
 

 

JESSUP, NAOMI ALLEN, Ph.D. Understanding Teachers’ Noticing of Children’s 
Mathematical Thinking in Written Work from Different Sources. (2018) 
Directed by Dr. Victoria R. Jacobs. 125 pp. 
 
 
 Expertise in teacher noticing of children's thinking is central to a vision of 

responsive teaching in which teachers regularly elicit and build on children’s thinking 

during instruction (Richards & Robertson, 2016).  In mathematics classrooms, this core 

instructional practice of noticing children’s mathematical thinking repeatedly occurs 

during instruction and involves attending to and making sense of children's mathematical 

thinking (Sherin, Jacobs, & Philipp, 2011).  Teachers daily have opportunities to notice 

children’s mathematical thinking during their conversations with students and in 

students’ written work.  However, expertise in noticing children’s mathematical thinking 

does not develop automatically or through years of teaching, and teachers need support 

developing noticing expertise.  To help teachers develop noticing expertise, professional 

developers often employ artifacts of practice (e.g., video clips and student written work) 

from teachers’ own classrooms as well as strategically selected artifacts from classrooms 

taught by teachers unfamiliar to the PD participants.  This study explored the potential 

differences in teachers’ noticing with written work from these two sources—teachers’ 

own classrooms and classrooms unfamiliar to the teachers.  Drawing on the construct of 

framing (Goffman, 1974), particular attention was paid to the various frames (or lenses) 

teachers used during noticing.  

Using a context of professional development focused on children's mathematical 

thinking in the domain of fractions, this three-phase study explored teachers’ noticing and 

their use of frames by investigating the relationship between teachers' noticing of 



 

 

children's mathematical thinking in written work from their own classrooms versus 

unfamiliar classrooms.  In the first phase, this study identified the frames individual 

teachers used when noticing children’s thinking in written work from their own 

classrooms.  The second phase explored the frames that small groups of teachers used 

when collectively noticing children’s thinking in written work from unfamiliar 

classrooms during professional development.  The third phase used in-depth interviews to 

investigate the relationship between the quality of teacher noticing and the use of frames 

of six teachers who were asked to notice children’s thinking in written work on the same 

problem from their own classrooms and from unfamiliar classrooms.  

Findings identified six frames teachers used while noticing children's 

mathematical thinking in written work from the two sources, and they fell into three 

broad categories: (a) noticing focused on the child’s current mathematical performance, 

(b) noticing focused on the child’s non-mathematical performance, and (c) noticing that 

compared the child’s performance to the expected performance based on the child’s past 

performance, the performance of the rest of the class, or curricular or testing guidelines.  

Confirmation of these frames in three data sets highlighted the variety of ways teachers 

reason during noticing, suggesting that frames are a useful construct for understanding 

the complexity of teachers’ noticing because frames capture the multiple and sometimes 

competing ideas that teachers need to coordinate. 

When comparing teachers’ noticing of children’s thinking in written work from 

their own classrooms versus unfamiliar classrooms, a lack of substantial evidence was 

found to distinguish the sources in terms of the use of particular frames, the prevalence of 



 

 

particular frames, or the quality of teachers’ noticing of children’s thinking.  Further, 

there was evidence that teachers “imagined” insider knowledge of children from 

unfamiliar classrooms to assist with their noticing, which might explain why engaging 

with written work from either source did not seem to change the quality of teachers’ 

noticing.  On the other hand, comparative analyses identified a distinction between 

teachers’ use of frames when they were considering one child’s strategy versus several 

children’s strategies regardless of whether the written work came from the teachers’ 

classrooms or unfamiliar classrooms.  Specifically, when teachers’ noticing focused on 

more than one child, more frames and a greater variety of frames were invoked.  

Implications for professional development focus on the need to appreciate and address 

teachers’ coordination of multiple frames and the idea that the use of these frames 

depends less on the source of the written work and more on the number of children 

involved in the task. 
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CHAPTER I  
 

INTRODUCTION 
 
 

 There is a current vision of mathematics instruction articulated throughout 

research and policy documents that calls for teachers to attend to children’s thinking in 

productive ways.  The importance of mathematics teaching that foregrounds children’s 

thinking to promote learning for all children derives from a robust research base 

(Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Jackson & Cobb, 2010; Jacobs & 

Empson, 2016; Munter, 2014; NRC, 2001).  Similarly, policy documents such as the 

Common Core State Standards for Mathematics (National Governors Association, 2010) 

and Principles to Action (National Council of Teachers of Mathematics, 2014) reiterate 

the importance of eliciting and building on children’s thinking as meaningful practices of 

mathematics teaching.  In short, this vision of mathematics instruction highlights 

teachers’ use of evidence of children’s mathematical thinking as a basis for making 

continual adjustments to instruction that support and extend children’s learning.   

This dissertation study focused on this vision of instruction, which has been referred to as 

responsive teaching because responding to children's mathematical thinking as an 

approach to support student learning outcomes is foregrounded (Robertson, Scherr, & 

Hammer, 2016).  In choosing this emphasis, I also acknowledge that there are other ways 

for teaching to be responsive in the classroom.  For example, culturally responsive 

teaching is another vision of instruction, which foregrounds the importance of eliciting
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and utilizing children's cultural identities in all aspects of learning (Gay, 2002; Ladson-

Billings, 1995).  I believe the two types of responsiveness to be mutually reinforcing and 

my focus on children’s thinking is based on the premise that children have a wealth of 

knowledge and experiences that they bring to the classroom and that are reflected in their 

mathematical thinking.  In turn, it is the teachers’ responsibility to facilitate instruction 

from children’s individual knowledge and skills by watching and listening and 

responding.  Thus, in responsive teaching, children are provided opportunities to develop 

in their thinking, and teachers use their knowledge of how particular children, and 

children in general, make sense of mathematical ideas to support and extend children’s 

thinking (Jacobs & Ambrose, 2008; Jacobs & Empson, 2016). 

Responsive teaching, like all teaching, is complex and composed of a collection 

of practices to help support student learning (Grossman & McDonald, 2008; Jacobs & 

Spangler, 2017; Lampert, 2010).  Many current efforts focus on identifying and 

promoting core instructional practices that are research-based, support student and 

teacher learning, and can be accessed and learned in a variety of settings (Grossman, 

Hammerness, & McDonald, 2009; Jacobs & Spangler, 2017).  While the field has not 

developed a consensus regarding core practices that are responsive to children’s thinking, 

I join others in arguing that teacher noticing is a core practice of responsive teaching 

(Jacobs & Spangler, 2017). 

Teacher Noticing—Core Practice of Responsive Teaching 

Noticing refers to the general everyday process of making observations in which 

many things are competing for our attention and sense making.  Teacher noticing is a 
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more intentional type of noticing (Mason, 2002) in a complex classroom environment, in 

which so much occurs that it is hard to attend to everything with an equal amount of 

consideration.  Teacher noticing is a construct that has the potential to uncover what 

teachers find important in a teaching episode, specifically regarding students and 

learning.  In this study, I focus on a specialized type of teacher noticing, professional 

noticing of children’s mathematical thinking, that is closely linked to my vision of 

responsive teaching, which emphasizes building on children’s mathematical thinking.  

Professional noticing of children’s mathematical thinking includes the three interrelated 

skills of attending to children’s strategies, interpreting children’s mathematical 

understandings, and deciding how to respond on the basis of children’s understandings 

(Jacobs, Lamb, & Philipp, 2010).  Professional noticing expertise is necessary, but not 

sufficient, for responsive teaching and honing in on children's thinking for use in 

instructional decision making is an acquired expertise (Jacobs, Lamb, & Philipp, 2010; 

Louie, 2016; Sherin, Jacobs, & Philipp, 2011). 

Expertise in Noticing Children’s Mathematical Thinking 

Teacher noticing of children’s mathematical thinking is challenging.  Classrooms 

are complex environments composed of different interactions that occur throughout the 

instructional setting.  Teachers must determine which aspects of classroom instruction are 

important while making in-the-moment decisions.  Further, there is a range of factors that 

could shape teachers’ noticing, such as teaching environments, preferences, biases, and 

specialized content knowledge (Sherin et al., 2011).  Despite the challenges in developing 

expertise in teacher noticing, research has shown that it is a learnable practice.  
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Generally, teachers do not develop noticing expertise automatically, even after years of 

teaching experience (Jacobs et al., 2010), but there is evidence that with support, noticing 

expertise can improve for both prospective teachers (Callejo & Zapatera, 2017; 

Fernández, Llinares, & Valls, 2012; Schack et al., 2013) and practicing teachers (Floro & 

Bostic, 2017; Jacobs et al., 2010; van Es & Sherin, 2008).  

The development of teachers’ noticing expertise often occurs in professional 

development settings in which the practices of teaching are decomposed into manageable 

parts (Jacobs & Spangler, 2017; Grossman et al., 2009).  Teachers then work with these 

parts through face-to-face interactions with students or engagement with artifacts of 

practice (e.g., student written work and classroom video).  When artifacts of practice are 

used to promote growth in noticing expertise, these artifacts can come from teachers’ 

own classrooms or can be strategically selected by facilitators from classrooms 

unfamiliar to the teachers.  The inclusion of artifacts from the two sources—teachers’ 

own classrooms and unfamiliar classrooms—has shown promise in supporting the 

development of teacher noticing expertise during PD, but additional research is needed to 

understand the potential differences of teacher noticing prompted by each source.  

Teachers may draw upon the use of insider knowledge of their students when noticing 

children’s mathematical thinking in artifacts from their own classrooms which is not 

possible in artifacts from unfamiliar classrooms.  This insider knowledge potentially 

influences how closely teachers’ noticing is reflective of the mathematical thinking 

represented in current artifacts.  
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Study Origins 

The idea for this study developed from literature on PD and teacher noticing as 

well as my observations when working on the Responsive Teaching in Elementary 

Mathematics (RTEM) study.  RTEM was a 4-year professional development design study 

interested in characterizing teachers’ development of responsiveness to children’s 

mathematical thinking in the domain of fractions.  I observed the same teachers in PD 

and their classrooms and saw differences in those teachers’ noticing of children’s 

mathematical thinking in their own classrooms versus in PD when the written work was 

mostly strategically selected by the facilitator from unfamiliar classrooms.  In the PD, 

teachers generally seemed to notice children’s thinking in written work more effectively 

than in their own classrooms—they were more likely to attend closely to the details of the 

students’ thinking represented in the strategies, interpret the students’ understanding 

based on evidence found within the strategy, and decide how to respond based on the 

students’ understanding.  In contrast, when reflecting on their own lessons, they generally 

used less specificity when discussing strategy details, and their interpretations of 

students’ understandings and decisions about next instructional steps sometimes used 

evidence from the strategies in the written work but other times relied more on previous 

interactions with the students and sometimes were not even mathematically focused.  

Although prior interactions and non-mathematical foci maybe be useful at times, they 

often seemed to overwhelm the teachers’ noticing in a way that minimized the 

mathematical work the child had actually done.  These types of differences in how 

teachers noticed children’s thinking in the written work in the two settings caused me to 
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wonder about the extent to which teachers foregrounded children’s mathematical thinking 

when noticing children’s thinking in written work from their own classrooms versus 

unfamiliar classrooms, and what implications these differences might have for the use of 

both types of artifacts in professional development.  To better understand the additional, 

and potentially competing lenses teachers may use when noticing children’s thinking in 

written work from their own classrooms, I drew on the construct of framing. 

Teacher Noticing and Framing  

The construct of framing is a potential tool to understand the complexity of 

teachers’ noticing of children’s mathematical thinking.  Frames are the lenses used as 

individuals structure information for the sense-making process of filtering and discarding 

irrelevant information (Goffman, 1974).  Frames provide structures that help people 

classify, organize, and interpret their experiences, and thus the use of frames refers to 

the "active sense-making that teachers engage in" (Sherin & Russ, 2014, p. 6).  In settings 

that support the development of expertise in noticing children’s mathematical thinking, a 

children’s thinking lens is foregrounded to help teachers attend to and make sense of 

salient mathematical details within children’s strategies.  In this study, I chose framing to 

explore the use of a children’s mathematical thinking lens and other lenses that may 

enhance or impede the use of this lens in teacher noticing.  In particular, I am interested 

in understanding the relationship between teachers’ use of frames and their quality of 

noticing of children’s mathematical thinking in written work from their own classrooms 

and those from unfamiliar classrooms.  In this way, I can consider how the context of 

schooling and experiences with students from the teachers’ own classes influence the 
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quality of their noticing expertise.  Teaching is not context-free and past and current 

contextual factors often shape pedagogical decisions, and thus the frames teachers use.   

Overview of Dissertation  

 The purpose of this study was to characterize teacher noticing of children’s 

mathematical thinking to understand differences in noticing expertise and the use of 

frames employed in noticing as teachers engaged with different sources of student written 

work.  The study involved three phases (See Figure 1.1).  

 

 
 
Figure 1.1.  Overview of Dissertation Phases.   

 

What is the relationship between teachers’ noticing of children’s mathematical 
thinking in written work from their own vs. unfamiliar classrooms? 

       Phase 3: Noticing 
Interviews 

      Phase 2: Small-Group 
Conversations  

Phase 1: Post-
Observation Interviews 

Research Questions: 

1.What frames do individual 
teachers use when noticing 
children’s mathematical 
thinking in written work 
from their own and 
unfamiliar classrooms? 
 

2.What is the quality of 
individual teachers’ 
noticing when noticing 
children’s mathematical 
thinking in written work 
from their own and 
unfamiliar classrooms? 

 

3.What is the relationship 
between teachers’ use of 
frames and the quality of 
their noticing?  

Research Question: 
What frames do 
teachers use when 
noticing children’s 
mathematical thinking 
in written work from 
unfamiliar classrooms? 
 

  

Research Question: 
What frames do 
teachers use when 
noticing children’s 
mathematical thinking 
in written work from 
their own classrooms? 
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In the first two phases, I started with existing data from the larger RTEM project 

to understand the range of frames teachers used when noticing children’s mathematical 

thinking in written work from their own and unfamiliar classrooms.  During the first 

phase, I focused on identifying a list of frames in teachers’ noticing of written work from 

their own classrooms by analyzing post-observation interviews.  During the second 

phase, I extended my understanding of frames used when teachers noticed children's 

thinking in written work from their own classrooms to their noticing in written work from 

classrooms that were unfamiliar.  Specifically, I analyzed the frames used in 

conversations of small groups of teachers as they participated in noticing activities during 

the RTEM PD.  I began with frames identified from the first phase while leaving room 

for the emergence of additional frames.  By the end of the second phase, a comprehensive 

list of frames had been identified by looking at teachers' noticing of children's 

mathematical thinking in written work from the two sources.  However, the teachers in 

Phase 1 and Phase 2, while overlapping, were not identical and their noticing was only 

captured in a general fashion.  In other words, teachers broadly engaged with the three 

interrelated skills of noticing children's mathematical thinking—attending to strategy 

details, interpreting children's understandings based on strategy details, and deciding how 

to respond on the basis of those understandings—but specific prompts linked to each skill 

were not asked consistently. 

In the final phase of my study, I collected new data, using what was learned in the 

first two phases to develop an extensive noticing interview that did address the three 

noticing skills explicitly.  I worked with a set of six teachers and investigated how the 
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same teacher noticed children’s mathematical thinking in written work from both sources.  

I interviewed each teacher twice using written work linked to the same story problem—

once with written work from her own classroom and once with a common set of written 

work from an unfamiliar classroom.  I looked specifically at (a) teachers’ use of frames, 

(b) the quality of teachers’ noticing expertise, and (c) the relationship between teachers’ 

use of frames and the quality of their noticing.   

Study Contributions 

Research on teacher noticing continues to build in popularity, and thus the 

knowledge base continues to expand.  My study contributes to this knowledge base in 

several ways.  First, few noticing studies include the use of frames to uncover the 

multiple influences on teachers’ reasoning during noticing (for exceptions, see Louie, 

2016 and Sherin & Russ, 2014).   My study was designed to identify the variety of frames 

teachers use when noticing children’s thinking in written work from two sources. 

Second, my study investigated potential differences in frames used when teachers 

notice children’s mathematical thinking in written work from their own classrooms and 

unfamiliar classrooms.  Unlike most noticing studies, my study incorporated the use of 

artifacts from teachers’ own classrooms and unfamiliar classrooms in the same study to 

understand differences in the quality of teachers’ noticing and the role that frames may 

play in those differences.   

Third, common methodological approaches to capturing teacher noticing involve 

written responses to prompts or interviews with minimal follow-up to teachers’ ideas.  
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Phase 3 of my study incorporated the use of interviews, involving think-aloud prompts 

and follow-up questions, to more extensively capture teachers’ noticing.   

Finally, my study has practical implications for those who use written work to 

support the development of noticing expertise.  The potential influence of frames or the 

source of the written work on teachers’ noticing could not only affect facilitators’ use of 

particular written-work artifacts in PD but also identify a need to help teachers learn to 

coordinate multiple frames during noticing.   

Outline of Dissertation 

This dissertation is organized into six chapters.  In this chapter, I introduced the 

problem and provided a rationale for my study.  Chapter 2 reviews the literature about 

teaching that foregrounds children’s mathematical thinking, teacher noticing of children's 

mathematical thinking, the construct of framing, and the use of framing while noticing.  

Chapters 3–5 provide the methods and findings for the three phases of my study.  In 

addition, Chapter 3 begins with a discussion of the broader RTEM project in which my 

study resides.  In Chapter 6, I synthesize the findings from all three phases of the study, 

and discuss implications and limitations of the work.  I conclude Chapter 6 by outlining 

future areas of research related to this topic.  
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CHAPTER II 
 

REVIEW OF THE LITERATURE 
 
 

During the past decade, mathematics education research has developed a robust 

knowledge base for understanding and characterizing a vision of teaching that centralizes 

taking up children’s mathematical ideas during instruction.  This vision has been 

conceptualized in various forms and described by different terms such as high-quality 

mathematics instruction (Munter, 2014) ambitious teaching (Jackson & Cobb, 2010) and 

more recently responsive teaching (Jacobs & Empson, 2015; Richards & Robertson, 

2016), but all share the idea that children’s thinking is foregrounded.  In this study, I 

adopt the conceptualization of responsive teaching characterized by Roberston, Scherr, 

and Hammer (2016) as including three features: (a) teachers foreground attention to 

children's ideas; (b) teachers recognize ways the disciplinary content, in this case 

mathematics, connects with children's ideas; and (c) teachers take up and pursue 

children’s ideas.   

This vision of instruction that is responsive to children’s mathematical thinking 

connects to the large and growing body of research on children’s thinking that has 

documented benefits for both children and teachers (Carpenter, Fennema, Peterson, 

Chiang, & Loef, 1989; Fennema et al., 1996; Jacobs, Franke, Carpenter, Levi, & Battey, 

2007).  Children have shown gains in student achievement (Carpenter et al.,1989; 
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Fennema et al., 1996; Jacobs et al., 2007), and also other benefits from participating in 

rich classroom environments that provide opportunities for children to not only share 

their reasoning but also engage in the reasoning of their peers (Cobb et al.,1991; Wilson 

& Berne, 1999).  Teachers benefit from engaging with children’s mathematical thinking 

because they gain access to the children’s thinking which can sometimes highlight 

mathematical ideas that may differ from the teachers’ ideas and can help to guide future 

instruction.  My study is situated in this vision of responsive teaching and focuses 

specifically on one of the core instruction practices of this type of instruction, noticing of 

children’s mathematical thinking.  In the follow sections, I describe the construct of 

teacher noticing, its importance, and the landscape of research on teacher noticing.  I then 

turn to my specific focus, teacher noticing of children’s mathematical thinking and 

connect it with the construct of framing as a way to better understand the reasoning 

underlying teacher noticing, especially in relation to teachers’ familiarity with what is 

being noticed.  The chapter concludes with a discussion of methodological issues and the 

design of my study.   

Construct of Teacher Noticing 

Teacher noticing is distinct from the broader construct of noticing, which refers to 

general observations that occur in everyday life.  Teacher noticing is a more intentional 

type of noticing (Mason, 2002) with roots in the concept of professional vision.  Goodwin 

(1994) defined professional vision as “socially organized ways of seeing and 

understanding events that are answerable to the distinctive interests of a particular social 

group’’ (p. 606).  In any profession, members of that community become sensitized to 
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notice certain things in their professional settings, and expertise in attention to salient 

details increases the ability to process information more productively (Taylan, 2015).  

Teacher noticing is no exception.  The classroom is a complex environment, and there is 

so much occurring that it is impossible, and perhaps not even desirable, for teachers to 

attend to everything with an equal amount of importance.  Teacher noticing is a construct 

that describes what teachers find important in a teaching episode, specifically regarding 

students and their learning.  I join others in arguing that research on teacher noticing is 

worthwhile for understanding how teachers focus on salient aspects of instruction that is 

responsive to children’s thinking (Jacobs & Spangler, 2017).  

Importance of Teacher Noticing  

 Jacobs and Spangler (2017) argued that teacher noticing is a core practice of 

responsive teaching.  Teachers must consider a range of students’ ideas as they arise 

while making in-the-moment decisions, and what they choose to attend to or miss while 

noticing can impact what students learn.  Further, expertise in teacher noticing has been 

positively linked to productive in-the-moment decision making.  Choppin (2011) studied 

how teachers' noticing of student thinking supported secondary mathematics teachers' 

adaptation of challenging tasks during instruction.  Results showed a relationship 

between what teachers noticed and whether the adjustment of tasks maintained high 

levels of the cognitive demand.  Additionally, findings suggested that a consistent focus 

on student thinking provided teachers with opportunities to develop a deep understanding 

of how their students engaged with the mathematical ideas within the tasks.  
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Understanding the practice of teacher noticing has also been useful in helping 

teachers gain expertise in other disciplines.  For example, Barnhart and van Es (2015) 

highlighted the benefits of supporting secondary science prospective teachers in a video-

based noticing course designed to assist teachers in their licensure assessment.  The 

primary goal of the course supported prospective teachers in using evidence of student 

thinking to (a) attend to student thinking in teacher-student interactions, (b) analyze 

student understandings from those interactions, and (c) decide next steps based on those 

analyses.  Results indicated prospective teachers enrolled in the course demonstrated 

higher levels of expertise in their overall attention, interpretation, and response to student 

thinking on their licensure assessment.  In contrast, teachers not registered in the class 

demonstrated little to no attention to student thinking despite specific student-thinking 

prompts in the assessment.   

In summary, teacher noticing is a core instructional practice that has been shown 

to support both practicing and prospective teachers in being responsive to children’s ideas 

in complex teaching environments.  However, the construct of teacher noticing has been 

operationalized in multiple ways, with different emphases being foregrounded depending 

on the researcher, and I now turn to characterizing this landscape of research.  

Landscape of Research on Teacher Noticing  

Research on teacher noticing continues to grow in popularity deepening the 

field’s knowledge base of this core practice and includes two books (see Schack, Fisher, 

& Wilhelm, 2017; Sherin, Jacobs, & Philipp, 2011), a compendium chapter (see Jacobs & 

Spangler, 2017), and a plethora of research articles.  Jacobs and Spangler (2017) noted 
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that although some research has focused on documenting the range of what teachers have 

found noteworthy, most studies have focused on how or the extent to which teachers 

notice something of interest to researchers.  In the following sections, I briefly share three 

of these areas of interest that have captured the attention of noticing researchers: teacher 

noticing of children’s mathematical thinking, teacher noticing of equity indicators of in 

mathematics instruction, and curricular noticing.  I then turn to the conceptualization of 

teacher noticing of children’s thinking used in my study. 

 Teacher noticing of children’s mathematical thinking.  The most researched 

type of teacher noticing has been teacher noticing of children’s mathematical thinking.  

Some researchers have focused on teacher noticing of children’s thinking and the 

connections to research-based learning trajectories or frameworks that derive from long-

standing research programs (see, e.g., Jacobs et al., 2010; Schack et al., 2013).  Others 

have focused on teacher noticing of children’s use of key mathematical concepts in 

particular mathematical domains.  Mathematical concepts targeted in these studies have 

included multiplicative reasoning in proportional problems (Fernández, Llinares, & Valls, 

2013), algebraic thinking (Walkoe, 2015), and generalizations about additive-growth 

patterns (Zapatera & Callejo, 2013).  

 Teacher noticing of equity indicators in mathematics instruction.  A growing 

area of research in teacher noticing has been how and the extent to which teachers notice 

matters related to equity in mathematics instruction.  This research has identified a 

variety of equity indicators resulting in research that has focused on teacher noticing of 

student participation during discussions (Kalinec-Craig, 2017;Wager, 2014), equitable 
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practices (Hand, 2012; van Es, Hand, & Mercado, 2017), or culture and power dynamics 

(Louie, 2016).  Some of this worked targeted specific populations of teachers (Kalinec-

Craig, 2017) or particular populations of students (Fernandes, 2012).    

Curricular noticing.  An emerging area of research, curricular noticing, 

combines research on noticing and teachers’ use of curriculum materials to understand 

how teachers interact with curriculum materials to support their curricular reasoning and 

decision-making.  Amador and colleagues (2017) defined curricular noticing as the ways 

teachers make sense of the complexity of pedagogical opportunities in written or digital 

curricular materials.  Curricular noticing, composed of three components, includes 

teachers’ attending to specific aspects of curricular materials, interpreting what was 

attended to, and resulting curricular decisions.  Curricular noticing is different than the 

above two categories of teacher noticing because it does not take place in the moment, 

which extends the boundaries of the current conceptualization of teacher noticing as an 

in-the-moment practice (Sherin, 2017). 

Teacher Noticing of Children’s Mathematical Thinking in This Dissertation Study 

In my study, I focus on professional noticing of children’s mathematical thinking 

as described by Jacobs and colleagues (2010).  They identified three interrelated 

component skills that include attending to the details in children’s strategies, interpreting 

children’s mathematical understandings reflected in those strategy details, and deciding 

how to respond on the basis of children’s mathematical understandings.  In the sections 

below, I will describe each of the three component skills.  Note that this set of component 

skills distinguishes this conceptualization of noticing from other conceptualizations that 
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focus solely on teachers’ attention in complex instructional environments (Star, Lynch, & 

Perova, 2011) or only on teachers’ attention to and interpretation of what was seen 

(Goldsmith & Seago, 2011; Sherin & van Es, 2008).  

Skill 1:  Attending to children’s strategies.  For the component skill of 

attending to children’s strategies, Jacobs and colleagues (2010) focused on the extent 

teachers with different professional development experiences attended to the 

mathematical details in individual children’s strategies by describing the mathematical 

details, patterns, and nuances in the individual children’s strategies.  

Skill 2:  Interpreting children’s mathematical understandings.  Research has 

shown that children’s strategy details often reflect a nuanced picture of what the children 

understand (Carpenter, Fennema, Franke, Levi, & Empson, 2015).  Jacobs and 

colleagues’ (2010) description of interpreting children’s mathematical understanding 

focused on teachers’ reasoning and the extent to which it was “consistent with both the 

details of specific child’s strategies and the research on children’s mathematical 

understanding” (p. 4).  The researchers also recognized the impossibility of providing a 

complete description of children’s understandings on the basis of children's work on a 

single problem, but they argued that some components of children's understandings can 

be reflected in strategy details. 

Skill 3:  Deciding how to respond on the basis of children's mathematical 

understandings.  Research has identified a variety of in-the-moment teacher moves that 

support or extend children’s understandings of mathematical ideas (Jacobs & Ambrose, 

2008; Jacobs & Empson, 2016).  Jacobs et al. (2010) described this third skill of noticing 
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as teachers’ intended response to build on children’s understanding.  They recognized 

that no perfect next move exists and instead their focus was on the reasoning teachers 

used when they learned about the children’s understandings and whether the teachers’ 

reasoning was consistent with that child’s understandings and research on the 

development of children’s mathematical thinking.   

In summary, the three component skills of Jacobs et al.’s (2010) professional 

noticing of children’s mathematical thinking can be taken to be integral to teaching that is 

responsive to children’s thinking.  These skills are worthy of study because teachers do 

not automatically have this expertise, but Jacobs et al’s (2010) study showed that they 

can be learned, with sustained support.  Professional development designed to help 

teachers gain this support often uses artifacts of practice, such as video clips and student 

written work, and these artifacts can be drawn from multiple sources. 

Teacher Noticing with Artifacts from Multiple Sources  

Teacher noticing is a complex practice and supporting teachers’ noticing expertise 

is additionally complex because of the contextual factors that shape teachers’ decision 

making.  In PD, facilitators often use artifacts of practice from teachers’ own classrooms 

as well as those that they strategically select from classrooms unfamiliar to the teachers in 

the PD.  Artifacts from different sources have different affordances.  For instance, when 

teachers are noticing children’s thinking in artifacts from their own classrooms, they can 

use insider knowledge of those children whereas this knowledge is unavailable with 

artifacts from unfamiliar classrooms.  This difference raises the question of whether 

teachers’ noticing (or the quality of their noticing) may be different depending on their 
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familiarity with the artifacts used.  Few researchers have directly studied this idea, but I 

will share two studies which have compared teacher noticing using video artifacts from 

both sources.  

In the first study focused on science teacher noticing, Seidel et al., (2011) 

analyzed written comments of physics teachers’ responses to videos of lessons of the 

teachers’ own teaching and then of another teacher on the same physics topic.  The 

researchers were interested in the teachers’ overall reaction to the video, so teachers were 

asked to watch each video and make a comment for each 10 minute segment.  In the 

second study focused on mathematics teacher noticing, Kleinknecht & Schneider (2013) 

analyzed written responses of eighth-grade mathematics teachers’ responses to videos 

presented by a web-based tool of lessons of the teachers’ own teaching and then of 

another teacher.  Teachers were asked specific questions about what they noticed in each 

video, but were also provided opportunities to comment on any scene of interest to them.  

In both studies, teachers had recently completed video-based professional development in 

which both types of video clips were used to support the development of professional 

vision (noticing and knowledge-based reasoning) of individual teachers.  

Across both studies, results showed differences in teachers’ engagement with 

video from their own teaching versus facilitator-selected videos based on (a) overall 

instances of noteworthy interactions identified, (b) resonance with their own practice, 

(c) evaluation of classroom events, and (d) reflection on possible alternatives.  First, 

teachers noticed more instances of noteworthy interactions when watching video clips of 

their own teaching in contrast to the teaching of others which meant teachers viewed clips 
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from their own classrooms more positively than clips from other teacher’s classrooms. 

Second, teachers who were noticing videos of their own teaching commented more about 

how the representation of teaching resonated with them in comparison to noticing in 

video from facilitator-selected videos.  This finding suggests that teachers may have 

found it challenging to engage with video clips of teaching from other teachers because 

what was represented in the video was not closely linked their own experiences teaching 

the same topic.  Third, teachers were more willing to evaluate instruction critically when 

the video was from others’ classrooms meaning that teachers’ personal connection to 

their own videos may have interfered with their ability to think critically about their 

instruction.  Fourth, teachers minimally engaged with classroom instances that were 

identified as negative in their own videos, specifying less possible alternatives.  When 

teachers were asked to push for specific ways to provide alternatives for those negative 

events, teachers engaging with facilitator-selected videos supplied explanations of ways 

to improve those events.  In contrast, teachers did not provide an alternative or provided 

minimal responses when noticing videos from their own classrooms 

In summary, the lenses teachers used in their noticing in classroom video clips 

from their own classrooms and those from other classrooms were different.  Teachers 

engaged more with video clips from their own classrooms, but found difficulty in 

reflecting on any aspect of their instruction that was not as positive.  The differences in 

teachers’ engagement with artifacts from teachers’ own and unfamiliar classrooms 

supports the need to investigate teachers’ noticing in artifacts from both sources further.  

Similar to these comparisons of teachers’ noticing with video clips from the two sources, 
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my study explored the potential differences in teacher noticing of children’s thinking in 

written work from the two sources.  I drew upon the construct of framing to help explore 

these differences because framing allowed me to consider the various frames (or lenses) 

teachers used while noticing.   

Construct of Framing 

Framing or frame analysis was theorized by sociologist Goffman (1974) to 

explain how individuals organize their experiences and perception of those experiences.  

Goffman argued that people frame things every day to organize their understanding of 

something—individuals actively classify, organize, and interpret their life experiences to 

make sense of them.  Additionally, people filter important information and discard what 

is not needed depending on the situation.  In essence, framing provides a lens for 

engaging with complex environments and a person’s framing of an event establishes 

meaning for the individual whether or not he or she is aware of the lens.  For instance, 

consider the different purposes teachers use when examining written work and how each 

purpose has guiding principles and values that shape how teachers engage with and 

structure their analysis of the work.  One purpose a teacher might have is looking for the 

correct answer, which can prompt teachers to separate that specific feature of the strategy 

from other strategy features as the basis for student understanding and may even cause 

teachers to minimize their appreciation for student understanding reflected in other 

strategy features.  Thus, the frame of “looking for the correct answer” provides a 

structure for teachers to make sense of the student thinking represented in the written 

work.  
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I argue that framing is a broad concept that captures the knowledge, beliefs, and 

experiences that can play a role in teacher noticing.  However, teachers often have 

multiple frames that they are invoking while noticing and the coordination of these 

frames can be complicated because they can be complementary or competing.  I use 

Jessup, Hewitt, Jacobs and Empson’s (2015) work on teachers’ perspectives on children’s 

fraction strategies to illustrate how the idea of complementary or competing frames can 

play out in teachers’ noticing of children’s mathematical thinking.  Jessup and colleagues 

(2015) investigated the ways teachers, at the start of PD, made sense of children’s 

fraction strategies before being formally introduced to a research-based framework of 

children’s thinking to support teachers’ perspectives on those strategies.  Groups of 

elementary school teachers were asked to analyze a set of 12 pieces of student written 

work on the same fraction story problem and order the strategies in terms of 

sophistication.  Teachers’ rationales for why a particular strategy was more sophisticated 

than another identified sets of strategy features they preferred.  These identified strategy 

features were sometimes similar to and sometimes different than those leveraged in the 

research-based children’s thinking frameworks.  As teachers engaged in the PD, one 

could imagine how these two sets of frames—teachers’ own set of preferences for 

strategy features based on their prior experiences and the set of research-based strategy 

features privileged in the PD—would need to be coordinated in teachers’ noticing of 

children’s thinking in fraction strategies.  This act of coordination would be complicated 

because some ideas are complementary and others are conflicting.  The construct of 
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framing could shed light on this coordination as teachers work to gain noticing expertise.  

Thus, combining the study of framing with the study of teacher noticing has potential. 

Connection of Framing to Teacher Noticing 

 The inclusion of the use of framing to investigate further the complexity of 

teacher noticing in mathematics education can be attributed to the work of Sherin and 

Russ (2014) who examined teachers’ use of framing in their reasoning about classroom 

events in video.  In interviews, a group of secondary mathematics teachers were asked to 

comment on what they noticed in four short video clips from unfamiliar teachers’ 

classrooms.  Analyses led to the identification of 13 frames that shaped the ways teachers 

made sense of what they noticed in classroom events depicted in video.  The authors 

argued that while their identification of frames occurred in an interview context, teachers’ 

use of frames would continue to shape teachers’ noticing during instruction. 

 Other research in mathematics education has used framing, especially the 

coordination of multiple frames, to understand the complexity of teaching.  Louie (2016) 

observed high school mathematics teachers engaged in an equity-oriented PD in different 

settings (i.e., classrooms, mathematics department meetings, and PD) and used framing to 

capture teachers’ explanations of what it meant to be mathematically capable and who is 

or can become mathematically capable.  Findings indicated tensions in the use of multiple 

frames that were sometimes in competition.  For example, William, a teacher, interacted 

with a small group of students working on a hypotenuse problem in a geometry class.  

During his interaction, he sometimes framed the students as capable and other times as 

incapable.  Specifically, upon his arrival at the table, William noticed that two students 
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had solved a problem using similar representations but arrived at different answers. 

William’s initial engagement with the students framed them as mathematically capable 

by asking each student a series of questions to elicit their thinking.  However, as the 

students (whose native languages were not English) struggled to articulate their 

reasoning, William began to ask a series of closed questions that prompted students to 

answer giving one- to three- word responses.  In the subsequent interaction, William 

started to explain the mathematically important elements of the Pythagorean theorem, 

framing the students as dependent on the teacher to provide reasoning.  This study 

highlights the multiple frames used by a teacher as he noticed children’s mathematical 

thinking but also the tension in what gets foregrounded during certain instances.  Both 

studies pushed me to consider how frames in teacher noticing were not mutually 

exclusive and the use of multiple frames within different contexts further points to the 

complexity of teaching and teacher noticing.  These studies brought about the need to 

integrate the study of framing into the study of teacher noticing and next, I consider the 

typical measurement approaches and methodological challenges associated with studying 

teacher noticing. 

Measurement Approaches to Studying Teacher Noticing  

Because teacher noticing occurs in-the-moment and is not visible, it is difficult to 

know everything teachers are attending to and making sense of during instruction.  

Researchers have used a variety of approaches to capture teacher noticing by making it 

visible, but these approaches are not without their methodological challenges.  Measuring 
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teacher noticing is hard due to its hidden nature, and there are benefits and drawbacks to 

the various approaches used to understand this complex practice.   

Approaches to capturing teacher noticing using artifacts of practice.  A 

standard approach for capturing teacher noticing involves providing teachers with 

artifacts from classrooms and asking them to describe their noticing.  Teaching has been 

portrayed through different types of artifacts, such as classroom photographs of 

instruction (Oslund & Crespo, 2014), video of individual students solving a range of 

problems (Jacobs, Lamb, Philipp, & Schappelle, 2011), video vignettes of classroom 

events (Blomberg, Stürmer, & Seidel, 2011; Santagata & Yeh, 2013), or student written 

work (Callejo & Zapatera, 2016; Fernández, Llinares, & Valls, 2013; Jacobs et al., 2010).   

Researchers have assessed teacher noticing expertise with artifacts from both 

unfamiliar classrooms and teachers’ own classrooms, and there are advantages and 

disadvantages to each approach.  When using artifacts from unfamiliar classrooms, 

researchers can easily compare noticing across teachers because everyone is noticing 

with a common artifact.  However, researchers miss how teachers may use contextual 

information when noticing with familiar students.  In contrast, when using artifacts from 

teachers’ own classrooms, researchers can learn about teachers’ perspectives on their 

students and classroom events.  However, comparing noticing expertise across teachers is 

challenging because different artifacts have different strategy details thus providing 

different opportunities to notice.   

In both approaches to capturing teacher noticing, teachers are generally asked to 

discuss what they notice in those artifacts through written responses, group discussions, 



 

 26 

or interviews, but there are often few follow-up questions so some of teachers’ noticing is 

not accessed.  In written responses, teachers are asked to respond to prompts related to 

the researchers' conceptualization of noticing, and the opportunity to ask follow-up 

questions is not available.  In group discussions with their peers and interviews that 

capture teacher noticing, teachers respond to a series of questions related to noticing, but 

the use of clarifying questions to probe teachers’ responses have typically been limited 

(Ainley & Luntley, 2007; Sherin & van Es, 2009; Walkoe, 2015). 

Analysis of teacher noticing.  In the analyses of the data used to measure teacher 

noticing, researchers have often coded teacher responses according to levels of teacher 

noticing expertise.  These levels provide some insight into the quality of teachers’ 

noticing, but can often mask the underlying reasoning used in teacher noticing (Sherin & 

Russ, 2014; Sherin & Star, 2011).  Additional research is needed to reveal further 

teachers’ underlying reasoning—frames used during teacher noticing—that could explain 

differences in teachers’ noticing in artifacts from teachers’ own classrooms versus 

classrooms unfamiliar to teachers.  

My dissertation study is designed to explicitly address some of the 

methodological challenges identified above, including using both types of artifacts 

(common artifacts from unfamiliar classrooms and individualized artifacts from teachers’ 

own classrooms), designing interviews to include think-aloud protocols and numerous 

follow-up questions, and analyzing the data for not only teacher noticing quality but also 

the frames invoked. 
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Dissertation Study Design 

 My dissertation study, which has three phases, explored teachers’ noticing and 

their use of frames by examining the relationship between teachers' noticing of children's 

mathematical thinking in written work from their own classrooms versus unfamiliar 

classrooms.  In the first two phases, I investigated what frames teachers used when 

noticing children’s mathematical thinking in written work from each source separately—

one in Phase 1 and one in Phase 2.  The third phase of the study investigated the use of 

frames and the quality of teachers’ noticing through the use of individual interviews to 

maximize the potential for characterizing teachers’ noticing expertise by probing 

teachers’ reasoning related to certain aspects of noticing and the use of frames.  The third 

phase of the study also provided the chance to compare the same teacher’s noticing of 

children’s thinking on the same problem in written work from both sources.  In the next 

chapter, I focus on Phase 1 in which I explored teachers’ use of frames when noticing 

children’s mathematical thinking in written work from their own classrooms. 
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CHAPTER III 
 

PHASE 1:  POST-OBSERVATION INTERVIEWS 
 
 

In three phases, this dissertation study explored teachers’ noticing and their use of 

frames to understand the relationship between teachers’ noticing of children's 

mathematical thinking in written work from their own classrooms versus unfamiliar 

classrooms.  In this chapter, I focus on Phase 1 in which I used post-observation 

interviews to identify the frames teachers used when noticing children’s mathematical 

thinking in written work from their own classrooms.  However, because my dissertation 

study was situated in the larger RTEM project, I begin the chapter with descriptions of 

relevant methodological information—professional development and participants—for 

this larger project. 

Methods of the RTEM Study  

 The RTEM study engaged upper elementary school teachers in multi-year PD to 

study and support the development of responsive-teaching expertise in the domain of 

fractions.  Because RTEM provided the backdrop for my dissertation study and the data 

for Phases 1 and 2, I use the next two sections to provide descriptions of the PD and 

participants for the larger RTEM study. 

 RTEM professional development.  The RTEM professional development was 

guided by a vision of responsive teaching in which teachers’ decisions about what to
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pursue and how to pursue it are constantly adjusted in-the-moment of instruction in 

response to the details of children’s mathematical thinking (Jacobs & Empson, 2016).  

RTEM PD supported this vision of teaching by foregrounding the importance of eliciting 

and building on children’s mathematical thinking through engagement with multiple 

frameworks linked to research on children’s mathematical thinking and instructional 

practices.  The children’s thinking frameworks drawn from Empson and Levi’s (2011) 

work introduced teachers to children’s thinking about fractions in grades 3–5 through 

problem-type and strategy frameworks.  The problem-type frameworks included 

distinctions of fraction story problems based on how children distinguish between the 

structure of those problems.  Each problem type in the framework was linked to a 

strategy framework that included a range of typical strategies children use, ordered to 

reflect increasing levels of understanding of fractions.  During the PD, teachers were 

supported in learning how to use these children’s thinking frameworks when interacting 

with children.  

The RTEM PD also focused on two instructional-practice frameworks that are 

central to teaching in a manner that is responsive to children’s mathematical thinking.  

The first framework, noticing children’s thinking (Jacobs, Lamb, & Philipp, 2010), 

engaged teachers in focusing on and making sense of children’s mathematical thinking in 

their comments, questions, and written work.  This framework consisted of the three 

interrelated component skills of attending to the details in children’s strategies, 

interpreting children’s understandings, and deciding how to respond on the basis of 

children’s understandings.  The second instructional framework focused on questioning 
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to support and extend children’s mathematical thinking (Jacobs & Ambrose, 2008; Jacobs 

& Empson, 2016).  During the PD, teachers engaged with these frameworks in relation to 

classroom artifacts (video and written work) and work with children.  The goal of these 

PD activities was to help teachers develop an appreciation for the idea that building on 

children’s mathematical thinking of whole number concepts and fractions can advance 

children’s mathematical ideas.  It is important to note that when written work artifacts 

were used in this PD, they were sometimes strategically selected in advance from the 

classrooms of teachers outside of the PD and other times brought by participating 

teachers from their own classrooms. 

 The frameworks used in PD had strong ties to the research and professional 

development project Cognitively Guided Instruction (CGI) (Carpenter, Fennema, Franke, 

Levi, & Empson, 2015) that takes a strength-based approach to examine how children 

think about mathematics.  CGI has documented benefits in learning for both teachers and 

children (Carpenter, Fennema, Franke, Levi, & Empson, 2015; Carpenter, Fennema, 

Peterson, Chiang, & Loef, 1989).  Like CGI, the RTEM PD was unscripted and aimed at 

helping teachers understand how children think about mathematics and how to use 

knowledge of children’s thinking to make instructional decisions.  

 Teachers in the RTEM project participated in sustained professional development 

over three years.  Each year, the PD was comprised of 8.5 days of workshops that 

spanned the summer (4.5 days) and school year (2 days in the fall and 2 days in the 

spring), totaling more than 150 hours across the 3 years.  During the workshops, teachers 

engaged in numerous activities to support their responsiveness to children’s fraction 
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thinking.  These activities engaged teachers in: (a) learning about research on children’s 

thinking, (b) analyzing children’s strategies in video and written work, (c) questioning 

and planning for instruction for individual and groups of students, (d) working with 

children’s thinking in their classrooms, and (e) adapting existing curricular resources.  

Additionally, each year teachers worked with colleagues at their school sites to 

participate in four self-guided discussions through the Collaborative Inquiry Tool (CIT).  

The CIT is a web-based tool developed to support teachers’ face-to-face conversations 

with one another at school sites.  In small groups, teachers examined their own students’ 

written work and that of their colleagues’ written work to further their noticing of 

children’s mathematical thinking.  The CIT helped to increase the amount of time 

teachers engaged with the PD ideas between workshop sessions. 

RTEM participants. The RTEM project worked with three cohorts of teachers in 

grades 3–5 and a few elementary mathematics instructional specialists or coaches.  Each 

cohort had a staggered start and the first two cohorts completed three years of the PD 

whereas the last cohort only completed one year of PD as part of the project but had other 

opportunities to continue their learning with locally-offered PD.  The RTEM project 

worked with 92 participants (82 females and 10 males): 35 third-grade teachers, 29 

fourth-grade teachers, 21 fifth-grade teachers, 1 second-third grade teacher, 3 fourth-fifth 

grade teachers and 3 teachers who were instructional specialists or coaches.  At the start 

of the PD, these participants ranged in years of teaching experience (0–34 years, M = 10 

years) and about one third had participated in previous CGI PD on children’s 

mathematical thinking with whole numbers. 



 

 32 

RTEM teachers were drawn from three school districts that were close in 

proximity, involving 11–15 schools per district, in the southern region of the United 

States (see Figure 2.1).  All three districts supported the PD and instruction that was 

responsive to children’s mathematical thinking, and they were purposefully selected 

because of their varying instructional contexts.  Two of the districts had a long tradition 

of supporting their teachers in learning about children’s mathematical thinking to inform 

instruction, and multiple district-created resources were available.  The third district had 

only recently started to shift towards instruction that was responsive to children’s 

mathematical thinking and hence resources were still emerging.  

 
 District A District B District C 

Students classified as Limited English 
Proficiency 33% 47% 9% 

Students who qualified for free or 
reduced-cost lunch 61% 71% 40% 

Student race and 
ethnicity 
classifications 

White 48% 36% 68% 
Hispanic 45% 46% 12% 
Black 2% 2% 10% 
Other 5% 15% 10% 

 
Figure 2.1.  RTEM PD District Demographic Data. 
 
Note.  These district demographic data reflect the school year in which the highest 
number of teachers were involved in the study.   Data and demographic classifications 
were drawn from a state-level database.   

 
 
Methods of Phase 1: Post-Observation Interviews  

 In Phase 1 of my study, I examined post-observation interviews of 42 teachers in 

the RTEM project who were observed teaching a fraction lesson and then interviewed 

after the lesson to share their thoughts on the lesson.  My goal was to understand the 
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frames teachers used during noticing of children’s mathematical thinking in written work 

from their own students. 

  Participants. This first phase of my study involved criterion sampling of a subset 

of teachers from the RTEM project.  Criterion sampling is a form of qualitative sampling 

that involves selecting cases that meet some criteria of importance to construct a 

comprehensive understanding of a phenomenon (Creswell, 2013; Patton, 2002).   

My criteria for inclusion were (a) the teacher’s use of equal-sharing problems in the 

lesson we observed and (b) the lesson had a complete set of written work.  Equal sharing 

problems are a type of fraction story problem in which a total number of items is 

distributed to a certain number of groups and, in this dissertation, I focus on equal sharing 

problems in which the answer is a fractional amount.  An example of an equal sharing 

problem is: Four children want to share 10 brownies so that everyone gets exactly the 

same amount.  How much brownie can each child have?  By holding constant the 

mathematics in the observations, I could more easily compare teachers’ noticing, and a 

focus on equal sharing provided several advantages.  Specifically, much of the PD 

focused on this type of problem, which is appropriate for grades 3–5 and particularly 

powerful for helping children understand fraction concepts.  Thus, teachers were familiar 

with these types of problems and had already had an opportunity to try them with their 

students.  In addition, the majority of the classroom observations conducted involved 

lessons with equal sharing problems. 

 These 40 teachers (35 females and 5 males) were drawn from all three PD cohorts 

and were spread across the grade levels targeted by the PD: 16 third-grade teachers, 13 
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fourth-grade teachers, 9 fifth-grade teachers, and 2 fourth-fifth grade teachers.  These 

teachers were also distributed across the three school districts and reflected a range in 

overall years of teaching experience (1–34 years, M = 11 years) and years of teaching 

experience specific to grades 3–5 (0–19 years, M = 6 years).  Further, about one third had 

participated in previous CGI PD on children’s mathematical thinking with whole 

numbers.   

Data source.  Data in the first phase were drawn from existing data collected as 

part of the RTEM data-collection process.  Data included 40 audio-recorded, semi-

structured interviews (5–15 minutes) that took place following an observation of each 

teacher’s classroom instruction.  Teachers were asked to pose an equal sharing problem 

during their instruction that they considered appropriate for their class, including problem 

context and number choices.  After the lesson, teachers were immediately interviewed 

about many aspects related to the observation.  This study focused on the portion of the 

interview in which teachers were asked to identify a child’s piece of written work from 

the lesson that was interesting to them and then discuss what stood out about the child’s 

thinking.  Additional questions were sometimes posed to ask teachers to describe the 

details of the child’s strategy, his or her understanding reflected in the strategy, and 

instructional next steps for the child based on that understanding, but not all of these 

additional questions were posed in all interviews.  

Data analysis.  A grounded theory approach (Charmaz 2006; Corbin & Strauss, 

2008) was selected to analyze teachers’ conversations in their post-observation interviews 

due to a limited knowledge base regarding the specific frames used while engaging with 
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children’s mathematical thinking about written work.  Grounded theory analysis entails 

creating codes through the iterative study of the data, thus allowing codes to emerge 

through multiple rounds of coding.  In Phase 1 of this study, I used Charmaz’s (2006) 

approach to grounded theory analysis that consisted of developing initial sets of codes, 

applying identified codes, and then looking across the coded data to determine broader 

categories.  My analysis of the post-observation interviews occurred in multiple stages 

and was guided by the question: “What frames do teachers typically draw upon when 

making sense of their own students’ written work?”  The intention of this guiding 

question was to help me look for both the children’s thinking frame that was often 

emphasized in the PD, and any other frames teachers utilized.  First, I transcribed and 

divided the post-observation interviews into idea units that indicated when a single topic 

was discussed (Jacobs & Morita, 2002).  Second, I determined the focus of each idea 

unit—the child, the child within class, or beyond the child and class.  Third, I used an 

iterative process of looking holistically across idea units to generate six codes that 

reflected the six frames used in teachers’ interviews about the written work from their 

own classrooms.  Fourth, I used these six frames to code the entire data set.  Fifth, I noted 

the prevalence of the six frames, identifying whether or not each teacher had used each 

frame at least once.   

Phase 1: Results  

In the first phase of my study, I found that teachers used multiple frames when 

noticing children’s mathematical thinking in written work from their own classrooms.  

Thus, the main result of the analysis of teachers’ interviews was the identification of the 
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six frames used.  These six frames fell within three broad categories: current 

mathematical performance, non-mathematical performance, and mathematical 

performance comparisons.  Table 1.1 at the end of the results section provides a summary 

of the three broad categories and their corresponding frames, including their prevalence 

across teachers.  The next sections describe the categories and their corresponding frames 

in detail using examples from the data, followed by an expanded example showing the 

use of multiple frames within a single teacher’s interview. 

 Current mathematical performance category: Children’s thinking frame.  

This first category consisted of one frame, the children’s thinking frame, in which 

teachers highlighted the current mathematical details within a child’s strategy in their 

response. For example, during her interview, a teacher described the details of a child’s 

strategy for the problem: Bryan has 12 friends that shared 8 cakes equally. How much 

cake will each friend get?  Her comments focused on the strategy depicted in Figure 2.2 

in which the child drew 8 rectangles to represent the cakes, split each cake into twelfths, 

and numbered them 1–12 to indicate giving each friend one twelfth from each cake.  The 

child circled the “12” in each cake and then combined the one twelfth from each cake by 

repeatedly adding one twelfth eight times to get eight twelfths.  When asked about this 

strategy, the teacher shared these details by stating,  

 
He started with 12 friends up at the top and then drew 8 cakes. He knew to divide 
those cakes into 12 and numbered them 1, 2, 3, 4, 5 6, 7, 8, etc., and divided them 
into twelfths. He circled the twelfth piece on each [cake] and used repeated 
addition to get eight twelfths.  
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Figure 2.2. Children’s Thinking Frame Example: Student Response to the Problem of 12 
Children Sharing 8 Cakes. 

 
 

In this example, the teacher attended to the mathematically significant details of 

partitioning each item into the number of sharers (12), distributing the twelfths to each 

friend, and combining the unit fractions from different wholes to generate the final 

answer. A children’s thinking frame was central to the RTEM PD, so it was not 

surprising this frame was used by itself by 100% of the teachers.  

Non-mathematical performance category: Confidence and behavior frames. 

The second category, non-mathematical performance frames, included two frames in 

which teachers attended to the mathematical details of the child’s strategy but highlighted 

something other than the mathematical aspects of the child’s problem solving.  Non-

mathematical frames were sometimes used to emphasize the progress the child made in 

solving the problem despite certain issues or as a way of making excuses for what the 

child was unable to accomplish.   
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In the confidence frame, teachers attended to the details in a child’s strategy but 

highlighted the child’s mathematical confidence in relation to his or her strategy.  For 

example, a teacher was asked to describe the details of a child’s strategy for the problem 

in which 10 children were sharing 3 cakes (see Figure 2.3).  The child drew 3 rectangles 

and split each rectangle into tenths.  Then the child shaded one tenth from each rectangle 

and combined each one tenth to get three tenths.  This child used a strategy similar to the 

strategy described for the children’s thinking frame—the child partitioned the items into 

the number of sharers (in this case, 10) and then combined the unit fractions for the final 

answer.  However, this teacher’s observations had a different focus, such as when she 

noted, “At first they did nothing.  I had to walk them through the problem.  They have the 

knowledge to solve the problem, but [did] not have the confidence to do it on their own 

without assistance.”  In this excerpt, the teacher did not attend to the mathematical details 

of the child’s ideas but excused the child’s initial inability to solve the problem 

independently due to a lack of confidence.  The confidence frame was used by 25% of the 

teachers.  

 

 
 

Figure 2.3. Confidence Frame Example: Student Response to the Problem of 10 Children 
Sharing 3 Cakes.  
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The behavior frame was another non-mathematical frame in which teachers 

attended to the details in a child’s strategy but highlighted specific behaviors of the child 

in relation to his or her problem solving.  In these instances, teachers’ statements often 

suggested that a child’s behavior had a causal relationship to what was represented in the 

written work.  For example, for the problem in which 5 children were sharing 2 sticks of 

licorice, a child drew two rectangles for the sticks of licorice and 5 lines for the children 

(see Figure 2.4).  Then the child split each stick of licorice into fifths, and numbered each 

fifth 1–10, but no final answer was given.  A closer look into the child’s strategy 

indicated the lines and arrows were used to purposefully denote passing out to 2 one 

fifths to each child.  When asked to respond to the question, “What stood out to you in 

the child’s work?” the child’s teacher stated,  

 
I couldn't understand why [pause].  For the problem, … he had the drawing and 
he had it divided but he struggles a lot with attention and gets side tracked.  He 
had it all right there [referring to the drawing] and he had the pieces at the top.  
He didn't realize he missed the piece at the bottom.  

 
 

The teacher attributed the incomplete set of two fifths (four instead of five) in the child’s 

equation at the bottom of the page to his difficulty focusing on the problem.  Only two 

teachers used the behavior frame, but this frame was included because it speaks to ways 

others have found that teachers sometimes categorize students (Horn, 2007). 
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Figure 2.4. Behavior Frame Example: Student Response to the Problem of 10 Children 

Sharing 2 Pieces of Licorice. 
 
 
Mathematical performance comparison category: past performance, class 

performance, and broader scope frames.  This third category included three frames 

that underscored the comparison of the child’s current mathematical performance to the 

child’s performance in previous problems, the performance of others in the class on this 

problem or previous problems, or curricular or testing goals for that grade level.  

Teachers often explicitly expressed these frames in terms of comparison by discussing 

the child’s work in terms of its consistency with the teacher’s knowledge and experiences 

from previous involvement with that specific child, other children in the classroom, or 

curriculum or testing goals.   

 In the past performance frame, teachers attended to the details in a child’s 

strategy but highlighted how the child’s performance on the problem compared with prior 

work from that child and often mentioned typical strategies used by the child or his or her 

progress over time.  For example, for the problem involving 6 campers who wanted to 

share 2 pizzas equally, a teacher was asked to describe the details of a child’s strategy 
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(see Figure 2.5).  The child solved the problem using a valid strategy in which he drew 

two rectangles and split each rectangle into sixths, but this strategy was incomplete and 

this child did not have an answer written.  The teacher said, “He drew two rectangles and 

split each into 6 pieces, but no answer was written.  I was surprised because yesterday, he 

had an invalid strategy.  He might know more than I thought.”  These statements 

indicated the teacher originally anticipated the child would solve the problem using an 

invalid strategy based on their work from the previous day.  The teacher was surprised 

the child used a valid strategy and acknowledged a potential underestimation of the 

child’s understandings.  The past performance frame was used by 63% of the teachers. 

 

 
 
Figure 2.5. Past Performance Frame Example: Student Response to the Problem of 6 

Campers Sharing 2 Pizzas.  
 
 
 Related to the past performance frame was the class performance frame in which 

teachers attended to the mathematical details in a child’s strategy but highlighted how 

this child’s performance on the problem compared with the performance of the rest of the 

class on this problem or previous similar problems.  There were two versions of this 

frame, and each is illustrated below: (a) comparing the child’s performance to the 

performance of rest of the class or (b) comparing the child’s performance to the 

performance of individual students in the class by thinking about ways to create strategic 



 

 42 

pairings of this child with another child in the class so that they could learn from each 

other.   

In the first version of the class performance frame, teachers compared the child’s 

performance with the performance of rest of the class on that problem or previous similar 

problems.  For example, a child solved a problem about 20 cookies being shared by 8 

friends by drawing 20 tallies for each cake and 8 circles for the friends (see Figure 2.6).  

His answer was 2 4/8 which he indicated by circling two sets of 8 tallies (and putting 2 

tallies in each child’s circle) and drawing four circles for the remaining cookies, 

partitioning each into eighths, and numbering the eighths 1–8 to indicate distribution.  

When probed about the child’s understandings, the teacher stated, “He understands that if 

there are 20 [items], you have 2 groups of 8 with a remainder of 4.  He did the division 

problem in his head, while everyone else [in the class] first passed out wholes 

individually [one-by-one].  In some ways, he is more advanced than the others.”  She 

surmised that the child mentally knew that 20 cookies divided by 8 children would mean 

2 whole cookies per child with 4 cookies remaining without having to pass out cookies 

one by one.  Her assumption was likely based on the child’s circling of the two sets of 8 

tallies, and the possibility that the child’s partitioning of the 4 leftover cookies at the top 

of the page might have been his first written step when problem solving.  With this 

interpretation of the child’s strategy, the teacher used the details of the child’s strategy to 

compare his level of understanding to the majority of the class. 
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Figure 2.6. Class Performance Frame Example: Student Response to the Problem of 8 
Friends Sharing 20 Cookies. 

 
 
 In the second version of the class performance frame, teachers not only 

distinguished the child’s performance from others in the class but also considered the 

benefits of connecting children with different strategies.  Specifically, they considered 

how a child with a small group of their peers could either offer support to their peers or 

vice versa when sharing diverse strategies.  For example, in the problem in which 7 

cookies were shared by 3 friends a child drew 7 rectangles and split each one into halves 

(see Figure 2.7).  Then, the child numbered the halves 1–3 to distribute the halves, which 

left two remaining halves.  When asked about instructional next steps for the child, the 

teacher stated, 

 
I want her to explain her thinking to another student and compare it [her 
partitions] to another student to see how [the other student] partitioned differently 
[not using halves].  By pairing her up with another student, that could get her to 
see how to partition to be able to combine all the pieces.   
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Figure 2.7. Class Performance Frame Example: Student Response to the Problem of 3 

Friends Sharing 7 Cookies. 
 
 

In this example, the teacher wanted to group this child with another child in the class who 

had solved the problem correctly by partitioning in a way that did not leave any cookies 

unused.  The teacher considered the child’s partitioning into halves and how she would 

benefit from comparing her strategy with the strategy of another child who used a 

different strategy, with the goal of getting her to partition differently so that she could 

solve the problem correctly.  The class performance frame was used by 70% of the 

teachers. 

The third frame in the mathematical performance comparison category, the 

broader scope frame, drew on teachers’ expectations from goals that were beyond the 

performance of the specific children in the teachers’ class.  In this frame, teachers 

attended to the mathematical details in a child’s strategy but highlighted how a child’s 

performance on this problem compared with the broader curricular or testing goals for the 
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grade level.  For instance, in the problem of 10 people sharing 85 pounds to determine 

how many pounds each person would get, a child solved by writing a division problem 

(backwards) 10 ÷ 85 = 8 remainder 5.  The child stated in their explanation, they knew 

8/8 made a whole and that the remaining 5 was really 5/8 (see Figure 2.8).  

 

 
 
Figure 2.8. Class Performance Frame Example: Student Response to the Problem of 10 

People Sharing 85 Pounds. 
 
 

The teacher used a broader scope frame when asked to share next steps for this child.  

She responded, “I want [the class] to start notating their thinking more since on their 

[state standardized test] they have to write out everything.  They cannot draw to show 

their work.”  Here, the teacher framed her analysis to focus on the desired use of more 

notation for the child and the entire class based on her knowledge of testing expectations.  

The broader scope frame was used by 30% of the teachers.   

Extended example of frames in use.  When teachers talked about their students’ 

written work, they often used multiple frames or the same frames multiple times 

throughout the interview.  The following example shows the use of various frames in the 

interview with a teacher, Ms. Young, and written work from her student, Jordan.  Ms. 

Young posed the following problem to the class: 10 friends want to share 19 brownies 
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equally. How much brownie will each friend get?  Jordan solved the problem by drawing 

19 rectangles to represent the brownies (See Figure 2.9).  She numbered the first ten 

brownies 1–10 to give each friend one brownie.  Jordan then split the next five brownies 

into halves and gave one half to each friend, as indicated by the numbers 1–10 in each 

half.  Finally, Jordan split the remaining four brownies into fifths and gave each person 

one fifth of a brownie from every two brownies, as indicated by the numbers 1–10 in the 

fifths of the first two brownies and again in the second two brownies.  Thus, each friend 

should have received 1 whole brownie, 1/2 of a brownie, and 2/5 of a brownie, totaling 1 

9/10 brownies.  However, Jordan incorrectly combined her pieces to answer 1 7/10.  It is 

important to note that Jordan solved this problem using a valid strategy but had an 

incorrect answer given her error on the final step of combining the three different-sized 

pieces.  
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Figure 2.9. Jordan’s Strategy for the Problem of 10 Children Sharing 19 Brownies. 
 
 
Below is an excerpt from an interview about Jordan’s strategy in which multiple frames 

were used: 

 
Interviewer: What stood out to you about Jordan’s work? 
 
Ms. Young: Jordan’s answer did not match her work.  It’s okay, but she is just 
not confident in her work.  That is why she added them altogether.  However, the 
rest of the class did what I expected them to do.  Most of the class broke up the 
brownies into tenths, like I expected.  Jordan did not do what I expected her to do. 

 
 
First, Ms. Young observed the mathematically important detail that Jordan’s answer of 

1 7/10 did not match how she had assigned each child 1 whole brownie, 1/2 of a brownie, 

and 2 one fifths of a brownie.  Ms. Young was surprised that Jordan responded to the 
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problem incorrectly despite having a valid strategy.  She used the confidence frame as a 

rationale for Jordan’s mistake of adding the fraction pieces incorrectly.  According to Ms. 

Young, Jordan’s overall lack of confidence in her work was the reason for adding 

incorrectly.  She also compared Jordan’s work to the work of other students in the class, 

using the class performance frame, because unlike Jordan, most of the class had solved 

the problem in the way Ms. Young anticipated they would.  Ms. Young had an overall 

expectation that the class would solve the problem by partitioning all the brownies into 

the number of sharers (10) and Jordan did not partition as anticipated, which was a reason 

her work stood out. 

 Later in the interview, Ms. Young also used the past performance frame to 

discuss Jordan’s understandings: 

 
Interviewer: Based on Jordan’s work, what do you think she understands? 
 
Ms. Young: I think she can be flexible with her fractions.  It’s just interesting that 
she broke it up into halves first and then fifths.  Usually, she does division and 
writes out the answer (without drawing a picture), so I don’t know why she ended 
up drawing a picture today. 

 
 
Ms. Young started to describe the mathematically important details in Jordan’s strategy—

her process of partitioning the brownies into halves and fifths.  Then the conversation 

shifted and Ms. Young utilized the past performance frame to express how she expected 

Jordan to solve the problem with a more advanced strategy than using a picture because 

drawing a picture was not common for Jordan.  According to Ms. Young, Jordan 

typically solved these problems by writing a division equation and then the answer, but 

for this problem she drew a picture and used halves and fifths.  In sum, Ms. Young’s 
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interview reflected a use of three frames as she noticed Jordan’s mathematical thinking in 

her written work.  This extended example illustrates how teachers sometimes used 

multiple frames but it is important to mention that not all frames were used in every 

teacher’s interviews.  

Phase 1: Conclusion 

 In the first phase of my study, I explored the frames teachers used when noticing 

children’s mathematical thinking in written work from their own classrooms.  I 

hypothesized that since these 40 teachers participated in PD that emphasized a children’s 

thinking frame, they would use that particular frame in their interviews.  I was correct in 

my conjecture in that 100% of the teachers used the children’s thinking frame.  However, 

this phase uncovered the use of multiple frames in teachers’ noticing in addition to the 

children’s thinking frame.  Teachers not only highlighted the current mathematical details 

within the child’s strategy, but also used frames that focused on non-mathematical 

aspects of the child’s performance or drew comparisons between the child’s performance 

and the expected performance based on the child’s past performance, the performance of 

the rest of the class, or curricular or testing guidelines.  Thus, framing served as a useful 

construct for understanding the complexity of teachers’ noticing of children’s thinking in 

written work from their own classrooms.  

 In this first phase of my study, six frames emerged from teachers’ noticing of 

children’s mathematical thinking in one source of written work—teachers’ own 

classrooms—providing insight into my overall investigation of teacher noticing in written 

work from multiple sources.  The second phase of my study extended my understanding 
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of frames by considering teachers’ noticing of children’s thinking in written work from 

unfamiliar classrooms. 

 
Table 1.1 
 
Frames Used by Teachers While Engaging With Children’s Mathematical Thinking 
 
Category of 
Frames 

Frames Definition Example No. (%) of 
teachers 

using frame 
N = 40 

Current 
Mathematical 
Performance 

Children’s 
Thinking 

Teacher 
highlights the 
mathematical 
details within a 
child’s strategy. 

“He started with 12 
friends up at the top and 
then drew 8 cakes. He 
knew to divide those 
cakes into 12 and 
numbered them 1, 2, 3, 
4, 5 6, 7, 8, etc., and 
divided them into 
twelfths. He circled the 
twelfth piece on each 
[cake] and used repeated 
addition to get eight 
twelfths.”  (Figure 2.2) 
 

 40 (100%) 

Non-
Mathematical 
Performance 

Confidence Teacher attends 
to the 
mathematical 
details in a 
child’s strategy 
but highlights a 
child’s 
confidence 
related to his or 
her problem-
solving 
performance. 
 

“At first they did 
nothing.  I had to walk 
them through the 
problem.  They have the 
knowledge to solve the 
problem, but [did] not 
have the confidence to 
do it on their own 
without assistance.”  
(Figure 2.3) 
 

10 (25%) 
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Category of 
Frames 

Frames Definition Example No. (%) of 
teachers 

using frame 
N = 40 

 Behavior Teacher attends 
to the 
mathematical 
details in a 
child’s strategy 
but highlights a 
child’s behavior 
related to his or 
her problem-
solving 
performance. 

“I couldn't understand 
why [pause].  For the 
problem, … he had the 
drawing and he had it 
divided but he struggles 
a lot with attention and 
gets side tracked.  He 
had it all right there 
[referring to the 
drawing] and he had the 
pieces at the top.  He 
didn't realize he missed 
the piece at the bottom.”  
(Figure 2.4) 

2 (5%) 

Mathematical 
Performance 
Comparisons 

Past 
Performance 

Teacher attends 
to the 
mathematical 
details in a 
child’ s strategy 
but highlights 
how the child’s 
performance on 
this problem 
compares with 
his or her prior 
work.  

“He drew two rectangles 
and split each into 6 
pieces, but no answer 
was written.  I was 
surprised because 
yesterday, he had an 
invalid strategy.  He 
might know more than I 
thought.”  (Figure 2.5) 
 

25 (63%) 

 Class 
Performance 

Teacher attends 
to the 
mathematical 
details in a 
child’s strategy 
but highlights 
how the child’s 
performance  
compares with 
the performance 
of the rest of the 
class on this 
problem or 
previous similar 
problems. 

“He understands that if 
there are 20 [items], you 
have 2 groups of 8 with 
a remainder of 4.  He did 
the division problem in 
his head, while everyone 
else [in the class] first 
passed out wholes 
individually [one-by-
one].  In some ways, he 
is more advanced than 
the others.”  (Figure 2.6) 
 
“I want her to explain 
her thinking to another 

28 (70%) 
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Category of 
Frames 

Frames Definition Example No. (%) of 
teachers 

using frame 
N = 40 

 student and compare it 
[her partitions] to 
another student to see 
how [the other student] 
partitioned differently 
[not using halves].  By 
pairing her up with 
another student, that 
could get her to see how 
to partition to be able to 
combine all the pieces.”  
(Figure 2.7) 
 

 Broader 
Scope 

Teacher attends 
to the 
mathematical 
details in a 
child’s strategy 
but highlights 
how the child’s 
performance 
compares with 
the broader 
curriculum or 
testing goals for 
the grade level. 

“I want [the class] to 
start notating their 
thinking more since on 
their [state standardized 
test] they have to write 
out everything.  They 
cannot draw to show 
their work.”  (Figure 
2.8) 
 

12 (30%) 



 

 53 

CHAPTER IV 
 

PHASE 2: PD CONVERSATIONS 
 
 

In Phase 2 of the study, I extended my understanding of individual teachers’ use 

of frames as they noticed children’s mathematical thinking in written work from their 

own classrooms to explore the range of frames used when small groups of teachers 

worked together in PD to notice children’s mathematical thinking in written work from 

unfamiliar classrooms.  In this phase, I specifically addressed the following question: 

What frames do teachers use when noticing children’s mathematical thinking in written 

work from unfamiliar classrooms? 

Methods of Phase 2: PD Conversations 

In this phase, I again drew on existing data from the RTEM project, and to 

facilitate connections with Phase 1, I kept the focus on equal sharing problems.  I chose 

to investigate video-recorded PD conversations of small groups of teachers who were 

asked to examine equal sharing strategies in written work that was strategically selected 

by the facilitator and drawn from classrooms unfamiliar to teachers.  I chose to include 

only the conversations for which I had a video because video was needed to understand 

how teachers were interacting with the specific features of the written work 

(e.g., representations, partitions, distributions, etc.). 
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 Participants.  Phase 2 of the study involved criterion sampling (Patton, 2002) of 

a subset of teachers from the RTEM study.  The criterion used for selection was any 

teacher who participated in the video-recorded PD conversations selected for analysis.  

Participants in Phase 2 consisted of 37 teachers (34 females and 3 males) including 17 

third grade teachers, 9 fourth-grade teachers, 9 fifth grade teacher, 1 second-third grades 

teacher, and 1 fourth-fifth grades teacher.  These teachers were distributed across the 3 

school districts and reflected a range in overall years of teaching experience (1–32 years, 

M = 7 years) and years of teaching experience specific to grades 3–5 (0–17 years, M = 4 

years).  Participants were drawn from all three cohorts, and because all the PD 

conversations selected occurred during the first year of the PD, participants were early in 

their learning about children’s fraction thinking.  However, about one third had 

previously participated in CGI PD on children’s mathematical thinking with whole 

numbers.  Note that there was some overlap of participants with Phase 1 in that 18 

teachers participated in both phases.  

Data source.  Data in the second phase were drawn from existing data collected 

as part of the RTEM study data-collection process and included 5 PD activities totaling 

17 video-recorded conversations of small groups of 2–4 teachers engaging with written 

work from unfamiliar classrooms (See Table 2.1 for an overview of the 5 activities).  

These PD conversations ranged in duration (11–35 minutes, M = 21 minutes) and in the 

activity directions.  Sometimes teachers were asked to look through sets of written work 

to sort strategies based on similar features and then either order them regarding levels of 

sophistication or generate follow-up questions to pose to the authors of the written work.  
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Other times, prompts called for teachers to categorize strategies based on a specific 

framework of children's fraction thinking used throughout the PD (Empson & Levi, 

2011).   

Similar to the Phase 1 interviews, the PD conversations in Phase 2 provided a 

general sense of teachers' noticing of children's mathematical thinking in equal sharing 

problems.  However, during Phase 2, teachers noticed children's mathematical thinking in 

small groups using a set of written work from unfamiliar classrooms in contrast to 

noticing an individual child’s thinking in one piece of written work from their own 

classes in Phase 1. 

 
Table 2.1 
 
Activity Overview of PD Conversations 

PD 
Activity 

Number of PD 
Activities (N=17) 

Activity  
Instruction 

Problem Cohort 

1 2 Sort written work 
and pose questions 

6 children sharing 
14 brownies  

1 

     
2 3 Categorize strategies 

based on the equal 
sharing framework 
 

6 children sharing 
10 sandwiches  
 
 

2 
 
 
 

3 4 Sort written work 
and order in terms of 
levels of 
sophistication 
 

6 children sharing 
16 brownies 

2 

4 4 Categorize strategies 
based on the equal 
sharing framework 
 

4 children sharing 
15 sandwiches  

2 

5 4 Sort written work 
and order in terms of 
levels of 
sophistication 

6 children sharing 
16 brownies 

3 
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Data analysis.  Analysis of PD conversations occurred in three stages.  In the first 

stage, conversations for each episode were divided into idea units that captured when a 

single topic was discussed by a group of teachers (Jacobs & Morita, 2002).  During the 

second stage, the teachers’ focus for each idea unit was determined for coding—the child, 

the child within the class, or beyond the child and the class.  In this stage, the six frames 

from Phase 1—children’s thinking, confidence, behavior, past performance, class 

performance, and broader scope—were applied in the coding of each idea unit.  

Although those frames served as a basis for the analysis, opportunities were available for 

additional frames to surface from the data.  In the final stage, I noted the prevalence of 

the six frames, identifying whether or not each small group had used the frame at least 

once. 

Phase 2: Results 

 The primary goal of the analysis of the PD conversations was to confirm the 

presence of the existing frames identified in Phase 1, enhance my understanding of these 

frames, and provide a chance for the emergence of new frames.  No additional frames 

were identified, and I found that some but not all of the six frames used in individual 

teachers' noticing of children's mathematical thinking in written work from their own 

classrooms applied during small group conversations of teachers' noticing in written work 

from unfamiliar classrooms.  Overall, there was generally less use of frames in the PD 

conversations which were relatively short and did not include any follow-up questions.  

Further, of the six previously identified frames, three persisted (children’s thinking, class 

performance, and broader scope) and three were absent (confidence, behavior, and past 
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performance).  See Table 2.2 for a summary of the prevalence of frames across PD 

conversations. 

 
Table 2.2 
 
Prevalence of Frames in PD Conversations 

Frames  No. (%)  
PD Conversations  

(N = 17) 
Current Mathematical Performance  
    Children’s Thinking  17 (100%) 

 
Non-Mathematical Performance 

 

    Confidence 0% 
    Behavior 0% 

 
Mathematical Performance Comparison 

 

    Past Performance 0% 
    Class Performance 3 (18%) 
    Broader Scope 3 (18%) 

 
 
 This pattern also helped me understand important distinctions between the ways 

teachers engaged with the different frames.  Specifically, the children’s thinking frame 

drew upon teachers’ engagement with the written work being discussed.  The class 

performance and broader scope frames drew upon teachers’ prior experiences as upper 

elementary school teachers and, in particular, their work with students on equal sharing 

problems and mathematics standards.  The confidence, behavior, and past performance 

frames require teachers’ ability to apply insider knowledge based on their experiences 

with a specific child—therefore, it is not surprising that these three frames were evident 

in Phase 1 data when the written work was from teachers’ classrooms and were not 

evident in Phase 2 when the written work was from children unfamiliar to the teachers.  
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In the sections that follow, I provide examples of each of the frames that were used in 

Phase 2, highlighting ways in which my understanding of the frames was elaborated 

Children’s thinking frame.  Teachers’ use of the children’s thinking frame in 

100% of the conversations was expected because within the PD, teachers were given 

multiple opportunities to notice children’s mathematical thinking in equal sharing 

problems, often using the equal sharing framework as a tool for making sense of 

children’s equal sharing strategies.  Further, because teachers did not know the child or 

children authoring the written work, a focus on things related to the PD content was 

likely.   

In the following example, I provide a glimpse of what group conversations looked 

like when focused on children’s thinking.  Teachers were asked to categorize strategies 

according to the equal sharing framework for the problem: Subway provided 10 

sandwiches for a child’s birthday party.  If there were 6 guests at the party, how much 

sandwich would each guest get?  Below is an excerpt from a transcript of a group’s 

discussion about Max's strategy (see Figure 3.1) in which the children's thinking frame is 

used. 

 
T1: So, the first six squares are the six--. 
 
T2: --these are the guests.  So, he knew that everyone gets one whole and then 

knew— 
 
T1: And then he cut those four sandwiches left over there. 
 
T2: but he has this last one circled (pause) 
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T1: Yeah because you can have six halves to give to each guest and then you have 
that one whole left over. He didn’t even use the last one. So he is non-
anticipatory because he halved the remaining [sandwiches] and just went to 
halving. 

 
T2: Yeah and he did nothing with that last sandwich. 

 
 

 
 
Figure 3.1. Max’s Strategy for the Subway Problem of 6 Guests Sharing 10 Sandwiches. 
 
 

In this discussion of Max’s strategy, teachers used the children’s thinking frame 

by focusing on the details of his strategy. Teachers noted that the six rectangles on the 

left of the paper were the guests, and the four rectangles on the right of the paper 

represented the sandwiches.  Likewise, they recognized Max knew that each person 

would get a whole sandwich, even though this distribution was not indicated in his 

picture.  Teachers further noted that Max partitioned the remaining rectangles into halves, 

passed out a half to each guest, and had a whole left over.  Teachers said Max's strategy 

was non-anticipatory—a categorization linked to the equal sharing strategy framework 

used in the PD (Empson & Levi, 2011)—because his drawing indicated there was no 

coordination in the initial partitions between the amount being shared and the number of 

sharers (in this case, 6).  Overall, the teachers' conversation about Max's strategy was 

very focused on the details within his strategy. 
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Class performance frame.  Similar to teachers’ use of the class performance 

frame in the Phase 1, teachers attended to the mathematical details in a child’s strategy 

but highlighted the connections to their own classrooms.  Specifically, even though the 

written work came from unfamiliar classrooms, the teachers envisioned themselves as 

each child’s classroom teacher and compared the unfamiliar child's thinking represented 

in the written work to children’s thinking in their own classrooms and even considered 

the ways that they would engage with children in their classrooms.  

In the following example of a PD conversation, teachers were asked to look 

through a set of written work for the following problem: Subway provided 15 sandwiches 

for a child’s birthday party. If there were 4 guests at the party, how much sandwich 

would each guest get? The teachers were focused on Eric’s strategy (Figure 3.2) in which 

he drew 15 circles to represent the sandwiches.  He knew that since there were 4 guests 

each person could get 3 sandwiches [denoted by 4 x 3 = 12], so he circled 3 sandwiches 

and distributed each set of 3 to a guest.  There were 3 sandwiches remaining, and he split 

two sandwiches into halves and one into fourths.  Eric passed out each fractional amount 

(one half and one fourth) to each guest, but his final answer was “5 sandwiches.”   
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Figure 3.2. Eric’s Strategy for the Subway Problem of 4 Guests Sharing 15 Sandwiches. 
 
 

During the conversation around Eric's strategy, teachers discussed that Eric shared 

the sandwiches equally with the 4 guests but they were concerned about how he 

partitioned the remaining 3 sandwiches into different fractional quantities and that each 

guest received 5 sandwiches.  Next, the conversation shifted to focus on ways the 

teachers have dealt with similar strategies in their own classes by encouraging students to 

consider using different representations, such as changing the representation from circles 

to rectangles.  Applying these previous teaching experiences to Eric’s strategy, teachers 

discussed how using rectangles for sandwiches, would have potentially helped Eric 

partition the remaining sandwiches based on the number of sharers (fourths instead of 

halves and fourths) thereby eliminating a need to add fractions with unlike denominators.  

This example illustrates the use of the class performance frame because when teachers 

attended to Eric’s partitioning of the three remaining brownies into different fractional 

amounts, not only did the teachers compare Eric's strategy to strategies used by other 
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students in their classrooms, but also they chose to support Eric similarly to how they 

would help their students.  

Broader scope frame.  The broader scope frame was used similarly to Phase 1, 

in that teachers attended to the mathematical details in a child’s strategy but highlighted 

how the child’s performance compared to teachers’ experiences with curricular or testing 

goals of the assumed grade level of the student.  Throughout the PD, teachers engaged 

with written work from grades 3–5 and sometimes the grade level was noted on the 

written work and other times it was not mentioned.  Sometimes when the grade level was 

not mentioned, teachers would assume the grade of the child was their grade level.  In the 

following example, the teachers discussed Julia’s strategy (see Figure 3.3) for the 

following problem: Subway provided 10 sandwiches for a child’s birthday party.  If there 

were 6 guests at the party, how much sandwich would each guest get?  Julia knew that 

each guest would get 1 sandwich, which would use 6 sandwiches and leave 4 remaining.  

Next Julia divided the 4 sandwiches among the 6 guests, mentally, by dividing 4 by 6 

thereby giving each person 4/6 for an answer of 1 4/6 sandwiches per guest.  

 

 
 
Figure 3.3. Julia’s Strategy for the Subway Problem of 6 Guests Sharing 10 Sandwiches. 
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At the time of the conversation, teachers were using the Common Core State 

Standards for Mathematics (National Governors Association, 2010) to guide instruction, 

and one of the standards for fractions in fifth grade called for students to interpret a 

fraction as division of the numerator by the denominator (a/b = a ÷ b).  For example, 

children can interpret 3/4 as the result of dividing 3 by 4 when 3 wholes are shared 

equally among 4 people. One group of teachers referenced these standards in their 

discussion of the details of Julia’s strategy.  For example, a fourth grade teacher focused 

on Julia’s partitioning of the 4 remaining sandwiches and the equation 4 ÷ 6 = 4 6⁄ .  This 

teacher mentioned Julia’s equation could easily be a learned strategy and that Julia may 

not know what the quantity 4/6 meant.  In disagreement with this teacher's conjecture, a 

fifth-grade teacher compared Julia's strategy to the above standard for her fifth-graders 

and shared that Julia could understand the quantity based on this teacher’s experiences 

addressing this mathematics standard with equal sharing problems in her own classroom.  

She specifically argued that it was possible that after Julia passed out one whole 

sandwich to 6 kids leaving 4 leftovers, she knew that she could divide the remaining 

sandwiches by the number of kids to get 4/6.  This example was considered a use of the 

broader scope frame because the fifth-grade teacher used her previous experiences with a 

particular standard to support the claim that Julia may have an understanding of the 

quantity 4/6 instead of it being a learned strategy.  

Phase 2: Conclusion 

 In Phase 2, I extended my understanding of individual teachers’ use of frames 

when noticing children’s mathematical thinking in written work from their own 
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classrooms to written work from unfamiliar classrooms.  Of the six frames previously 

identified, half were never used (i.e., confidence, behavior, and past performance), and 

this absence was understandable given that these frames are more closely linked to 

teachers' insider knowledge of their own students.  Teachers do not have this type of 

insider knowledge for students unfamiliar to them.  Of the three frames that were used, 

the children’s thinking frame was used similarly and just as extensively as by teachers in 

Phase 1.  The teachers’ use of the class performance and broader scope frames showed 

similarities as well, but their use of the class performance frame with unfamiliar work 

highlighted the role that teachers’ prior experiences play in their noticing.  Similar to 

teachers’ use of the class performance frame in the previous phase, teachers compared 

the child’s performance to the performance of the rest of the class.  The difference was that in 

some uses of the class performance frame, teachers explicitly envisioned themselves as the 

classroom teacher of the student even though the written work was from an unfamiliar 

classroom, and they responded in the same ways they would if the written work were 

from their own classrooms.  The teachers' way of envisioning themselves as the 

classroom teacher and engaging with the written work as such, caused me to wonder 

whether an “imagined” insider knowledge in the three frames that teachers did not use in 

this phase could also play a role in the teachers' noticing of children's mathematical 

thinking in written work from unfamiliar classrooms.   

 Phase 1 and Phase 2 investigated the frames teachers used when noticing 

children’s mathematical thinking in written work.  In Phase 1, individual teachers were 

asked to notice children’s mathematical thinking in written work for a range of equal 
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sharing problems from teachers’ own classrooms.  In Phase 2, small groups of teachers 

were asked to notice children’s mathematical thinking in written work for a variety of 

equal sharing problems from unfamiliar classrooms.  In the next phase of my study, I 

explored the relationship between the quality of six teachers’ noticing and their use of 

frames during in-depth interviews in which they were asked to notice children’s 

mathematical thinking in written work for the same equal sharing problem from their 

own classrooms and unfamiliar classrooms. 
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CHAPTER V 
 

PHASE 3: NOTICING INTERVIEWS 
 
 

In Phase 1 and Phase 2, I used existing data from the RTEM project to explore the 

frames teachers used when noticing children’s mathematical thinking in written work 

from two sources—teachers’ own classrooms and unfamiliar classrooms.  In both phases, 

teachers broadly engaged with the three interrelated skills of noticing children’s 

mathematical thinking across a variety of equal sharing problems, but follow-up 

questions to explore these three noticing skills and teachers’ use of frames were minimal 

or non-existent.  In Phase 3, I built on what was learned in the earlier phases to collect 

and analyze a new set of data to investigate how the same teacher noticed children’s 

mathematical thinking in written work from the two sources—her own classroom and an 

unfamiliar classroom.  Phase 3 kept the focus on equal sharing problems but explicitly 

addressed the three component skills of noticing in a setting that allowed for follow-up 

questions.  This additional probing allowed me to track the frames each teacher used and 

the quality of each component skill of noticing with the two sources.  Overall, the goal of 

Phase 3 was to begin to identify the relationship between teachers’ use of frames and 

their noticing quality, with special attention to the role that the source of the written work 

might play.  In the following sections, I will share the methods and findings of Phase 3 in 

which I specifically explored the following three research questions:
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(1) What frames do individual teachers use when noticing children’s 

mathematical thinking in written work from their own and unfamiliar 

classrooms? 

(2) What is the quality of individual teachers’ noticing when noticing children’s 

mathematical thinking in written work from their own and unfamiliar 

classrooms? 

(3) What is the relationship between teachers’ use of frames and the quality of 

their noticing? 

 
Methods of Phase 3: Noticing Interviews  

In Phase 3, I interviewed six teachers to investigate how the same teacher noticed 

children’s mathematical thinking in written work from different sources but involving the 

same story problem.  Thus, teachers were interviewed twice using written work linked to 

the following fraction story problem:   

The baker has 10 small cakes to share equally among 6 children.  How 

much cake does each child get? 

One interview focused on written work from teachers’ own classrooms and the other on a 

common set of written work from a classroom unfamiliar to the teachers.  

 Participants.  I worked with 6 teachers from District C in a single RTEM cohort 

at the end of their third (final) year of the PD (See Table 3.1).  I used homogenous 

sampling—a type of purposeful sampling used to describe a particular subgroup in depth 

and reduce variation, thus resulting in participants that have a shared set of characteristics 

(Creswell, 2013; Teddlie, 2007).  Specifically, I held the teachers’ district, cohort, and 
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number of years of PD constant.  I wanted to hold these factors constant to facilitate 

comparison across the six teachers given my expectation that contextual factors 

(e.g., instructional policies, adopted textbooks, curriculum pacing, PD support, etc.) could 

shape the frames teachers used when noticing children’s mathematical thinking and 

potentially the quality of their noticing. 

 
Table 3.1 
 
Phase 3 Participant Teaching Experience 

 T1 T2 T3 T4 T5 T6 
Current Grade 
Level 

3rd 4th 3rd 4th 4th 4th 

Years of teaching       
      Total 9 6 5 15 8 20 
           K–2 0 0 0 5 0 12 
           3–5 9 6 5 10 8 8 
       
     Current school 9 6 5 9 8 5 
     District C 9 6 5 10 8 5 

 
 

I selected teachers from District C because this district was in the early stages of 

embracing a vision of mathematics instruction that is responsive to children’s thinking, 

and thus district philosophies and resources were still emerging, providing fertile ground 

for frames that could compete with a children’s thinking frame (See Figure 2.1 for the 

demographic data of District C.).  All teachers (N=8) from District C in Cohort 3 were 

invited to participate, but 2 teachers were unavailable due to scheduling conflicts 

(e.g., district-wide science professional development at grade 5).  The 6 participating 

teachers were female and included 2 third grade and 4 fourth grade teachers.  

Participating teachers ranged in years of teaching experience (5–20 years, M = 11 years) 
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with the majority of those years in grades 3–5.  Most of their teaching experiences in 

grades 3–5 were at their current schools in District C. 

Data sources.  Data in Phase 3 included two video-recorded semi-structured 

interviews of each teacher engaged in noticing children’s mathematical thinking in 

written work from teachers’ own classrooms and unfamiliar classrooms, totaling 12 

interviews.  The first six interviews involved a common set of written work (researcher-

selected) from students unfamiliar to the teachers, and interviews lasted from 29–53 

minutes.  The second six interviews involved written work from teachers’ own 

classrooms, and interviews lasted from 32–43 minutes.  Interviews took place after 

school or on the weekend, and each teacher's two interviews took place within a week of 

each other.  I purposefully sequenced the interviews in this order because I conjectured 

that the quality of teachers’ noticing of children’s mathematical thinking would be 

stronger in written work from unfamiliar classrooms.  When teachers do not know the 

child, they may be more likely to focus solely on the current mathematical details within 

the child’s strategy rather than use their insider knowledge of that child, which can be 

faulty and compete with the mathematical understanding reflected in the child’s current 

strategy.  The next sections describe the protocol for both noticing interviews followed by 

the process for selecting written work for each interview. 

Protocol for both noticing interviews.  Teachers were shown four pieces of 

written work and asked to respond orally to prompts linked to the three component skills 

of noticing: attending, interpreting and deciding how to respond to children’s 

mathematical thinking.  I used two prompts for the component skill of deciding how to 
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respond: (a) deciding how to respond with a follow-up problem and (b) deciding how to 

respond in a one-on-one conversation with one of the students (see Appendix A).  In 

addition to providing noticing prompts, I listened to the teachers’ responses and posed 

follow-up questions as general questions, probes for frames, and probes for rationales 

linked to specific noticing skills.  Note that I never explicitly mentioned the frames by 

names and instead chose to follow-up on teachers’ comments that spontaneously invoked 

the use of frames.  

Noticing interview 1: Selection of written work from unfamiliar classrooms.  I 

selected four pieces of written work from unfamiliar classrooms for the cake problem 

(see Appendix B, and all strategies were given female names to reduce any gender biases 

related to children’s levels of understanding associated by gender (Leyva, 2017).  In a 

review of research on gender in mathematics education, Leyva  noted findings from 

studies that reported teachers’ use of a deficit view of female students’ understandings 

related to mathematics tasks in comparison to males in their classrooms.  All of the 

strategies selected were valid, in that the correct answer could be derived from the 

strategy, and each used some form of fraction notation.  In addition, my selection criteria 

ensured that the set of strategies:  (a) reflected a range of children’s understandings 

(Empson & Levi, 2011), (b) demonstrated complexity in the overall representation, and 

(c) included a range of strategy features for which teachers’ perspectives on the 

desirability of these features have been shown to be inconsistent with the research on 

children’s thinking (Jessup, Hewitt, Jacobs, & Empson, 2015).  Each of these three 

criteria are elaborated in the following sections. 
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Range of children’s understandings.  I wanted to ensure that the set of strategies 

reflected the range of levels of understanding depicted in the equal sharing framework 

used in the PD (Empson and Levi, 2011).  This framework described three categories of 

strategies based, in part, on the ways children did or did not coordinate their partitions 

with the number of sharers, and these categories were ordered to reflect increasing levels 

of understanding of fractions: non-anticipatory direct modeling, emergent anticipatory 

direct modeling, and anticipatory.  The four pieces of written work reflected each of the 

three categories, with two examples of the category reflecting the least amount of 

understanding, one example in the middle category, and one example reflecting the most 

amount of understanding.  In the following sections, I describe the four pieces of written 

work and use them to define and illustrate the three strategy categories. 

First, Alicia's strategy (see Figure 4.1) shows the least amount of understanding of 

fractions and is considered a non-anticipatory direct modeling strategy because she 

represented every quantity and every share in the problem and did not coordinate the 

amount being shared and the number of sharers at the start of the strategy.  Specifically, 

Alicia drew 10 big circles to represent the 10 cakes and then 6 smaller circles to represent 

the 6 children.  The 10 cakes showed evidence of erasures, suggesting that Alicia may 

have initially partitioned everything in thirds, erased her work (probably because that 

partitioning did not yield an even number of pieces for the 6 children), and then 

partitioned everything in fourths.  After Alicia distributed 6 fourths to each child (by 

numbering each fourth 1–6), she erased the fourth partitions in the last circle, and instead 

partitioned the circle based on the number of sharers (6).  She also indicated that she gave 
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each person one sixth by numbering each sixth 1–6.  For her final answer, Alicia stated 

each person received 6/4 and 1/8 of the cakes.  She likely counted the number of one 

fourths that each person received to arrive at the answer of 6/4, but her answer of 1/8 is 

more puzzling.  The 1/8 likely came from the last circle that was cut into sixths instead of 

eighths, perhaps indicating that she was unsure how to label the one sixth pieces.  

 

 
 
Figure 4.1. Alicia’s Non-Anticipatory Direct Modeling Strategy for the Problem of 6 

Children Sharing 10 Small Cakes. 
 
 
Second, Emily’s strategy (see Figure 4.2) is also considered non-anticipatory direct 

modeling.  Specifically, Emily represented her 10 cakes as circles and her 6 people as 

stick figures and distributed a whole cake to each child by drawing lines from each cake 

to a child, and then marked out that cake.  At the bottom of the page, she also drew three 

circles, each with a person inside, and kept a running total of the quantities distributed to 

that person in the circle.  At this point, she included a 1 (for 1 whole cake) in each circle.  

Emily then split the 4 remaining cakes into halves and re-drew these quantities as eight 

separate halves, labeling that portion of the drawing as “8 halves.”  Next, Emily 

distributed a half to each child and indicated this distribution by drawing a line from each 
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half to one child’s circle and writing “1/2” in that circle to represent how much that child 

received.  She crossed out the six halves that she had used in that distribution and re-drew 

the remaining two halves as 6 sixths, essentially splitting each half into three pieces.  

Each sixth was again distributed with the distribution indicated by lines from each piece 

to the child’s circle and the amount (this time, “1/6) written in that child’s circle. Emily 

did not provide a final answer, but based on the amounts indicated in each circle, each 

child received 1 whole, 1/2 and 1/6. 

 

 
 
Figure 4.2. Emily’s Non-Anticipatory Direct Modeling Strategy for the Problem of 6 

Children Sharing 10 Small Cakes. 
 
 

Third, Katie’s strategy (see Figure 4.3) shows the next highest level of 

understanding of fractions and is considered an emergent anticipatory direct modeling 

strategy because she again represented every quantity and every share in the problem, but 

this time, her partitions showed that she coordinated the shared items and number of 

sharers from the beginning of her strategy.  Specifically, Katie represented her cakes by 
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drawing ten rectangles and children using six stick figures.  She coordinated the number 

of sharers by grouping two cakes to share among six children.  Therefore, she partitioned 

each cake into thirds, allowing each child to receive one third of a cake for every two 

cakes.  Katie distributed 5 one thirds to each child by repeatedly numbering the pieces 1–

6, which indicated which piece went to each of the 6 children.  Katie’s final answer 

indicated that each kid received 1 2/3 cakes, but it is unclear how Katie grouped her 5 one 

thirds to get 1 whole and 2 thirds.   

 

 
 
Figure 4.3. Katie’s Emergent Anticipatory Direct Modeling Strategy for the Problem of 6 

Children Sharing 10 Small Cakes. 
 
 

Fourth, Monica’s strategy (see Figure 4.4) shows the most amount of 

understanding of fractions and is considered an anticipatory strategy because she 

mentally coordinated the amount being shared and the number of sharers.  Specifically, 

Monica was able to mentally coordinate 10 cakes being shared by 6 children and 

determine that each child would receive 10/6 cakes.  She worked exclusively with 

symbols, without needing to represent the cakes and children.  It is unclear whether 

Monica began with the 10/6 or the equation, but either way, she knew that this problem 
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could be solved by division.  Monica wrote the equation 10 ÷ 6 to represent the 10 cakes 

shared among 6 children, and she demonstrated her understanding of the quantities by 

writing “cakes” under 10, “divided among” under the division symbol, and “children” 

under the 6.  Monica knew that 10 ÷ 6 was 10/6 and that 10/6 was the same as 1 4/6, but 

it is unclear how she knew the equivalence relationship between 10/6 and 1 4/6. 

 

 
 
Figure 4.4. Monica’s Anticipatory Strategy for the Problem of 6 Children Sharing 10 

Small Cakes. 
 
 

Complexity in the overall representation.  I selected written work that 

demonstrated complexity in the overall representation—giving teachers much to notice.  I 

looked for representations that were messy, such as the use of several lines or arrows 

showing distributions or had erasures showing multiple attempts (e.g., Alicia’s strategy).  

Additionally, I considered representations that included multiple parts or multiple types 

of partitions (e.g., Emily’s strategy).  Lastly, I selected written work that included 

nonconventional fraction notation or pictures (e.g., Emily’s strategy).  

Range of controversial strategy features.  I selected written work that included a 

range of strategy features for which teachers’ perspectives on the desirability of these 

features have been shown to be inconsistent with the research on children’s thinking. 
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Jessup and colleagues (2015) studied teachers in their first year of the RTEM PD and 

captured their initial perspectives on desirable strategy features for children’s work on 

equal sharing problems prior to learning about the corresponding research.  Findings 

identified five strategy features teachers preferred and often used as their rationale for 

indicating why a particular strategy was more sophisticated than another: (a) leftover 

items were partitioned; (b) fraction notation was predominantly used (vs. drawing); 

(c) whole items were distributed prior to any partitioning; (d) the largest possible 

partitions were used; and (e) the answer was in the form of a mixed number (vs. an 

improper fraction or non-conventional notation).  The first two perspectives were 

consistent with research on children's fraction thinking, whereas the last three 

perspectives were not.  I was particularly interested in selecting written work that 

provided an opportunity for teachers to use these inconsistent perspectives.  Specifically, 

I chose a problem in which there were more items than the number of sharers so that 

teachers had an opportunity to consider whether children had distributed whole items.  

Second, so teachers had an opportunity to consider whether children had used the largest 

partition, I chose a set of strategies in which multiple sized partitions were visible—

across the four strategies, there was a range of initial partitions (e.g., halves, thirds, and 

fourths) and some strategies that used multiple partitions.  Third, I selected strategies that 

were all valid but had different forms of the answer.  There was one incorrect answer and 

three correct answers in different forms (i.e., mixed number, improper fraction, and non-

conventional [Emily’s specification of the pieces 1, 1/2, 1/6 rather than a combined 

amount]) so that teachers had an opportunity to compare them.   
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 Noticing interview 2: Selection of written work from teachers’ own classrooms.  

Immediately following the first noticing interview, teachers were given copies of the 

same cake problem to pose to their classes.  Teachers were asked to pose the problem to 

their class on the same day as their second noticing interview, which occurred within a 

week of their first interview.  Teachers were encouraged to integrate the problem into 

their mathematics class in a way that was typical for their problem-solving lessons, and 

no additional preparation was needed before posing the problem.  I attempted to reduce 

chances for teachers to review the written work before the noticing interview by 

collecting the work at the end of the teachers’ designated mathematics lesson in which 

they posed the problem.   

In preparation for each teacher’s noticing interview involving written work from 

their own classrooms, I needed to select four pieces to discuss from her class set of 

written work.  Therefore, between the mathematics lesson and the interview, I analyzed 

the class set and selected four pieces that matched as closely as possible the criteria I used 

for written work from unfamiliar classrooms.  First, I tried to select strategies that 

captured a range of understandings based on the equal sharing framework.  When 

possible, I included one strategy from each equal sharing strategy category to reflect a 

similar range of understandings reflected in written work from unfamiliar classrooms.  

Second, I attempted to mirror similar complexities found in the first set of written work in 

terms of the overall complexity of the representations.  I tried to select representations 

that were messy, showed potential erasures, included multiple parts or multiple types of 

partitions, or used nonconventional fraction notation or pictures.  Third, I tried to select 
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strategies that included features for which teachers’ perspectives on the desirability of 

these features have been shown to be inconsistent with the research on children’s 

thinking.  In addition to the criteria used when selecting work from unfamiliar 

classrooms, I also considered the ratio of male and female students in the overall 

selection of strategies to make sure both genders were included.  I tried to pay close 

attention so that within a set of written work there was not a dominance of one gender 

showing the most understanding or the least understanding, when possible. 

 In my selection of the written work, I followed a process which began by looking 

through a teacher’s entire set of written work and sorting strategies based on the use of 

pictures.  Strategies were then organized into two main stacks; (1) strategies that used 

pictures or (2) strategies in which the child partitioned mentally or symbolically without 

representing items.  Within the stack of strategies using pictures, I sorted strategies based 

on how they partitioned (e.g., halves, thirds, fourths, and others).  Across the set of 

strategies using pictures, I kept track of strategies that used a picture only, fraction words, 

fraction notation only, or a mix of pictures, fraction words, and fraction notation.  In the 

stack of strategies that reflected mental partitioning without representing items, I sorted 

strategies according to the use of equations.  Strategies were grouped according to no 

equation used (answer only), use of addition equation only, or use of an equation that 

combined addition and multiplication.  Across both main stacks of strategies, I noted if 

there was an error in the strategy reasoning, an incorrect answer with a valid strategy, or 

if the strategy was unique in relation to the rest of class.  Once the set of written work 

was sorted, I used the three main criteria described above to select the four strategies and 



 

 79 

then tried to include a variety of the other features I tracked.  The set of written work 

selected from each teacher’s class is found in Appendix C. 

Data analysis.  The goal of the analyses of the noticing interviews was to 

understand the frames teachers used during noticing, the quality of teachers’ noticing, and 

the relationship between the two.  Analyses in this phase were divided into three stages.  

In the first stage, I analyzed frames used by teachers as they noticed children’s 

mathematical thinking in written work from their own classrooms and from unfamiliar 

classrooms.  In the second stage of the analysis, I explored the quality of teachers’ 

noticing in written work from different sources.  In the third stage, I looked across both 

teachers’ use of frames during noticing and the quality of their noticing of children’s 

thinking to consider a possible relationship.   

Frames.  The analysis of teachers’ use of frames in the noticing interviews 

occurred similarly to the three stages used in Phase 2, but in this case I tracked the 

number of times that teachers used each frame rather than simply attending to whether or 

not a teacher used a particular frame.  In the first stage, each interview transcript was 

divided into idea units that captured when a single topic was discussed (Jacobs & Morita, 

2002).  The total number of ideas units across all interviews was 307 (168 in interviews 

with written work from unfamiliar classrooms and 139 in interviews with written work 

from teachers’ own classrooms), and individual teachers generated 17–35 idea units in a 

single interview (17–35 when the written work was from unfamiliar classrooms and 19–

28 when it was from their own classrooms).  The second stage determined the focus of 

each idea unit for coding—the child, the child within class, or beyond the child and class.  
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The six previously identified frames (i.e., children’s thinking, confidence, behavior, past 

performance, class performance, and broader scope) from Phases 1 and 2 were used as 

the primary set of codes, while leaving opportunities for the emergence of new codes 

from the data, but none occurred.  In the third and final stage, the prevalence of frames 

used in the noticing interviews was analyzed, and in this case I tracked both whether or 

not each teacher used a frame and how often.  Interrater reliability was determined by 

having a second individual code both of the interviews for two teachers (for a total of 4 

interviews).  These teachers were one third of my participants and their use of frames 

reflected approximately 30% of the total number of frames used.  In selecting the two 

teachers for coding by myself and another individual, I tried to ensure that all of my 

frames were represented at least once.  Interrater reliability was calculated at 80% or 

higher, and any discrepancies were resolved through discussion. 

Noticing. The analyses of the quality of teachers’ noticing of children’s 

mathematical thinking in written work from both sources began by dividing the interview 

transcripts into the three component skills of noticing—attending, interpreting, and 

deciding how to respond—for coding.  I developed a holistic rubric that characterized 

teachers’ use of children’s mathematical thinking as the basis of their evidence by 

starting with the noticing interviews in which the written work was the same.  Coding 

each component skill of noticing was influenced by previous research on noticing 

children’s mathematical thinking (see Jacobs, Lamb, Philipp, & Schappelle, 2011; 

Jacobs, Lamb, & Philipp, 2010). 
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First, I determined a score for each teacher’s response for each component skill on 

a 3-point continuum: robust, limited, or lack of evidence of use of children’s 

mathematical thinking.  I looked for evidence of use of children’s thinking after the 

specific prompt related to that component skill and throughout the entire interview in 

case there was related information elsewhere.  For the attending component skill, I 

looked for how the teachers attended to the mathematically important details within the 

children’s strategies.  Discussion of mathematically important details for equal sharing 

strategies included details such as whether the children represented every share, 

partitioned based on the number of sharers, distributed equal shares, used fraction 

notation and words, or combined unit fractions for a final answer.  For the interpreting 

component skill, I considered how teachers made sense of the details within the 

children’s strategies linked to research on children’s strategies for equal sharing problems 

(Empson & Levi, 2011).  Specifically, I paid attention to whether the teacher focused on 

what the children understood versus did not understand and perhaps what the teacher 

wished the children had done.  There were two prompts for the component skill of 

deciding how to respond.  First, in deciding how to respond with a follow-up problem, I 

looked for how each teacher made sense of the children’s strategies, developed a problem 

that was based on what was learned about the children’s understandings, and the 

consistency with research on children’s thinking.  Second, in deciding how to respond in 

a one-on-one conversation, I considered whether the teacher referenced the child’s 

thinking, left opportunities for the child’s future thinking, and the consistency with 

research on children’s thinking. 
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I calculated each teacher’s overall noticing score by holistically looking across the 

teacher’s noticing scores for each component skill.  I wanted to weight each component 

skill—attending, interpreting, and deciding how to respond—the same so I thought of the 

teacher’s two deciding-how-to-respond scores together when determining the overall 

noticing score.  The following sections provide a sense of each level of the overall 

noticing scores, which varied on these three dimensions related to the component skills of 

noticing: (a) attention to the mathematically important details of the strategy, (b) link 

between the teachers’ reasoning about the children’s understandings and strategies,  and 

(c) appreciation of the children’s mathematical thinking in determining next instructional 

steps.   

Robust evidence of using children’s mathematical thinking.  Robust responses 

provided substantial evidence of attention to the mathematically important details in the 

children’s strategies, and possible interpretations of the children’s reasoning were based 

on evidence within the strategies.  Robust responses also showed an appreciation for the 

children’s sense-making in the teachers’ proposed next steps.  

Limited evidence of using children’s mathematical thinking.  Limited responses 

provided some evidence of attention to the mathematically important details in the 

children’s strategies, and possible interpretations of the children's reasoning were based 

on evidence within the strategies.  Responses that were considered limited demonstrated 

some level of appreciation for children’s thinking but were vague.  Often limited 

responses were general in their plans for next instructional steps. 
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Lack of evidence of using children’s mathematical thinking.  Responses that were 

coded as lack of evidence provided no to minimal evidence of attention to the 

mathematically important details in the children's strategies.  Interpretations of the 

children’s reasoning discussed were often not linked to the strategies and instead focused 

on possible ways the teachers would have wanted the children to reason.  Lack of 

evidence responses often did not show appreciation for the children’s sense-making, but 

instead, the focus for the next instructional steps was more on the teacher's goals, which 

were typically outside of the understandings the children had shown in the strategies.  

Interrater reliability was determined by having a second individual code both of 

the interviews for two teachers (for a total of 4 interviews).  These teachers were one 

third of my participants and were selected to ensure that all levels of noticing quality 

were represented at least once and multiple levels were represented for each component 

skill of noticing.  Interrater reliability was calculated at 80% or higher, and any 

discrepancies were resolved through discussion. 

Relationship between use of frames and quality of teachers’ noticing.  The 

analysis of the relationship between teachers’ use of frames and the quality of their 

noticing included looking for patterns that emerged in both analyses across teachers and 

each noticing component skill.  First, I looked across teachers to compare their use of 

frames in both interviews and when each frame was used within each noticing component 

skill.  Next, I looked across each noticing component skill for all teachers to determine 

the frequency of frames used, paying special attention to the number of frames used in 

addition to the children’s thinking frame.  Finally, I compared the frequency and range of 
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frames used with each noticing score of robust, limited, and lack of evidence of use of 

children’s thinking.  I noted any prevalent and interesting patterns that emerged to 

determine the relationship between teachers’ use of frames and the quality of their 

noticing.  

Phase 3: Results 

In Phase 3 of my study, I confirmed the use of all six frames identified in the 

previous phases thereby highlighting the variety of ways teachers reasoned during 

noticing and suggesting that frames are a useful construct for understanding the 

complexity of teachers’ noticing.  In addition, through my six cases, I was able to not 

only compare teachers’ use of frames with written work from teachers’ own classrooms 

and unfamiliar classrooms but also begin to explore the relationship between teachers’ 

use of frames and the quality of their noticing.  My results are organized according to the 

three research questions addressed in Phase 3: 

 (1) What frames do individual teachers use when noticing children’s 

mathematical thinking in written work from their own and unfamiliar 

classrooms? 

(2) What is the quality of individual teachers’ noticing when noticing children’s 

mathematical thinking in written work from their own and unfamiliar 

classrooms? 

(3) What is the relationship between teachers’ use of frames and the quality of 

their noticing? 
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Research Question 1.  The first research question was answered by comparing 

teachers’ use of frames in Phase 3 with the results from Phases 1 and 2 as well as 

comparing teachers’ use of frames with written work from the two sources.  (See Tables 

3.2 and 3.3 for a summary of teachers’ use of frames in Phase 3.) 

 
Table 3.2 
 
Teachers’ Use of Frames With Written Work From Their Own Classrooms 

 Number of Instances (%) Total Number 
of Instances 
N = 139 (%) 

T1 
N = 23 

T2 
N = 19 

T3 
N = 21 

T4 
N = 28 

T5 
N = 22 

T6 
N = 26 

Current 
Mathematical 
Performance 

17 
(74%) 

14 
(74%) 

20 
(95%) 

21 
(75%) 

18 
(82%) 

23 
(88%) 

113  
(81%) 

   Children’s 
   Thinking 

17 
(74%) 

14  
(74%) 

20  
(95%) 

21  
(75%) 

18 
(82%) 

23  
(88%) 

113  
(81%) 

        
Non-
Mathematical 
Performance  

0 0 0 1 (4%) 2 (9%) 0 3 (2%) 

   Confidence 0 0 0 0 2 (9%) 0 2 (1%) 
   Behavior 0 0 0 1 (4%) 0 0 1 (<1%) 
         
Mathematical 
Performance 
Comparisons 

6 
(26%) 

5  
(26%) 

1  
(5%) 

6  
(21%) 

2  
(9%) 

3  
(12%) 

23  
(17%) 

   Past 
   Performance 

2  
(9%) 

0 1  
(5%) 

4  
(14%) 

0 2  
(8%) 

9  
(7%) 

   Class 
   Performance 

4 
(17%) 

5  
(26%) 

0 2  
(7%) 

1  
(5%) 

1  
(4%) 

13 (9%) 

   Broader 
   Scope 

0 0 0 0 1  
(5%) 

0 1  
(<1%) 

 
 
Table 3.3 
 
Teachers’ Use of Frames With Written Work From Unfamiliar Classrooms 

 Number of Instances (%) Total Number 
of Instances 
N = 168 (%) 

T1 
N = 31 

T2 
N = 31 

T3 
N= 17 

T4 
N = 25 

T5 
N = 29 

T6 
N = 35 
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Current 
Mathematical 
Performance 

27 
(81%) 

25 
(81%) 

16 
(94%) 

21 
(84%) 

26 
(90%) 

28 
(80%) 

143  
(85%) 

   Children’s 
   Thinking 

27 
(81%) 

25 
(81%) 

16 
(94%) 

21  
(84%) 

26  
(90%) 

28 
 (80%) 

143  
(85%) 

        
Non-
Mathematical 
Performance  

0 0 0 0 0 1  
(3%) 

1  
(<1%) 

   Confidence 0 0 0 0 0 1 (3%) 1 (<1%) 
   Behavior 0 0 0 0 0 0 0 
         
Mathematical 
Performance 
Comparisons 

4  
(13%) 

6  
(19%) 

1  
(6%) 

4  
(16%) 

3  
(10%) 

6  
(17%) 

24  
(14%) 

   Past 
   Performance 

1  
(3%) 

1  
(3%) 

1  
(6%) 

0 1  
(3%) 

1  
(3%) 

5  
(3%) 

   Class 
   Performance 

2  
(6%) 

4  
(13%) 

0 4  
(16%) 

1  
(3%) 

5  
(14%) 

16  
(10%) 

   Broader 
   Scope 

1  
(3%) 

1  
(3%) 

0 0 1  
(3%) 

 0 3  
(2%) 

 
 
 Comparison of teachers’ use of frames to phases 1 and 2 results.  Across the 12 

noticing interviews, I confirmed the use of all six frames identified in the previous phases 

and no new frames emerged.  I also noted that their relative prevalence was similar, with 

teachers demonstrating extensive use of the current mathematical performance frame 

(children’s thinking), some use of the mathematical performance comparison frames 

(past performance, class performance, and broader scope) and rare use of the non-

mathematical frames (confidence, and behavior).  Also noteworthy was that all teachers 

used multiple frames across their two interviews; all teachers used the children’s thinking 

frame and at least one other frame, and 8 of the 12 interviews used the children’s thinking 

frame and at least 2 other frames. 

 Link between teachers’ use of frames and the source of written work.  There 

was lack of substantial evidence to distinguish the sources in terms of the use of 
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particular frames or the prevalence of frames.  Specifically, all 6 of the frames were used 

with written work from teachers’ own classrooms and all but the behavior frame were 

used with written work from unfamiliar classrooms.  Further, the prevalence of the three 

categories of frames was similar across the two sources: more than 80% for the current 

mathematical performance (children’s thinking) frame, between 10–20% for the 

mathematical performance comparison frames, and less than 5% for the non-

mathematical frames.  Finally, all 6 teachers used the children’s thinking frame and at 

least 1 additional frame when noticing with either source.  

 Compared to the results from previous phases, one important difference did occur 

in the teachers’ use of frames with unfamiliar written work.  In earlier phases, the past 

performance and confidence frames were only used with written work from teachers’ 

own classrooms in that teachers drew on their previous experiences with the child’s 

problem solving—insider knowledge of the child—to make comparisons or describe the 

child’s confidence.  In Phase 3, teachers used the past performance or confidence frames 

when noticing children’s thinking in written work from their own classrooms and 

unfamiliar classrooms in similar ways.  In other words, teachers used the past 

performance and confidence frames to compare the child’s current performance to the 

child’s “imagined” previous problem-solving experiences, such as their use of 

representations or overall confidence in using particular partitions.  The example below 

illustrates Teacher 1’s use of the past performance frame involving “imagined” insider 

knowledge to discuss Emily’s understandings (see Figure 4.2 or Appendix B for Emily’s 

strategy).  
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I’m thinking Emily is very, very dependent on her direct modeling, but I 
think that she—Let's see.  Hang on; I've got to look at this.  She's just very 
dependent on her direct modeling because—I am very impressed that she 
was able to turn those three [2 halves cut into thirds], that three into a 
sixth.  She knew that was six parts. 
 
 

In this example, Teacher 1 noted that Emily was able to reason that the two halves that 

were split into thirds were actually one sixth of the cake.  Teacher 1 was impressed with 

Emily's ability to partition a half into three parts and label them as sixths.  In addition to 

this attention to the details of Emily’s strategy, Teacher 1 repeatedly mentioned that 

Emily was dependent on her direct modeling.  Even though Emily was not her student,  

Teacher 1 seemed to generalize Emily’s problem solving far beyond this particular 

strategy by claiming that she was “very very dependent on her direct modeling.”  In other 

words, Teacher 1 “imagined” Emily’s history—a history she would have known for her 

own students—in her interpretation of Emily’s strategy.  In summary, analysis of 

teachers’ use of frames in these noticing interviews expanded my understanding of the 

use of insider knowledge when teachers notice children’s mathematical thinking in 

written work from unfamiliar classrooms.  “Imagined” insider knowledge was used in the 

past performance frame by 5 of the 6 teachers and by one teacher with the confidence 

frame. 

 Research Question 2.  The second research question investigated the quality of 

teachers’ noticing children’s mathematical thinking in written work from the two sources.  

Results indicated a small range in teachers’ overall noticing scores and a lack of 

substantial evidence was found to distinguish the quality of teacher’s overall noticing 
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when working with written work from the two sources.  (See Figure 4.5 for a summary of 

teachers’ noticing scores in the two interviews.) 

 

Teacher 
Source of 
Written 
Work 

Noticing Scores for the Component Skills 

Overall 
Noticing 

Score Attending Interpreting 

Deciding 
How to 

Respond 
(Problem) 

Deciding How 
to Respond 

(Conversation) 

T1 Own Robust Limited Limited Limited Limited 
Unfamiliar Robust Limited Limited Lack Limited 

T2 Own Robust Lack Robust Limited Limited 
Unfamiliar Limited Limited Robust Limited Limited 

T3 Own Limited Limited Limited Lack Limited 
Unfamiliar Limited Lack Lack Limited Lack 

T4 Own Limited Limited Limited Limited Limited 
Unfamiliar Robust Lack Limited Lack Limited 

T5 Own Limited Limited Limited Limited Limited 
Unfamiliar Robust Limited Lack Robust Limited 

T6 Own Robust Robust Robust Limited Robust 
Unfamiliar Robust Robust Robust Limited Robust 

 
Figure 4.5. Teachers’ Noticing Scores from Both Sources. 
 
Note.  Cells that are shaded represent pairs of scores in which teachers’ noticing scores 
differed with different sources of written work. 

 
 
Overall quality of teacher noticing.  These data revealed a small range for the 

overall quality of noticing children’s mathematical thinking.  Nine of the interviews 

demonstrated overall limited evidence of use of children’s mathematical thinking, 2 

demonstrated robust evidence, and 1 demonstrated lack of evidence.  These results are 

expected given that teachers were at the end of their third year in the RTEM PD and it is 

challenging to develop overall noticing expertise—teachers had made substantial 
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progress in using children’s thinking but still had room to grow.  To give a general sense 

of teachers’ engagement with children’s mathematical thinking at each level (i.e., robust, 

limited, and lack of evidence), I provide examples of responses at each level for the 

component skill of attending to the strategy details with Monica’s strategy (see Figure 4.4 

for the responses and Appendix B for Monica’s strategy). 

Teacher 5’s response was considered robust evidence of using children’s thinking 

because she attended to most of the mathematically important details in the child’s 

strategy and captured the overall essence of the strategy.  Specifically, she discussed how 

Monica was thinking about the 10/6 and linked this answer to the story context of 10 

things shared amongst six children.  The teacher also conjectured how Monica arrived at 

1 4/6 by taking 6 sixths from the 10/6 to make a whole leaving 4/6 left over.  Teacher 3’s 

response was considered limited evidence of using children’s thinking because her 

response provided only some evidence of attention to the mathematically important 

details in Monica’s strategy.  Her description generally connected Monica’s equation to 

the story context regarding the process of dividing 10 cakes by 6 children.  She also 

shared Monica’s answer, but did not conjecture how Monica arrived at the 10/6 or 1 4/6.  

Teacher 2’s response was coded as lack of evidence of using children’s thinking because 

there was minimal attention to the details in Monica’s strategy.  Teacher 2 focused 

mainly on Monica’s answer, and did not consider ways she could have arrived at her 

answer.   
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Prompt:  Describe in detail what Monica did to solve the problem. 
Robust Evidence of Using 
Children’s Mathematical 

Thinking 

Limited Evidence of Using 
Children’s Mathematical 

Thinking 

 Lack of Evidence of Using 
Children’s Mathematical 

Thinking 
Teacher 5: 
“Monica said 10 sixths.  
She said 10 cakes divided 
among six children equals 
10 sixths, equals 1 and 4 
sixths.  She knew that she 
had 10-cakes and she had 
to divide that among six 
children.  That would be 10 
sixths and if it weren't for 
the 1 and 4 sixths, I would 
think that maybe I would 
need to ask her some 
questions.  I felt like I 
would assume that that was 
a procedure.  But with her 
saying it equals 1 and 4-
sixths, I feel like she's able 
to take the 10 sixths and 
know that there's 6 [6 
sixths] to make a whole 
and 4 sixths leftover.”  

Teacher 3: 
“We have Monica, which 
like I said, she just went to 
notating it.  She knew that 
she was dividing the ten 
cakes by the six children.  
She ended up with the 
fraction 10 sixths and then 
she was able to turn that 
into an improper [sic] 
fraction.” 

Teacher 2: 
“[My class] solved this two 
weeks ago…Another 
student demonstrated this 
similar skill, and they took 
the total number, and they 
put it over how many 
children.  I mean like made 
a division problem out of it, 
at which, yay, I mean it was 
really neat to see.  Then I 
see that [Monica] knows 
that she has one left over.  
She has one per person with 
four left over.  And she took 
the 4 sixths and made it to a 
fraction, which is what we 
[the class] started out 
talking about.  So, to me, I 
wonder if she is using 
division—she did, she used 
division.  Like, how does 
she know that?” 

 
Figure 4.6. Sample Responses for Attending to the Details of Monica's Strategy for the 
Problem of 6 Children Sharing 10 Small Cakes. 

 
 
Link between teachers’ quality of noticing and the source of written work.  In a 

comparison of the quality of each teacher’s noticing of children’s mathematical thinking 

in written work from their own classrooms versus unfamiliar classrooms, there was a lack 

of substantial evidence found to distinguish teachers’ overall scores and within the three 

component skills (see Figure 4.5).  Teachers were relatively consistent in that their 

noticing scores with their own and unfamiliar written work were either identical or only 
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one level apart (and differences were not always in the same direction).  Specifically, 5 

teachers’ overall noticing scores were the same with both sources of written work, and 1 

teacher’s overall score was 1 level off.  Of the twenty-four possible pairs of scores within 

the component skills, 12 pairs were the same, and 7 were one level higher with written 

work from teachers’ own classrooms and 5 were one level higher with written work from 

unfamiliar classrooms.   

Research Question 3.  The third research question asked:  What is the 

relationship between teachers’ use of frames and the quality of their noticing?  As the 

results for the previous two research questions indicated, there was a lack of substantial 

evidence distinguishing the use of frames and the quality of teachers’ noticing of 

children’s mathematical thinking in written work from teachers’ own classrooms versus 

unfamiliar classrooms.  Therefore, in this section, I generally discuss the relationship 

between the teachers’ use of frames and the quality of their noticing in terms of the set of 

12 interviews as a whole.  However, Figures 4.7 and 4.8 do provide a summary of  

teachers’ noticing scores and their use of frames for each component skill with each 

source.  Overall, I did not find a direct link between teachers’ use of frames and the 

quality of their noticing, but I did identify two findings that merit further research: the 

possibility that some frames may compete with a focus on children’s thinking and a 

possible link between teachers’ use of frames and the number of strategies under 

consideration.  
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 Teacher 1 Teacher 2 Teacher 3 Teacher 4 Teacher 5 Teacher 6 

Attending Robust Robust Limited Limited Limited Robust 
CMT, CP CMT CMT CMT, PP CMT, C CMT 

Interpreting 

Limited Lack Limited Limited Limited Robust 
CMT,  

CP, CP, PP, 
PP 

CMT,  
CP, CP, CP CMT CMT,  

B, PP, PP 
CMT,  
C, BS 

CMT, 
PP, PP 

Deciding How 
To Respond 
(Problem) 

Limited Robust Limited Limited Limited Robust 

CMT, CP CMT,  
CP, CP CMT, PP CMT,  

CP, CP CMT, CP CMT, CP 

Deciding How 
to Respond 
(Questions) 

Limited Limited Lack Limited Limited Limited 

CMT CMT CMT CMT, PP CMT CMT 

Overall Score Limited Limited Limited Limited Limited Robust 
 
Figure 4.7. Teachers’ Noticing Scores and Use of Frames With Their Own Written Work. 
 
Note.  Teachers’ noticing scores are in italics, and their use of frames is captured with the 
following abbreviations.  The children’s thinking frame is signified by CMT, confidence 
frame as C, behavior frame as B, past performance frame as PP, class performance frame 
as CP, and broader scope frame as BS. 
 
 
 Teacher 1 Teacher 2 Teacher 3 Teacher 4 Teacher 5 Teacher 6 

Attending 
Robust Limited Limited Robust Robust Robust 

CMT CMT,  
CP, PP 

CMT,  
PP 

CMT,  
CP CMT CMT 

Interpreting 
Limited Limited Lack Lack Limited Robust 
CMT,  
BS, PP 

CMT,  
BS, CP CMT CMT,  

CP 
CMT,  

PP CMT, C 

Deciding How 
To Respond 
(Problem) 

Limited Robust Lack Limited Lack Robust 
CMT,  

CP, CP 
CMT,  

CP, CP CMT CMT CMT, 
BS, CP 

CMT,  
CP, CP, CP, PP 

Deciding How 
to Respond 
(Questions) 

Lack Limited Limited Lack Robust Limited 

CMT CMT CMT CMT,  
CP, CP CMT CMT, CP, CP 

Overall Score Limited Limited Lack Limited Limited Robust 
 
Figure 4.8. Teachers’ Noticing Scores and Use of Frames with Unfamiliar Written Work. 
 
Note.  Teachers’ noticing scores are in italics, and their use of frames is captured with the 
following abbreviations. The children’s thinking frame is signified by CMT, confidence 
frame as C, behavior frame as B, past performance frame as PP, class performance frame 
as CP, and broader scope frame as BS. 
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Lack of a direct link between teachers’ use of frames and the quality of their 

noticing.  The data did not show a direct link between teachers’ use of frames and the 

quality of their noticing.  There were examples of all levels of noticing using only a 

children’s thinking frame and all levels of noticing using multiple frames, which indicate 

that the use of frames alone does not dictate the quality of teachers’ noticing of children’s 

mathematical thinking.  The following teacher responses illustrate this idea.   

When Teacher 1 and Teacher 4 were asked to generate the problem (or problems) 

they would pose next in relation to the set of unfamiliar written work, both of their 

responses were considered limited evidence of using children’s mathematical thinking.  

However, they differed in terms of their use of frames—Teacher 4 only used the 

children’s thinking frame in comparison to Teacher 1 one who used multiple frames.  

Consider Teacher 4’s decisions about appropriate next problem(s) for the unfamiliar 

students: Alicia, Emily, Katie, and Monica: 

 
[For Alicia, Emily, and Katie] So maybe some more practice with similar 
problems with thoughts to how many shares they need to make. And 
Monica used the procedure.  She used division.  [pause] Whether or not 
she understands the amounts that she’s working with, I don’t know, but 
she does know it’s 10 cakes divided among six children.  So with Monica, 
I guess I would have her explain it to me if her understanding was there, 
then I would want to move her into a more difficult problem. 
 
 

Teacher 4 showed limited evidence of using children’s mathematical thinking in her 

response because her description of the next problem was general for all students.  For 

Alicia, Emily, and Katie, she wanted the children to practice similar problems and it is 

not clear what the teacher means.  Perhaps Teacher 4 wanted the children to solve equal 
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sharing problems in which the number of items to be shared was greater than the number 

of sharers, or maybe a problem that provided multiple ways of partitioning.  Similarly, 

she wanted Monica to work on more difficult problems but again that statement is 

ambiguous.  Note that Teacher 4’s response used only the children’s thinking frame 

because she highlighted the details in Monica’s strategy to consider which problem to 

pose.  In contrast, Teacher 1 also showed limited evidence of using children’s 

mathematical thinking but used multiple frames in her response (the children’s thinking 

frame and the class performance frame).  In Teacher 1’s response, I highlight her use of 

both frames to provide a sense for how the use of multiple frames does not always 

enhance or hinder teachers’ ability to decide how to respond on the basis of children’s 

understandings.  When asked what problem she would pose next, Teacher 1 responded: 

 
She [Emily] has all these arrows drawn to where each person goes. Let’s 
see. But I don't see that she's written down an actual answer. I'm trying to 
look in her circles and see what she has on each circle. She has one, and 
then one half and then one sixth in each circle so maybe that's what she 
was thinking there.  
 

 Then this kid [Alicia] just put them all in fourths, drew out her 10, gave 
them all fourths and then did the last one with eighths and she says, each 
kid got six fourths and one eighth of the cakes.  

 
 These two [Emily and Alicia], I think are just trying to divide it up in any 

possible way.  I'm just thinking if I could do maybe—I'm not sure, I'm just 
trying to think of a different number set that may make it a little easier for 
them to see, to comprehend with what they are already trying to do.  I feel 
that with Monica, I might want to try to push her further a little bit, but the 
other two I feel like I might want to go back and see what they really 
understand before we go on. 

 
For one thing, what I would do is, I would have another kiddo see if they 
could explain what they were thinking because I always have them [my 
class] put it all on the board and I’ll ask them if they can explain what they 
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were thinking and then I ask them, “Well, where do you see this in her 
work or his work?  Is it the same?” or those kinds of things.  We [my 
class] talk through those types of things like that anyway.  But as far as 
another problem, let's see. 
 
 

Teacher 1’s response is similar to Teacher 4’s response in that she considered creating 

problems for Emily and Alicia that were different from the ones she would create for 

Monica based on how each child solved the problem.  Teacher 1’s suggestions for 

another problem for Emily, Alicia, and Monica were also vague.  She wanted an easier 

number set for Emily and Alicia and a way to push Monica further in her thinking.  

Teacher 1’s overall goal for her next problems was for her to gain a better understanding 

of the children’s strategies.  However, she did not provide specifics for next problems and 

talked generally, thus her response was considered limited evidence of using children’s 

mathematical thinking.  Teacher 1 used a children’s thinking frame in the first two 

paragraphs of her response, highlighting the different partitions and ways Emily and 

Alicia solved the problem.  Later in the conversation, she used the class performance 

frame in discussing ways she engaged her class in understanding each other’s 

mathematical thinking.  Rather than creating a next problem, Teacher 1 talked as if 

Emily, Alicia, and Monica were students in her class and explained that she would have 

the children share their strategies with each other and think across the strategies.  Teacher 

1’s combination of using the children’s thinking frame and class performance frame did 

not enhance or hinder the quality of her noticing.  In contrast, there were instances in 

which the use of frames other than the children’s thinking frame did seem to hinder the 
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quality of teachers’ noticing—it seemed as if these frames competed with a focus on 

children’s thinking. 

Competing frames.  Results indicated the use of multiple frames during teacher 

noticing had the potential to compete with teachers’ ability to notice children’s thinking, 

although, as in the above example, that was not always the case.  Nonetheless, it is 

important to understand how these competing frames sometimes had a negative effect. 

Consider the following examples of two teachers using the class performance frame in 

their description of details of Monica’s strategy (see Appendix B for her strategy).  In one 

example, the class performance frame competes with a focus on children’s thinking and 

in the other example it does not.   

 In the first example of the use of the class performance frame (see Figure 4.9), 

Teacher 1’s response was considered robust evidence of using children’s mathematical 

thinking.  She attended to some of the mathematically important details in Monica’s 

strategy, such as linking Monica’s equation to the 10 cakes divided by the 6 children.  

She did not explicitly consider possible ways Monica knew 10/6 was 1 4/6,  but in her 

use of the class performance frame, she compared her experiences with similar strategies 

in her own class to discuss how she encourages her class to notate their thinking about 

how 10/6 is equivalent to 1 4/6.  Here, Teacher 1 included some attention to children’s 

thinking in her use of the class performance frame in her discussion of Monica’s strategy, 

and when she coordinated these ideas, she foregrounded children’s thinking.   
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Robust Evidence of Using Children’s Mathematical Thinking 
Teacher 1: 
“[Monica], who when I first looked at it, I thought to myself, well, this is very 
procedural because she has 10 over six but then out here, she has 10 cakes 
divided among six children.  She literally wrote out the verbiage underneath to 
explain her thinking… 
 
Monica used an equation, and she said 10 divided by six, but underneath she 
explained her thinking.  10 cakes divided among six children equals 10 over six. 
Then after she had the 10 over six she put that's one whole and 4 sixths.  I 
probably would have had my students show me how did [they] know that 10 
sixths were one and 4 sixths—kind of show me that.” 

 
Figure 4.9. Non-Competing Use of the Class Performance Frame in a Teacher Noticing 
 Example.  
 
 

Lack of Evidence Using Children’s Mathematical Thinking 
Teacher 2:  
“[My class] solved this two weeks ago…Another student demonstrated this 
similar skill, and they took the total number, and they put it over how many 
children.  I mean like made a division problem out of it, at which, yay, I mean it 
was really neat to see.  
 
Then I see that [Monica] knows that she has one left over, she has one per 
person with four left over.  And she took the 4 sixths and made it to a fraction.” 

 
Figure 4.10. Competing Use of the Class Performance Frame in a Teacher Noticing 
 Example. 
 
 
 In contrast, in the second example (see Figure 4.10), Teacher 2’s response was 

considered lack of evidence for using children’s thinking and, in this case, the class 

performance frame was foregrounded thereby competing with her ability to notice 

children’s mathematical thinking.  In her description of Monica’s strategy, Teacher 2 

began by comparing Monica’s strategy to that of similar strategies used by her class two 

weeks prior.  Then Teacher 2 shifted back to Monica’s strategy and focused on the 



 

 99 

answer of 1 and 4/6.  She talked broadly about Monica’s answer and how from 10/6 

Monica knew each person would get one whole and 4 sixths.  Teacher 2’s explanation of 

Monica’s strategy included some attention to children’s thinking and some discussion of 

her own class, but in the coordination of the two ideas, Monica’s thinking was 

minimized.  In Teacher 2’s description of Monica’s strategy, it is very difficult to get the 

gist of the strategy, and thus the use of the class performance frame hindered her ability 

to notice children’s mathematical thinking.  Teachers’ use of frames that compete with a 

focus on children’s thinking requires further research but the current findings suggest that 

they are worthy of study.  The next section identifies an unexpected finding that I believe 

is also worthy of further study.  

Link between teachers’ use of frames and the number of strategies under 

consideration.  A pattern emerged in teachers’ use of frames when they were considering 

one child’s strategy versus several children’s strategies (regardless of the source of the 

written work).  Teachers were specifically asked to focus on an individual child’s strategy 

in the prompts for the component skills of attending and deciding how to respond in a 

one-on-one conversation.  (Note that for the attending prompt, teachers were asked to 

describe multiple children’s strategies, but one at a time, thus forcing a focus on 

individual children.)  In contrast, for the component skills of interpreting and deciding 

how to respond with a follow-up problem, teachers could choose to focus on only an 

individual child, multiple children by considering their understandings or instructional 

needs individually, or multiple children as a group.  There was a striking pattern in the 

differential use of frames between the two sets of component skills (see Figure 4.11).  
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The component skills with the open prompt—allowing for a focus on individual students 

or students as a group—involved more use of frames whether looking (a) overall at the 

total number of frames used (not including the children’s thinking frame) or (b) by 

interview, identifying the number of interviews that used a children’s thinking frame and 

more than one additional frame.  When teachers are noticing the thinking of more than 

one child, there are many decisions and areas of focus that could impact the quality of 

teachers’ noticing, and these findings suggest that frames may play an even greater role 

in teachers’ noticing as the number of children are increased, and thus may require 

attention in PD. 

 

Prompts related to the component 
skills of noticing 

Total number of 
frames used in the 12 
interviews  
(not including the 
children’s thinking 
frame) 

Number of 
interviews using a 
children’s thinking 
frame and more 
than 1 additional 
frame 

(N=12) 

Required focus 
on individual 
students 

Attending 7 1 
Deciding how to 
respond 
(conversation) 

5 2 

Open focus 
(individual 
students or 
students as a 
group) 

Interpreting  21 7 

Deciding how to 
respond 
(problem) 

17 6 

 
Figure 4.11. Comparing the Use of Frames When the Noticing Task Focused on 

Individual or Groups of Students. 
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Conclusion 

In Phase 3, I explored the relationship between teachers’ use of frames and the 

quality of their noticing in written work from their own classrooms and unfamiliar 

classrooms.  All frames from the previous phases were confirmed and the prevalence of 

frames used by teachers suggests that framing is a useful construct for understanding the 

complexity of teachers’ noticing.  In a comparison of teachers' noticing of children's 

thinking in written work from their own classrooms versus unfamiliar classrooms, there 

was a lack of substantial evidence found to distinguish the two sources in terms of the use 

of particular frames, the prevalence of particular frames, or the quality of teachers' 

noticing of children's thinking.  Drawing written work from either source did not change 

teachers’ noticing and, in fact, there was evidence that teachers used “imagined” insider 

knowledge of children from unfamiliar classrooms to assist with their noticing.  In 

addition, there was evidence that some teachers struggled with one or more frames 

competing with a focus on children’s thinking and this idea needs further exploration.  

Finally, a distinction between teachers' use of frames was identified when they were 

considering one child's strategy versus several children's strategies regardless of the 

source.  Specifically, when teachers' noticing focused on more than one child, more 

frames were invoked.  Implications for those who study and support teacher noticing in 

professional developed are addressed in the next chapter.   
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CHAPTER VI 
 

CONCLUSION  
 
 

 This study examined the noticing of teachers who participated in a professional 

development project that supported teachers’ responsiveness to children’s mathematical 

thinking through the engagement with research-based frameworks of children’s thinking 

and frameworks of instructional practices.  In three phases, I investigated teachers’ use of 

frames and the quality of their noticing in written work from their own classrooms and 

classrooms unfamiliar to them to understand the relationship between framing and 

noticing.   

In the first phase, I identified frames individual teachers used when noticing 

children’s thinking in written work from their own classrooms.  Findings identified that 

teachers used six frames that fell into three broad categories: (a) noticing focused on the 

child’s current mathematical performance, (b) noticing focused on the child’s non-

mathematical performance, and (c) noticing that compared the child’s performance to the 

child’s previous performance, the performance of others in the class on this problem or 

previous problems, or curricular or testing goals for that grade level.   

 In the second phase, I explored the frames that small groups of teachers used 

when collectively noticing children’s thinking in written work from unfamiliar 

classrooms during professional development.  Results confirmed the use of half of the 

frames and the frames that were absent made sense because they required “imagined” 
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insider knowledge of the child which teachers did not have because the written work was 

from unfamiliar classrooms.  The findings from this phase also enhanced understanding 

of teachers’ use of the class performance frame in terms of the ways teachers envisioned 

themselves as the classroom teachers when working with written work from unfamiliar 

classrooms. 

In the third phase, I used in-depth interviews to investigate the relationship 

between the quality of teacher noticing and the use of frames of six teachers who were 

asked to notice children’s thinking in written work on the same problem from their own 

classrooms and from unfamiliar classrooms.  Key findings included confirmation of the 

existence of the six frames and their prevalence as well as the lack of direct links between 

the source of written work and the use of frames or the quality of teachers’ noticing. 

The rest of this chapter is organized to highlight my study’s contribution to our 

understanding of the construct of noticing, the methodologies for capturing noticing, and 

the design of PD intended to support the development of noticing expertise.  I conclude 

the chapter with a discussion of study limitations and possible directions for future 

research. 

Contributions to the Construct of Noticing 

 The literature on teacher noticing continues to grow as the field seeks to “define, 

describe, and capture what is essentially invisible” (Schack et. al., 2017, pp. 6) in efforts 

to support teacher learning.  My study contributes to the research base by confirming the 

use of frames during noticing and some potential areas for future study.  
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In three different data sets, my study identified teachers’ use of frames that 

included the children’s thinking frame supported in the professional development and 

other frames. The overwhelming use of the children’s thinking frame with written work 

from both sources suggests that this frame, which is essential for responsive teaching, can 

be readily adopted.  However, my studied also identified five other frames that teachers 

used, which suggests that they needed to coordinate multiple frames in their noticing of 

children’s thinking in written work.  Consideration of teachers’ use and coordination of 

frames helps us to better understand the complexity of teacher noticing and what is 

occurring as teachers notice.   

My identification of six frames also connects with the study of Sherin and Russ 

(2014) in which they identified 13 frames in their exploration of teachers’ noticing in 

video.  Rather than identify one-to-one mappings between their frames and my frames, I 

note similarities in the ways teachers engaged in noticing.  Both studies highlighted 

teachers’ abilities to engage in noticing in ways that move their reasoning beyond what is 

currently represented in the artifact presented.  Specifically, the use of frames allowed 

teachers to envision themselves as the classroom teacher when noticing with artifacts 

unfamiliar to them.  Additionally, teachers used frames to make comparisons related to 

their previous experiences.  While both studies explored teachers’ use of frames during 

noticing in the context of interviews, I join others in arguing that during instruction the 

use of frames could continue to influence the quality of teachers’ noticing (Sherin & 

Russ, 2014). 
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Finally, although I did not find a direct link between teachers’ use of frames and 

the quality of their noticing, more study is warranted because there was some evidence 

that in some situations, teachers occasionally struggled to stay focused on children’s 

thinking.  Further, my initial conjecture about the quality of teachers’ noticing being 

linked to the source of written work did not hold.  It is possible that the source did not 

matter because, when engaging with unfamiliar written work, teachers “imagined” insider 

knowledge of children and drew upon their own grade level experiences to fill in the 

gaps.  Therefore, future studies are needed to examine teachers’ ability to use this type of 

reasoning during noticing.   

Contributions to the Methodologies for Capturing Noticing 

 The methodological challenges of capturing noticing have been raised throughout 

the literature as the field of noticing continues to grow and evolve (see Jacobs & 

Spangler, 2017; Schack, Fisher, & Wilhelm, 2017; Sherin, Jacobs, & Philipp, 2011).  In a 

commentary on these methodological challenges, Jacobs (2017) noted the difficulty with 

collecting teacher noticing data in written form without opportunities to ask follow-up 

questions.  My study expanded the methodology for capturing teacher noticing by using 

individual interviews that included follow-up questions that probed teachers’ ideas 

related to each component skill of noticing.  These types of follow-up questions provide 

more insight into teachers’ reasoning, making this hidden practice more visible.   

 In addition, my study built on Sherin and colleagues’ (2011) recommendation to 

use think alouds (Ericsson & Simon, 1993) in the study of teacher noticing.  In my study, 

teachers were asked to think aloud during their interviews which made their thinking 
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more visible while noticing children’s mathematical thinking.  The inclusion of think 

alouds in noticing interviews allowed me to capture teachers’ reasoning while it was 

occurring as teachers engaged in each component skill of noticing. 

Contributions to the Design of PD Intended to Support Noticing Expertise 

In a recent review of research on mathematics teachers’ professional 

development, Sztajn and colleagues (2017) identified a prominence of studies that 

involved the use of research-based frameworks of children’s thinking to foreground 

teachers’ attention to children’s thinking.  In those studies, frameworks of children’s 

thinking guided the overall design of PD to support teachers’ development of a children’s 

thinking frame in particular content areas.  The RTEM PD is representative of these 

studies and my dissertation findings suggest that professional developers need to be 

aware that teachers may adopt the children’s thinking frame promoted while also using 

other frames.  My data revealed that multiple frames were used by multiple teachers with 

written work from teachers’ own and unfamiliar classrooms.  Therefore, facilitators need 

to listen for and address the use of additional frames, particularly when those frames do 

not foreground children’s thinking. 

Because the data revealed that sometimes (but not always) teachers struggled to 

keep a focus on children’s mathematical thinking in their coordination of multiple 

frames, PD facilitators may want to discuss with teachers this coordination.  

Consideration of the specific prompts used in PD activities may help facilitators in 

supporting teachers to think about coordinating multiple frames.  Data revealed that there 

was a consistent use of multiple frames, but more often when teachers were asked to 
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focus on more than one child.  Thus, while this type of prompt may help teachers to 

invoke multiple frames, PD facilitators may, at other times, choose to use prompts linked 

to a single child to limit the number of frames invoked. 

Findings also indicated teachers’ abilities to notice children’s mathematical 

thinking were similar with written work from teachers’ own classrooms and unfamiliar 

classrooms.  In other words, the source of written work did not seem to matter in terms of 

teachers’ use of frames or their quality of noticing, meaning that teachers’ noticing of 

children’s thinking in written work from unfamiliar classrooms can serve as proxy for 

their noticing in written work from their own classrooms.  This finding is helpful for 

facilitators who should be able to productively use written work from both sources to 

support the development of teachers’ noticing of children’s mathematical thinking.   

Although there was a lack of substantial evidence found in my comparison of the 

quality of teachers’ noticing in written work from the two sources, some of the teachers 

self-reported a perceived difficulty and a perceived advantage in noticing children’s 

thinking in written work from other classrooms.  Teachers mentioned that they felt they 

were making assumptions about the child’s overall thinking based on a lack of insider 

knowledge.  For example, Teacher 3 from Phase 3 stated, “To me if you don't know the 

children, it makes it more difficult because there's a lot of assumptions I can make.  

However, that's where the better questions come from.”  In this quote, Teacher 3 

indicated that because she did not know the children, she was concerned about making 

assumptions regarding their mathematical thinking.  However, the teacher also 

recognized that not knowing the child caused her to really focus on asking what she 
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considered “better” questions.  It is therefore possible that asking teachers to notice with 

unfamiliar written work may be effective in limiting teachers’ assumptions; the fear of 

making assumptions when noticing children’s mathematical thinking in written work 

from unfamiliar classrooms may have pushed teachers to more closely attend to the 

mathematical thinking present in the children’s strategies.  

Limitations 

 As with any study, there were limitations in this study, and I have chosen to 

highlight three.  First, all three phases of my study focused on teachers’ noticing of 

children’s mathematical thinking in written work related to equal-sharing problems.  This 

focus allowed me to explore teachers’ noticing with this critical problem type in depth 

and to easily make comparisons across the three phases of my study, but it left open the 

question of teachers’ noticing with other types of fraction problems.  Second, I studied 

only six teachers in Phase 3 and thus the findings provide only an initial foray into the 

research questions, and generalizations must be made with caution.  Third, the teachers in 

Phase 3 were purposefully selected so that they all taught in the same district and had just 

completed three years of PD focused on children’s fraction thinking.  This homogeneity 

allowed me to explore a particular context in depth and more easily make comparisons, 

but it did not allow me to investigate the contextual influences of other districts or other 

types of PD support.   

Future Research 

 The existence and confirmation of frames used by teachers while noticing 

children’s mathematical thinking provided insight into the complexity of the construct of 
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teacher noticing and requires further investigation.  Specifically, future research is needed 

to investigate the same relationship with a larger sample of teachers drawn from multiple 

districts and with a range of experience with various PD opportunities.   

This study also sparked other interests in terms of teachers’ use of frames during 

noticing while teaching in classrooms and with other types of noticing.  First, my study 

explored the relationship between teachers’ use of frames and their noticing of children’s 

mathematical thinking in written work outside of classrooms.  Future research is needed 

to expand our understanding of teachers’ use of frames during noticing in classrooms as 

teachers circulate when students are solving problems and as teachers select and sequence 

written work for classroom discussions. 

Second, my study combined the construct of framing with one of the most 

researched types of teacher noticing, noticing of children’s mathematical thinking.  As 

the field continues to grow to consider other types of teacher noticing, so could research 

on the incorporation of teachers’ use of frames.  In particular, future research could 

explore whether the same or different frames occur when the focus is on teachers’ 

noticing of equity indicators in mathematics instruction.   
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APPENDIX A  
 

NOTICING INTERVIEWS 
 
 

The interview protocols for the noticing interviews with written work from teachers’ own 
classrooms and unfamiliar classrooms were almost identical.  Both interviews began by 
reminding the teacher of the problem:  
 
You have been given 4 students’ written work for solving this problem: 
 

The baker has 10 small cakes to share equally among 6 children.  How much cake 
does each child get? 

 
The interview involving unfamiliar written work also included the following 
introduction: 
 
This work was completed in a third-fourth-grade combination class in October.  The 
teacher’s directions were simply “Here is a problem for you to try,” and students were 
able to solve the problem any way they wanted. When students finished this problem, 
other problems were available for them to try.  
 
Both interviews then continued by addressing each of the component skills of noticing in 
the following order: (a) deciding how to respond with a follow-up problem, (b) attending, 
(c) interpreting, and (d) deciding how to respond with a one-on-one conversation.  When 
needed general follow-up questions, such as the following, were posed: 

• I heard you say that….. 
• What did you mean when you said….? 
• What do you mean by that? 
• You keep mentioning ________. Why is that important to you? 
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Deciding How to Respond (Follow-Up Problem) 
Given the 4 students’ written work for solving this problem, what problem or problems 
might you pose next? I am interested in how you think about selecting next problems, but 
I do not believe that there is ever a single best problem.  (Read the following for the 
interview involving unfamiliar work–I also recognize that if you were the teacher of 
these students, you would have additional information to inform your selection) 
 
What was your rationale for selecting the problem or problems?  
 
Potential Follow-Up Questions 
*Push to make sure they give a specific problem. 

• What do you mean when you said a harder problem? 
• Why did you choose this problem? Problem type? 
• Can you give an example of what you mean by…? 
• Can you tell me why you choose those number choices? Or why would that be a 

good number choice? 
 
Attending 
Please describe in detail what you think each child did in response to this problem. (Ask 
the teacher to describe each strategy individually.) 
 
Student 1 
 
Student 2 
 
Student 3 
 
Student 4 
 
Potential Follow-Up Questions 

• For each piece of student written work, where did you start to make sense of how 
the student solved the problem?  

 
Interpreting 
Please explain what you learned about these children’s understandings. (Look for the use 
of evidence in determining these understandings.) 
 
Can you put the four strategies in order from least to most understanding or group them 
if they are at the same level? 
 
Deciding How to Respond (One-on-One Conversation) 
Imagine that you were able to have a one-on-one conversation with one of the students.  
Which student would you choose?  
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Describe some ways you might respond to his or her work on this problem, and explain 
why you chose those responses. 
 
Potential Follow-Up Questions 

• Why did you choose _______ to have a one-on-one conversation? 
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APPENDIX B  
 

WRITTEN WORK FROM UNFAMILIAR CLASSROOMS 
 
 

Problem: The baker has 10 small cakes to share equally among 6 children.  How much 
cake does each child get? 
 

Alicia’s Strategy     Emily’s Strategy 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Katie’s Strategy     Monica’s Strategy 
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APPENDIX C 
 

WRITTEN WORK FROM TEACHERS’ OWN CLASSROOMS 
 
 

Teacher 1 
 
Problem: The baker has 10 small cakes to share equally among 6 children.  How much 
cake does each child get? 
 
 Strategy 1      Strategy 2 
 

    
 
 
 
 
 
 
 
 
 
 
 
 
 

Strategy 3      Strategy 4 
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Teacher 2 
 
Problem: The baker has 10 small cakes to share equally among 6 children.  How much 
cake does each child get? 
 
 Strategy 1      Strategy 2 
 

    
 
 
 Strategy 3      Strategy 4 
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Teacher 3 
 
Problem: The baker has 10 small cakes to share equally among 6 children.  How much 
cake does each child get? 
 
 Strategy 1      Strategy 2 

        
 
 
 

 Strategy 3       Strategy 4 
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Teacher 4 
 
Problem: The baker has 10 small cakes to share equally among 6 children.  How much 
cake does each child get? 
 
 Strategy 1      Strategy 2 
 

     
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Strategy 3      Strategy 4 
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Teacher 5 
 
Problem: The baker has 10 small cakes to share equally among 6 children.  How much 
cake does each child get? 
 
 Strategy 1      Strategy 2 

 
    
 
 
 
 
 
 
 
 
 
 
 
 
 

 Strategy 3      Strategy 4 
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Teacher 6 
 
Problem: The baker has 10 small cakes to share equally among 6 children.  How much 
cake does each child get? 
 
 Strategy 1      Strategy 2 

 

       
 

  
 
Strategy 3              Strategy 4 
    

      


