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CHAPTER I

INTRODUCTION

Let G be a group. If we fix a generating set S for G, then we can construct a

graph Γ = Γ(G,S) corresponding to G and S by taking the vertices of Γ to be the

elements of G itself and connecting any two vertices g and h by an edge whenever

gs = h for some element s ∈ S. We can consider the graph Γ as a metric space by

setting the length of each edge to be 1 and taking the path metric on Γ; this procedure

turns the algebraic object G into a geometric object Γ. The drawback of this approach

is that different choices of S can lead to wildly different geometric objects; however,

when G is a finitely generated group, any two choices of finite generating sets S and

S ′ will give rise to two graphs that are the same on the large scale, see Chapter II.

In this paper, we investigate the extent to which different choices of infinite

generating sets S can change the graph Γ(G,S) when G = Z. We are chiefly interested

in generating sets that are closed under additive inverses and are closed under taking

powers. The simplest such generating set is the collection Sg = {1,±g,±g2,±g3, . . .}

such that g > 1. We denote Γ(Z, Sg) by Cg. Edges in the graph Cg connect each

vertex to infinitely many other vertices, see Figure I.1. It is not difficult to see that

the graphs C2 and C3 are distinct, but the question of whether they are the same on

the large scale remains open [Nat11] and motivates our study of the metric properties

of these graphs.

In order to determine if the graphs of C2 and C3 are distinct on the large scale

we study large scale equivalences. One way in which to show that these graphs are

the same in the large scale would be to relate them via a large scale equivalence. On
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the other hand it would also be possible to distinguish these graphs if we could find

a large scale invariant that one of the graphs possesses, but the other does not. Of

main interest to us are quasi-isometries and quasi-isometry invariants. One important

quasi-isometry invariant we consider is Yu’s property A, see definition III.9. We show

that the graphs of Cg have interesting structures we name k-prisms. This structure

allows us to show that the spaces Cg do not have property A, for any g > 1, in fact

we are able to generalize this result and say that any graph with k-prisms for all k

does not have property A.

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

Figure I.1. Cayley Graph of C2. Here we depict the edges emanating from 0, 1,−1 in
the Cayley Graph of C2.
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CHAPTER II

GEOMETRIC GROUP THEORY

We note that many of the results in this section are well known and we follow

the development of [CM17] to delve into the background of geometric group theory.

Geometric group theory is an area of mathematics that studies groups by considering

them as geometric objects or allowing them to act on metric spaces. One way in which

to view a group as a geometric object is to consider the Cayley graph of the group.

Let G be a group with a fixed generating set S. We assume that the identity is not in

S and that S is symmetric in the sense that s ∈ S implies s−1 ∈ S. We define a graph

Γ = Γ(G,S), called the Cayley graph of G with respect to S as in the introduction: the

vertices of Γ are in one-to-one correspondence with the elements of G, we connect the

elements g and h in G with an edge precisely when there is an s ∈ S such that gs = h.

We view G as a metric space by taking the edge-length metric dS on Γ. More precisely,

for g and h in G, write g−1h as a word in the elements of S with minimal length, say

g−1h = s1s2 · · · sn with si ∈ S for all i = 1, 2 · · · , n. Then gs1s2 · · · sn = h, and there

is a path of length n between g and h in the Cayley graph. Thus dS(g, h) = n.

Alternatively, we could define a norm ‖·‖S on G with respect to the generating

set S by setting ‖g‖S = min{n : s1s2 · · · sn = g, si ∈ S}. The distance dS(g, h) =

‖g−1h‖S defines a metric on G called the left-invariant word metric.

Example II.1. The dihedral group of order 10 can be described as the symmetries

of a regular pentagon. It can be presented in terms of generators and relations as

D2·5 = 〈r, s | r5 = 1, s2 = 1, rs = sr−1〉.
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With S = {r, r−1, s}, we note that S−1 = S and thus S is symmetric. We compute

dS(rs, r2sr−1) = 2. Indeed, using the relations of D2·5, we find

dS(rs, r2sr−1) = ‖s−1r−1r2sr−1‖S = ‖s−1rsr−1‖S = ‖s−1sr−1r−1‖S = ‖r−2‖S = 2.

The Cayley graph of the dihedral group of order 10 with S = {s, r, r−1} is

indicated on the left-hand side of Figure II.1. Notice that vertices are connected by

(undirected) edges precisely when the two vertices differ by right multiplication by

an element of {s, r, r−1}. In the right-hand side of that figure, we indicate a geodesic

between the elements rs = sr4 and r2sr−1 = sr2.

r

r2
r3

r4

e

sr4

sr3

sr2

sr

s

r

r2
r3

r4

e

sr4

sr3

sr2

sr

s

Figure II.1. Cayley Graph of the Dihedral Group of Order 10.

Other interesting types of groups to consider are free groups. First we define

the free group of rank 2. Define a word in the letters a and b to be an arbitrary

finite string made up of the symbols a,a−1,b and b−1, for ease of notation we will

denote a−1 = A and b−1 = B. For instance the following are examples of words

in a and b, aaabbbaaa,AABABaab. We can also consider the empty word, which is

the string containing no letters. We define multiplication by concatenating words:

(aab, Bab) 7→ aabBab. Based on this definition multiplication by the empty word does

not change a string, so the empty word is the identity element in this group. We define
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a reduced word to be a word with the property that the symbols a and A or b and B do

not appear next to each other. We can now define the free group of rank 2 to be the

set F2 = {reduced words in a and b and the empty word} with multiplication defined

by concatenating then reducing. Similarly given an arbitrary set S we can define the

free group F (S) by first taking each element s ∈ S and creating an artificial inverse,

s−1 such that s, s−1 do not both belong to S. Now like F2 we define the elements of

F (S) to be reduced words in the elements of S where the multiplication is also defined

by concatenation. If S is a finite set of cardinality n then we denote F (S) by Fn.

eA a

b

B

Ab

bb

ab

AA

bA

BA

aa

ba

Ba

BB

AB aB

Figure II.2. Cayley Graph of F2

The Cayley graph of F2 can be visualized by drawing the vertex for the identity

element (the empty word) first and then connecting it via an edge to the vertices

a, b, A,B this process is then continued so each new vertex is connected to three new

vertices obtained from right multiplication of a, b, A,B. This idea can be extended

to any Fn. In fact, we see that the number of edges incident to each vertex will be

precisely twice the cardinality of S.
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A natural question to consider is the extent to which different choices of

generating sets give rise to different Cayley graphs. To look into this we consider the

Cayley graphs of the integers with the generating sets, {±1} and {±2,±3}. We see

from figure II.3 that Γ(Z, {±1}) is a line with each n ∈ Z connected via an edge to

n+ 1.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

Figure II.3. Γ(Z, {±1})

The Cayley graph of the integers with the generating set {±2,±3} will have

the same vertex set as that of Γ(Z, {±1}). In fact the vertex set for any Cayley graph

of the integers is n ∈ Z. However, now instead of an edge connecting n and n + 1

there are edges connecting n and n+ 2, n and n+ 3, this can be seen in figure II.4.

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

Figure II.4. Γ(Z, {±2,±3})

While it is true that different choices of generating sets can give rise to vastly

different metric spaces, in the case that G is finitely generated, any two finite generating

sets give rise to metric spaces that are large scale equivalent. For instance, the Cayley

graphs of Γ(Z, {±1}) and Γ(Z, {±2,±3} "look the same on the large scale". We define

two main large scale equivalences, bi-Lipschitz equivalences and quasi-isometries.

Definition II.2. [CM17] Let (X, dX) and (Y, dY ) be metric spaces. A function

f : X → Y is called a bi-Lipschitz embedding if there is some constant K ≥ 1 such
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that for all x1, x2 ∈ X,

1

K
dX(x1, x2) ≤ dY (f(x1), f(x2)) ≤ KdX(x1, x2).

Definition II.3. [CM17] A bi-Lipschitz embedding f is a bi-Lipschitz equivalence if

it is also surjective.

Definition II.4. [CM17] Let (X, d) be a metric space and let G be a group an action

by isometries of G on X is an isomorphism from G to the group of self isomorphisms

of X.

Theorem II.5. [CM17] Let G be a finitely generated group, and let S and S ′ be

two finite generating sets for G. Then the identity map f : G→ G is a bi-Lipschitz

equivalence from the metric space (G, dS) to the metric space (G, dS′)

Proof. First we note that G acts by isometries on itself with respect to any word

metric dS. Thus dS(g, h) = dS(1, g−1h), which is simply the word length of g−1h in S.

Hence it is sufficient to show there exists a constant K ≥ 1 such that for all g ∈ G

1

K
dS(1, g) ≤ dS′(1, g) ≤ KdS(1, g).

So we are simply comparing word lengths of g ∈ G for two different generating sets S

and S ′. Now since S is finite we can define,

M = max{dS′(1, s)|s ∈ S ∪ S−1 ≥ 1}.

So for any g ∈ G with word length n in S we have s1, s2, · · · , sn ∈ S ∪ S−1 such that
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g = s1s2 · · · sn. Now from the triangle inequality we obtain:

dS′(1, g) = dS′(1, s1s2 · · · sn)

≤ dS′(1, s1) + dS′(s1, s1s2s3 · · · sn)

≤ dS′(1, s1) + dS′(s1, s1s2) + dS′(s1s2, s1s2 · · · sn)
...
≤ dS′(1, s1) + dS′(s1, s1s2) + · · ·+ dS′(s1s2 · · · sn−1, s1s2 · · · sn).

We have that for 1 ≤ k ≤ n,

dS′(s1s2 · · · sk, s1s2 · · · sksk+1) = dS′(1, (s1s2 · · · sk)−1s1s2 · · · sksk+1) = sk+1,

and thus

dS′(1, g) ≤ dS′(1, s1) + dS′(1, s2) + · · ·+ dS′(1, sn)

≤M +M + · · ·+M

≤ nM.

Now since the word length of g in S is n we have that for all g ∈ G,

dS′(1, g) ≤MdS(1, g)

Letting K = M we have the upper bound. To obtain the lower bound one simply

needs to interchange S and S ′.

If we consider our previous example of the Cayley graph of the integers with

the generating sets S = {±1} and S ′ = {±2,±3}, then Theorem II.5 tells us that

the identity map is a bi-Lipschitz equivalence between the vertex set of Γ(Z, {±1})

and the vertex set of Γ(Z, {±2,±3}). Next we wish to extend this idea to the edge

sets of these two Cayley graphs. To this end we define the notions of quasi-isometric

embedding and quasi-isometry.
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Definition II.6. [CM17] Let (X, dX) and (Y, dY ) be metric spaces. A function

f : X → Y is said to be a quasi-isometric embedding if there exist constants A ≥ 1

and B ≥ 0 such that for all x, x′ ∈ X,

1

A
dY (f(x), f(x′))−B ≤ dX(x, x′) ≤ AdY (f(x), f(x′)) +B.

Definition II.7. [CM17] The metric spaces (X, dX) and (Y, dY ) are said to be quasi-

isometric if there is a quasi-isometric embedding f : X → Y , and there is some K ≥ 0

such that for every y ∈ Y there is some x ∈ X so that dY (y, f(x)) ≤ K. In this case,

we describe the map f as a quasi-isometry.

Again we come back to the question of different generating sets, and this time

we ask whether or not the geometric realizations of Cayley graphs are quasi-isometric.

First though we give our own proof of the following two propositions from [CM17]

about quasi-isometries.

Proposition II.8. The composition of quasi-isometries is a quasi-isometry.

Proof. Let (X, dX), (Y, dY ), and (Z, dZ) be metric spaces, and let f : X → Y and

g : Y → Z be quasi-isometries. Then by definition we have that there exists constants

K1, K2 ≥ 1 and C1, C2 ≥ 0 such that

1

K1

dX(x1, x2)− C1 ≤ dY (f(x1), f(x2)) ≤ K1dX(x1, x2) + C1

1

K2

dY (y1, y2)− C2 ≤ dZ(g(y1), g(y2)) ≤ K2dY (y1, y2) + C2.

9



Thus if x1, x2 ∈ X are arbitrary points this implies,

1

K2

dY (f(x1), f(x2))− C2 ≤ dZ(g ◦ f(x1), g ◦ f(x2)) ≤ K2dY (f(x1), f(x2)) + C2

1

K2

[
1

K1

dx(x1, x2)− C1]− C2 ≤ dZ(g ◦ f(x1), g ◦ f(x2)) ≤ K2[K1dx(x1, x2) + C1] + C2

then letting K = K2K1 and C = K2C1 + C2 we have the desired inequalities.

Before we give the second proposition we first need to introduce quasi-inverses.

Definition II.9. [CM17] Let (X, dX) and (Y, dY ) be metric spaces. A quasi-inverse

of a function f : X → Y is a function g : Y → X such that, there exists a k ≥ 0

such that for all x ∈ X we have dX(g(f(x)), x) ≤ k, and for all y ∈ Y we have

dY (f(g(y)), y) ≤ k.

Proposition II.10. A quasi-isometric embedding f : X → Y is a quasi-isometry if

and only if f has a quasi-inverse.

Proof. We begin with the forward implication. That is, we assume that f : X → Y is

a quasi-isometry, and we wish to show that f has a quasi inverse. Then by definition

of quasi-isometry there exist a D > 0 such that for all y ∈ Y there is an x ∈ X such

that dY (f(x), y) ≤ D. Given y ∈ Y choose an x ∈ X such that dY (f(x), y) ≤ D and

define g : Y → X by g(y) = x. Then for all y ∈ Y

dY (f(g(y)), y) = dY (f(x), y) ≤ D,

and for all x ∈ X by definition of quasi-isometric embedding we have

dX(g(f(x)), x) ≤ K1dY (f(g(f(x)), f(x)) +K1C1 ≤ K1D +K1C1.

Taking K = K1D+K1C1 the forward implication follows. Conversely, we assume that
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f has a quasi-inverse. Taking D = K we have for all y ∈ Y there exists an x ∈ X,

x = g(y) so that,

dY (f(g(y)), y) ≤ D = K.

Therefore f is a quasi isometry

The following corollary follows trivially from Proposition II.10.

Corollary II.11. [CM17] If f : X → Y is a quasi-isometry, and g : Y → X is a

quasi-inverse of f then g is a quasi-isometry.

Theorem II.12. [CM17] Let G be a finitely generated group, and let S and S ′ be

two finite generating sets for G. Then the geometric realization of the Cayley graph

Γ(G,S) is quasi-isometric to the geometric realization of the Cayley graph Γ(G,S ′).

Proof. First we note that there exists a quasi-isometry from the geometric realization

of any graph to its set of vertices under the path metric. This quasi-isometry is

obtained by sending each point lying on an edge to the closest vertex, understanding

that there are sometimes two choices. From Theorem II.5 we have that the identity

map f : G→ G is a bi-Lipschitz equivalence and thus clearly a quasi-isometry between

the vertex sets of Γ(G,S) and Γ(G,S ′). Proposition II.10 tells us that such a quasi-

isometry must have a quasi-inverse, which is also a quasi-isometry. Then considering

the quasi-isometries, f : Γ(G,S)→ G, g : G→ G, and h : G→ Γ(G,S ′) Proposition

II.8 tells us that the composition f ◦ g ◦ h : Γ(G,S)→ Γ(G,S ′) is the desired quasi

isometry.

Example II.13. The Cayley graph Γ(G,S) is quasi-isometric to the group G in the

metric dS described above via the identity map, with A = 1, B = 0, and K = 0.

11



We have been working towards the fundamental theorem of geometric group

theory, the Milnor-Švarc Lemma, but we need a few more definitions before we can

state the theorem.

Definition II.14. [CM17] Let (X, d) be a metric space. A geodesic segment is an

isometric embedding γ : [a, b]→ X, where a, b ∈ R and a ≤ b.

Definition II.15. [CM17] A metric space (X, d) is said to be a geodesic metric space

if for all x1, x2 ∈ X there exists a geodesic segment γ : [a, b]→ X such that γ(a) = x1

and γ(b) = x2.

Definition II.16. [CM17] A metric space (X, d) is said to be proper if for all x ∈ X

and all r > 0, the closed ball B(x, r) is a compact subset of X.

Definition II.17. [CM17] Let (X, d) be a proper geodesic metric space. An action

by isometries of the group G on X is said to be properly discontinuous if for each

compact set K ⊆ X the set {g ∈ G|gK ∩K 6= ∅} is finite.

Definition II.18. [CM17] Let (X, d) be a proper geodesic metric space. An action

on of the group G on X is cocompact if for any base point x0 ∈ X there is an R > 0,

such that for any x ∈ X there is a g ∈ G such that B(gx0, R) contains x.

Definition II.19. [CM17] Let (X, d) be a proper geodesic metric space. An action

on of the group G on X is geometric if it is a properly discontinuous and cocompact

action by isometries.

Now we state the Milnor-Švarc Lemma.

Theorem II.20. [CM17] Let G be a group, and let (X, d) be a proper geodesic metric

space. Suppose that G acts geometrically on X. Then G is finitely generated and G is

quasi-isometric to X.
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Proof. Let x0 ∈ X be fixed, then since G acts cocompactly on X we can pick a R > 0

so that the G-translates of the closed ball B(x0, R) cover X. Let S be the set of

nontrivial g ∈ G such that B(gx0, R)∩B(x0, R) 6= ∅. Then since G acts geometrically

on X, S is nonempty and finite with S = S−1. We show that S generates G. For ease

of notation we write B = B(x0, R). Then since (X, d) is proper we have that B is

compact ,and we can define

c =inf{d(B, gB)|g ∈ G, g 6= 1, g /∈ S}
=inf{d(x, gy)|x, y ∈ B, g ∈ G, g 6= 1, g /∈ S}.

Note that c > 0. Now since the action is proper we have that for any gB and B disjoint

and d(B, gB) = D there are finitely many translates which are at most distance D

away from B. Thus c is a minimum of a finite number of positive numbers and thus

must be positive.

Now we want to show that S generates G, so let g ∈ G with g /∈ S ∪{1}. Then

we have that d(x0, gx0) ≥ 2R+ c, which implies d(x0, gx0) ≥ R+ c. Hence there exists

a k ≥ 2 such that

R + (k − 1)c ≤ d(x0, gx0) ≤ R + kc.

Now we choose points x1, x2, · · · , xk+1 = gx0 on a geodesic segment connecting x0

and gx0 with d(x0, x1) ≤ R and d(xi, xi+1) ≤ c for 1 ≤ i ≤ k. Thus we have k + 1

elements in G, 1 = g0, g1, · · · , gk = gx0 where xi+1 ∈ giB for 0 ≤ i ≤ k. Now if we let

si = g−1
i−1gi for 1 ≤ i ≤ k then,

d(B, siB) = d(gi−1B, giB) ≤ d(xi, xi−1) < c.

13



Thus si ∈ S yet we have

s1s2 · · · sk = (g−1
0 g1)(g−1

1 g2) · · · (g−1
k−1gk) = gk = g,

and thus S generates G. We have shown that G is finitely generated, and now we

need to show that G is quasi-isometric to X under the word metric, dS. To this end

we define a map G→ X by g 7→ gx0. Clearly every point in X is within distance R of

some point gx0, that is, there exists a g ∈ G so that dX(gx0, x) < r. Now it remains

to be seen that,

1

K
dS(g, h)− C ≤ d(gx0, hx0) ≤ KdS(g, s) + C.

However, the equalities

d(gx0, hx0) = d(x0, (g
−1h)x0)

dS(g, h) = dS(1, g−1h)

mean that it suffices to show that there are constants K ≥ 1 and C ≥ 0 such that for

all g ∈ G,

1

K
dS(1, g)− C ≤ d(x0, gx0) ≤ KdS(1, g) + C.

Now let,

L = max{d(x0, sx0)|s ∈ S}

and define,

K = max{1/c, L, 2R}
C = max{1/K, c}.

14



Now let g ∈ G, then we consider three cases. If g = 1 then d(x0, gx0) = dS(1, g) = 0,

and thus the desired inequality follows. Next we consider g = s ∈ S; then we have

0 ≤ d(x0, sx0) ≤ 2R and dS(1, s) = 1. Thus we have,

1

K
ds(1, g)− C =

1

K
− C ≤ 0 ≤ d(x0, sx0) ≤ 2R ≤ KdS(1, g) + C.

Lastly we suppose that g /∈ S ∪ {1}. Then we have from the proof that S generates G

that if k is the largest possible integer with R+ (k− 1)c ≤ d(x0, gx0) then ds(1, g) ≤ k.

combining these inequalities yields,

R + (dS(1, g)− 1)c ≤ d(x0, gx0).

Since R ≥ 0 subtracting R from both sides of the inequality yields,

cdS(1, g)− c ≤ d(x0, gx0)−R ≤ d(x0, gx0).

The argument from Theorem II.5 yields d(x0, gx0) ≤ LdS(1, g). Thus we have

cdS(1, g)− c ≤ d(x0, gx0) ≤ LdS(1, g).

Therefore, since K ≥ L, K ≥ 1
c
and C ≥ c the desired inequalities follow, and thus G

is quasi-isometric to X.
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CHAPTER III

COARSE GEOMETRY

In the previous chapter we began to discuss the ideas of large scale equivalences,

in particular quasi-isometries and bi-Lipschitz equivalences. We wish to determine

whether or not C2 and C3 are quasi-isometric. One way to do this is to find a quasi-

isometry invariant to differentiate them. To this end we begin to explore amenability,

property A, large scale connectedness and asymptotic dimension, all of which we

show are quasi-isometry invariants. We find that they do not distinguish C2 and

C3. To begin, we discuss the notion of amenability through the geometric definition

introduced by Følner, which concerns the relationship between the volume of a set

and the area of its boundary. First we define the the R-boundary of a set as follows:

Definition III.1. [NY12] Let G be a group with the word length metric, and let A

be a subset of G. The R-boundary of A is the set

∂RA = {g ∈ G \ A|d(g, A) ≤ R}.

Definition III.2. [NY12] A finitely generated group G is amenable if for every R > 0

and ε > 0 there exists a finite set F ⊆ G such that,

#∂RF

#F
≤ ε.

Example III.3. [NY12] We see that any finite group is amenable. Take F = G then,

#∂RF

#F
= 0.

16



Example III.4. [NY12] The group Z is amenable. Given ε > 0 take n ∈ N such that

1
n
< ε and let R > 0. Then set F equal to the closed ball of radius nR centered at 0,

i.e. F = B(0, nR). Then we have δRF = {−R(n+ 1),−Rn−R+ 1, · · · ,−Rn− 1} ∪

{Rn+ 1, Rn+ 2, · · · , R(n+ 1)} and thus,

#∂RF

#F
=

2R

2Rn+ 1
≤ 1

n
.

Above we have given two examples of groups which are amenable. An example

of a group which is not amenable is the free group Fn, [NY12].

We now introduce two nice properties of amenability: that subgroups of finitely

generated amenable groups are amenable; and invariance of amenability under quasi-

isometries.

Theorem III.5. [NY12] Let G and H be finitely generated groups and, let H be a

subgroup of G. If G is amenable then H is also amenable.

Proof. We note that amenability is independent of our choice of generating set, thus

given a generating set ΣH of H we can pick a generating set ΣG of G so that ΣH ⊆ ΣG.

Now let R > 0, ε > 0, and let F ⊆ G be a finite set such that #∂RF
#F
≤ ε. Consider

the left cosets of H in G, {Hi}i∈N and let Fi = F ∩Hi for all i ∈ I. It is clear from

our choice of generating set that there is some index such that Hi ⊆ H for all i ∈ I.

We denote the R-boundary with respect to ΣG and ΣH as ∂GR and ∂HR , respectively.

Then since H is a subgroup of G, we have

#∂GRF ≥ #∂HR F =
∑
i∈I

#∂HR Fi.

ε ≥ #∂GRF

#F
≥
∑
i∈I

#∂HR Fi
#F

=
∑
i∈I

#Fi
#F

#∂HR Fi
#Fi

.
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Now we note that there must be some index i ∈ I such that #∂HR Fi

#Fi
≤ ε, since

otherwise we would obtain a contradiction to the amenability of G through the

equality
∑

i∈I
#Fi

#F
= 1. Therefore since all left cosets of H are isometric, Fi is the

desired set in H given R and ε.

We see that amenability is a quasi-isometry invariant and give an altered proof

of the one presented in [NY12].

Theorem III.6. Let G and H be finitely generated groups such that G is quasi-

isometric to H. Then if H is amenable so is G.

Proof. Let f : G → H be a quasi-isometry with constants A ≥ 1 and B ≥ 0. Now

since H is amenable given R > 0 and ε > 0 let FH ⊆ H be a finite set which satisfies,

#∂AR+BFH
#FH

≤ ε

and define,

FG = f−1(FH) ⊆ G.

Where f−1 is the quasi-inverse of f . We note that FG is finite and the R-

boundary of FG is mapped inside of the (AR +B) boundary of FH and thus,

#∂RFG ≤ #∂AR+BFH .

Thus, since we have #FH ≤ #FG,

#∂RFG
#FG

≤ #∂AR+BFH
#FH

≤ ε.
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We now give an equivalent property for amenability in finitely generated groups.

Let Fγ be the set {gγ|g ∈ F}. That is, Fγ is the right translation of F by γ.

Theorem III.7. [NY12] A finitely generated group is amenable if and only if for

every R > 0 and every ε > 0 there is a finite set F ⊆ G such that,

#(F∆Fγ)

#F
≤ ε

for all γ ∈ G with |γ| ≤ R.

Proof. Let R > 0, let ε > 0, and let F ⊆ G be a finite set. We consider sets F∆Fγ,

the symmetric difference of F and Fγ, and note that,

⋃
|γ|≤R

Fγ \ F = ∂RF.

Thus it is clear we have

#∂RF ≤
∑
|γ|≤R

#(Fγ \ F ) ≤
∑
|γ|≤R

#(Fγ∆F ). (III.1)

Now for all |γ| ≤ R

#(Fγ∆F ) = #(Fγ \ F ) + #(F \ Fγ) = #(F \ Fγ−1) + #(F \ Fγ).

Since |γ| = |γ−1|,

∑
|γ|≤R

#(Fγ∆F ) = 2
∑
|γ|≤R

#(Fγ \ F )

≤ 2#B(e, R) max
|γ|≤R

#(Fγ \ F )

≤ 2#B(e, R)#∂RF.
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From the above and (III.1) we obtain,

1

2#B(e, R)

∑
|γ|≤R

#(Fγ∆F ) ≤ #∂RF ≤
∑
|γ|≤R

#(Fγ∆F ). (III.2)

Now suppose G is amenable, and let F be a finite set which satisfies

#∂F

#F
≤ ε

2#B(e, R)
,

then we have
#(Fγ∆F )

#F
≤ 2#B(e, R)

#∂F

#F
≤ ε.

We note that the other direction follows in a similar manner from (III.2).

A similar result can be shown for left translation by γ by considering the map

f : G→ G given by f(g) = g−1.

Theorem III.8. [NY12] A finitely generated group is amenable if and only if for

every R > 0 and every ε > 0, there is a finite set F ⊆ G such that,

#(γF∆F )

#F
≤ ε

for all γ ∈ G with |γ| ≤ R.

We now discuss a weaker notion of amenability, called property A.

Definition III.9 ([Yu00]). A (discrete) metric space X is said to have property A if

for all R > 0 and all ε > 0, there exists a family {Ax}x∈X of finite, non-empty subsets

of X × Z≥1 such that

1. for all x, y ∈ X with d(x, y) ≤ R, we have #(Ax∆Ay)

#(Ax∩Ay)
≤ ε, and

2. there exists a B > 0 such that for every x ∈ X, if (y, n) ∈ Ax, then d(x, y) ≤ B.
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The conditions above tell us that Ax and Ay are almost the same provided

that d(x, y) ≤ R and are disjoint if d(x, y) ≥ 2B. We see the equivalent forms of

amenability given in Theorems III.7 and III.8 are similar to condition 1 from above.

Recall Examples III.3 and III.4 where we showed finite groups and the integers are

amenable. We now show that they also have property A.

Example III.10. [NY12] Given a finite group G, to show that G has property A, let

Ax = G× 1. Then it is clear that

#(Ax∆Ay)

#(Ax ∩ Ay)
= 0,

and the second condition is trivially satisfied. Therefore any finite group has property

A.

Example III.11. [NY12] We now show that the integers have property A. Given

ε > 0 take n ∈ N such that 1
n
< ε and let R > 0. Define Ax = B(x,R(n+ 1))× {1}.

Now if d(x, y) ≤ R then #(Ax∆Ay) ≤ 2R and #(Ax ∩ Ay) ≥ 2Rn, thus we have,

#(Ax∆Ay)

#(Ax ∩ Ay)
=

2R

2Rn
< ε

Definition III.12. [NY12] Let (X, d) be a metric space. Then X is called uniformly

discrete if there exists a constant C > 0 such that for any two distinct points x, y ∈ X

we have d(x, y) ≥ C.

Definition III.13. A uniformly discrete metric space X is called locally finite if for

every x ∈ X and every r ≥ 0 we have #B(x, r) <∞.

Definition III.14. A locally finite metric space X is said to have bounded geometry

if for every r ∈ R there exists a number N(r) such that for every x ∈ X we have

#B(x, r) ≤ N(r).
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We now show that property A is a quasi-isometry invariant.

Theorem III.15. [NY12] Let X and Y be quasi-isometric, uniformly discrete metric

spaces with bounded geometry. Then if Y has property A, X also has property A.

Proof. Let R > 0, ε > 0 and let f : X → Y be a quasi-isometry with constants

A ≥ 1, B ≥ 0. Now let By be a family of sets yielding property A for Y with ε
N

and

AR +B, where N = supw∈Y #f−1(w). For all x ∈ X we define Ax ⊆ X × N by,

Ax = {(z, n) ∈ X × N|(f(z), n) ∈ Bf(x)}.

It is clear from the construction that the family Ax is finite and there is an S ′ > 0 so

that Ax ⊆ B(x, S ′)× N. We also note that if x, y ∈ X with d(x, y) ≤ R then,

#(Ax∆Ay) ≤ N#(Bf(x)∆Bf(y)).

We also have that dY (f(x), f(y)) ≤ AR +B and thus,

#(Ax∆Ay)

#(Bf(x) ∩Bf(y))
≤ N

ε

N
= ε.

Finally noting that,

#(Ax ∩ Ay) ≥ #(Bf(x) ∩Bf(y))

we obtain the desired inequality,

#(Ax∆Ay)

#(Ax ∩ Ay)
≤ #(Ax∆Ay)

#(Bf(x) ∩Bf(y))
= ε.

Example III.16. We note that any tree has property A. To see this we need to show

that for every ε > 0 and for all R > 0, there exists a family {Ax}x∈T of finite subsets

of T × N and an r > 0 such that
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1. #(Ax∆Ay)

#(Ax∩Ay)
< ε, if d(x, y) ≤ R, and

2. Ax ⊂ B(x, r)× N for every x ∈ T .

Fix a geodesic ray γ0, and suppose that for all x ∈ T , γx is a ray that begins

at x with the property that γ0 ∩ γx is a geodesic ray. It is easy to see that such a γx

exists and is unique in a tree. Now let ε > 0 and R > 0 be given, and set r ≥ R
ε
. Put

Ax = γx([0, r])×{1}. Then, since (Ax∆Ay) = (Ax\Ay)∪(Ay\Ax) and both Ax and Ay

intersect γ0 except at possibly R places, we have that #(Ax∆Ay) < 2R. Furthermore,

#(Ax ∩ Ay) ≥ 2R
ε
, and so #(Ax∆Ay)

#(Ax∩Ay)
≤ ε. Finally, it is clear that Ax ⊂ B(x, r)× N.

Another quasi-isometry invariant that we consider is being large scale path

connected. To begin with we first define what it means to be k-path connected.

Definition III.17. Let X be a metric space and let k > 0 we say that X is k-path

connected if for each pair of points, x, y ∈ X there exists a finite number of points

x0, x1, · · · , xn ∈ X such that x0 = x, xn = y and d(xi, xi+1) ≤ k for each i.

Definition III.18. Let X be a metric space, we say that X is large scale path

connected if there exists a k > 0 such that X is k-path connected.

We now show that the notion of large scale path connected is a quasi isometry

invariant.

Theorem III.19. Let X and Y be metric spaces and assume that X is large scale

path connected and X and Y are quasi-isometric, then Y is large scale path connected.

Proof. Let X and Y be metric spaces and assume that X is large scale path connected.

To see that Y is large scale path connected let y, y′ be two points in Y . Then since

X is quasi-isometric to Y there exists points x, x′ ∈ X such that dY (y, f(x)) ≤ c and
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dY (y′, f(x′)) ≤ c for some c ≥ 0. Then sinceX is large scale path connected there exists

a k > 0 such that for all x, x′ ∈ X there exists points x0 = x, x1, · · · , xn = x′ ∈ X

with dX(xi, xi+1) ≤ k and

dY (f(xi), f(xi+1)) ≤ AdX(xi, xi+1) + AB ≤ A(k +B)

for some constants A ≥ 1 and B ≥ 0. thus there exists points y = y0, f(x0) =

y1, f(x1) = y2, · · · , f(xn) = yn+1, y
′ = yn+2 ∈ Y so that dY (yi, yi+1) ≤ max{A(k +

B), c)}. Therefore Y is large scale path connected.

It is quite easy to see that both C2 and C3 are large scale path connected with

k = 1, for the same reason that the integers themselves are large scale path connected.

The last quasi-isometry invariant that we consider is that of asymptotic dimen-

sion, which is a version of covering dimension. We first need to define the R-multiplicity

of a cover.

Definition III.20. [NY12] Let U = {Ui}i∈I be a cover of a metric space, X. Given

R > 0 the R-multiplicity of U is the smallest integer n so that for all x ∈ X the ball

B(x,R) intersects at most n elements of U .

Definition III.21. [NY12] Let X be a metric space. The asymptotic dimension,

denoted asdim X, of X is the smallest number n ∈ N ∪ {0} such that for all R > 0

there exists a uniformly bounded cover U = {Ui}i∈I with R-multiplicity n+ 1.

We now show that the asymptotic dimension is a quasi-isometry invariant.

Theorem III.22. [NY12] Let X and Y be quasi-isometric metric spaces. Then,

asdimX = asdimY.
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Proof. Let f : X → Y be a quasi-isometry with constants A ≥ 1 and B ≥ 0.

let r > 0 and U = {Ui}i∈I be a cover of Y satisfying Definition III.21 and set

R = Ar + B. Now we look at the cover of X given by V = {f−1(Ui)}i∈I and

note that this cover is uniformly bounded. Thus it remains to show that the r-

multiplicity of V is bounded by 1 + asdimX. We note by the construction of our cover

we have that BX(x, r) intersects the same number of elements in V as f(BX(x, r))

intersects in U . We also have that for all x ∈ X the image of BX(x, r) satisfies

f(BX(x, r)) ⊆ BY (f(x), Ar + B) = BY (f(x), R). Now BY (y,R) intersects at most

1 + asdimY we have that asdim X ≤ asdim Y . Conversely we can apply this same

argument to the quasi-inverse of f to obtain the inequality asdimY ≤ asdimX and

thus asdim X = asdim Y .

An interesting result from [BF08], tells us that a discrete metric space with

bounded geometry and finite asymptotic dimension has property A. However we show

in IV.11 that Cg does not have property A for any g > 1 and thus it must be the case

that C2 and C3 have infinite asymptotic dimension [AGV16].
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CHAPTER IV

RESULTS

In this chapter we continue to work towards determining whether (C2, d2)

and (C3, d3) are quasi-isometric, a question originally asked by Richard E. Schwartz

[Nat11, Problem 6]. To this end we define the notion of metric spaces having k-prisms

and by using an example of Nowak [Now07] together with the fact that Cg has k-

prisms we show that Cg fails to have property A for every integer g > 1. This can be

interpreted as saying that Cg is infinite dimensional in a strong sense, since uniformly

discrete metric spaces with finite asymptotic dimension have property A.

The following theorems of Nathanson [Nat11] give a method of computing

length in Cg.

Theorem IV.1 ([Nat11, Theorem 3]). Let g be an even positive integer. Every integer

n has a unique representation in the form

n =
∞∑
i=0

εig
i

such that

1. εi ∈ {0,±1,±2, . . . ,±g/2} for all nonnegative integers i,

2. εi 6= 0 for only finitely many nonnegative integers i,

3. if |εi| = g/2, then |εi+1| < g/2 and εiεi+1 ≥ 0.

Moreover, n has length `g(n) =
∑∞

i=0|εi|.

26



Theorem IV.2 ([Nat11, Theorem 6]). Let g be an odd positive integer, g ≥ 3. Every

integer n has a unique representation in the form

n =
∞∑
i=0

εig
i

such that

1. εi ∈ {0,±1,±2, . . . ,±(g − 1)/2} for all nonnegative integers i,

2. εi 6= 0 for only finitely many nonnegative integers i.

Moreover, n has length `g(n) =
∑∞

i=0 |εi|.

For any integers n and g > 2, Theorems IV.1 and IV.2 give a unique g-adic

expression for n that realizes a geodesic path from 0 to n. Thus there is N > 0 such

that n =
∑N

i=0 εig
i, εN 6= 0, and `g(n) =

∑∞
i=0 |εi|. We call n =

∑N
i=0 εig

i the minimal

g-adic expansion, and denote it by

[n]g = [ε0, ε1, . . . , εN ].

Example IV.3. We consider the case when g = 2 and n = 6. Then we have a

representation for n = 6 = 0 · 20 + 1 · 21 + 1 · 22. However this representation is not

the minimal g-adic expansion since ε1 = g/2 = 1 and ε2 = g/2 = 1 as well, so the

third condition is not satisfied. In this case the unique representation of n = 6 is

[6]2 = [0,−1, 0, 1].

Example IV.4. Let {0, k}n be the set of vertices of an n-dimensional cube at scale k

endowed with the `1-metric. The disjoint union
∐∞

n=1{0, k}n can be metrized in such

a way that it is a locally finite metric space that fails to have property A [Now07].
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In order to utilize Example IV.4, we define the notion of k-prisms. We show

that a metric space with k-prisms has disjoint isometric copies of {0, k}n for all n. In

particular, the existence of k-prisms is an obstruction to having property A.

Definition IV.5. Let k be a positive integer. We say that a metric space X has

k-prisms if for any finite set F ⊂ X, there exists an isometry T such that

1. T (F ) ∩ F = ∅ and

2. d(x, T (y)) = k + d(x, y) for all x, y ∈ F .

Remark 1. If a metric space X has k-prisms, then X has nk-prisms for all n ∈ N. To

show this we use induction on n. The base case is trivial sinceX having k-prisms means

X has 1k-prisms. Now we assume the X has (n− 1)k-prisms, and we wish to show

that X has nk-prisms. Since X has (n− 1)k-prisms for any finite subset F , there is an

isometry Tn−1 such that Tn−1(F )∩F = ∅ and d(x, Tn−1(y)) = (n−1)k+d(x, y). Since

X has k-prisms, we can find an isometry Tn taking the set F ∪Tn−1(F ) to an isometric

copy so that each vertex of F ∪ Tn−1(F ) is at distance k from its image. Thus, if we

restrict Tn to the image Tn−1(F ), we see that d(x, Tn(Tn−1(y))) = k + d(x, Tn−1(y)) =

k + (n− 1)k + d(x, y) = nk + d(x, y) and Tn(F ) ∩ F = ∅. Therefore X has nk-prisms

for all n ≥ 1.

Lemma IV.6. The space Cg has k-prisms for every k.

Proof. Let F 6= ∅ be an arbitrary finite subset of Cg. By Remark 1, it suffices to find

an isometry T such that F ∩ T (F ) = ∅ and d(x, T (y)) = 1 + d(x, y) for all x, y ∈ F .

We know from Theorem IV.1 and Theorem IV.2 that for any positive integer g we

have a unique representation for an integer x of the form, x =
∑∞

i=0 εig
i,where the

requirements of the εi change depending on whether g is even or odd, and εi = 0

28



for all but finitely many indices. Since F is finite, there is some positive integer m

so that εi = 0 for all i > m for each x ∈ F . Now, we define an isometry T that

takes x =
∑m

i=0 εig
i to T (x) =

∑m
i=0 εig

i + gm+2. We note that choosing gm+1 is not

sufficient since we cannot expect this expression to be in the canonical form. Clearly

T is an isometry. Now we see that

d(x, T (y)) = d

(
m∑
i=0

εig
i,

m∑
i=0

δig
m + gm+2

)
=

m∑
i=0

|δi − εi|+ 1 = d(x, y) + 1.

So d(x, T (y)) = d(x, y) + 1, and by construction F ∩ T (F ) = ∅. Therefore Cg has

k-prisms for each k.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure IV.1. Constructing a 1-prism over {1, 2, 4, 5} in C2.

In Figure IV.1 we give an example of a 1-prism constructed by the method of

this proof over a set in C2.

Lemma IV.7. A metric space X with k-prisms for some k contains an infinite

geodesic ray.

Proof. Since X has k-prisms we can start with a single point x ∈ X. Use the

29



isometry Tn from Remark 1 to obtain an infinite geodesic ray made up of the

points {x, T1(x), T2(T1(x)), T3(T2(T1(x))), ...}. This sequence has the property that

d(x, Tn(x)) = (n− 1)k + d(x, T1(x)) and d(Ti(x), Tj(x)) = ik − jk. Thus we have an

infinite geodesic ray.

Corollary IV.8. The space Cg contains an infinite geodesic ray.

Lemma IV.9. If X 6= ∅ has k-prisms for some k, then X contains an isometric copy

of {0, k}n. In particular, the space Cg contains an isometric copy of {0, k}n for each

n and for each k.

Proof. Let X be a metric space with k-prisms for some k. In order to show that X

has an isometric copy of {0, k}n, we use induction. To this end we note that if X

has k-prisms then for any finite subset F ⊂ X, there exists an isometry T such that

T (F ) ∩ F = ∅ and d(x, T (y)) = k + d(x, y) for all x, y ∈ F .

Taking any a ∈ X, we apply the k-prism condition to find a map T such that

d(a, T (a)) = k. Clearly, {a, T (a)} is an isometric copy of {0, k}. Now we assume that

X has an isometric copy, C, of {0, k}n−1. Then T (C) is also an isometric copy of

{0, k}n−1. We claim that C ∪ T (C) is an isometric copy of {0, k}n. This follows from

the fact that d(x, T (y)) = k + d(x, y) for all x, y ∈ C ∪ T (C). Therefore if X has

k-prisms then X has an isometric copy of {0, k}n.

In particular, since Cg has k-prisms for all k, Cg has an isometric copy of

{0, k}n for all k.

Theorem IV.10. Let X be any discrete metric space with k-prisms for some k ≥ 1,

then X does not have property A.

Proof. First we note that if Z has property A and Y ⊂ Z, then Y has prop-

erty A,[NY12]. Now given Lemma IV.6 we take Y to be the graph in Example IV.4,
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which does not have property A. Then since X has k-prisms for some k, we see that X

has an infinite geodesic ray and an isometric copy of {0, k}n for each n. Thus we have

disjoint k-scale n-cubes for every n and so Y ⊂ X. Since Y does not have property A,

X cannot have property A.

Corollary IV.11. Let g > 1 be an integer. Then Cg fails to have Yu’s property A.

Definition IV.12. The direct sum of a sequence {Gn}∞n=1 of groups Gn is the set of

all sequences {gn}∞n=1 where gn ∈ Gn and gn is equal to the identity element of Gn for

all but a finite set of indices. This is denoted ⊕∞n=1Gn.

Example IV.13. We remark that the fact that k is fixed in the definition of k-prisms

is important. We describe a space X with property A that contains an isometric

copy of {0, n!}n for each n. This space has the property that for every finite subset

F ⊂ X there is a k and an isometry T : F → X such that d(x, T (y)) = k + d(x, y)

for all x, y ∈ F , yet X does not have k-prisms for any fixed k. Our example is

X = ⊕∞i=1Z with the metric d(x, y) =
∑∞

i=1 i|xi − yi|, which Yamauchi showed has

property A [Yam15], and thus does not have k-prisms. To show X contains an

isometric copy of {0, n!}n for each n, we define an isometry f : {0, n!}n → X by

f(t1, . . . , tn) = ( t1
1
, t2

2
, . . . , tn

n
, 0, 0, . . .). Then, since each ti is either 0 or n!, it follows

that each ti is divisible by i, so ti
i
∈ Z. Also, for any s and t in {0, n!}n,

d`1(s, t) =
n∑
i=1

|si − ti| =
n∑
i=1

i

∣∣∣∣sii − ti
i

∣∣∣∣ = d(f(s), f(t)).

Thus X contains an isometric copy of {0, n!}n.
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