
Issues in Informing Science and Information Technology 

Towards an Interactive Learning Environment  
for Object-Z 

Selvarajah Mohanarajah, Ray Kemp, and Elizabeth Kemp 
Institute of Information Sciences and Technology 

Massey University, New Zealand 

S.Mohanarajah@massey.ac.nz  R.Kemp@massey.ac.nz  
E.Kemp@massey.ac.nz  

Abstract 
We have been engaged in research towards designing a software system called LOZ for learning 
the object oriented formal specification notation Object-Z. Initially, we conducted a survey to 
analyse the effectiveness of traditional methodologies for learning Z notation. In LOZ, the semi-
formal model UML is used in the intermediate phase between informal textual description and 
formal Object-Z description. We also employ a refinement unit that produces code from the 
specification. Based on the cognitive apprenticeship approach, we employ a four-phase instruc-
tional model in our system. Persuading the learners to be partially responsible for their own 
model and allowing them to decide their own levels of control over the learning process are key 
features of our system. 

Keywords:  Object-Z, Computer Based Learning (CBL), Intelligent Tutoring Systems (ITS). 

Introduction 
Reliability is an important requirement for software products. Formal specification is an impor-
tant vehicle to attain reliability in the software development process. Despite its importance in 
industry and commerce, formal specification has not been well received by software engineering 
students. Students often have real problems in understanding this topic. A leading object technol-
ogy consultant, Martin Fowler, worries that “formal methods are hard to understand and ma-
nipulate, often harder to deal with than programming languages” (Fowler 1998). One of the 
main reasons for this difficulty is that students usually get frustrated when attempting to abstract 
away the initial informal problem description given in some ambiguous natural language text to 
produce a formal specification. We believe a well designed Computer Based Learning (CBL) sys-
tem will alleviate this problem and provide great assistance in the learning of formal specifica-
tion. 

There are thousands of CBL systems reported in the literature for a variety of subjects. Within the 
discipline of software engineering, however, there has been little activity except in the production 
of systems for teaching computer programming. As a first step towards designing a software sys-

tem (LOZ) for learning formal speci-
fications, we conducted a survey to 
evaluate the effectiveness of tradi-
tional teaching methodologies and the 
impact of a formal method tool (For-
malizer) in learning formal methods. 
The results of the survey were encour-
aging. Our system, LOZ (Learn Ob-

Material published as part of this journal, either on-line or in print, 
is copyrighted by Informing Science. Permission to make digital or 
paper copy of part or all of these works for personal or classroom 
use is granted without fee provided that the copies are not made or 
distributed for profit or commercial advantage AND that copies 1) 
bear this notice in full and 2) give the full citation on the first page. 
It is permissible to abstract these works so long as credit is given. 
To copy in all other cases or to republish or to post on a server or 
to redistribute to lists requires specific permission from the pub-
lisher at Publisher@InformingScience.org    

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345086123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:E.Kemp@massey.ac.nz
mailto:R.Kemp@massey.ac.nz
mailto:S.Mohanarajah@massey.ac.nz


Teaching and Learning with BlueJ 

994 

ject-Z), uses a semi-formal graphical language, UML (Booch, Rumbaugh, & Jacobson, 1999), in 
the intermediate phase between natural language description and formal specification in Object-Z 
notation (Smith, 2000). To facilitate the students’ understanding, a refinement unit to generate 
program code automatically from the specification will be incorporated in LOZ. Learners build 
up their own understanding through four phases: conditioning, sketching, building, and exploring. 
These phases are somewhat modified versions of Allan Collins’ original cognitive apprentice 
model (Collins, Brown, & Newman, 1990). The underpinning learning theory in our instructional 
model is of a constructivist nature and caters for individualized learning.  To address uncertainty, 
an imprecise probability model is used to characterize the learner. The feedback LOZ gives de-
pends on the complexity of the topic and the learner’s level of understanding of the current topic.  
Learners will be able to view or update their own models. 

Formal Methods 

Formal methods are mathematically-based languages, techniques and tools for specifying and 
verifying systems. The goal is to enable developers to construct software/hardware systems that 
operate reliably. They may be used to create conceptual models in different phases of the soft-
ware engineering life cycle: analysis, specification, architectural design, verification, prototyping 
and testing (Tremblay, 2000). There are more than fifty formal methods available.  The Z nota-
tion  is one of the actively used formal methods (Stepney, Polack, & Toyn, 2003).  The notation 
Object-Z is one of the many approaches for adapting or extending Z to accommodate object ori-
ented features. It is essential to select the right method for the right application. Though formal 
methods are used at various levels such as software/hardware specification, verification (model 
checking and theorem proving) and animation, the key notion of formal methods is clearly formal 
specification. Specification is the foundation on which all further formal work can be done 
(Tremblay, 2000).  

There are more than a hundred tools available for various formal methods. About thirty were re-
ported in the literature for the Z notation only (and there are few reported for Object-Z). Almost 
all of them provide a syntax-directed editing facility in batch or on-line mode, and include exten-
sive help on language syntax. Symbols may be inserted using icon selection or using tags. The 
document may be expressed in LaTeX or some other suitable forms. The document may be 
printed in a pretty format easily. Some of these tools that are considered to be useful for learning 
formal specification will be discussed in detail later in this paper. 

Teaching and Learning Formal Methods 
There are many reports in the literature that reveal the various experiences of educators and re-
searchers in teaching formal methods at tertiary level and for practitioners. Jonathan Bowen’s 
experience speaks for the integration of computerized tools in his courses (Bowen, 2000). In their 
edited book Dean and Hinchey (1996) explain their role-play approach. Gibson and Mery (1998) 
explain their case-study approach as, “Rather than concentrating on one particular method, we 
advocate working on a set of small case studies, using the mathematics in a flexible and intuitive 
manner, where the students can appreciate the need for formality. Each case study should illus-
trate, in turn, the need for some fundamental formalism.”   

Similarly, we also use a case-study approach for teaching. In this study, LOZ uses appropriate 
worked examples to illustrate the underlying concepts, notations and techniques. It then gradually 
allows the learners to solve carefully selected portions of case studies by themselves. The system 
will help the learners to concentrate on the selected concepts by hiding irrelevant complex proc-
esses. The system may provide limited help for learners at various levels until they eventually 
become expert on the topic. 



 Mohanarajah, Kemp, & Kemp 

 995 

The following are some of the reasons stated in the literature for students’ difficulties in learning 
formal methods (Mikusiak, Hasaralejeko, & Koronthaly, 1995):  (1) insufficient mathematical 
ability (2) lack of motivation – unable to see the advantages of a complex notation (3) inability to 
abstract details. To overcome the motivation problem mentioned above, the students can be en-
gaged by demonstrating the tangible benefits of the formalization. For example, the system may 
automatically produce relevant code for the learner’s specification. In LOZ, we use a software 
animation tool (Refinement Unit) to improve the students’ motivation. To address student diffi-
culties with abstraction, we use UML in the intermediate phase. It is assumed potential users of 
LOZ will have sufficient knowledge and experience in the creation of UML models from infor-
mal textual description. Abstraction is an important intelligent tool for creating formal specifica-
tion from problem description. As Duke and Rose (2000) put it, “—based on teaching formal 
methods to students at all levels and to professional software engineers, the central difficulty 
faced initially is not the comprehension of the mathematical notation, but its application to cap-
ture the key abstractions of data and functionality”.  

When students create UML models they are dealing with a level of abstraction (mainly data and 
some functional abstraction). Therefore, by using a UML model in the intermediate phase we re-
duce the abstraction burden and allow the users to concentrate on the application of mathematical 
notation to the key abstractions. 

Related Research 
The software systems that are developed for learning formal specifications fall into two catego-
ries. The first category covers the formal method tools that are claimed to be useful for learning.  
These tools are in general developed by researchers in the formal specification discipline. The 
second category of the systems is developed principally for pedagogical purpose by the research-
ers in computer based learning discipline. We will discuss the first category CBL systems for 
Formal Methods in detail now. 

CBL Systems for Formal Methods 
Despite the number of tools for aiding the development of specifications, we have found no refer-
ence in the literature to CBL systems designed for actually learning formal methods. MEMO-II 
(Forcheri & Molfino, 1994) is the only existing CBL system we have found which is related to 
our research. As declared by its authors, MEMO-II is intended to be used in teaching/learning of 
programming with University students. It is an education oriented programming environment, 
which allows users to build programs from formal specifications via interaction with the system. 
Forcheri et al claim that learning to program requires modelling capabilities. A programming 
problem may be modelled using two approaches. One is a computational model depending on a 
programming paradigm, and the other is an abstract model independent of any paradigms. Learn-
ing to construct abstract models helps software practitioners to switch effortlessly between differ-
ent paradigms. MEMO-II follows the second approach, and additionally, Forcheri and Molfino 
(1994) assert that it also offers facilities to map this abstract model into effective implementa-
tions.  

 From a functional viewpoint, MEMO-II is more than a formal method tool which can provide a 
syntax sensitive editing/browsing environment, and validating, proving and animating capabilities 
with its own compiler.  From a pedagogical point of view (with regard to learning programming), 
it is a tool within which learners need to experiment using suitable examples. Learners are left to 
make their own comparison between specifications and resultant generated code. Furthermore, in 
order to learn a computer programming language, MEMO-II requires novices to learn a formal 
specification language, the syntax of which is equally complicated.   



Teaching and Learning with BlueJ 

996 

Another CBL system that has some linkage with our research is FLUTE (Devedzic et al. 2000), 
although FLUTE is intended to teach formal languages, rather than formal methods per se. 
FLUTE operates in three modes: teaching, examination and consulting. The pedagogical module 
is responsible for selecting one of these modes depending on the user’s choice. There are also 
student and explanation modules. FLUTE is more concerned about underlying theoretical aspects 
of formal methods than its software engineering application. It is more useful for computer sci-
ence students than software engineering students or practitioners.  The authors compared FLUTE 
with other ITSs, but no classroom evaluation is reported. 

Educational Formal Method Tools  
In the second category, there are various tools for formal specifications claimed to be able to be 
used for educational purposes (Zbrowser (Mikusiak et al., 1995), ZAL/ZED (Morrey, Siddiqi, 
Hibberd, & Buckberry, 1993), ZTC/ZANS(Jia 1995b; Jia 1995a) and VisualiZer (Yap 1999).  
These all require significant initial tutor guidance for novices, and can be used to stress certain 
topics but none can be regarded as providing a learning system for formal specification. We will 
discuss only two of these tools in detail.  

Zbrowser (Mikusiak et al., 1995) serves as a syntax-directed editor and browser for Z but lacks 
data type checking, proof or refinement facilities. Mikusiak et al. identify three main difficulties 
for students learning Z: a requirement for a mathematical background, the complicated notation 
of Z and the complex structure of Z schema. Zbrowser is designed to overcome these difficulties 
so that it can be used as a teaching aid. Features like the graphical representation for the Z data 
types using the table metaphor; the efficient interfacing mechanism to reduce short-term memory 
loads such as paragraph expansion-contraction facilities; extended subject sensitive error reports; 
on-line context sensitive help facilities, and problem oriented examples differentiate Zbrowser 
from many other tools for Z notation.  From a pedagogical point of view, all the above mentioned 
features make ZBrowser an educational tool.  Zbrowser was checked in a classroom with 40 sub-
jects and the authors claim that the tests proved that the subjects using Zbrowser performed better 
than control group in both quality and comprehension of Z specifications. 

The package ZAL/ZED is an integration of two tools ZED and ZAL. ZED is a typical formal 
specification editing tool which supports syntax and type checking and limited semantic checking 
with some context sensitive help facility. ZAL (Z Animation in LISP) is an animation tool that 
can generate a prototype in LISP which demonstrates the functionality of the intended system at 
an early stage of the development process. This package, the author maintains, encourages and 
facilitates an exploratory (rather than declarative) approach to formal specification, and in turn 
supports the  teaching process as this allows students to use a “try and see” approach. Though no 
formal evaluation is reported, the authors, based on the students’ feedback, provide empirical 
evaluation and assessment of ZED/ZAL package as follows: “Preliminary results indicate that in 
addition to the benefits which ZAL provides of increasing students’ confidence in their ability to 
reason in a concrete way about their own specification, it has also provided a test-bed for explora-
tion and experimentation” (Morrey et al., 1993). 

Survey on Z and Formalizer 
As noted earlier, there is no software available to teach formal methods. However, there are many 
software tools used to support teaching formal methods. We initially investigated whether any of 
these tools could enhance (or hinder) learning formal methods. Formalizer (Flynn, Hoverd, & 
Brazier, 1989) is such a tool mainly useful for preparing Z specification. It incorporates facilities 
such as a syntax-sensitive editor and a type/scope checker. A questionnaire was created using a 
five point Likert type scale to test eight hypotheses about the effectiveness of Z notation and the 
Formalizer in learning context.  



 Mohanarajah, Kemp, & Kemp 

 997 

The following 3 research questions were considered critical for the investigation: 

• Z is difficult to learn 

• Formalizer is difficult to learn. 

• Formalizer motivates students to learn Z. 

Subjects were third year software engineering students who had completed a basic software engi-
neering course in their second year and had just studied a course on formal methods. Twenty-nine 
out of thirty two subjects (more than 90%) returned the completed questionnaire. In general, the 
evaluation of the completed questionnaire reveals that the traditional way of learning formal 
method in classrooms (despite an experienced and efficient teacher and enthusiastic students) has 
many drawbacks. Note that the percentages given in the following section refer to the percentages 
of answers in the bottom or top two points of the scale as relevant. 

The main observations are: 

• More than 40% report that Z is difficult to learn 

• More than 60% report that Formalizer is difficult to learn. 

• Only 3% reported Formalizer motivated them to learn Z  

• Nearly 70% thought that the help facilities of Formalizer were useless.  

Novice users were found to be more exasperated by the interface of Formalizer. More than 90% 
of the subjects reported that Formalizer is annoying to use. The features such as type-checking 
that experienced users consider very useful were considered difficult by novices. Only about 25% 
of the subjects considered some special features in Formalizer were really useful.  

None of the subjects disagreed with the fact that the “would be added features” mentioned in the 
questionnaire (e.g. context sensitive feed-back) for Formalizer would make Z easier to learn. 
More than 90% of the subjects realized that an on-line tutorial with proper feedback would help 
them to learn Z notation while using Formalizer (an attachment given with the questionnaire 
demonstrated the difference between Formalizer’s help and the possible feedback that a ‘context-
sensitive coach’ could provide in a similar situation).  

We strongly believe that this situation can be improved by using a software application such as 
LOZ which will provide an effective learning environment and includes remedies for the draw-
backs identified. 

Our CBL system - Learn Object-Z (LOZ) 
Our system, LOZ, differs significantly from the ones described in the previous sections. It is an 
environment where the learner builds his or her own knowledge while interacting with the sys-
tem. The pedagogical approach in LOZ is based on constructivist learning theory and is tailored 
to individual learner’s requirements. Unlike ZED/ZAL, the animation unit in LOZ is not a main 
component, but, instead, helps to preserve student motivation and interest. 

A potential user of LOZ is expected to be a software engineering student or a practitioner who 
wants to learn this particular discipline. The learner tries to build their knowledge in this disci-
pline by interacting with the system. This may happen in different stages. The system may guide 
the learner during their investigation. In order to give effective guidance, the system needs to 
model the learner’s current understanding of the subject. In many cases, users’ responses are ana-
lyzed in a Mentor model to provide appropriate feedback and further actions. For this purpose, 
the learner model provides the required information about the user and the subject unit provides 



Teaching and Learning with BlueJ 

998 

domain specific knowledge. The Refinement unit in this design helps to keep the motivation of 
the learner high. It could automatically generate programming code for some selected formal 
specification portions when possible.  

The architecture of the proposed system will be based on the concept of a guided learning envi-
ronment where the learner has considerable control over their learning process. Figure 1 gives a 
high level view of its structure. 

Four-Phase Model 
The basic information in the system is roughly grouped into different lessons. Each lesson con-
sists of several topics and each topic may have several sub-topics. A leaf-topic usually corre-
sponds to various supporting atoms. An atom may be, for example, a video-clip, textual descrip-
tion, portion of worked example or an URL. In the structural view of the system, a preferred order 
in which these topics could be learned is given as a network. For example, in a lesson “Introduc-
ing Formal Specification”, a topic is a “Requirement should be specified precisely and unambi-
guously”. Some other sub-topics are given in Figure 2. 

We use a four-phase learning model in this research, which is based on the cognitive apprentice-
ship concept. The original model is based on situated cognition theory that proposes that the 

L
ea

rn
e

r 

Interface for Intelligent 
Learning Environment 

R
ef

in
em

en
t U

ni
t 

M
en

to
r M

od
el

 

Learner 
Model 

Figure 1: Architecture of LOZ 

Subject 
Unit 

Information 

Control 

 

 

Requirements should be specified precisely and unambiguously

Stake-holders speak same concepts in different ways

Natural language is not suitable for specifying requirements

Unclear specifications caused several disasters

Introducing Formal Specification

Figure 2: Curriculum Tree 

Requirements should be specified precisely and unambiguously

Stake-holders speak same concepts in different ways

Natural language is not suitable for specifying requirements

Unclear specifications caused several disasters

Introducing Formal Specification

Figure 2: Curriculum Tree 
 



 Mohanarajah, Kemp, & Kemp 

 999 

learning is naturally tied to authentic activity, context and culture. This learning model suggests a 
paradigm of situated modelling, coaching and fading away to empower the learner. The learner is 
enabled to articulate and reflect on their own knowledge and skills (Collins et al., 1990). Since 
our system now does not support a collaborative learning process effectively, we simplified the 
original model to suit our purpose.  

In our model, for each leaf-topic the system encourages the learner to go through four phases: 
conditioning, inspecting, building, and exploring. Initially the learner’s cognitive state is condi-
tioned for a new topic. In this stage, the system tries to prepare the learner for the new topic. The 
learner’s previous knowledge of the current topic, if any, should be revised. In the inspection 
stage, which is similar to Collins et al.’s modelling stage, the learner will form an outline of the 
topic by examining some worked examples and existing solution models. The user is able to in-
spect the problems and solutions at various levels. In the building stage, which is similar to the 
original exploration stage, learners build their own understanding on the topic by solving increas-
ingly challenging problems in related subjects. Finally, in the exploration stage the learner is en-
couraged and empowered to critically analyse and challenge what they have learned so far and to 
learn more through other means such as web or email etc. This is mainly through discussions with 
peers, mentor and other relevant sources. Figure 3 shows a snapshot of the main window in LOZ 
which consists of main menu, tool bar, navigational bar, case-study access area, status bar, main-
learning box and sub-learning box. 

Figure 4 shows a class-schema in Z together with the corresponding error report produced by 
Formalizer (Flynn et al., 1989). Although a professional might find the Formalizer’s message use-
ful, the technical level of detail could confuse novices. Consequently, it may be difficult for them 
to identify the misconception or error from this feedback. LOZ will provide a more novice-
oriented response and will guide the student towards an acceptable solution.  For this example, it 
would be pointed out to the learners that the basic type PERSON can only represent a single per-
son and not a collection, and that the set operation, � (sub-set), can only be used between two 
sets.  

Requirement Specification should be unambiguous!
The Requirement Specification document is used as a basis 
for different people for different purposes.
Programmers use it for further design and implementation.
Client regards it as the promised solution.
Based on this, cost estimates and time schedules are made.
Contracts may be established!
Feel it � Ambiguous specifications may cause disasters

Exploration
Some people argue that the time 
spent on requirement specification is 
unnecessary � more
What is eXtreme Programming?

Figure 3: LOZ – main screen

tool bar navigational bar Sub-learning boxMain-learning box Case-study access

Requirement Specification should be unambiguous!
The Requirement Specification document is used as a basis 
for different people for different purposes.
Programmers use it for further design and implementation.
Client regards it as the promised solution.
Based on this, cost estimates and time schedules are made.
Contracts may be established!
Feel it � Ambiguous specifications may cause disasters

Exploration
Some people argue that the time 
spent on requirement specification is 
unnecessary � more
What is eXtreme Programming?

Figure 3: LOZ – main screen

Requirement Specification should be unambiguous!
The Requirement Specification document is used as a basis 
for different people for different purposes.
Programmers use it for further design and implementation.
Client regards it as the promised solution.
Based on this, cost estimates and time schedules are made.
Contracts may be established!
Feel it � Ambiguous specifications may cause disasters

Exploration
Some people argue that the time 
spent on requirement specification is 
unnecessary � more
What is eXtreme Programming?

Figure 3: LOZ – main screen

tool bar navigational bar Sub-learning boxMain-learning box Case-study access



Teaching and Learning with BlueJ 

1000 

Learner Model and Feedback 
LOZ is not a passive learning environment. In order to guide learners actively it needs to model 
them efficiently. The gap between the available evidence and a suitable conclusion will be high in 
our system. Furthermore, as we allow high-level of learner control we also face the assignment of 
credit problem. The feedback LOZ gives depends on the learners’ level of understanding of the 
topic, their background knowledge and the complexity level of the topic itself. Table 1 explains 
various types of feedback (derived from Mason and Bruning (1999)). 

Table 1: Feed back Types 

                            Action 
Feed  back type 

Verify Answer 
Given 

Response 
Analyzed 

Comments 

No feed-back no no no Total marks only 

Knowledge-of-Response yes no no Each item is verified 

Answer-Until-Correct yes no no Repeats same topic 

Knowledge-of-Correct     
Response  

yes yes no For each item answer is given 

Topic- Contingent yes yes no Directs to the literature 

Response-Contingent yes yes yes Analyze both answers 

Bug-related yes no yes Bug identified,  directs to self-
correction 

Attribute-isolation yes yes no Focus on Key concepts. 

 

The decision making process in LOZ for the feedback is explained in Table 2. In order to address 
the uncertainty efficiently we need to use some imprecise probability model for our learner 
model. A fuzzy model is suitable for our system as it needs to deal with imprecise user interac-
tions. The fuzzy model was originally suggested for student modeling by Hawkes et al (1990).  

Table 2: Feed back Type and Timing in LOZ 

New Learner Expert Learner 

 

Basic Topic Advance 
Topic 

Basic Topic Advance Topic 

Feedback 
Timing 

Delayed Delayed Immediate Delayed 

 

Figure 4: Student’s error and Formalizer’s feedback 

 

 



 Mohanarajah, Kemp, & Kemp 

 1001 

Feedback 
Type 

Response Con-
tingent 

Topic Contingent Answer-until-
correct 

Topic Contingent 

Next Topic Lower Level Lower Level Same level Lower Level 

The learner model provides an estimate of the current user as a novice, moderate or expert. For a 
particular case, a moderate type learner may be considered expert or novice temporarily. If a new 
learner makes a mistake in a basic level topic they will not be given a response immediately, in-
stead the system tries to guide them from a lower level topic until the earlier mistake can be iden-
tified. However, response contingent feedback is always possible on a request. This feedback ex-
plains why an answer of the user is wrong and argues also for the correct answer. For an experi-
enced learner, if a mistake is made on a basic level topic, LOZ initially assumes it is just a slip 
and provides immediate feedback. LOZ allows the learner to correct the error immediately. After 
that, however the same level topic is presented to the learner in order to make an intelligent 
judgment about their level of understanding.  

Conclusion 
LOZ is an intelligent learning system to learn Object-Z. It uses a four-phase learner model that 
closely matches with the cognitive apprentice model of instruction. It is mainly based on learning 
by studying examples and solving suitable problems. The system consists of several case studies 
and their requirement specifications in English as well as in UML. Some case studies are used as 
worked examples. The system will not be able to generate a formal specification document from a 
given UML description. If that is a case we only need to learn UML instead of formal methods. 
The learner will be able to inspect as well as alter his or her own model. Eventually, the learner 
will reach a phase where they are empowered to challenge their own understanding against vari-
ous knowledge sources. 

The immediate benefit of this research is the design models of a CBL system for a formal specifi-
cation (Object-Z notation). Secondly, our research will contribute towards identifying efficient 
instructional design and learner modelling templates or techniques for CBL systems. Moreover, 
we value the social aspects of the learning activity, and in future, this research will be extended 
towards designing a collaborative web-based learning environment for formal specification in 
object oriented notation Object-Z. 

Converting a semi-formal model such as UML to a formal model such as Object-Z is a challeng-
ing problem. This on-going research will attempt to address several such problems. We hope 
there will be some Community Object-Z Tool project (similar to the CZT- Community Z Tool 
project : see (CZT-Project 2003)) initiated in the future to integrate various Object-Z tools, and in 
that situation we speculate that LOZ will play an important role. 

References 
Booch, G., Rumbaugh, J. & Jacobson, I. (1999). The UML user guide. Addison-Wesley. 

Bowen, J. P. (2000). Experience teaching Z with Tool and Web support. London: Center for Applied For-
mal Methods, South Bank University. 

Collins, A., Brown, J., S. & Newman, S., E. (1990). Cognitive apprenticeship: Teaching the crafts of read-
ing, writing and mathematics. In L. B. Resnick, Knowing, learning and instruction: Essays on honor of 
Robert Glaser (pp. 453-494). Hillsdale, NJ: Lawrence Erlbaum. 

CZT-Project (2003). Retrieved February 17, 2004 from http://czt.sourceforge.net  

Dean, N., C. & Hinchey, M., G. (1996). Formal methods and modeling in context. In N. Dean, C. & M. 
Hinchey, Teaching and learning formal methods. London: Academic Press. 



Teaching and Learning with BlueJ 

1002 

Devedzic, V., Debenham, J., & Popvic, D. (2000). Teaching formal languages by an intelligent tutoring 
system. Education Technology & Society, 3 (2), 2000. 

Duke, R. & Rose, G. (2000). Formal object-oriented specification using Object-Z. London: Macmillan. 

Flynn, M., Hoverd, T., & Brazier, D. (1989). Formalizer- An interactive support tool for Z. Fourth Annual 
Z User Meeting. Oxford: Springer-Verlag. 

Forcheri, P. & Molfino, M. T. (1994). Software tools for the learning of programming: A proposal. Com-
puters Education, 23 (4), 269-278. 

Fowler, M. (1998). UML distilled; Applying the standard modeling language. Addison Wesley Longman. 

Gibson, P. & Mery, D. (1998). Teaching formal methods: Lessons to learn. IWFM, Ireland. 

Hawkes, L. W., Derry, S. J., & Rundensteiner, E. A. (1990). Individualized tutoring using an intelligent 
fuzzy temporal relational database. International Journal of Man-Machine Studies, (33), 409-429. 

Jia, X. (1995a). A tutorial of ZANS -- A Z animation system. Chicago: DePaul University. 

Jia, X. (1995b). ZTC: A type checker for Z, user's guide. Chicago: DePaul University. 

Mason, J. B. & Bruning, R. (1999). Providing feedback in computer-based instruction: What the research 
tells us. Retrieved February 17, 2004 from http://dwb.unl.edu/Edit/MB/MasonBruning.html  

Mikusiak, L., Hasaralejeko, J. & Koronthaly, D. (1995). Z Browser - Tool for visualization of Z specifica-
tions. ZUM'95  - 9th International Conference of Z Users. Springer-Verlag. 

Morrey, I., Siddiqi, J., I, A, Hibberd, R. & Buckberry, G. (1993). Use of a specification construction and 
animation tool to teach formal methods. IEEE COMPSAC 93, The Seventeenth Annual International 
Computer Software and Applications Conference, Phoenix, Arizona, USA. 

Smith, G. (2000). The Object-Z specification language. Kluwer Academic Publishers. 

Stepney, S., Polack, F. & Toyn, I. (2003). Patterns to guide practical refactoring: Examples targeting pro-
motion in Z. ZB 2003: Formal specification and development in Z and B. Third International Confer-
ence of B and Z Users. Turku, Finland. 

Tremblay, G. (2000). Formal methods: Mathematics, computer science or software engineering. IEEE 
Transactions on Education, 43 (4). 

Yap, C. N. (1999). Visual-Z: A methodology and environment for developing visual formal Z specifications. 
Ph.D. thesis. 

Biographies 
Mohan is an Assistant Lecturer in the Institute of Information Sciences and Technology at 
Massey University, New Zealand. He has a B.Sc. (Hons) in Mathematics and an M.Sc. in Com-
puter Science. He is currently doing a PhD in Computer Science at Massey University. Mohan 
has served as a reviewer for several international conferences and been on the program committee 
for one. His research interests include Computer Based Learning, Artificial Intelligence, Formal-
izing UML, Object Orientation in Formal Methods and Software Engineering Education 

Ray Kemp is currently Associate Professor in Computer Science at Massey University, New 
Zealand. Ray has a B.Sc. (Hons) in Mathematics, an M.Sc. in Computer Science and a PhD. He 
has published three Books and over fifty papers. Research grants include $1,600,000 as part of 
team on group research into learning environments (2000) and a Post-Doctoral Position worth 
$84,000 (1997). Ray has chaired or co-chaired three international conferences and been on the 
program committee for eight others. His teaching interests include formal methods, declarative 
programming and artificial intelligence. 

Elizabeth Kemp is an Associate Professor in the Institute of Information Sciences and Technol-
ogy at Massey University, Palmerston North.  Her qualifications include a Ph.D. in Computer 

http://dwb.unl.edu/Edit/MB/MasonBruning.html


 Mohanarajah, Kemp, & Kemp 

 1003 

Science and an MBS with First Class Honors in Information Systems.  She was awarded the 
ANCCAC medal by the Australian Computer Society.  Her research interests are wide-ranging, 
including Computers and Education, Software Engineering Practice, Human-Computer Interac-
tion, Problem Solving and Knowledge Acquisition. Subjects taught over the years include Soft-
ware Engineering, Database systems, Object-Oriented Analysis and Design, Human-Computer 
Interaction, Security in Information Systems and Expert Systems. 

 


