
Archived version from NCDOCKS Institutional Repository http://libres.uncg.edu/ir/asu/ 

Responses To Hyperthermia. Optimizing Heat Dissipation By 
Convection And Evaporation: Neural Control Of Skin Blood 

Flow And Sweating In Humans

By: Caroline J. Smith and John M. Johnson

Abstract
Under normothermic, resting conditions, humans dissipate heat from the body at a rate approximately equal to heat 
production. Small discrepancies between heat production and heat elimination would, over time, lead to sig- nificant 
changes in heat storage and body temperature. When heat production or environmental temperature is high the 
challenge of maintaining heat balance is much greater. This matching of heat elimination with heat pro- duction is a 
function of the skin circulation facilitating heat transport to the body surface and sweating, enabling evaporative heat 
loss. These processes are manifestations of the autonomic control of cutaneous vasomotor and sudomotor functions and 
form the basis of this review. We focus on these systems in the responses to hyperthermia. In particular, the cutaneous 
vascular responses to heat stress and the current understanding of the neurovascular mechanisms involved. The 
available research regarding cutaneous active vasodilation and vasoconstriction is highlighted, with emphasis on active 
vasodilation as a major responder to heat stress. Involvement of the vasoconstrictor and active vasodilator controls of 
the skin circulation in the context of heat stress and nonthermoregulatory re- flexes (blood pressure, exercise) are also 
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a b  s  t  r  a  c  t 
 

Under normothermic, resting conditions, humans dissipate heat from the body at a rate approximately equal to 
heat production. Small discrepancies between heat production and heat elimination would, over time, lead to sig- 
nificant changes in heat storage and body temperature. When heat production or environmental temperature is 
high the challenge of maintaining heat balance is much greater. This matching of heat elimination with heat pro- 
duction is a function of the skin circulation facilitating heat transport to the body surface and sweating, enabling 
evaporative heat loss. 
These processes are manifestations of the autonomic control of cutaneous vasomotor and sudomotor functions 
and form the basis of this review. We focus on these systems in the responses to hyperthermia. In particular, 
the cutaneous vascular responses to heat stress and the current understanding of the neurovascular mechanisms 
involved. The available research regarding cutaneous active vasodilation and vasoconstriction is highlighted, 
with emphasis on active vasodilation as a major responder to heat stress. Involvement of the vasoconstrictor 
and active vasodilator controls of the skin circulation in the context of heat stress and nonthermoregulatory re- 
flexes (blood pressure, exercise) are also considered. Autonomic involvement in the cutaneous vascular re- 
sponses to direct heating and cooling of the skin are also discussed. We examine the autonomic control of 
sweating, including cholinergic and noncholinergic mechanisms, the local control of sweating, thermoregulatory 
and nonthermoregulatory reflex control and the possible relationship between sudomotor and cutaneous vaso- 
dilator function. Finally, we comment on the clinical relevance of these control schemes in conditions of auto- 
nomic dysfunction. 

Contents 

1. Introduction ........................................................................................................................................................................................................................................................................ 26 
1.1. Central regulatory control .................................................................................................................................................................................................................................. 26 
1.2. Skin sympathetic nerve activity (SSNA) ........................................................................................................................................................................................................ 26 

2. Autonomic control of the skin circulation during hyperthermia ............................................................................................................................................................................ 26 
2.1. Vasoconstrictor control ...................................................................................................................................................................................................................................... 26 
2.2. Vasodilator control ............................................................................................................................................................................................................................................... 27 
2.3. What is the transmitter? .................................................................................................................................................................................................................................... 27 
2.4. Cotransmitters .......................................................................................................................................................................................................................................................................... 27 
2.5. Nitric oxide involvement .................................................................................................................................................................................................................................. 28 
2.6. Current concepts of the mechanisms of active cutaneous vasodilation ................................................................................................................................................... 28 

3. Reflex control of cutaneous vasodilation ...................................................................................................................................................................................................................... 28 
3.1. Central autonomic control of SkBF.................................................................................................................................................................................................................. 28 
3.2. Temperature regulation...................................................................................................................................................................................................................................... 28 
3.3. Blood pressure control ....................................................................................................................................................................................................................................... 28 
3.4. Exercise .................................................................................................................................................................................................................................................................. 29 

* Corresponding author at: 111 Rivers Street, Holmes Convocation Center 052, Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608-2071, United 
States.



 
 

4. Autonomic involvement in local thermal control of the skin circulation .............................................................................................................................................................. 30 
5. Recent advances in the control of the cutaneous circulation ................................................................................................................................................................................... 31 
6. Autonomic neural control of sweating ........................................................................................................................................................................................................................ 31 

6.1. Non-cholinergic signaling mechanisms of eccrine sweating .................................................................................................................................................................. 31 
7. Local control of sweating .................................................................................................................................................................................................................................................. 32 
8. Relationship between cutaneous vasodilation and sweating ................................................................................................................................................................................... 32 
9. Non-thermal controllers of sweating .......................................................................................................................................................................................................................... 33 

9.1. Exercise, hypohydration and hyperosmolality .............................................................................................................................................................................................. 33 
9.2. Baroreceptor unloading ....................................................................................................................................................................................................................................... 33 

10. Clinical Importance ......................................................................................................................................................................................................................................................... 33 
References...................................................................................................................................................................................................................................................................................... 34 

 
 
 
 

1. Introduction 
 

Under normothermic conditions, subtle changes in body tempera- 
ture are met by equally subtle vasomotor adjustments in the skin 
(Savage and Brengelmann, 1996; Charkoudian and Johnson, 2000), con- 
stituting the major means of homeothermy. During hyperthermia, ele- 
vated core (Tcore) and skin temperature (Tsk) elicit cutaneous 
vasodilation and sweating responses via the autonomic nervous system, 
and may be modulated by non-thermal factors. Conversely, under hypo- 
thermic conditions, cutaneous vasoconstriction is the first line of de- 
fense against heat loss, with metabolic heat production via shivering 
and non-shivering thermogenesis occurring in more severe conditions. 
The regulation of body temperature is largely accomplished by the auto- 
nomic nervous system and the skin as a target organ, with both the vas- 
culature and eccrine sweat glands being of primary importance. In this 
review we provide an overview of the autonomic control of these re- 
sponses to hyperthermia, focusing on skin sympathetic nerve activity, 
local signaling mechanisms at the skin, the influence of non-thermal 
factors, and a brief introduction of the clinical relevance of autonomic 
dysfunction in thermoregulation. 

 
1.1. Central regulatory control 

 
The thermoregulatory control center in humans is located in the 

preoptic anterior hypothalamus (POAH) (Moorhouse, 1911; Ott,  
1887), which receives afferent input from both central and peripheral 
(skin) thermoreceptors (Benzinger, 1959). The importance of this area 
for thermoregulation has been demonstrated in animal models where- 
by local warming of the preoptic area elicits cutaneous vasodilation, 
panting, sweating, and behavioral modifications to increase heat loss 
(Gisolfi et al., 1988; Kanosue et al., 1994). The POAH receives, integrates 
and weights central and peripheral afferent signals. In warm environ- 
ments a 9:1 ratio of core:shell (skin) afferent signals are integrated at 
the POAH, versus a ratio of approximately 4:1 in thermoneutral to 
cold conditions. Efferent sympathetic sudomotor signals originating 
from the POAH, travel via the ipsilateral brainstem via the tegmentum 
of the Pons and the medullary raphe nuclei before activating pregangli- 
onic neurons in the intermediolateral cell column of the spinal cord. 
After exiting from the ventral horn and passing via the white ramus 
communicans, these neurons synapse in close proximity to the spinal 
cord in the sympathetic ganglia. In the particular instance of heat stress, 
sudomotor and vasomotor control originate from these central centers. 
In this review we focus on the peripheral manifestations of those 
controls. 

 
1.2. Skin sympathetic nerve activity (SSNA) 

 
Sympathetic innervation of the skin is complex due to the presence 

of cutaneous vasodilator, vasoconstrictor, sudomotor, pilomotor and 
sensory fibers contained within cutaneous nerves. SSNA is measured 
via microneurography, in which ‘bursts’ of activity are recorded and 
the frequency and characteristics analyzed. The temporal variation of 

 
 
 
 

SSNA differs from that of muscle, allowing identification of the different 
nerve branches. However, the complexity of SSNA poses significant 
challenges to identifying individual efferent signals, and therefore direct 
links with specific physiological responses. Attempts have been made to 
identify individual fiber activity, with evidence of sudomotor bursts 
being shorter in duration (Bini et al., 1980) and displaying a greater con- 
duction velocity than vasoconstrictor bursts (Fagius and Wallin, 1980). 
Due to considerable variation and subsequent overlap between bursts, 
this is not a reliable means of differentiation among signals (Fagius 
and Wallin, 1980). Compared to normothermia, SSNA increases during 
hyperthermic conditions, reflecting increases in sudomotor and/or va- 
sodilator activity. Notably, approximately 80% of SSNA bursts are syn- 
chronous with galvanic skin responses and pulsatile sweat expulsion 
during heat stress, indicating a potential dominance of the sudomotor 
signal under such conditions (Sugenoya et al., 1998). SSNA is typically 
measured in the leg, whilst skin blood flow (SkBF) and sweating re- 
sponse are frequently measured in the ventral forearm. The potential 
heterogeneity of SSNA to sudomotor and vasomotor function is current- 
ly unclear, both in a young, healthy population and with disease condi- 
tions involving autonomic dysfunction. Such heterogeneity may help 
explain the non-uniform age-related decrements in sweating and 
SkBF in different body regions despite similar cholinergic responsive- 
ness (Smith et al., 2013a). SSNA declines with age in response to ther- 
mal stimuli (Grassi et al., 2003), contributing to thermoregulatory 
dysfunction and increased risk of heat-related illness and injury. 

 
2. Autonomic control of the skin circulation during hyperthermia 

 
Blood flow to the skin displays an incredible potential range, from 

nearly zero in extreme cold to 6–7 l/min during extreme heat stress 
(Johnson and Kellogg, 2010; Johnson et al., 2014; Rowell, 1974; 
Koroxeni. et al., 1961). Under normothermic conditions, total SkBF is ap- 
proximately 250 – 300 ml/minute. This entire range can be accom- 
plished by autonomic adjustments involving two distinct nerve types, 
adrenergic vasoconstrictor and non-adrenergic vasodilator nerves. 

 
2.1. Vasoconstrictor control 

 
The vasoconstrictor control of the skin circulation is adrenergic and 

similar to that in other regional circulations. Norepinephrine and 
cotransmitters are released by the activity of adrenergic nerves, acting 
postsynaptically on appropriate receptors (for a detailed review of vaso- 
constriction refer to Johnson and Kellogg, 2010 and Johnson et al., 
2014). The role the vasoconstrictor system plays in heat stress is one 
of withdrawal — “passive vasodilation” as opposed to the active vasodi- 
lation addressed below. This role is dependent on initial conditions. If 
there is extant vasoconstrictor nerve activity, heat stress will cause 
that activity to cease and a vasodilaton will ensue (Edholm et al., 
1957). On the contrary, if there is no vasoconstrictor nerve activity to 
skin, no withdrawal is possible and there will be no contribution to 
the cutaneous vasodilation with heating (Roddie et al., 1957; Hodges 
et al., 2009). The circulation to glabrous skin as represented by palmar 



 
 

 

skin, is largely if not entirely under vasoconstrictor control (Gaskell, 
1956; Johnson et al., 1995). Mild body warming causes a significant in- 
crease in hand blood flow. Blood flow to nonglabrous, hairy skin, as 
reflected by the forearm, has a much smaller dependence on vasocon- 
strictor nerve activity. Non-adrenergic vasodilation is prominent there 
(see  below). 

 
 

2.2. Vasodilator control 
 

The skin circulation in humans has a non-adrenergic mechanism of 
vasodilation that causes an increase in SkBF with activation of a set of 
autonomic nerves; i.e., an increase in blood flow accompanying an in- 
crease in nerve activity (Edholm et al., 1957; Lewis and Pickering, 
1931; Grant and Holling, 1938). This phenomenon is termed ‘active va- 
sodilation’, in contrast to ‘passive dilation’ that accompanies a reduction 
in vasoconstrictor nerve activity. This is a means of control for which the 
mechanisms are not yet entirely clear but which can nevertheless exert 
a powerful vasodilator influence. 

Several observations implicate the presence of active vasodilator 
control in the skin of humans. Lewis and Pickering (Lewis and 
Pickering, 1931) found, in patients with Raynaud's disease, that finger 
blood flow rose more with whole body heat stress than with 
anesthetization of the nerve supply to the finger. The latter mimics the 
effects of vasoconstrictor system withdrawal, implying that activation 
of a vasodilator nerve was required for the full vasodilator response to 
body heating. Ironically, later studies indicated the lack of an active va- 
sodilator system in the human hand and fingers in health (Gaskell, 
1956). The explanation for these apparently discrepant observations is 
not obvious. Perhaps the condition of Raynaud's disease makes the pres- 
ence of a vasodilator system more evident through a background vaso- 
constrictor bias. An active vasodilator system exists on the back of the 
hand and fingers (Johnson et al., 1995) and may contribute to the obser- 
vations by Lewis and Pickering (Lewis and Pickering, 1931). In keeping 
with this possibility, stimulation of the sympathetic chain can cause va- 
sodilator responses in the sole and the ankle (Blumberg and Wallin, 
1987; Lundberg et al., 1989). 

Later observations firmly established the existence of a neurogenic 
vasodilator system in the forearm and other non-glabrous skin areas. 
Nerve block in the skin caused only a small increase in blood flow 
whereas general body heating caused a much greater vasodilator re- 
sponse (Grant and Holling, 1938). The implication is one of the reliance 
on a neurogenic vasodilator system in hairy skin. Anesthetization of cu- 
taneous nerves after the vasodilator response to body heating is 
established causes a rapid and marked reduction in SkBF. Such 
anesthetization prior to body heat stress was seen to prevent the major- 
ity of the later vasodilator response when body heating was applied 
(Edholm et al., 1957). The effects of intracutaneous nerve block on the 
vasodilator response to body heating were quite similar to the effects 
of sympathectomy (Roddie, 1983), implying that there is a neurogenic 
vasodilator system and that it runs in the sympathetic chain, but is not 
adrenergic at the postganglionic level. 

Pharmacological inhibition of vasoconstrictor nerve function provid- 
ed further verification. Blair et al. (1960) found that intra-arterial infu- 
sion of bretylium (which blocks transmitter release from adrenergic 
nerve endings) (Haeusler et al., 1969) into the forearm eliminated vaso- 
constrictor responses but left intact the vasodilator responses to body 
heating. Similarly, Kellogg et al. (1989) applied bretylium iontophoreti- 
cally to approximately 1 cm2 of skin and found the drug application 
completely blocked vasoconstriction to body cooling but had no 
measureable effect on the vasodilator response to body heating. These 
latter findings are specific to skin (Saumet et al., 1988); hence, contribu- 
tions by blood flow to skeletal muscle are not of concern in the general 
conclusion of the presence of an active vasodilator system in human 
skin. Kenney et al. (1991, 1994) noted that neither systemic adrenergic 
alpha-1  nor  alpha-2  receptor  blockade  affected  the  cutaneous 

vasodilator  response  to  the  hyperthermia  of  dynamic  exercise, 
supporting non-adrenergic active vasodilation. 

Collectively, the above observations are conclusive in the existence 
of an active vasodilator system in human non-glabrous skin that is sym- 
pathetic but is not adrenergic and that activation of this system is re- 
sponsible for most of the heat stress induced increase in SkBF in those 
areas of skin. Its contribution to the vasodilation in glabrous skin is not 
clear, but if it exists must be small. The vasodilator system is not tonical- 
ly active at normal body and environmental temperatures. Finally, in 
this treatment, we refer to an active vasodilator system because it is 
not clear that this is a straightforward effect of nerves ending on vascu- 
lar smooth muscle. This is developed further below. 

 

2.3. What is the transmitter? 
 

The earliest tests were for acetylcholine via cholinergic muscarinic 
receptor blockade with atropine. The results were not a straightforward 
demonstration of elimination, or not, of the vasodilator response to heat 
stress. Several found that atropine, given intra-arterially or intradermal- 
ly prior to heat stress, delayed but did not block the subsequent vasodi- 
lation (Roddie et al., 1957; Shastry et al., 2000; Kellogg et al., 1995; 
Kellogg et al., 2007). Atropine in the presence of established reflex vaso- 
dilation from heat stress had no discernable effect on blood flow. The 
above observations suggest a role for acetylcholine (via muscarinic re- 
ceptors) in active vasodilation, but it is not a full explanation for the 
phenomenon. 

 

2.4. Cotransmitters 
 

Kellogg et al. (1995) brought some resolution to this issue when in- 
vestigating the effects of postsynaptic (atropine) versus presynaptic 
(botulinum toxin perfusion) cholinergic nerve function blockade. As de- 
scribed above, atropine pretreatment delayed but did not eliminate re- 
flex vasodilation. Sweating was blocked. Importantly, pretreatment 
with botulinum toxin eliminated the vasodilator and sweating re- 
sponses to heat stress, providing strong evidence for cholinergic nerve 
involvement (Dolly and Aoki, 2006; Simpson, 1981). This difference be- 
tween the effects of atropine and botulinum toxin on active vasodilation 
indicates an important role for a signaling molecule other than acetyl- 
choline in vasodilation, i.e., a cholinergic cotransmitter. 

A candidate proposed as the cholinergic cotransmitter is vasoactive 
intestinal polypeptide (VIP) (Bennett et al., 2003). VIP is localized in 
cholinergic nerve endings in the gut (Lundberg, 1996) and has vasodila- 
tor properties. Perfusion of a VIP receptor antagonist via microdialysis 
(i.e. fragment VIP10-28), caused a significant 42% reduction in reflex va- 
sodilation during body heating. Pretreatment with atropine, with or 
without VIP10-28, had no measureable effect on the response. Because 
there are limitations in VIP10-28 receptor affinity, the remaining vaso- 
dilation may result from other cotransmitters or from incomplete recep- 
tor blockade. Use of an alternate inhibitor, a fragment of pituitary 
adenylate cyclase activating polypeptide (PACAP), PACAP6-38, had the 
same effects on active vasodilation as VIP10-28 (Kellogg et al., 2010; 
Kellogg et al., 2012). PACAP initiates vasodilation through some of the 
same receptors as VIP, and neither can currently be ruled out as candi- 
dates for active vasodilation. 

One challenge to the conclusion that VIP is the cotransmitter comes 
from the observation that patients with cystic fibrosis have a paucity of 
VIP in cutaneous nerves (Heinzerian et al., 1985), but exhibit vasodilator 
responses to body heating similar to those see in healthy subjects 
(Savage et al., 1990), even in the presence of atropine (Kellogg et al., 
2007). Whilst there is good evidence to support VIP as a cholinergic 
cotransmitter in cutaneous active vasodilation, the observations from 
cystic fibrosis patients complicate this conclusion. 

Clearly, the active vasodilator system is more complex than what 
might be revealed by these straightforward approaches. 



 

 

There are several other neuroendocrine elements postulated to con- 
tribute to active vasodilation, but where they fit in the process is often 
less clear. Wong and Minson (2006) identified a possible role for 
neurokinin receptors in the active vasodilator process, with the agonist 
possibly being Substance P itself. Although generally associated with sen- 
sory nerves (Holzer, 1998; Milner etal., 2004), the role of Substance P in ac- 
tive neurogenic vasodilation is not known. Alternatively, a cotransmitter 
(or acetylcholine) might act in the interstitium to affect either the release 
of Substance P (or other neurokinin) or their receptors. 

A potential role for sensory nerve function was suggested by Wong 
(2013), who pretreated areas of skin with topical anesthetic cream. This 
delayed the onset of the reflex vasodilator response to hyperthermia, 
but did not affect the ultimate level of SkBF, echoing the effects of atropine 
(Roddie et al., 1957; Shastry et al., 2000). Assuming the local anesthetic 
had noeffect on efferent nerve function, it suggests that the role of sensory 
nerves is somehow integrated with cholinergic muscarinic function. How 
the sensory system is involved in active cutaneous vasodilation without 
perturbations in Tsk creates a challenge to understand its role in active va- 
sodilation. Such an involvement could be an explanation for the apparent 
role of vanilloid type channels (TRPV) in active vasodilation (Wong and 
Fieger, 2012). In this case, however, the blockade of TRPV-1 receptors 
with capsazapine reduced the peak vasodilator response to body heating, 
as opposed to the delay seen with topical anesthetic (see above). 

Pharmacological blockade of histamine H1 receptors (Wong et al., 
2004) led to the suggestion that histamine was at least part of the mech- 
anism by which VIP caused cutaneous vasodilation (Wilkins et al., 
2004). Studies utilizing H1 receptor inhibition combined with direct 
VIP perfusion during normothermia imply that if VIP is released from 
cholinergic nerves during body heating, any ensuing vasodilation may 
involve H1 receptors. Also, such release would stimulate the release of 
histamine from mast cells in the skin. These implications bear direct 
testing. Similarly, cyclooxygenase antagonism with locally applied 
ketorolac significantly reduced the reflex vasodilator response to body 
heating (McCord et al., 2006). As with histamine, it seems most likely 
that the prostaglandins involvement implied by these findings is stimu- 
lated by transmitter(s) released from vasodilator nerves rather than 
coming from the cholinergic nerves. 

 
2.5. Nitric oxide involvement 

 
Multiple studies have shown an important role for NO in cutaneous 

active vasodilation (Kellogg et al., 1998; Shastry et al., 1998). Blockade 
of NO synthase (NOS) enzymes reduces vasodilator responses to body 
heating by at least 30%. In several studies, Kellogg et al. (2008a, b) 
used antagonists selective for endothelial NOS (eNOS) and neural NOS 
(nNOS), and consistently found the latter to significantly suppress ac- 
tive vasodilation during body heating in resting subjects whereas 
eNOS inhibition was more effective in reducing the vasodilator response 
to local skin heating. In contrast, McNamara et al. (2014) found eNOS in- 
hibition to suppress the cutaneous vasodilator response to hyperther- 
mia generated by dynamic exercise but nNOS inhibition had no 
measurable effect. The explanation for this apparent discrepancy is un- 
known. Notably, in none of these studies was there evidence of both 
NOS enzymes participating. 

 
2.6. Current concepts of the mechanisms of active cutaneous vasodilation 

 
The current evidence addressing cutaneous active vasodilation is 

summarized by Fig. 1, in which active vasodilation is initiated by central 
activation of sympathetic cholinergic nerves to skin. Acetylcholine acts 
early in heat stress, its actions succeeded by vasodilator actions of VIP, 
PACAP and/or other cotransmitters. These transmitters act on PAC1 and 
VPACreceptorsonendothelialcellsorvascularsmoothmuscletoproduce 
NO and prostaglandins (e.g., PGI2) and on mast cells to produce hista- 
mine. Lastly, sensorynervefunctionbecomesinvolvedthroughunknown 
mechanisms, but brings into play NK1 and TRPV1 receptors. This 

collection of actions brings about a profound vasodilation. Whether the 
initiating nerve is also a sudomotor nerve remains controversial and 
unresolved. 

 
3. Reflex control of cutaneous vasodilation 

 
3.1. Central autonomic control of SkBF 

 
The autonomic control of the skin circulation relies on the two arms 

of the sympathetic nervous system described above. Those nerves par- 
ticipate in the reflex components of temperature regulation and in re- 
flexes not directly involved in temperature regulation. 

 
3.2. Temperature regulation 

 
The skin circulation is integral to the regulation of body temperature. 

Thermoregulatory reflexes are the major controllers of SkBF. Starting at 
normal brain and skin temperatures, there is typically a low level of va- 
soconstrictor nerve activity while the vasodilator system is quiet 
(Edholm et al., 1957; Hodges et al., 2009). The vasoconstrictor system 
is the way body temperature is maintained in its very narrow range in 
these conditions. Subtle changes in body or skin temperature are met 
by equally subtle changes in SkBF and heat elimination and, as a conse- 
quence, body temperature is held in a very narrow range. Cooling the 
skin over a large portion of the body surface initiates an increased vaso- 
constrictor nerve activity, release of norepinephrine and NPY and a re- 
duction in SkBF. Increased Tsk is accompanied by abolition of any 
extant vasoconstrictor nerve activity. In the hand, such abolition will 
cause blood flow to rise markedly. In nonglabrous skin, the increase in 
blood flow at that time is small or nonexistent. As body heating con- 
tinues and internal temperature rises, the sympathetic cholinergic ac- 
tive vasodilator system is engaged and blood flow in nonglabrous 
areas begins to increase and continues to rise with internal temperature 
until a true maximum is reached (Taylor et al., 1984). In resting condi- 
tions, especially, the onset and increase in active vasodilator activity 
are accompanied by increased sweating, allowing the elimination of 
the increased transport of heat to the skin. Also under conditions of 
rest, blood flow over the entire body can rise to very high values, per- 
haps exceeding 6 l/min. Hence, the autonomic nerves to skin have the 
capacity to reduce SkBF to nearly zero or increase it to maximal values. 

 
3.3. Blood pressure control 

 
The potential for SkBF to increase subserves thermoregulation but is 

a threat to blood pressure regulation. This is especially the case with 
orthostasis in the heat, when total vascular conductance is elevated be- 
cause of the vasodilated skin but cardiac output falls with the reduction 
in cardiac filling attending the upright posture. Several studies found 
significant cutaneous vasoconstriction when blood pressure was chal- 
lenged by simulated or actual upright tilting in normothermic condi- 
tions and that this vasoconstrictor response persisted when the 
subject was made hyperthermic (Johnson et al., 2014; Beiser et al., 
1970; Rowell et al., 1973; Crossley et al., 1966; Lind et al., 1968; 
Johnson, 1986; Kellogg et al., 1990; Crandall et al., 1996; Schlader 
et al., 2015) (for detail refer to Johnson et al., 2014). Selective blockade 
of sympathetic vasoconstrictor function (Kellogg et al., 1990; Crandall 
et al., 1996) or of active vasodilator function (Shibasaki et al., 2006), 
showed both vasoconstrictor and active vasodilator systems to partici- 
pate in this vasoconstriction. In cool or thermally neutral conditions, 
the reflex reduction in SkBF with simulated orthostasis is via increased 
vasoconstrictor activity (Kellogg et al., 1990; Crandall et al., 1996). In 
hyperthermia, when the vasodilator system is activated, reductions in 
SkBF are brought about by both reduced vasodilator system activity 
and enhanced vasoconstrictor system activity (Kellogg et al., 1990; 
Crandall et al., 1996; Shibasaki et al., 2006). The implication from 
these observations is that the skin circulation is under control by 



 
 

 

 
 

Fig. 1. A schematic of the current theories regarding cutaneous active vasodilation adapted from Johnson et al. (2014). The roles of sympathetic cholinergic vasodilator and sudomotor 
nerves are illustrated, although there is uncertainty as to whether the two nerves are distinct or whether vasodilation is the result of a glandular product produced following 
sudomotor stimulation of sweat glands. A cotransmitter, perhaps vasoactive intestinal peptide (VIP) or pituitary adenylate cyclase-activating peptide (PACAP), is released with 
acetylcholine (ACh) from the vasodilator nerve terminal. VIP and PACAP bind to pituitary adenylate cyclase-activating peptide 1 receptor (PAC1) or vasoactive intestinal peptide 
receptors (VPAC1; VPAC2) on the vascular endothelium. Proposed signaling mechanisms of vasodilation include histamine binding to histamine 1 receptors (H1), Prostaglandin I2 
(PG12) binding to a prostacyclin receptor (IP), and the direct effects of ACh on muscarinic receptors (M3). Sweating is stimulated via ACh, with proposed mechanisms via 
norepinephrine (NE) binding to alpha (α) and beta (β) adrenergic receptors, and potential nitric oxide signaling (NO). eNOS, endothelial nitric oxide synthase; nNOS, neuronal NOS; 
L-Arg, L-arginine; sGC, soluble guanalate cyclase; cGMP, cyclin guanosine monophosphate; PKG, cGMP-dependent protein kinase; AC, adenylate cyclase; cAMP, cyclic adenosine 
monophosphate; AA, arachidonic acid; COX, cyclooxygenase. 

 
baroreceptors, although the distinction between roles for sinoaortic and 
cardiopulmonary receptors is not clear (Crandall et al., 1996). 

Contrary to the above, direct recordings of SSNA typically do not re- 
veal the pulse synchronous pattern seen in sympathetic nerve activity 
to skeletal muscle (Vissing et al., 1994; Wallin, 1990). Further, heroic 
measures to enhance vasoconstriction by simulated blood pressure 
challenges such as anesthetization of the glossopharyngeal and vagus 
nerves (carriers of blood pressure information from sinoaortic barore- 
ceptors) were not associated with measureable changes in skin nerve 
activity (Fagius et al., 1985) nor was direct stimulation of the carotid 
sinus nerve (Wallin et al., 1975). Vissing et al. (1997) found changes 
in the elevation of the limbs could cause cutaneous vasoconstriction 
and argued that the response was a venoarterial reflex (Henriksen, 
1977; Crandall et al., 2002) rather than a classic baroreflex. At this 
stage, there is no clear explanation for these discrepancies. It may be 
that the vasomotor contingent of skin nerve activity is small relative 
to the sensory and sudomotor components and does not contribute 
enough to mixed nerve recordings to reveal baroreflex modulation. It 
also may be that the regions of skin represented in the skin sympathetic 
nerve recordings (largely distal extremities) differ in baroreflex involve- 
ment from those from which blood flow is measured (usually forearm). 
It is hard to argue with the pale, cool skin of impending shock to dismiss 
a response in the skin circulation to blood pressure challenges. 

 
3.4. Exercise 

 
The distribution of the cardiac output during periods of dynamic ex- 

ercise favors the active areas of skeletal muscle and the heart (Rowell, 

1974). In the heat, that distribution is challenged and there is a compro- 
mise between meeting the needs of muscle during exercise and meeting 
the needs of temperature regulation (Rowell, 1974; Johnson, 1986; 
Kenney and Johnson, 1992). In hot conditions, humans can voluntarily 
exercise at levels sufficient to raise internal temperature to well over 
40 °C, suggesting compromised temperature regulation. This suggests 
that exercise exerts a constraint over the skin circulation. When exercise 
begins, there is a cutaneous vasoconstriction (Zelis et al., 1969; Johnson 
and Park, 1982) accomplished by increased vasoconstrictor nerve activ- 
ity both in normal thermal conditions and in heat stress (Kellogg et al., 
1991a; Kellogg et al., 1991b). As exercise continues, internal tempera- 
ture and SkBF rise, but the beginning of the increase in SkBF is delayed 
to a higher internal temperature than it would at rest (Johnson and 
Park, 1981; Taylor et al., 1988). This delay is through a central inhibition 
of the onset of active vasodilation (Kellogg et al., 1991b). Third, dynamic 
exercise in warm conditions has an upper limit to the increase in SkBF 
(Brengelmann et al., 1977). SkBF rises to an apparent upper limit 
while internal temperature continues to rise by another 1 °C or more. 
The level of SkBF is well below maximal or levels that would be expect- 
ed under conditions of heat stress at rest. This upper limit is due to lim- 
iting active vasodilator activity while vasoconstrictor activity is being 
slowly withdrawn during the ‘plateau’ phase (Kellogg et al., 1993). In 
isometric exercise there is not the increase in heat production seen in 
dynamic exercise and the duration is necessarily short. The initiation 
of isometric exercise is not met with measureable changes in SkBF in 
nonglabrous skin, but is attended by a sharp vasoconstriction in skin 
of the palms and soles (Taylor et al., 1989; Saad et al., 2001). In this 
case, the response in glabrous skin is consistent with recordings of 



 

 

increased skin nerve activity during isometric exercise (Saito et al., 
1990; Vissing and Hjortso, 1996). 

 
4. Autonomic involvement in local thermal control of the skin 
circulation 

 
Direct cooling or warming of the skin causes a vasoconstriction or 

vasodilation, respectively, via multiple mechanisms (Johnson and 
Kellogg, 2010; Johnson et al., 2014). NOS enzymes, principally eNOS 
(Kellogg et al., 1999; Kellogg et al., 2009; Bruning et al., 2012), play an 
important role in both local cooling and warming, being suppressed as 
part of the response to local cooling and activated with local skin 
heating (Kellogg et al., 1999; Hodges et al., 2006; Hodges et al., 2008). 
Hodges et al. (2006) found that local cooling suppressed the NOS en- 
zyme and suppressed NO function downstream from NOS. Stimulation 
of warm sensitive nociceptors contributes to the vasodilator response 
to local skin warming, in part through stimulation of eNOS (Magerl 
and Treede, 1996; Minson et al., 2001; Stephens et al., 2001). 

The classic response to local skin warming is described as an early 
transient peak, dependent on the rate of heating and due to an axon re- 
flex, followed by a more slowly developing vasodilation (Hodges et al., 
2009; Hodges et al., 2008; Magerl and Treede, 1996; Minson et al., 
2001). As the time of local warming increases beyond 50 min or so, a 
phenomenon called a ‘die away’ is revealed, in which blood flow slowly 
falls despite continued heating (Hodges et al., 2008; Barcroft and 
Edholm, 1943). A sympathetic component of the skin vasomotor re- 
sponse to local warming was suggested by Charkoudian et al. (2002), 
who noted a loss of the initial transient peak in sympathectomized 
areas of skin. Houghton et al. (2006) found that blockade of transmitter 
release from adrenergic nerve terminals with locally applied bretylium 
eliminated that transient early response. Locally applied norepineph- 
rine sensitized the area such that the axon reflex appeared at lower 

temperatures. A series of studies by Hodges and colleagues found, sim- 
ilarly, that post-synaptic blockade of adrenergic alpha and beta recep- 
tors and/or receptors for NPY delayed or eliminated the early axon 
reflex vasodilation (Hodges et al., 2009; Hodges et al., 2008; Hodges 
and Sparks, 2013; Hodges and Sparks, 2014). These actions likely act 
through eNOS and appear to vary with age and aerobic training (Tew 
et al., 2011a; Tew et al., 2011b). For example, in older sedentary subjects 
there is no apparent role for norepinephrine or NPY, whereas both are 
important in the response in young trained individuals, a difference sug- 
gested to be due to variation in sensory function between groups. 

As warming progresses, the initial axon reflex is succeeded by a 
more sustained vasodilation, which is summarized in Fig. 2. There is 
substantial evidence that sympathetic function is important in that re- 
sponse. Either bretylium or yohimbine/propranolol or NPY antagonism 
pretreatment leads to a smaller vasodilator response in SkBF to local 
heating in that phase (Hodges et al., 2009; Hodges et al., 2008; Carter 
and Hodges, 2011). This observation is consistent with a requirement 
for those transmitters in the full expression of the cutaneous vascular 
response to skin warming. However, if adrenergic or NPY antagonism 
is delayed until after the vasodilation to local warming is established, 
there is no measureable effect (Hodges and Sparks, 2014). This finding 
is difficult to explain in the face of the effects of blockade prior to local 
warming, but indicates that, once established, the locally-mediated va- 
sodilator process no longer requires adrenergic or NPY stimulation. 
This curious phenomenon deserves further study. 

The third phase of the vasomotor responses to local skin warming is 
a slow decline in blood flow with prolonged periods of direct local 
heating (Barcroft and Edholm, 1943). This ‘die away’ phenomenon is 
dependent on intact sympathetic nerve function, as it is eliminated by 
blocking transmitter release from adrenergic terminals (Hodges et al., 
2009). Hence, all three phases of the cutaneous vasomotor response to 
local skin warming; the initial axon reflex, the plateau and the die 

 

 
 

Fig. 2. A schematic of the current theories cutaneous vasodilation (plateau) and sweating responses during local skin warming adapted from Johnson et al. (2014). Adrenergic nerves 
release norepinepherine (NE) and neuropeptide Y (NPY) which bind to beta2 (β2) adrenergic receptors or NPY receptors on the vascular endothelium. Multiple mechanisms are 
involved in nitric oxide (NO) production via endothelial nitric oxide synthase (eNOS), including β2 adrenergic stimulation, adenosine receptors (A1/A2), and transient receptor 
potential vanilloid receptors (TRPV1). Smooth muscle hyperpolarization is proposed to occur via several mechanisms, including activation of TRPV-4 receptors by epoxyeicosatrienoic 
acids (EETs), large conducting KCa (BKCa) channels, and a putative mechanisms involving hydrogen sulfide (H2S) mediated vasodilation via activation of BKCa, intermediate KCa 
(IKCa) and small Kca (SKCa) channels. Cross talk between the H2S and NO pathways (in addition to cyclooxygenase) has been suggested for full expression. Sweating is mediated via 
acetylcholine (ACh) binding to muscarinic receptors (M3) on the sweat gland, via ACh binding to nicotinic receptors (N) on the sympathetic nerve terminal, and stimulating an axon 
reflex. eNOS, endothelial nitric oxide synthase; L-Arg, L-arginine; sGC, soluble guanylate cyclase; cGMP, cyclic guanosine monophosphate; PKG, cGMP-dependent protein kinase; AA, 
arachidonic acid. 



 
 

 

away phenomenon, rely on intact sympathetic function for their full ex- 
pression. Where tested, both the primary transmitter norepinephrine 
and the cotransmitter NPY are shown to be involved in this role of sym- 
pathetic adrenergic function in locally stimulated vasodilation. Further, 
the action of sympathetic mediators in the axon reflex and in the plateau 
phase is one of NO-dependent vasodilation, an action opposite their role 
in regulatory reflexes such as whole body cooling or orthostasis. 

 
5. Recent advances in the control of the cutaneous circulation 

 
In addition to NO and sympathetic neurotransmission, other factors 

have come to light recently that may play a role in the cutaneous vascu- 
lar responses to hyperthermia (Fig. 2). These other signaling pathways 
have received attention due to the prevalence of endothelial dysfunc- 
tion in many clinical conditions. Also, the onset of microvascular dys- 
function occurs in advance of dysfunction in conduit vessels 
(Abularrage et al., 2005; Joannides et al., 2006). The least well character- 
ized of these factors are endothelium-derived hyperpolarizing factors 
(EDHFs), with considerable speculation as to their identity. EDHFs 
cause hyperpolarization of the vascular smooth muscle via heat- 
sensitive TRPV4 channels and subsequent activation of calcium- 
activated potassium (KCa) channels on vascular endothelium and 
smooth muscle (Earley et al., 2005). Local KCa channel blockade in com- 
bination with NO inhibition with L-NAME nearly abolishes the cutane- 
ous vasodilator response to local heating, with EDHFs being 
responsible for a large portion of the initial peak and ~ 40–50% of the 
plateau phase (Brunt and Minson, 2012). Blockade of cytochrome 
P450, which converts arachidonic acid to epoxyeicosatrienoic acids 
(EETs), indicates that ~ 50% of EDHF-dependent vasodilation results 
from EETs (Brunt and Minson, 2012). The remaining 50% of EDHF- 
mediated vasodilation likely results from other signaling molecules act- 
ing via KCa channels, with hydrogen sulfide (H2S) emerging as a strong 
candidate. H2S is a potent gasotransmitter that appears likely to have an 
important role as a regulator of vascular homeostasis. In vivo and in vitro 
animal studies have demonstrated H2S-mediated vasodilation via mul- 
tiple mechanisms including, activation of ATP-sensitive (KATP) or 
voltage-gated (Kv7; KCNQ) potassium channels in vascular smooth 
muscle, and via activation of eNOS, thus demonstrating an NO- 
component for full expression. Unlike mechanisms of NO-dependent 
vasodilation, H2S acts independently of cGMP and directly hyperpolar- 
izes vascular smooth muscle to elicit vasodilation. Kutz et al. (2015) re- 
cently demonstrated a vasodilator role of H2S in the human cutaneous 
circulation when administered via intradermal microdialysis. The en- 
zymes responsible for endogenous H2S production were identified in 
skin, adding weight to a functional role in cutaneous vasodilation. H2S 
appears to have an important vasoprotective role, inhibiting vascular 
smooth muscle cell proliferation (Go et al., 2012; Li et al., 1833), platelet 
aggregation (Zhong et al., 2014), and inflammatory responses (Yu et al., 
2014). Limited data are available regarding the functional role of H2S in 
the control of the cutaneous circulation in hyperthermia. 

 
6. Autonomic neural control of sweating 

 
Evaporation of sweat from the skin surface is the greatest avenue of 

heat loss in hyperthermia. Under such conditions both Tcore (deep body 
temperature) and Tsk become elevated, causing increases in sweating 
and SkBF. It is widely accepted that brain temperature is the primary 
controller of sweating (Kuno, 1956), with a secondary influence of 
Tsk. Further modulation of sweating also results from changes in local 
Tsk and non-thermal factors, including dehydration, baroreflex 
unloading and exercise. 

Sudomotor impulses originating from the POAH are transmitted to 
eccrine sweat glands via sympathetic postganglionic non-myelinated 
C-fibers (Uno, 1977). Acetylcholine is released from periglandular 
nerve endings, transverses the neuroglandular junction, and stimulates 
sweating via M3 muscarinic receptors on eccrine sweat glands (Fig. 1). 

Even in cooler environments with an absence of visible sweating, sub- 
threshold sympathetic sudomotor impulses at the neuroglandular junc- 
tion stimulate clear cells of the secretory coil to release a plasma-like 
precursor ultrafiltrate into the lumen (Ogawa and Bullard, 1972). The 
ultrafiltrate is modified along the length of the sweat duct before expul- 
sion as a hypotonic solution onto the skin surface. The appearance and 
quantity of visible sweat is dependent upon the rates of production 
and reabsorption of the precursor ultrafiltrate. Sweating rate is largely 
influenced by the concentration of acetylcholine released from the cho- 
linergic nerve terminal, which is rapidly hydrolysed into choline and ac- 
etate by acetylcholinesterase (Longmore et al., 1986). As such, 
acetylcholinesterase is capable of influencing sweating at lower rates, 
but its effectiveness in reducing local sweating is limited at higher 
sweating rates (Shibasaki and Crandall, 2001). The amount of sweat 
that reaches the skin surface is dependent upon sympathetic innerva- 
tion and local conditions at or around the gland (Ogawa and Bullard, 
1972; Ogawa and Sugenoya, 1993). 

Considerable regional variation in sweating rates exists over the 
body (Kuno, 1956; Cotter et al., 1995; Taylor et al., 2006; 
Machado-Moreira et al., 2008a; Machado-Moreira et al., 2008b; 
Machado-Moreira et al., 2008c; Smith and Havenith, 2011; Smith and 
Havenith, 2012; Havenith et al., 2008; Hertzman, 1957), being greatest 
on the forehead, central (medial) and lower back, in addition to the skin 
region between the breasts in females. Lowest thermoregulatory sweat- 
ing is towards the extremities, specifically on the fingers and palms 
(Machado-Moreira et al., 2008a; Machado-Moreira et al., 2008c; Smith 
and Havenith, 2011; Smith and Havenith, 2012). Despite large variation 
among individuals in absolute sweat rates, this pattern of high- versus 
low regional distribution is observed, probably due to differences in out- 
put per gland (Kuno, 1956; Smith and Havenith, 2011; Smith and 
Havenith, 2012; Inoue and Shibasaki, 1996). Potential heterogeneity of 
SSNA to sweat glands, or region-dependent differences in SSNA may 
contribute. Putative heterogeneity in SSNA during hyperthermia may 
explain non-uniform regional sweating and SkBF observed over the 
body, but no definite conclusions can be drawn from current data. 

 
6.1. Non-cholinergic signaling mechanisms of eccrine sweating 

 
Whilst acetylcholine is accepted as the main neurotransmitter in- 

volved in thermoregulatory sweating, adrenergic receptors have been 
identified on eccrine sweat glands, suggesting a role in thermoregulato- 
ry sweating. Noradrenergic neurons have been identified close to 
eccrine sweat glands (Uno, 1977; Donadio et al., 2006), although both 
the density in close proximity to eccrine sweat glands and the number 
of adrenergic receptors on the glands themselves are far fewer than cho- 
linergic neurons and cholinergic (M3) receptors, respectively. Exoge- 
nous administration of adrenergic agonists can elicit sweating, albeit 
only minimally (Allen and Roddie, 1972; Wolf and Maibach, 1974; 
Sato and Sato, 1981), although overall the results have varied. Either 
alpha (α) or beta (β)-adrenergic stimulation elicits a sweating response 
during in vitro preparations of sweat glands from rhesus monkeys, with 
the latter having a much greater effect. α-adrenergic stimulation pro- 
duces only a minimal response (in humans and animal studies), yet a 
cumulative effect may be present when both receptor types are stimu- 
lated (Sato and Sato, 1981; Aoki et al., 1984). During in vitro investiga- 
tion of isolated monkey palmar eccrine sweat glands, Sato and Sato 
(1981) observed relative effects of 4:2:1 for cholinergic, β-adrenergic, 
and α-adrenergic stimulation on sweating rate, respectively. In other 
studies of β-adrenergic blockade on sweating rate, using oral proprano- 
lol, also elicited mixed results, with sweating rates increasing (Wilcox 
et al., 1984; Freund et al., 1987), decreasing (Buono et al., 2010), or 
showing no change (Pescatello et al., 1990). This is likely due to the sys- 
temic effects of propranolol, including decreases in heart rate (Wilcox 
et al., 1984; Pescatello et al., 1987), blood pressure (Wilcox et al., 
1984), cardiac output, both skeletal and SkBF, and reported decreases 
in Tsk (Freund et al., 1987; Mack et al., 1986) and increased Tcore during 



 
 

 

exercise (Pescatello et al., 1987; Mack et al., 1986). Mora-Mora- 
Rodriguez et al. (1996) measured sweating rates during exercise while 
administering intravenous infusions of saline, glucose, or epinephrine, 
and observed no significant difference in sweating rate among trials, de- 
spite significantly greater plasma catecholamine concentrations during 
the epinephrine infusion. During hyperthermia, sweating may be signif- 
icantly attenuated or completely abolished via administration of the 
muscarinic antagonist atropine, supporting cholinergic dominance in 
mechanisms of human eccrine sweating (Machado-Moreira et al., 
2012). 

Whilst acetylcholine is the major neurotransmitter responsible for 
eccrine sweating, a number of other substances and mechanisms can 
stimulate or modify the response at the level of the gland. During hyper- 
thermia, arterial plasma ATP is known to increase (Pearson et al., 2011; 
Kalsi and González-Alonso, 2012) and has been implicated in the con- 
trol of eccrine sweating. Sympathetic cholinergic nerves co-release 
ATP with acetylcholine (Rabasseda et al., 1987), with increases in 
sweating demonstrated in vitro with administration of ATP. P2Y recep- 
tors have been identified in human sweat glands (Lindsay et al., 
2002a; Lindsay et al., 2002b), however, in vivo responses and the mech- 
anisms involved are less clear. Fujii et al. (2015) recently found no direct 
role of ATP in the sweating response, but modulation of cholinergic 
sweating during heat stress and exercise cannot be ruled out and further 
investigation may be warranted. Multiple putative signaling molecules 
involved in sweating have been identified within the periglandular 
sympathetic nerves, including, VIP, CGRP, galanin, NE, and ATP 
(Rabasseda et al., 1987; Tainio et al., 1987; Lindh and Hokfelt, 1990; 
Lundberg et al., 1980; Kennedy et al., 1994). When administered locally 
they elicit a sweating response (Schlereth et al., 2006), yet their func- 
tions in the regulation of sweating are controversial and are not fully un- 
derstood. A number of these substances have also been implicated in 
cutaneous vasodilation, adding increasing speculation to a common sig- 
naling mechanism between the two thermoregulatory responses (see 
below). 

 
 

7. Local control of sweating 
 

Stimulation of sweating by local heating was first observed by Sato 
(1956) in the footpad of cats. Subsequent studies have extensively doc- 
umented the effects of local heating on sweating in humans (Ogawa and 
Asayama, 1986; Ogawa, 1970; Gisolfi and Robinson, 1970; Nadel et al., 
1971; Wurster and McCook, 1969). Specifically, local heating above 
42 °C can elicit a local sweating response via direct glandular activation, 
even in cool temperatures when whole body sweating is absent 
(Issekutz et al., 1950; Lloyd, 1961). Local heating of 20–40 °C can inten- 
sify the local sweating rate, but whole body sweating must be present, 
indicating that adequate efferent sudomotor impulses must occur for 
modification at the glandular level under these conditions (Bullard 
et al., 1967; MacIntyre et al., 1968). Modulation occurs via increased 
acetylcholine release at the neuroglandular junction and increased sen- 
sitivity of the sweat gland to acetylcholine, enhancing the local sweat 
rate for a given thermal drive (Ogawa and Sugenoya, 1993; Ogawa 
and Asayama, 1986; Ogawa, 1970). 

In addition to the direct effects of acetylcholine on M3 muscarinic re- 
ceptors, a sudomotor axon reflex is also triggered (Fig. 2). Acetylcholine 
binds to axonal nicotinic receptors and evokes a neural impulse which is 
thought to travel antidromically from the axon terminal along the post- 
ganglionic sympathetic sudomotor fiber. Upon reaching a branch point, 
the impulse travels orthodromically to other eccrine sweat glands and 
stimulates sweating via an indirect axon-reflex (Illigens and Gibbons, 
2009; Namer et al., 2004). Utilization of this mechanism has gained 
widespread clinical use (i.e. the quantitative sudomotor axon reflex 
test, QSART) to assess postganglionic sympathetic cholinergic 
sudomotor function in, for example, type 2 diabetes, and reflex sympa- 
thetic  dystrophy.  Sudomotor  dysfunction  is  prevalent  in  many 

autonomic neuropathies and therefore holds significant clinical value 
as a non-invasive test of autonomic function. 

 
8. Relationship between cutaneous vasodilation and sweating 

 
Cutaneous vasodilation is important in thermoregulatory sweating 

not only in providing the heat required for evaporation of sweat, but 
by providing blood plasma as the necessary precursor fluid for sweat 
production. It might therefore be expected that both sweating and 
SkBF responses would show greatest values in similar body regions; 
however, this is not the case (Smith et al., 2013a; Smith et al., 2013b). 
Regional variation in sweating over the body surface in humans is 
well documented (Kuno, 1956; Cotter et al., 1995; Taylor et al., 2006; 
Machado-Moreira et al., 2008a; Machado-Moreira et al., 2008b; 
Machado-Moreira et al., 2008c; Smith and Havenith, 2011; Smith and 
Havenith, 2012; Havenith et al., 2008; Hertzman, 1957), yet far less re- 
gional variation in SkBF is observed in young, healthy individuals during 
passive hyperthermia or pharmacological stimulation (Smith et al., 
2013b). 

The suggestion of a mechanistic link between sudomotor function 
and active cutaneous vasodilation originated from Fox and Hilton 
(1958), who hypothesized that an enzyme released from the activated 
sweat gland would cleave bradykinin, a potent vasodilator, in the inter- 
stitial space, leading to active vasodilation. This was based on similar 
glandular effects on blood flow in salivary glands and the generally par- 
allel patterns of sweating and blood flow during body heating. Sweating 
and active vasodilation are reported to occur at similar times during hy- 
perthermia, suggesting shared sympathetic neural mechanisms. This 
was further supported by the absence of an active vasodilator response 
in individuals with anhidrotic ectodermal dysplasia, who have a con- 
genital absence of sweat glands (Brengelmann et al., 1981). Further- 
more, both cutaneous vasodilation and eccrine sweating are 
augmented upon co-release of VIP and acetylcholine (Yamashita et al., 
1987), adding further weight to a mechanistic link. 

Sympathetic sudomotor function and active vasodilation are both 
cholinergic as they are blocked by intradermal botulinum toxin 
(Kellogg et al., 1995) yet post-junctional blockade of muscarinic recep- 
tors with atropine blocks sweating but has only minor effects on cutane- 
ous vasodilation. Blockade of bradykinin receptors was without effect on 
active vasodilation, eliminating that as a specific intermediate (Kellogg 
et al., 2002). There is debate whether nerves innervating the cutaneous 
vasculature and sweat glands constitute a single nerve or are in fact sep- 
arate (see Fig 1). More recently, common signaling molecules for the two 
responses have been investigated, including calcitonin gene-related pep- 
tide (CGRP), substance P, VIP, and NO (Fujii et al., 2015; Stapleton et al., 
2014; Journeay et al., 2004). The primary neurotransmitter responsible 
for active cutaneous vasodilation remains uncertain, maintaining specu- 
lation that sympathetic nerve cotransmission mediates vasodilation 
(Kellogg et al., 1995) and may also modulate the sweating response. 

VIP is a candidate for the elusive cotransmitter and a focus of many 
studies. Evidence for VIP immunoreactive nerve fibers surrounding 
sweat glands was demonstrated on cat foot pads (Lundberg et al., 
1980; Kummer et al., 1990) by Lundberg and colleagues as early as 
1979 and later in human eccrine sweat glands (Kummer et al., 1990; 
Eedy et al., 1990). VIP is a potent vasodilator, and has also been shown 
to enhance sweating (Vaalasti et al., 1985). Binding sites for VIP have 
been identified on human eccrine sweat glands (high and low affinity) 
suggesting a regulatory role for VIP (Heinz-Erian et al., 1986). Currently, 
despite the coexistence of VIP and acetylcholine in cholinergic sympa- 
thetic nerve terminals and the presence of receptors on eccrine glands, 
the putative mechanistic involvement of VIP in a functional relationship 
between sweating and SkBF is yet undetermined. 

The important role of NO in vascular signaling has received consider- 
able attention in recent years, and its mechanisms of action have been 
extensively studied. Whilst a thermally-mediated vasodilator action of 
NO, and NOS enzymes has been established (Kellogg et al., 1998; 



 
 

 

Kellogg et al., 2009; Bruning et al., 2012; Minson et al., 2001; Kellogg, 
2006; Smith et al., 2011), a putative NO-signaling mechanism for 
eccrine sweating has been suggested. Flow-mediated changes in NO re- 
lease may modulate sweating at a given thermal drive, in addition to the 
possible role of an NO-dependent pathway acting to modify sweat pro- 
duction within the sweat gland itself. However, evidence for such a sig- 
naling pathway is mixed. Several authors observed an attenuation of 
sweating rate following NOS-inhibition (Stapleton et al., 2014; Lee and 
Mack, 2006; Welch et al., 2009a), suggesting a possible role for NO in 
eccrine sweating (Welch et al., 2009b). Conversely, NOS inhibition 
showed negligible effects on sweating rate during whole body passive 
heating (Kellogg et al., 1998; Shastry et al., 1998). Overall limited data 
support an NO-dependent signaling pathway for eccrine sweating, yet, 
eNOS has been identified in clear cells which produce a sweat precursor 
fluid in eccrine sweat glands (Shimizu et al., 1997). NO may play a role 
in sweat gland activation via intracellular calcium influx during 
acetylcholine-mediated sweating, additionally activating NOS and sub- 
sequent production of NO. Currently, the presence of an NO-signaling 
mechanism in eccrine sweat glands, and a functional relationship be- 
tween sweating and SkBF requires further investigation. 

When considering common mechanisms in the control of SkBF and 
sweating responses, it is of value to investigate these responses in spe- 
cific populations and pathologies. Non-uniform decrements in both re- 
sponses have been observed with primary aging, whereby SkBF 
significantly declines in older individuals, initially towards the peripher- 
al with little difference on the abdomen in comparison to younger indi- 
viduals (Smith et al., 2013a). Conversely, whilst regional sweating rates 
are significantly lower in older versus younger individuals during whole 
body warming, the differences are far greater on the back and abdomen 
compared to the extremities (arm and thigh) in the older group. Decre- 
ments in sweating appear greater than those observed in cutaneous va- 
sodilation, suggesting age-related differences in end organ 
responsiveness, or attenuation of other potential signaling mechanisms 
involved in the control of sweating ad SkBF (Smith et al., 2013a). Further 
work is required exploring the mechanistic and functional links be- 
tween sweating and SkBF, and the important clinical implications for 
disease groups whose thermoregulatory capacity is diminished. 

 
9. Non-thermal controllers of sweating 

 
Thermoregulatory responses are modified by several factors inde- 

pendent of Tcore, involving complex mechanisms of regulation resulting 
from involvement of many, often competing body systems. A brief intro- 
duction to these mechanisms is introduced below (refer to Cheuvront 
and Kenefick in this special edition for a more detailed review). 

 
9.1. Exercise, hypohydration and hyperosmolality 

 
During exercise, production of large amounts of heat as a byproduct of 

muscular contraction elicits rapid increases in Tcore and initiation of cuta- 
neous vasodilation and sweating. Sweating occurs within seconds of the 
onset of both dynamic exercise and short duration isometric exercise 
when performed in a warm environment (Vanbeaumont and Bullard, 
1963; Yanagimoto et al., 2003; van Beaumont and Bullard, 1966). Notably, 
these rapid sweating responses occur prior to any increase in Tcore or Tsk, 
indicating exercise itself independently modulates sweating. During in- 
termittent dynamic exercise, sweating responses rapidly increase during 
the work periods independent of changes in Tcore, Tsk or muscle temper- 
ature. Similarly, during sinusoidal exercise, sweating has been shown to 
mirror the sinusoidal workload pattern and not alterations in Tcore and 
Tsk (Yamazaki et al., 1996; Yamazaki et al., 1994). 

During periods of profuse sweating when fluid intake is insufficient 
to replace losses, hypohydration results. During progressive dehydra- 
tion, plasma volume is reduced, leading to hypovolemia accompanied 
by hyperosmolality in instances of more severe hypohydration. Higher 
heart  rate  and  Tcore  responses  are  observed  with  increasing 

magnitudes of hypohydration, and significantly lower sweating rates 
for a given Tcore (Sawka et al., 1985). During exposure to heat stress a 
right shift in the Tcore-sweating threshold has been observed in 
normovolemic hyperosmotic conditions relative to normovolemic iso- 
osmotic conditions, yet the slope of the Tcore-sweating relationship is 
unaffected (Montain et al., 1995; Fortney et al., 1984). Whilst iso- 
osmotic hypovolemia attenuates sweating, plasma hyperosmolality is 
capable of reducing sweating independent of plasma volume. Overall, 
a linear increase in thermal strain is observed with progressive 
hypohydration (Sawka et al., 1985), potentially leading to heat-related 
illness, injury and possibly death if Tcore remains dangerously elevated. 

 
9.2. Baroreceptor unloading 

 
Studies of the effects of baroreceptor function on sweating responses 

have produced mixed results. Wilson et al. (2001) observed no effect of 
pharmacologically induced baroreceptor unloading and immediate 
reloading during passive heat stress, achieved via infusions of sodium ni- 
troprusside and phenylephrine, respectively. Similarly, multiple studies 
involving a range of techniques designed to elicit baroreflex unloading, 
including passive heat stress coupled with lower body negative pres- 
sure, head up tilt, or infusion of pharmacological agents, have demon- 
strated no effect on sweating rates during passive heat stress. Kenny 
et al. (2010) observed no difference in sweating or cutaneous blood 
flow during upright seated versus 15° head-down tilt during passive 
heating, confirming earlier results. Similarly, Schlader et al. (2015) ob- 
served an attenuated vasodilation with cardiopulmonary and arterial 
baroreceptor unloading, but no effect on sweating rate during passive 
heat stress. Notably, similar results have been observed during exercise, 
yet cardiopulmonary and/or baroreflex unloading consistently reduces 
sweating rate during post-exercise recovery (Journeay et al., 2004). 
Baroreflex reloading via lower body positive pressure (Journeay et al., 
2004) or head down tilt (Journeay et al., 2007; McInnis et al., 2006) aug- 
ments sweating and reduces return time to baseline Tcore versus control 
conditions, subsequently improving thermoregulatory recovery to exer- 
cise in warm conditions. It is important to consider the level of hyper- 
thermia with extreme heat stress, and therefore a high thermal drive, 
superseding non-thermal modulation of sweating (Kondo et al., 2002). 

 
10. Clinical Importance 

 
Autonomic dysfunction is a feature of many clinical conditions, 

resulting in potentially severe or fatal symptoms. For a comprehensive 
review of the clinical relevance of thermoregulatory dysfunction in con- 
ditions associated with autonomic dysfunction, please refer to other re- 
views within this special addition. In such populations, for example type 
2 diabetic neuropathy (Fagius and Wallin, 1980), the consequences of 
blunted sweating and SkBF responses significantly comprise thermo- 
regulatory ability, resulting in increased susceptibility to heat-related 
illness, injury, and potentially death. Considering the wide fluctuations 
in SkBF over the entire body, ranging from ~ 250 ml/min in normother- 
mic conditions to 6–7 L/min during heat stress, coupled with the signif- 
icant capacity for heat loss via evaporation of sweat, heat-related illness 
in clinical populations is not surprising. Sudomotor dysfunction is 
known to occur in many types of neuropathy and more specifically, is 
considered one of the earliest detectable alterations in distal small 
fiber neuropathy (Low et al., 2006). Utilizing various ‘sweat tests’ pro- 
vides an important clinical tool for assessment of autonomic (dys)func- 
tion, evaluating the success of specific treatment, and for monitoring 
disease progression (Illigens and Gibbons, 2009). Similarly, endothelial 
dysfunction occurs in the microcirculation (i.e. the skin) prior to dys- 
function in conduit vessels, is present prior to the onset of overt cardio- 
vascular disease symptoms, and therefore occurs in subclinical 
populations (Holowatz et al., 2008). When exposed to heat stress, 
older individuals (Minson et al., 1998) and many clinical populations 
experience considerable cardiovascular strain when attempting to 



 
 
 

dissipate heat via a compromised thermoregulatory system, with in- 
creased risk of a cardiovascular event. Greater consideration needs to 
be given to the risks of thermoregulatory dysfunction in clinical popula- 
tions, exemplified by dangerous sauna use in type 2 diabetic peripheral 
neuropathy, and with the disproportionately high incidence of heat- 
related illness and injury during heat waves in individuals over the 
age of 65 (Kenney et al., 2014). 
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