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ABSTRACT 

 

Flowering plant populations have various reproductive systems, potentially influencing the 

effects of different ecological factors on reproductive success. Gynodioecious systems include 

female plants that only produce seeds and hermaphroditic plants that produce both seeds and 

pollen. We tested whether floral display and flowering synchrony with conspecific neighbors 

affected the reproductive success of each sex in a gynodioecious species, Silene acaulis. 

Furthermore, we explored how varying the spatial scale and type (which sexes included in the 

neighborhood) of the neighborhoods used to define synchrony affected its correlation with fruit 

production. We observed four sites of this alpine cushion plant throughout the 2016 and 2017 

flowering periods at Niwot Ridge, Colorado. We counted open flowers every other day and the 

total number of flowers and fruits produced at the end of each season for 628 individuals. Female 

plants had significantly higher raw fruit production and per-flower fruit set than hermaphrodites. 

The total number of flowers produced by an individual was positively correlated with fruit set, 

suggesting that individuals that produce more flowers are more likely to be pollinated. We found 

a positive correlation between synchrony of flowering and raw fruit production, however the 

mechanism behind that relationship is still unknown. Varying the spatial scale or type of 

neighborhood by which we calculated synchrony scores had no effect on synchrony’s 

relationship with fruit production, however we still recommend that future studies on the effects 

of flowering synchrony carefully consider the effect of neighborhood size. Understanding the 

factors that influence the reproductive success of a gynodioecious population clarifies the 

processes that may influence populations’ responses to climate change. 
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INTRODUCTION  

 

Reproductive success is a critical component of life history for many plants. Because plants are 

mostly sessile organisms, and individuals cannot migrate, reproduction provides the only means 

of population persistence other than survival. The rate at which new individuals are added to a 

population must equal or exceed the rate at which individuals die, else the population will 

decline to extinction over time. Reproduction allows for seed dispersal, and, if a local population 

goes extinct, dispersal from nearby populations can recolonize the empty patch of suitable 

habitat, providing a “rescue effect” that aids in metapopulation persistence (Hanski 1998). 

However, connectivity between subpopulations is necessary for the rescue effect to occur. 

Connectivity is lacking for plant species without a long-range dispersal mechanism, which 

means that patches of suitable habitat have no mechanism of being recolonized after a local 

population is extinguished (Eriksson 1996). 

 

While short-term reproductive success is not as vital in populations of long-lived species that 

have the ability to endure periods of adverse reproductive conditions (Eriksson 1996), it is 

nevertheless a factor affecting the probability of persistence of those populations. Thus, the study 

of factors that influence seasonal reproductive success in a population of a long-lived species 

helps shed light on how the population may respond to changes in those factors. 

 

Within a season, pollinators visit flowering plants in a non-random fashion. If a plant is pollen 

limited, an increase in pollination services is expected to increase its seed and/or fruit set 

(Ashman et al. 2004; Burd 1994; Bierzychudek 1981). Bumble bees visit plants with large floral 

displays more often than plants with smaller displays, and visit proportionally similar or fewer 

flowers per visit on many-flowered plants than few-flowered plants (Ishii, Hirabayashi, & Kudo 

2008; Grindeland, Sletvold, & Ims 2005; Miyake & Sakai 2005; Mitchell et al. 2004; Ohashi & 

Yahara 2002, 1998; Vrieling et al. 1999; Goulson et al. 1998; Vaughton & Ramsey 1998; 

Conner & Rush 1996; Ohara & Higashi 1994; Eckhart 1991; Klinkhamer & de Jong 1990), 

suggesting that plants with larger floral displays receive more diverse pollen loads.  
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Synchronously flowering patches of conspecifics can increase pollinator visitation and access to 

pollen donors (Hegland & Boeke 2006; Ghazoul 2005; Grindeland, Sletvold, & Ims 2005; 

Waites & Ågren 2004; Ollerton & Diaz 1999; Dreisig 1995; Kunin 1993; Klinkhamer & de Jong 

1990), or can conversely cause intraspecific competition for pollinators (Steven et al. 2003). 

Thus, conspecific flowering synchrony can have positive, negligible, or negative effects on 

reproductive success that vary by study system (Kempe 2015; Ison et al. 2014; Pires, Silva, & 

Freitas 2014; Parra-Tabla & Vargas 2007; Buide, Díaz-Peromingo, & Guitián 2002; McIntosh 

2002; Ollerton & Lack 1998; Augspurger 1983). 

 

We chose to investigate the role of conspecific flowering synchrony and individual floral display 

in an ecologically important native alpine perennial, Silene acaulis, in the Colorado Rocky 

Mountains. In harsh alpine and arctic environments, cushion plants like S. acaulis provide 

favorable microclimates that facilitate establishment of both native and non-native plants (in S. 

acaulis: Molenda, Reid, & Lortie 2012; Antonsson, Björk, & Molau 2009; and in other species: 

Reid, Lamarque, & Lortie 2010; Cavieres et al. 2007) as well as arthropods (Molenda, Reid, & 

Lortie 2012), thereby stabilizing species diversity within the habitat (Badano et al. 2006). 

However, the cumulative area of alpine habitat is expected to shrink as climate warms and lower 

elevation species invade mountaintops (Dirnböck, Essl, & Rabitsch 2011), and with that native 

alpine species are projected to be displaced (Halloy & Mark 2003). Silene acaulis is at 

particularly high risk of displacement due to its low growth rate and fecundity (Morris & Doak 

1998), and low tolerance to shade, which would be introduced by encroaching tree lines expected 

with climate warming (Dirnböck, Essl, & Rabitsch 2011; Gehrig-Fasel, Guisan, & Zimmermann 

2007).  

 

The decline or total loss of S. acaulis from an alpine community could have negative 

downstream impacts on organisms that typically establish in its cushion. Reproduction and seed 

dispersal provide the only mechanism by which S. acaulis could shift to higher elevations to find 

more suitable habitat as climate warms, thus it is important to understand factors that might 

significantly impact its fecundity. The relative importance of floral synchrony to the reproductive 

success of S. acaulis in the Rocky Mountains is currently unknown, but synchrony has been 

shown to have a positive role in a European population (Kempe 2015). 
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Study questions 

Using a gynodioecious population of S. acaulis found in the Rocky Mountains, four main 

questions are explored in this thesis: 

1. Does plant sex affect reproductive success?  

Prediction: Females will produce more fruits and higher per-flower fruit sets than 

hermaphrodites due to a higher allocation of resources towards female functions. 

2. Does individual floral display affect reproductive success? More specifically, does the 

total number of flowers a plant produces correlate with its fruit set?  

Prediction: Fruit set will increase with floral display due to many-flowered plants 

receiving more pollinator services than few-flowered plants. 

3. Does the spatiotemporal flowering synchrony of an individual with its conspecific 

neighbors affect its reproductive success?  

Prediction: Synchrony will correlate positively with fruit production because 

synchronously flowering patches attract more pollinators and synchronously flowering 

plants have more access to nearby pollen.  

4. Does the relationship between flowering synchrony and reproductive success change 

depending on the scale or type of neighborhood used to define synchrony? In this 

question, scale refers to the radius of the neighborhood and type refers to which sexes of 

plants are included as neighbors (both sexes or only hermaphrodites). 

Predictions: Synchrony defined by larger-scale neighborhoods will correlate more 

positively with fruit production than synchrony defined by small-scale neighborhoods 

because the main pollinator of S. acaulis, Bombus sylvicola, responds to flowering 

density at larger scales (Thomson 1981). Synchrony defined by hermaphroditic 

neighborhoods will correlate more positively with fruit production than synchrony 

defined by both-sexed neighborhoods because synchrony with specifically pollen donors 

(hermaphrodites) gives an individual more access to pollen, which should increase fruit 

production if the population is pollen limited.  
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METHODS 

 

Study location and species 

This study was conducted at the Mountain Research Station, Niwot Ridge (Front Range), 

Colorado in the summers of 2016 and 2017 as part of a National Science Foundation Research 

Experience for Undergraduates (REU) internship. The focal species, Silene acaulis 

(Caryophyllaceae), is a perennial, moss-like cushion plant with a circumboreal arctic and alpine 

distribution (Jones & Richards 1962), and is a common member of tundra habitat in North 

America’s Rocky Mountains (Shykoff 1988). Individuals are extremely long-lived (the oldest 

cushions are estimated to be over 300 years old) and grow very slowly, however they can 

experience significant diebacks from year to year (Morris & Doak 1998). Each cushion posses a 

singular tap root and dense, green foliage occuring in rosettes (Jones & Richards 1962). Silene 

acaulis produces many small (9-12 mm in diameter) rose-pink flowers, and various populations 

have been characterized as subdioecious (Hegi 1981; Müller 1883), dioecious (Gleason & 

Cronquist 1963), or gynodioecious (Morris & Doak 1998; Shykoff 1992, 1988). The S. acaulis 

that occur in the Rocky Mountains (variety subacaulescens (FN Williams) CL Hitchc. and 

Maguire) exhibit a gynodioecious breeding system (Delph 2004; Delph & Carroll 2001; Marr 

1998; Morris & Doak 1998; Shykoff 1992, 1988) with females tending to produce more 

(Shykoff 1988) and higher quality (Delph 2004) seeds than hermaphrodites. Hermaphrodites are 

protandrous, with anthers typically dehiscing one to two days after anthesis, and self-compatible, 

while females are obligate outcrossers (Shykoff 1988). The main pollinators of S. acaulis are 

alpine bumble bees, specifically Bombus sylvicola queens (Marr 1997; Shykoff 1992), however 

moths, flies, ants, and beetles (Delph & Carroll 2001; Marr 1997) also regularly visit their 

flowers. Seeds are dispersed locally by gravity and, to a certain extent, by wind, although they do 

not bear specialized structures to aid wind dispersal (Gehring & Delph 1999). 

 

Selection of observational sites 

Four sites (SN1, SN2, SN3, and SN4; Fig A1) of S. acaulis were selected on Niwot Ridge, CO 

(40.05˚N, 105.59˚W) in 2001 by Doak and Morris (2010) as part of a long-term demographic 

study and lie on an elevational gradient (3540 – 3613 m) completely above treeline. The sites 

also vary by microhabitat ranging from fellfield to dry meadow, with two sites lying on the West 
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Knoll and two on the East Knoll separated by a shallow valley. Each site has three to five 

transects (~20 x 1 m each) in which every individual S. acaulis has been permanently tagged (or, 

in the case of small individuals, marked with colored toothpicks due to low survival rates) and 

given an X-Y location relative to the transect line, where X is the distance along the transect line 

and Y is the distance perpendicular to the line. Precise GPS locations of the start and end of each 

transect allowed the use of each individual’s X-Y mapping to determine its absolute location in 

ArcMap 10.4.1 (ESRI 2016; Fig. A2). We used the Generate Near Table tool to identify each 

plant’s neighbors for five different neighborhood radii (0.5 m, 1 m, 3 m, 5 m, whole site; see Fig. 

A3). Although there are over a thousand tagged individuals on Niwot Ridge, data were only 

collected from individuals in two transects of each site for the purposes of this study, which 

totaled 628 plants. 

 

Flowering phenology and synchrony indices 

We collected flowering phenology data in 2016 and 2017 by counting the number of open 

flowers on each plant (N = 628 and 495 in 2016 and 2017, respectively) during regular surveys 

every 2-5 days during the flowering season (June 15-July 14 in 2016, June 15-July 17 in 2017). 

Flowers were considered open if pollinators could use them (petals at least 45˚ open) and closed 

if stigmas (in the case of females) and both stigmas and anthers (in the case of hermaphrodites) 

were wilted. The sex of each flowering plant was recorded and verified with records from 

previous years. We excluded plants for which sex could not be determined or was determined to 

be different in 2016 and 2017 from analyses that required the sex of the plant. With the 

phenology data collected, we were able to determine the day of year of first flower, last flower, 

and peak flower (the day on which the most flowers were recorded) for each individual and site. 

We also calculated each individual’s flowering period (day of last flower - day of first flower) 

and each site’s flowering period (the day the last plant no longer had open flowers - the day the 

first plant was recorded having open flowers). Each individual’s proportional flowering period 

was calculated by dividing its flowering period by its site’s flowering period. 

 

Flowering synchrony (heretofore referred to as synchrony) was measured using an index that 

takes into account the proportion of open flowers on the focal plant that overlapped temporally 

with open flowers on its neighbors. The synchrony index (SIp) was calculated with the equation, 
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(Kempe 2015; Mahoro 2002), where Fpd and Fnd are the number of flowers open on focal plant p 

and on all of its neighbors n, respectively, on day d; D is the number of days that flowers were 

counted for an individual; and Fps and Fns are the total number of flowers produced during the 

season by focal plant p and all of its neighbors n, respectively (Kempe 2015). The index outputs 

values from zero to one, where one is the most synchronous an individual could be and zero is 

not synchronous at all (i.e., the individual only flowered while all of its neighbors had no 

flowers). Ten different synchrony indices (heretofore referred to as SI) were calculated for every 

plant which varied by the type of plants considered to be neighbors (hermaphrodites only or all 

conspecifics) and the spatial scale of the neighborhood (0.5 m, 1 m, 3 m, 5 m, and whole site 

radii; see Fig. A3). We distinguished the SIs defined by only hermaphroditic neighbors because 

only hermaphrodites can act as pollen donors for outcrossing, suggesting that females (obligate 

outcrossers) might have a specific reproductive response to being synchronous with 

hermaphrodites. Hereafter, the different SIs will be referred to by their scale and which sexes of 

neighbors are included such that 3 m SI (hermaphrodites) and Site SI (both sexes) indicate the 

SIs calculated with a 3 m radius of hermaphroditic neighbors and with a whole site radius of 

either sexed neighbors, respectively. Plants were given an SI of ‘NA’ if they were never recorded 

having flowers or if they had no neighbors at the given scale (this occurred most often in 0.5 m 

SI (hermaphrodites)). 

 

Defining reproductive success 

Doak and Morris (2010) have conducted yearly censuses of this population at the end of each 

summer season since 2001, in which they count each plant’s fruits and measure the major 

(longest, a) and minor (perpendicular to the major axis, b) axes (if the plant had more than 20 

rosettes). The area of the cushion is calculated as the area of an ellipse (A = πab). The yearly 

censuses have continued up to and including the 2017 season. We also recorded the total number 

of flowers a plant produced during the 2016 and 2017 yearly censuses (on July 29 in 2016 and 

July 31 in 2017) as the total number of open, wilted, and fruiting flowers. This total flower count 

allowed us to calculate per-flower fruit set (hereafter referred to as fruit set) as the fruit count 

divided by the total flower count. Fruit set can be thought of as the proportion of flowers that 
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become a fruit. Raw fruit count may be considered a better measure than fruit set to compare 

reproductive success between plants in this system because the total flower counts ranged from 1 

to 428, so in a pair of plants that both had a fruit set of 0.75, one could have had 3 out of 4 total 

flowers become fruits and the other could have had 300 out of 400 total flowers become fruits. 

However, fruit set may be a better metric to compare pollinator activity between plants. The total 

flower count was used as a metric for floral display, and either raw fruit production or fruit set 

was used as the measure of reproductive success depending on the question we were exploring.  

 

Statistical analyses 

General protocol 

We checked data distributions for normality using Shapiro-Wilk normality tests before selecting 

parametric or nonparametric versions of each statistical test used. Variances of data distributions 

were compared using F-tests. For analyses comparing two groups (e.g., females and 

hermaphrodites or 2016 and 2017) with unequal variances and/or non-normal distributions, we 

used Mann-Whitney U-tests, whereas t-tests were used for groups with equal variances and 

normal distributions. In some cases, linear models were created to identify significant predictor 

variables for a response variable and analyses of variance (ANOVAs) or analyses of covariance 

(ANCOVAs) were used on those models to identify any significant interactions between 

predictor variables. All correlations were tested using Pearson product-moment correlations that 

output the correlation coefficient as Pearson’s r. 

 

All analyses were done in R version 3.3.1 (R Core Team 2016). Most figures were made in base 

R or with the R package ggplot2 (Wickham 2009), and the correlogram in figure 11 was made 

with the corrplot package (Wei & Simko 2017). 

 

Assessing differences in reproductive success between the sexes 

The number of fruits an individual plant produced each year from 2003 to 2017 was averaged 

and those averages were subsetted by sex. Data from 2001 and 2002 were excluded because the 

number of plants for which fruit production data was collected was substantially lower in those 

years (N = 22 in 2001 versus N = 307 in 2003). The variances of mean raw fruit production for 

females and hermaphrodites were not equal (F = 0.42408, P < 0.0001, Female df = 264, 
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Hermaphroditic df = 133), and Shapiro-Wilk normality tests suggest that neither female (W = 

0.60425, P < 0.001) nor hermaphroditic (W = 0.62687, P < 0.001) means followed a normal 

distribution. Therefore, a one-tailed Mann-Whitney U-test was used to compare mean fruit 

production of the sexes. 

 

Total flower production was collected along with fruit production in 2016 and 2017, and each 

plant’s fruit set was calculated for those years as the number of flowers divided by the number of 

fruits. The data were subsetted by year (2016 and 2017) and sex (female and hermaphroditic), 

and an F-test concluded that the variances of fruit set for females and hermaphrodites were not 

equal in 2016 (F = 1.603, female df = 128, hermaphroditic df = 264, P = 0.001452) nor in 2017 

(F = 1.5483, female df = 81, hermaphroditic df = 139, P = 0.02394). Shapiro-Wilk normality 

tests suggest that none of the subsets followed a normal distribution: 2016 female fruit sets (W = 

0.95403, P = 0.0002489), 2016 hermaphrodite fruit sets (W = 0.91557, P < 0.0001), 2017 female 

fruit sets (W = 0.89003, P < 0.0001), and 2017 hermaphrodite fruit sets (W = 0.81741, P < 

0.0001). Therefore, one-tailed Mann-Whitney U-tests were used to compare fruit sets between 

the sexes for both 2016 and 2017. 

 

The relationship between floral display and fruit set 

Since total flower production data were only collected in 2016 and 2017, analyses in this section 

only include plants that flowered in 2016 and/or 2017. An ANCOVA of the linear model, Fruit 

set ~ TotFlr + Year + Sex + TotFlr:Year + TotFlr:Sex + Year:Sex, where TotFlr is the total 

number of flowers a plant produced in a season and colons represent interactions, was conducted 

to identify any significant interactions between predictor variables (Table 3). No interaction 

terms were significant, suggesting that the effect of total flower production on fruit set did not 

vary by sex or year, and that the effect of sex on fruit set did not vary by year, so the correlation 

between total flower production and fruit set was run on a dataset including data from both sexes 

and years (N = 969). 

 

The relationship between flowering synchrony and fruit production 

Separate ANCOVAs of the linear model, Fruit ~ SI + Sex + Site + Year + SI:Sex + SI:Site + 

SI:Year, where Fruit is raw fruit production and colons represent interaction terms, were run for 
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each of the ten different SIs to identify any significant interactions between predictor variables. 

SI, site, sex, and year were significant predictors of fruit number in all ten models, but SI did not 

interact with sex, site, or year in seven of the models (Table 4). The 3 m SI (both sexes) did, 

however, have significant interactions with sex, site, and year. Similarly, 3 m SI 

(hermaphrodites) had significant interactions with sex and year, and 5 m SI (both sexes) had a 

significant interaction with year. Since some significant interactions occurred between certain 

SIs and sex, year, or site, separate correlations were run between each SI and raw fruit 

production for the complete dataset as well as data subsetted by sex, year, or site. 

 

To test whether the effect of SI on fruit production changed with different neighborhood scales 

(1 m to whole site radii) or type (both sexes or hermaphrodites only), a separate regression was 

run for each SI on the linear model, Fruit ~ SI. The 0.5 m SIs were excluded because they would 

have reduced the sample size for all correlations from 498 to 428. These regressions were run for 

the complete dataset (Fig. 5 & 6, Table 5), the data subsetted by sex (Fig. 7, Table 6), the data 

subsetted by year (Fig. 8, Table 7), and the data subsetted by site (Fig. 9, Table 8). Correlations 

were compared using Z-tests that required Pearson’s r to be transformed to Fisher’s z prior to 

comparisons (Meng, Rosenthal, & Rubin 1992). 

 

RESULTS 

 

Assessing differences in reproductive success between the sexes 

A one-tailed Mann-Whitney U-test concluded that the mean number of fruits female plants 

produced (mean = 13.25) from 2003 to 2017 was significantly higher than that of hermaphroditic 

plants (mean = 8.50, W = 21026, P = 0.0013, df = 397, Fig. 1, Table 1). However, the number of 

individuals for which fruit production was recorded varied each year (see df column in Table 1), 

so one-tailed Mann-Whitney U-tests testing if females produced more fruits than hermaphrodites 

were also conducted for each year separately (Fig. 2, Table 1). Females produced significantly (P 

< 0.05) more fruits than hermaphrodites in 2006, 2009, 2010, 2013, 2016, and 2017, and tended 

(P < 0.1) to produce more fruits in 2011 and 2015. While hermaphrodites had higher averages of 

fruits produced than females in 2005 and 2012, their means were not significantly different.  
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One-tailed Mann-Whitney U-tests were used to compare fruit sets between the sexes in 2016 and 

2017 and concluded that females had significantly higher fruit sets than hermaphrodites in both 

2016 (W = 23472, P < 0.0001, df = 392) and 2017 (W = 7059.5, P = 0.0019, df = 220, Fig. 3, 

Table 2). Plants in 2016 tended to have higher fruit sets than plants in 2017 (W = 49082, P = 

0.0056, df = 614).  

 

A t-test concluded that female plants (mean = 9.40 days) had open flowers on their cushions for 

significantly fewer days than hermaphroditic plants (mean = 11.53 days, t = -3.987, P < 0.0001, 

df = 350.21). 

 

The relationship between floral display and fruit set 

There was a significant positive correlation between total flower count and fruit set when plants 

of different sexes and years were run in the same regression (r = 0.2928, t = 9.5213, P < 0.0001, 

df = 967, Fig. 4). 

 

The relationship between flowering synchrony and fruit production 

Figures 5-9 and tables 5-8 show that all SIs correlated positively with raw fruit production, no 

matter how the data were subsetted, although a few correlations in the subsetted analyses were 

non-significant (see Fig. 7 & 9). This suggests that, overall, synchrony has a positive correlation 

with fruit production.  

 

Tables 9 and 10 show the results of pairwise correlation coefficient comparisons of the 

correlations between SI and fruit production for neighborhood type and scale, respectively (for 

the complete dataset only). The non-significant differences in r-values in these figures and tables 

suggest that the correlation between SI and fruit production did not change with the scale or type 

of the neighborhood used to define the SI.  

 

To understand why the correlation between fruit production and SI did not vary by which SI was 

used, correlations were performed between Site SI and the other four scales (0.5, 1, 3, and 5 m 

radii) for SIs using both sexed neighbors (Fig. 10A) and only hermaphroditic neighbors (Fig. 

10B) and results for all correlations are reported in Table 11. The correlations strengthen as the 
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radii for each SI increase (i.e., become more similar to the Site SI radius). A correlogram was 

created to go one step further in showing how each type of SI correlated to every other SI (Fig. 

11). The results of all 55 correlations shown in the correlogram are reported in Table 12. All 

correlations between SIs were significant and strongly positive (all r > 0.6 and P < 0.0001). The 

strongest correlations were between SIs of similar scale and type (e.g., Site SI (both sexes) and 

Site SI (hermaphrodites)), while the weakest correlations were between SIs using radii of 

opposing scale and type (e.g., Site SI (both sexes) and 0.5 m SI (hermaphrodites)). 

 

Since each SI is calculated with an equation that takes into account the proportion of open 

flowers on the focal plant that overlapped temporally with open flowers on its neighbors, we 

thought the strong positive correlations between each SI might have to do with the flowering 

period of an individual plant relative to its site’s flowering period. Hermaphroditic plants (mean 

+/- SE = 0.3768 +/- 0.0103) flowered for a higher proportion of their site’s flowering period than 

female plants (mean +/- SE = 0.3166 +/- 0.0145, t = -3.39, P = 0.0004, df = 322.69, Fig. 12). 

Furthermore, the proportional flowering period of an individual had a significant positive 

correlation with its Site SI (both sexes) (r = 0.5269, t = 13.411, P < 0.0001, df = 468, Fig. 13). 

 

DISCUSSION 

 

Assessing differences in reproductive success between the sexes 

We initially asked whether the sex of individuals in a gynodioecious population of Silene acaulis 

affects reproductive success. Female plants in our study had higher raw fruit production and fruit 

sets than hermaphrodites on average (Figs. 1-3), which supports the hypothesis that females are 

more reproductively successful than hermaphrodites. These results are consistent with other 

studies on sexual polymorphisms in S. acaulis (Delph 2004; Shykoff et al. 2003; Delph & 

Carroll 2001; Shykoff 1992, 1988). The disparity between sexes is likely due to a higher 

allocation of resources towards producing fruits by females than by hermaphrodites (see 

discussion in Burd 1994). For example, though Shykoff (1988) found no difference in individual 

flowering periods between the sexes, we found that hermaphroditic plants flowered for two days 

longer than females on average, suggesting that hermaphrodites may need to allocate more 

resources towards flower maintenance than females. Hermaphrodites also allocate resources 
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towards male functions, such as producing pollen (Charlesworth & Charlesworth 1981) and 

producing larger flowers than females (Philipp, Jakobsen, & Nachman 2009; Shykoff et al. 

2003). Females can instead allocate resources towards fruit and seed development (Shykoff et al. 

2003; Sakai et al. 1997; Burd 1994). 

 

Differential rates of inbreeding may provide an alternative or additional hypothesis to explain 

higher reproduction rates in S. acaulis females. Shykoff (1988) showed that offspring from 

female S. acaulis have higher survival rates than those of outcrossed hermaphrodites, which in 

turn have higher survival rates than selfed hermaphrodites, suggesting that the superiority of 

females’ offspring can be partially, but not completely, attributed to inbreeding depression in 

hermaphrodites (see Sun & Ganders 1986 for further support of this hypothesis). Shykoff (1992) 

showed that female S. acaulis flowers recruit more pollen tubes than hermaphroditic flowers, 

which increases gametophytic competition that favors fit pollen genotypes, thereby increasing 

offspring fitness, as well as probability of fertilization, of female flowers. Male-sterility (being 

female) in plants is thought to follow cytoplasmic inheritance, suggesting that sex expression is 

inherited maternally (Laporte et al. 2001). Delph & Carroll (2001) suggest that ecological factors 

such as site quality impact the maintenance and frequency of females in populations even though 

Gouyon et al. (1991) posit that cytoplasmic inheritance should not be affected by any ecological 

factor. Since females in the Niwot Ridge population have significantly higher reproductive 

success than hermaphrodites when measured by both raw fruit production and fruit set, and 

female fruits produce higher quality seeds that produce more successful offspring, it is clear that 

females play an important role in increasing the overall reproductive success and fitness of this 

gynodioecious population by reducing inbreeding depression and maintaining genetic diversity 

among individuals (Sakai et al. 1997). Hence, the maintenance of females is likely due to both 

genetic (e.g., cytoplasmic inheritance and inbreeding depression) and ecological (e.g., pollination 

intensity and site quality) factors. 

 

The relationship between floral display and fruit set 

Our second question was: does the floral display, measured by total number of flowers, a plant 

produces affect its reproductive success? The significant positive correlation between total 

flower count and fruit set (Fig. 4) suggests that individual flowers on a plant with a high number 
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of flowers are more likely to become fruits than flowers on a plant with a low number of flowers. 

It is widely observed that floral display size is an important visual signal for pollinators at 

multiple scales from large patches to individual plants (Ishii, Hirabayashi, & Kudo 2008; 

Grindeland, Sletvold, & Ims 2005; Thomson 1981). All else being equal, individual plants with 

more flowers should provide greater visual and olfactory cues at short distances making those 

plants both more attractive to pollinators and a better actual investment; many-flowered plants 

are therefore more likely to experience greater visitation and pollination services compared to 

those with a smaller display.  

 

While bumble bees visit many-flowered plants more often, they visit a similar or lower 

proportion of flowers on those plants than on few-flowered plants (Ishii, Hirabayashi, & Kudo 

2008; Grindeland, Sletvold, & Ims 2005; Miyake & Sakai 2005; Mitchell et al. 2004; Ohashi & 

Yahara 2002, 1998; Vrieling et al. 1999; Goulson et al. 1998; Vaughton & Ramsey 1998; 

Conner & Rush 1996; Ohara & Higashi 1994; Eckhart 1991; Klinkhamer & de Jong 1990), 

which indicates that flowers on many-flowered plants receive more diverse pollen, increasing 

gametophytic competition and fertilization probability of flowers on those plants (Shykoff 1992), 

thereby increasing fruit set. An alternative and untested hypothesis to explain the observed 

relationship between total flower count and fruit set could be that plants that have enough 

resources to produce many flowers are more likely to have enough resources to successfully 

convert those flowers into fruits after being pollinated, which is likely the case if the population 

is not pollen limited. We intend to assess the relative contributions of resources and pollination 

to reproductive success in the upcoming data-collection season. 

 

The relationship between flowering synchrony and fruit production 

Our third question was: does the spatiotemporal flowering synchrony of an individual with its 

conspecific neighbors affect its reproductive success? The overall positive, albeit weak, 

correlation between every type of SI and fruit production (Fig. 5-9), suggest that plants that 

flower synchronously with their conspecific neighbors have a higher reproductive success. These 

results support our prediction and could support the hypothesis that neighborhood floral display 

synchrony acts to attract pollinators to the neighborhood, thereby increasing pollinator visitation 

to and reproductive fitness of plants in that neighborhood. It could also support the hypothesis 
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that higher flowering synchrony increases reproductive success by giving plants in a 

neighborhood more access to pollen donors. For either of these hypotheses to be supported, the 

population must be under some degree of pollen limitation, otherwise more access to pollen 

donors and/or more frequent pollinator visitation would not alter reproductive success. 

Unfortunately, we have yet to experimentally assess pollen limitation in this population, which 

means we are not able to directly distinguish effects of pollen limitation and resource limitation 

on reproductive success. The only other study on the effects of flowering synchrony on 

reproductive success in S. acaulis, done by Kempe (2015), also reports a positive correlation 

between synchrony and reproductive success and attributes that relationship to pollen limitation, 

based on observed pollen limitation in another nearby population of S. acaulis 13 years prior 

(Alatalo & Molau 2001). Nevertheless, the potential for either or both the pollinator attraction or 

the pollen donor hypotheses to be valid exists and warrants further study. 

 

Our fourth question was: does the relationship between flowering synchrony and reproductive 

success change with the neighborhood scale or type (which sexes of neighbors are included) by 

which flowering synchrony is defined? Here, the positive relationship between SI and fruit 

production did not differ depending on which scale or type of neighborhood was used, no matter 

how the dataset was subsetted (i.e., by year, sex, or site; Figs. 5-9 and Tables 9 & 10).  

 

Since the correlations between fruit and SIs of different sized neighborhoods were not different 

(Fig. 6; also see Fig. 5 & Table 10), the prediction that synchrony at larger scales would be better 

predictors for reproductive success is not supported. The main pollinator of S. acaulis, Bombus 

sylvicola, responds to flowering densities at around 500 m2 patch sizes (Thomson 1981), which 

is about the size of our sites. If the hypothesis that synchrony increases reproductive success by 

attracting pollinators to the neighborhood were supported, and pollinators are expected to 

respond to larger neighborhood sizes, we would have expected SIs defined by larger 

neighborhoods to have stronger correlations with fruit production than SIs defined by smaller 

neighborhoods. Therefore, our results do not support the hypothesis that synchrony increases 

reproductive success via pollinator attraction. However, as later discussed, S. acaulis may not be 

an ideal system to use when trying to identify the mechanism by which synchrony and 

reproductive success are related. 
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These results also fail to support our prediction that the effect of SI on reproductive success 

would vary by neighborhood type (what sexes were considered neighbors). Since the correlations 

between fruit and SIs of both sexed neighborhoods and hermaphroditic neighborhoods were not 

different (Fig. 6; also see Fig. 5 & Table 9), the hypothesis that synchrony increases reproductive 

success via pollen donor access is not supported. If the hypothesis were supported, we would 

have expected to see stronger correlations between fruit and SIs (hermaphrodites) than SIs (both 

sexes). Specifically, we expected synchrony with hermaphroditic neighbors to be a larger factor 

in female than in hermaphroditic reproductive success because females are obligate outcrossers 

that rely on hermaphrodites as pollen donors while hermaphrodites are self-compatible, however 

those correlations were no different (Fig. 7). This could suggest that the population is not pollen 

limited, however we did not test for pollen limitation directly. 

 

The strong positive correlations between Site SI and the other neighborhood scales (Fig. 10) as 

well as among all pairwise SIs (Fig. 11) provide insight into why the effect of synchrony did not 

change with neighborhood scale or type. Since all types and scales of SIs are highly correlated, it 

makes sense that the correlations between each distinct SI and fruit production would not differ 

much. The strong positive correlation between proportional flowering period (individual 

flowering period divided by its site’s flowering period) and Site SI (Fig. 13) helps to elucidate 

why all SIs are so highly correlated. Individual S. acaulis in this population seem to keep their 

flowers open for high proportions of their site’s flowering period (Fig. 12), suggesting each site 

and the whole population are considered highly synchronous.  

 

Perhaps plants that flower for a lower proportion of their population’s flowering period, or where 

the whole population is less synchronous, might exhibit more variable synchrony indices at 

different scales, which would allow for the detection of fine-scale impacts of floral display 

synchrony on reproductive success. To get an idea of how relatively short this population’s 

flowering period is (our sites averaged 4.2 weeks), Arroyo, Armesto, & Villagran (1981) 

reported that alpine species at 3550 meters-above-sea-level (similar to our sites) in the Chilean 

Andes had an average population flowering period of 10.8 weeks. The proportionally long 

flowering period of individuals in the Niwot Ridge population (individuals averaged 10.8 days, 
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around a third of their site’s flowering period) may serve as a bet-hedging strategy to increase the 

chance of pollinator visitation in an alpine habitat documented to have low levels of insect 

diversity and activity (Bingham & Orthner 1998; Ashman & Schoen 1994). 

 

The yearly minimum temperature on Niwot Ridge has been increasing for the past two decades, 

and the minimum and maximum July temperatures have been increasing over the past six 

decades (McGuire et al. 2012). These temperature shifts could lengthen growing periods for 

plants due to earlier onset of spring events, such as last frost, leafing, and flowering, and later 

onset of fall events, such as first frost and leaf color change (Linderholm 2006; Menzel et al. 

2006; Robeson 2002; Menzel & Fabian 1999). If the overall flowering period of the population 

on Niwot Ridge increases, more fine-scale impacts of floral synchrony on reproductive success 

may be seen if the population as a whole becomes less synchronous, with plants in highly 

synchronous patches potentially receiving more visits from pollinators than plants in less 

synchronous patches due to variable pollinator attraction. 

 

Conclusions 

We add to the collection of studies that describe the mechanism by which females are maintained 

in a gynodioecious population, that is, by having significantly higher reproductive fitness than 

hermaphrodites. Further, we observe a positive relationship between total flower production and 

per-flower fruit set, however the mechanism behind that relationship cannot be distinguished by 

this study in its present form. It is clear that flowering synchrony is a significant predictor of 

reproductive success in this population, however the mechanism by which that relationship exists 

is not yet understood. These three factors, sex, flower production, and flowering synchrony, are 

significant predictors of reproductive success and should be considered when attempting to make 

a parsimonious model for predicting reproductive success of individuals in this population.  

 

Future studies on the impacts of floral display and flowering synchrony on reproductive success 

should experimentally assess pollination limitation by hand-pollinating a few plants at each site 

to compare fruit production between natural and hand-pollinated plants. This would help the 

researcher distinguish between the relative effects of resource and pollination limitation on 

reproductive success (Burd 1994; Bierzychudek 1981) and would thereby strengthen any 
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hypotheses implicating pollen or resource limitation as factors influencing trends in reproductive 

success. Furthermore, if a researcher wishes to study how the spatial scale of flowering 

synchrony alters the relationship between synchrony and reproductive success, we recommend 

they choose a study system in which individual plants have short flowering periods relative to 

their population so that fine-scale variation in flowering schedule can be detected. 

 
TABLES 

 
Table 1.  The results of one-tailed Mann-Whitney U-tests comparing the fruit production of 
females and hermaphrodites each year from 2003 to 2017 and their average fruit production over 
those years (last row). The p-values for years in which females produced significantly more 
fruits than hermaphrodites (P < 0.05) are bold, and years in which females tended to produce 
more fruits than hermaphrodites (P < 0.1) are italic.   
 

Year p-value df 
Mean 

(females) Mean (herm) 
SE 

(females) SE (herm) 
2003 0.3489 305 22.73 15.42 4.88 2.32 
2004 0.7034 319 6.93 5.98 1.72 0.88 
2005 0.7132 331 16.61 17.25 3.15 2.38 
2006 0.0001 329 8.53 4.53 1.51 0.80 
2007 0.3204 256 7.00 6.53 1.12 0.91 
2008 0.8474 351 6.52 5.97 1.50 0.78 
2009 0.0021 358 34.69 19.80 6.54 2.73 
2010 0.0001 360 33.37 13.63 5.58 1.68 
2011 0.0564 361 5.41 4.06 1.02 0.61 
2012 0.7944 371 3.13 3.30 0.87 0.54 
2013 0.0438 371 3.73 2.65 0.81 0.44 
2014 0.3246 376 12.57 8.36 2.74 1.28 
2015 0.0716 384 17.21 11.09 2.39 1.26 
2016 0.0017 397 26.51 18.07 4.36 1.97 
2017 0.0418 325 10.40 6.63 1.58 0.94 

Average 0.0013 397 13.25 8.50 1.84 0.85 
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Table 2.  The results of one-tailed Mann-Whitney U-tests comparing the fruit set of females and 
hermaphrodites in 2016 and 2017. The p-values for years in which females produced 
significantly more fruits than hermaphrodites (P < 0.05) are bold.   
 

Year p-value df 
Mean 

(females) Mean (herm) 
SE 

(females) SE (herm) 
2016 <0.0001 392 0.4479 0.2589 0.0257 0.0142 
2017 0.0019 220 0.3743 0.2285 0.0369 0.0227 

 
Table 3.  The p-values of each term from an ANOVA of the linear model, Fruit set ~ TotFlr + 
Year + Sex + TotFlr:Year + TotFlr:Sex + Year:Sex, where TotFlr means the total number of 
flowers a plant produced in a season. Significant (P < 0.05) p-values are bold, and nearly 
significant (P < 0.1) p-values are italic.  
 

 Term in model  
 TotFlr Year Sex TotFlr:Year TotFlr:Sex Year:Sex Residuals 

p-value <0.0001 0.0009 <0.0001 0.4587 0.8948 0.0764 - 
F-value 34.993  11.109 60.105   0.5498   0.0175   3.1505 - 

df 1 1 1 1 1 1 661 
 
Table 4. The p-values of each term from an analysis of covariance (ANCOVA) of the linear 
model, Fruit ~ SI + Sex + Site + Year + SI:Sex + SI:Site + SI:Year. The synchrony index (SI) 
used for each model is specified, and significant (P < 0.05) terms for each model are bold. The 
residual degrees of freedom (df) for each model are also reported. 
 

 
Term in model  

SI used in model SI Sex Site Year SI:Sex SI:Site SI:Year df 
0.5 m SI (both) 0.0103 0.0023 0.0013 <0.0001 0.5952 0.2911 0.5819 462 
0.5 m SI (herm) 0.0021 0.0023 0.0102 0.0003 0.4384 0.1832 0.3527 416 
1 m SI (both) 0.0006 0.0012 0.0013 <0.0001 0.1094 0.3316 0.1709 486 
1 m SI (herm) 0.0006 0.0009 0.0012 <0.0001 0.1227 0.2474 0.3935 486 
3 m SI (both) <0.0001 0.0001 0.0014 <0.0001 0.0336 0.0389 0.0071 486 
3 m SI (herm) <0.0001 0.0002 0.0015 <0.0001 0.0494 0.0954 0.0495 486 
5 m SI (both) <0.0001 0.0002 0.0012 <0.0001 0.0938 0.0565 0.0341 486 
5 m SI (herm) <0.0001 0.0002 0.0021 <0.0001 0.3724 0.1076 0.1404 486 
Site SI (both) 0.0001 0.0003 0.0006 <0.0001 0.6468 0.1025 0.0981 486 
Site SI (herm) 0.0003 0.0004 0.0013 <0.0001 0.9858 0.4296 0.2236 486 
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Table 5. The results from a regression of the linear model, Fruit ~ SI, where SI refers to the 
specific synchrony index used in the regression. Significant (P <0.05) correlations have their p-
value in bold. These tests correspond to Figs. 5 & 6. 
 

SI used in test r r2 p-value t df 
1 m SI (both) 0.1478 0.0219 0.0009 3.3291 496 
3 m SI (both) 0.2051 0.0421 <0.0001 4.6674 496 
5 m SI (both) 0.1842 0.0339 <0.0001 4.1727 496 
Site SI (both) 0.1651 0.0272 0.0002 3.7270 496 
1 m SI (herm) 0.1472 0.0217 0.0010 3.3137 496 
3 m SI (herm) 0.1898 0.0360 <0.0001 4.3045 496 
5 m SI (herm) 0.1689 0.0285 0.0002 3.8166 496 
Site SI (herm) 0.1537 0.0236 0.0006 3.4648 496 

 
Table 6. The results from a regression of the linear model, Fruit ~ SI, subsetted by sex, where SI 
refers to the specific synchrony index used in the regression. ‘Fems’ refers to females and 
‘Herms’ refers to hermaphrodites. Significant (P <0.05) correlations have their p-value in bold. 
These tests correspond to Fig. 7. 
 

SI used in test Sex r r2 p-value t df 
1 m SI (both) Fems 0.2050 0.0420 0.0067 2.7469 172 
3 m SI (both) Fems 0.2756 0.0759 0.0002 3.7599 172 
5 m SI (both) Fems 0.2412 0.0582 0.0013 3.2599 172 
Site SI (both) Fems 0.1731 0.0300 0.0223 2.3055 172 
1 m SI (herm) Fems 0.2053 0.0421 0.0066 2.7508 172 
3 m SI (herm) Fems 0.2618 0.0685 0.0005 3.5574 172 
5 m SI (herm) Fems 0.2035 0.0414 0.0071 2.7265 172 
Site SI (herm) Fems 0.1478 0.0218 0.0517 1.9596 172 
1 m SI (both) Herms 0.1302 0.0170 0.0190 2.3566 322 
3 m SI (both) Herms 0.2014 0.0406 0.0003 3.6891 322 
5 m SI (both) Herms 0.1958 0.0383 0.0004 3.5829 322 
Site SI (both) Herms 0.2308 0.0533 <0.0001 4.2566 322 
1 m SI (herm) Herms 0.1341 0.0180 0.0158 2.4275 322 
3 m SI (herm) Herms 0.1831 0.0335 0.0009 3.3412 322 
5 m SI (herm) Herms 0.2113 0.0446 0.0001 3.8788 322 
Site SI (herm) Herms 0.2342 0.0548 <0.0001 4.3227 322 
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Table 7. The results from a regression of the linear model, Fruit ~ SI, subsetted by year, where SI 
refers to the specific synchrony index used in the regression. Significant (P <0.05) correlations 
have their p-value in bold. These tests correspond to Fig. 8. 
 

SI used in test Year r r2 p-value t df 
1 m SI (both) 2016 0.1407 0.0198 0.0140 2.4705 302 
3 m SI (both) 2016 0.2114 0.0447 0.0002 3.7583 302 
5 m SI (both) 2016 0.1753 0.0307 0.0022 3.0943 302 
Site SI (both) 2016 0.1509 0.0228 0.0084 2.6533 302 
1 m SI (herm) 2016 0.1314 0.0173 0.0220 2.3031 302 
3 m SI (herm) 2016 0.1824 0.0333 0.0014 3.2245 302 
5 m SI (herm) 2016 0.1512 0.0229 0.0083 2.6582 302 
Site SI (herm) 2016 0.1415 0.0200 0.0135 2.4839 302 
1 m SI (both) 2017 0.2124 0.0451 0.0030 3.0113 192 
3 m SI (both) 2017 0.2347 0.0551 0.0010 3.3450 192 
5 m SI (both) 2017 0.2775 0.0770 0.0001 4.0020 192 
Site SI (both) 2017 0.2923 0.0854 <0.0001 4.2349 192 
1 m SI (herm) 2017 0.2328 0.0542 0.0011 3.3176 192 
3 m SI (herm) 2017 0.2617 0.0685 0.0002 3.7579 192 
5 m SI (herm) 2017 0.2856 0.0816 0.0001 4.1293 192 
Site SI (herm) 2017 0.2800 0.0784 0.0001 4.0422 192 
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Table 8. The results from a regression of the linear model, Fruit ~ SI, subsetted by site, where SI 
refers to the specific synchrony index used in the regression. Significant (P <0.05) correlations 
have their p-value in bold. These tests correspond to Fig. 9. 
 

SI used in test Site r r2 p-value t df 
1 m SI (both) SN1 0.1599 0.0256 0.0498 1.9777 149 
3 m SI (both) SN1 0.1371 0.0188 0.0932 1.6896 149 
5 m SI (both) SN1 0.1522 0.0232 0.0622 1.8792 149 
Site SI (both) SN1 0.1693 0.0287 0.0377 2.0968 149 
1 m SI (herm) SN1 0.1672 0.0280 0.0401 2.0706 149 
3 m SI (herm) SN1 0.1510 0.0228 0.0643 1.8640 149 
5 m SI (herm) SN1 0.1604 0.0257 0.0491 1.9840 149 
Site SI (herm) SN1 0.1770 0.0313 0.0297 2.1948 149 
1 m SI (both) SN2 0.0728 0.0053 0.4138 0.8199 126 
3 m SI (both) SN2 0.1548 0.0240 0.0810 1.7590 126 
5 m SI (both) SN2 0.1662 0.0276 0.0608 1.8918 126 
Site SI (both) SN2 0.2060 0.0424 0.0197 2.3624 126 
1 m SI (herm) SN2 0.0810 0.0066 0.3633 0.9124 126 
3 m SI (herm) SN2 0.1367 0.0187 0.1238 1.5493 126 
5 m SI (herm) SN2 0.1435 0.0206 0.1060 1.6280 126 
Site SI (herm) SN2 0.1932 0.0373 0.0289 2.2101 126 
1 m SI (both) SN3 0.1769 0.0313 0.0266 2.2382 155 
3 m SI (both) SN3 0.2587 0.0669 0.0011 3.3347 155 
5 m SI (both) SN3 0.2432 0.0592 0.0021 3.1222 155 
Site SI (both) SN3 0.2106 0.0443 0.0081 2.6820 155 
1 m SI (herm) SN3 0.1637 0.0268 0.0405 2.0656 155 
3 m SI (herm) SN3 0.2311 0.0534 0.0036 2.9577 155 
5 m SI (herm) SN3 0.2183 0.0477 0.0060 2.7856 155 
Site SI (herm) SN3 0.1658 0.0275 0.0380 2.0932 155 
1 m SI (both) SN4 0.1958 0.0383 0.1273 1.5462 60 
3 m SI (both) SN4 0.2625 0.0689 0.0393 2.1069 60 
5 m SI (both) SN4 0.1777 0.0316 0.1671 1.3986 60 
Site SI (both) SN4 0.1493 0.0223 0.2468 1.1695 60 
1 m SI (herm) SN4 0.2811 0.0790 0.0269 2.2685 60 
3 m SI (herm) SN4 0.2658 0.0706 0.0368 2.1356 60 
5 m SI (herm) SN4 0.1300 0.0169 0.3138 1.0159 60 
Site SI (herm) SN4 0.1517 0.0230 0.2391 1.1891 60 
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Table 9. The results of each pairwise correlation comparison for neighborhood type (i.e., whether 
both sexes or only hermaphrodites were considered neighbors). The correlation coefficients (r) 
represent the correlation between the given SI and fruit production. There was no significant 
difference between the correlation coefficients of each SI type at any scale. The sample size (n) 
was 498 for all correlations. 
 

First SI First r Second SI Second r Fisher's z p-value 
1 m SI (both) 0.1478 1 m SI (herm) 0.1472 0.0108 0.9914 
3 m SI (both) 0.2051 3 m SI (herm) 0.1898 0.2513 0.8016 
5 m SI (both) 0.1842 5 m SI (herm) 0.1689 0.2476 0.8044 
Site SI (both) 0.1651 Site SI (herm) 0.1537 0.1828 0.8550 

 
Table 10. The results of each pairwise correlation comparison for neighborhood size (i.e., what 
neighborhood radius was used to define the SI). The correlation coefficients (r) represent the 
correlation between the given SI and fruit production. There was no significant difference 
between the correlation coefficients of any SI size combination. The sample size (n) was 498 for 
all correlations. 
 

First SI First r Second SI Second r Fisher's z p-value 
1 m SI (both) 0.1478 3 m SI (both) 0.2051 -0.9303 0.3522 
1 m SI (both) 0.1478 5 m SI (both) 0.1842 -0.5876 0.5568 
1 m SI (both) 0.1478 Site SI (both) 0.1651 -0.2776 0.7814 
3 m SI (both) 0.2051 5 m SI (both) 0.1842 0.3427 0.7318 
3 m SI (both) 0.2051 Site SI (both) 0.1651 0.6528 0.5139 
5 m SI (both) 0.1842 Site SI (both) 0.1651 0.3100 0.7566 
1 m SI (herm) 0.1472 3 m SI (herm) 0.1898 -0.6898 0.4903 
1 m SI (herm) 0.1472 5 m SI (herm) 0.1689 -0.3507 0.7258 
1 m SI (herm) 0.1472 Site SI (herm) 0.1537 -0.1055 0.9160 
3 m SI (herm) 0.1898 5 m SI (herm) 0.1689 0.3391 0.7345 
3 m SI (herm) 0.1898 Site SI (herm) 0.1537 0.5843 0.5590 
5 m SI (herm) 0.1689 Site SI (herm) 0.1537 0.2452 0.8063 
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Table 11. The results of correlations performed between site-scale SI and the other four scales 
(0.5, 1, 3, and 5 m radii) for SIs using both sexed neighbors (Fig. 10A) and only hermaphroditic 
neighbors (Fig. 10B). All p-values are less than 0.0001 and are in bold to indicate significance (P 
< 0.05). 
 

First SI Second SI r r2 p-value t df 

Site SI 
(both) 

0.5 m SI (both) 0.6296 0.3964 <0.0001 17.6050 472 
1 m SI (both) 0.6849 0.4690 <0.0001 20.9320 496 
3 m SI (both) 0.8749 0.7655 <0.0001 40.2409 496 
5 m SI (both) 0.9295 0.8639 <0.0001 56.1159 496 

Site SI 
(herm) 

0.5 m SI (herm) 0.6028 0.3633 <0.0001 15.5912 426 
1 m SI (herm) 0.6547 0.4287 <0.0001 19.2906 496 
3 m SI (herm) 0.8512 0.7245 <0.0001 36.1198 496 
5 m SI (herm) 0.9166 0.8402 <0.0001 51.0722 496 

 
Table 12. The results of each correlation in the correlogram (Fig. 11), in which each synchrony 
index (SI) is correlated with every other SI. All p-values are less than 0.0001 and are in bold to 
indicate significance (P < 0.05). 
 

First SI Second SI r p-value df 
0.5 m SI (both) 0.5 m SI (both) 1.000 NA 473 
0.5 m SI (herm) 0.5 m SI (both) 0.897 <0.0001 427 
1 m SI (both) 0.5 m SI (both) 0.813 <0.0001 473 
1 m SI (herm) 0.5 m SI (both) 0.741 <0.0001 473 
3 m SI (both) 0.5 m SI (both) 0.723 <0.0001 473 
3 m SI (herm) 0.5 m SI (both) 0.702 <0.0001 473 
5 m SI (both) 0.5 m SI (both) 0.687 <0.0001 473 
5 m SI (herm) 0.5 m SI (both) 0.661 <0.0001 473 
Site SI (both) 0.5 m SI (both) 0.630 <0.0001 473 
Site SI (herm) 0.5 m SI (both) 0.608 <0.0001 473 
0.5 m SI (herm) 0.5 m SI (herm) 1.000 NA 427 
1 m SI (both) 0.5 m SI (herm) 0.765 <0.0001 427 
1 m SI (herm) 0.5 m SI (herm) 0.815 <0.0001 427 
3 m SI (both) 0.5 m SI (herm) 0.726 <0.0001 427 
3 m SI (herm) 0.5 m SI (herm) 0.725 <0.0001 427 
5 m SI (both) 0.5 m SI (herm) 0.687 <0.0001 427 
5 m SI (herm) 0.5 m SI (herm) 0.687 <0.0001 427 
Site SI (both) 0.5 m SI (herm) 0.615 <0.0001 427 
Site SI (herm) 0.5 m SI (herm) 0.603 <0.0001 427 
1 m SI (both) 1 m SI (both) 1.000 NA 497 
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1 m SI (herm) 1 m SI (both) 0.917 <0.0001 497 
3 m SI (both) 1 m SI (both) 0.802 <0.0001 497 
3 m SI (herm) 1 m SI (both) 0.795 <0.0001 497 
5 m SI (both) 1 m SI (both) 0.756 <0.0001 497 
5 m SI (herm) 1 m SI (both) 0.738 <0.0001 497 
Site SI (both) 1 m SI (both) 0.685 <0.0001 497 
Site SI (herm) 1 m SI (both) 0.669 <0.0001 497 
1 m SI (herm) 1 m SI (herm) 1.000 NA 497 
3 m SI (both) 1 m SI (herm) 0.776 <0.0001 497 
3 m SI (herm) 1 m SI (herm) 0.801 <0.0001 497 
5 m SI (both) 1 m SI (herm) 0.738 <0.0001 497 
5 m SI (herm) 1 m SI (herm) 0.750 <0.0001 497 
Site SI (both) 1 m SI (herm) 0.658 <0.0001 497 
Site SI (herm) 1 m SI (herm) 0.655 <0.0001 497 
3 m SI (both) 3 m SI (both) 1.000 NA 497 
3 m SI (herm) 3 m SI (both) 0.977 <0.0001 497 
5 m SI (both) 3 m SI (both) 0.952 <0.0001 497 
5 m SI (herm) 3 m SI (both) 0.931 <0.0001 497 
Site SI (both) 3 m SI (both) 0.875 <0.0001 497 
Site SI (herm) 3 m SI (both) 0.866 <0.0001 497 
3 m SI (herm) 3 m SI (herm) 1.000 NA 497 
5 m SI (both) 3 m SI (herm) 0.936 <0.0001 497 
5 m SI (herm) 3 m SI (herm) 0.947 <0.0001 497 
Site SI (both) 3 m SI (herm) 0.846 <0.0001 497 
Site SI (herm) 3 m SI (herm) 0.851 <0.0001 497 
5 m SI (both) 5 m SI (both) 1.000 NA 497 
5 m SI (herm) 5 m SI (both) 0.975 <0.0001 497 
Site SI (both) 5 m SI (both) 0.929 <0.0001 497 
Site SI (herm) 5 m SI (both) 0.919 <0.0001 497 
5 m SI (herm) 5 m SI (herm) 1.000 NA 497 
Site SI (both) 5 m SI (herm) 0.906 <0.0001 497 
Site SI (herm) 5 m SI (herm) 0.917 <0.0001 497 
Site SI (both) Site SI (both) 1.000 NA 497 
Site SI (herm) Site SI (both) 0.987 <0.0001 497 
Site SI (herm) Site SI (herm) 1.000 NA 497 
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FIGURES 
 

 
Figure 1. The average number of fruits female plants produced from 2003-2017 (W = 21026,      
P = 0.0013, df = 397). Error bars are +/- one standard error from the mean. 
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Figure 2. The means +/- one standard error of the number of fruits produced by female (F, red) 
and hermaphroditic (H, blue) individuals for each year from 2003 to 2017. Years in which 
females produced significantly more fruits than hermaphrodites are coded as follows:  ‘ *** ’ for 
P < 0.001,  ‘ ** ’ for P < 0.01, ‘ * ’ for P < 0.05, and ‘ ` ’ for P < 0.1. 
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Figure 3. The means +/- one standard error of the fruit set of females (F, red) and hermaphrodites 
(H, blue) in 2016 and 2017. Asterisks indicate difference between the sexes as determined by a 
one-tailed Mann-Whitney U-test and are coded as follows:  ‘ *** ’ for P < 0.001,  ‘ ** ’ for P < 
0.01. Plants in 2016 tended to have higher fruit sets than plant in 2017 (W = 49082, P = 0.0056, 
df = 614). 
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Figure 4. The relationship between total number of flowers produced by a plant and fruit set with 
sexes and years pooled (r = 0.293, t = 9.5213, P < 0.0001, df = 967). 
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Figure 5. The relationship between SI and raw fruit production per plant, where SI signifies the 
synchrony index used in the regression. Eight different SIs were calculated for each plant using 
different neighborhood types (hermaphrodites only or both sexes) and neighborhood radii (1 m, 3 
m, 5 m, or whole site); see also Fig. 6 and Table 5.  
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Figure 6. The correlation coefficients (r values) for the regression, Fruit ~ SI, where SI signifies 
the synchrony index that was used in the regression. The eight points represent different SIs 
based on their scale (radius of the neighborhood) and whether all neighbors (red) or only 
hermaphroditic neighbors (blue) were used in the calculation of the SI; see also Table 5. 
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Figure 7. The correlation coefficients (r values) for the regression, Fruit ~ SI, subsetted by sex, 
where SI signifies the synchrony index that was used in the regression. The eight points represent 
different SIs based on their scale (radius of the neighborhood) and whether all neighbors (red) or 
only hermaphroditic neighbors (blue) were used to calculate the SI; see also Table 6. 
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Figure 8. The correlation coefficients (r values) for the regression, Fruit ~ SI, subsetted by year, 
where SI signifies the synchrony index that was used in the regression. The eight points represent 
different SIs based on their scale (radius of the neighborhood) and whether all neighbors (red) or 
only hermaphroditic neighbors (blue) were used to calculate the SI; see also Table 7. 
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Figure 9. The correlation coefficients (r values) for the regression, Fruit ~ SI, subsetted by site, 
where SI signifies the synchrony index that was used in the regression. The eight points represent 
different SIs based on their scale (radius of the neighborhood) and whether all neighbors (red) or 
only hermaphroditic neighbors (blue) were used to calculate the SI; see also Table 8. 
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Figure 10. The relationship between site SI and smaller scale SIs (0.5, 1, 3, and 5 m radii) when 
SIs include all neighbors (A, upper) or hermaphroditic neighbors only (B, lower); see also Table 
11. 

A 

B 

r2 = 0.40 r2 = 0.47 

r2 = 0.77 r2 = 0.86 

r2 = 0.36 
r2 = 0.43 

r2 = 0.72 r2 = 0.84 
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Figure 11. Correlogram showing the correlations among SIs. Color varies with correlation 
coefficient from red to blue (for r values from -1 to 1, respectively). All correlations are 
significant (P < 0.0001) and the results of each correlation are summarized in Table 12. 
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Figure 12. The proportion of total site flowering time that female and hermaphroditic plants were 
in bloom (had at least one flower open). Error bars are +/- one standard error from the mean. 
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Figure 13. The relationship between proportional overlap of flowering period (an individual’s 
flowering period / its site’s flowering period) and site-scale synchrony index (SI) when including 
both females and hermaphrodites as neighbors (r = 0.5269, t = 13.411, P < 0.0001, df = 468). 
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APPENDIX 
 

 
Figure A1. The locations of the four sites on Niwot Ridge, CO. Shading indicates topography. 
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Figure A2. Maps of all S. acaulis individuals for which phenology data was collected in 2016 
only (pink) and both 2016 and 2017 (purple).  
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Figure A3. An example of the five different radii that were used to identify the neighbors of just 
one focal plant. The Generate Near Table tool in ArcMap 10.4.1 does something similar to this 
for each plant. The colors, green, yellow, orange, red, and blue, represent the 0.5 m, 1 m, 3 m, 5 
m, and whole site radii, respectively, and the purple dot indicates the focal plant. The lines 
indicate transects within the site, and only the plants in two transects are shown because those 
were the ones included in this study. 
 
 
 
 

 
 
 


