purpose of the present study to assess sex 

differences, a number of such effects obtained marginal statistical 

significance. Intradimension Direct and Indirect effects interacted with 

sex in data obtained over central regions only. 
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The difference potentials in Figure 5a and 5b show differences in the 

Intradimension color and word effects of attention between males and 

females. Separate analyses on the Intradimension effects revealed a 

difference in the S2 ERPs between sexes when matching colors at 318 msec 

(F=7.69, df=l,6; p<.05). Females had an enhanced negativity at this 

point in time as compared with males. The ERPs following S2 words did 

not reveal any significant differences, although the waveforms of females 

appear to be inverted in polarity from that of the males at 370-411 msec 

(Figure 5b). Visual inspection of the "raw" ERP data shows that one of 

the four females did not show this inversion of polarity over the central 

cortical region. 

The analyses performed on the Indirect attention effects were 

statistically significant at 229 and 274 msec (F=17.8; df=l,6; p<.01 

and F=7.59; df=l,6; p<.05). The difference potentials in Figure 5d 

represent changes in S2 ERPs to task irrelevant words, during a color 

matching task, when words were semantically related to the color of SI as 

compared to words which were semantically unrelated to the color or SI. 

Females (solid lines) show an enhanced positivity of the difference 

potential at 229 and 274 msec. This result indicates that females were 

attending to semantically related words during a color matching task even 

though these words were irrelevant to the behavioral task. It is of 

special interest that the Indirect effect of word processing, evident in 

the female data only, occurred before the Intradimension word effect 

recorded over both occipital (229 msec over central regions versus 370 

msec over occipital regions) and frontal regions (229 msec over central 
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Figure 5. Sex differences for Intradimension Direct and Indirect color 
and word effects recorded over central cortical regions. Similar to 
Figure 4 except sex differences are shown rather than hemispheric 
differences and S2s were recorded over central cortical regions. Female 
and male difference potentials (solid versus dashed lines) were averaged 
across hemispheres, replications, and four subjects. 
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regions versus 274 msec over frontal regions). Furthermore, the results 

suggest that Indirect word processing (Figure 5d) can occur at the same 

point in time as Intradimension color effects (Figure 3). 

The Indirect color effect (Figure 5c) was not statistically 

significant. These difference potentials reflect changes in the S2 ERPs 

to task irrelevant colors, during a color-word matching task, when colors 

were or were not semantically related to the color name of SI. 

ERPs To Sis 

Figure 6 shows a sample of ERPs to Sis (four replications of left 

hemisphere responses when matching word meaning) for each individual 

subject across electrode locations. Visual inspection of these data 

reveal two apparent differences between male and female ERPs: 1) ERPs 

recorded from male subjects appear to be much more variable than ERPs 

recorded from female subjects, and 2) the central and frontal electrode 

locations reveal a pronounced positivity at 221 msec in the ERPs of 

female as compared to males. This positivity was not evident in the male 

data. This difference was statistically significant over frontal regions 

at 221 msec (F®=12.95, df=l,6; p<.025). 

Figure 7 shows the quantified SI ERP data averaged across sex. 

Occipital electrode locations showed a main effect of hemisphere at 301 

msec (F=9.94; df=l,6; p<.025) and at 341 msec (F=7.86; df=l,6; 

p<.05). ERPs were greater in magnitude over the right hemisphere 

regardless of task instruction. 
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Figure 6. Sample of "raw" ERPs to SI stimuli for each subject over the 
left hemisphere of occipital, central, and frontal cortical regions. 
Male and female ERPs were recorded during one trial-block of the 
color-word matching task. ERP amplitude measures were taken at 40 msec 
intervals. Latency values depicted at the bottom of this figure and all 
remaining figures represent the mean latency for each of the nine 
amplitude measures. 
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Figure 7. Hemispheric differences in ERPs to SI as a function of task 
instruction. ERPs are to the same physical stimulus (diffuse colored 
flashes) when subjects processed Si as a sensory color (left column) or 
as a color name (right column). Quantified ERP amplitude measures are 
shown for occipital, central, and frontal cortical regions. Si ERPs were 
averaged across hemispheres, eight replications, and eight subjects. 
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The central region, in contrast, showed a hemisphere by task 

interaction at the following latencies: 141 msec (F=8.5; df=l,6; 

p<.05), 221 msec (F=6.65; df=l,6; p<.05), 261 msec (F=7.08; df=l,6; 

p<.05), 381 msec (Fss23.65; df=l,6; p<.01), and 420 msec (F=33.3; 

df=l,6; p<.01). Hemispheric differences were evident during the color 

match task only at 141 msec (Figure 7). Later in time, hemispheric 

differences were evident for the match word meaning task (221, 261, 381, 

and 420 msec). The frontal electrodes did not reveal any hemispheric 

differences in ERPs to SI. 

Since the variability of the SI responses were not equal for the 

sexes over central regions (as indicated by tests for unequal variances) 

and given the sensitivity of this region to differences in sex, separate 

analyses were performed on the male and female data. Figure 8 shows that 

both males and females showed an enhanced late positivity when the SI 

colors were processed for word meaning in comparison with SI colors being 

processed as sensory colors. However, this main effect of task 

instruction was statistically significant for females only at 381 

(F=10.19; df=l,3; p<.05) and 420 msec CF—17.93; df=l,3; p<.025). The 

time-course of these effects did not differ in the SI data. 

Behavioral Data 

There was a significant main effect for Task on the reaction-time 

data (F=52.03; df=l,6; p<.001). Figure 9a indicates that subjects 

could respond more quickly during the color matching task in comparison 

with the color-word matching task (334 msec versus 348 msec, 
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Figure 8. Sex differences in quantified ERPs to SI over central cortex 
as a function of task instruction. Amplitude measures for females and 
males (left and right columns, respectively) when processing SI as a 
color (color-color matching task - solid lines) and when processing SI as 
a color name (color-word matching task - dashed lines). Data were 
averaged across hemispheres, four subjects, and eight replications. 
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Figure 9. Behavioral data showing reaction-times, percentage of "Hits", 
and percentage of "False Alarms" for the color and word matching tasks. 
9a: Shows the mean reaction-time for both sexes during the color and 
word matching tasks. Each reaction-time was an average of approximately 
50 responses. The mean reaction-time was calculated for twelve 
replications across four subjects. 9b: Indicates the percentage of 
"Hits" made by the two sexes when matching colors versus word meaning. 
9c: Percentage of "False Alarms" to the task irrelevant S2 when it: 1) 
shared the same dimension (i.e., color or word) as the task relevant S2 
(Irr-Same Dimension); 2) did not share the same dimension as the task 
relevant S2 (Irr-Different Dimension); and 3) shared the same meaning as 
the task relevant S2 (Irr-Semantic). 9d: Percentage of "False Alarms" 
made by each sex during the color and word matching tasks. 
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respectively). An analysis of the percentage of correct responses 

indicates that females had more "Hits" (95.3%) than males (91.5%) when 

responding during the word matching task (F=31.84; df=l,6; p<.01). In 

contrast, males had more "Hits" (94.9%) than females (93.8%) during the 

color task (Figure 9b). 

The "False Alarm"'data (Figure 9d) indicate that males made more 

"False Alarms" (11.6%) than females (6.3%) during the match word meaning 

condition (F=11.23, df=l,6; p<.*025). The percentage of "False Alarms" 

made during the color match condition were virtually identical for males 

and females (2.1% versus 2.0%, respectively). Together the "Hit" and 

"False Alarm" data indicate that females were more accurate than males in 

the word task. There was a tendency for males to be more accurate in the 

color task. 

The "False Alarm" data also indicates that there were no differences 

between the percentage of "False Alarms" made to irrelevant but 

semantically related stimuli and irrelevant and semantically unrelated 

stimuli (Figure 9c). The majority of the "False Alarms" were mad6 to 

irrelevant stimuli of the same dimension as the task relevant stimuli 

(F=37.31; df=2,12; p<.001). Most of the "False Alarms" were made to 

the irrelevant word during the color-word matching task (8.9%) as 

compared to the percentage of "False Alarms" made to the irrelevant color 

(2.0%) during the color matching task. 
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CHAPTER IV 

DISCUSSION 

The following discussion is based on a number of assumptions which 

were discussed in the Introduction section of this paper: First, the 

increase in amplitude of particular ERP components (e.g., selection 

negativity and P300), associated with an increase in attention to 

relevant stimuli, reflects the selective increase in neural processing of 

relevant as compared to irrelevant information (Eason, Harter, and White, 

1969; Harter and Guido, 1980; Harter and Salmon, 1972; Naatanen, 1975, 

1982; Naatanen and Michie, 1979, pp. 251-267). Neural processing 

refers to the increased activation of selective neuronal aggregates 

responsive to a particular feature or features of the stimulus. Second, 

the ERP reflects the relative sequence and time-course of the processing 

of various types of stimuli or features of stimuli. And third, the scalp 

distribution of the ERP (i.e., changes in polarity and amplitude of the 

ERP at different electrode positions) reflects the general cortical areas 

involved in the various types of neural processing (e.g., color versus 

word). 

It is the belief of this author that there is value in correlating 

neural and behavioral measures. Previous studies from this laboratory 

have demonstrated several types of processing where the neural and 

behavioral measures correlated; e.g., the time-course between the onset 

of color and word processing and the difference in reaction-times to 

colors and words, and a correlation between the behavioral Stroop effect 

and an interference effect reflected in the ERPs. Therefore, an attempt 
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will be made in the following discussion to relate the present results to 

the existing psychological literature whenever it seems appropriate. 

Hypothesis I: Early Effects 

The first hypothesis was that aggregates of neurons first 

selectively responsive to linguistic stimuli are in a different region in 

the visual system than those neuronal aggregates first selectively 

responsive to sensory colors. This hypothesis was based on : 1) 

neurophysiological data on animals which indicates that receptive-fields 

along the visual pathway are responsive to different aspects of stimulus 

configurations, 2) Geschwind's neuropsychological model of the 

representation of language, and 3) on neurophysiological data on humans 

which suggest that selective attention modulates the activity of neuronal 

aggregates responsive to particular features or conjunctions of features 

of the stimulus configuration. It was predicted that the time-course and 

scalp distribution of the onset of color and word processing, as 

reflected by the onset of selection negativity, would indicate that first 

colors would be processed in the occipital regions and then words would 

be processed in the central-parietal regions. 

Interdimens ion effects: S2s. The time-course and scalp 

distribution of the selection negativities associated with color versus 

word processing did not differ. This result may appear to be contrary to 

the first hypothesis, but the Interdimension effects do not necessarily 

reflect differences between color processing and word processing per se. 

The Interdimension effects may simply reflect an early discrimination 
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between colored and word patterns. 

Consistent with Hypothesis I, the occipital regions reflected these 

early Interdimension effects of processing. The onset of the 

Interdimension effects were evident first in the occipital ERPs (17 2 

msec) and were noted later in time (274 msec) in the central ERPs. The 

Interdimension effects were not statistically significant in the frontal 

data. The time-course and scalp distribution of the Interdimension 

effects (i.e., the effects were first evident and were of greatest 

magnitude in the occipital data) suggest, therefore, that the source of 

these early effects may be localized in the occipital regions. 

Furthermore, it may be concluded that the onset of Interdimension effects 

does not reflect color or word processing but rather resembles a stage of 

early processing known in the psychological literature as pattern 

recognition. The discrimination between colored and word patterns may 

have been based on the curved versus linear nature of the patterns, for 

example. 

Intradimension effects: S2s. The relative time-course and scalp 

distribution of the Intradimension effects following S2 colors and words 

in the occipital data support the first hypothesis. Intradimension 

effects following S2 colors began earlier in time than Intradimension 

effects following S2 words (229 versus 318 msec, respectively). This 

difference in time-course, in conjunction with differences in scalp 

distribution (below), suggests that different neural generators mediated 

the color and word processing effects. 
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The scalp distribution of the onset of the Intradimension color 

effect indicated that the amplitude of this effect was greatest in the 

occipital data. Furthermore, this color-processing effect was opposite 

in polarity when comparing the selection negativity from occipital 

regions with the selection positivity from frontal regions. This 

inversion, along with the magnitude of the color effect over occipital 

regions, suggests that the source of the color-processing effect is 

located in posterior temporal cortical regions. This interpretation is 

consistent with the neurophysiological and neuroanatomical data on 

monkeys which indicate that inferotemporal cortex is responsive when 

attending to colored stimuli. 

The onset of selection negativity associated with the word 

processing effect in the occipital data at 318 msec was of greater 

amplitude when compared with the word processing effect at the same point 

in time in central and frontal data. However, when examining the scalp 

distribution of the earliest word-processing effect, the results indicate 

that the frontal data show a word-processing effect sooner in time (274 

msec) than the occipital data. The present findings suggest, therefore, 

that there may be two neural generators for the onset of word processing: 

one early in time and localized in frontal regions, and the other later 

effect localized in occipital regions. 

Differences in the onset of word processing effects across cortical 

regions is a particularly interesting finding since it offers a possible 

explanation of how word meaning can interfere with color processing 

during the Stroop interference effect. Subjects could differentiate 



between specific words sooner in time than the ERPs from occipital 

regions indicate. Early frontal word processing could act to modify 

processing in posterior regions. 

This early word effect in the frontal data also makes one question 

why word information is processed so late in time in the occipital region 

(274 versus 370 msec)? Do these two regions analyze word information 

simultaneously but in slightly different ways? Perhaps the function of 

word processing in occipital regions is a continuation of the previously 

reported pattern discrimination effects (Interdimension effects) but more 

refined (i.e., pattern discrimination between specific words). Frontal 

regions, in contrast, may be more concerned with the meaning of words. 

The possibility that linguistic stimuli may be processed in terms of 

their physical characteristics in occipital regions gains support from 

two additional findings. First, in the present study, the occipital 

regions tend to reveal a progressive nature of the selection process when 

attending to linguistic stimuli. The Interdimension word effect was 

evident very early in time (172 msec) over occipital regions and appeared 

as a more global discrimination process (i.e., the discrimination between 

color patterns versus word patterns). This Interdimension word effect 

was followed by the Intradimension word effect (370 msec) which reflected 

the discrimination between specific words. This progression of the 

selection process parallels the findings of Harter and Guido (1980) where 

the contour of attended gratings was evident in the occipital ERPs before 

the specific orientation of the gratings (i.e., horizontal versus 

vertical). The global selection process reflected the discrimination 
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between diffuse and grating flashes, regardless of the particular 

orientation of the grating. Later in time, the specific orientation of 

the grating was selected (i.e., vertical versus horizontal). These 

contour and orientation-specific effects were interpreted as being 

generated from occipital regions. 

Second, Johnston and Chesney (1974) and Kutas and Hillyard (1980) 

suggested that the occipital regions were sensitive,to the physical 

characteristics of the stimuli rather than the meaning of the stimuli. 

For example, Kutas and Hillyard found that the occipital regions were 

sensitive to physically aberrant stimuli (e.g., the seventh word 

presented in sequence was larger in size than the ot.her six words which 

preceded it), whereas the central-frontal regions were more sensitive to 

the meaning of the seventh word when it was semantically incongruent with 

the rest of the sentence. 

Together these findings suggest that the onset of the Intradimenion 

color and word effects in occipital regions are mediated by different 

neural generators and the Intradimension effects-, in general, represent a 

more refined discrimination process than the Interdimension effects. The 

discrimination is between particular features within a dimension rather 

than the discrimination between dimensions. 

ERPs to SI. Part of Hypothesis I was to determine whether the early 

portion of Si ERP waveforms over occipital regions would differ between 

the color-color match and color-word match conditions. More 

specifically, it was predicted that there would be an earlier enhancement 

of the SI ERP negativity (200-300 msec) during the color match conditions 
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than during the color-word match conditions (300-400 msec). However, as 

Figure 7 demonstrates, Hypothesis I was not supported in this regard. 

The ERPs recorded during the different tasks were very similar in 

waveshape. 

Since the color of SI was always attended, one cannot examine 

"attention effects" per se in the ERPs to SI since there were no ERPs to 

SI when it was not attended. However, another way of demonstrating 

differences in the ERPs as a function of task instruction is to examine 

the hemispheric asymmetries associated with these different types of 

processing. But, the central region was the only region to show 

hemispheric differences as a function of task instruction. Th6 SI ERPs 

over occipital regions did not reflect differences between the processing 

of color as sensory colors versus the processing of colors as color 

names. 

This negative result for the SI ERPs recorded from occipital regions 

(i.e., the task instruction did not influence the SI ERPs) may be 

accounted for, in part, by the fact that the type of processing required 

to SI stimuli differs from the type of processing required to S2 stimuli. 

Information pertaining to SI must be retained (in memory?) until an S2 is 

presented. Since the processing of SI reflects higher-order processes 

one might expect differences due to processing features versus semantic 

meaning to be evident in the central or frontal data as suggested by 

Johnston and Chesney and Kutas and Hillyard. Similarly, the present 

results have already shown that the earliest effects of word meaning were 

evident in the frontal regions not in the occipital regions. 
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Hypothesis I: Late Effects 

It was predicted that the late portion of the ERP negativity to both 

SI and S2 over central regions may reflect activity associated with the 

synthesis of a feature and its related linguistic representation or the 

"meaning" of the stimulus per se. Colors may become neurally associated 

with the representation of their linguistic label at higher levels of the 

nervous system even though the linguistic labels may not be physically 

contained in the stimulus. If the time-course of the late portion of SI 

and S2 ERP negativities (i.e., peak activation) is not the same then it 

can be assumed to indicate that color and word processing occurred at 

different points in time. This result would suggest that the 

representation of colors and words do not become synthesized into a 

unitary representation. 

ERPs to S2. The difference in time-course when processing colors 

versus words of the late portion of the S2 ERP negativity (i.e., peak 

activation) in the central data support Hypothesis I. This result argues 

against the view that colors and color names become synthesized into a 

unitary representation at higher levels of the visual system. Figure 3 

indicates that the Intradimension word effect remained as a late 

positivity from 370-411 msec over all electrode locations while 

Intradimension color effects showed peak activation at 274 msec over 

occipital regions and at 318 msec over central regions. Furthermore, the 

magnitude of the effect of processing colors was greater than the 

magnitude of the Intradimension word effect. These results are contrary 

to the predictions; colors and words are not represented later in time 
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as a conjunction of features since the time-course and scalp distribution 

of these late effects differ. 

The peak activation of the Intradimension word effect in the central 

data suggested an unexpected finding when sex of the subject was taken 

into account (Figure 5b). The late positivity noted in the occipital 

data for both sexes was reflected as a late negativity in the central 

data when females were engaged in word matching tasks and as a positivity 

for males. This finding, if reliable, suggests that the neural generator 

of the late word-processing effect may be localized in different cortical 

regions for males versus females or that the orientation of the dipole 

differs between the sexes. If the difference between the sexes is 

attributable to different cortical regions, then the female data suggest 

that the late word-processing effect was generated in parietal regions. 

The generator for the late word effect in the male data may be localized 

inferior to this parietal region. Ojemann (in press) has also found sex 

differences in brain organization for language which suggests differences 

in intracortical organization between sexes. 

ERPs to SI. Effects in the ERPs due to task instruction (i.e., 

process the SI colors as sensory colors versus color names) were 

statistically significant over central regions only. These results 

support Hypothesis I since the time-course of hemispheric asymmetries 

differed when processing SI as a color versus a color name. However, 

these results can be reconciled with the view that central regions are 

more responsive to the "meaning" of stimuli. Hemispheric differences 

associated with late effects of SI processing were noted only when 
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processing the SI color as a color name. In addition, an enhanced 

positivity was reflected in the ERP (females only) when processing SI as 

a color name in comparison with the ERP associated with processing SI as 

a color. The time-course of these two effects, hemispheric asymmetry and 

change in waveform due to processing Si as a color name, corresponded 

with one another. Therefore, it may be concluded that the late central 

SI ERP effects did reflect effects of word processing even though the 

word itself was not contained in the physical stimulus. 

Both SI and S2 ERP results supported Hypothesis I which argues 

against the view that color features are automatically associated 

(neurally) with its color name at higher levels of the visual system. 

However, SI ERPs suggest that word "meaning" is represented in the 

central region. This conclusion necessarily follows from the type of 

processing required of SI stimuli. 

Differences in processing demands to SI and S2 stimuli yield useful 

information for determining the relationship between the SI and S2 ERPs. 

The processing of "meaning" is required of subjects when attending to SI 

as a color name in order to perform- the behavioral task. Furthermore, 

subjects had to retain SI information until a S2 stimulus was presented. 

When S2 was presented the task resembled a discrimination or detection 

task. Was the S2 a particular color or a particular word? The emphasis 

of the S2 task was actually on the physical characteristics of the S2 

stimuli. Therefore, the late word-processing effects to S2s, noted in 

occipital and central regions, most likely reflected activity generated 

from occipital or parietal regions. As reported earlier, the scalp 
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distribution of the S2 effects is consistent with this notion. The early 

word-processing effect reflected in . the frontal data more closely 

resembles the effect of word processing in the SI ERPs, both of which 

probably reflects the processing of word "meaning". A question which 

cannot be answered at this time is whether the color processing effect 

noted in the SI ERPs recorded from central regions (e.g., a very early 

hemispheric asymmetry associated with color processing) reflected the 

"meaning" of color or the-processing of color features. 

Conclusions for Hypothesis I_ 

The earliest attention effects (Interdimension effects) did not 

reflect color and word processing, but rather, an early type of 

processing localized in occipital regions which was responsive to global 

physical features of the stimuli. The Interdimension effects reflect the 

discrimination between colored patterns versus word patterns per se. 

The Intradimension effects over occipital regions represent a more 

refined discrimination process than the Interdimension effects. Rather 

than discriminating between dimensions of stimuli (colored patterns 

versus word patterns) the discrimination was between features within the 

same dimension (e.g., color blue within the color dimension). It is 

concluded that both Interdimension and Intradimension effects in the 

occipital ERPs are sensitive primarily to attending the physical 

characteristics of the stimuli. 



The difference in the onset of the Intradimension color and word 

effects in the occipital data supported the hypothesis that brain areas 

initially responsive to colors versus linguistic features differ. 

Regions responsive to sensory colors appear to be localized in posterior 

temporal regions (inferotemporal cortex), whereas regions responsive to 

linguistic stimuli appear to be localized in parietal or central•regions. 

The Intradimension color effects were evident sooner in time over 

occipital regions than Intradimension word effects. The reaction-times 

supported this trend which suggests that features represented at early 

levels of the visual system (peripheral) may be processed and responded 

to behaviorally sooner in time than features represented at higher 

levels. Therefore, the difference in the time-course between the onset 

of Intradimension color versus Intradimension word effects correlates 

with the subjective feeling of "task difficulty". Subjects found the 

color-word match condition to be more difficult because, in essence, they 

had less time to make a decision of whether or not to respond to a 

particular word since it was processed later in time than colors. 

ERFs to S2 stimuli recorded from central regions most likely 

reflected activity from occipital or parietal areas. The early 

Intradimension word effect recorded from frontal regions, however, 

indicates that there are parallel pathways which mediate the processing 

of linguistic stimuli. In contrast to the occipital and central areas, 

frontal areas may be primarily concerned with word meaning. 
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The ERPs to SI stimuli recorded from central regions supported the 

view that central regions are responsive to the "meaning" of stimuli. 

However, "meaning" is not a result of some automatic neural association 

between the representation of a feature and its label in one brain region 

(i.e., as a conjunction of features). the occipital regions, in 

contrast, did not show changes in waveform or hemispheric asymmetries due 

to task instructions. 

In conclusion, the data indicate there are several parallel pathways 

in the visual system some of which process the same information but in 

slightly different ways. Features of a stimulus, such as patterns and 

colors, are processed before or during the processing of the "meaning" of 

the stimulus per se. The discrimination between physical features of 

linguistic stimuli, however, takes longer than the discrimination between 

color features since the brain region responsive to these features are 

located more centrally than color or pattern features. Therefore, the 

"meaning" of linguistic stimuli may be obtained before the physical 

features per se have been processed. 

Hypothesis II 

It was predicted that color processing would be of greater amplitude 

over the right hemisphere as reflected by occipital ERPs. Figure 4 

indicates that Hypothesis II was supported; the right hemisphere effect 

was greater for both the Intradimension and Indirect color processing 

effects. Conversely, the left hemisphere effect was greater when 

subjects were processing words. 
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One purpose of the present study is to provide an adequate 

interpretation of the left hemisphere effect reported by Harter, Aine and 

Schroeder (1982) and Aine and Harter (A). The elimination of alternative 

interpretations of this left hemisphere effect was approached in the 

present study by utilizing stimuli consisting of color embedded within a 

simple nonlinguistic pattern (i.e., a horizontal bar with notches cut out 

of both upper and lower regions). If the left hemisphere effect in the 

previous studies was associated with attention to a conjunction of 

features then there should have been a left hemisphere effect when 

matching colors in the present study. The present results do not support 

this interpretation. An alternative interpretation,, that the left 

hemisphere effect was associated with attention to one of several 

features presented sequentially to one point in space, was not supported 

either. The dissociation between the left and right hemisphere effects 

when attending to words versus colors, respectively, argues against this 

interpretation. Therefore, it is concluded that asymmetries noted over 

occipital regions are dependent on the particular type of processing 

involved in the task (e.g., processing location information, linguistic 

information, etc.). 

It is possible, however, that subjects did not perceive the colored 

nonlinguistic pattern as a conjunction of features but rather as a color 

and that effects due to attending colors are greater over the right 

hemisphere. If this interpretation is correct, it suggests that the 

subjects in Aine and Harter (A) may not have ignored the word dimension 

of color/word stimuli. This interpretation is consistent with the 



suggestion in the psychological literature that words are processed 

"automatically" in some way. However, it is not clear as to what this 

interpretation implies for the Harter, Aine, and Schroeder (1982) finding 

where the conjunction of features consisted of a diffuse color or white 

ring associated with a specific location in space. Is the location of 

stimuli also difficult to ignore? 

The frontal data indicate that attention effects were greater . over 

the right hemisphere at 274-318 msec (the same time period for 

hemispheric asymmetries over occipital regions) regardless of the 

particular task instruction (i.e., match colors versus match word 

meaning) and type of stimulus flashed. The frontal regions may determine 

the relevance of stimuli and then provide efferent feedback to occipital 

regions which results in a more detailed analysis of the physical 

features. The notion that more anterior regions may be involved in the 

direction of attention is not new (Kolb and Whishaw, 1980, pp 264-266). 

Furthermore, the notion that anterior regions may direct attention to 

posterior regions is consistent with the conclusion reached for 

Hypothesis I, that is, posterior regions may be more sensitive to the 

actual processing the physical characteristics of the stimuli. 

Hypothesis III 

ERP indicants of "meaning" can be assessed by examining the relative 

time-course and scalp distribution of the Indirect effects of attention 

and the relationship of these effects to the Intradimension color and 

word effects. "Meaning" was operationally defined as an enhancement of 
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the ERP to task irrelevant but semantically related stimuli (an 

enhancement of the selection negativity to semantically related 

S2s)—that is, the Indirect effects of attention. Differences in 

behavioral responding cannot account for the Indirect effects of 

attention since all of the S2 stimuli were task irrelevant and the 

behavioral data did not show significant differences between the 

percentage of "False Alarms" made to the semantically related stimuli 
/ 

versus the semantically unrelated stimuli. 

If the "meaning" of a stimulus becomes associated neurally with a 

stimulus configuration after t.he stimulus features per se have been 

processed (e.g., consistent with a hierarchical and serial conception of 

the visual system), then the time-course of Indirect and Intradimension 

color and word effects should differ (i.e., Intradimension Indirect 

effects should be reflected later in time in the ERP than the 

Intradimension Direct effects). The scalp distribution of the 

Intradimension Indirect and Direct effects should also differ (e.g., 

Direct color effects would be evident primarily over occipital regions 

and the Indirect color effect would be pronounced anterior to this 

region). 

When subjects were engaged in matching word meaning, an Indirect 

color effect was evident over occipital regions for both sexes. The 

time-course of this effect (229-274 msec) was identical with the 

Intradimension color effect referred to previously (See Figure 4a and 

4c). 
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This finding is consistent with Rosch's (1975) findings, in the 

psychological literature, that a color category (e.g., "red") enabled her 

subjects to respond more quickly when matching color patches. The 

present results suggest that a similar kind of "priming" could have 

occurred during the color-word match condition. Subjects would typically 

sub-vocalize the color name when the SI color was presented and this 

could have primed the color response with efferent feedback. An 

alternative explanation for this effect is that the excitation from the 

color of SI could have summated with the excitation from the S2 color 

which resulted in an enhancement of this response. If this was the case 

then one would expect the enhancement to be greatest over occipital 

cortex which it was. 

The Indirect word effect was not evident in the group data when 

subjects were responding to sensory colors. However, when gender of the 

subject was taken into account, females did reveal an enhancement in the 

ERP to the task irrelevant but semantically related word. The difference 

potentials exhibited this effect as an enhanced positivity at 229-274 

msec over central cortical regions, where sex differences appear to be 

most pronounced (Figure 5d). Furthermore, the time-course of this effect 

is identical to the Indirect color effect over occipital regions. There 

are three possible explanations for this Indirect word effect 

demonstrated by females. 

First, it is possible that females sub-vocally labeled all SI colors 

even though they were instructed not to do so. When examining the SI 

ERPs of females, however, there was a significant difference in the ERPs 
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due to task instruction alone. In other words, females were processing 

the SI stimuli differently during the match color-color and match 

color-word conditions. Therefore, the females most likely were 

processing the SI colors as sensory colors during the color-color match 

condition rather than as color, names. 

Secondly, it is possible that the females just happened to attend to 

the semantically related but irrelevant words even though they were not 

supposed to do so. But, the time-course and scalp distribution of the 

Indirect word effect and Intradimension word effects were not the same. 

The Indirect word effect over central regions began before the 

Intradimension word effect over frontal regions (229 versus 274 msec). 

In addition, attention to the semantically related but irrelevant stimuli 

would hinder their performance in the behavioral task. The behavioral 

data indicate that the subjects did not make significantly more "False 

Alarms" to the semantically related but irrelevant words versus 

semantically unrelated words. 

Finally, it is possible that this early Indirect word effect is an 

involuntary type of processing. There may have been an automatic neural 

association between the representation of sensory colors and their 

corresponding color names. Both the Indirect color effect (all-subjects) 

and Indirect word effect (females only) had identical time-courses 

(229-274 msec) but were evident over different cortical regions (Figure 

4c and 5d). Therefore, the neural association between the 

representations of colors and their names does not appear to be a 

conjunction of the neural representations of linguistic and physical 
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aspects of the stimulus per se (i.e., as if both aspects are coded as one 

at a higher level of the nervous system). It is more likely that color 

processing, whether Xntradimension or Indirect, occurs in posterior 

cortical regions while early portions of word processing occur over more 

central-frontal regions. The association that exists between the 

representations of colors and their names (i.e., Meaning?) is most likely 

a result of the automatic activation of pathways connecting the two brain 

regions. 

This interpretation of the neural association between color 

representations and the representation of color names is consistent with 

several studies reported in the psychological literature. Conrad (1975, 

pp. 103-120) concluded that when a single word is presented, the visual 

features, name, and semantic representation for that word are activated 

in memory which produces priming effects when a second stimulus appears. 

The spoken word facilitates the retrieval of both visually and 

phonemically similar word representations (spreading activation). The 

results of the present study suggest that "memories" are not located in 

one cortical region but are a result of the neural connections between 

the different processes which are activated in parallel when attending 

any physical or imaginal stimulus. 

The present findings do not support Klatzky and associates' (Klatzky 

and Rafnel, 1976; Klatzky and Stoy, 1978, pp. 71-101) suggestion that 

nonverbal objects are processed with its verbal label in a unitary way 

(i.e., semantically). The results are partially consistent with Paivio's 

Dual-coding model (Pinker and Kosslyn, 1983, pp. 43-71; Yuille and 
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Marschark, 1983, pp. 131-155) in that the processing of nonlinguistic 

objects and linguistic labels does appear to be occurring in different 

brain regions (e.g., color in occipital regions and color names in 

central-frontal regions). However, in contrast to Paivio's model, 

although the processing of color preceded the processing of color names 

(i.e., Intradimension effects), "meaning" was reflected in the ERP at the 

same time for colors and color names rather than the encoding of 

linguistic labels following the encoding of objects. 

The Indirect effects of attention may also be considered in relation 

to the psychological construct of "automaticity". Shiffrin, Dumais, and 

Schneider (1981) defined automaticity (rule 2) as "any process that 

demands resources in response to external st:i mlus inputs, regardless of 

the subject's attempts to ignore the distinction is automatic". This 

involuntary type of processing suggested by the Indirect effects of 

attention may be interpreted as automatic processing. However, these 

results do not imply that words are processed any more automatically than 

colors. Furthermore, this involuntary type of processing, in the present 

study, is evident for semantically related stimulus configurations only. 

Other Relevant Aspects of the Results 

Replication of Intradimension Effects in Aine and Harter (A). The 

time-course and polarity of the Intradimension color and word effects 

were virtually identical to that found in Aine and Harter (A) for color 

and word processing (colors: 152-273 msec and words: 273-326 msec). 

The major difference between the scalp distribution of the effects in 
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these two studies was that the occipital difference potentials which 

reflected word processing in the present study showed a late positivity 

for this effect rather than an early negativity followed by a late 

positivity. Therefore, it can be concluded that changes in the ERPs 

(i.e., difference potentials) to color versus word stimuli were not due 

to pattern differences between the two types of stimuli, but rather were 

due to the type of processing required by the task. 

The waveform of the difference potentials to color patterns over 

central regions also closely resembled the waveshape of the difference 

potentials to colored words in Aine and Harter (i.e., positivity followed 

by a negativity) when matching or attending sensory colors. However, the 

effects of processing colors over central regions reached statistical 

significance later in time in the present study (225 msec in Aine and 

Harter versus 274 msec in present study). Consequently, the 

Intradimension color effects in the present study occurred later in time 

over the central regions when compared with the Intradimension color 

effects over occipital regions (occipital: 229 msec versus central: 274 

msec). Intradimension word effects did not reach statistical 

significance over central regions in both the present and previous 

studies. The present data suggest that the variability noted over 

central regions may be accounted for, in part, by sex differences. 

Stroop interference effects. Color and word processing now have 

been investigated in this laboratory in four different paradigms which 

utilized two different types of color and word stimuli. Intradimension 

word processing has not been shown to occur earlier in time than 
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Intradimension color processing in any of these studies. The present 

study has contributed to the previous findings of this laboratory by 

demonstrating that Intradimension word effects can occur earlier in time 

over central and frontal regions than over occipital regions. Secondly, 

the peak activation of this Intradimension word effect occurred 

simultaneously with the peak activation of the Intradimension color 

effect over frontal regions. Thirdly, none of the subjects could ignore 

the color of a stimulus when responding to the related color name and 

females could not ignore the color name when responding to the related 

sensory color. The time-course of these Indirect effects (229-274) were 

identical and correspond with the poinfi in time when interference effects 

were evident in the ERPs of previous data (225-250 msec) from this 

laboratory. 

Klein (1964) has shown, in the psychological literature, that by 

varying the degree of relatedness between color patches and symbols 

(linguistic and nonlinguistic) one can vary the amount of interference 

between the two. When the word was highly related to the color there was 

more interference. "Meaning" or the degree of association between the 

color and color name seems to a critical factor as suggested by Logan 

(1980). 

Treisman and Fearnley (1969) mentioned that it was difficult to 

attend to only one dimension of color and word stimuli. By taking 

Klein's results into account, this difficulty may be due to the 

relatedness between colors and color names, per se. Aine and Harter (C) 

manipulated the response time of the subjects in an attempt to minimize 
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the behavioral Stroop interference effect. It was hypothesized that 

subjects would not have enough time to read the words. However, these 

words were still processed to some extent for the behavioral data 

indicated a Stroop effect and a Reverse Stroop effect. 

The present study offers a simple explanation for both a neural and 

behavioral interference effect. Attention to colors of incongruent 

color/word stimuli may elicit an Indirect word response (i.e., the neural 

representation of the semantically related color name is activated) which 

may compete with the word processing associated with the physical aspect 

of the stimulus. Similarly, attention to words results in competing 

color responses (Indirect color processing and processing of the color of 

the physical stimulus). If congruent stimuli were utilized then 

facilitation would result. 

Input filter versus response selection theories of attention. In 

direct contradiction to both Hansen and Hillyard (1983) and Naatanen 

(1982), all irrelevant stimuli were not filtered out at an early stage of 

the attentional process on the basis of physical features. The Indirect 

effects of attention argue against this notion; irrelevant stimuli which 

were not physically similar (e.g., a color patch versus a word) but were 

semantically related did show a differential effect of attention when 

compared with responses to irrelevant and semantically unrelated stimuli. 

Somehow "meaning" was extracted before or during the suppression of the 

responses to irrelevant stimuli. This interpretation is consistent with 

Johnston and Venables' (1982) finding of an early positivity in the ERP 

(P85) which was enhanced to specific colors or words (probe stimuli) 
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while subjects were naming the colors or reading the words of target 

stimuli. They concluded that this result argues against a filter model 

of attention which suggests that early selection relies on the 

discrimination of simple physical characteristics. 

These results do not, however, support the Response Selection model 

of attention either. All stimulus attributes were not first-fully 

analyzed by central brain mechanisms with subsequent selection being 

based on this outcome as, for example, the progressive selection process 

for words (Figure 2). The suppression of the ERPs to irrelevant 

information or enhancement of the ERP to relevant stimuli (whichever may 

be the case) depends on what information is available to the nervous 

system at that point in time. The Interdimension word effect was most 

pronounced initially; this effect is analogous to pattern 

discrimination. The word patterns were not analyzed fully, but were 

processed enough to determine that they were not colored patterns (Figure 
$ 

2). The Intradimension word effect occurred later in time which required 

a . finer discrimination; this effect represents the discrimination 

between the word "blue" and the word "red." Only the relevant word 

received continued processing at this point in time. 

Conclusions 

The present study suggests that the hierarchical nature of the 

selection process holds true predominantly over posterior cortical 

regions. Interdimension effects were most pronounced over occipital 

regions which appeared to reflect a more global discrimination process. 
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Intradimension color and word effects over occipital regions reflected a 

more refined discrimination process between specific colors or specific 

words. The fact that word effects were evident very early in time over 

frontal regions (Intradimension word effect) and central regions 

(Indirect word effect for females) in comparison with occipital regions, 

suggests the existence of two parallel pathways mediating slightly 

different functions. 

There was an early hemispheric effect over frontal regions. The 

right hemisphere revealed greater enhancement of the ERP to relevant 

stimuli in comparison with irrelevant stimuli, regardless of the type of  

processing required or type of flash. This suggests that anterior 

regions may mediate the directing of attention to more posterior regions. 

Kolb and Whishaw (1980) have suggested that the anterior region of the 

temporal lobes is primarily involved in the directing of nervous system 

attention to particular aspects of the sensory input. Such an 

organization could have an advantage in that the nervous system could 

respond quickly on the basis of a little information while making finer 

discriminations later in time. Harter, Aine, and Schroeder (1982) found 

an enhancement of the selection negativity associated with attention to 

locations in space which occurred earlier in time over central as 

compared with occipital regions. It was suggested that central regions 

may modulate the activity of posterior regions when attending to 

locations in space. This same rationale could suggest that the early 

Intradimension word effect over frontal regions may have modulated the 

later activity in occipital regions associated with the processing of  
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specific words. This implies that "meaning" and "relevance" of the 

stimulus in part may be determined by anterior regions before the 

specific features of linguistic stimuli have been processed in the 

occipital regions. 

The "meaning" of stimuli is reflected in the ERPs very early in time 

and does not require sustained attention. Sustained attention does not 

accelerate the processing of "meaning", but rather, acts to increase 

neural activity associated with the processing of "meaning" and to 

prolong this activity. The time-course of the Indirect words effect for 

females and Intradimension word effect over frontal regions was very 

similar. The major difference was that the frontal word effect was 

statistically significant later in time. One could question why the 

Indirect word effect was evident in central regions while the 

Intradimension word effect was evident in frontal regions since both 

presumably reflect word meaning. In one case, direct attention was 

involved (frontal effect), whereas attention was not directed to the 

irrelevant but semantically related stimuli (Indirect effects). 

According to Ojemann (in press), a semantic matching task was altered by 

stimulation at frontal, parietal, and posterior temporal regions. 

Specialized cortex for specific language functions is seen all along 

frontal and parietal-temporal regions. 
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