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We explore different variations of the Greenberg Unrelated Question RRT

model for a binary response (yes or no). In one variation, we allow m independent

responses from each respondent. In another variation, we use inverse sampling where

we record the number of responses leading up to the kth "yes" response. It turns out

that for m > 1, the variance (theoretical and empirical) of the multiple independent

response model decreases significantly relative to the regular Greenberg et al. (1969)

model (m = 1). Furthermore, it was also noticed that for k > 1, the variance (the-

oretical and empirical) of the inverse sampling model decreases significantly as well

relative to the inverse sampling model for k = 1. Thus, it turns out that both varia-

tions produce more efficient models. These results have been validated by theoretical

comparisons, extensive computer simulations, and a field survey.
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CHAPTER I

INTRODUCTION

1.1 Social Desirability Bias

Social desirability response bias (SDB) refers to the tendency of research sub-

jects to give socially desirable responses instead of responses that represent their true

feelings [7]. The bias in responses due to this personality trait becomes a major issue

when the scope of the survey involves sensitive topics such as politics, religion, and

environment; or personal issues such as drug use, cheating, and smoking [7]. This is

evident throughout the literature.

Hebert et al. (1995) found that self-report of dietary intake could be biased

by social desirability or social approval which in turn affected the risk estimates in

epidemiological studies [10]. These constructs produced response set biases, which

were seen when testing in domains characterized by easily desirable responses. Given

the social and psychological value attributed to diet, assessment methodologies used

most commonly in epidemiological studies are specifically vulnerable to these biases

[10].

Fernandes and Randall (1992) found that social desirability was present when

a questionnaire was administered under varying conditions of anonymity and with

different measurement techniques for the social desirability construct [3]. Results

showed that a social desirability bias was seen in the majority of relationships studied,

and for the most part, played a little role [3]. While the measure of social desirability
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affected the strength and relationship type, the condition of anonymity had relatively

little effect on the level of social desirability [3].

Whenever possible, it is desirable to measure the extent of this bias present

in responses to a survey by using a social desirability scale within the survey [7]. A

number of methods to take care of this issue are suggested in the literature. One

method that could help circumvent SDB is called the randomized response technique

(RRT), which was introduced originally by Warner (1965) [15] and then generalized

by other researchers such as Greenberg et al. (1969, 1971) [5] [6], Warner (1971) [16],

Klein and Spady (1993) [11], Gupta et al. (2002) [8], and Gupta et al. (2010, 2013)

[13] [9]. RRT Models allow sensitive information to be collected without showing the

individual’s sensitive status [15].

There are many types of RRT Models that are useful in interpreting survey

data. However, for the sake of simplicity, we will concentrate on two types: regular

RRT Models and optional RRT Models.

1.2 Regular RRT Models

The following sections present four models that are useful in understanding

how regular RRT Models work: both the Warner’s Binary Model (1965) and Warner’s

Quantitative Model (1971), and both the Greenberg et al. (1969) Binary Model and

Greenberg et al. (1971) Quantitative Model.

1.2.1. Warner’s Binary Model (1965)

Suppose we are interested in estimating the proportion of people who submit-

ted an incorrect tax return last year on purpose. For this survey, we have a deck of

cards that contains two types of questions:
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Question 1. Did you submit an incorrect tax return last year?

Question 2. Did you submit a correct tax return last year?

A respondent picks Question 1 with probability p and picks Question 2 with

probability 1− p, where p is known to the researcher. Thus, the respondent will say

"yes" in two settings:

• when he/she submitted an incorrect tax return last year and the card picked

contained Question 1

• when he/she submitted a correct tax return last year and the card picked con-

tained Question 2

The observed proportion of "yes" responses in the sample is linearly related to the

unknown proportion π of those who submitted an incorrect tax return last year on

purpose as shown below.

Let py be the probability of a "yes" response [15]. Note that

py = pπ + (1− p)(1− π).

We obtain the estimated value of py as p̂y = n1

n
where n1 is the number of respondents

who answered "yes" from a sample size of n. Thus, our estimate of π ends up being

the following.

π̂ =
n1

n
− (1− p)
2p− 1

.
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The variance of this estimator, as given in Warner (1965) [15], is

V ar(π̂) =
π(1− π)

n
+

p(1− p)
n(2p− 1)2

.

The term p(1−p)
n(2p−1)2

represents the penalty for using the randomized response model

to estimate π. Furthermore, notice that this penalty is inversely proportional to n.

Thus, choosing a larger n value leads to reducing the penalty.

1.2.2. Greenberg et al. (1969) Binary Model

As shown above, the initial Warner design involved the use of two related

questions which divided the sample into two mutually exclusive and complementary

sections. There is another randomized response design known as an unrelated question

design which was introduced by Greenberg et al. (1969) [5].

In the unrelated-question model, the sample is divided into two mutually ex-

clusive groups. It was suggested that the respondents’ confidence in the anonymity

provided by the technique might be further enhanced, and hence the veracity of

their responses, if one of the two choices offered to the respondent referred to a non-

sensitive, innocuous attribute, say Y , which was unrelated to the sensitive attribute

A [5]. Two such binary questions (in statement form) might be:

• "Did you have an induced abortion last year?"

• "Were you born in the month of April?"

The respondent picks either of the two questions above based on the outcome

of a random experiment. However, only one of the questions is related to the sensitive

characteristic while the other question is not, due to the fact that the true proportion
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of "yes" answers to the unrelated question would be either known or can be estimated

from an independent survey.

In these models, there is no distinction as to whether an individual considers

the associated question sensitive. Furthermore, the responses can be unscrambled

at the aggregate level but not at the individual level [9]. Thus, unlike Warner’s

technique from the previous section, at least some of the respondents would have

the reassurance that they answered a wholly unrelated question, resulting in more

respondent cooperation than Warner’s technique [9]. More detail (the theoretical

aspect) for this method will be explained in Chapter III.

1.2.3. Warner’s Quantitative Model (1971)

Warner (1971) proposed several quantitative RRT models including the fol-

lowing model.

Let X represent the true sensitive variable of interest with unknown mean µX

and unknown variance σ2
X , and S represent a scrambling variable with known true

mean µS and known variance σ2
S, where S is independent of X [16]. Let Y represent

the reported response. Thus

Y = X + S.

The expected response is then given by

E(Y ) = E(X) + E(S)

= µX + µS.
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Estimating E(Y ) by the sample mean (Ȳ ) of the reported responses, an unbiased

estimator for the mean of the sensitive variable is obtained as shown below

µ̂X = Ȳ − µS.

The variance of this estimator is given by

V ar(µ̂X) = V ar(Ȳ )

=
σ2
Y

n

=
σ2
X

n
+
σ2
S

n
.

In the above equation, the σ2
S

n
term is the penalty for using the RRT model.

1.2.4. Greenberg et al. (1971) Quantitative Model

Greenberg et al. (1971) Quantitative Model is a quantitative version of Green-

berg et al. (1969) Binary Model.

In this model, a known proportion of respondents (p) is given the sensitive

question with response A randomly, and the remaining proportion (1 − p) of the

respondents is given a non-sensitive question with response B where the mean (µB)

of the non-sensitive variable is known [6].
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Let a sample of size n be drawn with replacement. Also, let the reported

response be Z [6]. Then we have

Z =

 A with probability p

B with probability 1-p, and

The expected value of Z is given by

E(Z) = pµA + (1− p)µB.

Using the expression for E(Z) from above, µA can be estimated using the sample

mean of reported responses (Z̄) [6]. Estimating E(Z) by Z̄, we obtain

µ̂A =
Z̄ − (1− p)µB

p
.

The variance of the estimator above is given by

V ar(µ̂A) =
σ2
Z

np2
,

where σ2
Z = σ2

Y + σ2
S[(1− T )W ] + σ2[(1− T )W ]{1− [(1− T )W ]}.

1.3 Optional RRT Models

For this section, we discuss three models that will help us in understanding

how optional RRT Models work: Gupta et al. (2002) [8] Multiplicative Optional
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Model, Gupta et al. (2010) [13] Two-Stage Additive Optional Model and Gupta et

al. (2013) [9] Optional Unrelated-Question Randomized Response Model.

1.3.1. Gupta et al. (2002) [8] Multiplicative Optional Model

Gupta et al. (2002) [8] came up with multiplicative optional scrambling in

which a simple random sample of size n with replacement was taken and within

this sample, an unknown proportion (W) of respondents scramble their responses in

the case of perceiving the question as sensitive, and reporting the actual response

otherwise.

Let Z denote the reported response and Y denote the true response of the

sensitive study variable. Suppose that there was a deck of cards that was provided

to the respondent. Each card within the deck has numbers that follow a known

probability distribution, S, which is independent of Y , which has mean E(S) = 1

and known variance σ2
S. The respondent picks a card and gives a scrambled response

in the case he/she sees the question as sensitive, and reports only Y otherwise. Let

W denote the probability of reporting a multiplicatively scrambled response where

W is an unknown parameter and is known as the sensitivity level of the research

question. Therefore, in this model, there are two unknown parameters that need to

be estimated: µY and W . Also,

Z =

 Y with probability 1−W

Y S with probability W,
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which leads to

E(Z) = E(Y ).

Taking into account the sample mean of the reported responses (Z̄), we can obtain

µ̂Y (an estimate of µY ) which is given by:

µ̂Y = Z̄.

Furthermore, notice that

V ar(µ̂Y ) =
1

n
V ar(Z)

=
1

n
[σ2
Y +Wσ2

S(σ2
Y + µ2

Y )].

Also, note that

Z = STY where T ∼ Bernoulli(W ).

Using this relation, the parameter W is estimated as follows:

ln(Z) = T ln(S) + ln(Y )

E(ln(Z)) = E(T )E(ln(S)) + E(ln(Y ))
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Using the first order Taylor’s approximation of E(ln(Y )), we obtain

E(ln(Z)) ≈ WE(ln(S)) + ln(E(Y ))

W ≈ E(ln(Z))− ln(E(Y ))

E(ln(S))

Thus, an estimator of W is given by:

Ŵ =
1
n

∑n
i=1 ln(Zi)− ln( 1

n

∑n
i=1 Yi)

E(ln(S))
.

1.3.2. Gupta et al. (2010) [13] Two-Stage Additive Optional Model

Let Y denote a quantitative sensitive variable with unknown mean µY and

unknown variance σ2
Y , where µY is to be estimated [13]. Let the sample size n

be split into two sub-samples of sizes n1 and n2 where n1 + n2 = n. Let Si be

the scrambling variable used to scramble the responses in the ith sub-sample (i =

1, 2) where it is assumed that Y and Si are mutually independent. Let θi denote

the known mean for Si and σ2
Si

is the known variance. Within each sub-sample, a

predetermined proportion (T ) of respondents are directed to give out the true response

to the question being asked and the remaining proportion (1−T ) of respondents give

an additively scrambled response if they think the question is sensitive, and a true

response otherwise. Let W denote the sensitivity level of the underlying sensitive

question. For this model, we obtain the reported response in the ith sub-sample (Zi)
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as

Zi =

 Y with probability T+(1-W)(1-T)

Y + Si with probability W(1-T), i = 1, 2.

The mean for Zi (i = 1, 2) is given by [8]:

E(Zi) = µY + θiW (1− T ), where E(Si) = θi (i = 1, 2).

It follows from above that

µY =
θ2E(Z1)− θ1E(Z2)

θ2 − θ1

, θ1 6= θ2, and

W =
E(Z2)− E(Z1)

(θ2 − θ1)(1− T )
, T 6= 1, θ1 6= θ2.

The above expressions lead to the following unbiased estimators of µY and W :

µ̂Y =
θ2Z̄1 − θ1Z̄1

θ2 − θ1

, θ1 6= θ2,

Ŵ =
Z̄2 − Z̄1

(θ2 − θ1)(1− T )
, θ1 6= θ2, T 6= 1,

where Z̄i (i = 1, 2) represents the sample mean of responses in the ith (i = 1, 2)

sub-sample [8].
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Note that

V ar(µ̂Y ) =
1

(θ2 − θ1)2
[
θ2

2

n1

σ2
Z1

+
θ2

1

n2

σ2
Z2

],

and

V ar(Ŵ ) =
1

(θ2 − θ1)2(1− T )2
[
σ2
Z1

n1

+
σ2
Z2

n2

],

where

σ2
Zi

= σ2
Y + σ2

Si
[(1− T )W ] + σ2

i [(1− T )W ]{1− [(1− T )W ]}.

1.3.3. Gupta et al. (2013) [9] Optional Unrelated-Question Randomized Response

Models

Gupta et al. (2013) [9] proposed a generalization of the Unrelated Question

RRT techniques. We take into account both the binary and quantitative response

situations and estimate the prevalence (π) of the sensitive behavior and the mean

response (µ) of the quantitative sensitive question. In addition, the model also esti-

mates the sensitivity level (W) of the underlying question, which is the proportion of

subjects who consider the question to be sensitive, and hence choose to give a scram-

bled response. The following provides the theoretical background of the quantitative

and binary models, respectively.
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We proceed first with the quantitative version of this model. Let X represent

the true sensitive variable of interest with unknown mean µX and unknown variance

σ2
X , and Y represent the a non-sensitive variable with known mean µY and known

variance σ2
Y . Furthermore, let p represent the probability of getting the sensitive

question from the randomization device. Let W represent the sensitivity level of the

question as before. Thus, the reported response Z is given by the following.

Z =

 X with probability (1−W ) +Wp

Y with probability W (1− p)

with

E(Z) = (1−W )E(X) +W (pE(X) + (1− p)E(Y )), and

V ar(Z) = [(1−W ) +Wp]E(X2) +W (1− p)E(Y 2)− [E(Z)]2

Thus, to solve the above equation for the two unknown parameters µX andW , we use

a split-sample approach where the total sample size is divided into two sub-samples.

Each sub-sample uses a randomization device with a different probability (pi, i = 1, 2)

of getting the sensitive question. The expected response in the ith (i = 1, 2) sub-

sample then is given by:

E(Zi) = (1−W )E(X) +W (piE(X) + (1− pi)E(Y )), where i=1,2.
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Solving the two equations above, we get the following:

E(Z1)− E(X)

E(Z2)− E(X)
=

1− p1

1− p2

.

Solving for E(X), we get

E(X) =
E(Z1)− λE(Z2)

1− λ
, where λ =

1− p1

1− p2

.

This leads to estimating µX by

µ̂X =
Z̄1 − Z̄2

1− λ
.

The variance of this estimator is given by

var(µX) =
var(Z̄1 + λZ̄2)

(1− λ)2
,

=

V ar(Z1)
n1

+ λ2 V ar(Z2)
n2

(1− λ)2
,

where

var(Zi) =
[(1−W ) +Wpi]E(X2) +W (1− pi)E(Y 2)− [E(Zi)]

2

ni
, i = 1, 2.
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We also estimate the proportion of subjects who scramble their responses (W ). From

the formula for E(Zi), we get the following for the estimator of W .

Ŵ =
Z̄1 − Z̄2

µY (p2 − p1) + (1− p2)Z̄1 − (1− p1)Z̄2

,

Using first-order Taylor’s approximation where A = E(Z̄1) and B = E(Z̄2), we get

the following.

Ŵ = Ŵ (A,B) +
∂Ŵ (Z1, Z2)

∂Z̄1

∣∣∣∣
A,B

(Z̄1 − A) +
∂Ŵ (Z̄1, Z̄2)

∂Z̄2

∣∣∣∣
A,B

(Z̄2 −B)

=
A−B

µY (p2 − p1) + (1− p2)A− (1− p1)B
+

(p2 − p1)(µY −B)(Z̄1 − A)

[µY (p2 − p1) + (1− p2)A− (1− p1)B]2

+
(p2 − p1)(A− µY )(Z̄2 −B)

[µY (p2 − p1) + (1− p2)A− (1− p1)B]2

= Ŵ1

We obtain the following for E(Ŵ1).

E(Ŵ1) =
A−B

µY (p2 − p1) + (1− p2)A− (1− p1)B

+
(p2 − p1)(µY −B)(E(Z̄1)− A)

[µY (p2 − p1) + (1− p2)A− (1− p1)B]2

+
(p2 − p1)(A− µY )(E(Z̄2)−B)

[µY (p2 − p1) + (1− p2)A− (1− p1)B]2

=
A−B

µY (p2 − p1) + (1− p2)A− (1− p1)B

= W

15



The associated variance of Ŵ1 is given by

var(Ŵ1) = (
(p2 − p1)(µY −B)

[µY (p2 − p1) + (1− p2)A− (1− p1)B]2
)2σ

2
1

n1

+ (
(p2 − p1)(µY −B)

[µY (p2 − p1) + (1− p2)A− (1− p1)B]2
)2σ

2
2

n2

,

where σ2
i = [1−W +Wpi]E(X2) +W (1− pi)E(Y 2)− [E(Zi)]

2, i = 1, 2.

We now proceed with the binary version for this model. In many cases the

main research interest is in the sensitive attribute. In this case, the research question

requires a binary response where the answer could be either "yes" or "no".

Let X represent a sensitive binary variable of interest with unknown mean

πX , and Y represent a non-sensitive binary variable with known mean πY . Let p

represent the probability of receiving the sensitive question from the randomization

device. Thus, the probability of a "yes" response (pY ) is given by:

pY = (1−W )πY +W [pπY + (1− p)πY ]

Like before, the sample is divided into two sub-samples to solve for πX and W . In

this case, the probability of a "yes" response in the ith (i = 1, 2) sub-sample is given

by

pY i = (1−W )πY +W [piπY + (1− pi)πY ], i = 1, 2.
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From the above equation, we get the following.

πX =
pY 1 − λpY 2

1− λ
where λ =

1− p1

1− p2

From the equation of πX , we get the following for the estimator of πX .

π̂X =
p̂Y1 − λp̂Y2

1− λ
,

with the variance of this estimator given by

V ar(π̂X) =
V ar(p̂Y1) + λ2V ar(p̂Y2)

(1− λ)2
,

where V ar(p̂Yi) =
pYi (1−Yi)

ni
(i = 1, 2).

From the equation for πx, we find an estimator for W in the binary case as

Ŵπ =
p̂Y1 − p̂Y2

πY (p2 − p1) + (1− p2)p̂Y1 − (1− p1)p̂Y2

Applying the first order Taylors approximation expansion for a bivariate function

where A = E(p̂Y1) and B = E(p̂Y2), this can be approximated as follows:

Ŵπ ≈
A−B

πY (p2 − p1) + (1− p2)A− (1− p1)B
+

(p2 − p1)(πY −B)(p̂Y1 − A)

[πY (p2 − p1) + (1− p2)A− (1− p1)B]2

+
(p2 − p1)(A− πY )(p̂Y2 −B)

[πY (p2 − p1) + (1− p2)A− (1− p1)B]2

= Ŵ1(say)
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Thus, the mean for Ŵ1 is the following.

E(Ŵ1) =
A−B

πY (p2 − p1) + (1− p2)A− (1− p1)B

= Wπ

Its associated variance is given by

var(Ŵ1) = (
(p2 − p1)(πY −B)

[πY (p2 − p1) + (1− p2)A− (1− p1)B]2
)2σ

2
1

n1

+ (
(p2 − p1)(πY −B)

[πY (p2 − p1) + (1− p2)A− (1− p1)B]2
)2σ

2
2

n2

where σ2
i =

pYi (1−pYi )
ni

, i = 1, 2
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CHAPTER II

APPLICATIONS OF RRT MODELS

2.1 RRT Applications

As it was mentioned before, Warner (1965) introduced the RRT models. RRT

models allow sensitive information to be collected without showing any single individ-

ual’s sensitive status by the use of a randomization device that leads to more accurate

estimates of sensitive behaviors [9]. RRT models have been used quite a lot in field

surveys as shown below.

2.1.1. Abernathy et al. (1970)-Estimates of Induced Abortion Rates in North Carolina

According to the American Congress of Obstetricians and Gynecologists (AGOG)

website, an induced abortion is when an action is done or medication is taken to end

a pregnancy. Consequences of induced abortions include increased risk of premature

birth, increased risk of stillbirth, heavy bleeding and severe pain. Abernathy et al.

(1970) [1] used RRT models to obtain estimates of induced abortion rates within

urban North Carolina. In this case, estimates of the proportion of women aged 18-44

years that had an induced abortion during the past year were reported [1]. For the

study, population indices were made relating induced abortion with total conceptions

in terms of whites and nonwhites [1].

It was found that the illegal abortion rate per 100 conceptions was approxi-

mately 14.9 for whites and 32.9 for nonwhites [1]. Furthermore, as mentioned before,

estimates of the proportion of women aged 18 years or older that had an abortion

during their lifetime are also shown [1]. Among married women, the proportion hav-
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ing an abortion during their lifetime declined as education increased where estimates

were high for women with 5 or more pregnancies [1]. As a whole, most of the respon-

dents stated that they were satisfied that the randomized response approach would

not reveal their personal situation [1]. Looking closer, it was evident that woman

respondents would have hesitated to respond truthfully to the sensitive question of

induced abortions [1].

2.1.2. Striegel et al. (2006)-Doping and Drug Use in Elite Sports

According to the UNESCO website, doping refers to an athlete’s use of prohib-

ited drugs or methods to improve training and sporting results. As a person ventures

in a sport, doping is a very important issue that an athlete will face due to their being

tested for drugs, the continuing use of drugs and some of their competitors potentially

cheating due to the continued use of drugs. All athletes who were questioned were

subjected to doping controls as members or junior members of the national teams

[14].

In order to estimate the prevalence of doping and illicit drug abuse, the athletes

were either issued an anonymous standardized questionnaire (SQ) or were interviewed

using randomized response technique (RRT) where there were 1394 participants in the

SQ group and 480 participants in the RRT group [14]. Official doping tests showed

0.81% of athletes testing positive for doping, while 6.8% of the athletes confessed to

having practiced doping based on the RRT model [14]. In addition and more impor-

tantly, the present RRT study revealed an alarmingly high prevalence of illicit drug

use, specifically of cocaine use, that has been severely underestimated by previous

studies.[14].
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2.1.3. Ostapczuck et al. (2009)-The Education Effect in Attitudes towards Foreigners

Even though a negative correlation has been found between a respondent’s

education and his negative attitude towards foreigners, the reasons for this education

effect are still unknown and up for debate [12]. In order to study this relationship

in Germany, Ostapczuck et al. (2009) postulated a hypothesis that stated the highly

educated may not be genuinely less xenophobic, but more prone to give socially

desirable, xenophile answers in attitude questionnaires [12].

In order to examine this hypothesis, two survey methods were used: direct

questioning and RRT [12]. Under direct questioning, 75% of the highly educated

expressed a xenophile attitude, whereas only 55% of the less educated expressed the

same type of attitude [12]. Under the RRT part, we obtained significantly reduced

estimates of 53% for the proportion of xenophiles who were highly educated, and

24% among those who were less educated, showing a strong distortion of self-reported

attitudes towards foreigners within both groups [12]. However, when we look at the

results closer, these two survey methods demonstrated great variation [12].

2.1.4. Gill et al. (2013)-Estimates of Risky Sexual Behaviors

Gupta et al. (2013) introduced optional unrelated question RRT models for

both the binary and quantitative response to surveys that carried sensitive questions.

Both the mean estimator of the sensitive variable and the prevalence estimator of

the sensitive characteristic carried the property of asymptotic normality. Also, in

each case, the sensitivity level estimator, using first order Taylor’s approximation,

carried the property of asymptotic normality as well. These mathematical results

were verified through the use of computer simulations. The binary and quantitative

response models were used in surveys that had a sensitive behavior attached to check
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that these results were true in fieldwork applications [4]. The binary question of

interest was "Have you been told by a healthcare professional that you have a sexually

transmitted disease?", whereas the quantitative question of interest was "How many

sexual partners have you had in the last 12 months?" [4].

The survey was conducted using three methods: optional unrelated ques-

tion RRT method, direct face-to-face interviewing and anonymous check-box survey

method [4].

Table 1. Estimates of the Mean Number of Sexual Partners in the Last 12 Months

Method µ̂ sample std. dev. 95% CI∗ n

Optional RRT 1.717 3.9912 (1.2744, 2.1596) 466
Check-Box 1.680 2.5613 (1.2647, 2.0953) 218

Face-to-Face Interview 1.130 1.1511 (0.9311, 1.3289) 192
∗ Based on Bonferroni Correction

Table 2. Estimates of the STD Diagnosis Prevalence

Method π̂X sample std. dev. 95% CI∗ n

Optional RRT 0.0367 0.1180 (0.0159, 0.0576) 466
Check-Box 0.0900 0.2862 (0.0438, 0.1362) 220

Face-to-Face Interview 0.0200 0.1400 (-0.0042, 0.0442) 192
∗ Based on Bonferroni Correction

Based upon Tables (1) and (2) given in [4], it was observed that the optional

unrelated question RRT method’s estimates were closer to the anonymous check-box

survey method’s estimates, and the lowest point estimate was obtained by face-to-face

interview method, which is expected as it provided the lowest anonymity [4].
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2.1.5. Chhabra et al. (2016)-Estimating Prevalence of Sexual Abuse by an Acquain-

tance

More recently, Chhabra et al. (2016) [2] used RRT models to estimate the

prevalence of sexual abuse of college female students by either a friend or an acquain-

tance. Looking closely, Chhabra et al. (2016) [2] used RRT models to simultaneously

estimate the mean of a sensitive variable and the sensitivity level of the main sensi-

tive question without the use of the traditional split-sample approach. The data were

collected from a survey that was conducted by the authors on a sample of undergrad-

uate female students aged 17-21 years at a college of University of Delhi, India from

January 2015 [2].

For this study, the binary research question of interest (Question 1) was "Have

you ever been a victim of sexual abuse by friend or family member?" and the quanti-

tative research question (Question 2) was "How many days in a typical month do you

watch pornographic clips/videos/movies on movie channels, WhatsApp, Youtube,

Internet etc.?" [2]. It was found that within the confidential survey, 27 out of 195

subjects answered "yes" [2]. Also, within the face-to-face survey, 16 out of 195 sub-

jects replied reassuringly, and within the optional unrelated question RRT method,

40 out of 195 subjects responded positively for Question 1 whereas 25 out of 195

subjects responded positively for Question 2 [2]. These led to the following estimates

of π and µ.

Table 3. Estimates of Sexual Abuse Prevalence

Method π̂ ˆV ar(π̂)

Confidential 0.138461 0.00061174
Face-to-Face Survey 0.082051 0.00038600
Optional RRT Model 0.119021 0.00067577

23



Table 4. Estimates of Mean Number of Days the Respondent Watch Porn Clips

Method µ̂X ˆV ar(µ̂X)

Confidential 3.216 0.825404
Face to Face Survey 1.560 1.026010
Optional RRT Model 2.765 0.011500
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CHAPTER III

VARIATIONS OF GREENBERG ET AL. (1969) MODEL

Our focus is on the Greenberg et al. (1969) Binary Model. In the first vari-

ation, we allow a respondent to provide multiple independent responses and in the

second variation, we use a technique called inverse sampling. From these two vari-

ations, we derive two estimators and compare them with the regular Greenberg et

al. (1969) Model. The second estimator involved inverse sampling while waiting for

the first "yes" response, and also inverse sampling while waiting for the kth "yes"

response.

3.1 Greenberg et al. (1969) Model with Multiple Independent Responses

Let us first recall the Greenberg et al. (1969) Unrelated Question RRT Model

but in more detail. Let πx be the unknown prevalence of a sensitive attribute X in

the population and πy be the known prevalence of a non-sensitive attribute Y . A

randomization device offers respondents a choice between two questions, the sensitive

question and an unrelated question with respective probabilities p and 1− p. Let py

be the probability of a "yes" response. Then

py = πxp+ πy(1− p), (3.1)
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which leads to the estimator

π̂G =
p̂y − πy(1− p)

p
, (3.2)

where p̂y is the sample proportion of "yes" responses.

The mean of the estimator in (3.2) is given by

E(π̂G) = πx, (3.3)

which signifies that π̂G is an unbiased estimator of πx.

The variance of the estimator in (3.2) is given by

V ar(π̂G) =
py(1− py)

np2
. (3.4)

Now, suppose each respondent is allowed to give m independent responses in a SR-

SWR (simple random sample with replacement) of size n. Let Ti be the number of

"yes" responses provided by the ith respondent. Then

Ti ∼ Binomial(m, py) where py = πxp+ πy(1− p), and E(Ti) = mpy.

If T̄ =
∑
Ti
n

, then we know that E(T̄ ) = mpy.
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Estimating mpy by T̄ , the estimator for πx in (3.2) can be refined as below:

π̂GM =
T̄
m
− (1− p)πy

p
. (3.5)

Note that

E(π̂GM) =
E(T̄ )
m
− (1− p)πy
p

=
mpy
m
− (1− p)πy

p

=
py − (1− p)πy

p

= πx. (3.6)

The variance of the estimator π̂GM is given by

V ar(π̂GM) =
1

m2p2
V ar(T̄ )

= (
1

m2p2
)(
mpy(1− py)

n
)

=
py(1− py)
nmp2

. (3.7)

3.2 Inverse Sampling-Waiting for First "Yes" Response

Suppose we continue to use the Greenberg et al. (1969) Model until a "yes"

response is recorded. Let Si be the total number of trials needed in the ith run to
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reach the first "yes" response. Then,

Si ∼ Geometric (py), (3.8)

with E(Si) = 1
py

and V ar(Si) = 1−py
p2y

, where py is defined in (3.1).

Also, let there be a SRSWR of n respondents and S̄ be the sample mean of

Si’s. Then 1
py

can be estimated by S̄ which leads to p̂y = 1
S̄
being an estimator of py.

Using first order Taylor’s approximation of 1
S
, we obtain

1

S̄
≈ 1

E(S)
+ (S̄ − E(S))(

−1

(E(S))2
) (3.9)

where E(S) = 1
py
.

With this approximation,

E(
1

S̄
) ≈ 1

E(S)

= py (3.10)

Then, using 1
S̄
as an estimator of py, the estimator in (3.2) becomes

π̂GI =
1
S̄
− (1− p)πy

p
(3.11)
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Note that

E(π̂GI) =
E( 1

S̄
)− (1− p)πy

p

≈ py − (1− p)πy
p

= πx. (3.12)

since E( 1
S̄

) ≈ py, as argued in (3.10).

Thus, we see that π̂GI is an unbiased estimator of πx, up to first order of

approximation.

From (3.11),

V ar(π̂GI) =
1

p2
V ar(

1

S̄
) (3.13)
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But

V ar(
1

S̄
) ≈ V ar(

1

E(S̄)
+ (S̄ − E(S̄))(− 1

(E(S̄))2
))

= V ar(−S̄p2
y) from (3.10)

= p4
yV ar(S̄)

= p4
y

V ar(S)

n

= p4
y(

1−py
py

npy
)

= p4
y(

1− py
np2

y

)

=
p2
y(1− py)

n
. (3.14)

Thus, we have

V ar(π̂GI) ≈
1

p2
(
p2
y(1− py)

n
)

=
p2
y(1− py)
np2

. (3.15)

3.3 Inverse Sampling-Waiting for Kth "Yes" Response

Let Si,k be the total number of trials needed to reach the kth "yes" response

in the ith run. Then, we see that Si,k ∼ Negative Binomial(py,k) with

E(Si,k) =
k

py
(3.16)
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and

V ar(Si,k) =
k(1− py)

p2
y

, (3.17)

Also, let there be a sample of n independent trials on S, and S̄ be the sample mean

of the n Si,k values. Then

E(S̄) = E(Si,k)

=
k

py
. (3.18)

Therefore, k
py

can be estimated by S̄ and p̂y = k
S̄
can be used as an estimator of py.

Using first-order Taylor’s approximation,

1

S̄
=

1

E(S)
+ (S̄ − E(S))(− 1

(E(S))2
), (3.19)

where E(S) = k
py

Thus, our estimator for πx in (3.2) becomes:

π̂GIk =
k
S̄
− πy(1− p)

p
. (3.20)
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From (3.20), we get the following for the mean of π̂GIk .

E(π̂GIk) =
kE( 1

S̄
)− πy(1− p)

p

≈
k(py

k
)− πy(1− p)

p

=
py − πy(1− p)

p

= πx (3.21)

Thus, π̂GIk is an unbiased estimator of πx, up to first order of approximation.

From (3.20), we also get,

V ar(π̂GIk) =
k2

p2
V ar(

1

S̄
) (3.22)

But,

V ar(
1

S̄
) ≈ V ar(

1

E(S̄)
+ (S̄ − E(S̄))(− 1

(E(S̄))2
))

=
p4
y

k4
V ar(S̄) from (3.18)

≈
p4
y

k4
(

k(1−py)

p2y

n
)

=
p4
y

k4
(
k(1− py)
np2

y

)

=
p2
y(1− py)
k3n

, (3.23)
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Thus, we have:

V ar(π̂GIk) ≈ k2

p2
(
p2
y(1− py)
k3n

)

=
p2
y(1− py)
knp2

(3.24)
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CHAPTER IV

EFFICIENCY COMPARISONS

In this chapter, we compare the efficiencies of the following estimators that

were discussed in the previous chapter:

π̂G = Greenberg et al. (1969) estimator

π̂GM = Greenberg et al. (1969) estimator using m independent responses

π̂GI = Greenberg et al. (1969) estimator using inverse sampling waiting for the

first "yes" response

π̂GIk = Greenberg et al. (1969) estimator using inverse sampling waiting for the

kth "yes" response

4.1 Greenberg et al. (1969) Model vs. Greenberg et al. (1969) Multiple

Response Model

We can summarize (4.1) as follows.

V ar(π̂GM) =
py(1− py)
nmp2

=
1

m
(
py(1− py)

np2
)

=
1

m
V ar(π̂G) (4.1)
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Based on (4.1), note that V ar(π̂GM) < V ar(π̂G) for m > 1. Thus, the Greenberg et

al. (1969) Multiple Response Model is more efficient than the regular Greenberg et

al. (1969) Model.

4.2 Inverse Sampling Stopping at the First "Yes" Response Model vs.

Greenberg et al. (1969) Model

We can summarize (4.2) as follows.

V ar(π̂GI) =
p2
y(1− py)
np2

= py(
py(1− py)

np2
)

= pyV ar(π̂G) (4.2)

Based on (4.2), note that V ar(π̂GI) < V ar(π̂G) for py < 1. Thus, the Inverse

Sampling-Waiting for the First "Yes" Response Model is always more efficient than

the regular Greenberg et al. (1969) Model.
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4.3 Inverse Sampling Stopping at the Kth "Yes" Response Model vs.

Greenberg et al. (1969) Model

We can summarize (4.3) as follows.

V ar(π̂GIk) =
p2
y(1− py)
nkp2

= py(
py(1− py)
nkp2

=
py
k

(
py(1− py)

np2
)

=
py
k
V ar(π̂G) (4.3)

Based on (4.3), note that V ar(π̂GIk) < V ar(π̂G) for k > 1 and py < 1. Thus, the

Inverse Sampling-Waiting for the Kth "Yes" Response Model is more efficient than

the regular Greenberg et al. (1969) Model when k > 1.

4.4 Inverse Sampling Stopping at the First "Yes" Response Model vs.

Greenberg et al. (1969) Multiple Response Model

We can summarize (4.4) as follows.

V ar(π̂GI) =
p2
y(1− py)
np2

= py(
py(1− py)

np2
)

= mpy(
py(1− py)
nmp2

)

= mpyV ar(π̂GM) (4.4)
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Based on (4.4), note that V ar(π̂GI) < V ar(π̂GM) for mpy < 1. Thus, the Inverse

Sampling-Waiting for the First "Yes" Response Model is more efficient than the

Greenberg et al. (1969) Multiple Response Model when m < 1
py
.

4.5 Inverse Sampling Stopping at the Kth "Yes" Response Model vs.

Greenberg et al. (1969) Multiple Response Model

We can summarize (4.5) as follows.

V ar(π̂GIk) =
p2
y(1− py)
nkp2

=
py
k

(
py(1− py)

np2
)

=
mpy
k

(
py(1− p− y)

nmp2
)

=
mpy
k
V ar(π̂GM) (4.5)

Based on (4.5), note that V ar(π̂GIk) < V ar(π̂GM) for mpy < 1 and k > 1. Thus, the

Inverse Sampling-Waiting for the Kth "Yes" Response Model is more efficient than

the Greenberg et al. (1969) Multiple Response Model when k > 1 and m < 1
py
.
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4.6 Inverse Sampling Stopping at the Kth "Yes" Response Model vs.

Inverse Sampling Stopping at the First "Yes" Response Model

We can summarize (4.6) as follows.

V ar(π̂GIk) =
p2
y(1− py)
nkp2

=
1

k
(
p2
y(1− py)
np2

)

=
1

k
V ar(π̂GI) (4.6)

Based on (4.6), note that V ar(π̂GIk) < V ar(π̂GI) for k > 1. Thus, the Inverse

Sampling-Waiting for K "Yes" Responses Model is more efficient than the Inverse

Sampling-Waiting for the First "Yes" Response Model when k > 1.

4.7 Summary

We can summarize sections (4.1)-(4.6) as follows:

V ar(π̂GIk) < V ar(π̂GI) if k > 1

< V ar(π̂GM) if mpy < 1

< V ar(π̂G) if m > 1 (4.7)

Overall, based on (4.7), the Inverse Sampling-Waiting forK "Yes" Responses Model is

more efficient than the Inverse Sampling-Waiting for the First "Yes" Response Model,

the Greenberg et al. (1969) Model with Multiple Independent Responses Model and
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the regular Greenberg et al. (1969) Model. Thus, the Inverse Sampling-Waiting for

K "Yes" Responses Model is the most efficient out of all our models when k > 1.
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CHAPTER V

SIMULATION RESULTS

5.1 Simulation Process

All of the theoretical formulas from Chapter 3 were tested empirically through

the use of computer simulations to see how well the three estimators that were men-

tioned above compared against the regular Greenberg et al. (1969) Model. In order

to carry out these simulations, we used different values of n, πx, πy p and a total of

10000 simulations and organized these results in 4 tables to see if the same conclusion

was reached each time. Refer to the Results section of this chapter to see these tables.

5.2 Results

Table (5) below presents simulation results that were obtained from SAS for a

total of 10000 simulations with sample sizes of 100, 500 and 1000, πx = 0.30, πy = 0.7

and p = 0.85.

Table (6) below presents simulation results that were obtained from SAS for

a total of 10000 simulations with a sample size of 500, πx = 0.30, πy = (0.5, 0.75, 0.9)

and p = 0.85.

Table (7) below presents simulation results that were obtained from SAS for a

total of 10000 simulations with a sample size of 500, πx = (0.40, 0.50, 0.70), πy = 0.7

and p = 0.85.

Table (8) below presents simulation results that were obtained from SAS for

a total of 10000 simulations with a sample size of 1000, πx = 0.50, πy = 0.5 and

p = 0.85.
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Table 5. Estimators of πx with Corresponding Empirical ( ˆV ar(π̂)) and Theoretical
(V ar(π̂)) Variances with n = (100, 500, 1000), πx = 0.30, πy = 0.7 and p = 0.85

n m π̂GM ˆV ar(π̂GM) V ar(π̂GM)

100 1 0.3003682 0.0031673 0.003188927
100 2 0.2998106 0.0015793 0.001594464
100 3 0.2996055 0.0010796 0.001062976
100 4 0.3003759 0.000802351 0.000797232
100 5 0.2998591 0.000652692 0.000637785

k π̂GIk
ˆV ar(π̂GIk) V ar(π̂GIk)

100 1 0.3027742 0.0011788 0.001148014
100 2 0.3013239 0.000575621 0.000574007
100 3 0.3007781 0.000384914 0.000382671
100 4 0.3007940 0.000284774 0.000287003
100 5 0.3005728 0.000229412 0.000229603

m π̂GM ˆV ar(π̂GM) V ar(π̂GM)

500 1 0.3001781 0.000638371 0.000637785
500 2 0.3002513 0.000318622 0.000318893
500 3 0.3000282 0.000214628 0.000212595
500 4 0.3000342 0.000156454 0.000159446
500 5 0.3000586 0.000126368 0.000127557

k π̂GIk
ˆV ar(π̂GIk) V ar(π̂GIk)

500 1 0.3004394 0.000229236 0.000229603
500 2 0.3002714 0.000112837 0.000114801
500 3 0.3000640 0.000076382 0.000076534
500 4 0.3000161 0.000058789 0.000057401
500 5 0.3002176 0.000046028 0.000045921

m π̂GM ˆV ar(π̂GM) V ar(π̂GM)

1000 1 0.3000929 0.000322274 0.000318893
1000 2 0.2998735 0.000159751 0.000159446
1000 3 0.2997484 0.000104373 0.000106298
1000 4 0.3000094 0.000079531 0.000079723
1000 5 0.2999271 0.000063045 0.000063779

k π̂GIk
ˆV ar(π̂GIk) V ar(π̂GIk)

1000 1 0.3001464 0.000117352 0.000114801
1000 2 0.3002190 0.000055895 0.000057401
1000 3 0.3000042 0.000038364 0.000038267
1000 4 0.3000767 0.000028260 0.000028700
1000 5 0.3000507 0.000022996 0.000022960
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Table 6. Estimators of πx with Corresponding Empirical ( ˆV ar(π̂)) and Theoretical
(V ar(π̂)) Variances with n = 500, πx = 0.30, πy = (0.5, 0.75, 0.9) and p = 0.85

πy m π̂GM ˆV ar(π̂GM) V ar(π̂GM)

0.5 1 0.3002275 0.000626069 0.000612042
0.5 2 0.3001521 0.000312660 0.000306021
0.5 3 0.3002485 0.000204204 0.000204014
0.5 4 0.2999008 0.000151733 0.000153010
0.5 5 0.2998362 0.000123436 0.000122408

k π̂GIk
ˆV ar(π̂GIk) V ar(π̂GIk)

0.5 1 0.3005469 0.000200526 0.000201974
0.5 2 0.3003312 0.000100022 0.000100987
0.5 3 0.3002731 0.000067926 0.000067325
0.5 4 0.3001613 0.000050848 0.000050493
0.5 5 0.3001627 0.000041351 0.000040395

m π̂GM ˆV ar(π̂GM) V ar(π̂GM)

0.75 1 0.3000440 0.000630890 0.000643443
0.75 2 0.2998798 0.000325955 0.000321721
0.75 3 0.3001845 0.000209802 0.000214481
0.75 4 0.2999747 0.000162359 0.000160861
0.75 5 0.2998438 0.000127722 0.000128689

k π̂GIk
ˆV ar(π̂GIk) V ar(π̂GIk)

0.75 1 0.3005070 0.000236190 0.000236465
0.75 2 0.3002626 0.000118541 0.000118233
0.75 3 0.3003537 0.000079194 0.000078822
0.75 4 0.3001062 0.000060759 0.000059116
0.75 5 0.3000874 0.000047707 0.000047293

m π̂GM ˆV ar(π̂GM) V ar(π̂GM)

0.9 1 0.2998793 0.000656826 0.000658547
0.9 2 0.3000140 0.000333343 0.000329273
0.9 3 0.2997773 0.000222884 0.000219516
0.9 4 0.3000899 0.000164766 0.000164637
0.9 5 0.2999541 0.000132506 0.000131709

k π̂GIk
ˆV ar(π̂GIk) V ar(π̂GIk)

0.9 1 0.3007569 0.000260245 0.000256833
0.9 2 0.3002132 0.000130448 0.000128417
0.9 3 0.3001158 0.000084538 0.000085611
0.9 4 0.3000875 0.000065457 0.000064208
0.9 5 0.3001639 0.000051279 0.000051367
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Table 7. Estimators of πx with Corresponding Empirical ( ˆV ar(π̂)) and Theoretical
(V ar(π̂)) Variances with n = 500, πx = (0.40, 0.50, 0.70), πy = 0.7 and p = 0.85

πx m π̂GM ˆV ar(π̂GM) V ar(π̂GM)

0.40 1 0.4001351 0.000673737 0.000683668
0.40 2 0.4002534 0.000339815 0.000341834
0.40 3 0.4000639 0.000226107 0.000227889
0.40 4 0.3999487 0.000174955 0.000170917
0.40 5 0.3999861 0.000138396 0.000136734

k π̂GIk
ˆV ar(π̂GIk) V ar(π̂GIk)

0.40 1 0.4006873 0.000297300 0.000304232
0.40 2 0.4003551 0.000152255 0.000152116
0.40 3 0.4001929 0.000098417 0.000101411
0.40 4 0.4001444 0.000076796 0.000076058
0.40 5 0.4001647 0.000060247 0.000060846

m π̂GM ˆV ar(π̂GM) V ar(π̂GM)

0.50 1 0.5001941 0.000689617 0.000689550
0.50 2 0.4999305 0.000342844 0.000344775
0.50 3 0.4998585 0.000240454 0.000229850
0.50 4 0.4999967 0.000175033 0.000172388
0.50 5 0.5000457 0.000139796 0.00013791

k π̂GIk
ˆV ar(π̂GIk) V ar(π̂GIk)

0.50 1 0.5007369 0.000364217 0.000365462
0.50 2 0.5002518 0.000180320 0.000182731
0.50 3 0.5004557 0.000121947 0.000121821
0.50 4 0.4999440 0.000089609 0.000091365
0.50 5 0.5000173 0.000072907 0.000073092

m π̂GM ˆV ar(π̂GM) V ar(π̂GM)

0.70 1 0.6995186 0.000571947 0.000581315
0.70 2 0.6999876 0.000285606 0.000290657
0.70 3 0.7001192 0.000196976 0.000193772
0.70 4 0.7000021 0.000145367 0.000145329
0.70 5 0.6995873 0.000119359 0.000116263

k π̂GIk
ˆV ar(π̂GIk) V ar(π̂GIk)

0.70 1 0.7006316 0.000397176 0.000406920
0.70 2 0.7002850 0.000202967 0.000203460
0.70 3 0.7001467 0.000132911 0.000135640
0.70 4 0.7003175 0.000102237 0.000101730
0.70 5 0.7000754 0.000080616 0.000081384
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Table 8. Estimators of πx with Corresponding Empirical (V ar(π̂)) and Theoretical
( ˆV ar(π̂)) Variances with n = 1000, πx = 0.50, πy = 0.5 and p = 0.85

π̂G ˆV ar(π̂G) V ar(π̂G) m π̂GM ˆV ar(π̂GM) V ar(π̂GM)

0.4997153 0.000341679 0.000346021 1 0.4997153 0.000341679 0.000346021
2 0.4998329 0.000174297 0.000173010
3 0.4999238 0.000115451 0.000115340
4 0.4998771 0.000085898 0.000086505
5 0.4999516 0.000071178 0.000069204

π̂GI ˆV ar(π̂GI) V ar(π̂GI) k π̂GIk
ˆV ar(π̂GIk) V ar(π̂GIk)

0.5002282 0.000180216 0.000173010 1 0.5002282 0.000180216 0.000173010
2 0.5000227 0.000085718 0.000086505
3 0.5001590 0.000057470 0.000057670
4 0.5000500 0.000044477 0.000043253
5 0.5000404 0.000034781 0.000034602

Based on Tables (5)-(8), notice that as m increased, the variances of π̂GM de-

creased relative to the variances of π̂G which supports our formulas for the theoretical

variance for both π̂G and π̂GM in chapter III. On the other hand, as k increased, the

variances of π̂GIk decreased relative to the variances of π̂GI which supports our for-

mulas for the theoretical variance for both π̂GI and π̂GIk in chapter III. Furthermore,

looking at the results of π̂GI relative to π̂GM , as mpy increased, the variances of π̂GM

decreased relative to the variances of π̂GI , which supports our efficiency comparison

of π̂GM vs. π̂GI from chapter IV.

5.3 Conclusion

Based on Tables (5)-(8), we can see that the regular Greenberg et al. (1969)

model has a higher variance (theoretical and empirical) than the modified Greenberg

model with multiple responses and those involving inverse sampling. Hence, the

proposed variations of the Greenberg et al. (1969) model are more efficient than the
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regular Greenberg et al. (1969) model. Looking closer at Tables (5)-(8), we can see

that the modified Greenberg model with inverse sampling has a lower variance than

that involving multiple independent responses. Hence, the modified Greenberg model

with inverse sampling is the most efficient model out of all our models. However,

greater effort is needed in using these newer models. Given that the gain in efficiency

with newer models is quite substantial, the newer models are worth trying. However,

in practice, we need to keep m and k small such as m ≤ 3 and k ≤ 3 since we want

the respondent not to feel tired or exhausted of participating in the survey for a long

time.
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CHAPTER VI

FIELDWORK VALIDATION

In this chapter, we explore the fieldwork validation for our proposed variations

of the Greenberg Unrelated Question RRT Model: the regular Greenberg et al. (1969)

Model, the Greenberg Model with Multiple Independent Responses and the Inverse

Sampling Model while Waiting for the First "Yes" Response, to check how they

compare to the Anonymous group.

6.1 Procedure

In order to carry out this fieldwork, we had to first get approval from the IRB

(Institutional Review Board). The approval process from the IRB took roughly an

entire semester since we had to come up with the pertinent forms (student consent

forms, student letter, etc.) and describe in careful detail what we wanted to accom-

plish in this fieldwork. Also, we had to go through the human subjects training to

see if we had the necessary skills to do research on humans. Once we got approved

and got the human subjects training done, we started the fieldwork process. For this

fieldwork, we used a team of four people: Dr. Sat Gupta, Emily Johnson, Padma

Manthera and myself. As a team, we recruited students from various classes with

the permission from the instructors where the recruited students consisted of current

UNC-Greensboro students from the mathematics and statistics classes offered at the

time. The students were given a student letter that explained what the fieldwork

entailed and an informed consent form of their approval to be in this fieldwork since

participation was strictly voluntary. The recruited students were asked to partici-
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pate in a survey associated with a medical condition. The survey question was if the

student had ever been told by a healthcare professional that she/he has a sexually

transmitted disease. Recruited students were randomly chosen to be in one of four

groups: an Anonymous group, a group that corresponded to the original Greenberg

RRT Model, a group that used the Greenberg Model based on 3 Independent Re-

sponses and a group that used the Greenberg Model based on Inverse Sampling while

Waiting for the First "Yes" Response.

6.2 Groups Used

6.2.1. Group 1-Anonymous Group

The first group we used for the fieldwork was the Anonymous group. For this

group, the respondent is given a piece of paper by the researcher, which contains the

sensitive question. The respondent answers the question, and then the paper is put

into a box.

6.2.2. Group 2-Greenberg et al. (1969) Model

The second group we used for this fieldwork was the regular Greenberg et al.

(1969) Model. For this group, the researcher makes a deck of 100 cards where 85% of

the deck contains the sensitive question and 15% of the deck contains an unrelated

question ("Were you born in January-April?"). The researcher shuffled this deck and

in turn, the respondent had to pick a card and answer the associated question. The

researcher then records the answer to the question on a datasheet associated with

Group 2.
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6.2.3. Group 3-Greenberg et al. (1969) Model with 3 Independent Responses

The third group we used for this fieldwork was the Greenberg Model with

Multiple Independent Responses. For this group, the researcher has the same deck

as before. The researcher shuffles this deck three different times and in turn, the

respondent has to pick three cards and give his/her responses. The researcher then

records the responses to the three cards they picked on a datasheet associated with

Group 3.

6.2.4. Group 4-Inverse Sampling while Waiting for First "Yes" Response

The fourth group we used for this fieldwork was the Inverse Sampling Model

while Waiting for the First "Yes" Response. For this group, the researcher has the

same deck as before. The researcher shuffles this deck and in turn, the respondent

answers the card they picked. There were practical constraints in executing the survey

under the conditions of Group 4 where we were to record the number of trials needed

to get to the first "yes" response. This would have required a very large sample. So,

we simply looked at results of Group 3 one more time and observed the number of

times a "yes" response was reached. Then, we recorded the number of trials needed

to get to each "yes" response.

6.3 Results

Once we obtained the data for the four groups, we put them in Excel spread-

sheets separately. Then, we analyzed the data for each group by using the appropriate

formulas from these four groups to see how they compare against each other. For these

groups, the sample sizes varied depending on the student’s response rate. Specifically,
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the sample size for Group 4 depended on the responses from Group 2 since we had

to count how many responses were there until the first "yes" response was reached.

Table 9. Estimated Prevalence (π) and Variance of π̂ from the Four Groups

Estimator n π̂ Variance
π̂A 241 0.04564315 0.0001807463
π̂G 178 0.04037607 0.0006000411
π̂GM 216 0.05742992 0.0001901209
π̂GI 15 0.04093619 0.0006065249

For Group 4, we looked at the results for Group 3 and observed there were 15

sequences of responses ending with a "yes" response.

According to the Odyssey website, 1 in 4 college students are infected with STD

which means that the prevalence of STD among college students is 0.25. Comparing

the prevalence of STD among the four groups with the above prevalence, we see that

the prevalence of STD among the four groups (Greenberg et al. (1969), etc.) is much

lower than the above prevalence for STD (0.25).

6.4 Conclusion

When we compare the point estimators (mean) from each group in Table (9),

we notice some interesting results. When we compare the Anonymous group with

the regular Greenberg et al. (1969) Model and the Inverse Sampling Model, we see

that the Anonymous group had a higher prevalence of STD than those for the regular

Greenberg et al. (1969) Model and the Inverse Sampling Model. However, when

we compare the Anonymous group with the Greenberg Multiple Response Model,

we see that the Anonymous group had a lower prevalence of STD than that for the

Greenberg Multiple Response Model.
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When we compare the variances from each group in Table (9), we notice some

interesting results as well. Comparing the Anonymous group with the regular Green-

berg et al. (1969) group, the Greenberg Multiple Response and the Inverse Sampling

groups, the Anonymous group had a lower variance than that for these groups. In-

terestingly, the Multiple Response Model also proved very efficient. The Inverse

Sampling Model would be the most efficient if we could ensure a comparable sample

size.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The main objective of this study was to explore variations of the famous Green-

berg et al. (1969) Model. It turns out that all of the proposed variations are more

efficient than the original model, with the model based on inverse sampling with k > 1

being the best. Admittingly, this is the most difficult to implement also.

Computer simulations validate over the mathematical findings. The fieldwork

survey adds to this validation.

7.2 Future Work

The problem with the original unrelated-question RRT model is that it can-

not differentiate on whether an individual actually considers the topic sensitive; ev-

ery subject is assumed to find the research question sensitive, so all subjects utilize

the randomization device to produce a scrambled response [9]. However, a topic or

question may be sensitive for one person, but not sensitive for another. As it was

mentioned before, optional RRT models, introduced by Gupta et al. [2002] [8], take

this into account by allowing subjects who do not find the question sensitive to an-

swer it without using the randomization step [9]. Subjects who find the research

question sensitive still use the randomization device prior to giving a response [9]. In

this model, the researcher does not know as to whether or not the subject used the

scrambling device or gave a truthful response [9]. In the future, we hope to extend the

variations that we came up with for the Greenberg et al. (1969) Model by introducing
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optionality into them to see how well they compare against the regular Greenberg et

al. (1969) Model.
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