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Autism spectrum disorder, also referred to as autism, is a complex and 

heterogeneous neurodevelopmental condition characterized by deficits in social 

communication, delayed or absent language development, and restricted or repetitive 

behaviors.  Finding an appropriate, effective, and affordable intervention that targets 

these differences may increase access of children with autism to treatment that improves 

their quality of life, independence, and productivity, while reducing lifetime care costs. 

The premise of this exploratory study was that music instruction may serve as an 

appropriate, effective, and affordable intervention for children with autism.  Previous 

researchers noted that children with autism have both an affinity for and ability in music, 

while neuroscientists demonstrated increased cortical growth and neural network 

responses among musicians.  At the onset of the current study, no published research 

studies were found that explicitly examined effects of musical training on both neural 

activity and adaptive behaviors of children with autism.  The purpose of this exploratory 

research study was to investigate the effects of instrumental music instruction on 

neurophysiological responses and adaptive behaviors of children with autism. 

 Fourteen children with autism participated in the current study.  During a 20-week 

period, a control group (n = 7) received 30 minutes of non-music intervention per week, 

and an experimental group (n = 7) received 30 minutes of music intervention (i.e., violin 
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instruction) per week.  Before and after the intervention period, neurophysiological and 

adaptive behavioral data were collected from control and experimental groups. 

 The 14 participants of the study were assigned randomly to either the control (i.e., 

non-music intervention group), or the experimental (i.e., music intervention group).  

Eleven children completed the behavioral segment of this study, five in the control group 

and six in the experimental group.  As compared to the non-music intervention group, 

experimental participants displayed significant gains in Expressive Communication (p = 

.018).  Increases in Interpersonal Socialization by the music intervention group also 

approached significance (p = .057).  The researcher found a moderately large effect size 

for Expressive Communication (r = .694), and for Interpersonal Socialization (r = .589), 

accounting for approximately 40% and 35% of the variances of the two adaptive 

behaviors before and after music intervention, respectively. 

 Eight children completed the neurophysiological segment of this study, three in 

the control group and five in the experimental group.  Results revealed several trends in 

the differences between the control and experimental intervention groups' post-

intervention neurophysiological responses.  While changes were not observed among the 

non-music group's pre- and post-intervention cortical activity, changes were observed 

among the experimental group's cortical activation in areas associated with social and 

language learning.  These findings supported the premise that instrumental music study 

may serve as an appropriate, effective, and affordable intervention, targeting the hallmark 

behaviors of autism and potentially associated cortical areas.
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CHAPTER I 

INTRODUCTION 

 
Music instruction may serve as an appropriate, effective, and affordable 

intervention for autism spectrum disorder.  Currently, no research studies have examined 

the effects of musical training on both neural activity and adaptive behaviors of children 

with autism.  The purpose of this exploratory research study was to investigate the effects 

of instrumental music study on neurophysiological responses and adaptive behaviors of 

children with autism.  Specifically, the study was designed to comparatively analyze the 

effects of an instrumental music intervention and a non-music intervention on the 

neurophysiological responses and adaptive behaviors of children with autism.  This 

chapter provides information about the background of the problem, the neurology of 

autism, adaptive behavioral measures, music instruction as an intervention, purpose of the 

study, research questions, and definition of terms. 

 
Background of the Problem 

 Autism spectrum disorder, also known as autism, is a neurodevelopmental 

condition characterized by atypical social communication, and repetitive interests, 

activities, or behaviors (American Psychiatric Association [APA], 2013).  Reported 

incidences of autism have increased dramatically during the last 30 years.  Rates of 

autism have remained fairly stable throughout the 1980s with approximately one in 5,000 

American children being diagnosed with autism (Center for Disease Control [CDC], 
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2009).  These rates, however, began to increase for children born in the 1990s.  Based on 

data collection and analyses, approximately one in 150 children were diagnosed with 

autism in 2000, one in 125 in 2004, one in 110 in 2006, and one in 88 in 2008 (Baio, 

2014; CDC, 2009).  Between 2010 and 2012 rates seemed to stabilize showing one in 68 

children were diagnosed with autism (Christensen et al., 2016).  Individuals with autism 

most often are diagnosed between the ages of two and four years old, with the use of 

psychometric tools, such as the Autism Diagnostic Observation Schedule (Lord & Rutter, 

2000), or the Autism Diagnostic Interview – Revised (Rutter & LeCouteur, 2003). 

 While all autism diagnoses share differences in communication, social interaction, 

and repetitive behaviors or interests, autism is a spectrum disorder.  People within the 

autism community often say, “if you have met one person with autism, you have met one 

person with autism.”  This phrase means each child or adult with autism has unique gifts 

and abilities, with individual characteristics of autism varying widely from one person to 

another creating a continuum or spectrum within the disorder.  At one end of the 

spectrum, a person may seem a bit socially awkward or interpret language literally, 

making cultural idioms difficult to understand.  Telling a child with autism, ‘the dog 

kicked the bucket’ might illicit a confused response and/or produce a stern rebuke from 

the child for speaking such nonsense.  Children and people at this end of the spectrum 

also may have an intense interest in a specific topic or activity.  These interests may lead 

to high aptitude in a particular field, and to a successful career as an adult.  Most often, 

when people with autism are portrayed in the popular media, this end of the spectrum is 

the focus or is displayed. 
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 The other end of the autism spectrum often is not the focus of popular media.  At 

this end, children or adults with autism may have very little vocabulary or be completely 

non-verbal, and unable to communicate their most basic needs and desires.  This inability 

to communicate often leads to frustration or anger, and may manifest in violent outbursts.  

At this end of the autism spectrum, persons may display characteristics of repetitive 

behaviors in the form of repetitive loud or soft vocalizations, head banging, or biting of 

themselves.  Children and adults with characteristics on this end of the spectrum often 

have an intellectual disability, as well as autism.  When autism is combined with a severe 

intellectual disability, the affected person may rely completely on caregivers for their 

basic everyday needs, including eating, toileting, and bathing.  Unable to understand 

danger, the child or adult at this end of the autism spectrum may wander away from 

home, or attempt to jump out of a moving car.  Such cases of autism often require 

twenty-four-hour supervision, creating extreme stress within families, and exhausting 

parents and caregivers.  When children with autism and severe intellectual disabilities 

become adults, finding a safe and appropriate placement outside the parent’s home can be 

both difficult and costly. 

Researchers have found that up to 46% of people with autism who have an 

intelligence quotient (IQ) less than 50, require high levels of assistance from their 

families, and are not able to lead an independent life (Eaves & Ho, 2008; Farley et al., 

2009).  Similarly, when IQ is not limited to 50 or less, researchers have found up to 78% 

of adults with autism also experience unfavorable outcomes based on similar criteria 

(Billstedt et al., 2005).  Researchers have estimated that the lifetime cost of supporting an 
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individual with autism and intellectual disabilities to be approximately $2.4 million 

(Buescher, Cidav, Knapp & Mandell, 2014).  The lifetime cost of supporting an 

individual with autism and no intellectual disabilities is approximately $1.4 million 

(Buescher, Cidav, Knapp & Mandell, 2014).  Examination of medical expenditures for 

young people with autism shows that costs exceed typically-developing peers between 

$4,110 and $6,200 per year (Shimabukuro, Grosse & Rice, 2008). 

Although there is no known cure for autism, increased levels of functioning may 

be achieved through early and consistent intervention services that increase quality of 

life, independence, and productivity, while reducing lifetime care costs.  Finding 

appropriate, affordable, and effective interventions for autism is the key to getting 

children and families the help they need.  This exploratory study is designed to contribute 

to finding such an intervention by investigating effects of instrumental music study on 

neurophysiological responses and adaptive behaviors of children with autism. 

 
Cortical Connectivity in Autism 

 Understanding how music instruction may influence neurophysiological 

responses among children with autism requires a basic overview of what is currently 

known about autism and the brain.  While a consistent biomarker has not yet been 

discovered to explain the pathogenesis of autism, Minshew, Williams, and McFadden 

(2008) suggest an accumulation of multiple environmental and genetic conditions create 

molecular, cellular and architectural changes in the brain that evolve over time.  

Researchers who investigate the etiology of autism theorize that it likely involves many 

converging pathways (Geschwind & Levitt, 2007; Maximo, Cadena, & Kana, 2014), and 
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intricate interactions between genetic, epigenetic and environmental factors (Loke, 

Hannan, & Craig, 2015; Mevel et al., 2014).  Understanding this complex and 

multifaceted condition leads the scientific community to extensively explore the 

neurological underpinnings of autism.  A novel theory rose to prominence in the early 

2000s as a viable explanation for the unique intelligence and behavioral patterns present 

in an autism spectrum diagnosis.  This theory, formally presented in 2004, states that 

“autism is a cognitive and neurological disorder marked and caused by under-functioning 

integrative circuitry that results in a deficit of integration of information at the neural and 

cognitive levels” (Just, Cherkassky, Keller, Kana & Minshew, 2004, p.1817).  This 

theory is known as the theory of underconnectivity. 

Measuring Connectivity 

 Connectivity refers to how the brain is structurally and functionally connected.  

Structural connectivity describes how individual neurons connect on a micro level, and 

how differing cortical regions connect on a macro level.  Functional connectivity 

describes how activity in one area of the brain is correlated with another area (Wass, 

2011). 

 Scientists use a variety of neuroimaging techniques to examine connectivity.  

Electroencephalography (EEG) is used to record the electrical activity of synaptic 

currents within the brain.  This activity, measured in Hz, shows the synchrony of neurons 

on a macroscopic level (Frohlich, 2016).  The EEG provides excellent temporal 

resolution; however, it provides limited spatial resolution.  A second neuroimaging 

technique includes magnetic resonance imaging (MRI); it is used to examine the structure 
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and size of differing brain regions.  Data from the MRI often is analyzed with Voxel 

Based Morphometry (VBM), a post hoc statistical analysis allowing for the comparison 

of relative volumes of multiple brain regions (Abell et al., 1999).  A third method of 

measuring connectivity includes functional Magnetic Resonance Imaging (fMRI) that is 

used to measure change in blood flow to regions of the brain.  The fMRI is a noninvasive 

method to measure neural activity.  Finally, connectivity also may be measured with 

Diffusion Tensor Imaging (DTI).  This tractography-based method of neuroimaging 

traces white matter tracts allowing association fiber pathways to be mapped in a living 

person.  These four neuroimaging techniques (i.e., the EEG, MRI, fMRI, and DTI) are 

used most frequently in research on cortical connectivity to examine both structural and 

functional connectivity. 

Electroencephalography 

 Considering the strengths of EEG, specifically the high temporal resolution, this 

measurement of brain activity was chosen to complete the current study.  

Electroencephalography is the oldest of all brain-imaging techniques, and measures 

electrical signals created during postsynaptic activity as ions flow through neuronal 

dendrites forming transmembrane currents (Rippon, 2006).  In 1929, Hans Berger 

attached a small electrode to the scalp and measured an electrical signal that was 8-13 

cycles per second (Hz) (Haas, 2003). He named this signal the alpha rhythm.  Since that 

time, scientists have refined EEG technology to measure many subtle electrical signals 

occurring within the human brain. 
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 Current EEG systems often use nonmetallic electrodes that are pre-mounted in an 

elastic cap.  Contact between the scalp and the electrodes is maintained through 

electrolyte-soaked sponges.  Electrodes are positioned in the cap according to the 

international “10/20” system.  This system identifies each electrode by one letter that 

describes their location (F = frontal; P = parietal; T = temporal; O = occipital), and by 

one number, with odd numbers referencing the left hemisphere electrodes, and even 

numbers referencing the right hemisphere electrodes (Rippon, 2006). 

 Electrodes measure the frequencies of electrical activity in the brain.  The slowest 

frequency is the delta wave (i.e., < 4Hz) that is associated with sleep or eye motion.  

Theta waves (i.e., between 4-7Hz) are associated with limbic structures (da Silva, 1992), 

memory (Burgess & Gruzelier, 1997; Klimesch et al., 1997), and modulation of limbic 

and prefrontal activation (Basar, Schurmann, & Sakowitz, 2001).  Alpha waves (i.e., 

between 8-13Hz) are associated with specific cognitive activities, inhibition control, and 

memory function.  Beta waves (i.e., between 13-30Hz) usually occur during a specific 

task and demonstrate active concentration.  These waves seem to be responsible for long-

distance (Freeman, 2004a, 2004b) and medium-distance synchronizations (von Stein & 

Sarnthein, 2000), connecting neighboring cortical areas.  Finally, Gamma waves (i.e., 

between 30-+100 Hz) are associated with cross-modal sensory processing, memory 

(Herrmann, Munk & Engel, 2004), and with activity in localized areas (von Stein & 

Sarnthein, 2000).  Examining these frequencies enable researchers to analyze how the 

brain responds to different stimuli.  Averaging techniques combine EEG readings from 

many repetitions of a stimulus to produce an average evoked response or evoked 
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potential.  These evoked responses also are called event-related potentials (ERPs).  A 

similar frequency analysis technique, referred to as Event-Related Spectral Perturbation 

(ERSP), recently has become a favored method for examining EEG data.  The ERSP 

measures the average changes in wave amplitude as a function of time and related to a 

stimulus event.  The ERPs do not fully capture collected data, while ERSP analysis 

produces more information about brain synchronization than ERPs. 

 The EEG has several limitations, including poor spatial resolution, and the 

potential for a signal to become distorted while traveling from the intracortical source to 

the scalp.  A signal also potentially may come from an infinite number of intracranial 

sources due to several factors including head shape (Michel et al., 2004).  A precise 

description of event-related brain activation, however, offers an opportunity to 

understand conditions where the brain is structurally intact, yet found to have functional 

deficits.  Electroencephalography also provides information about connections between 

the cortical and the cognitive/behavioral domains, when exploring and measuring various 

responses to stimuli. 

Mirror Neuron System 

Electroencephalography may be used to measure a system of neurons associated 

with social and communicative learning called mirror neurons.  Mirror neurons were first 

described after studying cortical activation in the ventral premotor areas of macaque 

monkeys (Di Pellegrino, Fadiga, Fogassi, Gallese & Rizzolatti, 1992), and were later 

named mirror neurons in a follow-up paper published by the same research team 

(Gallese, Fadiga, Fogassi & Rizzolatti, 1996). While monkeys observed a movement and 
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performed a movement, Di Pellegrino et al. (1992) found that these unique neurons 

discharged both.  This activation during both conditions distinguishes mirror neurons 

from motor or sensory neurons.  Motor and sensory neurons are activated either while 

observing or executing an action; whereas, mirror neurons are activated during both 

conditions.  Since the discovery of mirror neurons, several different kinds of mirror 

neurons have been identified in neuroscientific research on communication (Ferrari, 

Gallese, Rizzolatti & Fogassi, 2003), audiovisual responses (Keysers et al., 2003), tool 

responses (i.e., observations of someone using a tool; Ferrari, Rozzi & Fogassi, 2005), 

and peripersonal and extrapersonal responses (Caggiano, Fogassi, Rizzolatti, Their & 

Casile, 2009).  In humans, the mirror neuron system (MNS) seems to affect 

understanding and imitating others. 

The most prominent theory explaining the purpose of mirror neurons is based on a 

“direct-matching model,” where actions that are observed are “directly mapped” onto the 

viewer’s motor system (Rizzolatti & Sinigaglia, 2010).  Rozzolatti & Sigigaalia (2010) 

emphasized the importance of mirror neurons, because both the execution of an action 

and the goal of the action are recognized.  Because the execution and goal of an action 

are recognized, mirror neurons and their function have been associated with several high-

level cognitive processes, including imitative learning (Rizzolatti & Craighero, 2004), 

understanding social behavior (Gallese et al., 2004), language (Arbib, 2005), and 

empathy (Gallese, 2003). 

The mirror neuron system (MNS) frequently has been studied through analyses of 

EEG frequencies between 8 and 13 Hz. These frequencies, referred to as mu rhythms, 
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create large EEG oscillations when at rest, but decrease when individuals execute or 

observe an action.  Because of this decrease in power, mirror neuron activity also is 

referred to as mu wave suppression (Babiloni et al., 2002).  This suppression, or 

desynchronization of the wave is used as a marker for mirror neuron activation. 

Aberrant cortical connectivity affects the MNS of children and adults with autism.  

Multiple studies have investigated mu frequencies and found frequent impairments in 

people with autism (Nishitani, Avikainen & Hari, 2004; Oberman & Ramachandran, 

2007; Williams, Whiten, Suddendorf & Perrett, 2001).  Ramachandran and Altschuler 

(2009) suggest that mu wave suppression might provide a simple, noninvasive probe for 

monitoring mirror neuron activity.  They further report that children with autism maintain 

mu wave suppression when moving their own hand yet fail to suppress mu waves when 

observing other children’s hand movements.  These irregularities indicate abnormal MNS 

of children with autism.  Considering the importance of the MNS in language processing 

and interpretation of actions, an intervention targeting the underdeveloped MNS in 

autism may have great potential for treatment (Overy & Molnar-Szakacs, 2009). 

 
Behavioral Measures in Autism 

 Currently, scientists are not able to diagnose autism through biological markers, 

such as cortical connectivity or genetic tests.  Psychologists must collect and analyze 

behavioral data, following parents', physicians' and/or educators' expressions of concerns 

about delayed development and anti-social behavior.  Children with autism are most 

often diagnosed between the ages of two and four years old with the Autism Diagnostic 

Observation Schedule (ADOS, 1999) or the Autism Diagnostic Interview–Revised (ADI-
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R, 1989).  While these measures are appropriate for the initial determination of an autism 

diagnosis, the ADOS and ADI-R do not measure functional or adaptive behavior.  

Adaptive behaviors may be described as daily living skills such as walking, speaking, 

self-care, going to school or work, cooking, or cleaning.  Once a diagnosis has been 

made, behaviors and age-appropriate development may be measured through one of 

several adaptive behavior protocols.  Examples of these protocols include the Adaptive 

Behavior Assessment System (ABAS), the Developmental Observation Checklist System 

(DOCS) and the Vineland Adaptive Behavior Scales (VABS). 

Adaptive Behavioral Assessment System 

 The Adaptive Behavior Assessment System–Second Edition (ABAS-II; 2005) is a 

norm-based assessment of adaptive behaviors of children and adults ranging from ages 

birth to 89 years.  This measure provides scores for Conceptual, Social and Practical 

domains, as consistent with current American Association of Intellectual and 

Developmental Disabilities (Harrison & Oakland, 2015).  Multiple behavioral 

components are measured under each domain.  The Conceptual domain is used to assess 

communication, self-direction, and functional academics.  The Social domain is used to 

assess social and leisure skills.  The Practical domain is used to assess motor skills, home 

and school living, self-care, health and safety, community use, and work.  The ABAS-III 

contains a total of 11 sub-domains.  For each item in the assessment, respondents are 

provided a four-point Likert-type scale with the option to mark a question as a guess, 

and/or to write comments about the question.  Acceptable and high reliability for the 

ABAS III has been established via internal consistency and test-retest reliability 
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estimates, with estimates that are greater than or equal to .90.  Face and content validity 

have been established through reviews and expert suggestions (Harrison & Oakland, 

2015).  Additionally, criterion-related validity has been deemed acceptable for clinical 

and research purposes, with correlation coefficients ranging from .70 to .89 when 

correlated with related measures (Harrison & Oakland, 2015). 

Developmental Observation Checklist System 

The Developmental Observation Checklist System (DOCS) is another norm-based 

behavioral assessment for children aged birth through six years old.  This measure 

contains three domains with multiple sub-domains.  The first domain measures general 

development and includes 475 yes/no questions in the sub-domains of Language, Motor, 

Social, and Cognitive Skills (Hresko, Miguel, Sherbenou & Burton, 1994).  The second 

domain measures Adjustment behavior, and the third domain measures Parent Stress and 

Support.  For these domains, questions are rated using a 4-point Likert-type scale.  

Reliability estimates are between .81 and .96, when measured via test-retest, internal 

consistency, and interscorer reliability analyses (Panter, 1996).  While authors suggest 

that a high level of construct validity is maintained, Panter (1996) found only a moderate 

correlation (.69) between the DOCS adjustment behavior sub-domain and the Vineland 

Adaptive Behavior Scales (1984).  A modest correlation of .46 exists between the DOCS 

Language Scale and the established Standford-Binet-IV Verbal Reasoning Scale 

(Thorndike, Hagen & Sattler, 1986).  The DOCS is used in both clinical practice and 

research. 
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Vineland Adaptive Behavior Scales 

 The Vineland Adaptive Behavioral Scales (VABS) were first published as the 

Vineland Social Maturity Scale in 1965 (Oakland & Houchins, 1985).  Collectively, the 

VABS is a norm-based assessment of behavior, and may be used for people with 

developmental disabilities between the ages of infancy and 90 years.  The VABS contains 

five domains including Communication, Daily Living Skills, Socialization, Motor Skills 

and a Maladaptive Behavior Index.  Each domain is comprised of multiple sub-domains.  

The Communication domain contains receptive, expressive, and written measures of 

development.  The Daily Living Skills domain contains questions used to measure 

personal, domestic, and community development.  The Socialization domain contains 

sub-domains used to measure interpersonal relationships, play and leisure time, and 

coping skills.  The Motor Skills domain is used to measure fine and gross motor skills.  

Finally, the Maladaptive Behavior Index may be used for people between the ages of 3 

and 90 years.  This domain contains sub-domains to measure internalizing, externalizing, 

and other behaviors. 

 To complete the VABS, parents or caregivers rate their children's behaviors using 

a three-point scale, including 0 (never performed), 1 (sometimes or partly performed), 

and 2 (usually or habitually performed).  Widaman (2010) maintains that the composite 

internal consistency of the VABS is between .95 and .98, and that the composite test-

retest reliability of the VABS is between .88 and .96.  Widaman (2010) also indicates that 

the concurrent-validity coefficients of the VABS range from .29 to .91, and the construct-
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validity coefficients range from .56 to .88.  The Vineland Adaptive Behavior Scales is 

widely used in clinical practice, educational settings, and in research. 

 The Vineland Adaptive Behavior Scales II was used to collect data for the present 

study for several reasons.  First, the VABS has been used extensively to assess 

populations with autism (Paul et al., 2004; Perry, Flanagan, Geier & Freeman, 2009; Tan 

et al., 2012; Volkmar et al., 1987).  Second, collectively, the Scales assess behavioral 

responses across five domains and fourteen sub-domains, including: (1) Communication 

domain (subdomains: Receptive, Expressive, Written); (2) Daily Living Skills domain 

(subdomains: Personal, Domestic, Community); (3) Socialization domain (subdomains: 

Interpersonal relationships, Play and Leisure, Coping skills); (4) Motor skills domain 

(subdomains: Fine, Gross); and (5) Maladaptive Behavior domain (subdomains: 

Internalizing, Externalizing).  This level of assessment detail is not acquired through 

using either the DOCS or ABAS, and is essential when measuring changes in adaptive 

behavior over time.  Third, unlike the DOCS that may be used only with children from 

birth to the age of six years, the VABS measure adaptive behaviors for all ages.  Finally, 

the VABS produces the Maladaptive Behavior index.  When completing the VABS, 

caregivers rate statements, including "avoids social interaction," "bites nails," "has a hard 

time paying attention," and "obsessed with objects of activities."  Rating these statements 

is especially important and essential to identify repetitive and/or destructive behaviors 

sometimes present among children with autism. 
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Music Instruction as an Intervention 

 When examining the neurological profiles of musicians and children with autism, 

many researchers and specialists have speculated about the benefits of music instruction 

for individuals with autism.  Interestingly, cortical areas found to be less developed in a 

person with autism are often areas of overdevelopment in the brains of musicians.  

Musicians possess many unique skills that increase brain volume, and augment 

communication between cortical regions, and between the left and right hemispheres 

(Schlaug, Jancke, Huang & Steinzetz, 1995).  Many researchers also have found that 

music skills transfer to other social and academic domains.  Transfer benefits of music 

instruction may work with special populations, such as autism, greatly enhancing 

functionality in academic, social, and communication areas of functioning. 

 Interestingly, children with autism exhibit both a special affinity and ability for 

music.  When compared to typically developing children, researchers have demonstrated 

children with autism have musicality, a special interest in music, and a preference for 

music stimuli more than verbal stimuli (Blackstock, 1978).  Additionally, researchers 

have shown that persons with autism possess superior pitch memory (Heaton, Hermelin, 

& Pring, 1998), pitch labeling (Heaton, 2003), pitch discrimination, and categorization 

skills (Bonnel et al., 2003).  Individuals with autism also comprehend the affective 

qualities found in music (Kasari, Sigman, Mundy & Yirmiya, 1990).  

 Benefits of music instruction may have several substantial implications for 

practitioners.  First, many researchers describe children and adults with autism as having 

a special affinity for music.  Consequently, music may provide motivation to engage in 
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social interaction and communication.  Second, children with autism often demonstrate 

an extraordinary aptitude in music.  The existence of high music aptitude may not only 

foster development of abilities to play musical instruments or sing, but may enhance and 

motivate learning in individual deficit areas, such as social or communication skills.  

Third, cortical structures shown to be underdeveloped among individuals with autism 

often are associated with overdeveloped structures in musicians' brains.  Studying music 

may change the structure of the brain of a person with autism, forming connections 

between distant areas of the brain and growing underdeveloped networks, such as the 

mirror neuron system (MNS).  These changes in the brain may be measured through 

neuroimaging techniques like electroencephalography.  Finally, as a result of music 

instruction and experience, increased social interaction and communication coupled with 

brain growth may lead to higher levels of functioning. 

 Increases in functioning and possible benefits of studying music may be measured 

through psychological assessments of adaptive behavior.  Through the use of the 

Vineland Adaptive Behavior Scales II such increased functioning and benefits may be 

measured when parents or care-givers respond to an inventory of questions to extrapolate 

levels of functioning across multiple domains.  Measurement and evaluation of adaptive 

behaviors, based on norms of age-appropriate development, provides an estimate of 

developmental age.  This assessment of adaptive behavior is designed to provide 

important information on both regression from and progress toward developmental 

growth, as related to music instruction among other interventions. 
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Purpose of the Study 

 Considering the potential benefits of music instruction for a child who has been 

diagnosed with autism, the purpose of this study was to examine the effects of 

instrumental music instruction on the neurophysiological responses and adaptive 

behaviors of children with autism.  Specifically, this study was designed to comparatively 

investigate the effects of instrumental music instructional interventions and non-music 

interventions on neurophysiological responses of the mirror neuron system, and on 

communicative and social behaviors of children with autism.  The current research 

answered the following research questions. 

 
1. Do instrumental music and non-music interventions differentially affect 

adaptive behaviors of children with autism, as measured on the Vineland 
Adaptive Behavior Scales II? 
 

2. Do instrumental music and non-music interventions differentially affect 
neurophysiological responses of the mirror neuron system of children with 
autism, as measured using electroencephalography? 
 

3. Based on findings related to research questions one and two, what observed 
associations may be implied between adaptive behaviors and 
neurophysiological responses of the mirror neuron system of children with 
autism? 

 
 

Definition of Terms 

 Essential to answering the research questions of this study was acquiring an 

understanding of terms associated with autism spectrum disorder, with the neurological 

foundations of music behaviors, and with adaptive behaviors.  This section is devoted to 

defining these terms.  Unless otherwise cited, definitions were adapted from the Oxford 

American College Dictionary (2002), and the Merriam-Webster Dictionary (2016). 
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• agenesis – lack or failure of development (as of a body part) 

• caudal – at or near the tail or the posterior part of the body  

• central coherence theory – states that people with autism display a pattern of 
cognition inclined toward local rather than global information processing (Happe, 
1999; Happe and Frith, 2006) 

 
• connectivity –  how the brain is structurally and functionally connected 

 
• corpus callosum (CC) – the largest white matter commissure connecting the right 

and left hemispheres of the brain 
 

• diffusion tensor imaging (DTI) – a tractography-based method of neuroimaging 
which traces white matter (WM) tracts allowing association fiber pathways to be 
mapped in a living person 

 
• electroencephalography (EEG) – the measurement of electrical activity in different 

parts of the brain and the recording of such activity 
 

• fractional anisotrophy (FA) – measure often used in DTI; measurement of fiber 
density, axonal diameter, and myelination in white matter  
 

• frontal lobe – largest and anterior (forward-most) lobe including areas concerned 
with behavior, learning, personality, and voluntary movement of each cerebral 
hemisphere 
 

• functional connectivity – describes how activity in one area of the brain is correlated 
to another area 

 
• functional magnetic resonance imaging (fMRI) – used to measure change in blood 

flow to regions of the brain resulting from increased neuronal activity 
 

• gray matter – the darker tissue of the brain and spinal cord, consisting mainly of 
nerve cell bodies and branching dendrites 

 
• gyrus (plural gyri) – a ridge or fold between two clefts on the cerebral surface in the 

brain  
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• hyperconnectivity – functional activation within certain brain areas which is 
unusually correlated with activity within the same region 

 
• magnetic resonance imaging (MRI) – a form of medical imaging that measures the 

response of the atomic nuclei of body tissues to high-frequency radio waves when 
placed in a strong magnetic field, and that produces images of the internal organs and 
the brain 

 
• mean diffusivity (MD) – measure used in DTI; describes the magnitude of water 

molecule diffusion regardless of direction 
 

• occipital lobe – the rearmost lobe in each cerebral hemisphere of the brain 
 

• parietal lobe – either of the paired lobes of the brain at the top of the head, including 
areas concerned with the reception and correlation of sensory information 

 
• pathophysiology – disordered physiological processes associated with disease or 

injury 
 

• rostral – at or near the front end of the body, especially in the region of the nose and 
mouth 

 
• splenium -- the thick posterior part of the corpus callosum of the brain 

 
• structural connectivity – describes how, on a micro level, individual neurons 

connect or, on a macro level, how differing cortical regions connect 
 

• temporal lobe – each of the paired lobes of the brain lying beneath the temples, 
including areas concerned with the understanding of speech 

 
• underconnectivity (hypoconnectivity) – the underfunctioning of neural circuitry and 

resulting in cognitive, perceptual and motor impairments 
 

• underconnectivity theory of autism –  underfunctioning of integrative circuitry that 
results in a deficit of integration of information at the neural and cognitive levels (Just 
et al., 2004) 

 
• white matter – the paler tissue of the brain and spinal cord, consisting mainly of 

nerve fibers with their myelin 
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CHAPTER II 

RELATED LITERATURE 

 
 This chapter includes a discussion of research that was foundational to the 

completion of this study.  First, research on the neurology of autism is discussed.  This 

discussion focuses on underconnectivity theory, early neurological development, local 

hyperconnectivity, the corpus callosum, and inter- and intrahemispheric 

hypoconnectivity.  Second, the related literature is focused on areas of the brain involved 

while processing music, and cortical differences found between musicians and non-

musicians.  Finally, the related literature provides a discussion of musical affinity and 

ability found among populations of persons with autism, learning outcomes associated 

areas of interests among people with autism, and using music instruction to facilitate 

brain growth and improve adaptive behavior. 

 
Neurology of Autism 

Researchers continue to search for a consistent biomarker to explain the 

pathogenesis of autism.  Many scientists agree, however, that an accumulation of 

multiple environmental and genetic conditions create molecular, cellular, and 

architectural changes in the brain that evolve over time.  Understanding this complex and 

multifaceted condition has led a broad network of researchers to extensively explore the 

neurological underpinnings of autism. 
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Underconnectivity Theory 

A novel theory rose to prominence in the early 2000s as a viable explanation for 

the unique intelligence and behavioral patterns present in an autism spectrum diagnosis.  

This theory, formally presented in 2004, stated that “autism is a cognitive and 

neurological disorder marked and caused by under-functioning integrative circuitry that 

results in a deficit of integration of information at the neural and cognitive levels” (Just, 

Cherkassky, Keller, Kana & Minshew, 2004, p.1817).  This theory became known as “the 

theory of underconnectivity."  In research, underconnectivity was described as the failure 

to develop connections between neural systems. 

Horwitz, Rumsey, Grady and Papoport (1988) were the first scientists to offer 

evidence of functional hypoconnectivity in autism.  These researchers found that people 

with autism demonstrated fewer correlations between frontal and parietal areas, 

especially in the left inferior frontal region and its homologue in the right hemisphere.  

Other under-connected areas found included the thalamus, caudate nucleus, lenticular 

nucleus, and insula to the parietal and frontal regions (Horwitz et al., 1988).  Horwitz et 

al. concluded that adults with autism had impaired interactions between cortical areas.   

Happe (1999), and Happe and Frith (2006) expanded on these findings when 

proposing the central coherence theory that stated people with autism displayed “a 

cognitive style biased toward local rather than global information processing” (Happe, 

1999, p. 216).  Five years later and as related to the pathogenesis of autism, Just, 

Cherkassky, Keller & Minshew (2004) described the theory of underconnectivity as “the 

underfunctioning of integrative circuitry and emergent cognitive, perceptual, and motor 
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abilities in autism” (p. 1817).  The researchers argued that the central coherence theory 

proposed a core deficit in central processing while the “underconnectivity theory treats 

the coherence as an emergent property of the collaboration among brain centers” (Just et 

al., 2004, p. 1818).  They described connections between relevant brain regions and the 

frontal lobe as underdeveloped resulting in compromised complex or higher-order 

information processing.  Just et al. (2004) also proposed that the most severe and 

profound cases of autism may be explained as associated with little or no development of 

functional connectivity between the sensorimotor and association cortex, and therefore 

meaning could not be connected to information. 

 Later that same year, Belmonte et al. (2004) suggested that, while some 

researchers believed autism to be the result of an underconnected brain (e.g., Just et al., 

2004) other researchers discussed the possibility of autism being the result of an 

overconnected brain (e.g., Rubenstein & Merzenich, 2003).  Belmonte et al. (2004) 

merged aspects of the central coherence theory, and the underconnectivity theory 

maintaining that “high local connectivity may develop in tandem with low long-range 

connectivity” and “high physical connectivity and low computational connectivity may 

reinforce each other by failing to differentiate signal from noise” (p. 9228).  The theory 

of underconnectivity, therefore, was broadened and evolved as a theory encompassing the 

underconnection of long-distance tracts and locally overconnected or hyperconnectivity 

tracts, now referred to as hypo- and hyperconnectivity.  
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Early Development 

 Children on the autism spectrum often display a unique developmental trajectory.  

Numerous research found that Infants have a normal or slightly smaller head 

circumference at birth, followed by abnormally accelerated brain growth during the first 

few years of life (Aylward, Minshew, Field, Sparks & Singh, 2002; Constantino et al., 

2010; Courchesne, Carper & Akshoomoff, 2003; Courchesne et al., 2001; Frohlich, 2016; 

Hazlett et al., 2011; Lainhart et al., 1997; Redcay, 2005; Sparks et al., 2002).  Through 

the examination of head circumference of infants with autism, researchers found two 

infantile periods of accelerated brain growth.  The first period began between one and 

two months old, and the second period occurred between six and fourteen months old 

(Courchesne et al., 2003).  These findings were consistent with a more recent infant 

neuroimaging study. 

 Wolff et al. (2012) longitudinally observed and collected data on 92 infants at 

high-risk for developing autism.  At 24 months of age, 28 of the infants had been 

diagnosed with autism.  Data also were analyzed and infants as early as six months old 

were found to have aberrant white matter growth.  This team of researchers also found 

that growth of the typically-developing brain catches up to the growth of the brain with 

autism around 12 months of age (Wolf et al., 2012). This abnormal white matter growth 

seems to translate into greater total brain volume (TBV).  Courchesne et al. (2001) found 

larger than normal brain volume in two to four-year-old children with autism while 

Sparks et al. (2003) found larger than normal brain volume in children between the ages 

of three and four.  This growth was seen in approximately 70% of children with autism 



24 

 

(Dawson et al., 2007; Herbert, 2005; Lainhart, 2006; Redcay & Courchesne, 2005).  

Researchers suggested that by two to three years of age, brain growth in autism appeared 

to abruptly stop and brain volumes normalized by early adolescences (Redcay & 

Courchesne, 2005). 

 Multiple researchers have suggested that when a brain initially grows so quickly, 

patterns of optimal connectivity may differ from normal (Braitenberg, 2001; Chklovskii, 

Schikorski & Stevens, 2002; Jancke, Staiger, Schlaug, Huang & Steinmetz, 1997; Ringo, 

Doty, Demeter & Simard, 1994; Sporns & Zwi, 2004).  A bigger brain tends to form 

more local connections neglecting long-distance connections that require greater 

resources to build (Courchesne & Pierce, 2005a; Ringo et al., 1994; Zhang & Sejnowski, 

2000).  Because building a brain is a dynamically interactive process, disruptions large or 

small, tend to have widespread consequences (Johnson, 2005; Karmiloff-Smith, 1992; 

Quartz & Sejnowski, 1997). 

 Neurological patterns of disruption in autism have shown the intact cortical 

development of early infancy becomes progressively worse throughout the first years of 

life (Courchesne & Pierce, 2005a; Courchesne & Pierce, 2005b).  Typical brain growth 

tends to follow a general pattern: development from caudal (back) to rostral (front) 

regions.  The primary visual cortex, for example, found in the posterior occipital lobe is 

33% of full size upon birth and fully mature by 2 years of age.  This contrasts greatly 

with neurons found in rostral regions.  The frontal gyri are 3% of full size upon birth and 

48% of full size by the second year of age (Gogtay et al., 2004; Huttenlocher, 2002).   
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 Sacco, Gabriele & Persico (2015) conducted a meta-analysis of the head 

circumference and total brain volume of 391 records of persons with autism.  These 

researchers found significantly larger head circumference among individuals with autism 

than without autism (p < 05), and a significant interaction between total brain volume 

(TBV) and age (p < .05).  Specifically, children in early childhood with autism showed a 

larger head circumference and brain size than found in other persons' records included 

within the meta-analysis (Sacco, Gabriele & Persico, 2015).  These differences possibly 

explained converging evidence that later developing frontal and temporal lobes are most 

adversely affected in children and adults with autism. 

 Another examination of two to four-year-old children with autism, researchers 

used structural MRI to document the frontal and temporal lobes as being areas of peak 

overgrowth compared to parietal and occipital regions that were less affected 

(Courchesne et al., 2007).  Minshew et al. (2008) suggested a marred rostral-caudal 

(front-back) gradient where frontal cortical gray and white matter displayed the greatest 

enlargement, followed by a milder enlargement of parietal gray and white matter, and no 

enlargement of the occipital gray and white matter.  In a similar and earlier study, 

researchers also found the dorsolateral (back and sides) and mesial (middle) prefrontal 

cortex within the frontal lobes to be especially enlarged in individuals with autism 

(Carper & Courchesne, 2005). 

 The overgrowth or enlargement was believed to be the result of abnormally large 

white matter (WM) volume (Herbert, 2005; Frohlich, 2016).  Some hypothesized that 

early disruption of cortical development triggered a compensation effect resulting in the 
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over-development of local or short-distance white matter tracts thus drastically increasing 

volume (Minshew et al., 2008).  Williams and Minshew (2007) suggested that limited 

data point to early gray matter changes leading to the overgrowth of WM.  This may be 

associated with large numbers of interstitial neurons, or neurons within the white matter, 

caused by limited migration or increased remnants of neurons formed pre- and 

postnatally in the subplate (Frolich, 2016). 

Local Hyperconnectivity 

 Local hyperconnectivity has been defined as “functional activation within certain 

brain areas which is more than usually correlated with activity within the same region” 

(Wass, 2011, p. 21).  These fibers were found to be shorter in length and have increased 

volume and density.  Courshesne et al. (2007) suggested that an increasing number of 

neurons in a given location will lead to a higher number of local or short-distance 

connections. 

 Researchers have theorized that increased local circuitry is linked to early 

disturbances interrupting the development of connectivity between neural systems 

(Johnson, 2005; Minshew, 2008).  Elsabbagh et al. (2009) found evidence of early 

hyperconnectivity in autism siblings as young as 10 months old.  Through collected EEG 

data, these infants showed increased resting-state gamma activity (20-60 Hz – high 

energy, short wave length) in the central and right temporal areas (Elsabbagh et al., 

2009).  Increased resting-state gamma activity (25-70 Hz) was also found in 3-8-year-old 

children with autism (Orekhova et al., 2007).  A later EEG study of 14-month-old infants 

observed elevated phase-lagged alpha-range activity, an indicator of hyperconnectivity, 
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in frontal and central areas of participants who later went on to receive an autism 

diagnosis (Orekhova, 2014).  Other researchers investigating early development of local 

hyperconnectivity used DTI imaging to examine white matter tracts.  Ben Bashat et al. 

(2007) reported that 1.3 – 3.3-year-old children with autism showed local 

hyperconnectivity through increased frontal radial fractional anisotrophy (FA).  Increased 

FA reflects an excess of fiber density, axonal diameter, and/or myelination in white 

matter (Casanova et. al., 2006).  Another research team found slightly different results.  

They examined 6-11-year-old children with autism and combined DTI with voxel-based 

morphometry (VBM).  These imaging techniques suggested both an increase and 

decrease in WM densities in differing areas of the brain (Ke et al., 2009). 

 Another measure believed to express hyperconnectivity is total brain volume 

(TBV).  Several research teams identified the early development of enlarged brain size 

(Aylward et al., 2002; Piven et al., 1995) with the greatest enlargement found in the 

frontal cortex (Carper & Courchesne, 2005).  Nordahl et al. (2011) examined several 

groups of children ages two to four: boys with autism, boys with regressive autism, girls 

with autism, and typically-developing boys and girls. Researchers found abnormal brain 

enlargement was most common in boys with regressive autism. Young boys without 

regressive autism did not differ from controls.  This large-scale study not only described 

the presence of hyperconnectivity in young boys with autism but also the possible 

differences between early distinct neural phenotypes of autism. 

 Some research has indicated that local hyperconnectivity found in young children 

continued to be present into adolescence and adulthood.  Locally elevated 
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hyperconnectivity was found in the parietal regions of adult participants (Valazquez et al. 

2009).  Using fMRI, other researchers have suggested local functional hyperconnectivity 

of varying cortical regions especially the frontal and parietal areas (Belmonte et al., 2004; 

Belmonte & Yurgelun-Todd, 2003; Rubenstein & Merzenich, 2003; Schmitz et al. 2006).  

Di Martino et al. (2014) examined resting-state fMRI data from 533 adults with autism 

and 579 typically-developing controls.  Researchers found hyperconnectivity was limited 

to subcortical regions, specifically the thalamus, globus pallidus, and primary parietal 

sensorimortor areas (Di Martino, 2014).  Interestingly, researchers have also used 

hyperconnectivity data to explain certain behavioral manifestations found in autism 

including hyper-specificism and low generalization (Casanova et al. 2006; Cohen, 2007), 

precocious discrimination on visuaospatial tasks including the embedded figures (Cohen, 

2007; Mottron et al. 2006; Plaisted, O'Riordan & Baron-Cohen, 1998; Shah & Frith, 

1983) and social deficits (Chen et al. 2015). 

 Not all researchers have found evidence to support local hyperconnectivity.  

Using fMRI, Mizuno, Villalobos, Davies, Dahl and Muller (2006) found increased 

subcortical-cortical connectivity during a visuomotor task in participants with autism.  

Similarly, Sundaram et al. (2008) found no evidence to support short-range 

hyperconnectivity in a 2008 DTI study.  Several other researchers found local over 

connection to have hemispheric differences in people with autism.  Wilson, Rojas, Reite, 

Teale and Rogers (2007) examined auditory responses in 7-17-year-old children with 

autism using magnetoencephalography (MEG) and found greatly reduced left, but not 

right, hemispheric gamma (40 Hz) power.  In a recent DTI study, investigators expressed 
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similar findings.  Kumar et al. (2009) found shorter than average fiber lengths in the left 

hemisphere and longer than average fiber lengths in homologous areas of the right 

hemisphere.  Increased regional connectivity among the posterior cingulate cortex, the 

right temporal lobe and right parahippocampal gyrus was found by Monk et al. (2009).  

Supekar et al. (2013) examined children seven to thirteen years old during a task-free 

fMRI.  Data collected pointed to widespread functional hyperconnectivity across both 

short- and long-range connections.  In addition, children with greater hyperconnectivity 

displayed greater social deficits.  More recently Nomi and Uddin (2015) found evidence 

to suggest hyperconnectivity in autism changes over a participant’s lifetime.  This 

research team found hyperconnectivity within large-scale brain networks in children 

under age 11, but similar within-network connectivity between adolescents with autism 

and adolescents who were typically-developing (Nomi & Uddin, 2015).  Further research 

concerning hyperconnectivity may shed light on these contrasting findings. 

Corpus Callosum 

 The corpus callosum has been found to be the largest white matter structure 

connecting the right and left hemispheres of the brain.  As verified by research, it has 

been shown to contain over 250 million nerve fibers crucial for interhemispheric 

communication and directs signals between homologous and heterotopic cortical areas 

(Innocenti, 1986; Pandya & Seltzer, 1986; Zaidel & Iacoboni, 2003).  Rostral or frontal 

regions of the corpus callosum, including the genu and rostrum, connect bilateral 

prefrontal brain regions.  The midsections of the corpus callosum, referred to as the body 

and isthmus, connect central areas of the brain, including premotor, motor, parietal and 
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superior temporal cortices.  The most caudal (posterior) region, the splenium, maintains 

bilateral connections between the occipital, inferior temporal, and parietal regions 

(Hardan & Minshew, 2000; Witelson, 1989).  Typically, the corpus callosum area 

increases throughout childhood and adolescence, with the largest growth occurring in the 

posterior regions (Giedd et al. 1999, 1996; Keshavan et al., 2002).  Researchers have 

found that the corpus callosum continues to grow well into the twenties and thirties of a 

typically-developing person (Pujol, Vendrell, Junque, Marti-Vilalta & Capdevila, 1993). 

 The development of the corpus callosum of children with autism has presented a 

different profile than the profile provided previously in this section.  Researchers found 

that young children with autism exhibited abnormally increased measures of fiber density 

and axonal diameter in their corpus callosum (Ben Bashat et al. 2007; Weinstein et al. 

2011; Xiao et al. 2014; Travers et al. 2015; Solso et al. 2016).  Interestingly, when Boger-

Megiddo et al. (2006) compared the corpus callosums and larger brain volumes of 

children with autism, they found the corpus callosum to be disproportionately small.  As 

a person with autism developed, older children, adolescents, and adults were found to 

have reduced fiber density and axonal diameter of their corpus callosums (Barnea-Goraly 

et al. 2004; Alexander et al. 2007; Jou et al. 2011; Travers et al. 2012; Vogan et al. 2016).  

Multiple studies have suggested that this transition happens very early in life, somewhere 

between the ages of two and four years old (Ben Bashat et al. 2007; Weinstein et al. 

2011; Travers et al. 2015; Solso et al. 2016; Fingher et al. 2017). 

 Examining older children, Vidal et al. (2006) found boys between the ages of six 

and sixteen years had thinning in the genu and splenium; while other researchers showed 
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teens to have regionally and globally reduced corpus callosum volume (Alexander et al., 

2007; Keller, Kana & Just, 2007).  By adulthood, most scientists have found a marked 

reduction in corpus callosum area, volume and/or density in people with autism 

(Brambilla et al., 2003; Chung, Dalton, Alexander & Davidson, 2004; Frazier & Hardan, 

2009; Thomas, Humphreys, Jung, Minshew & Behrmann, 2010).  A few researchers have 

noted the greatest reduction in anterior (front) areas of the corpus callosum (Keary et al., 

2009; Lewis, Theilmann, Sereno & Townsend, 2009; Waiter et al., 2005).  These studies 

of the corpus callosum have supported findings of early excess cortical neuronal growth 

and accelerated brain growth, followed by subnormal neuronal growth, axonal and 

synaptic development (Courchesne et al. 2001; Courchesne, Campbell, et al. 2011; 

Courchesne, Mouton, et al. 2011; Chow et al. 2012).  Corpus callosum reduction was 

believed to reflect hypoconnectivity between right and left hemispheres. 

 The reduction of the corpus callosum may be responsible, in part, for many 

atypical behavioral patterns found in autism.  Many children born without a corpus 

callosum (agenesis) display behavioral characteristics consistent with an autism diagnosis 

(Lau et al., 2013; Paul, Corsello, Kennedy & Adolphs, 2014).  Detailed examinations of 

the agenesis of the corpus callosum of people without autism or intellectual disability has 

shown cognitive deficits, such as difficulties in abstract reasoning (Brown & Sainsbury, 

2000; David, Wacharasindhu & Lishman, 1993), problem solving (Aalto et al., 2002; 

Fischer, Ryan & Dobyns, 1992) and generalization (Solursh, Margulies, Ashem & 

Stasiak, 1965).  Social deficits including lack of emotional maturity, introspection, social 

ability and communication of emotions also have been noted (Badaruddin et. al., 2007; 
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Brown & Paul, 2000; Stickles, Schilmoeller & Schilmoeller, 2002).  These data mirror 

many of the behavioral deficits found in autism. 

 Overwhelming evidence has been found that associates deficits of the corpus 

callosum with the pathophysiology of autism.  The largest structure connecting the right 

and left cortical hemispheres has been shown to be crucial for interhemispheric 

communication.  Significant white matter reductions of the corpus callosum have been 

one of the most replicated findings in autism, and are considered to be a hallmark of 

interhemispheric hypoconnectivity. 

Interhemispheric and Intrahemispheric Hypoconnectivity 

 Data presented above suggested that rapid infantile brain growth in young 

children with autism may form more local connections and neglect long-distance 

connections requiring greater resources to build.  The onset of cortical hypoconnectivity 

in coordinated brain regions has been thought to parallel the onset of hypoconnectivity of 

the CC – early in childhood.  Very young children with autism rarely displayed cortical 

hypoconnectivity (Ben Bashat et al., 2007; Fingher et al. 2017; Friedman et al. 2006; 

Solso et al. 2016; Sundaram et al., 2008; Travers et al. 2015; Weinstein et al. 2011), 

however, as the child aged, hypoconnectivity emerged as a defining characteristic of 

autism. 

 Coben, Clarke, Hudspeth and Barry (2008) measured EEG resting state 

coherences in children six to 11 years old and found reduced inter- and intrahemispheric 

coherence.  Likewise, Isler, Martien, Grieve, Stark and Herbert (2010) found children 

with autism to have less interhemispheric synchrony at or below the theta band (six to 
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seven Hz) during visual stimulation.  Several recent DTI studies have offered similar 

findings of childhood hypoconnectivity.  Children with autism displayed lower FA, an 

indication of reduced WM integrity, in the anterior cingulate cortex, left dorsolateral 

prefrontal cortex, right temporal pole, amygdala, superior longitudinal fasciculus and 

occipitofrontal fasciculus (Noriuchi et al., 2010).  Shukla, Keehn, Lincoln and Muller 

(2010) reported children with autism experienced an increase in mean diffusivity (MD) or 

less WM integrity, in the internal capsule and middle cerebellar peduncle.  In a second 

study, Shukla, Keehn and Muller discussed increased MD and reduced FA in multiple 

regions of the brain (2011).  This research team added that no cortical areas in the 

children with autism were found to have the reverse: an increase in FA and decrease in 

MD.  These findings have since been replicated (Walker et al., 2012) and extensively 

reviewed (Li, Karnath & Xu, 2017).  Overall, researchers have suggested 

hypoconnectivity develops in children with autism sometime after the age of four. 

 While a number of researchers have explored hypoconnectivity in children, many 

more have studied hypoconnectivity in adolescent and adult participants with autism.  

Most research on this older population has found hypoconnected structures throughout 

the cortex.  Researchers have repeatedly found hypoconnectivity in frontal-parietal 

regions (Damarla et al. 2009; Ha, Sohn, Kim, Sim & Cheon, 2015; Hernandez, Rudie, 

Green, Bookheimer & Dapretto, 2015; Horwitz et al. 1988; Just et al., 2007; Kana, 

Keller, Cherkassky, Minshew & Just, 2006; Lenroot & Yeung, 2013; Mahajan & 

Mostofsky, 2015; Murias, Webb, Greenson & Dawson, 2007; Ruggeri, Sarkans, 

Schumann & Persico, 2014; Solomon et al. 2009) supporting theories of early disrupted 
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dynamic brain development.  Other regions often cited as having displayed 

hypoconnectivity include the fusiform face area (Kleinhans et al., 2008; Koshino et al. 

2008), the dorsolateral pre-frontal cortex (Damarla et al., 2009; Just et al. 2004; Noriuchi 

et al., 2010), the amygdala (Kleinhans et al., 2008; Noriuchi et al., 2010) and temporal 

areas (Brambilla et al., 2003 for review; Wellchew et al., 2005).  These regions have been 

shown to assist in executive planning, facial working memory, emotional recognition and 

response inhibition (Just et al., 2004; Kana, Keller, Minshew & Just, 2007; Koshino et 

al., 2008; Welchew et al., 2005).  Hypoconnectivity of the adolescence and adult brain 

may also be demonstrated in reductions of total brain volume (TBV).  Multiple 

researchers have found evidence of decreased TBV in people with autism as compared to 

controls (Carper, Moses & Tigue, 2002; Nordahl et al., 2011) and reduced volume in the 

frontal and temporal lobes after adolescence (Courchesne, Campbell & Solso, 2011; Lang 

et al., 2015). 

Summary of Research on Neurology of Autism 

 Aberrant connectivity within the brain has become the most accepted explanation 

of the pathophysiology of autism.  Patterns of aberrant connectivity have been closely 

linked to age and development, with some differences found in varying autism 

phenotypes.  These data evolved from findings of impaired interactions between brain 

regions (Horwitz et al. 1988) to a more specific description of local hyperconnectivity 

and long-distance hypoconnectivity (Belmonte et al., 2004).  These groundbreaking 

studies have led researchers to identify early hyperconnectivity and later 

hypoconnectivity of the corpus callosum, and frontal, temporal, and parietal regions. In 
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addition, scientists have examined a lesser studied system called the mirror neuron 

system (MNS).  People with autism demonstrated connectivity abnormalities associated 

with the MNS.  Multiple scholars have come to believe these findings stem from cortical 

disruption early in life which resulted in an altered developmental trajectory of the brain.  

These alterations are believed to lead to many of the behavioral characteristics seen in 

autism. 

 
Cortical Areas Involved in Processing Music 

 To better understand the intersection of connectivity, music and autism, it is 

important to describe how humans perceive music.  Many diverse areas of the brain have 

been associated with the perception of music.  This perception has been broken down into 

three main categories: pitch, rhythm and emotion: all of which take place in distinct 

cortical areas and often work in conjunction during the perception of music. 

Pitch 

 Anatomical research has shown processing pitch requires the sound wave to travel 

into the auditory canal of the outer ear, through the tympanic membrane or eardrum of 

the middle ear, and into the inner ear.  Sound waves vibrate the cochlea, the basilar 

membrane, and the organ of Corti transforming the wave into electrical signals, which 

then pass to the auditory nerves (Schnupp, Nelken & King, 2011).  This signal is finally 

deciphered bilaterally (in both sides of the brain) in the auditory cortex in the superior 

temporal lobe or Brodmann's areas 41 and 42. 

 Within the auditory cortex, neurons have demonstrated reactivity to a limited 

range of frequencies and group together according to pitch sensitivity (Arlinger et al., 
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1982), allowing lower frequency tones to be processed in the rostrolateral (to the front 

and side) area of the primary auditory cortex (Brodmann's area 42), and higher tones to 

be processed in the caudomedial (back and to the middle) auditory regions (Bendor & 

Wang, 2006).  When researchers have compared the relationship between several tones, 

as in a melody or chord, the brain has been shown to analyze this information in the right 

secondary auditory cortex in Brodmann's area 22 and 42 (Iusca, 2010). 

Rhythm 

 Rhythm stimuli also activate the auditory cortex.  The right hemispheric belt and 

parabelt areas of the auditory cortex have been shown to discriminate changes in tone 

duration and spacing, while perception of meter has demonstrated activation of the 

anterior parabelt bilaterally (Tramo, 2001).  In addition, when someone has listened to a 

rhythm, part of the body such as a finger, hand, or foot may spontaneously move along 

with the beat.  This physical action has been shown to activate additional parts of the 

brain including motor areas and the frontal cortex.  Researchers have demonstrated that 

tapping metrical rhythms will activate the left frontal cortex, left parietal cortex (Tramo, 

2001) supplementary motor areas (Grahn & Brett, 2007; Ibbotson & Morton, 1981), basal 

ganglion (Grahn, 2009; Grahn & Rowe, 2009; Ivry & Spencer, 2004) and right 

cerebellum (Chen, Penhune & Zatorre, 2008; Tramo, 2001) while nonmetrical rhythms 

shift activation away from the left frontal cortex to the right hemisphere and cerebellum 

(Tramo, 2001). 

 Researchers also have been fascinated by rhythm perception and cortical 

activation of participants who stand perfectly still.  Several neuromusical researchers 
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have found that the perception of rhythm activates motor areas of the brain even in the 

absence of any movement (Levitin & Menon, 2003; Levitin & Tirolovas, 2009).  This 

discovery has continued to intrigue neuropsychologists (Chen et al., 2008; Grahn, 2009; 

Grahn & Rowe, 2009; Ivry & Spencer, 2004; Levitin, 2009; Limb, Kemeny, Ortigoza, 

Rounani & Braun, 2006; Peretz, Gagnon, Herbert & Macoir, 2004) and has had profound 

implications for the connection between music and movement. 

Emotion 

 The combined effect of pitch and rhythm has been shown to create exceptionally 

strong emotions and alter the mood of most human beings.  Most people have 

experienced powerful physiological responses to music such as “shivers”, “goose 

bumps”, or changes in heart rate.  These symptoms have been shown to be the result of 

activation in limbic (amygdala, nucleus accumbens, orbitofrontal cortex, cingulate gyrus 

and hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus, temporal 

poles) structures responsible for processing emotion, reward, and motivation (Blood & 

Zatorre, 2001; Koelsch & Siebel, 2005). 

 One noteworthy structure mentioned above, within the limbic/paralimbic system 

was the amygdala.  The amygdala has been shown to be involved in initiating, creating, 

detecting, maintaining, and terminating emotions imperative for survival (Langner & 

Ochse, 2006).  Researchers who have utilized neuroimaging (Kaas, Hackett & Tramo, 

1999; LeDoux, 2000; Ongur & Price, 2000; Patel & Balaban, 2001; Schowiesner, von 

Cramon & Rubsamen, 2002; Tramo, Shah & Braida, 2002; Warren, Uppenkamp, 

Patterson & Griffths, 2003) and have studied lesions (Fishman et al., 2001; Naatanen, 



38 

 

Tervaniemi, Sussman, Paavilainen & Winkler, 2001; Pantev, Roberts, Schultz, Almut & 

Ross, 2001) demonstrated that the amygdala was greatly involved in emotional responses 

to music.  Investigators have found the amygdala activated during both positive and 

negative musical stimuli (Peretz & Zatorre, 2005; Tramo et al., 2002).  Specifically, 

Koelsch and Siebel (2005) found an increased blood flow or blood-oxygen-level 

dependence (BOLD) signal in the basolateral (bottom and side) amygdala and a 

decreased signal in the superior region of the amygdala. 

 Functionally connected to the amygdala, the ventral striatum has been shown to 

be involved in processing pleasure.  Several researchers have found activation of the 

ventral striatum during pleasant music listening experiences and intense “chill” 

experiences of music (Griffiths et al., 1999; Kaas et al., 1999; LeDoux, 2000; Liegeois-

Chauvel, Peretz, Bahai, Laguitton & Chauvel, 1998; Patterson, Uppenkamp, Johnsrude & 

Griffiths, 2002).  Liegeois-Chauvel et al. (1998) reported activity of the ventral striatum 

was connected to activation in the ventral tegmental area (VTA), nucleus accumbens and 

hypothalamus.  These structures form the mesolimbic pathway or reward circuit leading 

to a release of dopamine and increased dopamine binding in the nucleus accumbens.  

This neurochemical reaction has been shown to occur both in the anticipation and 

experience of intense musical pleasure (Tillman, Bharucha & Bigand, 2000).  Other areas 

activated during the perception of pleasurable music include the right orbitofrontal cortex 

and cingulated gyrus (Iusca, 2010). 

 Researchers have not only studied music perceived as pleasurable but also have 

studied displeasing music.  Several research teams have found increased activity in the 
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amygdala while listening to fearful or dissonant music (Bidelman & Krishman, 2009; 

Koelsch & Siebel, 2005; Pallensen et al., 2006; Warren et al., 2003).  Blood, Zatorre, 

Bermudez and Evans (1999) exposed test subjects to a melody accompanied by ever-

increasing dissonant chords.  As the dissonance increased, blood flow to the right 

parahippocampal gyrus also increased.  Similarly, Koelsch and Siebel (2005) and van 

Zuijen, Sussman, Winkler, Naatanen and Tervaniemi (2004) found dissonant music 

evoked increased blood flow to not only the parahippocampal gyrus but also to the 

amygdala, hippocampus and temporal poles (an area which shows a decrease in blood 

flow in response to pleasant music).  Other investigators (Doeller et al., 2003; Nager, 

Kohlmetz, Altenmuller, Rodriguez-Fornells & Munte, 2003) have suggested that the mid-

portion of the parahippocampal gyrus has the specific role of processing harsh sounds 

such as those in dissonant musical passages. 

 While dissonant music has tended to elicit a fear response, music in minor keys 

has been perceived as being sadder than music written in major keys and more pleasant 

than the clashing tones of dissonance (Green, Baerensten & Stodkilde-Jorgensen, 2008; 

Pallensen et al., 2006).  A sorrowful emotional response to minor melodies has been 

shown to activate slightly different structures than consonant (pleasant) or dissonant 

(unpleasant) music.  Passages of minor music activated the left parahippocampal gyrus, 

bilateral ventral anterior cingulated and left medial prefrontal cortex in study participants 

(Mizuno & Sugishita, 2007).  Interestingly, these areas are broadly associated with 

memory and personality, inviting questions as to how human emotion may be associated 

with perception, past experience, and musical memory.  
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Cortical Differences between Musicians and Non-musicians 

 Many researchers have examined sensorimotor (Amunts, 1997; Hund-Georgiadis 

and Von Cramon, 1999), auditory (Altenmuller, 1986; Besson, Faita & Requin, 1994; 

Keenan, Thangaraj, Halpern & Schlaug, 2001; Ohnishi et al., 2001; Pantev et al., 1998), 

visual-spatial (Hetland, 2002), auditory-spatial (Munte, Kohlmetz, Nager & Altenmuller, 

2001) and memory (Chan, Ho & Cheung, 1998) abilities of musicians.  These unique 

skills were often associated with the functional enlargement of cortical areas 

representative of the specific ability ( Karni et al., 1995; Pascual-Leone et al., 1995; 

Pascual-Leone, Wassermann & Sadaro, 1995; Schlaug, Knorr & Seitz, 1994; Toni, 

Krams, Turner & Passingham, 1998) and offered evidence of training-induced 

differences found between the brains of musicians and non-musicians in motor, auditory 

and visual areas (Gaeser & Schlaug, 2003; Schlaug et al., 2009; Schlaug, 2015). 

Auditory Cortex 

 As discussed previously, pitch is processed in the auditory cortex located within 

the superior temporal lobe.  Curiosity as to how this area may differ in the brains of 

musicians has existed for many years.  Auerbach, in the early 20th century, completed 

postmortem analyses on several famous musicians and found the middle and posterior 

thirds of the superior temporal gyrus to be larger than normal (Annett, 1970).  More 

recently, scientists have described increased gray matter in the primary auditory cortex 

(PAC) of professional musicians (Schneider et al., 2002). 

 According to scientists using cytoarchitectonic (Braak, 1978; Galaburda & 

Sanides 1980; Rademacher, Caviness, Steinmetz & Galaburda, 1993), myeloarchitectonic 
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(Hackett, Preuss & Kaas, 2001; Rademacher, et al., 1993) and histochemical (Hackett et 

al., 2001; Rivier & Clarke 1997; Wallace, Johnston & Palmer, 2002) ways to study the 

brain, the PAC is mostly contained in the medial two-thirds of Heschl's gyrus (HG), 

specifically in the anteromedial (to the front and middle) area of Heschl's gyrus (amHG) 

(Hackett et al., 2001; Rivier & Clarke 1997; Wallace et al., 2002).  The amHG, 

responsible in part for the fine discrimination of pitches and their patterns (Kilgard & 

Merzenich, 1998; Recanzone, Scheiner, & Merzenich, 1993), frequently displayed a 

positive correlation between gray matter volume and musician status (Gaser & Schlaug, 

2003; Schneider et al., 2002).  Schneider et al. (2002) found the total volume of the right 

hemispheric HG to be 14% larger in professional musicians compared to non-musicians.  

This research team also averaged gray matter volume of the amHG from both 

hemispheres of professional musicians and non-musicians and found an increase of 130% 

plus or minus 23% (Schneider et al., 2002).  Scientists speculated that the size increase 

was likely due to microstructural changes concerning the number of synapses per neuron, 

number of glial cells and capillary density (Schlaug, 2001) – changes induced by 

extensive training. 

 Another structure affected by musician status was the planum temporale (PT), a 

triangular surface of the auditory cortex found within the HG and caudally to the PAC.  

The PT was shown to serve as an integrative function for auditory stimuli and auditory 

processing (Habib & Besson, 2009).  In a typical population, researchers have shown that 

the majority of people with right hand dominance have leftward PT asymmetry and 

people with left hand dominance have PT symmetry or rightward PT asymmetry 
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(Steimentz & Seitz, 1991; Witelson & Kigar, 1992).  Interestingly, increased left 

asymmetry of the PT has been found in a subgroup of musicians with perfect or absolute 

pitch (AP) (Chen, Halpern, Bly, Edelman & Schlaug, 2000; Schlaug, 2015; Schlaug, 

Jancke, Huang & Steinmetz, 1995; Steinmetz, 1996; Zatorre, Belin & Penhune, 2002).  

This ability was believed to only occur in musicians who began training before the age of 

seven (Schlaug 2001), the same age at which the HG was believed to reach 

developmental stability (Leonard, Puranik, Kuldau & Lombardino, 1998; Preis, Jancke, 

Schmitz-Hillebrecht & Steinmetz, 1999).  Only one research team did not replicate the 

finding of PT leftward asymmetry (Keenan et al., 2001).  In addition, Loui et al. (2010) 

found AP musicians displayed connections between the posterior superior temporal gyrus 

(where the PT is located) and the middle temporal gyrus, an area associated with 

categorical perception. 

 Much discussion has occurred concerning the broad concept of auditory 

hemispheric specialization within musicians.  Several researchers indicated that musical 

training changes the hemisphere in which people process music.  During one passive 

music listening task, non-musicians demonstrated increased activation in right secondary 

auditory areas, whereas musicians showed increased activation in left secondary auditory 

areas (Ohnishi et al., 2001).  Bhattacharya and Petsche (2005) used EEG to demonstrate 

that the left hemisphere of musicians was more dynamically synchronized during music 

listening than was true in non-musicians who had increased synchrony in the right 

hemisphere.  This finding was consistent during all music compositions aurally 
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presented.  Interest in how musical training may influence each hemisphere differently 

continues to intrigue researchers. 

Motor Areas 

 Intense and lengthy motor activities have been shown to create significant 

microstructural changes in motor-related cortical regions (p < .05).  Several researchers, 

who have studied rats, found evidence that animals exposed to prolonged motor activity 

and complex tasks of motor learning showed increased synaptic density, high numbers of 

glial cells and capillaries (Anderson, Li, Alcantara, Isaacs, Black & Greenough, 1994; 

Black, Isaacs, Anderson, Alcantara & Greenough, 1990; Kleim, Lussnig & Schwarz, 

1996).  Evidence of similar microstructural changes also was documented in people.  

After learning a new motor skill, researchers found an increase in the number of synapses 

per neuron (Kleim et al., 1996) and stimulation of the thalamic afferents to the motor 

cortex (Keller, Kostadink & Asanuma, 1992).  Using functional imaging, several 

investigators have found reorganization of motor areas based on experience (Karni et al., 

1995; Karni et al., 1998; Pascual-Leone et al., 1995; Schlaug et al., 1994).  Interestingly, 

extended physical exercise without learning a new motor skill only formed new blood 

capillaries and did not increase the number of synapses per neuron (Black et al., 1990; 

Isaacs, Anderson, Alcantara, Black & Greenough, 1992).  Dramatic microstructural 

changes were only seen when learning was involved. 

 These microstructural brain changes often manifested through an increase in gray 

matter.  Schlaug, Lee, Thangaraj, Edelman and Warach (1998) found a relative brain 

volume increase of around 5% in male musicians as compared to non-musicians.  Gaser 
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and Schlaug (2003) found this gray matter increase to be in a motor network that 

included the left and right primary sensorimotor regions, the left basal ganglia, the 

cerebellum and the left posterior perisylvian region.  Scientists have also cited additional 

areas of increased gray matter including the primary motor areas and premotor areas 

(Amunts, 1997; Gaser & Schlaug, 2003; Grodd, Hulsmann, Lotze, Wildgruber & Erb, 

2001; Hutchinson et al., 2003). 

 The supplementary motor area was another region activated extensively in 

musicians.  This area has been shown to identify the purpose of movement, initiate a 

movement program, and create organization for a motor sequence (Iusca, 2010).  The 

supplementary motor area of musicians was also well-connected to the basal nuclei, an 

area responsible for control over automated and routine movements (Schlaug, 2001).  

This relationship between the supplementary motor area and basal nuclei is believed to 

conserve energy used to focus attention by engaging less of the frontal lobe, allowing the 

instrumental musician to rapidly execute complicated and intricate fingering patterns 

(Iusca, 2010).  Several researchers employing neuroimaging have also demonstrated a 

smaller supplementary motor area of activation in musicians implying a more efficient 

network to control movements (Hund-Georgiadis & von Cramon, 1999; Jancke, Shah & 

Peters, 2000; Krings et al., 2000). 

 In addition to the motor areas discussed above, researchers also have examined 

the cerebellum of musicians.  The cerebellum, translated from Latin meaning “the little 

brain,” anatomically appears to be a separate part of the brain.  Although it makes up only 

one-tenth of the whole brain volume, the cerebellum contains more than four times the 
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number of cells found in the cerebral cortex (Anderson, Korbo & Pakkenberg, 1992).  

Because of the few input and output connections found between the cerebellum and the 

cerebral cortex coupled with the abundance of cerebellar cells, neuromusical researchers 

have focused on this area because of its important role in movement coordination and the 

sequential timing of movements (Schlaug, 2001).  More broadly, it has been implicated in 

motor skill learning (Kim, Ugurbil & Strick, 1994; Parsons, 2001) and processing music 

(Gaab, Gaser, Zaehle, Jancke & Schlaug, 2003; Griffiths et al., 1999; Parsons, 2001). 

 In comparison studies, investigators have found several differences between the 

cerebellum of musicians and that of non-musicians.  Schlaug, Lee, Thangaraj, Edelman 

and Warach (1998) found a positive correlation between the intensity of practice (over 

the course of a lifetime) and increased cerebellar volume.  Several other researchers have 

found increased gray matter in the cerebellum of musicians as compared to non-

musicians (Hutchinson et al., 2003; Sluming et al., 2003).  Schlaug et al. (1998) 

demonstrated a cerebellar volume increase of 5% in musicians – an extraordinary finding 

indicating the importance of this area in the ability of musicians. 

Corpus Callosum 

 One of the most significant findings in the field of music and neuroscience has 

been the increased size of musicians' corpora callosa (CC).  O'Kusky et al. (1998), 

Schlaug et al. (1995) and Steele, Bailey, Zatorre and Penhune (2013) found that 

musicians who started musical training prior to the age of seven years had a larger 

anterior midsagittal CC than non-musician controls or musicians who began training later 
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in life.  In a DTI study, researchers specifically defined the genu of the CC as having 

greater FA in musicians than in non-musicians (Schmithorst & Wilke, 2002). 

 While scientists have replicated findings of greater CC size in musicians, the 

underlying architecture of this structural difference might be due to many factors.  The 

increased size may indicate more fibers crossing through the CC, a greater proportion of 

thick myelinated fibers allowing rapid interhemispheric transfer of information, and/or 

more fibers with thicker axons or increased axon collateral (Schlaug, 2001). 

 An interesting side note to these findings is that some gender differences have 

been discovered concerning the CC of musicians.  Lee, Chen and Schlaug (2003) 

examined female and male musicians as two separate groups and found no significant CC 

differences between female musicians and non-musicians.  Several explanations were 

offered.  The female brain may be generally more symmetrical, maintaining greater levels 

of interhemispheric communication whereas dramatic CC increases were found when 

men engaged in increased interhemispheric activity, creating a more symmetrical brain 

during prolonged musical engagement.  Another explanation offered was the high 

incidence of female absolute pitch (AP) in the sample.  Bilateral communication needed 

for this skill may have skewed non-musician results toward a larger CC.  This previously 

unexplored topic concerning the CC of female musicians warrants further investigation 

especially as it may relate to gender differences in child musicians with autism. 

Musicians: A Model for Neuroplasticity 

 Neuroplasticity refers to the adaptation of a sensory or motor system to an 

environmental stimulus—performance requirement, or to compensate for an injured or 
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impaired cortical structure (Hallett, 1995; Rauschecker, 1995; Zilles, 1992).  These 

adaptations have been created by strengthening existing synapses, forming new synapses, 

and/or recruiting new and unique cortical areas (Hallett, 1995; Jacobs & Donoghue, 

1991; Karni et al., 1995; Merzenich, Recanzone, Jenkins, Allard & Nudo, 1988; Nudo et 

al., 1992; Nudo, Milliken, Jenkins & Merzenich., 1996; Pascual-Leone et al., 1994; 

Pascual-Leone et al., 1995; Pascual-Leone, Wassermann & Sadaro, 1995; Rauschecker, 

1995; Recanzone et al., 1993).  Evidence of neuroplasticity has been observed in many 

animal paradigms (Anderson et al., 1994; Anderson et al., 2002; Black et al., 1990; 

Isaacs, Anderson, Alcantara, Black & Greenough, 1992; Jacobs & Donoghue, 1991; 

Jenkins, Merzenich, Ochs, Allard & Guic-Robles, 1990; Kleim et al., 1996; Merzenich et 

al., 1988; Nudo, Jenkins, Merzenich, Prejean & Grenda, 1992; Racanzone, 1990; Zheng 

& Purves, 1995; Zilles, 1992).  Evidence of neuroplasticity also has been observed 

specifically in many human electrophysiological and neuroimaging studies (Charness & 

Schlaug, 2000; Cohen, Bandinelli, Findeley & Hallett, 1991; Hund-Georgiadis & von 

Cramon, 1999; Karni et al., 1995; Karni et al., 1998; Pascual-Leone et al., 1994; Pascual-

Leone et al., 1995; Pascual-Leone, Wassermann & Sadaro, 1995; Schlaug et al., 1994; 

Seitz et al., 1998; Seitz et al., 1990).  Such research studies provide strong evidence of 

the ability of the human brain to mold and change itself. 

 This evidence has been especially relevant to the structural brain differences 

observed between musicians and non-musicians.  Generations have debated whether 

musical ability was inherent to the individual or created through practice; more recently 

referred to as the “nature or nurture” paradigm.  While innate cortical differences likely 
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lead an individual to make music and have fewer difficulties perfecting the skill, 

neuroplasticity was just as likely to foster use-dependent regional growth and the 

adaption of brain structures in response to a demanding environmental task.  Karni et al. 

(1998) found performance gains and changes in the primary motor cortex after 

participants practiced a sequential finger opposition task a few minutes per day over the 

course of a few weeks.  In another short-term investigation, enlarged cortical areas were 

found to be associated with finger movement after practicing a five-finger piano exercise 

for five successive days (Pascual-Leone et al., 1995). 

 In one long-term study, neuroplasticity was examined in musicians as compared 

to non-musicians.  A research team led by Gottried Schlaug, formed two separate cohorts 

of young children: one of which took private lessons on either the piano or a stringed 

instrument, the other did not receive private music lessons (Hyde et al., 2008).  Magnetic 

resonance imaging scans were administered to all children at the beginning of the study.  

No notable structural brain differences were found between the two groups.  After only 

15 months, Hyde et al. (2008) reported increased voxel area of frontal, temporal and 

parieto-occipital brain areas in the children who participated in lessons.  A marked 

increase in the midbody of the corpus callosum was found between the musician and non-

musician children (Hyde et al., 2008).  During a second MRI scan performed after 29 

months of lessons, an even greater increase of the anterior midbody of the corpus 

callosum was found among children practicing two to five hours per week than among 

children practicing one to two hours per week, and among children not practicing 

(Schlaug et al., 2009).  Long term studies, such as these, have been used to support the 
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high probability that musical ability and structural brain differences observed in 

musicians are a result of training-induced neuroplasticity.  These differences seem to be 

especially dramatic and apparent in the young and developing brain. 

 
Music and Autism 

 Since autism was first identified and described, notable musical affinity and 

ability among children with autism have been noted by clinicians, researchers, and 

parents. These narratives have led researchers to speculate about how music or music-

based interventions possibly increase functioning among children with autism. 

Musical Affinity and Ability of Children with Autism 

 Kanner first noted a musical affinity in children with autism in his 

groundbreaking paper, entitled “Autistic Disturbances of Affective Contact” (Kanner, 

1943).  He described several cases where children used music to sooth themselves and to 

interact with others.  Since that ground-breaking paper, many other researchers have 

noted musicality in this special population (Applebaum, Egel, Koegel, & Imhoff, 1979; 

Bonnel et al., 2003; Foxton et al., 2003; Heaton, 2003, 2004; Heaton, Hermelin, & Pring, 

1998, 2001; Mottron, Peretz, & Menard, 2000).  Heaton (2003) specifically noted that 

40% of people with autism showed a special interest in music.  Individuals with autism 

also seemed to demonstrate a spontaneous preference for musical stimuli over verbal 

stimuli (Blackstock, 1978). 

 Leo Kanner (1943) also noted specific cases of musical ability; for example, one 

child taught himself to play the piano, while another child could recognize and label 18 

different symphonies.  These observations have led to several investigations examining 
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the musical abilities of individuals with autism.  Applebaum, Egel, Koegel and Imhoff 

(1979) compared three musically untrained children with autism and three typically 

developing children with musical experience on their aptitude to sing back a musical 

passage.  The research team found children with autism performed equal to or above the 

musically experienced controls (Applebaum et al., 1979).  In more recent research, 

extraordinary pitch abilities in children with autism have been observed.  Heaton, 

Hermelin and Pring (1998) found superior performance on both a pitch memory task and 

a speech sound memory task when compared to controls.  Heaton (2003) observed high-

functioning autism (HFA) children to have enhanced pitch memory and labeling.  Yet 

another comparison study found HFA individuals to have enhanced ability on pitch 

discrimination (Mottron et al., 2000) and discrimination/categorization tasks (Bonnel et 

al., 2003). 

 People with autism have not only demonstrated superior abilities in pitch 

processing but have also demonstrated comprehension of the affective qualities found in 

music – a skill which baffles researchers, due to the noted challenges in social 

communication and interpretation of emotion (Kasari, Sigman, Mundy & Yirmiya, 1990; 

Langdell, 1978).  Heaton, Hermelin, and Pring (1999) found their child participants with 

autism performed equally to typically-developing peers when labeling happy and sad 

excerpts of music.  In a follow up investigation, Heaton concluded that through active 

listening, children with autism could acquire culturally embedded knowledge concerning 

musical meaning.  Emotional processing of music was then preserved (Heaton, Hurdy, 

Ludlow & Hill, 2008).  
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Interest-based Learning 

 Interest-based learning strategies are based on using personal interests, curiosity, 

and motivation as means to engage a child or adult in learning.  Researchers studying 

young children with and without disabilities have associated interest-based learning to 

positive child behavioral outcomes (DeLoache, Simcock & Marcari, 2007; Dunst et al., 

2001; Johnson, Alexander, Spencer, Leibham & Neitzel, 2004; Pruden, Hirsh-Pasek, 

Golinkoff & Hennon, 2006).  Several other research teams investigating children with 

autism found that integrating a child’s interest with intervention activities was associated 

with multiple positive behavioral consequences (Adams, 2000; Boyd, Conroy, Mancil, 

Nakao & Alter, 2007; Dunst, Raab & Hamby, 2017; Vismara & Lyons, 2007; Warreyn, 

Roeyers, Van Wetswinkel & De Groote, 2007).  Boyd et al. (2007) noted an increase in 

social interaction with peers when employing the child’s interests.  Vismara and Lyons 

(2007) saw an increase in joint attention (two people focused on the same object) when 

employing the child's interests.  Other researchers (Koegel & Koegel, 2006; Reinhartsen, 

Garfinkle & Wolery, 2002) found that following the interests of children with autism 

promoted pro-social behavior and development.  Similarly, Dunst, Trivette, and Masiello 

(2011) found that children who participated in high interest-based learning interventions 

experienced significant developmental progress in cognitive, social and motor skills 

when compared to children participating in low interest-based learning interventions. 

 These data have important implications concerning musical interventions for 

children with autism.  As discussed previously, individuals with autism repeatedly 

display both an affinity and aptitude for music.  Investigators have also found that 
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interventions rooted in interest-based learning produced greater increases in behavior and 

development.  Musical instruction may serve children with autism in two ways.  First, 

studying music may build skill on an instrument creating greater connectivity within the 

brain.  Second, instructors may use the child's interest in music as a powerful tool for 

engagement.  Social, behavioral and academic skills may be placed in the context of 

music instruction and targeted during private and/or group lessons, creating a powerful 

intervention for learning. 

 
Summary of Related Literature 

 Autism Spectrum Disorder, or autism, has been defined as a triad of deficits in 

communication, social interaction and repetitive behaviors/obsessive interests (American 

Psychiatric Association [APA], 2000; International Classification of Diseases [ICD], 

1994).  Scientists have been unable to discover a method to diagnose autism through 

biological markers such as cortical hypoconnectivity or genetic tests.  To obtain a 

diagnosis, psychologists must collect and analyze behavioral data through psychometric 

tools such as the Autism Diagnostic Observation Schedule (ADOS, 1999) or the Autism 

Diagnostic Interview – Revised (ADI-R, 1989).  While these measures have been used 

extensively for the initial determination of an autism diagnosis, the ADOS and ADI-R 

cannot measure functional or adaptive behavior.  Once a diagnosis has been made, 

behaviors and age-appropriate development have been measured through one of several 

protocols including the Vineland Adaptive Behavior Scales.  Increased functioning and 

potential benefits of studying music may be measured through psychological assessments 

of adaptive behavior. 
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 Problems with adaptive behavior in autism have been associated with functional 

aberrant connectivity of the brain.  Data supporting early hyperconnectivity and later 

hypoconnectivity of the brain with autism have become the most accepted explanation of 

the pathophysiology of autism.  Many researchers have found reduced volume of the 

corpus callosum and/or reduced connectivity between frontal, temporal and parietal 

regions.  Multiple scholars have stated these findings imply a cortical disruption early in 

life resulting in an altered developmental trajectory of the brain.  These alterations are 

believed to lead to many of the characteristics seen in autism. 

 While the brain of an individual with autism generally displayed long-distance 

hypoconnectivity, the brain of a musician displayed increased long-distance connectivity.  

The diverse skills of musicians have presented a unique pattern of increased cortical 

volume, connectivity, and activation in multiple areas of the brain.  These areas included 

auditory and motor areas, including the cerebellum, and the corpus callosum.  

Neuromusical researchers have also definitively established that these changes are not 

inborn, but a result of prolonged training.  The brains of musicians have continued to 

serve as a model of specialized cortical development and human neuroplasticity. 

  Interestingly, children with autism have often exhibited a special affinity for 

music.  Leo Kanner (1943) described both musical affinity and ability in six of the eleven 

children he studied.  Many other researchers have noted musicality in this population and 

have found that individuals with autism demonstrate a spontaneous preference for 

musical stimuli over verbal stimuli.  Children with autism have also displayed heightened 

abilities in music.  Researchers have found that musically untrained children with autism 
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perform equal to or above their musically experienced counterparts, demonstrating 

extraordinary pitch memory, labeling and discrimination.  People with autism have not 

only demonstrated superior abilities in pitch processing but have also demonstrated 

increased comprehension of the affective qualities found in music. 

 These data may be used to substantiate several exciting implications for 

practitioners.  First, many researchers have described children and adults with autism as 

having a special affinity for music.  Consequently, music may serve as a bridge into their 

world, and provide motivation for social interaction and communication.  Second, 

children on the autism spectrum have demonstrated extraordinary aptitude in music.  This 

ability may not only be fostered into skill on an instrument or with the voice, but may 

also be used to enhance and motivate learning in individual areas of deficit.  Third, 

cortical structures shown to be in deficit in individuals with autism correlate to 

overdeveloped structures in the musician's brain.  Studying music may change the 

structure of the brain with autism, forming long-distance connections and growing 

underdeveloped areas.  Finally, increased social interaction and communication coupled 

with brain growth may lead to higher levels of functioning. 

 This exploratory study was designed to extend the findings of the reviewed 

research literature in this chapter, and to answer some of the questions that remain 

unanswered as related to the benefits of music instruction as intervention for children 

with autism.  Specifically, the purpose of the current study was to investigate effects of 

instrumental music instructional intervention and non-music intervention on the adaptive 

behaviors and neurophysiological responses of children with autism.
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CHAPTER III 

PROCEDURES 

 
 This chapter outlines the procedures used to investigate the effects of 

instrumental music interventions and non-music interventions on the adaptive 

behaviors and neurophysiological responses of children with autism.  First, a 

description of recruitment and criteria used to select participants is provided.  Second, 

the music and non-music interventions are described.  Third, the data collection 

procedures are described, including demographic data, measures of adaptive 

behaviors using the Vineland Adaptive Behavior Scales II (VABS; Sparrow, Cicchetti 

& Balla, 2005), and measures of neurophysiological responses using 

electroencephalography (EEG).  Finally, procedures used to analyze adaptive 

behavior and neurophysiological data are described. 

 
Recruitment and Selection of Participants 

 Children were recruited for this study through multiple announcements placed in 

county-specific Autism Society of North Carolina listservs.  The targeted North Carolina 

counties included Wake, Durham, Orange, Person, and Chatham.  Children were 

recruited to participate in the study if they met the Diagnostic and Statistical Manual of 

Mental Disorders Fourth Edition Revised (DSM-4R) criteria for autism spectrum 

disorder or Asperger’s syndrome, and were between the ages of six and twelve years 

(American Psychiatric Association, 2013).  During interviews to determine whether each 
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recruited child met the criteria to participate in the study, each child's behaviors were 

observed, noted, and used to support the reported diagnosis of autism.  These diagnostic 

behaviors included, but were not limited to:  (1) awkward use of pragmatics, intonation, 

and pitch in communication, (2) lack of initiation of social interactions, and (3) obsessive 

preoccupation with the order and/or specific details of the current study procedures.  

Pragmatics in communication were considered awkward when a child had difficulty 

using social language skills, such as talking with others, taking turns in conversation, and 

using appropriate body language. 

 Children from all ethnic backgrounds were encouraged to participate if they lived 

in an English-speaking or bilingual household, in which one of the languages spoken was 

English.  A child was excluded from this study if he or she had instrumental music 

experience through their school music program or through private music lessons.  A child 

was selected to participate in the study if they: (1) met DSM-4R criteria, as displayed 

during the initial interview, (2) were between the ages of six and twelve years, and (3) 

had one parent or guardian who was able to meet the weekly demands of this longitudinal 

study.  These demands included bringing their child to weekly meetings, each lasting 30 

minutes.  All parents or guardians, whose children served as participants, were referred to 

as adult participants in the study. 

 Initial approval to conduct this exploratory study was received from the 

Institution Review Board at the University of North Carolina at Greensboro in June 2012 

(Appendix A), and approval was renewed each year following the initial approval, until 

the study's completion.  Participants of the current study were 14 children and one 
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accompanying parent for each child (N = 28).  All participating adults gave informed 

consent to participate in the study (Appendix B), and informed consent for their children 

to participate in the study (Appendix C).  Participating children in the experimental 

treatment group and in the control treatment group gave informed assent to participate in 

the current study (Appendix D and Appendix E, respectively). 

 
Interventions 

All child participants with their adult participants were assigned randomly to one 

of two groups—a control group or an experimental group.  Both groups received an 

intervention during the treatment period of the study.  The control group received 30 

minutes per week of one-on-one non-music intervention during a 20-week treatment 

period.  The experimental group received 30 minutes of one-on-one violin instruction 

during a 20-week treatment period. 

Activities during the non-musical intervention were self-selected and determined 

by the control group child and adult participants.  The non-musical intervention included 

constructing items with various materials, catching and throwing balls, reading, writing, 

cutting shapes, coloring, conversing, using an iPad, completing puzzles, and playing 

games that required taking turns and following directions.  These interactions remained 

unstructured and stress-free. 

The child and adult participants in the experimental group, were taught to play the 

violin using the Suzuki approach—a pedagogical approach using encouragement, aural 

learning, repetition, and task analyzing skills.  Use of the Suzuki approach created an 

atmosphere where child participants experienced and achieved success, regardless of 
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their developmental level.  In accordance with the Suzuki approach, participants in the 

experimental group were encouraged to practice daily at home through systemic positive 

reinforcement.  In the current study, positive reinforcement was used, and each child was 

awarded a small prize for every 100 minutes practiced. Home practice time was charted 

and recorded by the adult participants and the music intervention teacher. 

 In addition to the Suzuki approach, the researcher adapted evidence-based 

practices for use during music instruction.  Previously, evidence-based practices were 

shown to be effective through randomized or quasi-experimental research studies, and 

through multiple single-subject research studies.  The National Professional Development 

Center for Autism Spectrum Disorders (NPDC) outlined 27 evidence-based practices 

meeting these stringent criteria (Wong et al., 2015).  The NPDC also provided online 

Autism Focused Intervention Resources and Modules for detailed explanation and 

training for each practice (NPDC, 2016).  The 27 evidence-based practices of the NPDC 

are presented in Table 1, including affirmation of using identified practices in the music 

intervention of the current study.  Based on a review of the tabulated evidenced-based 

practices in Table 1, and of the music instruction of the current study, the researcher 

frequently used 16 of the 27 practices throughout the music intervention, as presented in 

bold print in Table 1, with an affirmation of "Yes." 
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Table 1. Evidence-based Practices of the National Professional Development Center for 
Autism Spectrum Disorders (2016) 
 
Evidence-based Practice Purpose of Practice Used in Current Study 
Antecedent-based Intervention 
(ABI) 

Decrease an unwanted 
behavior and increase 
engagement through a 
change in environment 

YES 

Cognitive Behavioral Intervention 
(CBI) 

Recognize/identify when 
negative thoughts & emotions 
escalate and use strategies to 
modify thinking & behavior 

 

Differential Reinforcement (DR) Use of reinforcement to 
reduce unwanted behavior 

 

Discrete Trial Training (DTT) Teacher directed; new skill 
broken down into simplified, 
structured steps 

 

Exercise (ECE) Increase wanted behaviors 
and decrease unwanted 
behaviors 

YES 

Extinction (EXT) Decrease unwanted behavior 
by taking away consequences 
maintaining it 

 

Functional Behavior Assessment 
(FBA) 

Identify unwanted behavior, 
its purpose, and what factors 
maintain behavior 

 

Functional Communication 
Training (FCT) 

Replace unwanted behavior 
with appropriate 
communicative behavior 

 

Modeling (MD) Teacher provides model for 
new skill or behavior YES 

Naturalistic Interventions (NI) Reinforce wanted behaviors 
within person’s interests 
and everyday activities 

YES 

Parent-implemented 
Interventions (PII) 

Training parents to use 
evidence-based practices 
with their children at home 
& in community 

YES 

Peer-mediated Instruction and 
Intervention (PMII) 

Instructing peers without 
disabilities to engage in 
positive social interactions 
with people with autism 

 

Picture Exchange 
Communication System (PECS) 

Allow those with limited 
language abilities to 
communicate through 
pictures 

YES 

Continued  
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Table 1. (Continued) 
 
Evidence-based Practice Purpose of Practice Used in Current Study 
Pivotal Response Training (PRT) Target areas of development 

instead of individual skills. 
Areas include motivation, 
response to cues, and social 
skills 

 

Prompting (PP) Use cues to build success & 
generalize a target skill YES 

Reinforcement (R+) Provide a consequence to 
increase use of a skill or 
behavior 

YES 

Response 
Interruption/Redirection (RIR) 

Interrupt or redirect 
attention to reduce or 
eliminate unwanted 
behavior 

YES 

Scripting (SC) Provide verbal or written 
model for increased 
communication with others 

 

Self-management (SM) Self-evaluation & 
management of appropriate & 
inappropriate behaviors 

 

Social Narratives (SN) Describe social situations 
through descriptions and/or 
pictures 

YES 

Social Skills Training (SST) Teacher directed instruction 
of targeted social skills 

 

Structured Play Groups (SPG) Small group activities with 
typically developing peers 
targeting various skills 

YES 

Task Analysis Teaching a skill through 
multiple individual steps  YES 

Technology-aided Instruction 
and Intervention (TAII) 

Use of technology in the 
acquisition of a skill or goal YES 

Time Delay (TD) Allowing response time 
between instruction and 
prompts 

YES 

Video Modeling (VM) Provide a model of skill or 
behavior on video YES 

Visual Supports Visual cues to increase 
processing of information YES 
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 Based on several factors, the affirmed evidenced-based practices in Table 1 were 

used and adapted to music instruction.  First, the National Professional Development 

Center on Autism Spectrum Disorder previously evaluated each evidence-based practice 

for efficacy based on age (Wong et al., 2015).  Each practice was labeled as effective for 

one or more of the following age ranges:  (a) early intervention (0-2 years), (b) 

preschoolers (3-5 years), (c) elementary (6-11 years), (d) middle school (12-14 years), 

and (e) high school (15-21 years).  Each of the practices used in the current study was 

found to be effective for children ages 6-12 years, or for the elementary and middle 

school age ranges.  Second, many of the affirmed practices in Table 1 were especially 

suitable for teaching and reinforcing techniques and skills associated with learning a 

music instrument.  Video modeling, time delay, task analysis, structured play groups, 

reinforcement, prompting, parent-implemented interventions, and modeling were the 

evidence-based practices used for instrumental skill acquisition.  Third, many of the 

practices, used in the current study, provided support for behaviors that otherwise would 

detract from music learning.  These practices included structured play groups, social 

narratives, response interruption/redirection, reinforcement, prompting, naturalistic 

interventions, exercise, and antecedent-based intervention.  Finally, many of the affirmed 

practices in Table 1 were used to support communication during the music intervention.  

These practices included visual supports, technology-aided instruction and intervention, 

social narratives, prompting, Picture Exchange Communication System (PECS), 

naturalistic interventions, and modeling. 
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 As previously indicated, 16 of the 27 evidence-based practices in Table 1 were 

used to support instrumental skills, behaviors, and/or communication in the music 

intervention.  Additionally, the music intervention, and the non-music intervention 

occurred across 20 consecutive weeks of treatment, including 30 minutes of either one-

on-one instrumental music intervention (i.e., experimental intervention), or one-on-one 

non-music intervention (i.e., control intervention) each week. 

 
Data Collection 

 Multiple measures were used to collect data from children and adults participating 

in the study.  These measures included a demographic data collection form, Vineland 

Adaptive Behavioral Scales II (VABS; Sparrow, Cicchetti & Balla, 2005), and 

electrophysiological recordings. 

Demographic Data 

 Upon acceptance into the study, parents completed an intake form to provide 

demographic information on both the child and parent.  Collected information included 

the child's name, age, grade, birthday, gender, and school.  Parents were asked to give 

their name, address, home phone number, cell phone number and email address.  In 

addition, parents listed their child’s extracurricular activities and hours per week spent in 

occupational therapy, speech therapy and/or physical therapy (see Table 1).  Finally, 

parents provided detailed information about their child's likes, dislikes, fears, behaviors, 

and dietary needs.  Parents also indicated items acceptable for use as motivators with 

their children. 
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Table 2. Demographic Data of Child Participants 
 

Participant Gender Age in 
Years Diagnosis Speech 

Therapy 
Occupational 

Therapy 
Physical 
Therapy 

  1 Male 11.60 Autism Yes No No 
  2 Male 12.75 Asperger No No No 
  3 Male 6.75 Autism Yes Yes No 
  4 Male 11.80 Autism Yes No No 
  5 Female 6.20 Autism Yes Yes No 
  6 Male 7.30 Asperger No Yes No 
  7 Male 8.58 Autism Yes No No 
  8 Male 10.42 Autism Yes Yes No 
  9 Male 12.75 Autism Yes No No 
10 Male 9.17 Autism Yes No No 
11 Male 7.00 Asperger No No No 
12 Male 5.90 Autism Yes No No 
13 Male 10.58 Autism Yes No No 
14 Male 8.00 Autism Yes No No 

 
 
Vineland Adaptive Behavior Scales 

The Vineland Adaptive Behavior Scales II (VABS; Second edition, Sparrow, 

Cicchetti & Balla, 2005) was designed to measure personal and socialization skills of 

individuals primarily between the ages of preschool and 18 years. In the current study, 

participants' ages ranged from 5.90 years to 12.75 years, and the VABS was used to 

measure their personal and social skills.  Using a three-point scale, each participant's 

parent answered questions across the five domains of the VABS, including the domains 

of Communication, Daily Living Skills, Socialization, Motor Skills, and Maladaptive 

Behavior. 

Under the Communication domain, skills were divided into the subdomains of 

Receptive, Expressive, and Written Language.  Receptive language questions measured 

attention, comprehension, and appropriately responding to others.  Expressive language 
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questions measured the use of words and sentences to verbally express himself or herself.  

Written language questions measured reading and writing skills.  The Daily Living Skills 

domain was divided into the subdomains of Personal, Domestic, and Community.  The 

Personal questions measured self-sufficiency while eating, getting dressed, and grooming 

and caring for oneself.  The Domestic questions measured cleaning, cooking, and ability 

to do chores.  The Community questions measured an individual’s ability to use money, 

travel, and function safely away from home.  The Socialization domain was divided into 

the subdomains of Interpersonal Relationships, Play and Leisure, and Coping Skills.  The 

Interpersonal Relationships questions measured friendships, caring, conversational skills, 

and appropriate social behavior.  The Play and Leisure questions measured having fun 

and playing with others.  Coping skills questions measured control over behaviors and 

emotions while interacting with others.  The Motor Skills domain was divided into the 

subdomains of Fine and Gross motor skills.  Fine motor skills questions measured control 

of hands and fingers to manage objects in everyday life, while Gross motor skills 

questions measured control of legs and arms for mobility and coordination.  Finally, the 

Maladaptive Behavior domain was divided into the subdomains of Internalizing and 

Externalizing behaviors.  Internalizing behavior questions measured problem behaviors 

that are emotional.  Externalizing behavior questions measured problem behaviors where 

the person acts out physically. 

Prior to and after the music and non-music interventions, each parent completed 

the VABS.  Across the five VABS domains, the parents rated their children's behaviors 

using the three-point scale of 0 (never performed), 1 (sometimes or partly performed), 
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and 2 (usually or habitually performed).  Completing the VABS took approximately 60 

minutes during the pre-intervention, and during the post-intervention. 

Preparation Procedures for Electroencephalogram (EEG) 

 The electroencephalogram (EEG) was designed to record the electrical activity of 

synaptic currents within the brain and is measured in Hz.  In the current study, the EEG 

was used to examine mirror neuron activation, or mu rhythms between 8-13 Hz in the 

sensory motor cortex.  The equipment used in the current study was housed in the 

University of North Carolina at Chapel Hill’s Neurocognition and Imaging Research Lab. 

 Before the participants came to the Lab to complete their EEG, participants and 

their parents were given caps to take home, with which to play and wear for several 

weeks.  This preconditioning time was used to acclimate each participant to wearing the 

cap with electrodes as they completed their EEGs.  Following this cap-acclimation time 

period, participants came to the Lab for their initial EEG. 

 Each participant was given a total of two hours to complete the EEG, providing 

ample time to explore the Lab, and play with therapy toys before the elastic cap with 

electrodes was placed onto their head.  After the EEG cap was put on the participant's 

head, a gel was squeezed into all electrodes creating a connection between the child's 

scalp and each electrode.  Participants were then seated within a dimly lit and sound-

attenuated room.  Task images to be watched during the recording of EEG data, were 

shown on a Dell 19-inch flat panel monitor, operating at a 60 Hz refresh rate.  The 

participants sat approximately 100 cm from the stimulus monitor that was adjusted to the 

child's eye level.  Electrophysiological data were collected while participants completed 
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several visual and motor tasks that were created to evaluate mirror neuron activation 

within the sensory motor cortex. 

Mirror Neuron EEG Tasks 

 Mirror neuron EEG data were collected from participants' responses during three 

tasks: (1) moving own hand, (2) watching a recorded video of a child's moving hand, and 

(3) watching a bouncing ball.  The first two tasks of moving own hand, and of watching a 

moving hand created an optimal opportunity during the EEG to activate the mirror 

neuron system through action and observation, respectively.  This open- and close-hand 

action was done with minimal movement of the head, and therefore, with minimal 

disruption to the EEG recording.  The watching-ball task was a neutral, non-social task 

by that was used to compare mirror neuron activation to action and observation tasks. 

 First, participants opened and closed their right hand, fully extending the fingers 

and thumb to a straight position, followed by closing fingers and thumb to make a fist.  

This motion occurred at an approximate rate of 1Hz, that is, one open and close cycle per 

second for a 20 second time period.  Participants were signaled to open and close their 

hand with a green screen, and to stop the motion with a red screen (Figure 1). 
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Figure 1.  Green Screen Signaling to Open and Close the Hand; Red Screen Signaling to 
Stop Opening and Closing the Hand. 
 
 
Second, participants watched a black and white video recording of a 12-year-old child 

opening and closing his right hand fully extending the fingers and thumb to a straight 

position, followed by closing fingers and thumb into a fist.  This observed motion 

occurred at an approximate rate of 1 Hz or once per second for a 20 second time period 

(Figure 2). 

 

 
Figure 2.  Video Recording of a Child’s Moving Hand.  
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Third, participants watched a video recording of a ball bouncing at approximately 1 Hz, 

that is, watching a ball bounce once per second for a 20 second time period (Figure 3). 

 

 
Figure 3.  Video Recording of a Ball Bouncing. 
 
 
 All video recordings of tasks were medium gray against a black background, and 

were presented at a viewing distance of 100 cm.  Each video-recording task was 

presented to the participant for 20 seconds and viewed six times.  This repetition 

increased the likelihood of obtaining a sufficient amount of clean EEG data for a 

thorough analysis. 

Electrophysiological Recording 

 The EEG recorded data from 18 electrodes, 13 of which were used to collect data: 

at the frontal (F3, Fz, F4), central (T7, C3, Cz, C4, T8), parietal (P3, Pz, P4), and 

occipital (O1, O2) scalp locations.  These positions were obtained using a 10-5 system 

elastic cap (Electro-Cap International Inc.).  The right mastoid location contained the 

reference electrode and AFz electrode maintained the ground.  Bipolar recordings by the 
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horizontal and vertical electro-oculogram (EOG) were collected by electrodes placed 

below and above the right eye and at the outer canthus of both right and left eyes.  Scalp 

electrode impedances remained under 25 kΩ for the duration of the EEG.  Within the 

EEG recordings, artifacts were rejected manually and channels with especially abnormal 

patterns were removed.  Source locations were updated for all data components using a 

database of 385 defined channel labels for the 10-5 system cap.  The EEG and electro-

oculogram was amplified, bandpass filtered between 0.15 and 70 Hz (notch filter at 60 

Hz), and digitized at 500 Hz.  The EEG was acquired with a Neuroscan 4.3 system 

(Neurosoft, Inc., Sterling, VA, USA), and was analyzed with Neuroscan Edit 4.4 and 

custom MATLAB scripts, built on the open-source EEGLAB toolboxes (Delorme and 

Makeig, 2004) and FieldTrip (Oostenveld, Fries, Maris & Schoffelen, 2011). 

 Each stimulus event was identified by type, and labeled as “1” for the watching 

hand event, “2” for the watching ball bouncing, and “3” for each participant's moving 

hand event.  After the code presentation of 1, 2, or 3, data were examined in 0-20 second 

epochs, or segments of time.  Mu rhythms, that is, EEG oscillations in the 8–13 Hz 

frequency band, were analyzed through examining recordings from the Cz electrode that 

measured activity in the sensory motor cortex.  EEG analysis compared mean event-

related spectral perturbation (ERSP) between each of the three stimulus events. 

Summary of Data Collection Procedures 

 Participants consisted of 14 children and one parent for each child.  Data were 

collected from a total of 28 participants.  All parents completed the initial information 

form, addressing demographic data, and completed the pre- and post-intervention 
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Vineland Adaptive Behavioral Scales II.  Seven children, with a mean age of 9.81 years, 

were assigned randomly to the control group, and with their parents, they received 30 

minutes per week of a one-on-one non-music intervention over a 20-week period.  Seven 

children, with a mean age of 8.54 years, were assigned randomly to an experimental 

group that received 30 minutes per week of one-on-one instrumental violin instruction 

during a 20-week period.  The participants completed pre-intervention and post-

intervention EEG scans at The University of North Carolina at Chapel Hill’s 

Neurocognition and Imaging Research Lab. 

 
Data Analysis 

Adaptive Behavioral Data Analysis 

 The parents of 11 of the 14 originally selected children completed pre- and post-

intervention Vineland Adaptive Behavior Scales II (VABS) to measure participants' 

adaptive behaviors. Six of the adult participants were from the music intervention 

experimental group, and five adult participants were from the non-music intervention 

control group. 

 Initially, to analyze participants' pre-intervention or baseline VABS scores from 

each of the 14 subdomains across the five VABS domains, including Communication, 

Daily Living Skills, Socialization, Motor Skills, and Maladaptive Behaviors, multiple 

two-tailed Welch independent t-tests were used.  Specifically, the Welch t tests were used 

to verify whether there were any significant differences between the experimental and 

control groups' baseline VABS scores prior to administering the music- and non-music 

interventions (p ≤ .05). 
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 To determine the effects of music and non-music interventions on adaptive 

behaviors (i.e., Research Question 1), a 2 (group—music and non-music interventions) 

by 2 (time—pre- and post-interventions) mixed factorial analysis of variance (ANOVA) 

was used.  Time and VABS scores across each subdomain of the four domains examined, 

served as repeated measures within the 2 by 2 mixed factorial ANOVA.  The two-way 

ANOVA was completed using the R Project for Statistical Computing, Version 3.4.3 

(2017).  When significant main effects or interactions were identified within the ANOVA 

(p ≤ .05), a post-hoc two-tailed Welch t-test with Holm's sequential Bonferroni multiple 

comparisons procedure was performed.  Data were tested for normality using the 

Shapiro-Wilk test, and graphically examined for normal distributions of the data using 

histograms and QQ-plots.  No significant non-normality results were found using the 

Shapiro-Wilk test for normality (p > .05). 

Electrophysiological Data Analysis 

 Twelve children were able to participate in electrophysiological data collection in 

this study, and nine children completed pre- and post-EEGs.  Only eight of the 

participants' EEG scans were clear enough to include in the data analyses.  Three pre- and 

post-intervention EEG scans were analyzed for the non-music intervention group (i.e., 

control group), and five pre- and post-intervention EEG scans were analyzed for the 

music intervention group (i.e., experimental group).  Mu rhythms, EEG oscillations in the 

8–13 Hz frequency, were analyzed through data collected from the Cz electrode that 

measured activity of the sensory motor cortex.  Analysis of mu rhythms from the Cz 

electrode compared mean event-related perturbation (ERSP) between tasks. 
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 To determine the effects of music and non-music interventions on participants' 

neurophysiological responses (i.e., Research Question 2), pre-intervention and post-

intervention ERSP data were analyzed using a 2x2 mixed factors repeated-measures 

analysis of variance (ANOVA).  Time (i.e., pre- and post-interventions) and task (i.e., 

move hand, watching hand move, and watching ball bounce) served as the repeated 

measures in the analysis.  The ANOVA was used to compare differences between pre- 

and post-intervention ERSP data within and between groups (i.e., control and 

experimental groups) by task (i.e., move hand, watch hand move, watch ball move).  

These statistical analyses and the resulting graphs were completed and produced using 

the MATLAB Statistics Toolbox (2012b). 
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CHAPTER IV 

RESULTS 

 
The purpose of this exploratory research was to examine the effects of 

instrumental music instructional intervention and non-music intervention on the adaptive 

behaviors and neurophysiological responses of children with autism.  Data were collected 

from a control group (n = 7) and an experimental group (n = 7) receiving 30 minutes per 

week of one-on-one non-music intervention and music intervention during a 20-week 

period, respectively. 

 
Adaptive Behavioral Results 

 To measure participants' adaptive behaviors, parents or guardians of 11 of the 14 

originally selected children completed the Vineland Adaptive Behavior Scales II (VABS) 

administered prior to and after the experimental and control interventions.  Six of the 

participants were from the music intervention experiment group, and five participants 

were from the non-music intervention control group.  Only the pre- and post-intervention 

scores from four domains of the VABS were analyzed, including the Communication, 

Daily Living, Socialization, and Maladaptive Behaviors Domains.  Scores from the 

VABS Motor Skills domain were not included in the pre- and post-intervention analyses 

because the VABS measured skills through the developmental age of eight years.  Most 

participants were older than eight years of age (n = 8), and had reached the measured 

motor benchmarks before starting this study, thus making motor skills analysis irrelevant.
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 Data were tested for normality using the Shapiro-Wilk test, and graphically were 

examined for normal distributions, using histograms and QQ-plots.  No significant results 

were found using the Shapiro-Wilk test for normality (p > .05).  Welch t-tests were used 

to determine whether there were significant differences between experimental and control 

participants' age and baseline VABS scores prior to administering the music and non-

music interventions (p ≤ .05).  Independent t tests showed that there were no significant 

differences between experimental and control participants' age and baseline VABS scores 

from the four domains analyzed (p > .05), except for the Composite Socialization scores 

(p = .047), and Coping Skills scores (p = .005) (see Table 2). 

 
Table 3. Independent t Tests of Differences between Experimental and Control Groups' 
Baseline Characteristics1 
 

Characteristics1 
Experimental Control Mean 

Difference p 𝐗𝐗� SD 𝐗𝐗� SD 
Age (Years) 8.54 1.74 9.95 2.88 −1.41 .373 
Communication 

Composite 34.17 5.91 27.80 13.39 6.37 .367 
Receptive 10.83 1.94 9.60 4.16 1.23 .566 
Expressive 10.50 1.87 9.00 5.34 1.50 .577 
Written 12.83 2.32 9.20 4.60 3.62 .163 

Daily Living 
Composite 37.67 6.59 29.60 10.48 8.07 .182 
Personal 12.33 2.94 10.60 3.97 1.73 .445 
Domestic 12.33 2.73 10.60 2.61 1.73 .311 
Community 13.00 3.46 8.40 4.34 4.60 .093 

Socialization 
Composite 29.67 4.84 22.40 5.37 7.27 .047* 
Interpersonal 9.33 2.66 7.20 3.56 2.13 .304 
Play & Leisure 9.50 1.76 7.40 2.97 2.10 .211 
Coping Skills 10.83 1.72 7.20 1.48 3.63 .005** 

Maladaptive Behaviors 
Internalizing 20.17 2.23 20.80 2.28 −.63 .655 
Externalizing 18.33 1.21 18.80 2.17 −.47 .683 

* p < .05 ** p < .01 
1 Within the t-test analyses, equal variances between groups was not assumed.  
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 The experimental and control groups' pre-intervention and post-intervention 

scores from the four VABS Domains were analyzed using a two-way mixed factorial 

analysis of variance (ANOVA).  Within the analysis, condition or intervention served as 

the between effects variable, and session or time served as the within effects variable.  

The VABS scores served as the repeated measures within the two-way ANOVA.  On the 

preceding page, Table 2 provides the pre-intervention VABS scores, grouped by the 

experimental and control groups.  Table 3 includes the post-intervention VABS scores of 

the experimental and control groups. 

 
Table 4. Experimental and Control Groups' Post-intervention Scores from the Vinland 
Adaptive Behaviors Scales II 
 

Adaptive Behaviors Experimental Control Mean 
Difference 𝐗𝐗� SD 𝐗𝐗� SD 

Communication 
Composite 36.83 5.12 26.60 16.35 10.23 
Receptive 12.00 2.61 9.40 6.35 2.60 
Expressive 11.33 1.63 8.40 5.13 2.93 
Written 13.50 2.43 9.00 4.69 10.23 

Daily Living 
Composite 38.00 5.44 29.20 12.70 8.80 
Personal 12.33 3.27 10.50 5.25 1.83 
Domestic 12.50 2.88 9.80 4.44 2.70 
Community 13.17 2.40 8.60 4.22 4.57 

Socialization 
Composite 32.17 5.95 20.40 6.54 11.77 
Interpersonal 10.50 1.76 6.60 2.51 3.90 
Play & Leisure 9.17 1.33 6.20 2.78 2.97 
Coping Skills 12.50 3.33 7.60 1.67 4.90 

Maladaptive Behaviors 
Internalizing 18.33 1.60 19.00 3.39 –.17 
Externalizing 18.50 1.76 18.80 2.17 –.30 
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Table 4 provides results of analyzing the pre- and post-intervention VABS scores across 

the four analyzed VABS domains, using a 2 (Condition—music- and non-music 

interventions) by 2 (time—pre- and post-intervention Sessions) mixed factorial ANOVA. 

 
Table 5. Two-way Mixed Factorial Analysis of Variance for Adaptive Behaviors1 
 

Adaptive Behaviors Condition Session Condition X Session 
 F p  F p F p 

Communication 
Composite 1.66 .230 .47 .510 3.27 .104 
Receptive .70 .425 .46 .514 .92 .362 
Expressive .98 .349 .22 .649 8.36 .018* 
Written 3.71 .371 .27 .619 .92 .364 

Daily Living 
Composite 2.59 .142 .00 .982 .06 .804 
Personal .74 .414 .00 1.000 .00 1.000 
Domestic 1.43 .261 .29 .602 .68 .430 
Community 4.72 .058 .10 .761 .00 .978 

Socialization 
Composite 8.10 .019* .10 .763 7.83 .021* 
Interpersonal 3.76 .085 .49 .501 4.78 .057 
Play & Leisure 4.48 .063 1.44 .261 .46 .515 
Coping Skills 12.07 .007** 3.22 .106 1.21 .300 

Maladaptive Behaviors 
Internalizing .08 .782 14.94 .004** .33 .579 
Externalizing .12 .732 .14 .716 .14 .716 

* p < .05 ** p < .01 
1 The degrees of freedom used to determine the critical values of F and the associated 

probability level were 1,9. 
 

The mixed factorial ANOVA demonstrated few significant differences between 

participants' VABS scores between Conditions, and within participants' pre-intervention 

and post-intervention scores (p < .05).  Within the Communication subdomains, there 

were no significant differences between the control and experimental participants' VABS 

Composite, Receptive, Expressive, and Written post-intervention scores (p > .05).  

Additionally, there were no significant differences between participants' pre- and post-
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intervention within the VABS subdomain scores (p > 05).  There was, however, a 

significant interaction effect of Condition and Session on participants' Expressive scores 

(p = .018).  The experimental participants' (i.e., music intervention) and control 

participants' (i.e., non-music intervention) pre- and post-intervention Expressive scores 

were significantly different.  After intervention, the experimental and control participants' 

Expressive behaviors were different, with one group's mean score increasing, and the 

other group's mean score decreasing.  The experimental group's Expressive mean score 

increased from 10.50 points to 11.33 points; whereas, the control group's Expressive 

mean score decreased from 9.00 points to 8.40 points.  Post-hoc paired t-test analyses of 

the Expressive scores revealed that participants of the music-intervention group 

significantly improved their post-intervention Expressive scores, as measured by the 

VABS (p = 042).  The Expressive scores of participants of the non-intervention group, 

however, decreased slightly; this decrease was not significant (p = .305).  Figure 4 

illustrates the significant interaction effect of Condition and Session on participants' 

Expressive scores. 
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Figure 4.  Graph of Significant Interaction Effect of Condition and Session on 
Participants' Expressive Scores (p = .018). 
 

Within the VABS Daily Living Domain, there were no significant differences 

between the control and experimental participants' Composite, Personal, Domestic, and 

Community post-intervention scores (p > .05).  Additionally, there were no significant 

differences between participants' pre- and post-intervention VABS subdomain mean 

scores (p > 05).  Differences between experimental and control participants' Community 

subdomain scores, however, approached significance (p = .058).  Experimental 

participants' post-intervention Community mean scores were notably higher (i.e., x� = 

13.17 points) than control participants' post-intervention mean scores (i.e., x� = 8.60 
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points).  Both groups' pre-intervention Community mean scores were similar to their 

post-intervention mean scores, at 13.00 points and 8.40 points, respectively. 

Within the VABS Socialization Domain, participants' Interpersonal, and Play and 

Leisure scores were not significantly different as a result of music and non-music 

interventions (p > .05).  Additionally, there were no significant differences between 

participants' pre- and post-intervention Daily Living subdomain mean scores (p > 05).  

However, there were three subdomain scores that were significantly different (p < .05). 

The Composite Socialization scores were affected significantly by the music and 

non-music interventions (p = .021).  Both groups' post-intervention Socialization 

Composite score increased, but the experimental participants' mean score was 11.77 

points higher than the control group's mean score.  Even though the experimental group's 

pre-intervention Composite mean scores also were significantly higher than the control 

group's pre-intervention Composite mean scores (p = .047), the magnitude of the music-

intervention effect appeared to be greater than the non-music intervention effect.  The 

Coping Skills subdomain scores also were affected significantly by the music and non-

music interventions (p = .007).  Both the experimental and control groups' Coping Skills 

mean scores increased following the music intervention, and the non-music intervention, 

respectively.  The control group's post-intervention mean score increased only by .40 of a 

point, yet the experimental group's mean Coping Skills score was notably higher than the 

control group's mean score, increasing from 10.83 points to 12.50 points.  This finding 

supports the premise that the music intervention had a greater effect on participants' 

Coping Skills than the non-music intervention. 
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Finally, as related to the VABS Socialization Domain, there was a significant 

interaction effect of Condition and Session on participants' Composite Socialization mean 

scores (p = .021).  The experimental participants' and control participants' pre- and post-

intervention Socialization Composite scores were notably different.  Following 

intervention, the experimental group's Socialization Composite mean score increased 

from 29.67 to 32.17 points; whereas, the control group's Socialization Composite mean 

score decreased from 22.40 points to 20.40 points, yet, the pre-intervention control and 

experimental means were significantly different (p < .047).  Also notable in this 

interpretation of results was the interaction effect of Condition and Session on 

Interpersonal means scores, which approached significance (p = .057).  This result 

suggested differences between the experimental and control groups' pre- and post-

intervention mean Interpersonal scores possibly contributed to the significant interaction 

effect of Condition and Session on participants' Socialization Composite mean scores, as 

measured before and after interventions.  This finding suggested that music and non-

music interventions have different effects on changes in adaptive behaviors of children 

with autism.  Figure 5 illustrates the trending interaction effect of Condition and Session 

on participants' Interpersonal mean scores. 
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Figure 5.  Graph of Interaction Effect of Condition and Session on Participants' 
Interpersonal Scores of the Socialization Domain that Approaches Significance 
(p = .057). 
 
 

Within the Maladaptive subdomains, there were no significant differences 

between the control and experimental participants' VABS Internalizing and Externalizing 

post-intervention scores (p > .05).  Additionally, there were no significant differences 

between participants' pre- and post-intervention within the VABS subdomain scores (p > 

05).  Both Internalizing and Externalizing mean scores decreased or basically remained 

the same for the experimental and control participants following the music and non-music 

interventions, respectively (See Tables 2 and 3). 
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Even though the sample size of this study was small, the effect size was relatively 

large, determined using the Pearson Product Moment Correlation Analysis. For example, 

for the interaction effect of Condition and Sessions on the Communication Domain's 

Expressive behaviors, the effect size was r = .694, and on the Socialization Domain's 

Interpersonal behaviors, the effect size was r = .589.  Both effect sizes exceeded the 

standard for moderately large effect size (r = .50; Cohen, 1988; 1992).  The effect size for 

Expressive behaviors and for Interpersonal behaviors accounted for approximately 48% 

and 35% of the total variance in participants' adaptive behaviors, as measured by the 

Vineland Adaptive Behaviors Scales II. 

Finally, as related to participants adaptive behaviors and characteristics, amount 

of time that music-intervention participants devoted to practice was examined.  Fisher’s 

exact tests were used to analyze VABS scores dichotomized by high and low violin and 

music practice time.  High practice was defined as greater than 1000 total minutes during 

the 20-week intervention period; while low practice was defined as less than 1000 total 

minutes during this intervention period.  While generalizable results were not produced 

by this examination of only three participants, it is interesting that in addition to increases 

in Interpersonal Socialization scores and Expressive Communication scores, 100% of the 

high practicing participants also experienced increases in scores associated with 

Receptive Communication and Socialization Coping Skills.  These same high practicing 

students also displayed reduced Externalizing Maladaptive Behaviors.  
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Electrophysiological Results 

 The electroencephalogram (EEG) recorded the electrical activity of synaptic 

currents within the child participants' brains, measured in Hz.  In the current study, the 

EEG was used specifically to examine mirror neuron activation, or mu rhythms between 

8-13 Hz in the sensory motor cortex.  Mirror neuron EEG data were collected from 

participants' responses during three tasks: (1) moving own hand, (2) watching a child's 

moving hand, and (3) watching a bouncing ball.  The first two tasks of moving own hand, 

and watching a moving hand created optimal opportunities during the EEG to activate the 

mirror neuron system through action and observation.  The open- and close-hand action 

was completed by each participant with minimal movement of the head, and therefore, 

produced minimal disruption of the EEG recording.  Watching the bouncing ball was a 

neutral, non-social condition by which to compare mirror neuron activation occurring 

during action and observing conditions. 

An examination of the moving-own-hand task revealed there were no differences 

between the control group's pre- and post-intervention ERSP responses.  Differences 

were found between the pre- and post-intervention sessions of the experimental group's 

ERSP responses in the 7000-13000 milliseconds range and in the frequency bands of 11-

13 Hz.  Differences also were found between the control and experimental groups’ pre-

intervention ERSP responses in the 8000-millisecond time frame and in the 11-13 Hz 

frequency bands.  Differences were found between the control and experimental groups’ 

post-intervention ERSP responses in the 9000-10,000 millisecond time frame and 8-13 

Hz frequency bands.  These graphs of participants’ ERSP responses indicate a trend of 
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decreased mu suppression in the experimental group's post-intervention move hand task.  

In Figure 6, differences are illustrated for varying frequencies and times by the red lines 

in the green plots presented to the right of and below ERSP data boxes.  Increased red 

lines indicated significant differences between ERSP responses (p < .05), grouped by 

Condition (i.e., music and non-music interventions) or Session (i.e., experimental pre- 

and post-interventions). 

 

 

Figure 6.  Effects of Condition and Session on ERSP Responses at Cz Location during 
Moving Hand Task.  "Differences [between and within control and experimental groups] 
are illustrated for varying frequencies and times by the red lines in the green plots 
presented to the right of and below ERSP data boxes" (i.e., as explained in preceding 
paragraph). 
 

 An examination of the watching hand condition revealed no differences between 

the control group's pre- and post-intervention ERSP responses.  Additionally, there were 
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no differences between the experimental group's pre- and post-intervention ERSP 

responses, and between the control and experimental groups' pre-intervention ERSP 

responses.  Differences that approached significance, however, were found between the 

control and experimental groups' post-intervention ERSP responses in 5000-13000 

milliseconds range and 8-13 Hz frequency bands.  When comparing the control and 

experimental groups' ERSP data, the graphs of participants' ERSP responses indicate a 

trend significant increases in mu rhythm suppression among the experimental 

participants, following music intervention (Figure 7). 

 

 

Figure 7. Effects of Condition and Session on ERSP Responses at Cz Location during 
Watching Hand Task.  "Differences [between and within control and experimental 
groups] are illustrated for varying frequencies and times by the red lines in the green 
plots presented to the right of and below ERSP data boxes." (as explained on p. 84). 
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 An examination of the neutral, non-social watching ball bouncing task revealed 

no differences between the control group’s pre- and post-intervention ERSP responses.  

Notable differences, however, were found between the experimental group’s pre- and 

post-intervention ERSP responses between the 8000 and 11,000 milliseconds time frame, 

and 8-13 Hz frequency bands.  Marked differences were found between the control and 

experimental groups’ pre-intervention ERSP responses between 5000 and 14,000 

milliseconds and 8-13 Hz frequency bands that approached significance.  Notable 

differences also were found between the experimental group's pre- and post-intervention 

ERSP responses between 8000 and 11,000 milliseconds, and 8-13 Hz frequency bands 

that approached significance.  The graphs of participants' ERSP response revealed a trend 

of decreased mu suppression in the experimental group post-intervention for the neutral 

watching the bouncing ball task (Figure 8). 

  



87 

 

 

Figure 8. Effects of Condition and Session on ERSP Responses at Cz Location during 
Watching Ball Bounce Task.  "Differences [between and within control and experimental 
groups] are illustrated for varying frequencies and times by the red lines in the green 
plots presented to the right of and below ERSP data boxes" (as explained on p. 81). 
 
 

An examination of the post-intervention ERSP data associated with the moving 

hand and watching hand tasks revealed differences within each group's post-intervention 

ERSP responses for each condition.  Differences were found between the control group's 

post-intervention ERSP responses between the 5000 and 7000, and 12000-14000 

milliseconds time frame, and in the 10-13 Hz frequency bands during the moving hand 

and watching hand conditions.  Differences also were found between the experimental 

group’s post-intervention ERSP responses between the 6000 and 12000 milliseconds time 

frame and 8-13 Hz frequency bands during the moving hand and watch hand conditions.  
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The graphs of ERSP responses showed a trend of significant increases in mu rhythm 

suppression, while the experimental group watched the moving hand (Figure 9). 

 

 

Figure 9. Effects of Condition on Post-intervention ERSP Responses at Cz Location 
during Moving Hand and Watching Hand Tasks. "Differences [within conditions during 
tasks] are illustrated for varying frequencies and times by the red lines in the green plots 
presented to the right of and below ERSP data boxes" (as explained on p. 84). 
 
 
 An examination of the post-intervention ERSP data associated with watching 

hand move and watching ball bouncing tasks revealed differences between the control 

group's ERSP responses at the 5,000, 9,000, and 12,000 to 14,000 milliseconds time 

frame, and in the 8-12 Hz frequency bands.  Differences also were found between the 

experimental group's post-intervention ERSP responses between the 10,000 and 11,000 

milliseconds time frame and 8-13 Hz frequency bands during the watch hand and watch 
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ball tasks.  The graphs of participants' post-intervention ERSP responses showed a trend 

of notable increases in mu rhythm suppression in the social watch hand task compared to 

the non-social ball bouncing task among experimental participants (p < .05; Figure 10) 

 

 
 
Figure 10.  Effects of Condition on Post-intervention ERSP Responses at Cz Location 
during Watching Hand and Watching Ball Bounce Tasks. "Differences [within conditions 
during tasks] are illustrated for varying frequencies and times by the red lines in the green 
plots presented to the right of and below ERSP data boxes" (as explained on p. 84). 
 

Summary of Results 

 Based on the results of this exploratory study, answers to the research questions 

are provided.  The research was designed to answer three research questions focused on 

the adaptive behaviors and neurophysiological responses of children with autism 

spectrum disorders before and after music and non-music interventions.  
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Research Question 1 

 Do instrumental music and non-music interventions differentially affect 

adaptive behaviors of children with autism, as measured on the Vineland Adaptive 

Behavior Scales II?  Music and non-music interventions differentially affected adaptive 

behaviors of children with autism, as measured on the Vineland Adaptive Behavior Scales 

II.  Examining VABS scores across the four domains and 11 subdomains, the researcher 

found that participants randomly assigned to the instrumental music intervention group 

displayed significant gains in the subdomains of Expressive Communication (p = .018).  

Additionally, the experimental participants' increases in Interpersonal Socialization 

behaviors approached significance (p < .057).  These increases in expressive 

communication and interpersonal socialization behaviors were not found within the non-

music intervention group (i.e., the control group).  Although the sample size of this study 

was quite small, the researcher found a large effect size accounting for approximately 

48% and 35% of the variances among the experimental participants' expressive 

communication and interpersonal socialization adaptive behaviors, respectively. 

 In addition, Fisher’s exact tests were used to analyze VABS scores dichotomized 

by high and low violin and music practice time.  High practice was defined as greater 

than 1000 total minutes of practice during the 20-week treatment period; while low 

practice was defined as less than 1000 total minutes during the same time period.  

Though generalizable results were not produced by examining only three participants, it 

is interesting that in addition to increases in Interpersonal Socialization scores and 

Expressive Communication scores, 100% of the high practicing participants also 
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experienced increases in scores associated with Receptive Communication and 

Socialization Coping Skills. These same high practicing students also displayed reduced 

Externalizing Maladaptive Behaviors.  

Research Question 2 

 Do instrumental music and non-music interventions differentially affect 

neurophysiological responses of the mirror neuron system of children with autism, 

as measured using electroencephalography?  While statistical analysis was not feasible 

with this small sample size and noise within the EEG results, the researcher found trends 

toward significant differences within the pre-intervention and post-intervention data, 

grouped by control and experimental groups. The exploratory analyses of the data 

revealed that instrumental music and non-music interventions differentially affected 

neurophysiological responses of the mirror neuron system of children with autism, as 

measured using electroencephalography.  During the moving hand task, marked 

differences were found between the control and experimental groups’ post-intervention 

ERSP responses in the 9000-10,000 millisecond time frame and 8-13 Hz frequency 

bands.  These changes in participants’ ERSP responses implied decreased mu suppression 

in the experimental group's post-intervention moving hand condition. 

 During the watching hand task, notable differences were found between the 

control and experimental groups' post-intervention ERSP responses in 5000-13000 

milliseconds range and 8-13 Hz frequency bands.  These changes in participants' ERSP 

responses seemed to reveal increased mu suppression among the experimental 
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participants following the intervention; these changes did not occur among the control 

participants. 

 An examination of the ERSP responses during the moving hand and watching 

hand tasks revealed differences between the experimental group's post-intervention ERSP 

responses in the 6000 and 12000 milliseconds time frame and 8-13 Hz frequency bands.  

These changes in experimental participants' ERSP responses revealed increased mu 

suppression during the moving and watching hand tasks following the music instrument 

instruction intervention. 

Research Question 3 

 Based on findings related to research questions one and two, what observed 

associations may be implied between adaptive behaviors and neurophysiological 

responses of the mirror neuron system of children with autism?  Mirror neurons, 

associated with social and communicative learning, activate while observing and 

executing an action.  Mirror neurons and their function have been associated with several 

high-level cognitive processes, including imitative learning, understanding social 

behavior and language.  Aberrant cortical connectivity affects the mirror neuron system 

of children and adults with autism.  Previously, researchers have reported that children 

with autism maintain mu wave suppression when moving their own hand yet fail to 

suppress mu waves when observing other children’s hand movements (Ramachandran & 

Altschuler, 2009).  These irregularities indicate an abnormal mirror neuron systems 

among children with autism. 
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 In this exploratory study, participants in the experimental group, during specific 

tasks, showed trends toward marked increases of mu wave suppression—a measure of 

increased functioning of the mirror neuron system.  Differences observed in the 

experimental group included decreased mu wave suppression during the moving hand 

condition, and increased mu suppression during the more social watching hand condition.  

Additionally, when comparing the experimental group's post-intervention completion of 

the moving hand and watching hand conditions, the researcher found patterns of 

increased mu wave suppression during the watching hand condition.  Children who 

participated in the instrumental music intervention showed trends of increased activation 

of the mirror neuron system, a network associated with social and communicative 

learning. 

 Examination of the VABS scores across the four domains and 11 subdomains 

revealed that participants’ in the experimental group displayed significant gains in the 

subdomains of Expressive Communication (p = .018), and approached significant gains 

in Interpersonal Socialization (p = .057); whereas the control group did not experience 

these increased changes in their communicative and socialization behaviors.  

Instrumental music study improved social and communicative adaptive behaviors, as 

measured via the VABS. 

 Considering improvements in the experimental participants social and 

communicative adaptive behaviors, and observed trends in increased mu suppression of 

the mirror neuron system—an area associated with social and communicative learning, 

the researcher concluded that there may be an association between the mirror neuron 
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system responses and adaptive behaviors of the experimental participants with autism.  

Additionally, this association seemed to be prevalent and occurred after the experimental 

participants experienced 20 weeks of one-on-one intervention of instrumental music 

instruction. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 
Introduction 

 First, this chapter includes a discussion of previous research on using music 

instruction as a form of intervention for children with autism.  Second, the chapter 

includes a summary of the current research study, including the purpose of the study, 

description of the procedures, and summary of results.  Third, this chapter includes 

implications and recommendations for future research.  Fourth, several limitation of the 

current study are included in Chapter V.  Finally, the content of this chapter offers 

reflections and feedback from the researcher, and from adult parent participants and 

children of this exploratory research study. 

 
Discussion of Associated Previous Research 

 Autism spectrum disorder, or autism, is a neurodevelopmental condition 

characterized by atypical social interaction and social communication (American 

Psychiatric Association (APA), 2013).  Currently, data from the Center for Disease 

Control (CDC) suggest one in 68 children have a diagnosis of autism (Christensen et al., 

2016).  Researchers have found that up to 46% of people with autism, who have an IQ 

less than 50, require high levels of assistance from their families and are not able to lead 

an independent life (Eaves & Ho, 2008; Farley et al., 2009).  Similarly, when IQ is not 

limited to 50 or less, Billstedt et al. (2005) claims up to 78% of adults with autism still 
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have unfavorable outcomes based on similar criteria.  Researchers estimate the lifetime 

cost of supporting an individual with autism and intellectual disability to be 

approximately $2.4 million, while the lifetime cost of supporting an individual with 

autism and no intellectual disability is approximately $1.4 million (Buescher, Cidav, 

Knapp & Mandell, 2014).  Medical expenditures for young people with autism exceed 

typically-developing peers by $4,110-$6,200 per year (Shimabukuro, Grosse & Rice, 

2008).  Individuals with autism, their families and communities financially struggle to 

provide lifelong support needed for the health and wellbeing of themselves and their 

loved ones.  Many find themselves in a state of crisis, balancing basic household 

expenses with intense care costs.  Finding affordable care while improving quality of life 

for those with autism has become a desperate need for many families within the autism 

community. 

 A first step in creating viable solutions to this care crisis is understanding autism 

at a biological level.  Although a reliable biological marker for autism has yet to be 

identified, researchers frequently have described common patterns of hyper- and 

hypoconnectivity within the brain of a person with autism.  In addition, scientists have 

examined a lesser studied system called the mirror neuron system (MNS).  People with 

autism frequently demonstrate connectivity abnormalities associated with the MNS and 

sensory-motor learning (Nishitani, Avikainen & Hari, 2004; Oberman & Ramachandran, 

2007; Williams, Whiten, Suddendorf & Perrett, 2001).  Scholars believe these findings 

stem from cortical disruption early in life, resulting in an altered developmental trajectory 
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of the brain (Courchesne & Pierce, 2005a; Courchesne & Pierce, 2005b).  These 

alterations lead to many of the behavioral characteristics observed in autism. 

Although there is no known cure, another step in creating viable solutions to the 

current care crisis is creating and implementing alternative affordable interventions.  

Increased levels of functioning may be achieved through early and consistent intervention 

services that increase quality of life, independence, and productivity while reducing 

lifetime care costs.  Results of this exploratory study suggest music may be one such 

intervention.  When examining the neurological profiles of musicians and children with 

autism, many scientists speculate about the many benefits of music instruction for 

persons diagnosed with autism.  Cortical areas found to have deficits in the brain of a 

person with autism are often areas of strength in musicians' brains.  Through years of 

repetitive practice, musicians develop many unique skills that increase brain volume, and 

also augment communication between distant cortical regions, and between the left and 

right hemispheres (Schlaug, Jancke, Huang & Steinzetz, 1995).  Many researchers find 

that musical skills transfer to other domains in typically-developing children.  Transfer 

benefits of music instruction also may occur in special populations such as autism, 

greatly enhancing functionality in academic, social, and communication areas. 

 Because children with autism exhibit both an affinity for and special ability in 

music, music may serve as an appropriate, affordable and effective intervention.  Kanner 

(1943) first noted a musical affinity among children with autism in his groundbreaking 

paper, entitled “Autistic Disturbances of Affective Contact”.  In his paper, Kanner 

described multiple cases where children had uncanny knowledge of music, and used 
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music to sooth themselves and/or to interact with others.  Researchers often have noted 

that children with autism display musicality, a special interest in music, and a preference 

for musical stimuli over verbal stimuli (Blackstock, 1978).  Additionally, investigators 

find that people with autism possess superior abilities in pitch memory (Heaton, 

Hermelin, Pring, 1998), labeling (Heaton, 2003), discrimination, and 

discrimination/categorization tasks (Bonnel et al., 2003).  Individuals with autism also 

demonstrate comprehension of the affective qualities found in music (Kasari, Sigman, 

Mundy & Yirmiya, 1990). 

 
Summary of Results 

 In an effort to address the current care crisis and the need for an appropriate, 

affordable and effective intervention, the purpose of this exploratory research study was 

to investigate the effects of instrumental music instruction interventions and non-music 

interventions on neurophysiological responses and adaptive behaviors of children with 

autism.  Individuals were included if they met the Diagnostic and Statistical Manual of 

Mental Disorders Fourth edition revised (DSM-4R) criteria for autism spectrum disorder 

or Asperger’s syndrome, and had never participated in instrumental music instruction.  

Participants consisted of 14 children and their parent, with data collected from a total of 

28 participants.  Seven children, with a mean age of 9.81 years, were assigned randomly 

to a control group, and with their parents or guardian, received 30 minutes per week of a 

one-on-one non-music intervention over a 20-week period.  Seven children, with a mean 

age of 8.54 years, were assigned randomly to an experimental group, and with their 
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parents or guardian, they received 30 minutes per week of one-on-one instrumental violin 

instruction over a 20-week period. 

Prior to and after the music and non-music interventions, each parent completed 

the Vineland Adaptive Behavior Scales II (VABS).  Across the five VABS domains and 

13 subdomains, the parents rated their children's behaviors using the three-point scale of 

0 (never performed), 1 (sometimes or partly performed), and 2 (usually or habitually 

performed).  These domains and subdomains included Communication (Receptive, 

Expressive and Written), Daily Living Skills (Personal, Domestic, and Community), 

Socialization (Interpersonal Relationships, Play and Leisure, and Coping Skills), Motor 

Skills (Fine and Gross), and Maladaptive Behavior (Internalizing and Externalizing) 

domains.  Four domains, Communication, Daily Living Skills, Socialization, and 

Maladaptive Behavior were analyzed to answer the research questions of the current 

study. 

Prior to and after the music and non-music interventions, each child completed an 

electroencephalogram (EEG).  Mirror neuron EEG data were collected from participants' 

responses during three tasks: (1) moving own hand, (2) watching a recorded video of a 

child's moving hand, and (3) watching a bouncing ball.  Mirror neuron data were 

observed through mu rhythms, that is, EEG oscillations in the 8–13 Hz frequency.  These 

data were analyzed through examining recordings from the Cz electrode that measured 

activity in the sensory motor cortex. 

The parents or guardians of 11 of the 14 originally selected children completed 

pre- and post-intervention VABS to measure participants' adaptive behaviors.  Six of the 
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participants were from the music intervention group or experimental group, and five 

participants were from the non-music intervention group or control group.  Twelve 

children were able to participate in electrophysiological data collection in this study, and 

nine children completed pre- and post-EEGs.  Only eight of the participants' EEG scans 

were clear enough to include in the data analyses.  Three pre- and post-intervention EEG 

scans were analyzed for the non-music control group, and five pre- and post-intervention 

EEG scans were analyzed for the experimental group. 

Adaptive Behavioral Results 

The experimental and control groups' pre-intervention and post-intervention 

VABS scores from the four aforementioned domains were analyzed using a two-way 

mixed factorial analysis of variance (ANOVA).  There was a significant interaction effect 

of Condition and Session on participants' Expressive scores (p = .018).  The data analysis 

revealed that experimental participants' and control participants' pre- and post-

intervention Expressive scores were significantly different.  Post-hoc paired t-test 

analyses of the Expressive scores revealed that participants of the music-intervention 

group significantly improved their post-intervention Expressive scores, as measured by 

the VABS (p = .042).  The Expressive scores of participants of the non-intervention 

group, however, decreased slightly; this decrease was not significant (p = .305). 

Within the VABS Daily Living Domain, there were no significant differences 

between the control and experimental  participants' Composite, Personal, Domestic, and 

Community post-intervention scores (p > .05).  Additionally, there were no significant 

differences between participants' pre- and post-intervention Daily Living Domain 
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subdomain mean scores (p > 05).  Specifically, however, differences between 

experimental and control participants' post-intervention Community subdomain scores 

approached significance (p = .058). 

The Composite Socialization scores were affected significantly by the music and 

non-music interventions (p = .021).  Even though the experimental pre-intervention 

Composite mean scores also were significantly higher than the control group's pre-

intervention Composite mean scores (p = .047), the magnitude of the music-intervention 

effect appeared to be greater than the non-music intervention effect.  The Coping Skills 

subdomain scores also were affected significantly by the music and non-music 

interventions (p = .007).  Both the experimental and control groups' Coping Skills mean 

scores increased following the music intervention, and the non-music intervention, 

respectively.  The control group's post-intervention mean score increased only by .40 of a 

point, yet the experimental  group's mean Coping Skills score was notably higher than the 

control group's mean score, increasing from 10.83 points to 12.50 points.  This finding 

supports the premise that the music intervention had a greater effect on participants' 

Coping Skills than the non-music intervention. 

Also notable in the VABS analysis was the interaction effect of Condition and 

Session on Interpersonal means scores, which approached significance (p = .057).  This 

result suggested differences between the experimental and control groups' pre- and post-

intervention mean Interpersonal scores possibly contributed to the significant interaction 

effect of Condition and Session on participants' Socialization Composite mean scores, as 

measured before and after interventions.  This finding suggested that music and non-
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music interventions differentially affect changes in adaptive behaviors of children with 

autism. 

Even though the sample size of this study was small, the effect size was relatively 

large, determined using the Pearson Product Moment Correlation Analysis. For example, 

for the interaction effect of Condition and Sessions on the Communication Domain's 

Expressive behaviors, the effect size was r = .694, and on the Socialization Domain's 

Interpersonal behaviors, the effect size was r = .589.  Both effect sizes exceeded the 

standard for moderately large effect size (r = .50; Cohen, 1988, 1992).  The effect size for 

Expressive behaviors, and for Interpersonal behaviors accounted for approximately 48% 

and 35% of the total variance in participants' adaptive behaviors, respectively, as 

measured by the Vineland Adaptive Behaviors Scales II. 

Finally, as related to adaptive behaviors and characteristics associated with 

participants, amount of time that music-intervention participants devoted to practice was 

examined.  Fisher’s exact tests were used to analyze VABS scores dichotomized by high 

and low violin and music practice time.  High practice was defined as greater than 1000 

total minutes for the 20-week treatment period; while low practice was defined as less 

than 1000 total minutes during the treatment period. While generalizable results were not 

produced by this examination of only three participants, it is interesting that in addition to 

aforementioned increases, 100% of the high-practicing participants also experienced 

increases in scores associated with receptive communication.  These same high practicing 

students also displayed reduced Externalizing Maladaptive Behaviors.  
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Electrophysiological Results 

The electroencephalogram (EEG) recorded the electrical activity of synaptic 

currents within each participant's brain, as measured in Hz.  In the current study, the EEG 

was used to examine mirror neuron activation, or mu rhythms between 8-13 Hz in the 

sensory motor cortex.  

 Examining the moving hand task, differences were found between the control and 

experimental groups’ post-intervention ERSP responses in the 9000-10,000 millisecond 

time frame and 8-13 Hz frequency bands.  When examining the watching hand task, 

differences were found between the control and experimental groups' post-intervention 

ERSP responses in 5000-13000 milliseconds range and 8-13 Hz frequency bands.  When 

comparing control and experimental groups, trends in participants' ERSP responses 

revealed mu rhythm suppression in the experimental group following the intervention. 

 Examining the non-social task of watching a ball bouncing, differences were 

found between the experimental group's pre- and post-intervention ERSP responses 

between 8000 and 11,000 milliseconds, and 8-13 Hz frequency bands.  Participant’s 

ERSP response indicates trends of decreased mu suppression in the experimental group 

post-intervention for this non-social task. 

 Analyses of the post-interventions ERSP responses during the moving hand and 

watching hand tasks revealed differences within each group's ERSP responses.  

Differences were found between the control group's post-intervention responses during 

moving hand and watching hand tasks between the 5000 and 7000, and from 12000 to 

14000 milliseconds time frame, and in the 10-13 Hz frequency bands.  Differences were 



104 

 

found between the experimental group’s post-intervention moving hand and watching 

hand tasks between the 6000 and 12000 milliseconds time frame and 8-13 Hz frequency 

bands.  Analyses of experimental participant’s post-intervention ERSP responses 

revealed trends of increased mu suppression during the watching hand condition. 

 Finally, examination of the post-intervention ERSP responses during the watching 

hand and watching bouncing ball tasks revealed differences within the control group's 

ERSP responses at the 5,000 and 9,000 millisecond time frames, and between the 12,000 

to 14,000 millisecond time frame, and in the 8-12 Hz frequency bands.  Differences also 

were found between the experimental group's post-intervention ERSP responses during 

watch hand and watch ball tasks between the 10,000 and 11,000 milliseconds time frame 

and 8-13 Hz frequency bands.  Analyses of the post-intervention experimental 

participants' ERSP responses indicated a trend in increased mu suppression in the social 

watching hand tasks compared to the non-social task of watching a ball bouncing. 

 
Applications of Research Results 

 This exploratory study finds instrumental music instruction improves social and 

communicative adaptive behaviors as measured by the Vineland Adaptive Behavior 

Scales II.  This exploratory study also finds trends of increased response within the 

mirror neuron system, an area associated with social and communicative learning.  

Results of the present study seem to provide a promising development for the beneficial 

uses of music interventions with children with autism to increase selected adaptive 

behaviors, and to activate desirable mirror neuron systems of the children's brains. 
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 Participants in the experimental group showed patterns of increases in mu wave 

suppression, a measure of increased functioning of the mirror neuron system.  Patterns 

found in the experimental group included decreased mu wave suppression during the 

non-social move hand condition, and increased mu wave suppression during the social 

watch hand condition.  Additionally, when comparing the experimental group's post-

intervention moving hand and watching hand conditions, the researcher found patterns of 

increased mu suppression during the watch hand condition. 

 According to these exploratory findings, instrumental music study may increase 

the activation of the mirror neuron system, a network associated with social and 

communicative learning.  Instrumental music study also improves social and 

communicative adaptive behaviors, as measured by the VABS.  Considering the 

improvements in social and communicative adaptive behaviors and trends of increased 

mu suppression of the mirror neuron system, the researcher believes there may be an 

association between the mirror neuron system responses and adaptive behaviors of 

children with autism.  In this exploratory study, instrumental music instruction seems to 

have targeted the hallmark traits of autism, not only on a behavioral level, but potentially 

at an associated neurophysiological level. 

 The researcher offers several ideas as to why these hallmark traits of autism were 

targeted.  First, children in the experimental music group engaged in, and repetitively 

practiced social and communication skills through an activity that held their interest and 

excited them.  This interest-based learning motivated students to use and build upon their 



106 

 

current social and communication abilities.  Using and building skills in the context of an 

interest-based activity was not work, but fun for the children. 

 Second, the researcher carefully adapted multiple evidence-based practices for use 

during the musical instruction of the experimental group.  These evidence-based 

practices, as outlined by The National Professional Development Center on Autism 

Spectrum Disorder, have been extensively researched and shown to be effective 

intervention methods that increase learning and retention of skills.  Combining an 

interest-based activity with evidence-based practices amplifies growth and development 

of skills targeted during instruction, including social and communicative learning. 

 Finally, the researcher believes the noted musical affinity and ability found in 

populations with autism, increased feelings of confidence, and success.  Enjoying a new 

and special musical skill encouraged students to persevere through difficult moments.  

Multiple experiences of success seemed to reduce the fear of failure and encouraged 

children to keep trying and to keep taking risks through attempting new skills.  Repeated 

success seemed to build confidence. 

 
Implications for Future Research 

While the results of this exploratory study support and highlight the potential of 

music instruction to become an affordable, appropriate, and effective intervention for 

children with autism, several observations about this exploratory study need to be 

addressed in future research.  The first observation concerns sample size.  The adaptive 

behaviors segment of the current study was completed with 11 participants who 

completed the pre- and post-intervention measure of the VABS.  This sample size is quite 
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small making statistical analyses less accurate, generalizable, and limited.  Increasing 

sample sizes to include at least 15 participants per group would improve the validity, 

reliability, and generalizability of the collected data.  The neurophysiological focus of 

this study was completed with only eight participants who completed the pre- and post-

intervention electroencephalogram recordings—three participants in the control group, 

and five participants in the experimental group.  This sample size prevented the execution 

of accurate statistical analysis of the neurophysiological data. Executing another 

behavioral and neurophysiological study, with at least 60 participants (i.e., 30 child 

participants and 30 parent participants), is needed in future research. 

The second observation needing to be addressed involves replicating findings in 

a variety of settings.  This study was designed to examine behavioral and 

neurophysiological outcomes of instrumental music instruction with children on the 

autism spectrum in a one-on-one setting, supported by at-home parental involvement.  

While the present study demonstrated significant increases in social and communicative 

adaptive behaviors (p < .05), and patterns of change in neurophysiological responses, 

future researchers may find alternative outcomes when children with autism study music 

in a group setting.  Eliminating the one-on-one instruction and dividing teacher attention 

among many students fundamentally would shift social and communication interactions 

found in the current study.  A group setting, however, would increase interactions with 

peers.  Shifting social and communication interactions from the instructor to fellow 

students may lead to new and interesting results.  Adaptive behaviors and 

neurophysiological responses might differ in an inclusive music class, where children 
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with autism are integrated with typically-developing peers, as compared to a self-

contained class where children are placed alongside other peers with autism.  A study 

evaluating changes in adaptive behavior and neurophysiological responses before and 

after participation in various group instrumental instruction is needed in future research. 

Examining affordability is another observation that needs to be considered in 

future studies.  While the cost of private instrumental instruction is far below other 

traditional autism therapies (e.g., speech therapy, occupational therapy, and Applied 

Behavior Analysis (ABA)), the cost may still be prohibitive to many middle- and low-

income families.  If increased adaptive behaviors and neurophysiological responses, as 

found in the current study, could be replicated in group instructional settings, music 

intervention may provide families with an appropriate and effective intervention at an 

affordable cost.  Assessing and comparing the affordability and outcome of music 

instruction for children with autism in group and one-on-one settings is needed in future 

research. 

The fourth observation that needs to be addressed in future research focuses on 

availability of music instruction for children with autism.  Community music 

participation may still be prohibitive to many families due to cost, transportation, and/or 

scheduling.  Offering instrumental music instruction to all children with autism within the 

public-school system would be one solution to increasing access.  The infrastructures of 

band and orchestra programs exist in many public schools, and are legally available to 

children with special needs.  Identifying the needs of schools and music teachers (e.g., 
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training, equipment, and support staff) when recruiting and including children with 

autism in their programs is needed in future research. 

Limitations of the Study 

Considering the findings of the current study, it is important to examine several 

limitations of the exploratory study.  First, as discussed previously, the number of 

participants produced a small sample size.  With only 14 children participating in the 

study, results of the study are less generalizable to the population than with an increased 

sample size.  Additionally, of the 14 children participating in the study initially, several 

children were unable to complete the study.  Others children were unable to complete the 

neurophysiological portion of the study further reducing the sample size.  Including more 

participants would increase the generalizability of research results. 

Second, participants included in the study formed a heterogeneous sample of 

children with autism.  Levels of functioning differed greatly between participants.  Some 

children had been diagnosed with Asperger’s syndrome, a high-functioning form of 

autism and were quite verbal.  Other children had been diagnosed with autism and had 

limited use of language.  One child enrolled in the study was non-verbal.  These 

differences contributed to high variability among participants.  Using a more 

discriminating inclusion criteria for participants than used in the current study would 

increase homogeneity among participants and reduce undesirable variability. 

Third, some of the study participants dealt with sensory sensitivities throughout 

the EEG recordings, resulting in participants' physically moving, and thus, producing 

noise or artifacts in some of the EEG recordings.  While some children were able to 
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quietly completed the EEG tasks, others fidgeted, moved, and found it difficult not to 

touch or disturb the cap they wore during the EEG recording sessions.  Electrodes 

attached to the face seemed to irritate participants with sensory sensitivities the most.  

These extra movements created some noisy channel recordings and less accurate 

readings.  These data were then more difficult to analyze accurately.  Including 

participants who are less sensitive to the stimulation of the EEG recording process would 

increase the accuracy of collected neurophysiological data.  Additionally, to accurately 

analyze all participants' EEG data in the future, these noisy recording artifacts may be 

cleaned or deleted from the recordings. 

 
Study Reflections 

Beyond the quantitative nature of this exploratory study, researcher observations 

and comments from child and adult participants deserve attention and reflection.  Overall, 

both children and parents, who participated in the study, expressed their thoughts about 

their experiences during the study.  The researcher also observed some interesting trends. 

When reflecting on the study, it is important to note the differences and 

similarities between the experimental (music) and control (non-music) interventions.  

Both groups were taught by the same person, maintained one-on-one interactions with the 

instructor, and met for equal amounts of time.  The process, however, of learning an 

instrument in the experimental group and the pedagogical approach of the instructor 

involved several additional factors, including: (1) structured teacher/student interactions 

using evidence-based practices, (2) employing music as a tool for interest-based learning, 

(3) joint attention focused on a common interest (the instrument), (4) repetition, (5) 
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frequent praise, and (6) rewards for skills accomplished.  None of these techniques were 

used in the control intervention group.  Additionally, children who practiced more than 

1000 minutes across 20 weeks outside of weekly instruction, experienced additional 

communicative gains and reductions of maladaptive behaviors.  Identifying and reflecting 

on the differences between the experimental and control groups provides additional 

insight as to why an instrumental music intervention may increase social and 

communicative behaviors, and increase desirable responses within the children's brains. 

Reflections on Child Participants 

 Throughout the study, the child participants made numerous comments about the 

study and their experiences in the study.  Reflections on these observations and 

comments by the children throughout the study definitely are worth discussing.  Just like 

typically developing children, the newness and excitement of a new and different activity 

subsided with time for one of the children in the experimental group.  Practicing the 

instrument at home became a struggle; thus, the child's parent created laminated trading 

cards of her son’s favorite video game, which he earned only through violin practice.  

Because of this creative motivator, the child who did not like to practice became one of 

the three high practicing students logging more than 1000 minutes over the 20-week 

intervention period.  This student showed gains in receptive language and coping skills, 

and reduced externalizing maladaptive behaviors. 

 Another interesting observation included the children’s care and respect for 

instruments.  Having worked with children with autism for many years prior to this study, 

the researcher was prepared for the child participants' frustration, anxiety, and outbursts 
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when experiencing the violin and instruction associated with the violin.  Inexpensive 

violins were provided to the children with the anticipation that some instruments would 

get damaged during periods of frustration, anxiety, or outbursts.  At the completion of the 

study, all children had shown great respect and gentle care of their instrument.  No 

instruments were broken during the completion of this study. 

 One particular observation of the child participants warrants additional research.  

Most children of both the control and experimental music group displayed absolute or 

perfect pitch abilities.  Absolute pitch is the ability to recognize the pitch of any given 

pitch or reproduce a pitch by name.  While children in this study did not have the training 

to identify pitches by their letter names, other subtle clues indicated absolute pitch ability 

among most of the participants.  Multiple times during music and non-music 

interventions, children sang their favorite songs or pieces of music.  When comparing the 

original key from the recording and the key sung by the child, these almost always 

matched.  In addition, the teacher, who does not have absolute pitch, would sing violin 

compositions, or segments of songs to be learned during the music interventions.  The 

experimental children often corrected the teacher by restarting and singing the piece in its 

correct key.  The ability of absolute pitch seemed particularly prevalent among the 

experimental children with autism.  Studying this phenomenon further would be 

worthwhile by comparing incidences of absolute pitch among typically-developing 

children as compared to children with autism. 

 One last observation concerning the children in the experimental group involves 

self-image and confidence.  One child repeatedly said, “I am smart because I can play the 
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violin.”  Another child repeatedly said, “This is easy for me!”  The process of learning to 

play the instrument seemed to boost some children’s self-confidence.  Another child 

stated with self-satisfaction, “I am the only one in my family who can play an 

instrument.”  The skill of instrument playing seemed to make this child feel special and 

unique. 

 Throughout the research study, the researcher noticed expressions of joy and 

happiness when each child achieved music skills.  Often when working with children 

with autism, parents, teachers, and therapists focus on what the child cannot do, and on 

how skill levels compare to typically-developing peers.  While attending violin lessons, 

there was no template for when skills should be achieved, or for how many repetitions of 

a skill to achieve mastery.  Each musical skill was acquired in the child’s own time and 

celebrated as a great accomplishment.  Children would smile, high-five, and sometimes 

flap their arms with joy.  Frequently, the children's faces "lit up "and their eyes 

"sparkled."  Musical study seemed to help the children feel accomplished, smart, and 

capable, thereby, help develop their self-confidence. 

Reflections on Adult Participants 

 One parent stated, “If my child can play the violin, what can’t he do?”  This sums 

up a general feeling expressed by parents—hope.  Playing a violin is perceived as very 

difficult in our society.  When children, labeled as having disabilities, successfully 

execute a song on their violins, parents experience hope.  Along with feelings of hope, 

two parents described increased positive attention expressed toward their children from 

extended family members, or from the church community following public performances.  
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One parent said her child did something special and the family admired it.  Another 

parent told a story about how members of the family's church now treated her son as a 

child, not as “the child with autism.” 

 Three parents of children in the experimental group relayed messages from school 

teachers near the end of the study.  The school teachers described increased attention and 

focus at school.  These three parents conveyed to the researcher that nothing had changed 

at home, no new medicines had been added, and no new therapies started, other than 

music and music practice.  All three parents attributed this change to music lessons. 

 Finally, at the completion of this study, three families with four students chose to 

continue with violin lessons.  As of the writing of this document, three of the continuing 

students remain in violin lessons with one of the children completing a successful 

audition and playing in his community youth orchestra. 

In summary, instrumental music instruction in this study increased desirable 

adaptive behaviors, and seemed to produce trends of increased neurophysiological 

responses in children with autism spectrum disorder.  Additionally, the researcher 

established a possible association between the mirror neuron system responses and 

adaptive behaviors of child participants with autism.  Improving levels of functioning 

through an appropriate, affordable, and effective intervention can increase quality of life, 

independence, and productivity of people with autism, while also reducing lifetime care 

costs.  The findings of this study support the premise that music instruction may be one 

such intervention.
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APPENDIX B 

PARENT PARTICIPANT CONSENT FORM 
 
 
Study #: 12-0128 
 

UNIVERSITY OF NORTH CAROLINA AT GREENSBORO 

CONSENT TO ACT AS A HUMAN PARTICIPANT 
 
 
Project Title:  Music Speaks Autism 
 
Project Director: Dr. Patricia Sink, UNC Greensboro School of Music 
 
Participant's Name: ___________________________________  
 
What is the study about?  
This is a research project. The purpose of this study is to research possible benefits of 
instrumental music study on children with autism.   
 
Why are you asking me? 
You have been selected to participate in this study because your child has been diagnosed 
with autism or Asperger's syndrome, is between the ages of 6 and 12 and has never 
participated in instrumental music lessons. 
 
What will you ask me to do if I agree to be in the study? 
First, we will ask you to complete a Vineland Adaptive Behavioral Scales questionnaire 
about your son or daughter participating in thpe study (20-60 minutes).  If you feel unable 
or uncomfortable answering any Vineland questions you may elect to skip to the next 
question.    Next, we ask you to accompany your child to the EEG lab during their first 
brain scan.  An EEG is a neuroimaging procedure which measures electrical activity in 
the brain.  During the EEG, you will sit with your child while an elastic cap containing 
electrodes is placed on your child's head.  This cap will make contact with the skin of the 
scalp, forehead, chin, and earlobes.  The electrodes are made of small metal disks and do 
not penetrate the skin.  The skin will be rubbed vigorously with electrode paste.  The 
electrode paste is mildly abrasive, so your child might experience a slight reddening of 
the skin.  This is normal and will disappear shortly after the electrodes are removed.  
Placing the electrodes usually takes about 20 minutes. All electrodes passively measure 
electrical activity and do not deliver any electrical impulses.  Once the electrodes are 
connected, you will accompany your child while he or she is asked to listen to sounds 
delivered through headphones, as instructed by the experimenter and while their brain 
electrical activity is recorded.  This session takes place at the UNC Department of 
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Psychiatry and is estimated to take 2 hours. If your child is participating in the control 
group, you will be asked to take part in a non-musical intervention with your child.  This 
includes accompanying your child to weekly (30 minutes) one-on-one, child guided 
sessions.  Twenty weeks later you will be asked to complete a second Vineland 
questionnaire (20-60 minutes) and a second EEG scan (2 hours).  The study will then 
conclude. 
 
If your child is participating in the experimental group, you will also be asked to take part 
in violin lessons with your child.  This includes accompanying your child to weekly 
lessons (30 minutes) and facilitating regular practice at home (time will vary according to 
your child's attention span: 5-30 minutes per day).  You will be asked to keep a record of 
time spent practicing and give the total number of minutes practiced to your instructor 
each week.  This information will later be correlated with changes in adaptive behavior 
and brain activation.  Parents will also be asked to play audio or video recordings daily of 
pieces to be played.  Although not required for participation in the study, parents and 
children will have the opportunity to attend group lessons and performances throughout 
the study.  You will be asked to attend 20 weeks of lessons.  After completing 20 weeks 
of lessons, parents will accompany their child during the second EEG and complete a 
second Vineland questionnaire.  The study will then conclude. 
 
Is there any audio/video recording? 
No. 
 
What are the dangers to me? 
The Institutional Review Board at the University of North Carolina at Greensboro has 
determined that participation in this study poses minimal risk to participants. 
 
If you have any concerns about your rights, how you are being treated or if you have 
questions, want more information or have suggestions, please contact Eric Allen in the 
Office of Research Compliance at UNCG toll-free at (855)-251-2351. 
 
Questions, concerns or complaints about this project or benefits or risks associated with 
being in this study can be answered by Dr. Patricia Sink who may be contacted at (336) 
665-2760 or psink@triad.rr.com.   
 
Are there any benefits to society as a result of me taking part in this research? 
Understanding changes in brain activation and behavioral modifications associated with 
musical study may provide practitioners in our society new and effective intervention 
strategies to improve the functional level of children and young adults on the autism 
spectrum. 
  
Are there any benefits to me for taking part in this research study? 
There are no direct benefits to parent participants in this study. 
  

mailto:psink@triad.rr.com
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Will I get paid for being in the study?  Will it cost me anything? 
There are no costs to you or payments to you as a result of participation in this study. 
 
How will you keep my information confidential? 
All information obtained in this study is strictly confidential unless disclosure is required 
by law. Your child's information will be stored in a locked file cabinet and will be 
destroyed upon completion of the study.  Participants will not be identified by name 
when data are disseminated. 
  
What if I want to leave the study? 
You have the right to refuse to participate or to withdraw at any time, without penalty.  If 
you do withdraw, it will not affect you in any way.  If you choose to withdraw, you may 
request that any of your data which has been collected be destroyed unless it is in a de-
identifiable state. 
 
What about new information/changes in the study? 
If significant new information relating to the study becomes available which may relate 
to your willingness to continue to participate, this information will be provided to you. 
 
What about future studies? 
Over the course of this study it is possible that we may want to contact you for continued 
participation or offer other members of your family the opportunity to participate in the 
study. 
 
Voluntary Consent by Participant: 
By signing this consent form you are agreeing that you read, or it has been read to you, 
and you fully understand the contents of this document and are openly willing consent to 
take part in this study.  All of your questions concerning this study have been answered. 
By signing this form, you are agreeing that you are 18 years of age or older and are 
agreeing to participate, or have the individual specified above as a participant participate, 
in this study described to you by Michelle Chinn Cannon.  
 
 
Signature: ________________________ Date: ________________ 
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APPENDIX C 

CONSENT FOR MINOR TO ACT AS A HUMAN PARTICIPANT 

 
Study #: 12-0128 
 

UNIVERSITY OF NORTH CAROLINA AT GREENSBORO 
 

CONSENT FOR A MINOR TO ACT AS A HUMAN PARTICIPANT 
 
 
Project Title:  Music Speaks Autism  

Project Director:  Dr. Patricia Sink, UNC Greensboro School of Music 

Participant's Name:  _______________________________________ 

What is the study about?  

The purpose of this study is to research possible benefits of instrumental music study on children 
with autism. 

Why are you asking my child? 

Your child has been selected because she/he has been diagnosed with autism or Asperger's 
syndrome and is between the ages of 6 and 12.  Your child has also been selected because they 
have not previously participated in instrumental music lessons. 

What will you ask my child to do if I agree to let him or her be in the study? 

Children will be asked to undergo an initial EEG: a neuroimaging procedure which measures 
electrical activity in the brain.  During the EEG participants will wear an elastic cap that 
contains electrodes that will make contact with the skin of the scalp, forehead, chin, and 
earlobes.  The electrodes are made of small metal disks and do not penetrate the skin.  
The skin will be rubbed vigorously with electrode paste.  The electrode paste is mildly 
abrasive, so participants might experience a slight reddening of the skin.  This is normal 
and will disappear shortly after the electrodes are removed.  Placing the electrodes 
usually takes about 20 minutes. All electrodes passively measure electrical activity and 
do not deliver any electrical impulses.  Once the electrodes are connected, participants 
will be asked to listen to sounds delivered through headphones, as instructed by the 
experimenter, while their brain electrical activity is recorded. Multiple rest breaks are 
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provided to prevent fatigue.  This session takes place at the UNC Department of 
Psychiatry and is estimated to take 2 hours. 

Children will be randomly placed in either a control group or intervention group.  The 
intervention group will be asked to participate in 20 weeks of private violin lessons (30 
minutes each), practice skills learned during lessons at home with a parent/guardian and 
listen to future pieces to be played.  Lesson format and instruction will be adapted to 
meet the developmental needs of each child.  The control group will be asked to 
participate in 20 weeks of non-musical interventions (30 minutes each), and avoid 
enrollment in private instrumental music instruction. Before completion of the study, a 
follow-up EEG will be performed and parents will complete a second Vineland Adaptive 
Behavior Scales.  The study will then conclude. 

What are the dangers to my child? 

Participating in this study poses minimal risks to your child.  While every effort will be 
made to create a joyful and peaceful environment for participants, children may 
experience some anxiety during the EEG and limited frustration associated with learning 
a new and complex skill such as playing an instrument. 

If you have any concerns about your child’s rights, how they are being treated or if you have 
questions, want more information or have suggestions, please contact Eric Allen in the 
Office of Research Compliance at UNCG at (336) 256-1482.  Questions about this project 
or benefits or risks associated with being in this study can be answered by Dr. Patricia 
Sink who may be contacted at (336) 665-2760 or emailed at psink@triad.rr.com.  

Are there any benefits to my child as a result of participation in this research study? 

Parents of children participating in the control group will be provided information about 
changes in their child's adaptive behavior and brain activation. Children participating in 
the experimental group may experience an increase in gross and fine motor skills, 
auditory discrimination and memory, increased brain activation and increased social 
awareness. 

 

Are there any benefits to society as a result of my child taking part in this research? 

Understanding changes in brain activation and behavioral modifications associated with 
musical study may provide practitioners in our society new and effective intervention 
strategies to improve the functional level of children and young adults on the autism 
spectrum. 
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Will my child get paid for being in the study?  Will it cost me anything for my kid to 
be in this study? 

There are no costs to you or payments to you or your child as a result of participation in 
this study. 

How will my child’s information be kept confidential? 

All information obtained in this study is strictly confidential unless disclosure is required 
by law. Your child's information will be stored in a locked file cabinet and will be 
destroyed upon completion of the study.  Participants will not be identified by name 
when data are disseminated. 

What if my child wants to leave the study or I want him/her to leave the study? 

You have the right to refuse to allow your child to participate or to withdraw him or her 
at any time, without penalty.  If your child does withdraw, it will not affect you or your 
child in any way.  If you or your child chooses to withdraw, you may request that any 
data which has been collected be destroyed unless it is in a de-identifiable state. 

What about new information/changes in the study?  

If significant new information relating to the study becomes available which may relate 
to your willingness allow your child to continue to participate, this information will be 
provided to you. 

Voluntary Consent by Participant: 

By signing this consent form, you are agreeing that you have read it or it has been read to 
you, you fully understand the contents of this document and consent to your child taking 
part in this study.  All of your questions concerning this study have been answered. By 
signing this form, you are agreeing that you are the legal parent or guardian of the child 
who wishes to participate in this study described to you by Michelle Chinn Cannon.  

 

 

____________________________________  Date: ________________ 

Participant's Parent/Legal Guardian’s Signature  
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APPENDIX D 

CHILD EXPERIMENTAL TREATMENT PARTICIPANT ASSENT FORM 

 

Study #: 12-0128 
 

Music Speaks Autism 

Picture Narrative 

My name is Miss Michelle 

If you say it is o.k., we will: 
 

Take a picture of your brain! 
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Go to a violin house 

 

Go inside the violin house... 

 

 

And learn to play the violin! 

 



154 

 

Finally, we will take another picture of your brain. 

 

 

Do you want to join this study?  You can say  

 

YES 
  

or  

 

NO  

 

You may say YES now and say NO later. 

No one will be sad if you say no. 
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Do you have questions?  Ask Michelle! 

 

Her phone number is (919) 357-1359. 

 

 

 

 

 

Yes I want to join this study __________________________________ 
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APPENDIX E 

CHILD CONTROL TREATMENT PARTICIPANT ASSENT FORM 

 

Study #: 12-0128 
 

Music Speaks Autism 

Picture Narrative 

My name is Miss Michelle 

If you say it is o.k., we will: 
 

Take a picture of your brain! 
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Go to a house 

 

Go inside the house... 

 

 

And play games! 

 



158 

 

Finally, we will take another picture of your brain. 

 

 

Do you want to join this study?  You can say  

 

YES 
  

or  

 

NO  

 

You may say YES now and say NO later. 

No one will be sad if you say no. 

 



159 

 

 

 

Do you have questions?  Ask Michelle! 

 

Her phone number is (919) 357-1359. 

 

 

 

 

 

Yes I want to join this study __________________________________ 


	CONSENT FOR A MINOR TO ACT AS A HUMAN PARTICIPANT



