

2D AND 3D AUDIO SOUND LOCALIZATION UTILIZING VECTOR

BASED AMPLITUDE PANNING

A thesis presented to the faculty of the Graduate School of

Western Carolina University in partial fulfillment of the

requirements for the degree of Master of Science in Technology.

By

Kaleb Frizzell

Director: Dr. Robert Adams

Associate Professor

School of Engineering Technology

Committee Members: Dr. Peter Tay, School of Engineering Technology

Dr. Yanjun Yan, School of Engineering Technology

March 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345086071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ACKNOWLEDGEMENTS

The author greatly appreciates valuable assistance offered by Dr. Robert Adams, Dr.

Peter Tay and Dr. Yanjun Yan. The author would like to convey his gratefulness to his friends

and family for their constant support during the course of this project. I would also like to thank

James Franks for helping with striping and assembling wiring.

iii

 TABLE OF CONTENTS

List of Tables.. iv

List of Figures…………………………………………………………………………………... v

Abstract………………………………………………………………………...……………..… vi

CHAPTER 1: Introduction………………………………………………..………………….…. 1

CHAPTER 2: Literature Review……………………………………....…………………….…. 3

2.1 2D and 3D Audio...…………………………….……………...…………………………. 3

2.2 Sound Perception...…………………………...…………………………….……………. 3

 2.2.1 Sound Perception with Two Speakers...……..………………………..…………… 4

2.2.2 Sound Perception with Three or More Speakers...……..………………………….. 4

2.3 Vector Based Amplitude Panning...…………………………...…………………………. 6

2.4 Previous Research at WCU...……………………………………….…………………… 6

CHAPTER 3: Design Methodology………………….………...………………….…………… 8

3.1 Four Channel 2 Dimensional System…………………………….……………………… 8

 3.1.1 2D Static Localization...………………………………………………………….. 10

3.1.2 2D Static Algorithem...……………………….………………………………...... 10

 3.1.3 2D Static Test Procedure...…………………….……………………………...…. 12

3.1.4 2D Dynamic Localization...……………………………………………...……..… 14

 3.1.5 2D Dynamic Algorithem...………………………………………………………... 14

3.1.6 2D Dynamic Test Procedure...………………………………………..….……..… 16

3.2 Four Channel 3 Dimensional System……………………………….…………………… 16

 3.2.1 3D Static Localization...…………………………………………………………... 19

3.2.2 3D Static Algorithem...……………………….………………………………...… 20

 3.2.3 3D Static Test Procedure...………………………………………………………... 21

3.2.4 3D Dynamic Localization...……………………….…………………………....… 23

 3.2.5 3D Dynamic Algorithem...………………………………………….. …………... 23

3.2.6 3D Dynamic Test Procedure...…………………………….………….….……..… 23

CHAPTER 4: Results…………………………………………...……………………………… 25

4.1 2D Static Sound Localization Test Results ……………………………………….….… 25

4.2 2D Dynamic Sound Localization Test Results ………………………………………… 27

4.3 3D Static Sound Localization Test Results ……………….…………………….……… 30

4.4 3D Dynamic Sound Localization Test Results ………………………………………… 32

CHAPTER 5: Conclusion and Future Work…………………………………………………… 35

Bibliography………………………….………………………………………………………... 37

Appendix…………………………….………………………………………………………… 39

APPENDIX A: Collected Data ……………...………………………………………………... 40

APPENDIX B: MATLAB Code ………...…...………………...……………………………... 50

iv

LIST OF TABLES

Table A.1 2D static experimental data (all angles in degrees) …………………….... 41

Table A.2 Average RSME for each calculated static angle (all angles in degrees) ... 42

Table A.3 2D dynamic experimental data participants 1 to 5 (all angles in degrees) . 43

Table A.4 2D dynamic experimental data participants 6 to 10 (all angles in degrees) 44

Table A.5 Average RSME for each calculated dynamic start and dynamic end ang-

le (all angles in degrees) …………………………………………...……. 45

Table A.6 3D random angle test position (all angles in degrees) ……………….…... 46

Table A.7 3D static localization experimental data ………………………….……... 47

Table A.8 Average RSME for each 3D static location ……………………………… 48

Table A.9 3D random angle test positions for the start and end angles ……………... 48

Table A.10 3D dynamic localization experimental data ……………………………... 49

v

LIST OF FIGURES

Figure 3.1 Two channel vector based amplitude Panning ………………………….... 9

Figure 3.2 Four channel 2D static simulation example …………………..........…….. 11

Figure 3.3 Four channel 2D experimental test setup ………………………………… 12

Figure 3.4 Block diagram of audio speaker ………………………………………….. 13

Figure 3.5 Four channel 2D dynamic simulation example …………………………... 15

Figure 3.6 Three channel configuration for 3D sound localization ………………….. 17

Figure 3.7 Virtual source locations ………………………………………………….. 20

Figure 3.8 Four channel 3D experimental test setup ………………………………… 22

Figure 3.9 Four channel 3D dynamic arc paths ……………………………………… 24

Figure 4.1 Four channel 2D static RSME ………………………………………...…. 26

Figure 4.2 Four channel 2D dynamic start angle RSME …………………...……….. 28

Figure 4.3 Four channel 2D dynamic end angle …………………………………...... 29

Figure 4.4 Four channel 3D static localization - percent of correct responses ……… 30

Figure 4.5 Four channel 3D static localization - percent of responses within 15 degr-

 ee ….……………………………………………………………………. 31

Figure 4.6 RSME for each virtual source location …………………………………. 32

Figure 4.7 Four channel 3D static localization - percent of correct ………………… 33

Figure 4.8 Four channel 3D static localization - percent of responses within one path 34

vi

ABSTRACT

2D AND 3D AUDIO SOUND LOCALIZATION UTILIZING VECTOR BASED AMPLITUDE

PANNING

Kaleb Frizzell, M.S.T.

Western Carolina University (March 2018)

Director: Dr. Robert Adams

Audio systems are used to create two-dimensional (2D) and three-dimensional (3D) audio

effects which involve the ability to localize sound within a multi-dimensional space. Multi-

dimensional audio systems could be used to imitate moving sounds in applications such as home

theaters, video games or headphones. When two or more equidistant speakers produce the same

sound, the observer will perceive the sound to be localized at a single point. The blending of

sound from equidistant speakers is called the virtual sound and is perceived to originate from a

virtual source. For two speakers, the virtual source is located on a circular arc between the

speakers and for three speakers, the virtual source is located on a spherical cone defined by the

speakers. For the observer to perceive one sound from multiple sources, the sounds must arrive

at the observer at the same time and the sounds must be the same. By calculating the individual

speaker gains using the method of vector-based amplitude panning (VBAP), the audio from all

the speakers can be manipulated such that the observer perceives the sound to be originating

from a single point. The objective of this project was to develop an algorithm that can place an

audio tone in the desired location by calculating and controlling the gain factors of each speaker.

In this thesis, the results of simulating in MATLAB and testing in the lab, two-dimensional (2D)

and three-dimensional (3D) audio systems with multiple speakers placed in testing positions

vii

equidistant to the observer are presented. It is envisioned that this research will lead to a better

understanding of localization of sound and to a better understanding of how accurately sound is

perceived by the human ear

1

CHAPTER 1: INTRODUCTION

Humans naturally hear in 3D, meaning they can perceive and localize the source of

sounds. The localization of a perceived sound source can be identified by the following three

coordinates: azimuth, elevation, and distance. Azimuth is the horizontal angle from the medium

plane; elevation is the angle between the horizontal plane and the perceived sound and distance

is how far the source of the sound is away from the observer. To determine the azimuth, our ears

use the slight differences in time and pressure of a sound as it reaches the left and right ears to

locate the source of the sound without seeing it [1]. The cues used to determine the azimuth of a

sound don’t give information on distance, so the listener must rely on the loudness of the sound

compared to familiar sources to tell how far away it is. Therefore, if we can control these

parameters, then we will be able to trick the mind into thinking a sound is coming from a desired

location.

Using software to generate audio and a specific speaker test set up, we can control these

parameters and have the human ears perceive a sound in the desired place. Over the past few

years, there have been advances in audio technology in both stereo systems, and headphones and

these systems provide a more realistic listening experience. Even though there have been many

advances, there is still a way to go in creating a fully realized 3D audio experience. Edward

Matthews [2] researched this topic and I plan to extend his findings and explore more aspects of

2D and 3D audio technology.

In this research, a MATLAB code was developed that generated all the necessary audio

files by applying the calculated gain factor to audio files, and after getting IRB approval, the

researcher tested the audio set up with the generated audio files to determine how well humans

2

perceive sound. In this thesis, I present the various papers I read and researched, the design and

methodology of the experiment and the results were obtained from the experiments. The results

will be analyzed and explained, followed by an explanation to how the experiment could be

possibly expanded in the future.

3

CHAPTER 2: LITERATURE REVIEW

2.1 2D and 3D Audio

Over the past century electronics have progressed dramatically, and even though sound

quality has improved over the years, stereo systems have not seen the same amount of

progression. Current stereo setups cannot imitate real life perfectly meaning that sounds coming

from the speakers seem always to be originating from the same origin. 2D and 3D audio would

fix this current issue by allowing sounds to seem to appear from anywhere in the room which

would give the user a more realistic listening experience when using any device that produces

sound. To achieve this, the sound wave’s gain values are manipulated to make the sound appear

where you want them to be.

2.2 Sound Perception

The study of the human perception of sound is called psychoacoustics, and sound

localization is the process of determining the location of a sound source. When the human ear

receives sound waves, the brain utilizes subtle differences in loudness, tone, and timing between

the two ears to allow humans to localize sound [1]. Localization can be described regarding its

three-dimensional position. The azimuth (horizontal angle), the zenith (vertical angle), and the

distance (for static sounds) [3]. Humans are adept at detecting the direction in the horizontal

plane due to their ears being placed symmetrically on the head. The ears being symmetric makes

it harder to perceive the vertical plane.

The factors that go into a sound are its intensity, frequency, and overtones. Frequency is

perceived as a pitch, and the sound intensity of the sound wave is what humans can hear. The

range humans can hear ranges from 20 Hz to 20,000 Hz [4]. Our ears use interaural cues such as

4

slight differences in time and pressure of a sound as it reaches the left and right ear to localize

sound [5]. It allows them to detect where the source is by allowing them to detect which

direction it is coming from. In the case where the source is directly in front of a person, the

distance that the sound waves travel to each ear is going to be equal. Therefore, there will be no

interaural differences to distinguish where the sound is coming from. In this specific case, the

ears use the head-related transfer function (HRTF) which is used to determine the elevation [6].

As a sound wave travels through the air to the eardrums, the signal is filtered through the head

and torso. The differences in the intensities of the frequencies compared to the eardrum and torso

make up the HRTF [6].

2.2.1 Sound Perception with Two Speakers

The precedence effect in sound localization states that when two sound waves reach the

ear in a specific amount of time, then the sound will be perceived as a single auditory event [7].

The most common multi-dimensional audio system is the two-channel stereophonic

configuration. Stereophonic sound is a method of sound reproduction that creates an illusion of

multidimensional audible perspective. This is usually achieved by using two independent audio

channels through a configuration of two loudspeakers (or stereo headphones) in such a way as to

create the impression of sound being heard from various directions, as in natural hearing.

2.2.2 Sound Perception with Three or More Speakers

Surround sound is a technique for enriching the sound reproduction quality of an audio

source with additional audio channels from speakers that surround the listener providing sound

from within a 360° circle in the horizontal plane. The technique enhances the perception of

sound localization. This is typically achieved by using multiple audio channels routed to an array

of loudspeakers [8]. An example of a surround sound system is Dolby 5.1 which generates

5

sounds from different directions, and the source of the sound seems to be localized at the speaker

that it was generated from. Surround sound is not able to make the sound appear to be coming

from above or below the speakers due to it being localized at the source.

Headphones are an approach that can be utilized to generate 3D audio. Wightman

performed experiments comparing the localization of sound presented in a free field environment

to headphones [9]. According to the results of the experiment, headphones could imitate a free

field environment in the horizontal plane but could not perfectly recreate the free field

environment entirely. Even though headphones can recreate 3D audio, it has the drawback of

being limited to a single listener.

All the pre-mentioned techniques that have been presented share a common disadvantage

of being confined to one listener. They all only work well when the user is at a specific location,

or when they are confined to a small listening space. Therefore, to achieve 3D audio that can be

listened by a larger audience, a multi-channel should be implemented. By adding more speakers,

there are more paths on which the virtual source can move [10].

Pulkki presents a simple model in [10] where a single elevated speaker is introduced to

the stereo configuration. The elevated speaker described is the same distance as the two speakers

on the horizontal plane. The three speakers will form a section of a 3-D sphere that they refer to

as the active triangle on which the virtual source can be positioned anywhere within the active

triangle.

In Pulkki's work, they describe how it is easy to say that when the number of speakers

that are in a system increases the more accurate it will be, however as the number of speakers

increases, so does the cost and amount of space required for the system. Therefore, for this

research effort, the number of channels was limited to four speakers.

6

2.3 Vector Based Amplitude Panning

In an article, Ville Pulkki describes how to use vector based math using the sound vectors

to calculate the necessary gains for the standard two-channel setup [10]. When the same signal is

transmitted on the pre-mentioned channels, the sound will be perceived as a single auditory

event; this event is known as a virtual sound source, coming from somewhere between the

speakers and the position between the two speakers is determined based on the gain factors [11].

That position will lie on what Pulkki calls the active arc, where the radius of the arc will be

determined by the distance of the speakers. The virtual source can be positioned anywhere

between the two speakers but lacks the ability to move anywhere outside of this arc [12, 13].

Because of this flaw, many techniques have been experimented with to move the perceived

source outside of this boundary [14] and to increase the size of the area where the listener can

localize the sound [11]. Research has also been done on how to make the sound move with the

listener [15, 16].

Gain refers to the amplification factor and is the extent to which an analog amplifier

boosts the strength of a signal. Adjusting the gain of each channel is known as intensity panning

[17]. In the situation where the two loudspeakers are positioned symmetrically to the median

plane, their gains will be equal.

2.4 Previous Research at WCU

Dr. Adams' previous graduate student, Edward Matthews, performed research on this

topic in 2016. Matthews worked with three speakers to study 2D and 3D audio. During his

research, he tested 2D and 3D test setups where all the listeners were all the same distance apart

from speakers. He found out that people could accurately localize sound in the horizontal plane,

but they had difficulty localizing sounds in the vertical plane. He also simulated, in MATLAB, a

7

situation where two speakers were not the same distance apart from an observer [2]. It is

envisioned that this research will expand our knowledge of how the human ears perceives sounds

which was achieved by expanding his 2D and 3D test setups by testing new configurations of

speakers for both 2D and 3D audio systems.

8

CHAPTER 3: DESIGN METHODOLOGY

3.1 Four Channel 2-Dimensional System

This research began by reviewing the current literature on the use of sound localization,

specifically in the areas of 2D and 3D audio. Some preliminary simulations were undertaken to

understand the process of generating the correct audio files. The literature review and theoretical

study were followed by planning the experimentation required for testing 2D and 3D audio

systems. This included acquiring parts such as speakers, audio amplifiers, digital audio interface,

sound forge and any other equipment required for testing.

In this section our investigation of the vector based amplitude panning (VBAP) discussed

in Pulkki’s paper [10] is presented. Amplitude panning is an audio technique where the same

signal is played over two or more speakers that are equidistant from an observer. Since the

signals are the same distant away and there is no interaural time delay, the observer will perceive

the illusion of a single virtual source. The position of the virtual source depends on the locations

of the speakers, and the relation between the amplitudes of the signals they produce. The

amplitude of the signals can be controlled by adjusting the gains of each speaker. The following

sections will discuss the mathematical derivation, algorithm development, and testing procedure

for four channel 2D and 3D localization, which both implement amplitude panning.

Two-dimensional vector based amplitude panning is the base used in the setup that was

implemented. At any given time only two of the four channels will be active to create a 2D

sound environment. Figure 3.1 is a visual representation of a basic two-dimensional setup and

its sound vectors.

9

Figure 3.1: Two channel vector based amplitude panning

In Figure 3.1, Channel 1 (𝒍𝟏) and Channel 2 (𝒍𝟐) are the position vectors for the left and

right speakers, and the virtual source (𝒑) is the virtual source vector. The speaker vectors can be

expressed using Equation (3.1) where m is the channel number, 𝑙𝑚𝑥 is the x component of the

vector and 𝑙𝑚𝑦 is the y component of the vector.

𝒍𝒎 = [𝑙𝑚𝑥 𝑙𝑚𝑦] (1)

The x and y position of the speakers are determined using

𝑙𝑚𝑥 = 𝑠 cos(θ𝑚) (2)

𝑙𝑚𝑦 = 𝑠 sin(θ𝑚) (3)

Where m is the channel number, s is the distance from the observer to the speakers, θ𝑚 are the

azimuth angles from the x axis for each speaker.

The distance to each speaker is equal. Therefore, the vectors have the same length. The

gain factors of the left and right speakers, 𝑔1 and 𝑔2, are non-negative scalar variables in the

range of zero to one. To keep the loudness of the virtual source constant the gain factors must be

normalized using:

𝐶 = 𝑔1
2 + 𝑔2

2 (4)

10

where C is the volume of the virtual source. As C increases, the virtual source is perceived to

move closer to the observer.

The vector pointing toward the virtual source can be represented as a linear combination

of the speaker vectors and their respective gains.

𝒑 = [𝑝𝑥 𝑝𝑦] = 𝑙1𝑔1 + 𝑙2𝑔2 (5)

Equations (3.6) and (3.7) are utilized to determine the x and y position of the virtual source,

where m is the channel number, s is the distance from the observer to the speakers and θ𝑝 are the

angles from the x axis for the virtual source.

𝑝𝑥 = 𝑠 cos(θ𝑝) (6)

𝑝𝑦 = 𝑠 sin(θ𝑝) (7)

3.1.1 2D Static Localization

The first test that was conducted was static localization in which the virtual source was

specified to be at a stationary angle (making the resulting speaker gains constant).

3.1.2 2D Static Algorithm

MATLAB code was developed that calculates the necessary gain factors required to

position the virtual source at a given location. The gain, which refers to the amplification factor,

is represented by the variable 𝒈 and is the extent to which an analog amplifier boosts the strength

of a signal. To calculate the necessary gain factors, the following formula was used.

𝒈 = 𝑝𝑡𝑙123
−1 = [𝑝𝑥 𝑝𝑦 𝑝𝑧] [

𝑙1𝑥 𝑙1𝑦 𝑙1𝑧

𝑙2𝑥 𝑙2𝑦 𝑙2𝑧

𝑙3𝑥 𝑙3𝑦 𝑙3𝑧

]

−1

 (8)

When the MATLAB code is run, the user is asked to input the location of the speakers by

defining the angle from the x-axis to the left and right speakers and to define the angle for the

desired virtual source. The MATLAB code generated two 2 second, 400 Hz audio signals with a

11

sampling frequency of 44.1 kHz. The individual speaker gains calculated from (3.8) were applied

to each signal to produce the tones needed for each channel.

Before testing on participants, simulations for 2D VBAP were tested and performed in

MATLAB. Figure 3.2 is a simulation of static testing in which the left and right speakers are

both 6 feet from the observer.

Figure 3.2: Four channel 2D static simulation example

The right speaker is 45° above the x-axis, and the left speaker is 45° below the x-axis.

The user specifies a virtual source located on the active arc, 30° above the x-axis. The VBAP

algorithm calculated left and right speaker gains of 0.9659 and 0.2588, respectively, to generate

the specified virtual source.

12

3.1.3 2D Static Test Procedure

A specific test setup was implemented that involved four channels which were used to

create 2D audio effects. It is important to note that at any given time, only two of the four

channels will be active at any given time. The setup for 2D audio that was implemented had four

speakers that were all positioned to be six feet away from the observer. Two of the speakers were

in front of the observer, and the other two speakers were located behind the observer. The

observer sat in the exact center of the speakers, and the speakers were placed at azimuth angles

45°, 135°, 225° and 315° relative to the observer. All four speakers were on the same XY plane.

The observer sat in the exact center of the circle of speakers with the head faced an azimuth of

90°. This setup does not simulate 3D audio. Since all the speakers are in one plane surrounding

the observer, it is an implementation of 360° 2D audio. This setup was chosen so we could test to

see if humans have difficulty localizing sound behind them when compared to sounds in front of

them. The following figure is a photograph of the test setup that was implemented.

Figure 3.3: Four channel 2D experimental test setup

13

MATLAB was used to create Waveform Audio Files (.wav) files which are the audio

files that were used in the testing phase of our research. A .wav file is an audio file format

standard for storing an audio bit stream onto PCs. MATLAB cannot play a sound with more than

two channels. Therefore, an audio file (.wav) for each speaker with its corresponding gain factor

had to be generated. Once the .wav files were generated, they were imported into Sound Forge, a

digital audio editing application, and assigned to different channels. A base signal was generated

to be used in participant testing. This signal was a 400 Hz sine wave with a sampling frequency

of 44.1 kHz and a duration of 2 seconds.

A digital audio workstation (DAW), SoundForge Pro 11, took those .wav files and

assigned them to four independent channels. The laptop exported the four independent channels

to the Digital Audio Interface (Focusrite Scarlett 2i4) via a USB cord. The DAI was connected to

two audio amplifiers (Sherwood RX-4109) which controlled the gains of each of the individual

(Klipsch B-3 bookshelf) speakers. Each stereo audio amplifier controlled the gains of two of the

four speakers. Figure 3.4 is a block diagram that visually represents how each component is

connected.

Figure 3.4: Block diagram of audio speaker setup

14

During testing the observer was placed in a chair that was surrounded by a set of audio

speakers. The researcher explained how the testing would be conducted and gave a

demonstration of the types of sounds that were played. The researcher played the base signal

localized at 24 different fixed locations around the observer. The locations tested ranged from 0°

to 345° with a step size of 15°. The researcher played the sounds in random order. The observer

identified the angular position of each sound by pointing to the perceived angle on one of two

large paper printouts of a protractor. One protractor was laid in front of the observer, and the

other was positioned behind the observer.

3.1.4 2D Dynamic Localization

The second test involved dynamic testing in which the virtual source is specified to move

across an active arc. The resulting speaker gains would therefore dynamically change over time.

The researcher played the 2 second 400 Hz base tone targeted to a specific active arc. The

observer would then indicate on the printed protractors where they thought the tone started and

where the tone ended. This process was repeated for a set of 24 different active arcs. Each arc

had a width of 90° and an arbitrary starting angle.

3.1.5 2D Dynamic Algorithm

In this algorithm, the gains are dynamically changing over time to create the sensation of

a moving sound. To generate these audio files, 100 gain factors were calculated in MATLAB at

evenly spaced time intervals and then those values were interpolated and applied to a sound

wave.

15

Figure 3.5: Four channel 2D dynamic simulation example

 Figure 3.5 is a simulation of dynamic testing in which the all the speakers are 6 feet from

the observer. The right speaker (First Speaker) is 45° to the right of the y-axis and the left

speaker (Second Speaker) is 45° to the left of the y-axis. The user specifies the starting angular

position of the virtual source, the total angle of the arc, and whether the sound rotates clockwise

or counter-clockwise. In this case, the virtual source was specified to move from the first

speaker to the second speaker. The VBAP algorithm calculated the gain factors at 100 evenly

spaced intervals between the first and second speaker. The 100 gain factors were interpolated

and applied to the tone files to achieve dynamic movement of sound.

16

3.1.6 2D Dynamic Test Procedure

The second test involved 2D dynamic testing in which the virtual source is specified to

move across an active arc. The test setup used in static localization was utilized here. The

resulting speaker gains dynamically changed over time. The researcher played the 2 second 400

Hz base tone targeted to a specific active arc. The researcher played the sound signals localized

at 24 different arcs around the observer. The starting arc locations tested ranged from 0° to 345°

with a step size of 15°. The researcher played the sound signals in a random order. Each sound

was targeted to move through a 90° arc in either a clockwise or counterclockwise direction. The

observer would then indicate on the printed protractors where they thought the tone started and

where the tone ended. This process was repeated for the set of 24 different active arcs.

3.2 Four Channel 3-Dimensional System

Three-dimensional vector based amplitude panning is the basis for the algorithm used to

generate 3D sound localization. Figure 3.6 is a visual representation of three-dimensional sound

vectors. The three speakers form an active triangle in which one may position the virtual source.

17

Figure 3.6: Three channel configuration for 3D sound localization

In Figure 3.6, Channel 1 (𝒍𝟏), Channel 2 (𝒍𝟐) and Channel 3 (𝒍𝟑) are the position vectors

for the left, right and elevated speakers, and 𝒑 is the virtual source vector.

 The speaker vectors can be expressed using Equation 3.9 where m is the channel

number, 𝑙𝑚𝑥, 𝑙𝑚𝑦 and 𝑙𝑚𝑧 are the x, y, z components, respectively of the position vectors.

𝒍𝒎=[𝑙𝑚𝑥 𝑙𝑚𝑦 𝑙𝑚𝑧] (9)

The x, y and z position of the speakers may be calculated using:

18

𝑙𝑚𝑥 = 𝑠 cos(θ𝑚) (10)

𝑙𝑚𝑦 = 𝑠 sin(θ𝑚) (11)

𝑙𝑚𝑧 = 𝑠 sin(ϕ𝑚) (12)

where m is the channel number, s is the distance from the observer to the speakers, θ𝑚 is the

azimuth angle from the x axis for each speaker and ϕ𝑚) is the elevation angle for each speaker.

Note that the elevation angle for the right and left speakers is zero for the configuration shown in

Figure 3.6.

The gain factors of the left, right and elevated speakers, 𝑔1, 𝑔2 and 𝑔3, are non-negative

scalar variables in the range of zero to one. To keep the loudness of the virtual source constant

the gain factors must be normalized using:

𝐶 = 𝑔1
2 + 𝑔2

2 + 𝑔3
2 (13)

where C is the volume of the virtual source. As C increases, the virtual source is perceived to

move closer to the observer. If the largest gain factor is greater than 1, then each gain is divided

by a calculated factor so that they are all are between zero and one. To ensure that the loudness is

always the same (regardless of input parameters), a scaling factor is calculated

𝑛 = √𝑔1
2 + 𝑔2

2 + 𝑔3
2 (14)

each gain factor is then divided by n. This places the virtual source on the surface of a sphere

surrounding the listener, so it always sounds like it is the same distance away.

The vector pointing towards the virtual source can be represented as a linear combination

of the speaker vectors and their respective gains.

𝒑 = [𝑝𝑥 𝑝𝑦 𝑝𝑧] = 𝒍𝟏𝑔1 + 𝒍𝟐𝑔2 + 𝒍𝟑𝑔3 (15)

19

 Equations (3.16) through (3.18) are utilized to determine the x, y and z coordinates for

the virtual source where, m is the channel number, s is the distance to the speakers, θ𝑝 is the

azimuth angle of the virtual source, and θ𝑝 is the elevation angle for the virtual source.

𝑝𝑥 = 𝑠 cos(θ𝑝) (16)

𝑝𝑦 = 𝑠 sin(θ𝑝) (17)

𝑝𝑧 = 𝑠 sin(ϕ𝑝) (18)

3.2.1 3D Static Localization

The 3D testing involved two parts, static and dynamic localization. In 3D static

localization, the virtual source was specified to be at a stationary point (making the resulting

speaker gains constant). The researcher played the base signal localized at 17 different fixed

locations in front of the observer. The participant had a sheet that had a plot of the potential

positions that the virtual source could be coming from. Figure 3.7 shows all 17 locations that

were tested.

20

Figure 3.7: Virtual source locations

The sounds were played from one to seventeen for training, and then the order was

randomized for testing. For each location, the sound was played twice and the listener was asked

to identify which point was closest to where they perceived the sound to be coming from.

3.2.2 3D Static Algorithm

To calculate the gains for 3D testing the following equations were used. Equation 3.19

calculates the three gain factors for the configuration shown in Figure 3.6, given the coordinate

positions of the 3 speakers and the virtual source. When the MATLAB code is run, the user is

asked to input the azimuth and elevation angles of each speaker and of the virtual source. The

21

MATLAB code then calculates the coordinates of the speaker locations using equations (3.10)

through (3.12) and the coordinates of the virtual source location using equations (3.16) through

(3.18).

 𝒈 = 𝒑𝑇𝒍𝟏𝟐𝟑
−1 = [𝑝𝑥 𝑝𝑦 𝑝𝑧] [

𝑙1𝑥 𝑙1𝑦 𝑙1𝑧

𝑙2𝑥 𝑙2𝑦 𝑙2𝑧

𝑙3𝑥 𝑙3𝑦 𝑙3𝑧

]

−1

 (19)

MATLAB applies these calculated gain factors to three of the four audio channels, because only

three speakers are needed to create the active triangle shown in Figure 3.6. The sound is then

outputted to the four speakers via the Focusrite Scarlett 2i4 and audio amplifiers.

3.2.3 3D Static Test Procedure

During testing the observer was placed in a chair that faced four speakers. The researcher

explained how the testing would be conducted and gave a demonstration of the types of sounds

that would be played. A test setup was implemented using four channels which were used to

create 3D audio effects. It is important to note that at any given time, only three of the four

channels were active at any given time. The left speaker was placed at 30° azimuth and 0°

elevation. The right speaker was placed at -30° azimuth and 0° elevation. The top speaker was

placed at 0° azimuth and 30° elevation. The bottom speaker was placed at 0° azimuth and -30°

elevation. All four speakers were placed 6 feet from the listener. This setup was chosen so that

we could test to see if humans have difficulty localizing sounds with varying elevations and

azimuth. A photo of the 3D test setup in shown in Figure 3.8.

22

Figure 3.8: Four channel 3D experimental test setup

MATLAB was used to create Waveform Audio Files (.wav) files which are the audio

files that were used in the testing phase of our research. A .wav file is an audio file format

standard for storing an audio bit stream onto PCs. MATLAB cannot play a sound with more than

two channels. Therefore, an audio file (.wav) for each speaker with its corresponding gain factor

had to be generated. Once the .wav files were generated, they were imported into Sound Forge, a

digital audio editing application, and assigned to different channels. A base signal was generated

to be used in participant testing. This signal was a 400 Hz sine wave with a sampling frequency

of 44.1 kHz and a duration of 2 seconds.

23

A digital audio workstation (DAW), SoundForge Pro 11, took those .wav files and

assigned them to four independent channels. The laptop exported the four independent channels

to the Digital Audio Interface (Focusrite Scarlett 2i4) via a USB cord. The DAI was connected to

two audio amplifiers (Sherwood RX-4109) which controlled the gains of each of the individual

(Klipsch B-3 bookshelf) speakers. Each stereo audio amplifier controlled the gains of two of the

four speakers.

3.2.4 3D Dynamic Localization

The second test involved dynamic testing in which the virtual source is specified to move

across an active arc. The resulting speaker gains would therefore dynamically change over time.

The researcher played the 2 second 400 Hz base tone targeted to a specific active arc. This

process was repeated for a set of eight different active arcs.

3.2.5 3D Dynamic Algorithm

In this algorithm the gains are changing over time to create the sensation of a moving

sound. To generate these audio files, 100 gain factors were calculated in MATLAB

corresponding to evenly spaced azimuth angles across the targeted active arc at 100 evenly

spaced time intervals within the 2 second sound duration. These gain factors were interpolated to

the 44.1 kHz sampling frequency, and the interpolated gain factors were then applied to the 2

second 400 Hz base tone.

3.2.6 3D Dynamic Test Procedure

The second test involved dynamic testing in which the virtual source is specified to move

across an active arc. The test setup is the same as the one used in 3D static localization. The

researcher played the 2 second 400 Hz base tone targeted to a specific active arc path. The paths

tested can be seen in Figure 3.9.

24

Figure 3.9: Four channel 3D dynamic arc paths

The observer was given a list of possible paths that the sound could have moved on and

they would identify which path they thought the sound was traveling on. This process was

repeated 8 times, each for one of the 8 designed paths.

25

CHAPTER 4: RESULTS

In this chapter the results of the four-channel localization testing for both static and

dynamic testing, are presented. For the static and dynamic channel localization tests,

experimental data was collected from participants and put into tables. This data can be found in

the Appendix Section A.1 through A.9.

4.1 2D Static Sound Localization Test Results

 A total of 10 participants were tested to identify the perceived azimuth angle of static

tones, and the responses were compared to the calculated azimuth angle of the virtual source by

calculating the Root Mean Squared Error (RSME). The RSME was calculated using

𝑅𝑆𝑀𝐸 = √
∑ 𝐸𝑟𝑟𝑜𝑟𝑖

2𝑛
𝑖=1

𝑛

where 𝐸𝑟𝑟𝑜𝑟𝑖 is the difference between the perceived and actual angle, and n is the number of

participants. On average the RMSE was 37.35°.

26

Figure 4.1: Four channel 2D static RSME

Figure 4.1 is a representation of the RMSE for each calculated angle. In this figure, each

vector represents each calculated angle and the length of the vector corresponds to the RMSE

value. The results indicate that the participants do not have trouble localizing sound when the

tone is right in front of them. The areas that they have trouble localizing sound were when the

27

tone was calculated to be diagonally in front or behind them and when the tone is directly behind

of them.

4.2 2D Dynamic Sound Localization Test Results

A total of 10 participants were tested for dynamic localization. The results from all the

participants were compared to the calculated location by calculating the RSME for the intended

start angle and the intended end angle. The average RSME for all participants in dynamic testing

was equal to 50.21° for the calculated start angle. On average the RMSE for the end angle was

equal to 47.74°.

28

Figure 4.2 is a representation of the RMS error (for all 10 participants combined)

between the targeted start angle and the perceived start angle as a function of targeted start angle.

Figure 4.2: Four channel 2D dynamic start angle RSME

29

 Figure 4.3 is a representation of the RMS error (for all 10 participants combined)

between the targeted end angle and the perceived end angle as a function of targeted end angle.

In Figures 4.2 and 4.3, each vector represents the targeted angle, and the length of the vector

corresponds to the RMSE value.

Figure 4.3: Four channel 2D dynamic end angle RSME

30

The results indicate that for dynamic sounds, the participants had trouble localizing the

start of the sound when the tone was calculated to start at an angle diagonally in front or

diagonally behind them. The participants had trouble localizing the end of the sound when the

tone was calculated to end at an angle diagonally in front or diagonally behind them, and they

had trouble localizing the sound when it was calculated to end directly behind them.

4.3 3D Static Sound Localization Test Results

In the four-channel 3D static tests, the participant was given a discrete set of points from

which to choose the perceived virtual source position. Figure 4.4 is a bar plot showing the

percentage of responses that matched the exact virtual source position. Figure 4.5 is a bar plot

showing the percentage of responses that were within 15° of the virtual source position.

Figure 4.4: Four channel 3D static localization - percent of correct responses

31

Figure 4.5: Four channel 3D static localization - percent of responses within 15 degree

In these graphs, the sound file number is directly correlated to the virtual source location

number shown in Figure 3.7. The results show that individuals perceive the sound well when it is

placed on the corners of the diamond shape that is created by the four speakers. When the sound

is placed within the diamond, more error occurred.

The RSME was calculated for each of the 17 locations for all participants and the results

can be seen in Figure 4.6 where each square represents one of the virtual source locations. For

3D static localization, the average RSME was 15.46°, the minimum RSME was 8.18°, and the

maximum RSME was 21.98°.

32

Figure 4.6: RSME for each virtual source location

4.4 3D Dynamic Sound Localization Test Results

In the four channel 3D tests, the participant was given a discrete set of paths from which

to choose the perceived virtual source arc. Figure 4.7 is a bar plot showing the percentage of

responses that matched the exact theoretical path for each virtual source position by all

participants.

33

Figure 4.7: Four channel 3D static localization - percent of correct responses

The results show that individuals perceive the sound well when it dynamically travels on

the horizontal or vertical plane. When the sound is designed to move diagonally, it causes more

error in sound localization. The paths tested are the paths shown in Figure (3.10).

34

Figure 4.8 is a bar plot showing the percentage of responses that were within one path

meaning that the start of the perceived path was with 15° of the theoretical path for each virtual

sound arc by all participants.

Figure 4.8: Four channel 3D static localization - percent of responses within one path

35

CHAPTER 5: CONCLUSION AND FUTURE WORK

In this research effort, an algorithm was developed to simulate auditory localization for a

four-channel speaker system. Test setups were produced to implement the simulation, and

experimental data were collected to verify the simulation. The average RMSE for 2D static

sound localization was 37.35°. The average RSME for 2D dynamic sound localization was

50.21° for the calculated start angle and on average the RMSE for the end angle was equal to

47.74°. The static and dynamic testing results seem to indicate that individuals have trouble

localizing the source of the sound when it is in the area directly behind them and when the tone

is diagonally in front of them or diagonally behind them. Based on these results the simulation is

accurate in most areas, but there were some angles where individuals had trouble localizing the

sound. Overall the test set up could be useful in implementing a 2D audio system that could

provide a more realistic listening experience than current stereo-sound systems.

The average RSME for 3D static localization was 15.4644°. The minimum RSME was

8.18° and the maximum RSME was 21.97°. At high and low elevations, more error occurred

compared to an elevation of 0°. This happened because humans are adept at detecting the

direction in the horizontal plane due to their ears being placed symmetrically on the head. The

ears being symmetric makes it harder to perceive the vertical plane. Overall the test set up could

be useful in implementing a 3D audio system that could provide a more realistic listening

experience than current stereo-sound systems.

In a future project, the concept of this project could be expanded. For example, the

speakers could be moved to different distances and angles from the listener to see if their ability

36

to distinguish location is affected. Other sounds, such as music, speech or sound effects, could

also be utilized for testing. Non-equidistant localization could also be explored.

37

BIBLIOGRAPHY

[1] Daniel M Thompson, Understanding audio: getting the most out of your project or

professional recording studio, Hal Leonard Corporation, 2005.

[2] Edward Albert Matthews, Simulation and testing of a multichannel system for 3D sound

 localization, Western Carolina University, 2015.

[3] Curtis Roads, The computer music tutorial, MIT press, 1996.

[4] Julian Andres Osorio, 20-20 Listening: A sound documentary dedicated to the study of

 listening experiences in acoustic environments, Ph.D. thesis, Iowa State University, 2016.

[5] Lord Rayleigh, “Xii. on our perception of sound direction,” The London, Edinburgh, and

 Dublin Philosophical Magazine and Journal of Science, vol. 13, no. 74, pp. 214–232, 1907.

[6] William M Hartmann, “How we localize sound,” Physics today, vol. 52, pp. 24–29, 1999.

[7] Hans Wallach, Edwin B Newman, and Mark R Rosenzweig, “A precedence effect in sound

 localization,” The Journal of the Acoustical Society of America, vol. 21, no. 4, pp. 468–468,

1949.

[8] M Sawaguchi, “Multichannel sound mixing practice for broadcasting,” in IBC Conf. Proc.,

 1999.

[9] Frederic L Wightman and Doris J Kistler, “Headphone simulation of free-field listening. ii:

 Psychophysical validation,” The Journal of the Acoustical Society of America, vol. 85, no.

2, pp. 868–878, 1989.

[10] Ville Pulkki, “Virtual sound source positioning using vector base amplitude panning,”

Journal of the audio engineering society, vol. 45, no. 6, pp. 456–466, 1997.

[11] Sascha Spors, Hagen Wierstorf, Alexander Raake, Frank Melchior, Matthias Frank, and

38

 Franz Zotter, “Spatial sound with loudspeakers and its perception: A review of the current

state,” Proceedings of the IEEE, vol. 101, no. 9, pp. 1920–1938, 2013.

[12] Jeroen Breebaart and Erik Schuijers, “Phantom materialization: A novel method to enhance

stereo audio reproduction on headphones,” IEEE transactions on audio, speech, and

language processing, vol. 16, no. 8, pp. 1503–1511, 2008.

[13] HAM Clark, GF Dutton, and PB Vanderlyn, “The’stereosonic’recording and reproducing

 system: A two-channel systems for domestic tape records,” Journal of the Audi

 Engineering Society, vol. 6, no. 2, pp. 102–117, 1958.

[14] MR Schroeder and BS Atal, “Computer simulation of sound transmission in rooms,”

Proceedings of the IEEE, vol. 51, no. 3, pp. 536–537, 1963.

[15] Jens Blauert, Spatial hearing: the psychophysics of human sound localization, MIT press,

 1997.

[16] William G Gardner, 3-D audio using loudspeakers, vol. 444, Springer Science & Business

 Media, 1998.

[17] Myung-Suk Song, Cha Zhang, Dinei Florencio, and Hong-Goo Kang, “An interactive 3-d

audio system with loudspeakers,” IEEE Transactions on Multimedia, vol. 13, no. 5, pp.

 844–855, 2011.

39

Appendices

40

APPENDIX A: COLLECTED DATA

Table A.1 shows the individual responses for each 2D static angle tested across all

participants. Table A.2 shows the RSME results of static 2D sound localization testing. Tables

A.3 and A.4 shows the individual responses for each dynamic start and end angle tested across

all participants. Table A.5 shows the RSME results of dynamic 2D sound localization testing.

Table A.6 shows the tested virtual source positions for the 3D static sound localization testing.

Table A.7 shows the individual responses for each sound position tested across all participants

for 3D static localization. Table A.8 shows the RSME results of static 3D sound localization

testing. Table A.9 shows the tested virtual source paths for 3D dynamic sound localization

testing. Table A.10 shows the individual responses for each dynamic angle tested across all

participants.

41

Table A.1: 2D static experimental data (all angles in degrees)

Participant

Intended

Angle
1 2 3 4 5 6 7 8 9 10

0 0 30 15 30 0 0 45 315 0 0

15 0 30 30 30 15 15 330 30 15 15

30 0 345 45 30 270 30 315 30 45 285

45 300 0 45 45 45 0 45 45 270 0

60 285 15 60 60 60 60 60 45 60 255

75 285 60 60 285 120 270 75 90 75 75

90 270 75 90 90 90 90 90 90 105 90

105 225 150 150 255 120 255 105 90 135 105

120 225 240 150 135 135 225 120 120 150 225

135 135 180 135 135 135 225 135 135 135 225

150 180 150 135 135 135 180 150 135 150 135

165 225 195 135 165 150 225 120 135 165 180

180 225 195 150 135 150 225 150 180 180 180

195 225 195 195 180 165 270 150 255 195 180

210 225 180 225 150 135 270 195 240 210 180

225 225 180 225 225 225 270 135 225 225 225

240 225 150 225 255 255 315 150 240 225 225

255 255 105 255 270 270 315 300 255 270 255

270 270 270 90 270 270 270 300 270 270 270

285 300 285 270 285 270 270 270 295 300 315

300 315 30 315 270 300 270 225 315 315 225

315 315 300 315 315 315 300 225 315 315 315

330 345 300 300 285 270 315 0 330 315 0

345 285 270 15 15 330 315 330 300 330 315

42

Table A.2: Average RSME for each calculated static angle (all angles in degrees)

Intended Angle RMS Error

0° 24.65°

15° 17.74°

30° 57.12°

45° 49.30°

60° 55.11°

75° 55.72°

90° 6.71°

105° 54.70°

120° 49.52°

135° 42.69°

150° 17.10°

165° 35.18°

180° 30.00°

195° 36.74°

210° 40.25°

225° 34.86°

240° 48.14°

255° 25.54°

270° 57.71°

285° 15.33°

300° 46.96°

315° 29.24°

330° 31.47°

345° 34.53°

43

Table A.3: 2D dynamic experimental data participants 1 to 5 (all angles in degrees)

Participant

Dynamic

Start

Angle

Dynamic

End

Angle

1 2 3 4 5

0 270 300 255 15 285 315 270 45 315 315 225

15 105 315 105 345 105 315 90 30 105 0 90

30 300 60 300 30 105 315 15 45 315 45 315

45 135 45 150 15 105 285 195 45 135 315 135

60 150 90 240 60 180 60 180 15 105 45 135

75 165 90 195 75 165 75 180 45 225 90 240

90 0 90 300 90 0 90 315 90 0 105 45

105 195 105 225 90 180 105 195 90 150 135 225

120 210 120 210 135 180 270 180 135 225 120 210

135 225 195 225 120 195 270 180 135 225 135 225

150 60 210 60 180 60 270 0 195 105 120 30

165 255 225 270 150 75 180 270 150 255 120 210

180 90 225 90 165 90 180 90 180 90 60 150

195 285 195 285 165 255 180 270 165 285 150 240

210 300 225 285 195 285 270 315 225 315 90 270

225 135 225 150 150 240 225 135 225 135 90 135

240 150 240 135 195 135 225 135 225 135 225 135

255 165 255 225 120 195 225 150 270 180 255 135

270 0 270 0 270 0 270 315 270 0 0 270

285 195 270 225 105 195 270 225 240 150 270 195

300 210 315 255 15 240 285 195 330 240 300 210

315 45 315 45 345 240 0 315 315 45 315 45

330 60 330 90 30 120 195 0 300 30 330 60

345 235 300 285 0 270 315 270 45 300 195 270

44

Table A.4: 2D dynamic experimental data participants 6 to 10 (all angles in degrees)

Participant

Dynamic

Start

Angle

Dynamic

End

Angle

6 7 8 9 10

0 270 0 270 0 270 315 45 315 225 0 270

15 105 315 225 330 60 45 105 315 105 0 120

30 300 30 300 300 210 45 315 45 315 270 0

45 135 315 225 30 120 45 135 45 135 270 180

60 150 60 315 60 150 45 135 30 120 0 90

75 165 75 165 75 195 45 135 75 180 270 180

90 0 135 225 90 0 45 315 150 0 90 0

105 195 270 225 105 210 135 225 105 225 45 135

120 210 120 315 135 180 135 225 120 210 255 165

135 225 225 315 135 225 135 225 135 225 180 90

150 60 150 60 285 195 135 45 120 30 150 60

165 255 165 225 240 225 135 225 150 240 180 270

180 90 180 90 195 105 120 30 135 225 180 90

195 285 180 270 285 285 135 45 225 315 180 270

210 300 225 315 210 300 225 315 225 315 225 315

225 135 315 225 225 135 225 135 225 135 135 225

240 150 240 150 240 150 225 135 225 135 150 240

255 165 225 315 240 150 45 135 225 135 240 150

270 0 270 0 330 0 315 45 270 300 270 315

285 195 285 195 285 195 315 225 330 240 240 150

300 210 180 270 330 240 315 225 300 210 30 120

315 45 315 45 300 210 315 45 315 315 0 90

330 60 225 60 300 60 315 45 330 60 300 60

345 235 135 270 330 240 330 45 315 225 0 90

45

Table A.5: Average RSME for each calculated dynamic start and dynamic end angle (all angles

in degrees)

Intended

Start Angle
RMS Error

Intended

End Angle
RMS Error

0° 37.35° 270° 49.75°

15° 43.37° 105° 41.35°

30° 54.70° 300° 67.42°

45° 70.68° 135° 38.83°

60° 28.06° 150° 66.41°

75° 54.29° 165° 35.50°

90° 28.06° 0° 52.82°

105° 57.51° 195° 32.52°

120° 64.52° 210° 39.62°

135° 56.72° 225° 54.08°

150° 65.73° 60° 50.87°

165° 36.43° 255° 60.19°

180° 47.43° 90° 50.64°

195° 41.35° 285° 43.47°

210° 44.24° 300° 16.43°

225° 63.29° 135° 52.39°

240° 33.54° 150° 31.10°

255° 66.41° 165° 55.32°

270° 37.05° 0° 42.16°

285° 63.29° 195° 29.62°

300° 55.32° 210° 41.08°

315° 22.76° 45° 85.25°

330° 59.81° 60° 30.37°

345° 73.02° 235° 78.53°

46

Table A.6: 3D random angle test position (all angles in degrees)

Random Angle Position Azimuth Elevation

1 30 0

2 -30 0

3 0 30

4 0 -30

5 0 0

6 15 0

7 -15 0

8 0 15

9 0 -15

10 7.5 7.5

11 -7.5 7.5

12 7.5 -7.5

13 -7.5 -7.5

14 15 15

15 -15 15

16 15 -15

17 -15 15

47

Table A.7: 3D static localization experimental data

Participant

Sound

Location
1 2 3 4 5 6 7 8 9 10

1 16 1 1 6 1 1 1 1 1 1

2 15 2 7 2 2 2 2 2 2 2

3 3 3 9 3 3 3 3 3 9 3

4 3 4 4 4 4 4 4 4 4 4

5 5 5 8 17 5 5 5 17 7 5

6 1 6 14 6 1 6 1 6 1 6

7 7 7 3 2 7 7 2 7 2 6

8 8 8 4 9 8 8 5 3 8 8

9 9 9 6 5 4 9 9 5 8 9

10 10 10 1 10 6 10 14 1 10 10

11 11 11 3 11 11 11 17 2 11 10

12 10 12 1 16 12 12 12 12 12 12

13 13 13 13 17 13 13 2 17 7 13

14 1 14 14 1 14 14 16 14 6 13

15 17 15 2 15 15 1 15 15 15 14

16 14 16 16 16 16 16 16 16 16 2

17 11 17 17 2 17 17 13 17 13 17

48

Table A.8: Average RSME for each 3D static location

Sound Location RMS Error

1 8.18

2 8.18

3 20.12

4 18.97

5 11.57

6 11.61

7 17.68

8 18.97

9 17.08

10 14.56

11 16.84

12 14.67

13 11.11

14 18.83

15 21.97

16 18.83

17 13.64

Table A.9: 3D random angle test positions for the start and end angles

Start Angle

Location
Azimuth Elevation

End Angle

Location
Azimuth Elevation

1 30 0 2 -30 0

2 -30 0 1 30 0

3 0 30 4 0 -30

4 0 -30 3 0 30

5 15 15 7 -15 -15

6 15 -15 8 -15 15

7 -15 -15 5 15 15

8 -15 15 6 15 -15

49

Table A.10: 3D dynamic localization experimental data

Participant

Dynamic

Path
1 2 3 4 5 6 7 8 9 10

1 6 1 1 2 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2

3 3 1 3 3 3 3 3 4 3 3

4 4 4 4 4 4 4 4 4 4 4

5 1 5 5 1 5 5 5 1 5 5

6 5 6 6 6 6 6 6 6 6 5

7 8 7 7 7 7 7 8 2 7 5

8 8 7 8 8 8 8 7 7 8 6

50

APPENDIX B: MATLAB CODE

2D Static and Dynamic Localization

% Clears all previous data and clears workspace

clear all;

close all;

clc;

% Speaker locations in terms of azimuth (angle)

Speaker1Theta=45; % Speaker 1 location

Speaker2Theta=135; % Speaker 2 location

Speaker3Theta=225; % Speaker 3 location

Speaker4Theta=315; % Speaker 4 location

Listener= [0 0]; % The observers position

s=6; % How far away all the speakers are from the Listener (in feet)

%Angles used for random testing

Theta= [15 45 330 225 30 105 195 345 60 180 240 300 150 0 270 315 135 165 90 75 285 120

210 255]

% This section is for static tones

% Generates tones used in testing

[Tone, FS, t] =Tone_Generator (400,1,2,0,0);

i=1;

n=1;

% The following if loop calculates the gains for the speakers

if Theta(i)==Speaker1Theta

 g1=1;

 g2=0;

 g3=0;

 g4=0;

 XLeft=s*cosd(Speaker1Theta); %Left speaker coordinate

 YLeft=s*sind(Speaker1Theta); %Left speaker coordinate

 px=s*cosd(Theta(i));

 py=s*sind(Theta(i));

 figure

 plot ([0 XLeft], [0 YLeft],'r-o','linewidth',2)

 hold on

 plot ([0 px], [0 py],'k-x')

 legend ('Speaker’, ‘Virtual Source')

 xlabel ('Distance in Feet')

51

 ylabel ('Distance in Feet')

 title ('Speaker Locations and Virtual Source Location')

 grid on

 axis ([-7 7 -7 7])

 axis('square')

elseif Theta(i)==Speaker2Theta

 g1=0;

 g2=1;

 g3=0;

 g4=0;

 XLeft=s*cosd(Speaker2Theta); %Left speaker coordinate

 YLeft=s*sind(Speaker2Theta); %Left speaker coordinate

 px=s*cosd(Theta(i));

 py=s*sind(Theta(i));

 figure

 plot ([0 XLeft], [0 YLeft],'r-o','linewidth',2)

 hold on

 plot ([0 px], [0 py],'k-x')

 legend ('Speaker’, ‘Virtual Source')

 xlabel ('Distance in Feet')

 ylabel ('Distance in Feet')

 title ('Speaker Locations and Virtual Source Location')

 grid on

 axis ([-7 7 -7 7])

 axis('square')

elseif Theta(i)==Speaker3Theta

 g1=0;

 g2=0;

 g3=1;

 g4=0;

 XLeft=s*cosd(Speaker3Theta); %Left speaker coordinate

 YLeft=s*sind(Speaker3Theta); %Left speaker coordinate

 px=s*cosd(Theta(i));

 py=s*sind(Theta(i));

 figure

 plot ([0 XLeft], [0 YLeft],'r-o','linewidth',2)

 hold on

 legend ('Speaker’, ‘Virtual Source')

 xlabel ('Distance in Feet')

 ylabel ('Distance in Feet')

 title ('Speaker Locations and Virtual Source Location')

 grid on

 axis ([-7 7 -7 7])

52

 axis('square')

elseif Theta(i)==Speaker4Theta

 g1=0;

 g2=0;

 g3=0;

 g4=1;

 XLeft=s*cosd(Speaker4Theta); %Left speaker coordinate

 YLeft=s*sind(Speaker4Theta); %Left speaker coordinate

 px=s*cosd(Theta(i));

 py=s*sind(Theta(i));

 figure

 plot ([0 XLeft], [0 YLeft],'r-o','linewidth',2)

 hold on

 plot ([0 px], [0 py],'k-x')

 legend ('Speaker’, ‘Virtual Source')

 xlabel ('Distance in Feet')

 ylabel ('Distance in Feet')

 title ('Speaker Locations and Virtual Source Location')

 grid on

 axis ([-7 7 -7 7])

 axis('square')

elseif Theta(i)>Speaker1Theta && Theta(i)<Speaker2Theta

 XLeft=s*cosd(Speaker2Theta-90); %Left speaker coordinate

 YLeft=s*sind(Speaker2Theta-90); %Left speaker coordinate

 XRight=s*cosd(Speaker1Theta-90); %Right speaker coordinate

 YRight=s*sind(Speaker1Theta-90); %Right speaker coordinate

 Theta(i)=Theta(i)-90;

 [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta(i));

 g1=gCorrect (2);

 g2=gCorrect (1);

 g3=0;

 g4=0;

 XLeft=s*cosd(Speaker2Theta); %Left speaker coordinate

 YLeft=s*sind(Speaker2Theta); %Left speaker coordinate

 XRight=s*cosd(Speaker1Theta); %Right speaker coordinate

 YRight=s*sind(Speaker1Theta); %Right speaker coordinate

 px=s*cosd(Theta(i)+90);

 py=s*sind(Theta(i)+90);

 figure

 plot ([0 XLeft], [0 YLeft],'r-o')

 hold on

 plot ([0 XRight], [0 YRight],'-o')

 plot ([0 px], [0 py],'k-x')

 legend ('Left Speaker’, ‘Right Speaker’, ‘Virtual Source')

53

 xlabel ('Distance in Feet')

 ylabel ('Distance in Feet')

 title ('Speaker Locations and Virtual Source Location')

 grid on

 axis ([-7 7 -7 7])

 axis('square')

 strl=sprintf ('Left Speaker Gain=%f’, gCorrect (1));

 strr=sprintf ('Right Speaker Gain=%f’, gCorrect (2));

 text (-6, -6, strl)

 text (-6, -5.5, strr)

elseif Theta(i)>Speaker2Theta && Theta(i)<Speaker3Theta

 XLeft=s*cosd(Speaker3Theta-180); %Left speaker coordinate

 YLeft=s*sind(Speaker3Theta-180); %Left speaker coordinate

 XRight=s*cosd(Speaker2Theta-180); %Right speaker coordinate

 YRight=s*sind(Speaker2Theta-180); %Right speaker coordinate

 Theta(i)=Theta(i)-180;

 [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta(i));

 g1=0;

 g2=gCorrect (2);

 g3=gCorrect (1);

 g4=0;

 XLeft=s*cosd(Speaker3Theta); %Left speaker coordinate

 YLeft=s*sind(Speaker3Theta); %Left speaker coordinate

 XRight=s*cosd(Speaker2Theta); %Right speaker coordinate

 YRight=s*sind(Speaker2Theta); %Right speaker coordinate

 px=s*cosd(Theta(i)+180);

 py=s*sind(Theta(i)+180);

 figure

 plot ([0 XLeft], [0 YLeft],'r-o')

 hold on

 plot ([0 XRight], [0 YRight],'-o')

 plot ([0 px], [0 py],'k-x')

 legend ('Left Speaker’, ‘Right Speaker’, ‘Virtual Source')

 xlabel ('Distance in Feet')

 ylabel ('Distance in Feet')

 title ('Speaker Locations and Virtual Source Location')

 grid on

 axis ([-7 7 -7 7])

 axis('square')

 strl=sprintf ('Left Speaker Gain=%f’, gCorrect (1));

 strr=sprintf ('Right Speaker Gain=%f’, gCorrect (2));

 text (-6, -6, strl)

 text (-6, -5.5, strr)

elseif Theta(i)>Speaker3Theta && Theta(i)<Speaker4Theta

 XLeft=s*cosd(Speaker4Theta-270); %Left speaker coordinate

 YLeft=s*sind(Speaker4Theta-270); %Left speaker coordinate

54

 XRight=s*cosd(Speaker3Theta-270); %Right speaker coordinate

 YRight=s*sind(Speaker3Theta-270); %Right speaker coordinate

 Theta(i)=Theta(i)-270;

 [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta(i));

 g1=0;

 g2=0;

 g3=gCorrect (2);

 g4=gCorrect (1);

 XLeft=s*cosd(Speaker4Theta); %Left speaker coordinate

 YLeft=s*sind(Speaker4Theta); %Left speaker coordinate

 XRight=s*cosd(Speaker3Theta); %Right speaker coordinate

 YRight=s*sind(Speaker3Theta); %Right speaker coordinate

 px=s*cosd(Theta(i)+270);

 py=s*sind(Theta(i)+270);

 figure

 plot ([0 XLeft], [0 YLeft],'r-o')

 hold on

 plot ([0 XRight], [0 YRight],'-o')

 plot ([0 px], [0 py],'k-x')

 legend ('Left Speaker’, ‘Right Speaker’, ‘Virtual Source')

 xlabel ('Distance in Feet')

 ylabel ('Distance in Feet')

 title ('Speaker Locations and Virtual Source Location')

 grid on

 axis ([-7 7 -7 7])

 axis('square')

 strl=sprintf ('Left Speaker Gain=%f’, gCorrect (1));

 strr=sprintf ('Right Speaker Gain=%f’, gCorrect (2));

 text (-6, -6, strl)

 text (-6, -5.5, strr)

else

 XLeft=s*cosd(Speaker1Theta); %Left speaker coordinate

 YLeft=s*sind(Speaker1Theta); %Left speaker coordinate

 XRight=s*cosd(Speaker4Theta); %Right speaker coordinate

 YRight=s*sind(Speaker4Theta); %Right speaker coordinate

 [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta(i));

 g1=gCorrect (1);

 g2=0;

 g3=0;

 g4=gCorrect (2);

 XLeft=s*cosd(Speaker1Theta); %Left speaker coordinate

 YLeft=s*sind(Speaker1Theta); %Left speaker coordinate

 XRight=s*cosd(Speaker4Theta); %Right speaker coordinate

 YRight=s*sind(Speaker4Theta); %Right speaker coordinate

 px=s*cosd(Theta(i));

 py=s*sind(Theta(i));

55

 figure

 plot ([0 XLeft], [0 YLeft],'r-o')

 hold on

 plot ([0 XRight], [0 YRight],'-o')

 plot ([0 px], [0 py],'k-x')

 legend ('Left Speaker’, ‘Right Speaker’, ‘Virtual Source')

 xlabel ('Distance in Feet')

 ylabel ('Distance in Feet')

 title ('Speaker Locations and Virtual Source Location')

 grid on

 axis ([-7 7 -7 7])

 axis('square')

 strl=sprintf ('Left Speaker Gain=%f’, gCorrect (1));

 strr=sprintf ('Right Speaker Gain=%f’, gCorrect (2));

 text (-6, -6, strl)

 text (-6, -5.5, strr)

end

Y(:,2) =Tone*g1; %Channel 1

Y(:,1) =Tone*g2; %Channel 2

Y(:,4) =Tone*g3; %Channel 3

Y(:,3) =Tone*g4; %Channel 4

audiowrite ('StaticTestingTheta24.wav’, Y, FS);

Theta= [120 45 300 15 225 180 135 330 60 345 195 150 255 165 30 210 270 90 0 315 240 105

285 75]

theta_1=Theta(n); % Theta 1

theta_2=theta_1+90; % Theta 2

% Used to control the bounds of theta

if theta_2>360

 theta_1=theta_1-360;

 theta_2=theta_2-360;

 ActualEnd=theta_2;

end

if theta_2<0

 theta_1=theta_1+360;

 theta_2=theta_2+360;

 ActualEnd=theta_2;

end

%Used to allow the code to go from to 360 back to 0

if theta_1>=225 && theta_2<=45

 theta_1=theta_1-360;

end

if theta_2>=225 && theta_1<=45

 theta_2=theta_2-360;

56

end

[Tone, FS, t] =Tone_Generator(400,1,2,0,0);

ThetaDynamic=linspace (theta_1, theta_2,100); %Range of Theta from theta 1 to theta 2

TS=1/FS; %Period of the .wav file

figure

X1=s*cosd(Speaker1Theta);

Y1=s*sind(Speaker1Theta);

X2=s*cosd(Speaker2Theta);

Y2=s*sind(Speaker2Theta);

X3=s*cosd(Speaker3Theta);

Y3=s*sind(Speaker3Theta);

X4=s*cosd(Speaker4Theta);

Y4=s*sind(Speaker4Theta);

plot ([0, X1], [0, Y1],'r-o')

hold on

plot ([0, X2], [0, Y2],'b-o')

plot ([0, X3], [0, Y3],'g-o')

plot ([0, X4], [0, Y4],'k-o')

xlabel ('Distance in Feet')

ylabel ('Distance in Feet')

title ('Speaker Locations and Virtual Source Location')

axis ([-7 7 -7 7])

axis('square')

grid on

for i=1: length(ThetaDynamic)

 if ThetaDynamic(i)<0

 ThetaDynamic(i)=ThetaDynamic(i)+360;

 end

 if ThetaDynamic(i)>360

 ThetaDynamic(i)=ThetaDynamic(i)-360;

 end

 % The following if loop calculates the gains for the speakers

 if ThetaDynamic(i)==Speaker1Theta

 g1(i)=1;

 g2(i)=0;

 g3(i)=0;

 g4(i)=0;

 px=s*cosd(ThetaDynamic(i));

 py=s*sind(ThetaDynamic(i));

 plot (px, py, ‘kx')

 hold on

 elseif ThetaDynamic(i)==Speaker2Theta

 g1(i)=0;

 g2(i)=1;

 g3(i)=0;

57

 g4(i)=0;

 px=s*cosd(ThetaDynamic(i));

 py=s*sind(ThetaDynamic(i));

 plot (px, py, ‘kx')

 hold on

 elseif ThetaDynamic(i)==Speaker3Theta

 g1(i)=0;

 g2(i)=0;

 g3(i)=1;

 g4(i)=0;

 px=s*cosd(ThetaDynamic(i));

 py=s*sind(ThetaDynamic(i));

 plot (px, py, ‘kx')

 hold on

 elseif ThetaDynamic(i)==Speaker4Theta

 g1(i)=0;

 g2(i)=0;

 g3(i)=0;

 g4(i)=1;

 px=s*cosd(ThetaDynamic(i));

 py=s*sind(ThetaDynamic(i));

 plot (px, py, ‘kx')

 hold on

 elseif ThetaDynamic(i)>Speaker1Theta && ThetaDynamic(i)<Speaker2Theta

 XLeft=s*cosd(Speaker2Theta-90); %Left speaker coordinate

 YLeft=s*sind(Speaker2Theta-90); %Left speaker coordinate

 XRight=s*cosd(Speaker1Theta-90); %Right speaker coordinate

 YRight=s*sind(Speaker1Theta-90); %Right speaker coordinate

 ThetaNew=ThetaDynamic(i)-90;

 [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, ThetaNew);

 g1(i)=gCorrect (2);

 g2(i)=gCorrect (1);

 g3(i)=0;

 g4(i)=0;

 px=s*cosd(ThetaDynamic(i));

 py=s*sind(ThetaDynamic(i));

 plot (px, py, ‘kx')

 hold on

 elseif ThetaDynamic(i)>Speaker2Theta && ThetaDynamic(i)<Speaker3Theta

 XLeft=s*cosd(Speaker3Theta-180); %Left speaker coordinate

 YLeft=s*sind(Speaker3Theta-180); %Left speaker coordinate

 XRight=s*cosd(Speaker2Theta-180); %Right speaker coordinate

 YRight=s*sind(Speaker2Theta-180); %Right speaker coordinate

 ThetaNew=ThetaDynamic(i)-180;

 [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, ThetaNew);

 g1(i)=0;

58

 g2(i)=gCorrect (2);

 g3(i)=gCorrect (1);

 g4(i)=0;

 px=s*cosd(ThetaDynamic(i));

 py=s*sind(ThetaDynamic(i));

 plot (px, py, ‘kx')

 hold on

 elseif ThetaDynamic(i)>Speaker3Theta && ThetaDynamic(i)<Speaker4Theta

 XLeft=s*cosd(Speaker4Theta-270); %Left speaker coordinate

 YLeft=s*sind(Speaker4Theta-270); %Left speaker coordinate

 XRight=s*cosd(Speaker3Theta-270); %Right speaker coordinate

 YRight=s*sind(Speaker3Theta-270); %Right speaker coordinate

 ThetaNew=ThetaDynamic(i)-270;

 [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, ThetaNew);

 g1(i)=0;

 g2(i)=0;

 g3(i)=gCorrect (2);

 g4(i)=gCorrect (1);

 px=s*cosd(ThetaDynamic(i));

 py=s*sind(ThetaDynamic(i));

 plot (px, py, ‘kx')

 hold on

 else

 XLeft=s*cosd(Speaker1Theta); %Left speaker coordinate

 YLeft=s*sind(Speaker1Theta); %Left speaker coordinate

 XRight=s*cosd(Speaker4Theta); %Right speaker coordinate

 YRight=s*sind(Speaker4Theta); %Right speaker coordinate

 [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight,

ThetaDynamic(i));

 g1(i)=gCorrect (1);

 g2(i)=0;

 g3(i)=0;

 g4(i)=gCorrect (2);

 px=s*cosd(ThetaDynamic(i));

 py=s*sind(ThetaDynamic(i));

 plot (px, py, ‘kx')

 hold on

 end

end

legend ('First Speaker’, ‘Second Speaker’, ‘Third Speaker’, ‘Fourth Speaker’, ‘Virtual Source')

axis ([-7 7 -7 7])

axis('square')

vq1=interp1(linspace (0, max(t), length(g1)), g1, t);

vq2=interp1(linspace (0, max(t), length(g2)), g2, t);

vq3=interp1(linspace (0, max(t), length(g3)), g3, t);

59

vq4=interp1(linspace (0, max(t), length(g4)), g4, t);

Y(:,2) =Tone. *vq1; %Channel 1

Y(:,1) =Tone. *vq2; %Channel 2

Y(:,4) =Tone. *vq3; %Channel 3

Y(:,3) =Tone. *vq4; %Channel 4

audiowrite ('DynamicTestingTheta24.wav’, Y, FS);

60

3D Static Localization

close all;

clear all;

clc;

s=6;

%Speaker Locations in terms of degrees

Speaker1_azumith=30;

Speaker1_elavation=0;

Speaker2_azumith=-30;

Speaker2_elavation=0;

Speaker3_azumith=0;

Speaker3_elavation=30;

Speaker4_azumith=0;

Speaker4_elavation=-30;

Phantom_desired_azumith=-15

Phantom_desired_elavation=-10

if Phantom_desired_elavation>0 & Phantom_desired_azumith~=0 %Upper triangle

 L1z=s*sind(Speaker1_elavation);

 d=sqrt(s^2-L1z^2)

 L1x=d*cosd(Speaker1_azumith);

 L1y=d*sind(Speaker1_azumith);

 L2z=s*sind(Speaker2_elavation);

 d=sqrt(s^2-L2z^2)

 L2x=d*cosd(Speaker2_azumith);

 L2y=d*sind(Speaker2_azumith);

 L3z=s*sind(Speaker3_elavation);

 d=sqrt(s^2-L3z^2)

 L3x=d*cosd(Speaker3_azumith);

 L3y=d*sind(Speaker3_azumith);

 L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z];

 px=s*cosd(Phantom_desired_azumith);

 py=s*sind(Phantom_desired_azumith);

 pz=sqrt(px^2+py^2) *tand(Phantom_desired_elavation);

 p= [px py pz];

 g=p*inv(L)

 if max(g)>1

 n=sqrt (g (1) ^2+g (2) ^2+g (3) ^2)

 g=g/n

 end

 g1=g (1); %speaker 1 gain

 g2=g (2); %speaker 2 gain

61

 g3=g (3); %speaker 3 gain

 g4=0; %speaker 4 gain

elseif Phantom_desired_elavation<0 & Phantom_desired_azumith~=0 %lower triangle

 L1z=s*sind(Speaker1_elavation);

 d=sqrt(s^2-L1z^2)

 L1x=d*cosd(Speaker1_azumith);

 L1y=d*sind(Speaker1_azumith);

 L2z=s*sind(Speaker2_elavation);

 d=sqrt(s^2-L2z^2)

 L2x=d*cosd(Speaker2_azumith);

 L2y=d*sind(Speaker2_azumith);

 L3z=s*sind(abs(Speaker4_elavation));

 d=sqrt(s^2-L3z^2)

 L3x=d*cosd(abs(Speaker4_azumith));

 L3y=d*sind(abs(Speaker4_azumith));

 L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z];

 px=s*cosd(Phantom_desired_azumith);

 py=s*sind(Phantom_desired_azumith);

 pz=sqrt(px^2+py^2) *tand(abs(Phantom_desired_elavation));

 p= [px py pz];

 g=p*inv(L)

 if max(g)>1

 n=sqrt (g (1) ^2+g (2) ^2+g (3) ^2)

 g=g/n

 end

 g1=g (1); %speaker 1 gain

 g2=g (2); %speaker 2 gain

 g3=0; %speaker 3 gain

 g4=g (3); %speaker 4 gain

% Make certain z negative for graphing purposes

 L3z=-s*sind(abs(Speaker4_elavation));

 pz=-sqrt(px^2+py^2) *tand(abs(Phantom_desired_elavation));

elseif Phantom_desired_elavation==0 & Phantom_desired_azumith~=0 %Midspeakers

 XLeft=s*cosd(Speaker1_azumith); %Left speaker coordinate

 YLeft=s*sind(Speaker1_azumith); %Left speaker coordinate

 XRight=s*cosd(Speaker2_azumith); %Right speaker coordinate

 YRight=s*sind(Speaker2_azumith); %Right speaker coordinate

 Theta=Phantom_desired_azumith

 [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta);

 g1=gCorrect (1); %speaker 1 gain

 g2=gCorrect (2); %speaker 2 gain

 g3=0; %speaker 3 gain

 g4=0; %speaker 4 gain

 L1z=s*sind(Speaker1_elavation);

 d=sqrt(s^2-L1z^2)

 L1x=d*cosd(Speaker1_azumith);

62

 L1y=d*sind(Speaker1_azumith);

 L2z=s*sind(Speaker2_elavation);

 d=sqrt(s^2-L2z^2)

 L2x=d*cosd(Speaker2_azumith);

 L2y=d*sind(Speaker2_azumith);

 L3z=s*sind(Speaker3_elavation);

 d=sqrt(s^2-L3z^2)

 L3x=d*cosd(Speaker3_azumith);

 L3y=d*sind(Speaker3_azumith);

 L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z];

 px=s*cosd(Phantom_desired_azumith);

 py=s*sind(Phantom_desired_azumith);

 pz=sqrt(px^2+py^2) *tand(Phantom_desired_elavation);

 p= [px py pz];

elseif Phantom_desired_elavation~=0 & Phantom_desired_azumith==0 %top and bottom

speaker

 XLeft=s*cosd(Speaker3_elavation); %Left speaker coordinate

 YLeft=s*sind(Speaker3_elavation); %Left speaker coordinate

 XRight=s*cosd(Speaker4_elavation); %Right speaker coordinate

 YRight=s*sind(Speaker4_elavation); %Right speaker coordinate

 Theta=Phantom_desired_elavation

 [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta);

 g1=0; %speaker 1 gain

 g2=0; %speaker 2 gain

 g3=gCorrect (1); %speaker 3 gain

 g4=gCorrect (2); %speaker 4 gain

 L1z=s*sind(Speaker1_elavation);

 d=sqrt(s^2-L1z^2)

 L1x=d*cosd(Speaker1_azumith);

 L1y=d*sind(Speaker1_azumith);

 L2z=s*sind(Speaker2_elavation);

 d=sqrt(s^2-L2z^2)

 L2x=d*cosd(Speaker2_azumith);

 L2y=d*sind(Speaker2_azumith);

 L3z=s*sind(Speaker3_elavation);

 d=sqrt(s^2-L3z^2)

 L3x=d*cosd(Speaker3_azumith);

 L3y=d*sind(Speaker3_azumith);

 L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z];

 px=s*cosd(Phantom_desired_azumith);

 py=s*sind(Phantom_desired_azumith);

 pz=sqrt(px^2+py^2) *tand(Phantom_desired_elavation);

 p= [px py pz];

elseif Phantom_desired_elavation==0 & Phantom_desired_azumith==0 % Midspeakers

 XLeft=s*cosd(Speaker1_azumith); %Left speaker coordinate

 YLeft=s*sind(Speaker1_azumith); %Left speaker coordinate

63

 XRight=s*cosd(Speaker2_azumith); %Right speaker coordinate

 YRight=s*sind(Speaker2_azumith); %Right speaker coordinate

 Theta=Phantom_desired_azumith

 [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta);

 g1=gCorrect (1); %speaker 1 gain

 g2=gCorrect (2); %speaker 2 gain

 g3=0; %speaker 3 gain

 g4=0; %speaker 4 gain

 L1z=s*sind(Speaker1_elavation);

 d=sqrt(s^2-L1z^2)

 L1x=d*cosd(Speaker1_azumith);

 L1y=d*sind(Speaker1_azumith);

 L2z=s*sind(Speaker2_elavation);

 d=sqrt(s^2-L2z^2)

 L2x=d*cosd(Speaker2_azumith);

 L2y=d*sind(Speaker2_azumith);

 L3z=s*sind(Speaker3_elavation);

 d=sqrt(s^2-L3z^2)

 L3x=d*cosd(Speaker3_azumith);

 L3y=d*sind(Speaker3_azumith);

 L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z];

 px=s*cosd(Phantom_desired_azumith);

 py=s*sind(Phantom_desired_azumith);

 pz=sqrt(px^2+py^2) *tand(Phantom_desired_elavation);

 p= [px py pz];

else

 %Do nothing

end

[Tone, FS, t] =Tone_Generator (400,1,2,0,0);

Y(:,1) =Tone*g1; %Channel 1

Y(:,2) =Tone*g2; %Channel 2

Y(:,3) =Tone*g3; %Channel 3

Y(:,4) =Tone*g4; %Channel 4

audiowrite ('3DStatic17.wav’, Y, FS);

figure

plot3([0 L1x], [0 L1y], [0 L1z],'r-o','linewidth',2)

hold on

plot3([0 L2x], [0 L2y], [0 L2z],'-o','linewidth',2)

plot3([0 L3x], [0 L3y], [0 L3z],'c-o','linewidth',2)

plot3([0 px], [0 py], [0 pz],'k-x','linewidth',2)

plot3([L1x L3x], [L1y L3y], [L1z L3z],'g','linewidth',2)

plot3([L2x L3x], [L2y L3y], [L2z L3z],'g','linewidth',2)

plot3([L1x L2x], [L1y L2y], [L1z L2z],'g','linewidth',2)

grid on

64

legend ('Left Speaker’, ‘Right Speaker’, ‘Bottom Speaker’, ‘Virtual Source’, ‘Active Triangle')

strl=sprintf ('Left Speaker Gain=%f’, g1);

text (-2, -2, -1.5, strl)

strl=sprintf ('Right Speaker Gain=%f’, g2);

text (-2, -2, -1.75, strl)

start=sprintf ('Bottom Speaker Gain=%f’, g4);

text (-2, -2, -2, strt)

xlabel ('Distance in Feet')

ylabel ('Distance in Feet')

label ('Distance in Feet')

title ('Virtual Source and Speaker Vectors Locations')

axis('square')

65

3D Dynamic Localization

close all;

clear all;

clc;

s=6;

%Speaker Locations in terms of degrees

Speaker1_azumith=30;

Speaker1_elavation=0;

Speaker2_azumith=-30;

Speaker2_elavation=0;

Speaker3_azumith=0;

Speaker3_elavation=30;

Speaker4_azumith=0;

Speaker4_elavation=-30;

Phantom_desired_azumith_start=-15;

Phantom_desired_azumith_end=15;

Phantom_desired_elavation_start=15;

Phantom_desired_elavation_end=-15;

Theta_azumith=linspace (Phantom_desired_azumith_start, Phantom_desired_azumith_end,100);

Theta_elavation=linspace(Phantom_desired_elavation_start,Phantom_desired_elavation_end,100

);

for i=1: length(Theta_azumith)

if Theta_elavation(i)>0 & Theta_azumith(i)~=0 %Upper triangle

 L1z=s*sind(Speaker1_elavation);

 d=sqrt(s^2-L1z^2)

 L1x=d*cosd(Speaker1_azumith);

 L1y=d*sind(Speaker1_azumith);

 L2z=s*sind(Speaker2_elavation);

 d=sqrt(s^2-L2z^2)

 L2x=d*cosd(Speaker2_azumith);

 L2y=d*sind(Speaker2_azumith);

 L3z=s*sind(Speaker3_elavation);

 d=sqrt(s^2-L3z^2)

 L3x=d*cosd(Speaker3_azumith);

 L3y=d*sind(Speaker3_azumith);

 L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z];

 px=s*cosd(Theta_azumith(i));

 py=s*sind(Theta_azumith(i));

 pz=sqrt(px^2+py^2) *tand(Theta_elavation(i));

 p= [px py pz];

66

 g=p*inv(L)

if max(g)>1

 n=sqrt (g (1) ^2+g (2) ^2+g (3) ^2)

 g=g/n

 end

 g1(i)=g (1); %speaker 1 gain

 g2(i)=g (2); %speaker 2 gain

 g3(i)=g (3); %speaker 3 gain

 g4(i)=0; %speaker 4 gain

elseif Theta_elavation(i)<0 & Theta_azumith(i)~=0 %lower triangle

 L1z=s*sind(Speaker1_elavation);

 d=sqrt(s^2-L1z^2)

 L1x=d*cosd(Speaker1_azumith);

 L1y=d*sind(Speaker1_azumith);

 L2z=s*sind(Speaker2_elavation);

 d=sqrt(s^2-L2z^2)

 L2x=d*cosd(Speaker2_azumith);

 L2y=d*sind(Speaker2_azumith);

 L3z=s*sind(abs(Speaker4_elavation));

 d=sqrt(s^2-L3z^2)

 L3x=d*cosd(abs(Speaker4_azumith));

 L3y=d*sind(abs(Speaker4_azumith));

 L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z];

 px=s*cosd(Theta_azumith(i));

 py=s*sind(Theta_azumith(i));

 pz=sqrt(px^2+py^2) *tand(abs(Theta_elavation(i)));

 p= [px py pz];

 g=p*inv(L)

 if max(g)>1

 n=sqrt (g (1) ^2+g (2) ^2+g (3) ^2)

 g=g/n

 end

 g1(i)=g (1); %speaker 1 gain

 g2(i)=g (2); %speaker 2 gain

 g3(i)=0; %speaker 3 gain

 g4(i)=g (3); %speaker 4 gain

 % Make certain z negative for graphing purposes

 L3z=-s*sind(abs(Speaker4_elavation));

 pz=-sqrt(px^2+py^2) *tand(abs(Theta_elavation(i)));

elseif Theta_elavation(i)==0 & Theta_azumith(i)~=0 %Midspeakers

 XLeft=s*cosd(Speaker1_azumith); %Left speaker coordinate

 YLeft=s*sind(Speaker1_azumith); %Left speaker coordinate

 XRight=s*cosd(Speaker2_azumith); %Right speaker coordinate

 YRight=s*sind(Speaker2_azumith); %Right speaker coordinate

 Theta=Theta_azumith(i)

 [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta);

67

 g1(i)=gCorrect (1); %speaker 1 gain

 g2(i)=gCorrect(2); %speaker 2 gain

 g3(i)=0; %speaker 3 gain

 g4(i)=0; %speaker 4 gain

 L1z=s*sind(Speaker1_elavation);

 d=sqrt(s^2-L1z^2)

 L1x=d*cosd(Speaker1_azumith);

 L1y=d*sind(Speaker1_azumith);

 L2z=s*sind(Speaker2_elavation);

 d=sqrt(s^2-L2z^2)

 L2x=d*cosd(Speaker2_azumith);

 L2y=d*sind(Speaker2_azumith);

 L3z=s*sind(Speaker3_elavation);

 d=sqrt(s^2-L3z^2)

 L3x=d*cosd(Speaker3_azumith);

 L3y=d*sind(Speaker3_azumith);

 L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z];

 px=s*cosd(Theta_azumith(i));

 py=s*sind(Theta_azumith(i));

 pz=sqrt(px^2+py^2) *tand(Theta_elavation(i));

 p= [px py pz];

elseif Theta_elavation(i)~=0 & Theta_azumith(i)==0 %top and bottom speaker

 XLeft=s*cosd(Speaker3_elavation); %Left speaker coordinate

 YLeft=s*sind(Speaker3_elavation); %Left speaker coordinate

 XRight=s*cosd(Speaker4_elavation); %Right speaker coordinate

 YRight=s*sind(Speaker4_elavation); %Right speaker coordinate

 Theta=Theta_elavation(i)

 [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta);

 g1(i)=0; %speaker 1 gain

 g2(i)=0; %speaker 2 gain

 g3(i)=gCorrect(1); %speaker 3 gain

 g4(i)=gCorrect(2); %speaker 4 gain

 L1z=s*sind(Speaker1_elavation);

 d=sqrt(s^2-L1z^2)

 L1x=d*cosd(Speaker1_azumith);

 L1y=d*sind(Speaker1_azumith);

 L2z=s*sind(Speaker2_elavation);

 d =sqrt(s^2-L2z^2)

 L2x=d*cosd(Speaker2_azumith);

 L2y=d*sind(Speaker2_azumith);

 L3z=s*sind(Speaker3_elavation);

 d =sqrt(s^2-L3z^2)

 L3x=d*cosd(Speaker3_azumith);

 L3y=d*sind(Speaker3_azumith);

 L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z];

 px=s*cosd(Theta_azumith(i));

68

 py=s*sind(Theta_azumith(i));

 pz=sqrt(px^2+py^2) *tand(Theta_elavation(i));

 p= [px py pz];

elseif Theta_elavation(i)==0 & Theta_azumith(i)==0 % Midspeakers

 XLeft=s*cosd(Speaker1_azumith); %Left speaker coordinate

 YLeft=s*sind(Speaker1_azumith); %Left speaker coordinate

 XRight=s*cosd(Speaker2_azumith); %Right speaker coordinate

 YRight=s*sind(Speaker2_azumith); %Right speaker coordinate

 Theta=Theta_azumith(i)

 [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta);

 g1(i)=gCorrect(1); %speaker 1 gain

 g2(i)=gCorrect(2); %speaker 2 gain

 g3(i)=0; %speaker 3 gain

 g4(i)=0; %speaker 4 gain

 L1z=s*sind(Speaker1_elavation);

 d=sqrt(s^2-L1z^2)

 L1x=d*cosd(Speaker1_azumith);

 L1y=d*sind(Speaker1_azumith);

 L2z=s*sind(Speaker2_elavation);

 d =sqrt(s^2-L2z^2)

 L2x=d*cosd(Speaker2_azumith);

 L2y=d*sind(Speaker2_azumith);

 L3z=s*sind(Speaker3_elavation);

 d=sqrt(s^2-L3z^2)

 L3x=d*cosd(Speaker3_azumith);

 L3y=d*sind(Speaker3_azumith);

 L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z];

 px=s*cosd(Theta_azumith(i));

 py=s*sind(Theta_azumith(i));

 pz=sqrt(px^2+py^2) *tand(Theta_elavation(i));

 p= [px py pz];

else

 %Do nothing

end

end

[Tone, FS, t] =Tone_Generator (400,1,2,0,0);

vq1=interp1(linspace (0, max(t), length(g1)), g1, t);

vq2=interp1(linspace (0, max(t), length(g2)), g2, t);

vq3=interp1(linspace (0, max(t), length(g3)), g3, t);

vq4=interp1(linspace (0, max(t), length(g4)), g4, t);

Y(:,2) =Tone. *vq1; %Channel 1

Y(:,1) =Tone. *vq2; %Channel 2

Y(:,4) =Tone. *vq3; %Channel 3

Y(:,3) =Tone. *vq4; %Channel 4

audiowrite ('3DDynamic8.wav’, Y, FS);

69

Tone Generator

function [Tone, FS, t] = Tone_Generator (Frequency, Amplitude, Duration, Delay, endtime)

FS=44100; % Samples per second (sampling Frequency)

ts=1/FS; % Sampling interval

t=0:ts: Duration; % How long the Tone will last

Number_Of_Zeros_1=round(FS*Delay); % Pads the beginning of the tone with 0's

Number_Of_Zeros_2=round(FS*endtime); % Pads the end of the tone with 0's

Tone=Amplitude. *sin(2*pi*Frequency*t);

Tone= [zeros (1, Number_Of_Zeros_1) Tone zeros (1, Number_Of_Zeros_2)];

t=0:ts:(Delay+endtime+Duration);

70

Gain Calculator

% This code calculates all the gains

function [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta)

Left= [XLeft YLeft];

Right= [XRight, YRight];

Listener= [0 0];

angle=Theta;

Center= [Listener (1) (Left (2) +Right (2))/2];

dL = sqrt ((Left (1)-Listener (1)) ^2+(Left (2)-Listener (2)) ^2);

dR = sqrt ((Right (1)-Listener (1)) ^2+(Right (2)-Listener (2)) ^2);

s=(dL+dR)/2;

x=s*cosd(angle)+Listener (1);

yL=s*sind(angle)+Listener (2);

P= [x yL];

thetaLdeg = atand ((Left (2)-Listener (2))/ (Left (1)-Listener (1)));

thetaRdeg = atand ((Right (2)-Listener (2))/ (Right (1)-Listener (1)));

thetaPdeg=atand ((P (2)-Listener (2))/ (P (1)-Listener (1)));

L = [(Left-Center)' (Right-Center)']'; %switched left and right in this line

%to make it to where g1 is assigned to the "right speaker*

G = P*inv(L)

if G (1)>1

 G (2) =G (2)/G (1)

 G (1) =1

elseif G (2)>1

 G (1) =G (1)/G (2)

 G (2) =1

end

if dR>dL

 gCorrect= [G (1) G (2) *(dR/dL) ^2]

 TL=(dR-dL)/340.29;

 TR=0;

elseif dL>dR

 gCorrect= [G (1) *(dL/dR) ^2 G (2)]

 TR=(dL-dR)/340.29;

 TL=0;

else

 gCorrect=G

 TR=0;

 TL=0;

end

if gCorrect (1)>1

71

 gCorrect (2) =gCorrect (2)/gCorrect (1)

 gCorrect (1) =1

elseif G (2)>1

gCorrect (1) =gCorrect (1)/gCorrect (2)

 gCorrect (2) =1

end

