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SUMMARY
The pollution haven hypothesis (PHH) posits that production within polluting industries will shift to locations 
with lax environmental regulation. While straightforward, the existing empirical literature is inconclusive owing 
to two shortcomings. First, unobserved heterogeneity and measurement error are typically ignored due to the 
lack of a credible, traditional instrumental variable for regulation. Second, geographic spillovers have not been 
adequately incorporated into tests of the PHH. We overcome these issues utilizing two novel identification strate-
gies within a model incorporating spillovers. Using US state-level data, own environmental regulation negatively 
impacts inbound foreign direct investment. Moreover, endogeneity is both statistically and economically relevant. 

1. INTRODUCTION

The precise relationship between environmental policy, the location of production, and subsequent
trade flows remains an open and hot-button issue. Of particular concern is the so-called pollution haven
hypothesis (PHH), whereby a reduction in trade barriers enables polluting multinational enterprises
(MNEs) to relocate (at least some) production activities to areas with less stringent environmental
regulation, thus altering both the spatial distribution of economic activity and subsequent trade patterns
through the creation of havens for polluting firms. Kellenberg (2009, p. 242) states that ‘the empirical
validity of pollution haven effects continues to be one of the most contentious issues in the debate
regarding international trade, foreign investment, and the environment’. Brunnermeier and Levinson
(2004, p. 6) characterize the debate as ‘particularly heated’.

Proper examination of this relationship is crucial for several reasons. First, the determinants of trade
patterns and the spatial distribution of MNE activity are salient given the dramatic rise in foreign
direct investment (FDI) relative to trade volumes over the past two decades. For example, global FDI
inflows rose from less than $600 billion in 2003 to roughly $2.1 trillion in 2007 in nominal terms
(UNCTAD, 2010). Due to the Great Recession, global FDI flows fell to $1.1 trillion in nominal terms
in 2009, but has since rebounded to $1.7 trillion in 2011 (OECD, 2013). Aggregate inbound FDI
stocks rose from $2.1 trillion in 1990 to nearly $18 trillion in 2009 and almost $21 trillion in 2011 in
nominal terms (UNCTAD, 2010; OECD, 2013). Moreover, the USA—the focus of this analysis—is
the largest recipient of global FDI flows, receiving $310 billion in FDI inflows in 2008, roughly $100
billion more than the next largest host, Belgium (OECD, 2013). Even with the overall decline in FDI



during the Great Recession, the USA remains the largest recipient of global FDI flows, receiving $234
billion in 2011. China was the second largest host in 2011, receiving $229 billion (OECD, 2013).

Second, if countries are able to attract (or deter) FDI by manipulating environmental regulations,
then international coordination may be necessary to avoid Pareto-inefficient levels of regulation due to
transboundary pollution or other spillovers (e.g. Levinson, 1997, 2003). Copeland (2008, p. 60) states
that if the PHH is true then the ‘exodus’ of pollution-intensive firms to countries with lax regulation
‘could create a political backlash’ in stringent countries due to ‘concerns about losses of jobs and
investment’. In fact, this may even initiate a ‘race to the bottom’ in environmental standards. Moreover,
as further discussed in Copeland (2008, p. 60), the PHH may also affect the stock of natural capital
and ‘exacerbate the effects of pollution on health and mortality’ due to the lower income of countries
with lax regulation. Within an individual country, the ability of environmental policy to influence
capital flows across sub-jursidictions has implications for the debate over the appropriate level of
governmental authority to establish environmental standards (e.g. Millimet, 2013).

Third, if countries are able to influence the location of MNE activity and ultimately trade pat-
terns through environmental regulation, then bringing environmental policies under the purview of
trade agreements may be necessary to realize the intended effects of such agreements (Ederington
and Minier, 2003; Baghdadi et al., 2013). Fourth, and related to this prior point, existing institutional
structures such as the World Trade Organization (WTO) may be used to impede countries from choos-
ing their desired environmental policies if such policies can be shown to impact trade flows between
members (e.g. Eckersley, 2004). Finally, a detailed analysis of the PHH has broader implications for
the general study of capital competition (e.g. Wilson, 1999).

Despite the high stakes, the existing literature has been unable to convincingly assess the empirical
validity of the PHH for three reasons. First, environmental regulation is complex and multidimen-
sional, making any empirical measure fraught with measurement error. Shadbegian and Wolverton
(2010, p. 13) state: ‘Measuring the level of environmental stringency in any meaningful way is quite
difficult, whether at the national, state, or local level.’ The difficulty arises from the fact that different
regulations typically cover different pollutants, regulations may exist at multiple levels (e.g. federal
and local), and monitoring and enforcement are imperfect. Along these lines, Levinson (2008, p. 1)
states: ‘The problem is not merely one of collecting the appropriate data; merely conceiving of data
that would represent [environmental stringency] is difficult.’ Xing and Kolstad (2002, p. 3) refer to the
measurement of environmental regulation as ‘no easy task’ due to its ‘complexity’. Moreover, depend-
ing on the empirical measure employed, the measurement error need not be classical and any bias may
be accentuated by the reliance on fixed effects methods in the recent literature.

Second, even if an accurate measure of environmental regulation is available, it may be endogenous
for other reasons (e.g. Levinson, 2008; Levinson and Taylor, 2008). For example, it may be correlated
with unobserved determinants of location choice such as tax breaks or other firm-specific treatments,
the provision of other public goods in addition to environmental quality (e.g. infrastructure), agglom-
eration, the stringency of other regulations such as occupational safety standards, corruption, local
political activism, political institutions, etc. (see Arauzo-Carod et al., 2010, for a review). In addi-
tion, reverse causation may be an issue. For instance, anticipation of low FDI inflows may drive
reductions in environmental stringency; or an increase in FDI may increase the efficacy of indus-
trial lobby groups (e.g. Cole et al., 2006; Cole and Fredriksson, 2009). Conversely, as Keller and
Levinson (2002, p. 695) state: ‘Those states that do not attract a lot of polluting manufacturing proba-
bly do not enact stringent regulations—there simply is less need to worry about industrial pollution in
states with less industrial activity, and those states that do attract polluting manufacturing may respond
by enacting more stringent regulation.’ Levinson (2010, p. 63) summarizes these arguments succinctly:
‘International trade has environmental consequences, and environmental policy can have international
trade consequences.’



Third, existing studies of the PHH inadequately incorporate geographic spillovers. Recent theoreti-
cal models emphasize that the scale of MNE activity in one location depends not just on attributes of
that location, but also on the attributes of other potential hosts. Moreover, the predicted direction of the
cross-effects is not always in the opposite direction of the own-effects—a restriction that is implicit in
discrete-choice models (e.g. Yeaple, 2003; Grossman et al., 2006; Ekholm et al., 2007; Baltagi et al.,
2007, 2008; Blonigen et al., 2007, 2008; Arauzo-Carod et al., 2010). Failure to account for geographic
spillovers in empirical analyses of the PHH may lead to biased inference. This may be particularly
problematic in the context of empirical analyses of inbound US FDI, since state-level environmental
regulations have been shown to be strongly related to the regulatory stringency of neighboring states
(Fredriksson and Millimet, 2002).

While these shortcomings, particularly the first and second, are well known, convincing solutions
have proven elusive since standard fixed-effects models will not overcome these identification prob-
lems and valid exclusion restrictions have proved elusive. In this paper, we simultaneously address
these three shortcomings while examining the spatial distribution of inbound US manufacturing FDI
across the 48 contiguous states over the period 1977–1994. Geographic spillovers are incorporated
in an unrestricted manner by including a spatially lagged counterpart for each state-level attribute.
Measurement error, unobserved heterogeneity, and reverse causation concerns are then addressed uti-
lizing two novel identification strategies designed to circumvent the need to identify valid exclusion
restrictions in the usual sense.

The two approaches are similar in that each is based on an identification strategy utilizing higher
moments of the data. The Klein and Vella (2009, 2010) and Lewbel (2012) approaches exploit con-
ditional second moments to circumvent the need for traditional instruments. In the Lewbel (2012)
approach, identification is achieved through the presence of covariates related to the conditional vari-
ance of the first-stage errors, but not the conditional covariance between first- and second-stage errors.
Identification is achieved in the Klein and Vella (2009, 2010) approach by assuming that, while the
errors are heteroskedastic, the conditional correlation between the errors is constant.

The results are striking. We consistently find (i) evidence of environmental regulation being endoge-
nous when examining the behavior of pollution-intensive industries, (ii) a negative impact of own
environmental stringency on inbound FDI in pollution-intensive sectors, particularly when measured
by employment, and (iii) significantly larger effects (in absolute value) of environmental regulation
once endogeneity is addressed. Moreover, neighboring environmental regulation is not an important
determinant of FDI (although the estimates are relatively imprecise). However, spillovers from other
attributes are present (although not the focus of this study), indicating the importance of incorporating
spatial effects more generally in models of FDI determination. Thus, while the impact is not homoge-
neous, environmental regulation is a significant determinant of location choice by some MNEs at least
at the regional level.

The remainder of the paper is organized as follows. Section 2 presents a brief literature review,
concentrating on prior studies attempting to address endogeneity concerns. Section 3 describes
the empirical methods, Section 4 discusses the data, and Section 5 presents the results. Finally,
Section 6 concludes.

2. LITERATURE REVIEW

The literature assessing the empirical validity of the PHH has yet to reach a consensus due to the
numerous complexities confronted by researchers. 1 Levinson (2008) effectively separates the litera-
ture into first- and second-generation studies. The first generation encompasses cross-sectional studies

1 See Jaffe et al. (1995), Copeland and Taylor (2004), and Brunnermeier and Levinson (2004) for reviews of the literature.  



treating environmental regulation as exogenous. These studies typically found no statistically mean-
ingful evidence in support of the PHH (and sometimes found counter-intuitive effects). The second
generation predominantly encompasses panel data studies designed to remove unobserved heterogene-
ity invariant along some dimension (most often time, but occasionally across sectors differentiated by
pollution intensity). Panel approaches, however, require environmental regulation to be strictly exoge-
nous conditional on the (typically time-invariant) unobserved heterogeneity (and other covariates). A
few studies within this second generation have attempted to relax this assumption and utilize traditional
instrumental variable (IV) approaches. These second-generation studies typically find economically
and statistically significant evidence in support of the PHH.

As mentioned, it is unlikely that existing panel studies are sufficient to yield unbiased estimates
of the impact of environmental regulation on the location of economic activity and/or subsequent
trade patterns. The omission of third-country effects, the omission of relevant variables that vary over
time or differentially affect pollution-intensive and non-pollution-intensive sectors such as tax breaks
and agglomeration effects, measurement error in proxies for environmental regulation, and depen-
dence between current environmental regulation and past (or current) shocks to economic activity
point strongly to violations of strict exogeneity (e.g. Henderson, 1997; List et al., 2003; Cole and
Fredriksson, 2009).

Recognizing this, several studies test the PHH utilizing traditional exclusion restrictions. These
studies are summarized in Table I. At the risk of oversimplifying the literature, the instruments used
generally fall within three categories. The first set includes lagged environmental regulation or lags
of other covariates (Cole and Elliott, 2005; Jug and Mirza, 2005; Ederington and Minier, 2003). For
such variables to represent valid instruments, the error term should not be serially correlated, which
may be particularly unrealistic if measurement error is serially correlated or agglomeration effects
are not accurately modeled. Both are distinct possibilities. Serial correlation in measurement error is
likely due to the use of the same imperfect proxy over time. Agglomeration effects are not likely to
be modeled perfectly given their complex nature due to multiple origins (e.g. domestic versus foreign
and within and across industries) and nonlinearities (Arauzo-Carod et al., 2010).

The second set includes instruments based on the geographic dispersion of industries (Levinson
and Taylor, 2008; Cole et al., 2005; Ederington et al., 2004; List et al., 2003). Specifically, the level
of pollution emitted by other industries in the locations where a given industry tends to locate is
used to generate instruments. For such variables to be valid instruments, the geographic distribution
of industries must be exogenous. However, as with the first set of instruments, these instruments are
likely to be correlated with the error term if agglomeration effects are not accurately modeled. In fact,
the instruments fail the Sargan over-identification test at the p < 0:01 confidence level in Levinson
and Taylor (2008). Similar instruments do fare better in Cole et al. (2005).

The final set of instruments include a variety of contemporaneous, location-specific attributes that
are hypothesized to impact environmental regulation but not directly impact firm location decisions or
trade patterns. Examples range from economic variables such as attributes of the agricultural sector,
per capita income, and public expenditures to demographic variables such as the human development
index, urbanization, infant mortality, population density, and schooling to political economy variables
such as corruption, and proxies for industry lobby bargaining power. Kellenberg (2009) also utilizes
some spatially lagged covariates as exclusion restrictions. Needless to say, one can plausibly argue in
each case that such variables may also directly impact firm location or trade patterns, or be correlated
with the error term due to non-classical measurement error or omitted geographic spillovers, agglom-
eration effects, or other sources of heterogeneity. Brunnermeier and Levinson (2004, p. 37), reviewing
the literature at the time, state that ‘as is always true of instrumental variable analyses, the instruments
are open to critique’. That said, Kellenberg (2009) is noteworthy as the instruments fare well in terms
of the usual specification tests.
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Despite the suspect validity of the identification strategies employed in these prior studies, rigor-
ous specification testing is noticeably absent in many. A few discuss the strength of the first-stage
relationship and/or conduct Hausman-type tests for endogeneity, but most neglect to test or even dis-
cuss why the proposed instruments should be exogenous or excluded from the second-stage equation
for location choice or trade patterns; Levinson and Taylor (2008) and Kellenberg (2009) are notable
exceptions. Nonetheless, these studies nearly universally obtain a more detrimental effect of environ-
mental regulation on the behavior of pollution-intensive sectors once endogeneity is (attempted to be)
addressed. Given this background, we now turn to our analysis.

3. EMPIRICAL ANALYSIS

3.1. Structural Model

Following Bergstrand and Egger (2007), Kleinert and Toubal (2010), Schmeiser (2013), and others,
we estimate a gravity model of FDI. Accordingly, expected aggregate FDI flows or stocks from the
rest of the world is given by

EŒFDIit je�i ;e�t ; x1it ; : : : ; xKit � De�ie�t 2KY
kD1

x
ˇk
kit

(1)

where FDI is some measure of MNE activity in location i and time t , xkit , k D 1; : : : ; 2K, is a 2K�1
vector of time-varying observable attributes of location i , ande�i ande�t are location and period fixed
effects, respectively. A simple extension of the theoretical model in Blonigen et al. (2008) provides
guidance on the attributes belonging in equation (1). Specifically, we include variables reflecting ‘own’
and ‘neighboring’ production costs, trade costs, and market demand.2 Environmental regulation is
assumed to enter the empirical model as one of the determinants of production costs.

Neighboring variables are defined as follows. If xkit represents an own attribute of location i at
time t (such as location i ’s environmental stringency at time t), then also included in the model is the
corresponding neighboring attribute, say xk0it , given by

xk0it D
X

j2�
!ijtxkjt (2)

2 In the interest of brevity, we do not provide a complete model, as the extension of Blonigen et al. (2008) is straightforward.
Nonetheless, the basic structure is as follows. A parent country (e.g. the rest of the world), indexed by subscript 3, contains a
single, horizontal firm undertaking production in the parent country as well as two host states in the USA, indexed by 1 and 2.
Inbound FDI is strictly positive for both hosts. qi denotes sales by the firm in location i , i D 1; 2; 3; Qij denotes production
by the firm in location i sold in location j . Potential trade flows from the parent country to each of the host states is allowed, but
no exports from the host states to the parent or between host states. The profit function of the multinational enterprise (MNE) is
given by

…MNE D
X

i

h
Pi .qi I�0i /qi �Ci .Qi I�1i /� �i �

X
j
tijQij

i
� �

where Pi .�/ is the inverse demand function, �0i is a vector of demand shifters in i such that P
�0i
i ; P

qi�0i
i > 0, where

superscripts denote derivatives,Ci .�/ is total variable production cost associated with production in i such thatC
Qi
i ; C

QiQi
i >

0, �1i is a vector of variable production cost shifters in i , tij � 0 is trade costs of exports from i to j (where tii D 0), �i
is the fixed cost associated with production in i , and � is a fixed cost parameter for the MNE. The objective of the MNE is to
maximize profits with respect toQ11;Q22;Q31;Q32; andQ33.
Comparative statics yield three insights. First, inbound FDI to a given host state is increasing (decreasing) in a state’s own
(neighboring) trade costs. Second, inbound FDI to a given host state is increasing in positive own and neighboring demand
shifts. Third, inbound FDI to a given host state is decreasing (increasing) in a state’s own (neighboring) production costs. Full
details are available upon request.



where !ijt is the spatial weight given by location i to neighbor j in period t and � includes the
set of neighbors of location i . Thus, of the 2K attributes included in equation (1), K represents
own attributes and the remaining K attributes represent the neighboring counterparts of these
own attributes.

Log-linearizing a multiplicative error form of the model in equation (1) yields a standard
fixed-effects panel data model. For clarity, we write the estimating equation as

ln.FDIit / D �i C �t C
XK

kD1
ˇk ln.xikt /C

XK

kD1
ık ln

�X
j2�

!ijtxkjt

�
C "it (3)

where ˇk captures the effect of own attribute k, ık captures the effect of neighboring attribute k, �i
and �t are equivalent to exp.e�i / and exp.e�t /, respectively, and "it is a mean zero error term.3;4

Even if all elements in the regressors in the augmented model are strictly exogenous, estimation of
equation (3) is non-standard given the introduction of the weights, !. To proceed, the weights must
be chosen a priori and this choice is necessarily ad hoc.5 Because the true weights are unknown, we
utilize four straightforward weighting schemes. First, we assign a weight of zero to non-contiguous
neighbors and equal weights to all contiguous neighbors. In other words,

P
j !ijtxjkt simplifies to the

mean of xjkt in contiguous neighbors. Second, following Fredriksson and Millimet (2002), we adopt
two regional breakdowns for the 48 mainland US states (see Appendix A). The use of regional weights
is also motivated by the evidence in Glick and Woodward (1987) that foreign-owned affiliates in man-
ufacturing tend to serve regional markets. For each regional breakdown,

P
j !ijtxjkt simplifies to the

mean of xjkt computed over all neighbors within the same region (again, giving each regional neigh-
bor equal weight). The two regional classifications come from the US Bureau of Economic Analysis
(BEA) and Crone (1998/1999). The BEA regional classification system was introduced in the 1950s

3 Busse and Hefeker (2007) also provide support for a double-log specification for FDI using a Box–Cox model.
4 One might consider augmenting the model in equation (3) with spatially lagged FDI (i.e. a spatial lag model). We pursue
the current specification for two reasons. First, as discussed in Blume et al. (2010), identification becomes extremely difficult
in models with spatially lagged covariates and dependent variable. Since our interest is in the effects of own and neighboring
environmental regulation, we omit the spatially lagged FDI, implying our model should be viewed as a reduced form in this
sense. Second, the theoretical FDI literature discussed previously implies specifications of the form in equation (3). Similarly,
one might consider augmenting equation (3) with (temporally) lagged own FDI as a regressor (i.e. a dynamic panel data model)
to capture agglomeration effects. While this is worth exploring in future work, we quickly ran into identification problems in
the current data (even ignoring issues with the unequal spacing of the data discussed in the next section; see, for example,
McKenzie, 2001). Thus we interpret the model as having omitted (a perhaps inadequate proxy for) agglomeration, contributing
to the potential endogeneity of own and neighboring regulation.
5 To explore the consequences of using incorrect weights, consider a simplified, cross-sectional model with a single covariate,
x. Assume the ‘true’ model is given by

yi D ˛C ˇxi C ı
X

j2�
!�ijxj C "i

where x is the covariate and !�ij is the ‘true’ weight placed on state j by state i . If the weights are misspecified such that the
assumed weight is

!ij D !
�

ij C ij

then substitution yields

yi D ˛C ˇxi C ı
X

j2�
!ijxj C

h
"i � ı

X
j2�

 ijxj

i
:

If  is mean zero and independent of x, then this is analogous to a standard random coefficients model (Swamy and Tavlas,
2003). In this case,  ij ¤ 0 generates heteroskedasticity which is actually exploited for identification by the estimators used
in this paper. If  and x are not independent, then OLS estimates of ı will be biased in a non-trivial way in addition to the
problem of heteroskedasticity. However, as in the usual case of measurement error, consistent estimation may still be possible
via IV or other methods such as those explored here.



and has never been amended. While this classification system is widely used by economists in study-
ing regional economic activity, Crone (1998/1999) devised an alternative regional breakdown for US
states using cluster analysis to group states according to similarities in economic activity. We refer
to these weighting schemes as BEA and Crone regional weights, respectively. Finally, we utilize a
weighting scheme based on (inverse) distances between US states. In this case,

P
j !ijtxjkt reduces

to a weighted average of xjkt computed over all other states; the weight attached by location i to
neighbor j is .1=dij /=

P
j¤i .1=dij /, where dij denotes distance between i and j .

Even with specification of the weights, estimation of equation (3) is complicated by the fact that
own and neighboring environmental regulation are likely correlated with the error term, ", due to mea-
surement error, spatial error correlation, unobserved heterogeneity, and/or reverse causation. As such,
traditional fixed-effects estimates are not likely to yield consistent estimates of ˇ and ı. Before turning
to our identification approaches, we rewrite equation (3) more compactly, as well as introducing the
first-stage equations, in order to make explicit the system of equations we are estimating. The system
of equations is given by

ln.FDIit / D Xit…C ˇ ln.Rit /C ı ln
�X

j2�
!ijtRjt

�
C "it (4)

ln.Rit / D Xit…R C �1it (5)

ln
�X

j2�
!ijtRjt

�
D Xit…SR C �2it (6)

where R is the proxy for environmental regulation, X includes all the other regressors from x in
equation (3) except R (i.e. including the spatial terms and the state and time fixed effects), and �1
and �2 are the error terms in the first-stage equations assumed to be correlated with ". All errors are
assumed to be mean zero. Note that the model is not identified in the traditional sense since there are
no exclusion restrictions in equations (5) and (6).

3.2. Lewbel’s (2012) Approach

Lewbel’s (2012) approach exploits the conditional second moments of the endogenous variables
to circumvent endogeneity. This approach complements earlier work by Vella and Verbeek (1997),
Lewbel (1997), Rigobon (2003), and Ebbes et al. (2009) and generates instruments that are valid under
certain assumptions. Specifically, Lewbel (2012) shows that if the first-stage errors, �1 and �2, are het-
eroskedastic and at least a subset of the elements of X are correlated with the variances of these errors
but not with the covariances between these errors and the second-stage error, ", then the model is iden-
tified. As discussed in Lewbel (2012), these assumptions are satisfied by (but not limited to) systems
of equations where error correlations across equations arise due to an unobserved common factor. In
our context, as discussed below, measurement error in environmental stringency or an omitted index
of crucial unobservables such as agglomeration and/or local political activism are plausible examples
of such a common factor.

Formally, the Lewbel (2012) approach entails choosing ´r � X such that

E
�
´0r�

2
r

�
¤ 0 (7)

E
�
´0r"�r

�
D 0 (8)

for r D 1; 2. If these assumptions are satisfied, then Q́ r � .´r � ´/�r , r D 1; 2, are valid instruments
as they are uncorrelated with the second-stage error given equation (8). Moreover, the strength of



the instruments (i.e. their partial correlation with the environmental stringency variables) is directly
related to the extent of heteroskedasticity in the first-stage errors given in equation (7).

For instance, if the errors in equations (4)–(6) contain a common (homoskedastic) factor, along with
heteroskedastic idiosyncratic components (where the heteroskedasticity of �r depends on ´r ), then
these assumptions will be satisfied. In other words, if we can rewrite the errors in equation (4)–(6) as

"it � �it Ce"it
�rit � $r�it Ce�rit ; r D 1; 2;

where � is homoskedastic,e�r , r D 1; 2, is heteroskedastic (with variance depending on ´r ), $r are
factor loadings, ande�r , r D 1; 2, ande" are independent of each other and �, then equations (7 ) and (8)
are satisfied. Note thate"may be either homoskedastic or heteroskedastic. This data-generating process
(DGP) is plausible if � represents homoskedastic measurement error in environmental stringency, or a
composite index of unobserved variables impacting both environmental stringency and FDI (such as
those discussed previously) that is drawn from an identical distribution across observations. However,
the idiosyncratic shocks to environmental stringency may be drawn from different distributions.

Note that measurement error in the weights does not, in general, satisfy the assumptions in
equations (7) and (8). In the simplified, cross-sectional model described in footnote 5, �i D
�ı
P
j2�  ijxj which is heteroskedastic with variance depending on x. Thus setting ´ D x would

not satisfy the restriction in equation (8). However, if we extend the model from footnote 5 to allow
for two covariates, as in

yi D ˛ C
X2

kD1
ˇkxki C

X2

kD1
ık
X

j2�
!�ijxkj C "i

then substitution yields

yi D ˛ C
X2

kD1
ˇkxki C

X2

kD1
ık
X

j2�
!ijxkj C

�
"i �

X2

kD1
ık
X

j2�
 ijxkj

�
where �i D �

P2
kD1 ık

P
j2�  ijxj . In this case, if ı1 D 0, then x1 may serve the role of ´ in order

to derive an instrument for
P
j2� !ijx2j if it is related to the variance of the idiosyncratic portion

of the first-stage error and uncorrelated with the covariance between the first- and second-stage errors
due to the term ı2

P
j2�  ijx2j .

Homoskedastic measurement error in the covariates themselves (as opposed to measurement error
in the weights) would also satisfy equations (7) and (8) as long as the variances of the idiosyncratic
errors depend on x. Suppose now that the ‘true’ model is given by

yi D ˛ C
X2

kD1
ˇkx

�
ki C

X2

kD1
ık
X

j2�
!ijx

�
kj C "i

where x� denotes the true value of x. Assume x�1 is observed, but x�2 is not. Instead, x2i D x�2i C  i
is observed, where  i is homoskedastic. Substitution yields

yi D ˛C ˇ1x
�
1i C ˇ2x2i C ı1

X
j2�

!ijx
�
1j C ı2

X
j2�

!ijx2j C
h
"i � ˇ2 i � ı2

X
j2�

!ij i

i
where �i D �ˇ2 i � ı2

P
j2� !ij i . In this case, x�1 and

P
j2� !ijx

�
1j may serve the role of ´ in

order to derive instruments for x2 and
P
j2� !ijx2j as long as x�1 and

P
j2� !ijx

�
1j are related to

the variance of the idiosyncratic portion of the first-stage errors and uncorrelated with the covariance
between the first- and second-stage errors due to the presence of  i .



In the analysis, we use the Koenker (1981) version of the Breusch–Pagan test for heteroskedas-
ticity to identify variables significantly related to the first-stage error variances. We include a subset
of x in ´1; the spatially lagged counterparts of these variables are included in ´2 (discussed below).
The instruments, Q́ r , are then created by replacing �r with its estimate obtained from (consistent)
ordinary least squares (OLS) estimates of the first stage. As ´1 and ´2 are vectors in our implementa-
tion, the models are over-identified. Thus the usual battery of specification tests in models estimated
via instrumental variables are available. Finally, note that after construction of the instruments esti-
mation is carried out using generalized method of moments (GMM). See Appendix B for further
estimation details.

3.3. Klein and Vella’s (2009) Approach

The next identification strategy is based on a parametric implementation of the estimator proposed in
Klein and Vella (2009, 2010) and expanded upon in Farré et al. (2013). To proceed, recall that we are
still working with the same system of equations given in (4)–(6). However, rather than invoking the
assumptions given in equations (7) and (8) concerning the errors, the following assumptions are made:

"it D S".´it/"
�
it (9)

�rit D Sr .´it/�
�
rit; r D 1; 2 (10)

S".´it/=Sr .´it/; r D 1; 2; varies across i (11)

E
�
"�it�
�
rit

�
D �r ; r D 1; 2 (12)

where "�it and ��rit are homoskedastic errors and ´ � X . Thus at least some of the errors are required to
be heteroskedastic in such a way that the ratio S".´it /=Sr .´it /, r D 1; 2, varies across observations.6

However, the conditional correlation, �r ; r D 1; 2, between the underlying homoskedastic portion
of the errors must be fixed. Note that, while the three heteroskedasticity terms—S".´it / and Sr .´it /,
r D 1; 2—are written as a function of the same set of covariates, ´, this need not be the case. There
are no restrictions on which variables may enter each of these terms.

Klein and Vella (2010) give some examples of DGPs satisfying these assumptions. One such case
arises if there exists a common factor, as in the Lewbel (2012) approach. However, here the com-
mon factor enters multiplicatively and may itself be heteroskedastic. Specifically, if we can write the
errors as

"it D S".´it/�ite"it

�rit D Sr .´it/�it
e�rit; r D 1; 2

where � is the common factor ande" ande�r are mean-zero, independent ofX and �, and have a constant
correlation given by �r , then equations (9)–(12) are satisfied.

Referring back to equation (12), it is worth considering what this identification condition implies.
One possible interpretation includes viewing "�it and ��rit, r D 1; 2, as correlated measures of agglom-
eration (see footnote 4). Agglomeration may affect environmental stringency due to the scale effect

6 In the Lewbel (2012) approach, S".´it /=Sr.´it /, r D 1; 2, varies across observations as well, but does so because Sr.´it /
varies. Here, the source of variation may be due to S".´it /.



of pollution-generating activity. However, the impact may depend on state-level attributes, ´it . For
instance, states may differ, according to ´, in their ability to limit the environmental damage of agglom-
eration. Improved public infrastructure, for example, may help ameliorate the environmental impacts
of agglomeration. Smaller population size may encourage greater collective action by environmental
groups through a reduction in free-riding (Olson, 1965). As a result, the policy response from a change
in agglomeration may differ across locations according to such attributes. Similarly, own agglomera-
tion may impact FDI through economies of scale, but the effect may again be mitigated or enhanced by
state-level attributes. States with certain characteristics, such as market proximity or low wages, may
be better positioned to realize positive agglomeration externalities. Finally, neighboring agglomeration
may adversely impact FDI by improving the desirability of neighboring locations, with the magni-
tude of the effect depending on neighboring attributes that better position localities to take advantage
of positive agglomeration externalities. However, once we condition on these state-level attributes,
the returns to own and neighboring agglomeration, �1 and �2, respectively, are constant. Thus the
returns to agglomeration are allowed to vary spatially and temporally, depending upon state character-
istics. Assumption (12) simply states that returns are constant once these state attributes are accounted
for. While not testable, this seems plausible. Moreover, as emphasized in Farré et al. (2013), Klein
and Vella (2010) show that the assumption of a constant conditional correlation is consistent with
many DGPs.

Continuing, we parametrize S".´it / and Sr .´it / as

S".´it / D exp

�
´"it	"

2

	
(13)

Sr .´it / D exp

�
´rit	r

2

	
; r D 1; 2 (14)

where ´r includes additional covariates beyond those employed in the Lewbel (2012) approach.7

Using the Koenker (1981) version of the Breusch–Pagan test, we identify an additional vector of
covariates likely to be related to the structural error variance in the FDI equations, ´".

With this set-up, equation (4) may be rewritten as

ln.FDIit / D Xit…Cˇ ln.Rit /C ı ln
�X

j2�
!ijtRjt

�
C �1

S".´it /

S1.´it /
�1itC �2

S".´it /

S2.´it /
�2itCee"it (15)

where �1
S".´it /
S1.´it /

�1it and �2
S".´it /
S2.´it /

�2it are control functions andee"it is a well-behaved error term. Given
the functional form assumptions in equations (13) and (14), equation (15) can be estimated by nonlin-
ear least squares (NLS) in a number of ways. Standard errors are obtained via bootstrap. See Appendix
B for further estimation details.

4. DATA

All of the data except interstate distance, dij , come directly from Keller and Levinson (2002);
thus we provide only limited details.8 Summary statistics are provided in the online Appendix C

7 The Lewbel (2012) approach does not require one to identify all covariates satisfying equations (7) and (8). All we require is
a sufficient number of (valid) instruments to identify the model. In fact, too many instruments may have undesirable effects par-
ticularly if some instruments are weak (Wooldridge, 2002). However, the Klein and Vella (2009) approach requires a consistent
estimate of Sr.´it /, r D 1; 2.
8 The data on interstate distances are from Wolf (2000) and have been used in Millimet and Osang (2007) and elsewhere.



(supporting information).9 The data cover the 48 contiguous US states from 1977 to 1994, omit-
ting 1987 due to missing data on abatement costs. The measures of FDI include the value of gross
property, plant, and equipment (PP&E) of foreign-owned affiliates for all manufacturers, as well as
just for the chemical sector (1992–1994 omitted), and employment at foreign-owned affiliates for all
manufacturers, as well as just for the chemical sector (1992–1994 omitted).10;11 The chemical sec-
tor (SIC 28) is analyzed in isolation given that FDI in these industries is most likely to be responsive
to spatial variation in environmental stringency given the pollution-intensive nature of production
(Ederington et al., 2005).

Consistent with figures reported elsewhere, inbound FDI stocks increased tremendously over the
sample period. Aggregate manufacturing PP&E increased over tenfold from 1977 to 1994, from
roughly $20 million to nearly $300 million (in 1982 US$). A similar increase occurred in the chemical
sector from 1977 to 1991, from roughly $10 million to $90 million. Employment grew at a slower, but
still substantial rate, increasing from roughly 675,000 to almost 2.3 million in aggregate manufacturing
and from 190,000 to 500,000 in the chemical sector.

In the theoretical model of inbound FDI discussed above (see footnote 2), determinants of FDI
include trade costs, cost and demand shifters, and parent country attributes. Here, total road mileage
and state effects capture time-varying and time-invariant (e.g. distance to ports) differences in trade
costs across states. Population and market proximity (a distance-weighted average of all other states’
gross state products) reflect market size and demand shocks. Relative abatement costs (RAC), unem-
ployment rate, unionization rate, average production worker wages across the state, land prices, energy
prices, and tax effort (actual tax revenues divided by those that would be collected by a model tax
code, as calculated by the Advisory Commission on Intergovernmental Relations) capture variation in
production costs and resource availability.12;13 RAC is the proxy for environmental regulation. This
measure is attributable to Levinson (2001) and represents the ratio of actual state-level abatement
costs to predicted state-level abatement costs, where the predicted value is based on the industrial
composition of the state. Consequently, higher values indicate relatively more stringent environmen-
tal protection. The index varies over time and across states. Finally, since FDI is aggregated across all
countries outside the USA, time effects capture parent country attributes. All variables are expressed
in logarithmic form with the exception of the unemployment and unionization rates. In addition, fol-
lowing equations (1)–(3), we form the spatially lagged variables first and then take logs, again with
the exception of spatially lagged unemployment and unionization rates.

Prior to continuing, it is important to note that the Spearman rank correlation between RAC and
total manufacturing FDI as measured by PP&E is positive (� D 0:11, p D 0:003); the correlation is
even stronger when only considering the chemical sector (� D 0:13; p D 0:001). Neither correlation
is statistically significant using employment to measure FDI. Moreover, as shown in Keller and Levin-
son (2002), total manufacturing FDI as measured by employment (and PP&E) increased by more over
the sample period in the 20 states experiencing the largest increase in RAC than in the 20 states experi-
encing the largest decline in RAC. In addition, Table C1 in the online Appendix shows that mean total
manufacturing FDI as measured by PP&E is higher when RAC exceeds one (indicating more stringent

9 See http://faculty.smu.edu/millimet/pdf/mr_AppendixC.pdf.
10 For each dependent variable, the sample represents an unbalanced panel where the number of observations for total
manufacturing PP&E (employment) are 811 (814); for chemical sector PP&E (employment), the sample size is 563 (621).
11 Following Keller and Levinson (2002), Cole and Elliott (2005), Kellenberg (2009), and others, we analyze FDI stocks.
The inclusion of fixed effects in the model, however, implies we are utilizing the temporal variation in stocks to identify
the parameters.
12 Although ignored by much of the prior literature, one might be concerned about whether other covariates besides own
and neighboring environmental regulation are not strictly exogenous. For example, Eskeland and Harrison (2003) treat some
covariates as endogenous in a model of FDI shares by industry (but treat pollution abatement costs as strictly exogenous).
Unfortunately, this is beyond the scope of the current study.
13 Note that the unemployment and unionization rates enter equation (3) in level form.

http://faculty.smu.edu/millimet/pdf/mr_{A}ppendixC.pdf


environmental regulation), as well as for the chemical and non-chemical sectors considered separately.
However, mean total manufacturing employment, as well as in the chemical and non-chemical sec-
tors, is lower in states with RAC greater than one. In any event, finding statistical evidence consistent
with the PHH, particularly using data on PP&E, would appear to require the existence of significant
selection (on either observed or unobserved variables) into more stringent RAC.

5. RESULTS

5.1. Lewbel’s (2012) Approach

The baseline results are presented in Tables II and III. Table II contains the results for the chem-
ical sector only; Table III assesses total manufacturing. Panel A in each table measures FDI using
PP&E; panel B measures FDI using employment. Five specifications are estimated in each panel.
Specification 1 omits all geographic spillovers. Specifications 2–5 include such spillovers, where
specification 2 uses the contiguous weighting scheme, specifications 3 and 4 use the BEA and
Crone regional weighting schemes, respectively, and specification 5 uses the distance-based weighting
scheme. The estimates obtained using Lewbel’s (2012) approach are given under the column labeled
‘IV’. OLS estimates are presented for comparison, where the specification 1 results are identical to
Keller and Levinson (2002). 14

To generate the instruments, we include three variables in ´1 and ´2. Specifically, ´1 includes land
prices, market proximity, and total road mileage; ´2 includes the spatial lags of these variables. 15

It is interesting to note, with further examination, that land prices and total road mileage are associ-
ated with a lower variance of �1; neighboring land prices and total road mileage (market proximity)
are associated with a lower (higher) variance of �2. In Keller and Levinson (2002), land prices and
total road mileage are negatively associated with FDI inflows, whereas market proximity is posi-
tively related. Thus the pattern of heteroskedasticity is consistent with the notion that states with
less favorable attributes for attracting FDI minimize the volatility in another attribute—environmental
stringency—that may adversely impact inbound FDI.

Turning to the results, we obtain five salient findings. First, the OLS estimates are negative and
statistically significant in the vast majority of cases. The main exception is when examining FDI as
measured by employment in total manufacturing (panel B, Table III). In addition, the OLS estimates
are fairly stable across the five specifications; neighboring environmental regulation is statistically
significant only in specifications 2 and 3 when assessing employment in the chemical sector (panel
B, Table II). Inclusion of the spatial effects has little effect on the estimated marginal effect of own
environmental regulation.

14 We only display the point estimates for own and neighboring environmental regulation to conserve space. Full estimation
results are available upon request. However, Tables C2–C5 in the online Appendix contain the complete first-stage results, while
Tables C6 and C7 report the full set of coefficient estimates on the covariates for specifications 1, 3, and 5 for the chemical sector.
Heteroskedasticity-robust standard errors are used (Baum et al., 2007). Note that these standard errors ignore the estimation
error of the instruments. While Lewbel (2012) derives the appropriate asymptotic standard errors based on independent and
identically distributed observations, we prefer heteroskedasticity-robust standard errors. In brief simulations (details available
upon request), we find little difference in the empirical distributions of the estimator when the ‘true’ instruments are used rather
than the estimated instruments.
15 According to the Koenker (1981) version of the Breusch–Pagan test for heteroskedasticity of the first-stage error for own
environmental regulation, land values, market promixity, and total road mileage have test statistics of 41.44, 42.69, and 11.92,
respectively, when using PP&E for aggregate manufacturing. When using PP&E for the chemical sector alone, the test statistics
are 7.43, 15.23, and 17.44. The test statistic is distributed �21 and we reject the null of homoskedasticity in each case at the
p < 0:01 level. The tests of heteroskedasticity of the first-stage error for spatially lagged environmental regulation yield
test statistics of 47.91, 46.10, and 10.70 for neighboring land values, neighboring market promixity, and neighboring total
road mileage, respectively, when using distance-based weights and PP&E for aggregate manufacturing. When using PP&E for
the chemical sector alone and distance-based weights, the test statistics are 7.85, 14.45, and 15.96. The test statistic is again
distributed �21 and we reject the null of homoskedasticity in each case at the p < 0:01 level. See also Table IV. Additional
results—using other weighting schemes or for other covariates—are available upon request.
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Second, the Lewbel (2012) identification strategy works well as determined by the usual IV specifi-
cation tests when geographic spillovers are omitted (specification 1) as well as in the majority of cases
when spatial effects are included. Specifically, we reject the null that the model is under-identified at
the p < 0:01 confidence level in every case using the Kleibergen–Paap (2006) rk statistic, and the
Kleibergen–Paap F -statistic is reasonably large with the possible exception of specification 4 when
examining the chemical sector. In addition, we fail to reject the validity of the instruments using
Hansen’s J -test in all but two cases at the p < 0:10 confidence level for specifications 1, 3, 4, and 5.
Thus the specification tests support the identifying assumptions invoked in Lewbel’s (2012) approach.
Third, when focusing on the cases that pass the specification tests, we reject exogeneity of own and
neighboring environmental regulation in the majority of cases for the chemical sector. There is much
less support for endogeneity when examining total manufacturing.

Fourth, turning to the point estimates in the cases that pass the specification tests for the chemical
sector (Table II), the GMM estimates are statistically significant at least at the p < 0:10 confidence
level using either the traditional approach or the Anderson and Rubin (1949) test robust to weak
instruments in most cases—often statistically significant at the p < 0:01 confidence level, particularly
when measuring FDI using employment (panel B). Moreover, the point estimates are larger in absolute
value compared to OLS; however, the standard errors are also roughly two to three times larger. For
instance, in specification 1 in panel B, we obtain an elasticity of employment in the chemical sector
with respect to environmental stringency of about�0.40 (standard error = 0.07) when using OLS. Thus
a 10% increase in environmental stringency for the mean state, which is about one-quarter of a standard
deviation, leads to a 4% decline in employment in foreign-owned affiliates in the chemical sector,
or about 300 lost jobs for the mean state. The GMM estimate roughly doubles to �0.84 (standard
error = 0.16).

The fact that the IV estimates suggest a stronger adverse effect of environmental regulation is consis-
tent with many of the papers listed in Table I, such as Xing and Kolstad (2002), Ederington and Minier
(2003), Fredriksson et al. (2003), Levinson and Taylor (2008), and Cole and Fredriksson (2009). For
example, Xing and Kolstad (2002) obtain a point estimate for FDI in the chemical sector that is more
than three times larger once environmental regulation is treated as endogenous. Ederington and Minier
(2003) obtain an elasticity estimate over 60 times greater once environmental regulation is treated as
endogenous. Cole and Fredriksson (2009) obtain IV estimates opposite in sign from the OLS estimates
and 10–75 times larger in absolute value. Furthermore, the magnitude of our estimates are on a par with
those obtained in Kellenberg (2009) when examining the chemical sector in isolation. Finally, neigh-
boring environmental regulation is statistically significant in specification 3, but not specifications
4 and 5.

To put the magnitude of the effects in further context, consider the results in panel B, specification
5. Ohio in 1991 had 17,600 workers in foreign-owned affiliates in the chemical sector. The value of
its RAC index was 0.86, making it a fairly lax state according to the index. The ceteris paribus effect
of Ohio increasing its RAC at the time to match California (1.00) is estimated to entail a decline
in employment in foreign-owned affiliates in the chemical sector from 17,600 to roughly 15,600. In
contrast, the OLS estimate implies a decline to only about 16,600.

In terms of the total manufacturing results (Table III), we often fail to reject exogeneity, as noted
previously. Moreover, adding the spatial effects has little influence on the estimates from Keller
and Levinson (2002); Kellenberg (2009) obtains a similar finding. One noteworthy finding, however,
occurs in specification 2 when examining PP&E (panel A). Here, we do reject exogeneity and the
IV point estimates for own and neighboring environmental regulation are statistically significant at
the p < 0:05 level. Notwithstanding this case, we generally obtain much smaller and statistically
insignificant estimates when examining manufacturing as a whole. This is consistent with prior evi-
dence that the impact of environmental regulation (as well as the statistical properties of estimates)



depends on the pollution intensity of the industry (e.g. Ederington et al., 2005; Jug and Mirza, 2005;
Henderson and Millimet, 2007; Mulatu et al., 2010).

In sum, the Lewbel (2012) approach indicates an economically and statistically significant adverse
impact of own environmental stringency on inbound FDI in the pollution-intensive chemical sector,
particularly in terms of employment, once endogeneity is addressed. However, there is little evidence
that neighboring environmental regulation matters, nor is there evidence of a deleterious effect of
own or neighboring environmental regulation on inbound FDI for manufacturing as a whole. The
downward (in absolute value) bias of OLS estimates for the chemical sector may be attributable in
part to measurement error and in part to unobservables positively correlated with both environmental
regulation and FDI inflows. For instance, Becker (2011) finds that there is significant variation in
environmental compliance costs across counties within states; roughly one-third of counties differ
significantly from their state average. Thus significant attenuation bias due to measurement error is
clearly plausible. Similarly, a multitude of unobservables (such as investments in other public goods
or agglomeration effects), as well as omitted within-state variation in the observables included in the
analysis, can explain the bias in estimates obtained under the assumption of strict exogeneity. We next
turn to the Klein and Vella (2009) approach for comparison.

5.2. Klein and Vella’s (2009) Approach

The results from Klein and Vella’s (2009) approach are also presented in Tables II and III under the
column labeled ‘CF’ (for control function). As noted above, we include an expanded set of variables
in ´1 and ´2 relative to Lewbel’s (2012) approach. Specifically, we set ´1 D ´2 D ´ , where ´
includes land prices, total road mileage, market proximity, population, unemployment rate, unioniza-
tion rate, and the spatial lags of these variables. Allowing for heteroskedasticity in the second-stage
error, ", we include average production worker wages, population, and market proximity in ´" when
examining FDI in the chemical sector; market proximity only is included when examining total
manufacturing FDI.16

Before discussing the point estimates, it is important to note that our specification of Sr .´it /, r D
1; 2, and estimation procedure appears to work well. In particular, while we always reject the null
of homoskedastic errors in both first-stage equations using the Koenker (1981) test at the p < 0:01

level, we predominantly fail to reject the null after transforming the data by 1=
qbS r .´it /. As reported

in Table IV, we continue to reject the null of homoskedasticity (albeit at lower levels of confidence)
in the model for neighboring environmental regulation in specifications 3 (BEA regional weights)
and 5 (distance-based weights). We only reject the null of homoskedasticity in the model for own
environmental regulation once (at the p < 0:10 level) when spillovers are included.17

Turning to the results for the chemical sector in Table II, the point estimates for own environmental
regulation are fairly stable across the five specifications, particularly in panel A (PP&E).18 Moreover,
the estimates are never statistically significant at the p < 0:10 confidence level due to the relatively
large standard errors except in specification 3 when examining employment (panel B). Neighboring
environmental regulation is also rarely statistically significant (although the estimates are even more
imprecise) and inclusion of the spatial effects has little influence on the estimated marginal effects
of own environmental regulation. Finally, with the appropriate caveats in mind due to the size of

16 Average production wages and population are excluded when examining total manufacturing FDI due to problems with
convergence.
17 As an aside, we often found that we continued to reject the null of homoskedastic errors after performing FGLS using
simulated data despite using the correct functional form for the heteroskedasticity and the Klein and Vella (2009) estimator
performing well overall.
18 Standard errors are obtaining using 250 bootstrap repetitions.
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the standard errors, it is still interesting to note that the point estimates are smaller in both panels
A and B.

In terms of total manufacturing (Table III), the results are consistent with the OLS and Lewbel
(2012) approaches, particularly when again considering the size of the standard errors. Thus there
is no statistically meaningful evidence of a negative impact of own environmental regulation, or of
neighboring environmental regulation, on FDI inflows across the manufacturing sector as a whole; the
only exception corresponds to specification 5 when analyzing employment (panel B).

5.3. Sensitivity Analyses

We undertake two final analyses to explore the sensitivity of Lewbel’s (2012) and Klein and Vella’s
(2009) approaches to deviations in the estimation algorithms. In the interest of brevity, we do not
report the results.

First, we explore the robustness of Lewbel’s (2012) results to the use of a jackknife IV estimator
(JIVE) rather than GMM. As shown in Angrist et al. (1999) and Chao et al. (2012), JIVE has desirable
finite sample and asymptotic properties, at least relative to two-stage least squares (TSLS) and limited
information maximum likelihood (LIML), particularly in the presence of heteroskedasticity and many
instruments. The estimates turn out to be quite imprecise except when FDI is measured by foreign
employment in the chemical sector. In this case, own environmental stringency is found to be an
economically and statistically significant deterrent to FDI, with magnitudes greater than those found
using GMM.

Next, we explore the robustness of Lewbel’s (2012) results to alternative instruments. Recall that the
baseline results in Table II utilize own (spatially lagged) land values, market proximity, and total road
mileage in ´1 (´2). Here, we explore using each instrument in isolation, as well as augmenting ´1 and
´2 to include own and spatially lagged population, unemployment rate, and unionization rate, respec-
tively. While there is some evidence that the first-stage error variances are related to these variables, it
is generally weaker than the variables included in ´1 and ´2 in the baseline model. The results indicate
that, while the estimated effects of own environmental regulation are reasonably similar across the
various instrument sets, the strength of the instruments and the results of the over-identification tests
are less favorable with the new instruments. The weakness of the instruments in these alternative IV
sets should not be surprising since our baseline instruments utilized the results of heteroskedasticity
tests to determine the most likely candidates to be strong instruments.

Finally, we assess the sensitivity of Klein and Vella’s (2009) results to four alternative specifications
of the error variances. First, we allow ´1 (and ´2) not only to consist of own (and spatially lagged)
land prices, road mileage, market proximity, population, unemployment rate, and unionization rate,
but also their squares. Second, we augment ´1 (and ´2) by including the squares as well as interactions
of all variables in the baseline model. For the spatial specifications, we do not include interactions
between the own and spatial variables. Third, we allow the first- and second-stage error variances to
be related to all the exogenous regressors in the model except the state and time fixed effects. Fourth,
we include all exogenous regressors and their squares in ´1 (and ´2). The greater flexibility of the
functional forms for the error variances leads to some convergence issues. However, the results are
qualitatively unchanged.

6. CONCLUSION

The debate over the empirical validity of the PHH is heated and for good reason. To date, however,
empirical assessments of the PHH have been hampered by the lack of a credible identification strategy
to overcome potential problems associated with measurement error and unobserved heterogeneity. In
addition, the empirical literature on the PHH has yet to adequately incorporate lessons from the liter-
ature on so-called third-country effects. In our view, Kellenberg (2009) comes closest to overcoming



these shortcomings, and consequently finds economically and statistically meaningful support for the
PHH. Here, we propose two novel identification strategies couched within a model that incorporates
spatial effects. Together, the approaches shed new light on the role of environmental regulation in the
determination of FDI location.

Specifically, using state-level panel data from 1977 to 1994 from the USA, we consistently find
(i) evidence of environmental regulation being endogenous when examining the pollution-intensive
chemical sector, (ii) a negative and economically significant impact of own environmental stringency
on inbound FDI in the chemical sector, particularly when measured by employment, and (iii) signifi-
cantly larger effects of environmental regulation on the chemical sector once endogeneity is addressed.
The upward bias in standard fixed-effects estimates obtained under the assumption of strict exogene-
ity is consistent with attenuation bias due to measurement error, as well as important unobservables
positively correlated with environmental regulation and FDI inflows (such as tax breaks, investments
in other public goods, or agglomeration externalities).

These findings have potentially salient policy implications. Specifically, our results help inform
the current debate over environmental federalism (i.e. the appropriate level of government to con-
trol environmental policy). As discussed in the survey by Millimet (2013), the canonical model of
inter-jurisdictional competition in Oates and Schwab (1988) assumes the perfect mobility of capital,
the lack of inter-jurisdictional externalities and social welfare-maximizing governments, among oth-
ers. In such a framework, decentralized environmental decision making is efficient. However, when
these other assumptions of the model fail, capital mobility can lead to inefficient policies. The result is
the potential superiority of some form of centralized control over environmental policy. At the country
level, this could entail complete federal control over environmental standards (which need not imply
uniform standards across sub-jurisdictions) or some form of ‘cooperative’ federalism whereby the fed-
eral government establishes minimum environmental standards and sub-jurisdictions are allowed to
exceed this floor if desired (e.g. Esty, 1996). The results here point to the superiority of such a policy
arrangement in light of prior evidence suggesting that domestic investment may be even more sensitive
to spatial variation in environmental policy than foreign investment (e.g. List et al., 2004).

At the international level, our findings are suggestive of the need for greater centralization as well.
However, before reaching important policy conclusions regarding such issues as the WTO’s justifica-
tion to intervene in the domestic environmental policy arena or the sensibility of linking international
environmental and trade agreements, further analysis is needed to determine the external validity of
the findings obtained here. Our analysis is at the regional level within a single country. Does envi-
ronmental regulation have similar effects at the country level? Despite this unknown, our results do
firmly indicate that policymakers should worry about the incentives for local environmental standards
to deviate from Pareto-efficient levels.

Continued research in the future is warranted. First, the prior literature, while suffering from various
deficiencies, has emphasized the heterogeneous effects of environmental regulation along numerous
dimensions. For instance, Ederington et al. (2005) point to substantial heterogeneity across source
country (of imports) and the pollution intensity and geographic mobility of the industrial sector. Dean
et al. (2009) similarly document important heterogeneity by source country (of foreign investment).
Henderson and Millimet (2007) and Millimet and List (2004) uncover heterogeneous effects utilizing
non-parametric and semi-parametric methods, respectively. Some of this heterogeneity is captured in
this study; namely, differential effects by pollution intensity of the sector as well as by measure of
FDI (PP&E versus employment). However, other dimensions of heterogeneity uncovered by the prior
literature cannot be addressed given the data and identification strategies utilized here. Additional
research investigating whether the empirical evidence of heterogeneous effects continues to be present
once measurement error, spatial effects, and unobserved heterogeneity are accounted for is needed for
a deeper understanding of the linkages between environmental and trade policy.



Second, capital mobility related to spatial variation in environmental stringency does not, in and of
itself, imply that decentralized environmental policymaking is inefficient. However, in the presence of
other ‘failures’ such as spillovers or rent-seeking behavior by sub-jurisdictional governments, some
form of centralized control may be superior. A better connection between the empirical literature on
the pollution haven hypothesis and optimal institutional arrangement for environmental policy control
is needed.

APPENDIX A: DATA

The BEA regional classification is as follows.

1. New England: Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut
2. Mideast: New York, New Jersey, Pennsylvania, Delaware, Maryland
3. Great Lakes: Ohio, Indiana, Illinois, Michigan, Wisconsin
4. Plains: Minnesota, Iowa, Missouri, North Dakota, South Dakota, Nebraska, Kansas
5. Southeast: Georgia, Florida, Virginia, West Virginia, North Carolina, South Carolina, Kentucky,

Tennessee, Alabama, Mississippi, Arkansas, Louisiana
6. Southwest: Oklahoma, Texas, Arizona, New Mexico
7. Rocky Mountain: Montana, Idaho, Wyoming, Colorado, Utah
8. Far West: Washington, Oregon, California, Nevada

The Crone (1998/1999) regions—based on a cluster analysis of similar economic activity—are
as follows.

1. Maine, New Hampshire, Massachusetts, Arizona, Utah, Montana
2. Ohio, Indiana, Illinois, Michigan, Iowa, Delaware
3. Georgia, Florida, Virginia, North Carolina, South Carolina, Missouri, Kentucky, Tennessee,

Alabama, Mississippi, Arkansas, Oklahoma, Rhode Island
4. New York, New Jersey, Pennsylvania, Maryland, Connecticut, West Virginia, Vermont
5. Washington, Oregon, California, Nevada, Idaho, Nebraska, Texas, Wyoming, Minnesota, Louisiana,

Kansas
6. North Dakota, South Dakota, Colorado, New Mexico, Wisconsin

APPENDIX B: ESTIMATION ALGORITHMS

B.1. Lewbel’s (2012) Approach
Estimation of the empirical model

ln.FDIit / D Xit…C ˇ ln.Rit /C ı ln
�X

j2�
!ijtRjt

�
C "it

proceeds as follows:

1. Regress ln.Rit / on Xit and obtainb�1it .
2. Regress ln

�P
j2� !ijtRjt

�
on Xit and obtainb�2it .



3. Form instruments Q́ rit � .´rit � ´/b�rit , r D 1; 2.
4. Estimate the structural model via GMM using Q́ rit , r D 1; 2, as instruments for ln.Rit / and

ln
�P

j2� !ijtRjt

�
.

B.2. Klein and Vella’s (2009) Approach
Estimation of the empirical model

ln.FDIit / D Xit…C ˇ ln.Rit /C ı ln
�X

j2�
!ijtRjt

�
C �1

S".´it /

S1.´it /
�1it C �2

S".´it /

S2.´it /
�2it Cee"it

proceeds as follows:

1. Regress ln.Rit / on Xit and obtainb�1it .
2. Regress ln

�P
j2� !ijtRjt

�
on Xit and obtainb�2it .

3. Estimate 	j via Poisson pseudo maximum likelihood (PPML) where E
�b�2jit� D exp



´j it	j

�
;

compute bSj it D exp

�
´jitb�j
2

	
, j D 1; 2 (see Santos Silva and Tenreyro, 2006).

4. Obtain updated estimates
bb�1it and

bb�2it via feasible generalized least squares (FGLS) using bS1it
and bS2it .

5. Verify that the use of bS1it and bS2it yield homoskedastic errors in the transformed first-stage
equations.

6. Obtain updated estimates of 	j via PPML using
bb�2jit ; compute bbSj it D exp ´jit

bb�j
2

!
, j D 1; 2.

7. Using
bb�1it ,bb�2it , bbS1it , and bbS2it , obtain consistent estimates via NLS:

min
…;ˇ;ı;	1;	2;�"

X
i;t

2664
ln.FDIit / �Xit… � ˇ ln.Rit / � ı ln

�P
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�
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p
exp .´"it	"/
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1itbbS1it
!
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p
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!3775
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8. Estimate 	" (again) via PPML where E

b"2it � D exp .´it	"/, where

b"it D ln.FDIit / �Xitb… � b̌ ln.Rit / �bı ln
�X

j2�
!ijtRjt

�

and compute bS"it D exp

�
´"itb�"
2

	
.

9. Use bS"it to estimate via FGLS:

ln.FDIit / D Xit…Cˇ ln.Rit /Cı ln
�X

j2�
!ijtRjt

�
C�1

bS"itbbS1it
bb�1it!C �2 bS"itbbS2it

bb�2it!„ ƒ‚ …
control function

Cee"it

10. Compute standard errors via bootstrap.
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