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ABSTRACT 

 

2D AND 3D AUDIO SOUND LOCALIZATION UTILIZING VECTOR BASED AMPLITUDE 

PANNING 

 

Kaleb Frizzell, M.S.T. 

 

Western Carolina University (March 2018) 

 

Director: Dr. Robert Adams 

 

Audio systems are used to create two-dimensional (2D) and three-dimensional (3D) audio 

effects which involve the ability to localize sound within a multi-dimensional space. Multi-

dimensional audio systems could be used to imitate moving sounds in applications such as home 

theaters, video games or headphones. When two or more equidistant speakers produce the same 

sound, the observer will perceive the sound to be localized at a single point. The blending of 

sound from equidistant speakers is called the virtual sound and is perceived to originate from a 

virtual source. For two speakers, the virtual source is located on a circular arc between the 

speakers and for three speakers, the virtual source is located on a spherical cone defined by the 

speakers. For the observer to perceive one sound from multiple sources, the sounds must arrive 

at the observer at the same time and the sounds must be the same. By calculating the individual 

speaker gains using the method of vector-based amplitude panning (VBAP), the audio from all 

the speakers can be manipulated such that the observer perceives the sound to be originating 

from a single point. The objective of this project was to develop an algorithm that can place an 

audio tone in the desired location by calculating and controlling the gain factors of each speaker. 

In this thesis, the results of simulating in MATLAB and testing in the lab, two-dimensional (2D) 

and three-dimensional (3D) audio systems with multiple speakers placed in testing positions 



vii 
 

equidistant to the observer are presented. It is envisioned that this research will lead to a better 

understanding of localization of sound and to a better understanding of how accurately sound is 

perceived by the human ear
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CHAPTER 1: INTRODUCTION 

 

Humans naturally hear in 3D, meaning they can perceive and localize the source of 

sounds. The localization of a perceived sound source can be identified by the following three 

coordinates: azimuth, elevation, and distance. Azimuth is the horizontal angle from the medium 

plane; elevation is the angle between the horizontal plane and the perceived sound and distance 

is how far the source of the sound is away from the observer. To determine the azimuth, our ears 

use the slight differences in time and pressure of a sound as it reaches the left and right ears to 

locate the source of the sound without seeing it [1]. The cues used to determine the azimuth of a 

sound don’t give information on distance, so the listener must rely on the loudness of the sound 

compared to familiar sources to tell how far away it is. Therefore, if we can control these 

parameters, then we will be able to trick the mind into thinking a sound is coming from a desired 

location. 

Using software to generate audio and a specific speaker test set up, we can control these 

parameters and have the human ears perceive a sound in the desired place. Over the past few 

years, there have been advances in audio technology in both stereo systems, and headphones and 

these systems provide a more realistic listening experience. Even though there have been many 

advances, there is still a way to go in creating a fully realized 3D audio experience. Edward 

Matthews [2] researched this topic and I plan to extend his findings and explore more aspects of 

2D and 3D audio technology. 

In this research, a MATLAB code was developed that generated all the necessary audio 

files by applying the calculated gain factor to audio files, and after getting IRB approval, the 

researcher tested the audio set up with the generated audio files to determine how well humans 
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perceive sound. In this thesis, I present the various papers I read and researched, the design and 

methodology of the experiment and the results were obtained from the experiments. The results 

will be analyzed and explained, followed by an explanation to how the experiment could be 

possibly expanded in the future. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 2D and 3D Audio 

Over the past century electronics have progressed dramatically, and even though sound 

quality has improved over the years, stereo systems have not seen the same amount of 

progression. Current stereo setups cannot imitate real life perfectly meaning that sounds coming 

from the speakers seem always to be originating from the same origin. 2D and 3D audio would 

fix this current issue by allowing sounds to seem to appear from anywhere in the room which 

would give the user a more realistic listening experience when using any device that produces 

sound. To achieve this, the sound wave’s gain values are manipulated to make the sound appear 

where you want them to be. 

2.2 Sound Perception 

The study of the human perception of sound is called psychoacoustics, and sound 

localization is the process of determining the location of a sound source. When the human ear 

receives sound waves, the brain utilizes subtle differences in loudness, tone, and timing between 

the two ears to allow humans to localize sound [1]. Localization can be described regarding its 

three-dimensional position. The azimuth (horizontal angle), the zenith (vertical angle), and the 

distance (for static sounds) [3]. Humans are adept at detecting the direction in the horizontal 

plane due to their ears being placed symmetrically on the head. The ears being symmetric makes 

it harder to perceive the vertical plane.  

The factors that go into a sound are its intensity, frequency, and overtones. Frequency is 

perceived as a pitch, and the sound intensity of the sound wave is what humans can hear. The 

range humans can hear ranges from 20 Hz to 20,000 Hz [4]. Our ears use interaural cues such as 
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slight differences in time and pressure of a sound as it reaches the left and right ear to localize 

sound [5].  It allows them to detect where the source is by allowing them to detect which 

direction it is coming from. In the case where the source is directly in front of a person, the 

distance that the sound waves travel to each ear is going to be equal. Therefore, there will be no 

interaural differences to distinguish where the sound is coming from. In this specific case, the 

ears use the head-related transfer function (HRTF) which is used to determine the elevation [6]. 

As a sound wave travels through the air to the eardrums, the signal is filtered through the head 

and torso. The differences in the intensities of the frequencies compared to the eardrum and torso 

make up the HRTF [6]. 

2.2.1 Sound Perception with Two Speakers 

The precedence effect in sound localization states that when two sound waves reach the 

ear in a specific amount of time, then the sound will be perceived as a single auditory event [7]. 

The most common multi-dimensional audio system is the two-channel stereophonic 

configuration. Stereophonic sound is a method of sound reproduction that creates an illusion of 

multidimensional audible perspective. This is usually achieved by using two independent audio 

channels through a configuration of two loudspeakers (or stereo headphones) in such a way as to 

create the impression of sound being heard from various directions, as in natural hearing.  

2.2.2 Sound Perception with Three or More Speakers 

Surround sound is a technique for enriching the sound reproduction quality of an audio 

source with additional audio channels from speakers that surround the listener providing sound 

from within a 360° circle in the horizontal plane. The technique enhances the perception of 

sound localization. This is typically achieved by using multiple audio channels routed to an array 

of loudspeakers [8]. An example of a surround sound system is Dolby 5.1 which generates 
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sounds from different directions, and the source of the sound seems to be localized at the speaker 

that it was generated from. Surround sound is not able to make the sound appear to be coming 

from above or below the speakers due to it being localized at the source. 

Headphones are an approach that can be utilized to generate 3D audio. Wightman 

performed experiments comparing the localization of sound presented in a free field environment 

to headphones [9]. According to the results of the experiment, headphones could imitate a free 

field environment in the horizontal plane but could not perfectly recreate the free field 

environment entirely. Even though headphones can recreate 3D audio, it has the drawback of 

being limited to a single listener.  

All the pre-mentioned techniques that have been presented share a common disadvantage 

of being confined to one listener. They all only work well when the user is at a specific location, 

or when they are confined to a small listening space. Therefore, to achieve 3D audio that can be 

listened by a larger audience, a multi-channel should be implemented. By adding more speakers, 

there are more paths on which the virtual source can move [10]. 

Pulkki presents a simple model in [10] where a single elevated speaker is introduced to 

the stereo configuration. The elevated speaker described is the same distance as the two speakers 

on the horizontal plane. The three speakers will form a section of a 3-D sphere that they refer to 

as the active triangle on which the virtual source can be positioned anywhere within the active 

triangle.  

In Pulkki's work, they describe how it is easy to say that when the number of speakers 

that are in a system increases the more accurate it will be, however as the number of speakers 

increases, so does the cost and amount of space required for the system. Therefore, for this 

research effort, the number of channels was limited to four speakers. 
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2.3 Vector Based Amplitude Panning 

In an article, Ville Pulkki describes how to use vector based math using the sound vectors 

to calculate the necessary gains for the standard two-channel setup [10]. When the same signal is 

transmitted on the pre-mentioned channels, the sound will be perceived as a single auditory 

event; this event is known as a virtual sound source, coming from somewhere between the 

speakers and the position between the two speakers is determined based on the gain factors [11]. 

That position will lie on what Pulkki calls the active arc, where the radius of the arc will be 

determined by the distance of the speakers. The virtual source can be positioned anywhere 

between the two speakers but lacks the ability to move anywhere outside of this arc [12, 13]. 

Because of this flaw, many techniques have been experimented with to move the perceived 

source outside of this boundary [14] and to increase the size of the area where the listener can 

localize the sound [11].  Research has also been done on how to make the sound move with the 

listener [15, 16].  

Gain refers to the amplification factor and is the extent to which an analog amplifier 

boosts the strength of a signal. Adjusting the gain of each channel is known as intensity panning 

[17]. In the situation where the two loudspeakers are positioned symmetrically to the median 

plane, their gains will be equal.   

2.4 Previous Research at WCU 

Dr. Adams' previous graduate student, Edward Matthews, performed research on this 

topic in 2016. Matthews worked with three speakers to study 2D and 3D audio. During his 

research, he tested 2D and 3D test setups where all the listeners were all the same distance apart 

from speakers. He found out that people could accurately localize sound in the horizontal plane, 

but they had difficulty localizing sounds in the vertical plane. He also simulated, in MATLAB, a 



7 
 

situation where two speakers were not the same distance apart from an observer [2].  It is 

envisioned that this research will expand our knowledge of how the human ears perceives sounds 

which was achieved by expanding his 2D and 3D test setups by testing new configurations of 

speakers for both 2D and 3D audio systems.    
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CHAPTER 3: DESIGN METHODOLOGY 

 

3.1 Four Channel 2-Dimensional System 

This research began by reviewing the current literature on the use of sound localization, 

specifically in the areas of 2D and 3D audio. Some preliminary simulations were undertaken to 

understand the process of generating the correct audio files. The literature review and theoretical 

study were followed by planning the experimentation required for testing 2D and 3D audio 

systems. This included acquiring parts such as speakers, audio amplifiers, digital audio interface, 

sound forge and any other equipment required for testing.  

In this section our investigation of the vector based amplitude panning (VBAP) discussed 

in Pulkki’s paper [10] is presented. Amplitude panning is an audio technique where the same 

signal is played over two or more speakers that are equidistant from an observer. Since the 

signals are the same distant away and there is no interaural time delay, the observer will perceive 

the illusion of a single virtual source. The position of the virtual source depends on the locations 

of the speakers, and the relation between the amplitudes of the signals they produce. The 

amplitude of the signals can be controlled by adjusting the gains of each speaker. The following 

sections will discuss the mathematical derivation, algorithm development, and testing procedure 

for four channel 2D and 3D localization, which both implement amplitude panning. 

Two-dimensional vector based amplitude panning is the base used in the setup that was 

implemented.  At any given time only two of the four channels will be active to create a 2D 

sound environment.  Figure 3.1 is a visual representation of a basic two-dimensional setup and 

its sound vectors. 
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Figure 3.1: Two channel vector based amplitude panning 

 

 

 

In Figure 3.1, Channel 1 (𝒍𝟏) and Channel 2 (𝒍𝟐) are the position vectors for the left and 

right speakers, and the virtual source (𝒑) is the virtual source vector. The speaker vectors can be 

expressed using Equation (3.1) where m is the channel number, 𝑙𝑚𝑥 is the x component of the 

vector and 𝑙𝑚𝑦 is the y component of the vector.  

𝒍𝒎 = [𝑙𝑚𝑥 𝑙𝑚𝑦]                                                           (1) 

The x and y position of the speakers are determined using  

𝑙𝑚𝑥 = 𝑠 cos(θ𝑚)                                                           (2) 

𝑙𝑚𝑦 = 𝑠 sin(θ𝑚)                                                           (3) 

Where m is the channel number, s is the distance from the observer to the speakers, θ𝑚 are the 

azimuth angles from the x axis for each speaker.  

The distance to each speaker is equal. Therefore, the vectors have the same length. The 

gain factors of the left and right speakers, 𝑔1 and 𝑔2, are non-negative scalar variables in the 

range of zero to one. To keep the loudness of the virtual source constant the gain factors must be 

normalized using:  

𝐶 = 𝑔1
2 + 𝑔2

2                                                               (4) 
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where C is the volume of the virtual source. As C increases, the virtual source is perceived to 

move closer to the observer.  

The vector pointing toward the virtual source can be represented as a linear combination 

of the speaker vectors and their respective gains. 

𝒑 = [𝑝𝑥 𝑝𝑦] = 𝑙1𝑔1 + 𝑙2𝑔2                                                 (5) 

Equations (3.6) and (3.7) are utilized to determine the x and y position of the virtual source, 

where m is the channel number, s is the distance from the observer to the speakers and θ𝑝 are the 

angles from the x axis for the virtual source. 

𝑝𝑥 = 𝑠 cos(θ𝑝)                                                                       (6) 

𝑝𝑦 = 𝑠 sin(θ𝑝)                                                               (7) 

3.1.1 2D Static Localization 

The first test that was conducted was static localization in which the virtual source was 

specified to be at a stationary angle (making the resulting speaker gains constant).  

3.1.2 2D Static Algorithm 

MATLAB code was developed that calculates the necessary gain factors required to 

position the virtual source at a given location. The gain, which refers to the amplification factor, 

is represented by the variable 𝒈 and is the extent to which an analog amplifier boosts the strength 

of a signal. To calculate the necessary gain factors, the following formula was used. 

𝒈 = 𝑝𝑡𝑙123
−1 = [𝑝𝑥 𝑝𝑦 𝑝𝑧] [

𝑙1𝑥 𝑙1𝑦 𝑙1𝑧

𝑙2𝑥 𝑙2𝑦 𝑙2𝑧

𝑙3𝑥 𝑙3𝑦 𝑙3𝑧

]

−1

                               (8) 

When the MATLAB code is run, the user is asked to input the location of the speakers by 

defining the angle from the x-axis to the left and right speakers and to define the angle for the 

desired virtual source. The MATLAB code generated two 2 second, 400 Hz audio signals with a 
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sampling frequency of 44.1 kHz. The individual speaker gains calculated from (3.8) were applied 

to each signal to produce the tones needed for each channel.    

Before testing on participants, simulations for 2D VBAP were tested and performed in 

MATLAB. Figure 3.2 is a simulation of static testing in which the left and right speakers are 

both 6 feet from the observer.   

 

 

Figure 3.2: Four channel 2D static simulation example 

 

The right speaker is 45° above the x-axis, and the left speaker is 45° below the x-axis. 

The user specifies a virtual source located on the active arc, 30° above the x-axis.  The VBAP 

algorithm calculated left and right speaker gains of 0.9659 and 0.2588, respectively, to generate 

the specified virtual source. 
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3.1.3 2D Static Test Procedure 

A specific test setup was implemented that involved four channels which were used to 

create 2D audio effects.  It is important to note that at any given time, only two of the four 

channels will be active at any given time. The setup for 2D audio that was implemented had four 

speakers that were all positioned to be six feet away from the observer. Two of the speakers were 

in front of the observer, and the other two speakers were located behind the observer. The 

observer sat in the exact center of the speakers, and the speakers were placed at azimuth angles 

45°, 135°, 225° and 315° relative to the observer. All four speakers were on the same XY plane.  

The observer sat in the exact center of the circle of speakers with the head faced an azimuth of 

90°. This setup does not simulate 3D audio.  Since all the speakers are in one plane surrounding 

the observer, it is an implementation of 360° 2D audio. This setup was chosen so we could test to 

see if humans have difficulty localizing sound behind them when compared to sounds in front of 

them.  The following figure is a photograph of the test setup that was implemented. 

 

 

Figure 3.3: Four channel 2D experimental test setup    
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MATLAB was used to create Waveform Audio Files (.wav) files which are the audio 

files that were used in the testing phase of our research. A .wav file is an audio file format 

standard for storing an audio bit stream onto PCs. MATLAB cannot play a sound with more than 

two channels. Therefore, an audio file (.wav) for each speaker with its corresponding gain factor 

had to be generated. Once the .wav files were generated, they were imported into Sound Forge, a 

digital audio editing application, and assigned to different channels. A base signal was generated 

to be used in participant testing.  This signal was a 400 Hz sine wave with a sampling frequency 

of 44.1 kHz and a duration of 2 seconds. 

A digital audio workstation (DAW), SoundForge Pro 11, took those .wav files and 

assigned them to four independent channels. The laptop exported the four independent channels 

to the Digital Audio Interface (Focusrite Scarlett 2i4) via a USB cord. The DAI was connected to 

two audio amplifiers (Sherwood RX-4109) which controlled the gains of each of the individual 

(Klipsch B-3 bookshelf) speakers. Each stereo audio amplifier controlled the gains of two of the 

four speakers. Figure 3.4 is a block diagram that visually represents how each component is 

connected. 

 

 

Figure 3.4: Block diagram of audio speaker setup 
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During testing the observer was placed in a chair that was surrounded by a set of audio 

speakers. The researcher explained how the testing would be conducted and gave a 

demonstration of the types of sounds that were played. The researcher played the base signal 

localized at 24 different fixed locations around the observer.  The locations tested ranged from 0° 

to 345° with a step size of 15°. The researcher played the sounds in random order.  The observer 

identified the angular position of each sound by pointing to the perceived angle on one of two 

large paper printouts of a protractor.  One protractor was laid in front of the observer, and the 

other was positioned behind the observer.  

3.1.4 2D Dynamic Localization 

The second test involved dynamic testing in which the virtual source is specified to move 

across an active arc. The resulting speaker gains would therefore dynamically change over time. 

The researcher played the 2 second 400 Hz base tone targeted to a specific active arc.  The 

observer would then indicate on the printed protractors where they thought the tone started and 

where the tone ended.  This process was repeated for a set of 24 different active arcs.  Each arc 

had a width of 90° and an arbitrary starting angle.  

3.1.5 2D Dynamic Algorithm 

In this algorithm, the gains are dynamically changing over time to create the sensation of 

a moving sound. To generate these audio files, 100 gain factors were calculated in MATLAB at 

evenly spaced time intervals and then those values were interpolated and applied to a sound 

wave. 
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Figure 3.5: Four channel 2D dynamic simulation example 

 

 Figure 3.5 is a simulation of dynamic testing in which the all the speakers are 6 feet from 

the observer.  The right speaker (First Speaker) is 45° to the right of the y-axis and the left 

speaker (Second Speaker) is 45° to the left of the y-axis.  The user specifies the starting angular 

position of the virtual source, the total angle of the arc, and whether the sound rotates clockwise 

or counter-clockwise.  In this case, the virtual source was specified to move from the first 

speaker to the second speaker. The VBAP algorithm calculated the gain factors at 100 evenly 

spaced intervals between the first and second speaker. The 100 gain factors were interpolated 

and applied to the tone files to achieve dynamic movement of sound. 
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3.1.6 2D Dynamic Test Procedure 

The second test involved 2D dynamic testing in which the virtual source is specified to 

move across an active arc. The test setup used in static localization was utilized here. The 

resulting speaker gains dynamically changed over time.  The researcher played the 2 second 400 

Hz base tone targeted to a specific active arc. The researcher played the sound signals localized 

at 24 different arcs around the observer. The starting arc locations tested ranged from 0° to 345° 

with a step size of 15°.  The researcher played the sound signals in a random order. Each sound 

was targeted to move through a 90° arc in either a clockwise or counterclockwise direction.   The 

observer would then indicate on the printed protractors where they thought the tone started and 

where the tone ended. This process was repeated for the set of 24 different active arcs.  

3.2 Four Channel 3-Dimensional System 

Three-dimensional vector based amplitude panning is the basis for the algorithm used to 

generate 3D sound localization. Figure 3.6 is a visual representation of three-dimensional sound 

vectors.  The three speakers form an active triangle in which one may position the virtual source. 
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Figure 3.6: Three channel configuration for 3D sound localization 

 

In Figure 3.6, Channel 1 (𝒍𝟏), Channel 2 (𝒍𝟐) and Channel 3 (𝒍𝟑) are the position vectors 

for the left, right and elevated speakers, and 𝒑 is the virtual source vector.  

 The speaker vectors can be expressed using Equation 3.9 where m is the channel 

number, 𝑙𝑚𝑥, 𝑙𝑚𝑦 and 𝑙𝑚𝑧 are the x, y, z components, respectively of the position vectors.  

𝒍𝒎=[𝑙𝑚𝑥 𝑙𝑚𝑦 𝑙𝑚𝑧]                                                        (9) 

The x, y and z position of the speakers may be calculated using: 
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𝑙𝑚𝑥 = 𝑠 cos(θ𝑚)                                                         (10) 

𝑙𝑚𝑦 = 𝑠 sin(θ𝑚)                                                         (11) 

𝑙𝑚𝑧 = 𝑠 sin(ϕ𝑚)                                                         (12) 

where m is the channel number, s is the distance from the observer to the speakers, θ𝑚 is the 

azimuth angle from the x axis for each speaker and ϕ𝑚) is the elevation angle for each speaker. 

Note that the elevation angle for the right and left speakers is zero for the configuration shown in 

Figure 3.6. 

The gain factors of the left, right and elevated speakers, 𝑔1, 𝑔2 and 𝑔3, are non-negative 

scalar variables in the range of zero to one. To keep the loudness of the virtual source constant 

the gain factors must be normalized using: 

𝐶 = 𝑔1
2 + 𝑔2

2 + 𝑔3
2                                                     (13) 

where C is the volume of the virtual source. As C increases, the virtual source is perceived to 

move closer to the observer.  If the largest gain factor is greater than 1, then each gain is divided 

by a calculated factor so that they are all are between zero and one. To ensure that the loudness is 

always the same (regardless of input parameters), a scaling factor is calculated 

𝑛 = √𝑔1
2 + 𝑔2

2 + 𝑔3
2                                                   (14) 

each gain factor is then divided by n. This places the virtual source on the surface of a sphere 

surrounding the listener, so it always sounds like it is the same distance away. 

The vector pointing towards the virtual source can be represented as a linear combination 

of the speaker vectors and their respective gains. 

𝒑 = [𝑝𝑥 𝑝𝑦 𝑝𝑧] = 𝒍𝟏𝑔1 + 𝒍𝟐𝑔2 + 𝒍𝟑𝑔3                                  (15) 
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 Equations (3.16) through (3.18) are utilized to determine the x, y and z coordinates for 

the virtual source where, m is the channel number, s is the distance to the speakers, θ𝑝 is the 

azimuth angle of the virtual source, and θ𝑝  is the elevation angle for the virtual source. 

𝑝𝑥 = 𝑠 cos(θ𝑝)                                                                  (16)  

𝑝𝑦 = 𝑠 sin(θ𝑝)                                                                   (17) 

𝑝𝑧 = 𝑠 sin(ϕ𝑝)                                                           (18) 

3.2.1 3D Static Localization 

The 3D testing involved two parts, static and dynamic localization.   In 3D static 

localization, the virtual source was specified to be at a stationary point (making the resulting 

speaker gains constant).  The researcher played the base signal localized at 17 different fixed 

locations in front of the observer.  The participant had a sheet that had a plot of the potential 

positions that the virtual source could be coming from. Figure 3.7 shows all 17 locations that 

were tested.  
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Figure 3.7: Virtual source locations 

 

The sounds were played from one to seventeen for training, and then the order was 

randomized for testing. For each location, the sound was played twice and the listener was asked 

to identify which point was closest to where they perceived the sound to be coming from.  

3.2.2 3D Static Algorithm 

To calculate the gains for 3D testing the following equations were used.  Equation 3.19 

calculates the three gain factors for the configuration shown in Figure 3.6, given the coordinate 

positions of the 3 speakers and the virtual source.  When the MATLAB code is run, the user is 

asked to input the azimuth and elevation angles of each speaker and of the virtual source.  The 
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MATLAB code then calculates the coordinates of the speaker locations using equations (3.10) 

through (3.12) and the coordinates of the virtual source location using equations (3.16) through 

(3.18).  

           𝒈 = 𝒑𝑇𝒍𝟏𝟐𝟑
−1 = [𝑝𝑥 𝑝𝑦 𝑝𝑧] [

𝑙1𝑥 𝑙1𝑦 𝑙1𝑧

𝑙2𝑥 𝑙2𝑦 𝑙2𝑧

𝑙3𝑥 𝑙3𝑦 𝑙3𝑧

]

−1

                            (19) 

MATLAB applies these calculated gain factors to three of the four audio channels, because only 

three speakers are needed to create the active triangle shown in Figure 3.6. The sound is then 

outputted to the four speakers via the Focusrite Scarlett 2i4 and audio amplifiers. 

3.2.3 3D Static Test Procedure   

During testing the observer was placed in a chair that faced four speakers. The researcher 

explained how the testing would be conducted and gave a demonstration of the types of sounds 

that would be played. A test setup was implemented using four channels which were used to 

create 3D audio effects. It is important to note that at any given time, only three of the four 

channels were active at any given time.  The left speaker was placed at 30° azimuth and 0° 

elevation.  The right speaker was placed at -30° azimuth and 0° elevation.  The top speaker was 

placed at 0° azimuth and 30° elevation. The bottom speaker was placed at 0° azimuth and -30° 

elevation. All four speakers were placed 6 feet from the listener. This setup was chosen so that 

we could test to see if humans have difficulty localizing sounds with varying elevations and 

azimuth. A photo of the 3D test setup in shown in Figure 3.8.  
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Figure 3.8: Four channel 3D experimental test setup 

 

MATLAB was used to create Waveform Audio Files (.wav) files which are the audio 

files that were used in the testing phase of our research. A .wav file is an audio file format 

standard for storing an audio bit stream onto PCs. MATLAB cannot play a sound with more than 

two channels. Therefore, an audio file (.wav) for each speaker with its corresponding gain factor 

had to be generated. Once the .wav files were generated, they were imported into Sound Forge, a 

digital audio editing application, and assigned to different channels. A base signal was generated 

to be used in participant testing.  This signal was a 400 Hz sine wave with a sampling frequency 

of 44.1 kHz and a duration of 2 seconds. 
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A digital audio workstation (DAW), SoundForge Pro 11, took those .wav files and 

assigned them to four independent channels. The laptop exported the four independent channels 

to the Digital Audio Interface (Focusrite Scarlett 2i4) via a USB cord. The DAI was connected to 

two audio amplifiers (Sherwood RX-4109) which controlled the gains of each of the individual 

(Klipsch B-3 bookshelf) speakers. Each stereo audio amplifier controlled the gains of two of the 

four speakers.  

3.2.4 3D Dynamic Localization 

The second test involved dynamic testing in which the virtual source is specified to move 

across an active arc. The resulting speaker gains would therefore dynamically change over time. 

The researcher played the 2 second 400 Hz base tone targeted to a specific active arc.  This 

process was repeated for a set of eight different active arcs.  

3.2.5 3D Dynamic Algorithm 

In this algorithm the gains are changing over time to create the sensation of a moving 

sound. To generate these audio files, 100 gain factors were calculated in MATLAB 

corresponding to evenly spaced azimuth angles across the targeted active arc at 100 evenly 

spaced time intervals within the 2 second sound duration. These gain factors were interpolated to 

the 44.1 kHz sampling frequency, and the interpolated gain factors were then applied to the 2 

second 400 Hz base tone. 

3.2.6 3D Dynamic Test Procedure 

The second test involved dynamic testing in which the virtual source is specified to move 

across an active arc. The test setup is the same as the one used in 3D static localization. The 

researcher played the 2 second 400 Hz base tone targeted to a specific active arc path.  The paths 

tested can be seen in Figure 3.9.  
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Figure 3.9: Four channel 3D dynamic arc paths 

 

The observer was given a list of possible paths that the sound could have moved on and 

they would identify which path they thought the sound was traveling on.  This process was 

repeated 8 times, each for one of the 8 designed paths.   
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CHAPTER 4: RESULTS 

 

In this chapter the results of the four-channel localization testing for both static and 

dynamic testing, are presented. For the static and dynamic channel localization tests, 

experimental data was collected from participants and put into tables. This data can be found in 

the Appendix Section A.1 through A.9. 

4.1 2D Static Sound Localization Test Results 

 A total of 10 participants were tested to identify the perceived azimuth angle of static 

tones, and the responses were compared to the calculated azimuth angle of the virtual source by 

calculating the Root Mean Squared Error (RSME). The RSME was calculated using  

𝑅𝑆𝑀𝐸 =  √
∑ 𝐸𝑟𝑟𝑜𝑟𝑖

2𝑛
𝑖=1

𝑛
 

where 𝐸𝑟𝑟𝑜𝑟𝑖 is the difference between the perceived and actual angle, and n is the number of 

participants. On average the RMSE was 37.35°.   
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Figure 4.1: Four channel 2D static RSME 

 

Figure 4.1 is a representation of the RMSE for each calculated angle. In this figure, each 

vector represents each calculated angle and the length of the vector corresponds to the RMSE 

value.  The results indicate that the participants do not have trouble localizing sound when the 

tone is right in front of them. The areas that they have trouble localizing sound were when the 
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tone was calculated to be diagonally in front or behind them and when the tone is directly behind 

of them. 

4.2 2D Dynamic Sound Localization Test Results 

A total of 10 participants were tested for dynamic localization. The results from all the 

participants were compared to the calculated location by calculating the RSME for the intended 

start angle and the intended end angle. The average RSME for all participants in dynamic testing 

was equal to 50.21° for the calculated start angle.  On average the RMSE for the end angle was 

equal to 47.74°.  
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Figure 4.2 is a representation of the RMS error (for all 10 participants combined) 

between the targeted start angle and the perceived start angle as a function of targeted start angle. 

 

 

Figure 4.2: Four channel 2D dynamic start angle RSME 
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 Figure 4.3 is a representation of the RMS error (for all 10 participants combined) 

between the targeted end angle and the perceived end angle as a function of targeted end angle. 

In Figures 4.2 and 4.3, each vector represents the targeted angle, and the length of the vector 

corresponds to the RMSE value. 

 

Figure 4.3: Four channel 2D dynamic end angle RSME       
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The results indicate that for dynamic sounds, the participants had trouble localizing the 

start of the sound when the tone was calculated to start at an angle diagonally in front or 

diagonally behind them. The participants had trouble localizing the end of the sound when the 

tone was calculated to end at an angle diagonally in front or diagonally behind them, and they 

had trouble localizing the sound when it was calculated to end directly behind them. 

4.3 3D Static Sound Localization Test Results 

In the four-channel 3D static tests, the participant was given a discrete set of points from 

which to choose the perceived virtual source position. Figure 4.4 is a bar plot showing the 

percentage of responses that matched the exact virtual source position.  Figure 4.5 is a bar plot 

showing the percentage of responses that were within 15° of the virtual source position. 

  

 

Figure 4.4: Four channel 3D static localization - percent of correct responses 
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Figure 4.5: Four channel 3D static localization - percent of responses within 15 degree 

 

In these graphs, the sound file number is directly correlated to the virtual source location 

number shown in Figure 3.7. The results show that individuals perceive the sound well when it is 

placed on the corners of the diamond shape that is created by the four speakers.  When the sound 

is placed within the diamond, more error occurred.   

The RSME was calculated for each of the 17 locations for all participants and the results 

can be seen in Figure 4.6 where each square represents one of the virtual source locations. For 

3D static localization, the average RSME was 15.46°, the minimum RSME was 8.18°, and the 

maximum RSME was 21.98°. 
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Figure 4.6: RSME for each virtual source location 

 

4.4 3D Dynamic Sound Localization Test Results 

In the four channel 3D tests, the participant was given a discrete set of paths from which 

to choose the perceived virtual source arc. Figure 4.7 is a bar plot showing the percentage of 

responses that matched the exact theoretical path for each virtual source position by all 

participants. 
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Figure 4.7: Four channel 3D static localization - percent of correct responses 

 

The results show that individuals perceive the sound well when it dynamically travels on 

the horizontal or vertical plane.  When the sound is designed to move diagonally, it causes more 

error in sound localization.  The paths tested are the paths shown in Figure (3.10).   
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Figure 4.8 is a bar plot showing the percentage of responses that were within one path 

meaning that the start of the perceived path was with 15° of the theoretical path for each virtual 

sound arc by all participants. 

 

Figure 4.8: Four channel 3D static localization - percent of responses within one path 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

 

In this research effort, an algorithm was developed to simulate auditory localization for a 

four-channel speaker system. Test setups were produced to implement the simulation, and 

experimental data were collected to verify the simulation. The average RMSE for 2D static 

sound localization was 37.35°. The average RSME for 2D dynamic sound localization was 

50.21° for the calculated start angle and on average the RMSE for the end angle was equal to 

47.74°.  The static and dynamic testing results seem to indicate that individuals have trouble 

localizing the source of the sound when it is in the area directly behind them and when the tone 

is diagonally in front of them or diagonally behind them. Based on these results the simulation is 

accurate in most areas, but there were some angles where individuals had trouble localizing the 

sound.  Overall the test set up could be useful in implementing a 2D audio system that could 

provide a more realistic listening experience than current stereo-sound systems.  

The average RSME for 3D static localization was 15.4644°.  The minimum RSME was 

8.18° and the maximum RSME was 21.97°. At high and low elevations, more error occurred 

compared to an elevation of 0°. This happened because humans are adept at detecting the 

direction in the horizontal plane due to their ears being placed symmetrically on the head. The 

ears being symmetric makes it harder to perceive the vertical plane.  Overall the test set up could 

be useful in implementing a 3D audio system that could provide a more realistic listening 

experience than current stereo-sound systems.  

In a future project, the concept of this project could be expanded.  For example, the 

speakers could be moved to different distances and angles from the listener to see if their ability 



36 
 

to distinguish location is affected. Other sounds, such as music, speech or sound effects, could 

also be utilized for testing. Non-equidistant localization could also be explored. 
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APPENDIX A: COLLECTED DATA 

 

 

 

Table A.1 shows the individual responses for each 2D static angle tested across all 

participants. Table A.2 shows the RSME results of static 2D sound localization testing. Tables 

A.3 and A.4 shows the individual responses for each dynamic start and end angle tested across 

all participants. Table A.5 shows the RSME results of dynamic 2D sound localization testing. 

Table A.6 shows the tested virtual source positions for the 3D static sound localization testing. 

Table A.7 shows the individual responses for each sound position tested across all participants 

for 3D static localization. Table A.8 shows the RSME results of static 3D sound localization 

testing. Table A.9 shows the tested virtual source paths for 3D dynamic sound localization 

testing. Table A.10 shows the individual responses for each dynamic angle tested across all 

participants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

Table A.1: 2D static experimental data (all angles in degrees) 

 

 
Participant 

Intended 

Angle 
1 2 3 4 5 6 7 8 9 10 

0 0 30 15 30 0 0 45 315 0 0 

15 0 30 30 30 15 15 330 30 15 15 

30 0 345 45 30 270 30 315 30 45 285 

45 300 0 45 45 45 0 45 45 270 0 

60 285 15 60 60 60 60 60 45 60 255 

75 285 60 60 285 120 270 75 90 75 75 

90 270 75 90 90 90 90 90 90 105 90 

105 225 150 150 255 120 255 105 90 135 105 

120 225 240 150 135 135 225 120 120 150 225 

135 135 180 135 135 135 225 135 135 135 225 

150 180 150 135 135 135 180 150 135 150 135 

165 225 195 135 165 150 225 120 135 165 180 

180 225 195 150 135 150 225 150 180 180 180 

195 225 195 195 180 165 270 150 255 195 180 

210 225 180 225 150 135 270 195 240 210 180 

225 225 180 225 225 225 270 135 225 225 225 

240 225 150 225 255 255 315 150 240 225 225 

255 255 105 255 270 270 315 300 255 270 255 

270 270 270 90 270 270 270 300 270 270 270 

285 300 285 270 285 270 270 270 295 300 315 

300 315 30 315 270 300 270 225 315 315 225 

315 315 300 315 315 315 300 225 315 315 315 

330 345 300 300 285 270 315 0 330 315 0 

345 285 270 15 15 330 315 330 300 330 315 
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Table A.2: Average RSME for each calculated static angle (all angles in degrees) 

 

Intended Angle RMS Error 

0° 24.65° 

15° 17.74° 

30° 57.12° 

45° 49.30° 

60° 55.11° 

75° 55.72° 

90° 6.71° 

105° 54.70° 

120° 49.52° 

135° 42.69° 

150° 17.10° 

165° 35.18° 

180° 30.00° 

195° 36.74° 

210° 40.25° 

225° 34.86° 

240° 48.14° 

255° 25.54° 

270° 57.71° 

285° 15.33° 

300° 46.96° 

315° 29.24° 

330° 31.47° 

345° 34.53° 
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Table A.3: 2D dynamic experimental data participants 1 to 5 (all angles in degrees) 

 

  
Participant 

Dynamic 

Start 

Angle 

Dynamic 

End 

Angle 

1 2 3 4 5 

0 270 300 255 15 285 315 270 45 315 315 225 

15 105 315 105 345 105 315 90 30 105 0 90 

30 300 60 300 30 105 315 15 45 315 45 315 

45 135 45 150 15 105 285 195 45 135 315 135 

60 150 90 240  60 180 60 180 15 105 45 135 

75 165 90 195 75 165 75 180 45 225 90 240 

90 0 90 300 90 0 90 315 90 0 105 45 

105 195 105 225 90 180 105 195 90 150  135 225 

120 210 120 210 135 180 270 180 135 225 120 210 

135 225 195 225 120 195 270 180 135  225 135 225 

150 60 210 60 180 60  270 0 195 105 120 30 

165 255 225 270 150 75 180 270 150 255 120 210 

180 90 225 90 165 90 180 90 180 90 60 150 

195 285 195 285 165 255 180 270 165 285 150 240 

210 300 225 285 195 285 270 315 225 315 90 270 

225 135 225 150 150 240 225 135 225 135 90 135 

240 150 240 135 195 135 225 135 225 135 225 135 

255 165 255 225 120 195  225 150 270 180 255 135 

270 0 270 0 270 0 270 315 270 0 0 270 

285 195 270 225 105 195 270 225 240 150 270 195 

300 210 315 255 15 240 285 195 330 240 300 210 

315 45 315  45  345 240 0 315 315  45 315  45 

330 60 330 90 30 120  195 0 300 30 330 60 

345 235 300 285 0 270 315 270 45 300 195 270 
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Table A.4: 2D dynamic experimental data participants 6 to 10 (all angles in degrees) 

 

  
Participant 

Dynamic 

Start 

Angle 

Dynamic 

End 

Angle 

6 7 8 9 10 

0 270 0 270 0 270 315 45 315 225 0 270 

15 105 315 225 330 60 45 105 315 105 0 120 

30 300 30 300 300 210 45 315 45 315 270 0 

45 135 315 225 30 120 45 135 45 135 270 180 

60 150 60 315 60 150 45 135 30 120 0 90 

75 165 75 165 75 195 45 135 75 180 270 180 

90 0 135 225 90 0 45 315 150 0 90 0 

105 195 270 225 105 210 135 225 105 225 45 135 

120 210 120 315 135 180 135 225 120 210 255 165 

135 225 225 315 135 225 135 225 135 225 180 90 

150 60 150 60 285 195 135 45 120 30 150 60 

165 255 165 225 240 225 135 225 150 240 180 270 

180 90 180 90 195 105 120 30 135 225 180 90 

195 285 180 270 285 285 135 45 225 315 180 270 

210 300 225 315 210 300 225 315 225 315 225 315 

225 135 315 225 225 135 225 135 225 135 135 225 

240 150 240 150 240 150 225 135 225 135 150 240 

255 165 225 315 240 150 45 135 225 135 240 150 

270 0 270 0 330 0 315 45 270 300 270 315 

285 195 285 195 285 195 315 225 330 240 240 150 

300 210 180 270 330 240 315 225 300 210 30 120 

315 45 315 45 300 210 315 45 315 315 0 90 

330 60 225 60 300 60 315 45 330 60 300 60 

345 235 135 270 330 240 330 45 315 225 0 90 
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Table A.5: Average RSME for each calculated dynamic start and dynamic end angle (all angles 

in degrees) 

 

Intended 

Start Angle 
RMS Error 

Intended 

End Angle 
RMS Error 

0° 37.35° 270° 49.75° 

15° 43.37° 105° 41.35° 

30° 54.70° 300° 67.42° 

45° 70.68° 135° 38.83° 

60° 28.06° 150° 66.41° 

75° 54.29° 165° 35.50° 

90° 28.06° 0° 52.82° 

105° 57.51° 195° 32.52° 

120° 64.52° 210° 39.62° 

135° 56.72° 225° 54.08° 

150° 65.73° 60° 50.87° 

165° 36.43° 255° 60.19° 

180° 47.43° 90° 50.64° 

195° 41.35° 285° 43.47° 

210° 44.24° 300° 16.43° 

225° 63.29° 135° 52.39° 

240° 33.54° 150° 31.10° 

255° 66.41° 165° 55.32° 

270° 37.05° 0° 42.16° 

285° 63.29° 195° 29.62° 

300° 55.32° 210° 41.08° 

315° 22.76° 45° 85.25° 

330° 59.81° 60° 30.37° 

345° 73.02° 235° 78.53° 
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Table A.6: 3D random angle test position (all angles in degrees) 

 

Random Angle Position Azimuth Elevation 

1 30 0 

2 -30 0 

3 0 30 

4 0 -30 

5 0 0 

6 15 0 

7 -15 0 

8 0 15 

9 0 -15 

10 7.5 7.5 

11 -7.5 7.5 

12 7.5 -7.5 

13 -7.5 -7.5 

14 15 15 

15 -15 15 

16 15 -15 

17 -15 15 
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Table A.7: 3D static localization experimental data 

  

Participant 

Sound 

Location 
1 2 3 4 5 6 7 8 9 10 

1 16 1 1 6 1 1 1 1 1 1 

2 15 2 7 2 2 2 2 2 2 2 

3 3 3 9 3 3 3 3 3 9 3 

4 3 4 4 4 4 4 4 4 4 4 

5 5 5 8 17 5 5 5 17 7 5 

6 1 6 14 6 1 6 1 6 1 6 

7 7 7 3 2 7 7 2 7 2 6 

8 8 8 4 9 8 8 5 3 8 8 

9 9 9 6 5 4 9 9 5 8 9 

10 10 10 1 10 6 10 14 1 10 10 

11 11 11 3 11 11 11 17 2 11 10 

12 10 12 1 16 12 12 12 12 12 12 

13 13 13 13 17 13 13 2 17 7 13 

14 1 14 14 1 14 14 16 14 6 13 

15 17 15 2 15 15 1 15 15 15 14 

16 14 16 16 16 16 16 16 16 16 2 

17 11 17 17 2 17 17 13 17 13 17 
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Table A.8: Average RSME for each 3D static location 

 

Sound Location RMS Error 

1 8.18 

2 8.18 

3 20.12 

4 18.97 

5 11.57 

6 11.61 

7 17.68 

8 18.97 

9 17.08 

10 14.56 

11 16.84 

12 14.67 

13 11.11 

14 18.83 

15 21.97 

16 18.83 

17 13.64 

 

 

 

Table A.9: 3D random angle test positions for the start and end angles 

 

Start Angle 

Location  
Azimuth  Elevation  

End Angle 

Location  
Azimuth  Elevation 

1 30 0 2 -30 0 

2  -30 0 1 30 0 

3 0 30 4 0 -30 

4 0 -30 3 0 30 

5 15 15 7 -15 -15 

6 15 -15 8 -15 15 

7 -15 -15 5 15 15 

8 -15 15 6 15 -15 
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Table A.10: 3D dynamic localization experimental data 

  

Participant 

Dynamic 

Path 
1 2 3 4 5 6 7 8 9 10 

1 6 1 1 2 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 2 

3 3 1 3 3 3 3 3 4 3 3 

4 4 4 4 4 4 4 4 4 4 4 

5 1 5 5 1 5 5 5 1 5 5 

6 5 6 6 6 6 6 6 6 6 5 

7 8 7 7 7 7 7 8 2 7 5 

8 8 7 8 8 8 8 7 7 8 6 
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APPENDIX B: MATLAB CODE 

 

 

 

2D Static and Dynamic Localization 

 

% Clears all previous data and clears workspace 

clear all; 

close all; 

clc; 

  

% Speaker locations in terms of azimuth (angle) 

Speaker1Theta=45;  % Speaker 1 location 

Speaker2Theta=135; % Speaker 2 location 

Speaker3Theta=225; % Speaker 3 location 

Speaker4Theta=315; % Speaker 4 location 

Listener= [0 0];    % The observers position 

s=6;  % How far away all the speakers are from the Listener (in feet) 

  

%Angles used for random testing 

Theta= [15 45 330 225 30 105 195 345 60 180 240 300 150 0 270 315 135 165 90 75 285 120 

210 255] 

  

% This section is for static tones 

% Generates tones used in testing 

[Tone, FS, t] =Tone_Generator (400,1,2,0,0); 

  

i=1; 

n=1; 

  

% The following if loop calculates the gains for the speakers 

if Theta(i)==Speaker1Theta 

     g1=1; 

     g2=0; 

     g3=0; 

     g4=0; 

     XLeft=s*cosd(Speaker1Theta);  %Left speaker coordinate 

     YLeft=s*sind(Speaker1Theta); %Left speaker coordinate 

     px=s*cosd(Theta(i)); 

     py=s*sind(Theta(i)); 

     figure 

     plot ([0 XLeft], [0 YLeft],'r-o','linewidth',2) 

     hold on 

     plot ([0 px], [0 py],'k-x') 

     legend ('Speaker’, ‘Virtual Source') 

     xlabel ('Distance in Feet') 
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     ylabel ('Distance in Feet') 

     title ('Speaker Locations and Virtual Source Location') 

     grid on 

     axis ([-7 7 -7 7]) 

     axis('square') 

elseif Theta(i)==Speaker2Theta 

    g1=0; 

    g2=1; 

    g3=0; 

    g4=0; 

    XLeft=s*cosd(Speaker2Theta);  %Left speaker coordinate 

    YLeft=s*sind(Speaker2Theta); %Left speaker coordinate 

    px=s*cosd(Theta(i)); 

    py=s*sind(Theta(i)); 

    figure 

    plot ([0 XLeft], [0 YLeft],'r-o','linewidth',2) 

    hold on 

    plot ([0 px], [0 py],'k-x') 

    legend ('Speaker’, ‘Virtual Source') 

    xlabel ('Distance in Feet') 

    ylabel ('Distance in Feet') 

    title ('Speaker Locations and Virtual Source Location') 

    grid on 

    axis ([-7 7 -7 7]) 

    axis('square') 

elseif Theta(i)==Speaker3Theta 

    g1=0; 

    g2=0; 

    g3=1; 

    g4=0; 

    XLeft=s*cosd(Speaker3Theta);  %Left speaker coordinate 

    YLeft=s*sind(Speaker3Theta); %Left speaker coordinate 

    px=s*cosd(Theta(i)); 

    py=s*sind(Theta(i)); 

    figure 

    plot ([0 XLeft], [0 YLeft],'r-o','linewidth',2) 

 

    hold on 

     

 

    legend ('Speaker’, ‘Virtual Source') 

    xlabel ('Distance in Feet') 

    ylabel ('Distance in Feet') 

    title ('Speaker Locations and Virtual Source Location') 

    grid on 

    axis ([-7 7 -7 7]) 
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 axis('square') 

elseif Theta(i)==Speaker4Theta 

    g1=0; 

    g2=0; 

    g3=0; 

    g4=1; 

    XLeft=s*cosd(Speaker4Theta);  %Left speaker coordinate 

    YLeft=s*sind(Speaker4Theta); %Left speaker coordinate 

    px=s*cosd(Theta(i)); 

    py=s*sind(Theta(i)); 

    figure 

    plot ([0 XLeft], [0 YLeft],'r-o','linewidth',2) 

    hold on 

    plot ([0 px], [0 py],'k-x') 

    legend ('Speaker’, ‘Virtual Source') 

    xlabel ('Distance in Feet') 

    ylabel ('Distance in Feet') 

    title ('Speaker Locations and Virtual Source Location') 

    grid on 

    axis ([-7 7 -7 7]) 

    axis('square') 

elseif Theta(i)>Speaker1Theta && Theta(i)<Speaker2Theta 

    XLeft=s*cosd(Speaker2Theta-90);  %Left speaker coordinate 

    YLeft=s*sind(Speaker2Theta-90); %Left speaker coordinate 

    XRight=s*cosd(Speaker1Theta-90); %Right speaker coordinate 

    YRight=s*sind(Speaker1Theta-90); %Right speaker coordinate 

    Theta(i)=Theta(i)-90; 

    [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta(i)); 

    g1=gCorrect (2); 

    g2=gCorrect (1); 

    g3=0; 

    g4=0; 

    XLeft=s*cosd(Speaker2Theta);  %Left speaker coordinate 

    YLeft=s*sind(Speaker2Theta); %Left speaker coordinate 

    XRight=s*cosd(Speaker1Theta); %Right speaker coordinate 

    YRight=s*sind(Speaker1Theta); %Right speaker coordinate 

    px=s*cosd(Theta(i)+90); 

    py=s*sind(Theta(i)+90); 

    figure 

    plot ([0 XLeft], [0 YLeft],'r-o') 

    hold on 

    plot ([0 XRight], [0 YRight],'-o') 

    plot ([0 px], [0 py],'k-x') 

    legend ('Left Speaker’, ‘Right Speaker’, ‘Virtual Source') 
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    xlabel ('Distance in Feet') 

    ylabel ('Distance in Feet') 

    title ('Speaker Locations and Virtual Source Location') 

    grid on 

    axis ([-7 7 -7 7]) 

    axis('square') 

    strl=sprintf ('Left Speaker Gain=%f’, gCorrect (1)); 

    strr=sprintf ('Right Speaker Gain=%f’, gCorrect (2)); 

    text (-6, -6, strl) 

    text (-6, -5.5, strr) 

elseif Theta(i)>Speaker2Theta && Theta(i)<Speaker3Theta 

    XLeft=s*cosd(Speaker3Theta-180);  %Left speaker coordinate 

    YLeft=s*sind(Speaker3Theta-180); %Left speaker coordinate 

    XRight=s*cosd(Speaker2Theta-180); %Right speaker coordinate 

    YRight=s*sind(Speaker2Theta-180); %Right speaker coordinate 

    Theta(i)=Theta(i)-180; 

    [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta(i)); 

    g1=0; 

    g2=gCorrect (2); 

    g3=gCorrect (1); 

    g4=0; 

    XLeft=s*cosd(Speaker3Theta);  %Left speaker coordinate 

    YLeft=s*sind(Speaker3Theta);  %Left speaker coordinate 

    XRight=s*cosd(Speaker2Theta); %Right speaker coordinate 

    YRight=s*sind(Speaker2Theta); %Right speaker coordinate 

    px=s*cosd(Theta(i)+180); 

    py=s*sind(Theta(i)+180); 

    figure 

    plot ([0 XLeft], [0 YLeft],'r-o') 

    hold on 

    plot ([0 XRight], [0 YRight],'-o') 

    plot ([0 px], [0 py],'k-x') 

    legend ('Left Speaker’, ‘Right Speaker’, ‘Virtual Source') 

    xlabel ('Distance in Feet') 

    ylabel ('Distance in Feet') 

    title ('Speaker Locations and Virtual Source Location') 

    grid on 

    axis ([-7 7 -7 7]) 

    axis('square') 

    strl=sprintf ('Left Speaker Gain=%f’, gCorrect (1)); 

    strr=sprintf ('Right Speaker Gain=%f’, gCorrect (2)); 

    text (-6, -6, strl) 

    text (-6, -5.5, strr) 

elseif Theta(i)>Speaker3Theta && Theta(i)<Speaker4Theta 

    XLeft=s*cosd(Speaker4Theta-270);  %Left speaker coordinate 

    YLeft=s*sind(Speaker4Theta-270);  %Left speaker coordinate 
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    XRight=s*cosd(Speaker3Theta-270); %Right speaker coordinate 

    YRight=s*sind(Speaker3Theta-270); %Right speaker coordinate 

    Theta(i)=Theta(i)-270; 

    [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta(i)); 

    g1=0; 

    g2=0; 

    g3=gCorrect (2); 

    g4=gCorrect (1); 

    XLeft=s*cosd(Speaker4Theta);  %Left speaker coordinate 

    YLeft=s*sind(Speaker4Theta);  %Left speaker coordinate 

    XRight=s*cosd(Speaker3Theta); %Right speaker coordinate 

    YRight=s*sind(Speaker3Theta); %Right speaker coordinate 

    px=s*cosd(Theta(i)+270); 

    py=s*sind(Theta(i)+270); 

    figure 

    plot ([0 XLeft], [0 YLeft],'r-o') 

    hold on 

    plot ([0 XRight], [0 YRight],'-o') 

    plot ([0 px], [0 py],'k-x') 

    legend ('Left Speaker’, ‘Right Speaker’, ‘Virtual Source') 

    xlabel ('Distance in Feet') 

    ylabel ('Distance in Feet') 

    title ('Speaker Locations and Virtual Source Location') 

    grid on 

    axis ([-7 7 -7 7]) 

    axis('square') 

    strl=sprintf ('Left Speaker Gain=%f’, gCorrect (1)); 

    strr=sprintf ('Right Speaker Gain=%f’, gCorrect (2)); 

    text (-6, -6, strl) 

    text (-6, -5.5, strr) 

else 

    XLeft=s*cosd(Speaker1Theta);  %Left speaker coordinate 

    YLeft=s*sind(Speaker1Theta);  %Left speaker coordinate 

    XRight=s*cosd(Speaker4Theta); %Right speaker coordinate 

    YRight=s*sind(Speaker4Theta); %Right speaker coordinate 

    [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta(i)); 

    g1=gCorrect (1); 

    g2=0; 

    g3=0; 

    g4=gCorrect (2); 

    XLeft=s*cosd(Speaker1Theta);  %Left speaker coordinate 

    YLeft=s*sind(Speaker1Theta); %Left speaker coordinate 

    XRight=s*cosd(Speaker4Theta); %Right speaker coordinate 

    YRight=s*sind(Speaker4Theta); %Right speaker coordinate 

    px=s*cosd(Theta(i)); 

    py=s*sind(Theta(i)); 
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    figure 

    plot ([0 XLeft], [0 YLeft],'r-o') 

    hold on 

    plot ([0 XRight], [0 YRight],'-o') 

    plot ([0 px], [0 py],'k-x') 

    legend ('Left Speaker’, ‘Right Speaker’, ‘Virtual Source') 

    xlabel ('Distance in Feet') 

    ylabel ('Distance in Feet') 

    title ('Speaker Locations and Virtual Source Location') 

    grid on 

    axis ([-7 7 -7 7]) 

    axis('square') 

    strl=sprintf ('Left Speaker Gain=%f’, gCorrect (1)); 

    strr=sprintf ('Right Speaker Gain=%f’, gCorrect (2)); 

    text (-6, -6, strl) 

    text (-6, -5.5, strr) 

end 

Y(:,2) =Tone*g1; %Channel 1 

Y(:,1) =Tone*g2; %Channel 2 

Y(:,4) =Tone*g3; %Channel 3 

Y(:,3) =Tone*g4; %Channel 4 

audiowrite ('StaticTestingTheta24.wav’, Y, FS); 

  

Theta= [120 45 300 15 225 180 135 330 60 345 195 150 255 165 30 210 270 90 0 315 240 105 

285 75] 

theta_1=Theta(n);    % Theta 1 

theta_2=theta_1+90;  % Theta 2 

  

% Used to control the bounds of theta 

if theta_2>360 

    theta_1=theta_1-360; 

    theta_2=theta_2-360; 

    ActualEnd=theta_2; 

end 

if theta_2<0 

    theta_1=theta_1+360; 

    theta_2=theta_2+360; 

    ActualEnd=theta_2; 

end 

  

%Used to allow the code to go from to 360 back to 0 

if theta_1>=225 && theta_2<=45 

    theta_1=theta_1-360; 

end 

if theta_2>=225 && theta_1<=45 

    theta_2=theta_2-360; 
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end 

  

[Tone, FS, t] =Tone_Generator(400,1,2,0,0); 

ThetaDynamic=linspace (theta_1, theta_2,100); %Range of Theta from theta 1 to theta 2 

TS=1/FS; %Period of the .wav file 

figure 

X1=s*cosd(Speaker1Theta); 

Y1=s*sind(Speaker1Theta); 

X2=s*cosd(Speaker2Theta); 

Y2=s*sind(Speaker2Theta); 

X3=s*cosd(Speaker3Theta); 

Y3=s*sind(Speaker3Theta); 

X4=s*cosd(Speaker4Theta); 

Y4=s*sind(Speaker4Theta); 

plot ([0, X1], [0, Y1],'r-o') 

hold on 

plot ([0, X2], [0, Y2],'b-o') 

plot ([0, X3], [0, Y3],'g-o') 

plot ([0, X4], [0, Y4],'k-o') 

xlabel ('Distance in Feet') 

ylabel ('Distance in Feet') 

title ('Speaker Locations and Virtual Source Location') 

axis ([-7 7 -7 7]) 

axis('square') 

grid on 

for i=1: length(ThetaDynamic) 

     if ThetaDynamic(i)<0 

          ThetaDynamic(i)=ThetaDynamic(i)+360; 

     end 

     if ThetaDynamic(i)>360 

          ThetaDynamic(i)=ThetaDynamic(i)-360; 

     end 

    % The following if loop calculates the gains for the speakers 

     if ThetaDynamic(i)==Speaker1Theta 

          g1(i)=1; 

          g2(i)=0; 

          g3(i)=0; 

          g4(i)=0; 

          px=s*cosd(ThetaDynamic(i)); 

          py=s*sind(ThetaDynamic(i)); 

          plot (px, py, ‘kx') 

          hold on 

     elseif ThetaDynamic(i)==Speaker2Theta 

          g1(i)=0; 

          g2(i)=1; 

          g3(i)=0; 
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          g4(i)=0; 

          px=s*cosd(ThetaDynamic(i)); 

          py=s*sind(ThetaDynamic(i)); 

          plot (px, py, ‘kx') 

          hold on 

     elseif ThetaDynamic(i)==Speaker3Theta 

          g1(i)=0; 

          g2(i)=0; 

          g3(i)=1; 

          g4(i)=0; 

          px=s*cosd(ThetaDynamic(i)); 

          py=s*sind(ThetaDynamic(i)); 

          plot (px, py, ‘kx') 

          hold on 

     elseif ThetaDynamic(i)==Speaker4Theta 

          g1(i)=0; 

          g2(i)=0; 

          g3(i)=0; 

          g4(i)=1; 

          px=s*cosd(ThetaDynamic(i)); 

          py=s*sind(ThetaDynamic(i)); 

          plot (px, py, ‘kx') 

          hold on 

     elseif ThetaDynamic(i)>Speaker1Theta && ThetaDynamic(i)<Speaker2Theta 

          XLeft=s*cosd(Speaker2Theta-90);  %Left speaker coordinate 

          YLeft=s*sind(Speaker2Theta-90);  %Left speaker coordinate 

        XRight=s*cosd(Speaker1Theta-90); %Right speaker coordinate 

        YRight=s*sind(Speaker1Theta-90); %Right speaker coordinate 

        ThetaNew=ThetaDynamic(i)-90; 

        [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, ThetaNew); 

        g1(i)=gCorrect (2); 

        g2(i)=gCorrect (1); 

        g3(i)=0; 

        g4(i)=0; 

        px=s*cosd(ThetaDynamic(i)); 

        py=s*sind(ThetaDynamic(i)); 

        plot (px, py, ‘kx') 

        hold on 

     elseif ThetaDynamic(i)>Speaker2Theta && ThetaDynamic(i)<Speaker3Theta 

        XLeft=s*cosd(Speaker3Theta-180);  %Left speaker coordinate 

        YLeft=s*sind(Speaker3Theta-180);  %Left speaker coordinate 

        XRight=s*cosd(Speaker2Theta-180); %Right speaker coordinate 

        YRight=s*sind(Speaker2Theta-180); %Right speaker coordinate 

        ThetaNew=ThetaDynamic(i)-180; 

        [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, ThetaNew); 

        g1(i)=0; 



58 
 

        g2(i)=gCorrect (2); 

        g3(i)=gCorrect (1); 

        g4(i)=0; 

        px=s*cosd(ThetaDynamic(i)); 

        py=s*sind(ThetaDynamic(i)); 

        plot (px, py, ‘kx') 

        hold on 

     elseif ThetaDynamic(i)>Speaker3Theta && ThetaDynamic(i)<Speaker4Theta 

          XLeft=s*cosd(Speaker4Theta-270);  %Left speaker coordinate 

         YLeft=s*sind(Speaker4Theta-270);  %Left speaker coordinate 

        XRight=s*cosd(Speaker3Theta-270); %Right speaker coordinate 

        YRight=s*sind(Speaker3Theta-270); %Right speaker coordinate 

        ThetaNew=ThetaDynamic(i)-270; 

        [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, ThetaNew); 

        g1(i)=0; 

        g2(i)=0; 

        g3(i)=gCorrect (2); 

        g4(i)=gCorrect (1); 

        px=s*cosd(ThetaDynamic(i)); 

        py=s*sind(ThetaDynamic(i)); 

        plot (px, py, ‘kx') 

        hold on 

  else 

          XLeft=s*cosd(Speaker1Theta);  %Left speaker coordinate 

          YLeft=s*sind(Speaker1Theta);  %Left speaker coordinate 

        XRight=s*cosd(Speaker4Theta); %Right speaker coordinate 

        YRight=s*sind(Speaker4Theta); %Right speaker coordinate 

 [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, 

ThetaDynamic(i)); 

        g1(i)=gCorrect (1); 

        g2(i)=0; 

        g3(i)=0; 

        g4(i)=gCorrect (2); 

        px=s*cosd(ThetaDynamic(i)); 

        py=s*sind(ThetaDynamic(i)); 

        plot (px, py, ‘kx') 

        hold on 

     end 

end 

  

legend ('First Speaker’, ‘Second Speaker’, ‘Third Speaker’, ‘Fourth Speaker’, ‘Virtual Source') 

axis ([-7 7 -7 7]) 

axis('square') 

vq1=interp1(linspace (0, max(t), length(g1)), g1, t); 

vq2=interp1(linspace (0, max(t), length(g2)), g2, t); 

vq3=interp1(linspace (0, max(t), length(g3)), g3, t); 
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vq4=interp1(linspace (0, max(t), length(g4)), g4, t); 

Y(:,2) =Tone. *vq1; %Channel 1 

Y(:,1) =Tone. *vq2; %Channel 2 

Y(:,4) =Tone. *vq3; %Channel 3 

Y(:,3) =Tone. *vq4; %Channel 4 

audiowrite ('DynamicTestingTheta24.wav’, Y, FS); 
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3D Static Localization 

 

close all; 

clear all; 

clc; 

  

s=6; 

  

%Speaker Locations in terms of degrees 

Speaker1_azumith=30; 

Speaker1_elavation=0; 

Speaker2_azumith=-30; 

Speaker2_elavation=0; 

Speaker3_azumith=0; 

Speaker3_elavation=30; 

Speaker4_azumith=0; 

Speaker4_elavation=-30; 

  

Phantom_desired_azumith=-15 

Phantom_desired_elavation=-10 

  

if Phantom_desired_elavation>0 & Phantom_desired_azumith~=0 %Upper triangle 

     L1z=s*sind(Speaker1_elavation); 

     d=sqrt(s^2-L1z^2) 

     L1x=d*cosd(Speaker1_azumith); 

     L1y=d*sind(Speaker1_azumith); 

     L2z=s*sind(Speaker2_elavation); 

     d=sqrt(s^2-L2z^2) 

     L2x=d*cosd(Speaker2_azumith); 

     L2y=d*sind(Speaker2_azumith); 

     L3z=s*sind(Speaker3_elavation); 

     d=sqrt(s^2-L3z^2) 

     L3x=d*cosd(Speaker3_azumith); 

     L3y=d*sind(Speaker3_azumith); 

     L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z]; 

     px=s*cosd(Phantom_desired_azumith); 

     py=s*sind(Phantom_desired_azumith); 

     pz=sqrt(px^2+py^2) *tand(Phantom_desired_elavation); 

     p= [px py pz]; 

     g=p*inv(L) 

    if max(g)>1 

      n=sqrt (g (1) ^2+g (2) ^2+g (3) ^2) 

         g=g/n 

     end 

     g1=g (1);     %speaker 1 gain 

     g2=g (2);      %speaker 2 gain 
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     g3=g (3);     %speaker 3 gain 

     g4=0;        %speaker 4 gain 

elseif Phantom_desired_elavation<0 & Phantom_desired_azumith~=0 %lower triangle 

     L1z=s*sind(Speaker1_elavation); 

     d=sqrt(s^2-L1z^2) 

     L1x=d*cosd(Speaker1_azumith); 

     L1y=d*sind(Speaker1_azumith); 

     L2z=s*sind(Speaker2_elavation); 

     d=sqrt(s^2-L2z^2) 

     L2x=d*cosd(Speaker2_azumith); 

     L2y=d*sind(Speaker2_azumith); 

     L3z=s*sind(abs(Speaker4_elavation)); 

     d=sqrt(s^2-L3z^2) 

     L3x=d*cosd(abs(Speaker4_azumith)); 

     L3y=d*sind(abs(Speaker4_azumith)); 

     L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z]; 

     px=s*cosd(Phantom_desired_azumith); 

     py=s*sind(Phantom_desired_azumith); 

     pz=sqrt(px^2+py^2) *tand(abs(Phantom_desired_elavation)); 

     p= [px py pz]; 

     g=p*inv(L) 

     if max(g)>1 

          n=sqrt (g (1) ^2+g (2) ^2+g (3) ^2) 

          g=g/n 

     end 

     g1=g (1);      %speaker 1 gain 

     g2=g (2);      %speaker 2 gain 

     g3=0;         %speaker 3 gain 

     g4=g (3);      %speaker 4 gain 

% Make certain z negative for graphing purposes 

     L3z=-s*sind(abs(Speaker4_elavation)); 

     pz=-sqrt(px^2+py^2) *tand(abs(Phantom_desired_elavation)); 

elseif Phantom_desired_elavation==0 & Phantom_desired_azumith~=0 %Midspeakers 

  XLeft=s*cosd(Speaker1_azumith);  %Left speaker coordinate 

    YLeft=s*sind(Speaker1_azumith);  %Left speaker coordinate 

    XRight=s*cosd(Speaker2_azumith); %Right speaker coordinate 

    YRight=s*sind(Speaker2_azumith); %Right speaker coordinate 

     Theta=Phantom_desired_azumith 

     [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta); 

     g1=gCorrect (1);      %speaker 1 gain 

     g2=gCorrect (2);      %speaker 2 gain 

     g3=0;                %speaker 3 gain 

     g4=0;                %speaker 4 gain 

     L1z=s*sind(Speaker1_elavation); 

     d=sqrt(s^2-L1z^2) 

     L1x=d*cosd(Speaker1_azumith); 
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     L1y=d*sind(Speaker1_azumith); 

     L2z=s*sind(Speaker2_elavation); 

     d=sqrt(s^2-L2z^2) 

     L2x=d*cosd(Speaker2_azumith); 

     L2y=d*sind(Speaker2_azumith); 

     L3z=s*sind(Speaker3_elavation); 

     d=sqrt(s^2-L3z^2) 

     L3x=d*cosd(Speaker3_azumith); 

     L3y=d*sind(Speaker3_azumith); 

     L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z]; 

     px=s*cosd(Phantom_desired_azumith); 

     py=s*sind(Phantom_desired_azumith); 

     pz=sqrt(px^2+py^2) *tand(Phantom_desired_elavation); 

     p= [px py pz]; 

elseif Phantom_desired_elavation~=0 & Phantom_desired_azumith==0 %top and bottom 

speaker 

     XLeft=s*cosd(Speaker3_elavation);  %Left speaker coordinate 

     YLeft=s*sind(Speaker3_elavation);  %Left speaker coordinate 

     XRight=s*cosd(Speaker4_elavation); %Right speaker coordinate 

     YRight=s*sind(Speaker4_elavation); %Right speaker coordinate 

     Theta=Phantom_desired_elavation 

     [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta); 

     g1=0;                %speaker 1 gain 

     g2=0;                %speaker 2 gain 

     g3=gCorrect (1);      %speaker 3 gain 

     g4=gCorrect (2);      %speaker 4 gain 

     L1z=s*sind(Speaker1_elavation); 

     d=sqrt(s^2-L1z^2) 

     L1x=d*cosd(Speaker1_azumith); 

     L1y=d*sind(Speaker1_azumith); 

     L2z=s*sind(Speaker2_elavation); 

     d=sqrt(s^2-L2z^2) 

     L2x=d*cosd(Speaker2_azumith); 

     L2y=d*sind(Speaker2_azumith); 

     L3z=s*sind(Speaker3_elavation); 

     d=sqrt(s^2-L3z^2) 

     L3x=d*cosd(Speaker3_azumith); 

     L3y=d*sind(Speaker3_azumith); 

     L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z]; 

     px=s*cosd(Phantom_desired_azumith); 

     py=s*sind(Phantom_desired_azumith); 

     pz=sqrt(px^2+py^2) *tand(Phantom_desired_elavation); 

     p= [px py pz]; 

elseif Phantom_desired_elavation==0 & Phantom_desired_azumith==0 % Midspeakers 

     XLeft=s*cosd(Speaker1_azumith);  %Left speaker coordinate 

     YLeft=s*sind(Speaker1_azumith);  %Left speaker coordinate 
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     XRight=s*cosd(Speaker2_azumith); %Right speaker coordinate 

     YRight=s*sind(Speaker2_azumith); %Right speaker coordinate 

     Theta=Phantom_desired_azumith 

     [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta); 

     g1=gCorrect (1);      %speaker 1 gain 

     g2=gCorrect (2);      %speaker 2 gain 

     g3=0;                %speaker 3 gain 

     g4=0;                %speaker 4 gain 

     L1z=s*sind(Speaker1_elavation); 

     d=sqrt(s^2-L1z^2) 

     L1x=d*cosd(Speaker1_azumith); 

     L1y=d*sind(Speaker1_azumith); 

     L2z=s*sind(Speaker2_elavation); 

     d=sqrt(s^2-L2z^2) 

     L2x=d*cosd(Speaker2_azumith); 

     L2y=d*sind(Speaker2_azumith); 

     L3z=s*sind(Speaker3_elavation); 

     d=sqrt(s^2-L3z^2) 

     L3x=d*cosd(Speaker3_azumith); 

     L3y=d*sind(Speaker3_azumith); 

     L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z]; 

     px=s*cosd(Phantom_desired_azumith); 

     py=s*sind(Phantom_desired_azumith); 

     pz=sqrt(px^2+py^2) *tand(Phantom_desired_elavation); 

     p= [px py pz]; 

else 

     %Do nothing 

end 

  

[Tone, FS, t] =Tone_Generator (400,1,2,0,0); 

Y(:,1) =Tone*g1; %Channel 1 

Y(:,2) =Tone*g2; %Channel 2 

Y(:,3) =Tone*g3; %Channel 3 

Y(:,4) =Tone*g4; %Channel 4 

audiowrite ('3DStatic17.wav’, Y, FS); 

  

figure 

plot3([0 L1x], [0 L1y], [0 L1z],'r-o','linewidth',2) 

hold on 

plot3([0 L2x], [0 L2y], [0 L2z],'-o','linewidth',2) 

plot3([0 L3x], [0 L3y], [0 L3z],'c-o','linewidth',2) 

plot3([0 px], [0 py], [0 pz],'k-x','linewidth',2) 

plot3([L1x L3x], [L1y L3y], [L1z L3z],'g','linewidth',2) 

plot3([L2x L3x], [L2y L3y], [L2z L3z],'g','linewidth',2) 

plot3([L1x L2x], [L1y L2y], [L1z L2z],'g','linewidth',2) 

grid on 
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legend ('Left Speaker’, ‘Right Speaker’, ‘Bottom Speaker’, ‘Virtual Source’, ‘Active Triangle') 

strl=sprintf ('Left Speaker Gain=%f’, g1); 

text (-2, -2, -1.5, strl) 

strl=sprintf ('Right Speaker Gain=%f’, g2); 

text (-2, -2, -1.75, strl) 

start=sprintf ('Bottom Speaker Gain=%f’, g4); 

text (-2, -2, -2, strt) 

xlabel ('Distance in Feet') 

ylabel ('Distance in Feet') 

label ('Distance in Feet') 

title ('Virtual Source and Speaker Vectors Locations') 

axis('square') 
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3D Dynamic Localization 

 

close all; 

clear all; 

clc; 

  

s=6; 

  

%Speaker Locations in terms of degrees 

Speaker1_azumith=30; 

Speaker1_elavation=0; 

Speaker2_azumith=-30; 

Speaker2_elavation=0; 

Speaker3_azumith=0; 

Speaker3_elavation=30; 

Speaker4_azumith=0; 

Speaker4_elavation=-30; 

  

Phantom_desired_azumith_start=-15; 

Phantom_desired_azumith_end=15; 

Phantom_desired_elavation_start=15; 

Phantom_desired_elavation_end=-15; 

  

Theta_azumith=linspace (Phantom_desired_azumith_start, Phantom_desired_azumith_end,100);  

Theta_elavation=linspace(Phantom_desired_elavation_start,Phantom_desired_elavation_end,100

); 

  

for i=1: length(Theta_azumith) 

if Theta_elavation(i)>0 & Theta_azumith(i)~=0 %Upper triangle 

      L1z=s*sind(Speaker1_elavation); 

     d=sqrt(s^2-L1z^2) 

    L1x=d*cosd(Speaker1_azumith); 

     L1y=d*sind(Speaker1_azumith); 

     L2z=s*sind(Speaker2_elavation); 

     d=sqrt(s^2-L2z^2) 

     L2x=d*cosd(Speaker2_azumith); 

     L2y=d*sind(Speaker2_azumith); 

     L3z=s*sind(Speaker3_elavation); 

     d=sqrt(s^2-L3z^2) 

     L3x=d*cosd(Speaker3_azumith); 

     L3y=d*sind(Speaker3_azumith); 

     L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z]; 

     px=s*cosd(Theta_azumith(i)); 

     py=s*sind(Theta_azumith(i)); 

     pz=sqrt(px^2+py^2) *tand(Theta_elavation(i)); 

     p= [px py pz]; 
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     g=p*inv(L) 

if max(g)>1 

           n=sqrt (g (1) ^2+g (2) ^2+g (3) ^2) 

           g=g/n 

      end 

     g1(i)=g (1);     %speaker 1 gain 

     g2(i)=g (2);      %speaker 2 gain 

     g3(i)=g (3);      %speaker 3 gain 

     g4(i)=0;       %speaker 4 gain 

elseif Theta_elavation(i)<0 & Theta_azumith(i)~=0 %lower triangle 

      L1z=s*sind(Speaker1_elavation); 

      d=sqrt(s^2-L1z^2) 

     L1x=d*cosd(Speaker1_azumith); 

      L1y=d*sind(Speaker1_azumith); 

      L2z=s*sind(Speaker2_elavation); 

      d=sqrt(s^2-L2z^2) 

      L2x=d*cosd(Speaker2_azumith); 

      L2y=d*sind(Speaker2_azumith); 

      L3z=s*sind(abs(Speaker4_elavation)); 

      d=sqrt(s^2-L3z^2) 

      L3x=d*cosd(abs(Speaker4_azumith)); 

      L3y=d*sind(abs(Speaker4_azumith)); 

      L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z]; 

      px=s*cosd(Theta_azumith(i)); 

      py=s*sind(Theta_azumith(i)); 

      pz=sqrt(px^2+py^2) *tand(abs(Theta_elavation(i))); 

      p= [px py pz]; 

      g=p*inv(L) 

     if max(g)>1 

          n=sqrt (g (1) ^2+g (2) ^2+g (3) ^2) 

          g=g/n 

     end 

     g1(i)=g (1);      %speaker 1 gain 

     g2(i)=g (2);      %speaker 2 gain 

     g3(i)=0;        %speaker 3 gain 

     g4(i)=g (3);      %speaker 4 gain 

     % Make certain z negative for graphing purposes 

     L3z=-s*sind(abs(Speaker4_elavation)); 

     pz=-sqrt(px^2+py^2) *tand(abs(Theta_elavation(i))); 

elseif Theta_elavation(i)==0 & Theta_azumith(i)~=0 %Midspeakers 

      XLeft=s*cosd(Speaker1_azumith);  %Left speaker coordinate 

      YLeft=s*sind(Speaker1_azumith);  %Left speaker coordinate 

      XRight=s*cosd(Speaker2_azumith); %Right speaker coordinate 

      YRight=s*sind(Speaker2_azumith); %Right speaker coordinate 

      Theta=Theta_azumith(i) 

      [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta); 
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      g1(i)=gCorrect (1);      %speaker 1 gain 

      g2(i)=gCorrect(2);      %speaker 2 gain 

      g3(i)=0;                %speaker 3 gain 

      g4(i)=0;                %speaker 4 gain 

      L1z=s*sind(Speaker1_elavation); 

      d=sqrt(s^2-L1z^2) 

      L1x=d*cosd(Speaker1_azumith); 

      L1y=d*sind(Speaker1_azumith); 

      L2z=s*sind(Speaker2_elavation); 

      d=sqrt(s^2-L2z^2) 

      L2x=d*cosd(Speaker2_azumith); 

      L2y=d*sind(Speaker2_azumith); 

      L3z=s*sind(Speaker3_elavation); 

      d=sqrt(s^2-L3z^2) 

      L3x=d*cosd(Speaker3_azumith); 

     L3y=d*sind(Speaker3_azumith); 

      L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z]; 

      px=s*cosd(Theta_azumith(i)); 

      py=s*sind(Theta_azumith(i)); 

      pz=sqrt(px^2+py^2) *tand(Theta_elavation(i)); 

      p= [px py pz]; 

elseif Theta_elavation(i)~=0 & Theta_azumith(i)==0 %top and bottom speaker 

      XLeft=s*cosd(Speaker3_elavation);  %Left speaker coordinate 

      YLeft=s*sind(Speaker3_elavation);  %Left speaker coordinate 

      XRight=s*cosd(Speaker4_elavation); %Right speaker coordinate 

     YRight=s*sind(Speaker4_elavation); %Right speaker coordinate 

     Theta=Theta_elavation(i) 

     [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta); 

     g1(i)=0;                %speaker 1 gain 

     g2(i)=0;                %speaker 2 gain 

     g3(i)=gCorrect(1);      %speaker 3 gain 

     g4(i)=gCorrect(2);      %speaker 4 gain 

     L1z=s*sind(Speaker1_elavation); 

     d=sqrt(s^2-L1z^2) 

     L1x=d*cosd(Speaker1_azumith); 

     L1y=d*sind(Speaker1_azumith); 

     L2z=s*sind(Speaker2_elavation); 

     d =sqrt(s^2-L2z^2) 

     L2x=d*cosd(Speaker2_azumith); 

     L2y=d*sind(Speaker2_azumith); 

     L3z=s*sind(Speaker3_elavation); 

     d =sqrt(s^2-L3z^2) 

     L3x=d*cosd(Speaker3_azumith); 

     L3y=d*sind(Speaker3_azumith); 

     L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z]; 

     px=s*cosd(Theta_azumith(i)); 
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     py=s*sind(Theta_azumith(i)); 

     pz=sqrt(px^2+py^2) *tand(Theta_elavation(i)); 

     p= [px py pz]; 

elseif Theta_elavation(i)==0 & Theta_azumith(i)==0 % Midspeakers 

      XLeft=s*cosd(Speaker1_azumith);  %Left speaker coordinate 

     YLeft=s*sind(Speaker1_azumith);  %Left speaker coordinate 

     XRight=s*cosd(Speaker2_azumith); %Right speaker coordinate 

     YRight=s*sind(Speaker2_azumith); %Right speaker coordinate 

     Theta=Theta_azumith(i) 

     [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta); 

     g1(i)=gCorrect(1);      %speaker 1 gain 

     g2(i)=gCorrect(2);      %speaker 2 gain 

     g3(i)=0;                %speaker 3 gain 

     g4(i)=0;                %speaker 4 gain 

     L1z=s*sind(Speaker1_elavation); 

     d=sqrt(s^2-L1z^2) 

     L1x=d*cosd(Speaker1_azumith); 

     L1y=d*sind(Speaker1_azumith); 

     L2z=s*sind(Speaker2_elavation); 

     d =sqrt(s^2-L2z^2) 

     L2x=d*cosd(Speaker2_azumith); 

     L2y=d*sind(Speaker2_azumith); 

     L3z=s*sind(Speaker3_elavation); 

     d=sqrt(s^2-L3z^2) 

     L3x=d*cosd(Speaker3_azumith); 

     L3y=d*sind(Speaker3_azumith); 

     L= [L1x L1y L1z; L2x L2y L2z; L3x L3y L3z]; 

     px=s*cosd(Theta_azumith(i)); 

     py=s*sind(Theta_azumith(i)); 

     pz=sqrt(px^2+py^2) *tand(Theta_elavation(i)); 

     p= [px py pz]; 

else 

      %Do nothing 

end 

end  

[Tone, FS, t] =Tone_Generator (400,1,2,0,0); 

vq1=interp1(linspace (0, max(t), length(g1)), g1, t); 

vq2=interp1(linspace (0, max(t), length(g2)), g2, t); 

vq3=interp1(linspace (0, max(t), length(g3)), g3, t); 

vq4=interp1(linspace (0, max(t), length(g4)), g4, t); 

Y(:,2) =Tone. *vq1; %Channel 1 

Y(:,1) =Tone. *vq2; %Channel 2 

Y(:,4) =Tone. *vq3; %Channel 3 

Y(:,3) =Tone. *vq4; %Channel 4 

audiowrite ('3DDynamic8.wav’, Y, FS); 
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Tone Generator 

 

function [Tone, FS, t] = Tone_Generator (Frequency, Amplitude, Duration, Delay, endtime) 

  

FS=44100;    % Samples per second (sampling Frequency) 

ts=1/FS;     % Sampling interval  

t=0:ts: Duration; % How long the Tone will last 

  

Number_Of_Zeros_1=round(FS*Delay);      % Pads the beginning of the tone with 0's 

Number_Of_Zeros_2=round(FS*endtime);    % Pads the end of the tone with 0's 

  

Tone=Amplitude. *sin(2*pi*Frequency*t); 

Tone= [zeros (1, Number_Of_Zeros_1) Tone zeros (1, Number_Of_Zeros_2)]; 

  

t=0:ts:(Delay+endtime+Duration); 
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Gain Calculator 

 

% This code calculates all the gains 

function [gCorrect]=NonEquaDistant2D (XLeft, YLeft, XRight, YRight, Theta) 

Left= [XLeft YLeft]; 

Right= [XRight, YRight]; 

Listener= [0 0]; 

angle=Theta; 

  

Center= [Listener (1) (Left (2) +Right (2))/2]; 

dL = sqrt ((Left (1)-Listener (1)) ^2+(Left (2)-Listener (2)) ^2); 

dR = sqrt ((Right (1)-Listener (1)) ^2+(Right (2)-Listener (2)) ^2); 

s=(dL+dR)/2; 

x=s*cosd(angle)+Listener (1); 

yL=s*sind(angle)+Listener (2); 

P= [x yL]; 

thetaLdeg = atand ((Left (2)-Listener (2))/ (Left (1)-Listener (1))); 

thetaRdeg = atand ((Right (2)-Listener (2))/ (Right (1)-Listener (1))); 

thetaPdeg=atand ((P (2)-Listener (2))/ (P (1)-Listener (1))); 

L = [(Left-Center)' (Right-Center)']'; %switched left and right in this line  

%to make it to where g1 is assigned to the "right speaker* 

G = P*inv(L) 

  

if G (1)>1 

     G (2) =G (2)/G (1) 

     G (1) =1 

elseif G (2)>1 

     G (1) =G (1)/G (2) 

     G (2) =1 

end 

  

if dR>dL 

     gCorrect= [G (1) G (2) *(dR/dL) ^2] 

     TL=(dR-dL)/340.29; 

     TR=0; 

elseif dL>dR 

     gCorrect= [G (1) *(dL/dR) ^2 G (2)] 

     TR=(dL-dR)/340.29; 

     TL=0; 

else 

     gCorrect=G 

    TR=0; 

     TL=0; 

end 

  

if gCorrect (1)>1 
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     gCorrect (2) =gCorrect (2)/gCorrect (1) 

     gCorrect (1) =1 

elseif G (2)>1 

gCorrect (1) =gCorrect (1)/gCorrect (2) 

     gCorrect (2) =1 

end 

 


