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Abstract 

 

AN ASSESSMENT OF WILDFIRE VULNERABILITY IN 

WESTERN NORTH CAROLINA, USA FOLLOWING THE 2016 WILDFIRES 

 

Lauren M. Andersen 

B.S., Appalachian State University 

M.A., Appalachian State University 

 

 

Chairperson: Margaret M. Sugg, Ph.D. 

 

 

In 2016, an intense drought occurred in the southeastern U.S. Dry conditions resulted 

in unprecedented wildfires throughout the southern Appalachian Mountains, especially in 

western North Carolina (WNC). Future climate change is expected to increase temperatures, 

alter precipitation, and stress water resources in the region, which could lead to more 

frequent drought and wildfire. The increasing threat of destructive wildfires combined with a 

growing wildland-urban interface indicate a need for a comprehensive assessment of wildfire 

vulnerability in WNC, while recent wildfires offer an opportunity to evaluate assessment 

accuracy. The study identifies locations vulnerable to wildfire in WNC based on wildfires 

from 1985 through 2016. By combining tract-level socioeconomic and physical data in a 

geographic information system, specific locations of vulnerability were identified and 

validated using wildfire perimeters from 2016. The study contributes to vulnerability 

research by embracing novel techniques through the use of validation. The vulnerability 

index indicates that social vulnerability varies greatly across the region, while physical and 

overall wildfire vulnerability is greatest in rural, mountainous portions of the region, which 



 v 

are less equipped for mitigation. Based on the results, the impacts of future wildfires on 

quality of life will vary across the region, so targeted responses are needed. The vulnerability 

index provides transparency to vulnerable communities, as well as enables policymakers to 

identify opportunities to prepare for resilience by targeting vulnerability hotspots. 
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Introduction 

In late 2016, large-scale wildfires occurred throughout Southern Appalachia 

following a severe drought throughout the southeastern U.S. The wildfires, resembling fires 

in the western portion of the country by burning into canopies, roots, and riparian areas, were 

unprecedented for Appalachia. From late October through early December 2016, 

approximately 75,000 acres burned in western North Carolina. Western North Carolina’s 

economy is reliant on the agricultural and tourism sectors, thus wildfires have the capacity to 

severely impact local communities. In the future, projected temperature increases and 

precipitation variability could further stress water resources in the region, causing more 

frequent and intense drought and wildfire events (IPCC 2012). The combination of 

environmental conditions increasingly favorable for wildfire with a large rural population 

dependent on the mountain landscape suggest elevated wildfire vulnerability in western 

North Carolina. 

A wildfire is “any nonstructure fire, other than prescribed fire, that occurs in the 

wildland” (USFS 2018a). While fire-dependent ecosystems rely on fire, fire-sensitive 

ecosystems rely on fire suppression. Suppression has increased the density of vegetation and 

fire-sensitive species, which contribute to elevated wildfire intensity (Aldrich et al. 2014). 

Throughout the past few decades, increases in season length, fire size, acreage burned, and 

extreme behavior have complicated fire management (USFS 2018c). At the same time, 

individuals have settled into the zone where vegetation meets development, called the 

wildland-urban interface (WUI), further enhancing vulnerability. 

Previous studies have explored the drivers of wildfire vulnerability. Human 

development, including population and road densities, affect the likelihood of wildfire 
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occurrence (Feltman et al. 2012; Lein and Stump 2009; Maingi and Henry 2007; Munn et al. 

2003). The complex climate and topography of mountainous regions also influences wildfire. 

Dry conditions and locations elevate wildfire frequency and intensity (Aldrich et al. 2014; 

Flatley et al. 2011; Lafon et al. 2005). Topographic characteristics, such as elevation, slope, 

aspect, illumination, and fuels, also affect wildfire behavior (Flatley et al. 2011; Maingi and 

Henry 2007; Lein and Stump 2009). Socially, variables relating to economic status and 

educational attainment have been demonstrated to influence wildfire occurrence (Feltman et 

al. 2012; Gaither et al. 2011). 

The increasing threat of destructive wildfires combined with the growing WUI 

indicate a need for a comprehensive assessment of wildfire vulnerability in western North 

Carolina, while recent wildfires offer an opportunity to evaluate the accuracy of the 

assessment. The objective of this study was to identify locations vulnerable to wildfire in 

western North Carolina, an understudied region. To determine vulnerable locations, data was 

obtained from a variety of sources, including the U.S. Census Bureau, U.S. Geological 

Survey, and U.S. Forest Service. Indices were produced using multi-criteria decision making 

in a GIS. A social vulnerability index was produced following Dr. Susan Cutter’s Social 

Vulnerability Index (SoVI). To evaluate physical vulnerability, a Kendall correlation and 

binomial regression were used to evaluate the physical variables influencing historical 

wildfires and inform an analytical hierarchy process. Using this information, a physical 

vulnerability index was produced and validated using wildfire perimeters from 2016. The 

physical drivers of wildfire size were then identified using a multiple linear regression. A 

bivariate mapping technique was employed to determine the intersection of social and 

physical wildfire vulnerability. 
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This study embraced novel methods to explore wildfire vulnerability. Socially, 

gender, employment, and race influenced vulnerability the most. Physically, forest cover, 

road density, elevation, and illumination were significant predictors of wildfire presence, 

while forest cover, population density, and elevation were significant predictors of wildfire 

size. While social and physical vulnerability was variable across the region, the results 

revealed the highest wildfire vulnerability to be in the southwestern portion of the region, 

near the Great Smoky Mountains National Park. The rural, mountainous locations most 

vulnerable to wildfire are also the least equipped for mitigation. Because vulnerability varies 

across the region, targeted responses are needed. The results demonstrate the potential utility 

of indices for accurately assessing vulnerability to hazards. The wildfire vulnerability index 

empowers communities, informs policymakers, and provides a novel methodology for 

assessing wildfire vulnerability in a previously understudied region. 
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Abstract 

In 2016, an intense drought occurred in the southeastern U.S. Dry conditions resulted 

in unprecedented wildfires throughout the southern Appalachian Mountains, especially in 

western North Carolina. Future climate change is expected to increase temperatures, alter 

precipitation, and stress water resources in the region, which could lead to more frequent 

drought and wildfire. The increasing threat of destructive wildfires combined with a growing 

wildland-urban interface indicate a need for a comprehensive assessment of wildfire 

vulnerability in WNC, while recent wildfires offer an opportunity to evaluate assessment 

accuracy. The study identifies locations vulnerable to wildfire in WNC based on wildfires 

from 1985 through 2016. By combining tract-level socioeconomic and physical data in a 

geographic information system, specific locations of vulnerability were identified and 

validated using wildfire perimeters from 2016. The study contributes to vulnerability 

research by embracing novel techniques through the use of validation. The vulnerability 

index indicates that social vulnerability varies greatly throughout the region, while physical 

and overall wildfire vulnerability is greatest in rural, mountainous portions of the region, 

which are less equipped for mitigation. Based on the results, the impacts of future wildfires 

on quality of life will vary across the region, so targeted responses are needed. The 

vulnerability index provides transparency to vulnerable communities, as well as enables 

policymakers to identify opportunities to prepare for resilience by targeting vulnerability 

hotspots. 
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1. Introduction 

In November of 2016, dozens of intense wildfires burned throughout Southern 

Appalachia in the southeastern U.S. The wildfire outbreak was supported by a combination 

of extremely dry conditions, ideal topographic characteristics, accumulating fuel loads, and 

arson (Margulis 2016). The large-scale wildfires, resembling those occurring in the western 

portion of the country, were unprecedented for Appalachia. The fires burned into the dry 

canopies, roots, and even riparian banks and spread quickly as winds and temperatures 

increased (Chavez 2016). The worst case scenario occurred when the wildfires spread into 

the popular tourist destination, Gatlinburg, Tennessee, destroying much of the town. 

Residents rapidly evacuated and air quality alerts were issued for much of the East Coast. In 

2016, forestry professionals, emergency responders, government officials, and local residents 

were ill-prepared to respond to the wildfire outbreak. Past wildfire outbreaks offer an 

opportunity to understand, predict, and prepare for wildfire in Appalachia. 

Western North Carolina was particularly impacted by the wildfires in 2016. The 

region’s aesthetic beauty and rich biodiversity have made the region a destination for tourists, 

as well as new residents. Increasingly, the growing population has settled into the zone where 

vegetation meets development, called the wildland-urban interface (WUI), and dramatic 

modification of the natural environment has contributed to enhanced drought and wildfire 

risk. In 2016, the active wildfire season resulted in significant economic losses for local 

business owners in the agricultural and tourism sectors of western North Carolina (Mattise 

and Foreman 2016). The large rural population was particularly impacted by the dry, smoky 

conditions throughout the region. Projected temperature increases and precipitation 

variability could further stress water resources in the region, causing more frequent and 

intense drought and wildfire events (IPCC 2012). The combination of environmental 
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conditions increasingly favorable for wildfire with a large rural population dependent on the 

mountain landscape suggest elevated wildfire vulnerability in western North Carolina. 

  



 8 

2. Literature Synthesis 

2.1. Wildfire in Appalachia 

A wildfire is “any nonstructure fire, other than prescribed fire, that occurs in the 

wildland” (USFS 2018a). While fire-dependent ecosystems rely on fire, fire-sensitive 

ecosystems rely on fire suppression. Throughout Appalachia, wildfire and wildfire 

management practices have played an integral role in forest development. Prior to 

suppression in the twentieth century, fire intervals averaged between 6 and 8 years, 

influencing vegetation development. As a result of reduced fire, oak and pine species are 

being replaced by more fire-sensitive species, changing the characteristics of forests and 

making wildfires more intense (Aldrich et al. 2014). Throughout the past few decades, 

wildfire management has changed due to increases in season length, fire size, acreage 

burned, and extreme behavior (USFS 2018c). 

Though wildfires are beneficial to forest ecosystems, it threatens communities in the 

WUI. WUI development contributes to wildfire vulnerability, as well as emergency 

management challenges. Previous studies have demonstrated a relationship between human 

activities and wildfire presence. Specifically, populations and roads affect the likelihood of 

wildfire occurrence (Feltman et al. 2012; Lein and Stump 2009; Maingi and Henry 2007; 

Munn et al. 2003). Additionally, wildfires resulting from human activities burn more area 

and occur more often compared to naturally-caused wildfires (Lafon et al. 2005). 

The complex climate and topography of mountainous regions influences wildfire. Dry 

conditions and locations elevate wildfire frequency and intensity (e.g., Aldrich et al. 2014; 

Flatley et al. 2011; Lafon et al. 2005). Lafon et al. (2005) identified four characteristics of 

fire in Appalachia: humid temperature conditions supporting fuels; seasonal variations in 

weather causing pronounced seasonality; periodic dry years with favorable burning 
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conditions and wet years with less favorable conditions; and frequent coincidences of 

lightning and dry conditions to ignite fires during the growing season. Lafon and Grissino-

Mayer (2007) determined the Blue Ridge was particularly fire prone compared to other 

physiographic provinces of Appalachia based on ignition density, maximum fire size, and 

fire cycle. Because fire is sensitive to climate, future variability will likely influence wildfire 

patterns. 

There is less consensus on how topographic variables influence wildfire and the 

strength of topographic trends vary according to the climate (Flatley et al. 2011). Flatley et 

al. (2011) determined that fire occurrence was highest at dry, south-facing slopes, ridges, and 

low elevations at the Great Smoky Mountains and Shenandoah National Parks in the 

Southern and Central Appalachians with elevation having the greatest influence and aspect 

having the least. Maingi and Henry (2007) determined that fire occurrence was highest at 

higher elevations and on steeper slopes in eastern Kentucky. Lein and Stump (2009) 

determined that fire occurrence was highest at sites with high deciduous fuels, high solar 

radiation, low topographic wetness, flatter slopes, and low population density in the 

Appalachian Mountains of southeastern Ohio. The range of findings demonstrates the 

complexity of pinpointing wildfire vulnerability in mountainous locations. 

2.2. Social Vulnerability and Wildfire 

The concepts of vulnerability, adaptation, and resilience are used throughout 

scientific literature to describe biotic systems. A variety of definitions exist for the three 

terms, but all three describe the response to changes in the relationship between open, 

dynamic systems and their external environments (Gallopín 2006). Vulnerability varies 

spatiotemporally, making it geographical in nature (Cutter and Finch 2008). Vulnerability 
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can be a result of biophysical risks, social responses, or hazards of place (Cutter 1996). 

Cutter (1996)’s hazards of place model of vulnerability conceives vulnerability as both a 

biophysical risk and social response framed by geographical location. The hazards of place 

model suggests that vulnerability is closely related to the socioeconomic and physical 

characteristics of a location and changes over time. 

The influence of social vulnerability on a system’s ability to respond to natural 

hazards is well-established. However, methods for evaluating social vulnerability to natural 

hazards vary. The foundational vulnerability index is Cutter et al. (2003)’s Social 

Vulnerability Index (SoVI), an index of social vulnerability to natural hazards. The SoVI is 

valuable because it produces illustrations of the uneven capacity for preparedness and 

response, which can be used to inform programs and policies (Cutter and Emrich 2017). The 

SoVI has been widely used to study exposure to hazards, including drought, flooding, and 

sea level rise, both nationally and internationally (e.g., Emrich and Cutter 2011; Guillard-

Gonçalves et al. 2015; Siagian et al. 2014). Some studies have constructed social indices 

similar to the SoVI to specifically evaluate wildfire vulnerability by taking variables relating 

to poverty, race, gender, and education into account. Wigtil et al. (2016) created a wildfire 

vulnerability index based on the SoVI and determined that the highest percentage of 

intersections between social vulnerability and wildfire potential occurred in the southeastern 

U.S. 

Specific socioeconomic variables have been associated with wildfire vulnerability. 

Feltman et al. (2012) determined that wildfire occurrence was positively correlated with low 

road densities, low population densities, low population changes, high poverty rates, and low 

educational attainment in South Carolina. Of these variables, poverty and education had the 
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largest influence on wildfire occurrence, indicating the importance of socioeconomic 

variables to wildfire vulnerability studies. Similarly, Gaither et al. (2011) examined the 

influence of fire mitigation programs in the southeastern U.S. and determined that poorer 

communities with high fire risk are at a greater disadvantage than more affluent communities 

with comparative fire risk in their states, highlighting an important environmental justice 

issue. 

A shortcoming of many existing vulnerability studies is their lack of validation. 

Cutter et al. (2003) suggested refinements to the SoVI, including the integration of hazard 

event frequency data. Additionally, many vulnerability studies are conducted at the regional, 

state, or county level (e.g., Cutter et al. 2003; Cutter and Finch 2008, Emrich and Cutter 

2011) and emphasize the importance of examining vulnerability at a local scale (e.g., Cutter 

1996). The SoVI is a comparative metric, so results vary based on the size and characteristics 

of the study area (Cutter and Emrich 2017). Sub-county level evaluation of vulnerability 

facilitates more effective policymaking by pinpointing local vulnerabilities, which is 

particularly valuable in complex regions like Appalachia. 

Currently, the success of wildfire mitigation planning is limited by inadequate 

characterization of physical risk, lack of emphasis on socioeconomic drivers, and incomplete 

integration of the two (Ager et al. 2015). The increasing threat of destructive wildfires 

combined with the growing WUI indicate a need for a comprehensive assessment of wildfire 

vulnerability in western North Carolina, while recent wildfires offer an opportunity to 

evaluate the accuracy of the assessment. Due to uncertainty about future climate changes, 

implementing proactive policies is crucial. The objective of the present study is to identify 

locations vulnerable to wildfire in western North Carolina. By combining socioeconomic and 
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physical data in geographic information systems (GIS), specific locations of vulnerability can 

be identified and evaluated using information about the wildfire outbreak in 2016. Using 

statistical analyses, the regional drivers of wildfire can be determined. The results of the 

proposed study will provide transparency to vulnerable communities, as well as enable 

policymakers to prepare for resilience to wildfire in western North Carolina. 
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3. Study Area 

The study focuses on census tracts in the 27 counties of western North Carolina, 

USA. Approximately 75,000 acres of these counties burned from late October through early 

December 2016. Western North Carolina is an understudied region in wildfire literature, 

despite being particularly impacted by the event in 2016. Western North Carolina is an 

important source of water for the surrounding region, including large metropolitan cities like 

Charlotte, North Carolina and Atlanta, Georgia. The region is divided into two physiographic 

provinces: the Blue Ridge and the Piedmont, which are separated by the Blue Ridge 

Escarpment. The Blue Ridge province is characterized by a rugged landscape. The 

escarpment and associated elevation gradient result in climatic variability throughout western 

North Carolina (NEMAC 2012). For example, precipitation ranges from less than 40 inches 

annually in Buncombe County to more than 100 inches in the neighboring Transylvania 

County (PRISM Climate Group 2018). 

Western North Carolina’s overall median household income is below the state and 

national averages. Within the region, inequality is particularly prevalent with a nearly 

$15,000 difference between the highest median household income ($48,138 in Henderson 

County) and lowest ($33,598 in Swain County) (USCB 2016a). Additionally, 23 of the 27 

counties have a rural population greater than 50% (USCB 2010). As a result of these 

economic differences, development varies greatly across the region. Metropolitan locations, 

such as Asheville, have elevated economic status and therefore greater capacity for 

resilience. In contrast, the large rural population throughout the region suggests 

communication and mobility challenges that elevate vulnerability. Western North Carolina’s 

economic disparity complicates policymaking and highlights a need for local-scale 
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assessments. The region’s variability in regards to climate, topography, and economic 

development drive regional patterns of wildfire (Fig. 1).  
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4. Methods 

In the present study, GIS is employed for multi-criteria decision-making (MCDM), 

which is the process of combining information from several criteria to form a single index of 

evaluation (Chen et al. 2010). MCDM requires the creator to make decisions about a variety 

of factors, including variables, scales, and weights, and these decisions introduce subjectivity 

to indices (Tate 2012). Fortunately, GIS-based methods exist for informing and validating 

these decisions, making indices more reliable tools for decision-makers. 

4.1. Social Vulnerability 

Socioeconomic data was downloaded from the 2010 Census and 2012-6 American 

Community Survey for 317 census tracts in western North Carolina. Three tracts were 

excluded from the analysis due to lack of population and thus data availability. The variables 

chosen followed Cutter and Emrich (2017) who identified the 27 variables as proxies for 

characteristics known to influence hazards vulnerability (Table 1). 

In IBM SPSS Statistics 24, the variables were normalized using z-score 

standardization. To reduce multicollinearity between variables, the standardized scores 

underwent principal components analysis (PCA). The first 7 components met Kaiser’s 

criterion and were retained and categorized for analysis (Kaiser 1960) (Table 2). The 

directionality of the wealth component was reversed because a higher amount of wealth 

indicates lower vulnerability. In ArcMap 10.4.1, the components were joined to the tracts and 

summed to produce the social vulnerability index. 

4.2. Physical Vulnerability 

To assess physical vulnerability, ten variables representing fuels, topography, climate, 

and development were selected based on previous wildfire studies. Wildfires are highly 
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influenced by the availability of fuels. To represent fuels, land cover data was downloaded 

from the 2011 National Land Cover Database (Homer et al. 2015). Percentage forest cover 

was derived by combining cells classified as deciduous, evergreen, and mixed forest and 

dividing them by the total number of cells per tract. Forest biomass data was acquired from 

the USDA Forest Service’s Forest Inventory and Analysis (FIA) Program. FIA biomass data 

is derived from field data and Landsat satellite imagery and is valuable for measuring forest 

disturbance and regrowth (Moisen et al. 2008). In addition to fuels, climate and topography 

influence patterns of wildfire. The National Elevation Dataset served as the source for one 

arcsecond elevation data used to produce slope, aspect, and illumination (hillshade) layers 

(USGS 2018b). Linear aspect values were computed using the Geomorphometry and 

Gradient Metrics Toolbox 2.0 (Evans et al. 2014). From the PRISM Climate Group, 30-year 

normals for precipitation and temperature were downloaded (PRISM Climate Group 2018). 

Finally, humans influence wildfire by developing in the WUI. Population density was 

calculated based on population data from the U.S. Census Bureau (USCB) (2016b). Road 

density was calculated using a shapefile of statewide system and non-system road routes 

acquired from the North Carolina Department of Transportation (NCDOT) (2017) (Table 3). 

The subjectivity of weighting decisions can be reduced using methods in GIS, such as 

the analytical hierarchy process (AHP). AHP is a theory of measurement through pairwise 

comparisons that relies on the judgements of experts to derive priority scales (Saaty 2008). 

AHP is one of the most popular weighting methods for GIS-based MCDM because it is ideal 

for decision-making problems involving large amounts of heterogeneous data (Chen et al. 

2010). Previous studies have demonstrated the value of AHP for strengthening natural 

hazards MCDM, including wildfire risk (Vadrevu et al. 2010). 
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To determine weighting and enable validation of vulnerable locations, 2016 wildfires 

perimeters were obtained from the Geospatial Multi-Agency Coordination (GeoMAC) 

(USGS 2018a) and 1985-2015 (historical) wildfire perimeters were obtained from the USDA 

Forest Service (USFS 2018b). The historical wildfires were used to inform the physical index 

due to the larger sample size compared to 2016. Using the historical wildfire perimeters, 

presence (1) or absence (0) values were calculated for each census tract in the study area. The 

mean of each physical variable was calculated for each tract. In RStudio 1.0.143 (R Core 

Team 2017), a Kendall rank correlation and binomial regression were run to evaluate the 

relationship between the physical variables and the historical wildfires due to the non-linear 

and non-normal distribution of the data (𝞪 = 0.10). The results of the binomial regression 

revealed that road density was the highest predictor of historical wildfire presence and 

absence, followed by illumination (hillshade) (Table 4). 

Similar to Yalcin et al. (2011), the results of the correlation and regression were used 

to inform the AHP. Based on the direction of the correlation between the physical variables 

and the historical wildfires, each of the physical variables was reclassified (Table 5). All 

variables were reclassified into five classes using an equal interval classification (Table 8). 

The results of the binomial regression and corresponding standardized coefficients were used 

to determine relative importance of each variable and magnitude of the relationship between 

variables (Table 9). The comparison values were then entered into extAhp20, an extension 

that produces criteria weights for each variable (Marinoni 2004). The output weighed road 

density the highest (16.40), followed by forest cover (16.13) and elevation (15.75) (Table 

10). The consistency ratio of the AHP results was 0.04, aligning with the 0.1 threshold 

recommended by Saaty (1980). The results were mapped using the output capability in 
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extAhp20. Zonal statistics was used to assign a mean physical vulnerability value to each 

tract. 

Wildfire rates were calculated by dividing the total acreage burned by the total 

acreage for each tract. To assess the risk factors for large wildfires, a multiple linear 

regression was performed between log-transformed wildfire rates for all wildfires between 

1985 and 2016 and averages of the physical variables (Table 6). Zero values were removed to 

identify the physical variables specifically influencing wildfire size. 

Following Emrich and Cutter (2011) and Wigtil et al. (2016), the intersection of 

social and physical vulnerability was illustrated using a bivariate mapping technique. To 

produce three classes, moderate-high and high classifications were combined to create the 

high classification and low and low-moderate classifications were combined to create the low 

classification. 
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5. Results 

Following Cutter et al. (2003), the social vulnerability scores were mapped based on 

standard deviations from the mean into five classes ranging from < 1.5 to > 1.5 (Fig. 2). Of 

the 317 tracts, 23 (7%) were classified as high vulnerability, 62 (20%) as moderate-high, 134 

(42%) as moderate, 86 (27%) as low-moderate, and 12 (4%) as low. The tract with the 

highest vulnerability was located in Henderson County, while the tract with the lowest 

vulnerability was located in Buncombe County. Graham County had the highest proportion 

of high vulnerability tracts with 1 out of 3 classified tracts (33%) classified as having high 

social vulnerability. Graham was followed by Burke County, where 5 out of 18 tracts (28%) 

were classified as having high social vulnerability. Watauga County had the highest 

proportion of low vulnerability tracts with 3 out of 13 (23%) classified as having low social 

vulnerability. 

The mean physical vulnerability scores for each tract were also mapped based on 

standard deviations from the mean into five classes ranging from < 1.5 to > 1.5 (Fig. 3). Of 

the 317 tracts, 19 (6%) were classified as high vulnerability, 89 (28%) as moderate-high, 110 

(35%) as moderate, 74 (23%) as low-moderate, and 25 (8%) as low. The tract with the 

highest physical vulnerability was located in Haywood County, while the tract with the 

lowest physical vulnerability was located in Buncombe County. Macon County had the 

highest proportion of high vulnerability tracts with 4 out of 9 tracts (44%) classified as 

having high physical vulnerability. Buncombe County had the highest proportion of low 

vulnerability tracts with 13 out of 56 (23%) classified as having low physical vulnerability. 

The 2016 wildfires were used to validate the physical index. The results of the 

correlation between mean physical vulnerability and 2016 wildfires rates in each tract 

indicated a significant correlation (rho = 0.36, p-value < 0.001). Additionally, the results of 
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the binomial regression indicated that the physical vulnerability index was a significant 

predictor of the presence or absence of a 2016 wildfire (𝞪 = 0.001). 

A bivariate map was produced to illustrate the intersection of social and physical 

vulnerability (Fig. 4). The highest number of tracts (48) were classified as having moderate 

social and high physical vulnerability, followed by moderate social and moderate physical 

vulnerability (47). Swain County had the highest proportion of high vulnerability tracts with 

3 out of the 4 classified tracts (75%) classified as having high social and physical 

vulnerability. Swain was followed by neighboring Macon County, where 5 out of 9 tracts 

(56%) were classified as having high social and physical vulnerability. Cleveland County had 

the highest proportion of low vulnerability tracts with 8 out of 22 (36%) of the tracts 

classified as having low social and physical vulnerability. 

Similar to Lein and Stump (2009), wildfire count, wildfire acreage, and average 

burned area (acreage burned / count) were compared to the combined vulnerability 

classifications. No wildfires occurred in tracts with low social and physical vulnerability. The 

majority of wildfires (166 of 178) were observed in tracts with high physical vulnerability. 

Additionally, the highest wildfire acreage burned occurred in tracts with moderate social and 

high physical vulnerability, suggesting the index is a reliable indicator of wildfire 

vulnerability in western North Carolina (Table 7). 
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6. Discussion 

The objective of the study was to identify where social and physical wildlife 

vulnerability coincide in western North Carolina following the unprecedented wildfires in 

2016. The study fulfilled existing literature gaps by assessing vulnerability at the local scale, 

which can strengthen resilience in western North Carolina, an understudied region. 

The methodology of Cutter et al. (2003)’s SoVI, widely regarded as the foundational 

social vulnerability work, was followed to assess social vulnerability. The social 

vulnerability index revealed varying levels of social vulnerability throughout western North 

Carolina with elevated vulnerability in the southwestern portion of the region (Fig. 2). 

Individual component scores revealed social vulnerability to be driven by gender, 

employment, and race. Notably, the female component was comprised of two highly-

correlated variables: percentage of the population that is female and percentage of the 

population living in nursing facilities, indicating an older - and thus, more vulnerable - 

female population in western North Carolina. The tract with highest social vulnerability, 

located in Henderson County, can be attributed to higher values for the Female, Hispanic, 

Age, and Native American components. In contrast, the tract with the lowest social 

vulnerability, located in Buncombe County, can be attributed to higher values for the Wealth 

component and lower values for the Native American component. Notably, in both cases, the 

Native American component was driven by population in the service industry. Graham and 

Burke counties had the highest proportion of social vulnerability. For both counties, higher 

vulnerability was attributed to large minority populations, similar to findings by Cutter et al. 

(2003) and Cutter and Finch (2008). Graham County has a large Native American 

population, while Burke County has a large Asian population. Watauga County’s low 
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proportion of social vulnerability can be attributed to a higher amount of wealth compared to 

surrounding counties. 

To determine physical vulnerability, the study embraced novel methods in GIS by 

informing the physical vulnerability index using historical wildfires (Table 4). Forest cover 

was the most significant positive predictor of wildfire. Forests provide fuels for wildfires, 

which is in contrast to developed locations with less flammable material. Additionally, 

invasive species in the region, such as the hemlock wooly adelgid, have led to the death of 

many trees, contributing additional fuels to wildfires. Similarly, biomass was positively 

correlated with wildfire, though it was not a significant predictor of wildfire presence due to 

multicollinearity with forest cover (Variance Inflation Factor = 3.9). Both development 

variables, population and road density, were negatively associated with wildfire, indicating 

wildfires caused by human activity may often occur in rural locations instead of urban ones. 

Lein and Stump (2009) also concluded that wildfires occurred most frequently in places with 

low population densities. Both climate factors, precipitation and temperature, were not 

significant predictors of wildfire. Temperature’s negative correlation with wildfires could be 

attributed to latitudinal changes, while precipitation’s positive correlation with wildfires 

could be due to additional vegetation resulting from elevated precipitation. Similar to Maingi 

and Henry (2007), aspect had little influence on wildfires. The positive correlation between 

slope and wildfire was also consistent with findings from Maingi and Henry (2007). Steep 

slopes are drier and allow field upslope to be preheated before combustion (Maingi and 

Henry 2007). Finally, elevation was a significant negative indicator of wildfire, likely due to 

lower moisture driving lower biomass at higher elevations. Flatley et al. (2011) also noted 

this relationship in the Great Smoky Mountains National Park. 
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The physical vulnerability index revealed increasing physical vulnerability moving 

southward, toward the Great Smoky Mountains National Park, and westward, toward 

Appalachia (Fig. 3). The results of the regressions indicate that decreasing development 

combined with increasing forest cover is likely driving this trend instead of increasing 

elevation. The tract with the highest physical vulnerability was in Haywood County. The 

tract neighbors the Great Smoky Mountains National Park and the Eastern Cherokee 

Reservation and includes a segment of the Blue Ridge Parkway. At the county level, Macon 

County had the highest proportion of physical wildfire vulnerability, likely due to the 

Nantahala National Forest. This indicates that urban areas located near national forests, such 

as Maggie Valley in Haywood and Franklin in Macon, are particularly at risk. The tract with 

the lowest physical vulnerability was in the center of the City of Asheville in Buncombe 

County, where population and road densities are high and forest cover is low. Buncombe was 

also the county with the lowest proportion of physical vulnerability. 

To determine which physical characteristics increase wildfire acreage, a multiple 

linear regression was run between physical variables and rates for all wildfires between 1985 

and 2016 (Table 6). For all wildfires between 1985 and 2016, forest cover and population 

density were positive predictors and elevation was a negative predictor of wildfire rates. 

Forest cover was the most significant predictor, likely because forests present more fuels for 

wildfire growth. In contrast to the results of the binary regression, population density’s 

positive direction indicates that human presence may increase the likelihood of large 

wildfires, demonstrating the potential risks of settlement in the WUI. The negative direction 

of elevation, consistent with the results of the binary regression, indicates that higher 

elevations decrease the likelihood of larger wildfires. 
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Overall wildfire vulnerability was greatest in the southwest, consistent with Wigtil et 

al. (2016) (Fig. 4). Swain and Macon counties had the highest overall vulnerability likely due 

to a large number of protected lands and rural communities. Cleveland County had the lowest 

overall vulnerability likely due to its eastward location and the presence of three urban areas: 

Shelby, Gastonia, and Boiling Springs. Notably, Buncombe County, home to Asheville, and 

Henderson County, home to the Town of Hendersonville, demonstrated vulnerability patterns 

that differed from the rest of western North Carolina, but for different reasons. Both locations 

had low physical vulnerability in comparison to the surrounding region; however, Buncombe 

had lower social vulnerability than Henderson. Though no wildfires occurred in the Asheville 

or Hendersonville limits between 1985 and 2016, the 2016 8,000-acre Party Rock fire 

occurred in moderate-high physical vulnerability tracts less than ten miles from both 

locations, demonstrating the variability in the region, as well as the risks of settling in the 

WUI. 

Validation revealed a high number of wildfires in tracts classified as highly physically 

vulnerable, indicating the index accurately predicted wildfire presence (Table 7). The 

outcome demonstrates how past events can be used to inform policies to enhance resilience 

to future events. Overall, tracts with lower social vulnerability had smaller wildfires. 

Communities with low social vulnerability may have more resources to mitigate wildfires, 

whereas communities with greater vulnerability may have fewer resources to prevent 

wildfires, causing wildfires to be most devastating in communities who are less equipped for 

recovery. There were several notable outliers to the trend of increasing wildfires with 

increasing vulnerability. For all wildfires, the moderate physical and social vulnerability 

category experienced four wildfires with a large average size of 1,644 acres. The large 
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average size is driven primarily by the 1985 4,610-acre, High Peak fire in Burke County. The 

fire occurred during extremely dry conditions and was the worst fire in the county’s history 

(Flanagan 2015). For the 2016 wildfires, the high physical and moderate social vulnerability 

category experienced 39 wildfires with a large average size of 1,332 acres. Most of the 

largest 2016 wildfires, including the 14,092-acre Tellico fire, 11,757-acre Rock Mountain 

fire, 9,238-acre Boteler fire, 8,453-acre Maple Springs fire, and 7,930-acre Party Rock fire, 

occurred in tracts with high physical and moderate social vulnerability. Despite these 

outliers, the results of the validation demonstrate the potential utility of indices for 

successfully pinpointing vulnerability and informing policymaking. 

  



 26 

7. Conclusion 

The results of the individual and combined indices revealed high vulnerability in 

western North Carolina, though the nature of the vulnerability varied throughout the region. 

In contrast, previous studies have indicated low vulnerability to natural hazards in western 

North Carolina compared to eastern North Carolina and the U.S. (e.g., Cutter et al. 2003; 

Emrich and Cutter 2011; Wigtil et al. 2016). These differences highlight the importance of 

evaluating vulnerability at a local scale.  

Though validation provides a method for assessing accuracy, there are inherent 

limitations associated with modeling real-world vulnerability using indices. It is unlikely the 

index captured all of the variables contributing to wildfire vulnerability. Additionally, the 

index did not account for external influences that may enhance resilience to natural hazards, 

such as community relationships. The social index was subject to uncertainties due to the 

margins of error associated with socioeconomic data. Furthermore, the social index captures 

modern social vulnerability. It is likely that social vulnerability has changed between 1985 

and 2016, the temporal range of the events in this study. The physical index could be 

strengthened with additional historical fire data, as well as information about prescribed 

burns. Though the study was conducted at a more local scale than previous studies, future 

analyses could be strengthened by assessing vulnerability at an even smaller scale, such as 

the block group level. Finally, economic and health data could provide an additional 

validation to the overall vulnerability index. 

This study contributes to ongoing work by the USDA Forest Service to assess 

wildfire hazard in the U.S. As severe events become more likely, future analyses should 

evaluate local resilience to natural hazards, particularly drought and wildfires, in western 

North Carolina. Additionally, future analyses should consider the health impacts of exposure 
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to smoke from large wildfire outbreaks like the event in 2016. Given the widespread 

variability of social vulnerability throughout the region, vulnerability to other natural hazards 

should be explored. 

The results of the index reveal that impacts of future wildfires on quality of life will 

vary across the region. Therefore, targeted responses are needed. With the inclusion of 

socioeconomic characteristics in the wildfire vulnerability index, policymakers can pinpoint 

specific communities and develop personalized policies to increase resilience. By providing 

transparency to the public, the results of the index empower vulnerable communities to take 

action to mitigate the impacts of unprecedented outbreaks like the one in 2016. 
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Table 1. The social vulnerability index variables and sources based on the SoVI. 

Name Description Source 

MDGRENT Median gross rent for renter-occupied housing units 

2012-6 American 
Community 

Survey 

MEDAGE Median age 

MHSEVAL Median dollar value of owner-occupied housing units 

PERCAP Per capita income 

PPUNIT Average number of people per household 

QAGEDEP % Population under 5 years or age 65 and over 

QASIAN % Asian population 

QBLACK % African American (Black) population 

QCVLUN % Civilian labor force unemployed 

QED12LES % Population over 25 with less than 12 years of education 

QESL % Population speaking English as a second language 

QEXTRCT % Employment in extractive industries (fishing, farming, mining etc.) 

QFAM % Children living in married couple families 

QFEMALE % Female 

QFEMLBR % Female participation in the labor force 

QFHH % Families with female-headed households with no spouse present 

QHISP % Hispanic population 

QMOHO % Population living in mobile homes 

QNATAM % Native American population 

QNOAUTO % Housing units with no car available 

QPOVTY % Persons living in poverty 

QRENTER % Renter-occupied housing units 

QRICH200K % Families earning more than $200,000 per year 

QSERV % Employment in service occupations 

QSSBEN % Households receiving Social Security benefits 

QUNOCCHU % Unoccupied housing units 

QNRRES % Population living in nursing facilities 2010 Census 
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Table 2. The social vulnerability components retained from the principal components 

analysis. 

Component Cardinality Name Variance Dominant Variables  Component Loading 

1 - Wealth 21.8 

MHSEVAL 
PERCAP 

QRICH200K 
MDGRENT 
QED12LES 

QMOHO 

0.89 
0.87 
0.79 
0.76 
0.75 
-0.56 

2 + Age 13.0 

QSSBEN 
QAGEDEP 
MEDAGE 
QFEMLBR 

0.91 
0.86 
0.83 
-0.74 

3 + Housing 11.7 

QRENTER 
QNOAUTO 

QFAM 
QBLACK 
QMOHO 
PPUNIT 

0.75 
0.72 
-0.68 
0.58 
-0.53 
-0.52 

4 + Hispanic 7.3 
QHISP 
QESL 

0.92 
0.92 

5 + Female 5.5 
QFEMALE 
QNRRES 

0.73 
0.64 

6 + Native American 4.9 
QNATAM 
QSERV 

0.73 
0.72 

7 + Asian 4.0 QASIAN 0.89 
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Table 3. The physical vulnerability index variables and sources. 

Variable Source 

Aspect Derived from DEM 

Biomass USDA Forest Service 

Elevation USGS National Elevation Dataset 

Hillshade Derived from DEM 

Forest Cover Multi-Resolution Land Consortium 

Precipitation PRISM Climate Group 

Population Density US Census Bureau 

Road Density North Carolina Department of Transportation 

Slope Derived from DEM 

Temperature PRISM Climate Group 
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Table 4. The results of the Kendall correlation and binomial regression between the physical 

variables and historical wildfires between 1985 and 2015. Model #1 includes all physical 

variables. Model #2 includes all significant variables. 

 Kendall 
Correlation 

Binomial Regressions 

Variable tau 

Model #1 (AIC = 145.62) Model #2 (AIC = 136.74) 

Coefficient 
Standardized 

Coefficient 
Z p-value Coefficient 

Standardized 
Coefficient 

Z p-value  

Aspect -0.04 . 0.017 0.274 0.757 0.449 --- --- --- --- 

Biomass 0.28** -0.002 -0.068 -0.095 0.924 --- --- --- --- 

Elevation 0.14** -0.007 -1.919 -1.399 0.162 -0.004 -1.195 -3.413 0.00 

Forest Cover 0.37*** 0.088 2.150 1.468 0.142 0.136 3.316 4.233 0.00 

Hillshade -0.33*** -0.107 -0.718 -1.784 0.074 -0.105 -0.703 -2.608 0.01 

Population Density -0.35*** 0.212 0.224 0.080 0.936 --- --- --- --- 

Precipitation 0.25** 0.001 0.179 0.574 0.566 --- --- --- --- 

Road Density -0.33*** -0.052 -1.915 -1.700 0.089 -0.046 -1.716 -1.872 0.06 

Slope 0.32*** 0.198 1.055 1.174 0.241 --- --- --- --- 

Temperature -0.12** -0.199 -0.289 -0.232 0.816 --- --- --- --- 

*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1 
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Table 5. The reclassification criteria for the physical variables 

 Fuel Topography Climate Development 

High  
+ Forest Cover 

+ Biomass 

+ Elevation 
+ Slope 
- Aspect 

- Hillshade 

- Temperature 
+ Precipitation 

- Population Density 
- Road Density 

Low 
- Forest Cover 

- Biomass 

- Elevation 
- Slope 

+ Aspect 
+ Hillshade 

+ Temperature 
- Precipitation 

+ Population Density 
+ Road Density 

 

  



 41 

Table 6. The results of the multiple linear regressions between the physical variables and 

wildfire rates for all wildfires between 1985 and 2016. 

Variable 
Model #1 (AIC = 254.57, Adjusted R2 = 0.20)  Model #2 (AIC = 248.25, Adjusted R2 = 0.20) 

Estimate Z p-value Estimate Z p-value 

Aspect -0.016 -0.463 0.646 --- --- --- 

Biomass -0.051 -2.034 0.048 --- --- --- 

Elevation -0.006 -0.728 0.470 -0.005 -3.041 0.00 

Forest Cover 0.250 2.851 0.007 0.217 3.962 0.00 

Hillshade -0.043 -0.543 0.590 --- --- --- 

Population Density 6.927 1.846 0.072 6.180 2.004 0.05 

Precipitation -0.002 -0.578 0.566 --- --- --- 

Road Density -0.017 -0.375 0.710 --- --- --- 

Slope 0.056 0.268 0.790 --- --- --- 

Temperature -0.449 -0.347 0.730 --- --- --- 
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Table 7. The combined vulnerability classifications and wildfire count, acreage, and average 

burned area for all wildfires, 2016 wildfires, and 1985-2015 wildfires. 

Class 
Tracts in 

Class 

All Wildfires 2016 1985-2015 

Count Acreage Average Count Acreage Average Count Acreage Average 

Low Social - Low Physical 22 (7%) 0 0 0 0 0 0 0 0 0 

Moderate Social - Low Physical 39 (12%) 0 0 0 0 0 0 0 0 0 

High Social - Low Physical 38 (12%) 1 132 132 0 0 0 1 132 132 

Low Social - Moderate Physical 37 (12%) 4 2,297 574 1 0.3 0.3 3 2,297 766 

Moderate Social - Moderate Physical 47 (15%) 4 6,580 1,645 0 0 0 4 6,580 1,645 

High Social - Moderate Physical 26 (8%) 3 2,685 895 0 0 0 3 2,685 895 

Low Social - High Physical 39 (12%) 43 34,275 797 13 10,037 772 30 24,237 808 

Moderate Social - High Physical 48 (12%) 98 81,834 835 39 51,943 1,332 59 29,891 507 

High Social - High Physical 21 (7%) 25 20,752 830 15 12,667 845 10 8,085 809 
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Table 8. The equal interval reclassifications of the physical variables for the physical 

vulnerability index. 

 
Variable 

 
Unit 

Reclassified Value 

1 (Low Risk) 2 3 4 5 (High Risk) 

Aspect ° 288.0 - 360.0 216.0 - 288.0 144.0 - 216.0 72.0 - 144.0 0 - 72.0 

Biomass Mg/ha -30.2 - 78.9 78.9 – 188.0 188.0 - 297.1 297.1 - 406.2 406.2 - 515.3 

Elevation ft 172.5 - 544.1 544.1 - 915.7 915.7 - 1,287.3 1,287.3 - 1,658.9 1,658.9 - 2,030.5 

Forest % 0 - 19.8 19.8 - 39.6 39.6 - 59.3 59.3 - 79.1 79.1 - 98.9 

Hillshade ° 203.2 - 254.0 152.4 - 203.2 101.6 - 152.4 50.8 - 101.6 0 - 50.8 

Population Persons/Acre 6.4 - 7.9 4.8 - 6.4 3.2 - 4.8 1.6 - 3.2 0 - 1.6 

Precipitation mm 925.0 - 1,248.0 1,248.0 - 1,571.0 1,571.0 - 1,893.9 1,893.9 - 2,216.9 2,216.9 - 2,539.9 

Road Roads/Acre 196.6 - 245.6 147.7 - 196.6 98.7 - 147.7 49.7 - 98.7 0.80 - 49.7 

Slope ° 0 - 15.0 15.0 – 30.0 30.0 – 45.0 45.0 – 60.0 60.0 – 75.0 

Temperature °C 14.1 - 15.7 12.5 - 14.1 10.9 - 12.5 9.3 - 10.9 7.7 - 9.3 
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Table 9. The input parameters for the analytical hierarchy process. 

 
 

Aspect Biomass Elevation Forest Hillshade Population Precipitation Road Slope Temperature 

Aspect 1 1 1/2 1/2 1 1 1 1/2 1 1 

Biomass 1 1 1/8 1/9 1/3 1 1 1/8 1/4 1 

Elevation 2 8 1 1 1 3 3 1 1 2 

Forest 2 9 1 1 1 3 3 1 1 2 

Hillshade 1 3 1 1 1 1 1 1 1 1 

Population 1 1 1/9 1/3 1 1 1 1/3 1 1 

Precipitation 1 1 1/2 1/3 1 1 1 1/3 1/2 1 

Road 2 8 1 1 1 3 3 1 1 3 

Slope 1 4 1 1 1 1 2 1 1 1 

Temperature 1 1 1/2 1/2 1 1 1 1/3 1 1 
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Table 10. The physical variable weightings produced by the analytical hierarchy process. 

Variable Weight 

Aspect 7.2 

Biomass 4.0 

Elevation 15.8 

Forest 16.1 

Hillshade 10.2 

Population 6.4 

Precipitation 5.9 

Road 16.4 

Slope 11.1 

Temperature 6.9 
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Fig. 1. Wildfire perimeters and census-defined urban areas (50,000 or more people) in 

western North Carolina, USA. 
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Fig. 2. Social vulnerability scores for western North Carolina, USA. 
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Fig. 3. Physical vulnerability scores for western North Carolina, USA. 



 49 

 

Fig. 4. Bivariate map depicting the intersection of social and physical wildfire vulnerability 

in western North Carolina, USA. 
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