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Abstract

UNDERSTANDING COMPUTER SCIENCE ACADEMIC PERFORMANCE USING

PRINCIPAL COMPONENTS ANALYSIS

Christopher Smith
B.S., Appalachian State University
M.S., Appalachian State University

Chairperson: R. Mitchell Parry, Ph.D.

Some students perform better in school than others. Some classes are also harder than

others. This thesis poses the question: Are there types of students that do better in

certain types of classes? We model student grades as a combination of class difficulty,

student GPA, and student-class preference using student transcript data for Computer

Science undergraduates at Appalachian State University. This thesis applies principal

components analysis to relate classes to each other, interprets these relationships, and

quantifies their importance for grade estimation.
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Chapter 1 - Introduction

The six-year graduation rate for undergraduate students in public universities was 57% in

2011 [1]. Changing major, failing a class, and overscheduling can affect timely graduation.

With a better understanding of the types of students and types of classes, students

could make better, more informed decisions and potentially increase graduation rates.

For example, grade prediction systems provide one way to utilize relationships between

students and classes.

Grade prediction systems can use patterns in historical transcript data to estimate

future grades. For example, Chamillard used linear regression to predict computer science

course grades based on other classes students had taken [2]. This required training on

a set of students who had all taken the same classes. In a more general scenario, two

students are unlikely to take all the same classes when a university offers thousands of

classes, but each student only takes about 40. This problem is closely related to those

solved by recommendation systems. For example, Netflix’s recommendation system [3]

estimates the ratings for thousands of movies per user, where each user only rates tens or

hundreds. One approach uses matrix factorization [4] to aggregate ratings of similar items

and similar users. This thesis applies the same approach to estimate student grades.

Matrix factorization has been used to estimate student grades [5, 6, 7]. These

approaches project students and classes into a low-dimensional vector-space. These di-
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mensions can be understood as characteristics of classes or students that inform grade

estimation. Although the prior work demonstrated the usefulness of the approach, it did

not attempt to visualize or interpret these dimensions to substantiate their use. This

thesis attempts to fill this gap in the research using historical grades in computer science

classes at Appalachian State University.

This thesis compares several models to estimate student grades. First, we consider

a model that uses the university mean only, which serves as a baseline comparison for the

other models. Second, we consider a model that uses the average grade for each course.

A third model uses the average grade for each student. The fourth model combines

student averages and course averages to estimate grades. Our fifth model uses matrix

factorization to infer interactions between classes and the students who perform well in

them. Finally, we compare each model’s performance on two different data sets.

The following chapters provide methods, results, and conclusions. Chapter 2

provides details for each model. Chapter 3 compares the models on the data sets, while

Chapter 4 interprets the results and makes suggestions for future work.



Chapter 2 - Methodology

This chapter describes the data used, the models considered, how their parameters are

estimated, and the methods for comparison.

2.1 The Data Sets

This thesis obtained the academic transcripts for 16,000 students who have taken at

least one computer science class from the institutional research office at Appalachian

State University. We parsed these data into a matrix, where each row corresponds to

a student and each column corresponds to a course. We only considered a student’s

first attempt at each class. We then created two subsets of these data for use in this

thesis. The first data set contained only classes that appear among computer science

major requirements. These include mathematics, science, and computer science courses.

Then, we ignored classes that had fewer than 50 total students and students who had

taken fewer than 10 classes. This data set contained 1,177 students and 38 classes. The

second data set contained the 38 classes from the first data set and an additional 32

classes with the largest enrollment. After filtering students with fewer than 10 classes,

this set contained 9,554 students and 70 classes.

3



4

2.2 The Models

The M ×N matrix X contains the grades such that xji is the grade received by student

i in class j, where M is the number of students and N is the number of classes:

X =



x11 x21 . . . xN1

x12 x22 . . . xN2

...
... . . . ...

x1M x2M . . . xNM


(2.1)

The following figure shows a heatmap of XT sorted by student GPA (left-to-right) and

class average (top-to-bottom). Colors range from yellow to red, representing grades from

F to A. The black areas indicate that a student has not taken a class, i.e., missing values.

Figure 2.1: Heatmap of grades for the computer science data set
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Each of our proposed models optimize the following general cost function:

J(θ) =
1

2

M∑
i=1

N∑
j=1

(
xji − x̂

j
i

)2 {
xji is known

}
+ λR(θ) (2.2)

In this equation, θ represents the parameters for each model, and x̂ji represents the

model’s estimate for the grade of student i in class j. We select parameters to reduce

the sum of the squared errors between the actual grade, xji , and the estimated grade, x̂ji .

Because the vast majority of grades are treated as missing values, the summations only

include those grades that are known, designated by the indicator function in curly braces.

R(θ) is a regularization term which biases the optimization toward simpler models with

parameter values near zero. The parameter λ controls how strongly parameter values are

pulled toward zero and therefore complexity of the resulting model. This helps to reduce

overfitting on small data sets [8].

2.2.1 The m Model

First we consider a simple model that estimates the same grade for everyone using the

following criterion function:

J(m) =
1

2

M∑
i=1

N∑
j=1

(
xji −m

)2 {
xji is known

}
, (2.3)
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where x̂ji = m. In this case, the value of m that minimizes the criterion is the mean of

all known grades:

m =
1

G

M∑
i=1

N∑
j=1

xji
{
xji is known

}
, (2.4)

where G is the total number of known grades. Figure 2.2 shows a heatmap of the model

residuals. The blue elements of the matrix indicate underestimates, whereas red elements

indicate overestimates. Colors near white indicate close estimates. Residuals decrease

from the upper-left to the lower-right corner. That is, students and classes with high

averages tend to get underestimated the most, whereas students and classes with lower

averages are overestimated the most.

Figure 2.2: Heatmap of residuals for the m model
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2.2.2 The m+ b Model

In addition to the overall average grade, some classes have higher averages than others.

Here, we introduce an additional parameter per class, bj, which produces the following

criterion function:

J(m,b) =
1

2

M∑
i=1

N∑
j=1

(
xji −m− bj

)2 {
xji is known

}
+
λ

2

N∑
j=1

(bj)
2 , (2.5)

where x̂ji = m + bj, λ is a tuning parameter to help control overfitting, and b is a row

vector of class parameters:

b =

[
b1, b2, . . . , bN

]
. (2.6)

Once we compute m using Equation 2.4, bj is the average grade for class j minus m:

bj =
1

Gj + λ

M∑
i=1

xji
{
xji is known

}
−m, (2.7)

where Gj is the number of known grades for class j. Figure 2.3 shows the model residuals.

Here, model residuals decrease from left to right, reducing the errors due to class difficulty

when compared to Figure 2.2.
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Figure 2.3: Heatmap of residuals for the m + b model

2.2.3 The m+ a Model

Some students perform better than others and we introduce an additional parameter per

student, ai, which produces the following criterion function:

J(m, a) =
1

2

M∑
i=1

N∑
j=1

(
xji −m− ai

)2 {
xji is known

}
+
λ

2

M∑
i=1

(ai)
2 , (2.8)

where x̂ji = m + ai, λ is still the tuning parameter, and a is a column vector of student

parameters:

a =

[
a1, a2, . . . , aM

]T
. (2.9)
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Once we compute m using Equation 2.4, ai is the average grade for student i minus m:

ai =
1

Gi + λ

N∑
j=1

xji
{
xji is known

}
−m, (2.10)

where Gi is the number of known grades for student i. Figure 2.4 shows the model

residuals. Here, model residuals decrease from top to bottom, reducing the errors due

to differences in student performance when compared to Figure 2.2. Some of the lower

residuals appear on the right side of the figure for students with higher averages.

Figure 2.4: Heatmap of residuals for the m + a model
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2.2.4 The m+ a+ b Model

A better model might combine the class and student parameters to reduce the residuals.

We combine m, a, and b, producing the following criterion function:

J(m, a,b) =
1

2

M∑
i=1

N∑
j=1

(
xji −m− ai − bj

)2 {
xji is known

}
+
λ

2

M∑
i=1

(ai)
2 +

λ

2

N∑
j=1

(bj)
2 ,

(2.11)

where x̂ji = m + ai + bj and λ is the tuning parameter. We iterate between solving for

m, a, and b while holding the other parameters constant. This allows us to infer that a

course with a high average might be the result of the high-average students who take it

rather than its lack of difficulty. Specifically, we iterate between updating m, a, and b

in the following equations:

m← 1

G

M∑
i=1

N∑
j=1

(
xji − ai − bj

) {
xji is known

}
(2.12)

ai ←
1

Gi + λ

N∑
j=1

(
xji − bj −m

) {
xji is known

}
(2.13)

bj ←
1

Gj + λ

M∑
i=1

(
xji − ai −m

) {
xji is known

}
. (2.14)

After incorporating both student and class parameters, Figure 2.5 shows the model resid-

uals. The upper part of the figure (classes with lower averages) maintains a left-to-right
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decreasing residual pattern. However, the lower part (classes with higher averages) does

not. In addition, students with higher averages (on the left edge) tend to be underes-

timated, along with those in the lower-left. This suggests that there are different types

of students and different types of classes that could be used to make better estimates.

Nevertheless, this model fits better than any of the preceding models with a root mean

squared error of 0.85.

Figure 2.5: Heatmap of residuals for the m + a + b model

2.2.5 Alternating Least Squares

To address the remaining structure in the model residual, we attempt to factorize the

residual matrix into a small number of components. For example, we perform a singular

value decomposition (SVD) on the residual for the m+ a+b model. Although standard
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software libraries provide the SVD for full matrices, they do not handle matrices like ours

with mostly missing values. This complicates the estimation of singular vectors.

We employ an alternating least squares (ALS) approach to factorize the residual

matrix, Y = X−m− a− b. Specifically, we factorize Y into the following [4]:

Y ≈ UV (2.15)

Specifically, The M ×N matrix Y is approximated by the product of an M × P matrix

U and a P ×N matrix V:

U =



u11 u21 . . . uP1

u12 u22 . . . uP2

...
... . . . ...

u1M u2M . . . uPM


V =



v11 v21 . . . vN1

v12 v22 . . . vN2

...
... . . . ...

v1P v2P . . . vNP


, (2.16)

where P is the number of components chosen for the model. If we consider each student

as a 1×N vector of grade residuals, each row of U represents the same information in a

compressed P -dimensional vector. Similarly, if a class is represented as a M × 1 residual

vector, its corresponding column of V contains its compressed representation. In this

P -dimensional space, the dot-product between students and classes provides a measure
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of affinity. Positive dot-products add to the model’s estimated grade for the student in

that class.

U and V are updated concurrently with m, a, and b until convergence. For full

matrices, the update for U and V would be the following:

U← YV
(
VTV

)−1 (2.17)

V←
(
UTU

)−1
UTY. (2.18)

However, the majority of elements in Y are missing values, so another approach must be

used.

2.2.6 Alternating Least Squares with Missing Values

ALS can also be used with data sets that have missing values. The items in Y are only

used if they are known. Only the classes a student takes are used to update U, and

only the data for students who have taken a specific class are used to update V [4].

The product of these two matrices gives an approximation of all values, given the known

values in Y.
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Instead of updating the entire U or V matrix at once, we can update each row or

column at a time [4]. For example, the update for each row of U is the following:

ui ← ỹiṼ
(
ṼT Ṽ

)−1

, (2.19)

where ui is the ith row of U, ỹi is the ith row of Y including only the known values,

and Ṽ is a matrix containing the columns of V corresponding to the classes student i

has taken. The update for each column of V is the following:

vj ←
(
ŨT Ũ

)−1

ŨT ỹj, (2.20)

where vj is the jth column of V, ỹj is the jth column of Y containing only the students

who have taken class j, and Ũ is a matrix containing the rows of U corresponding to the

students who have taken class j.

2.2.7 Principal Components Analysis (PCA)

Principal component analysis can be applied to data with missing values by alternately

estimating the class means and the matrix factors such that X ≈ UV + b [9]. For

estimating student grades, we additionally remove the student means, producing the

model by Sweeney et al. [5]: X̂ ≈ m + a + b + UV. To infer the parameters of this

model, we minimize the following criterion function with respect to each parameter in
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turn:

J(m, a,b,U,V) =
1

2

M∑
i=1

N∑
j=1

(
xji −m− ai − bj − uiv

j
)2 {

xji is known
}

+
λ

2

M∑
i=1

(ai)
2 +

λ

2

N∑
j=1

(bj)
2 +

λ

2

M∑
i=1

P∑
p=1

(upi )
2 +

λ

2

P∑
p=1

N∑
j=1

(
vjp
)2
, (2.21)

where x̂ji = m+ ai + bj + uiv
j and λ is the tuning parameter to help reduce the amount

of overfitting. The heatmap of residuals for the PCA model with 1 component is shown

in Figure 2.6. The colors in this heatmap are lighter than the previous figures, showing

that many grades were better estimated.

Figure 2.6: Heatmap of residuals for the PCA1 model
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2.3 Inferring the Parameters for Each Model

The criterion function can be minimized with respect to one parameter at a time by

holding the others constant. By setting its partial derivative to zero, we can solve for

one parameter’s value to minimize the cost. We use the same algorithm for each model,

initializing V to small random values and all other parameters to zero. Then, we update

the parameters sequentially and iterate until convergence. If a particular parameter is

not part of the model, we do not update it.

Below are the five update rules. Again, ỹj contains the column vector of residuals

for the jth class and Ũj contains the P -dimensional row vectors for the students who

have taken it. ỹi contains the row vector of residuals for the ith student and Ṽi contains

the column vectors for the classes they took. Also note that N is the number of classes,

M is the number of students, and I is the P × P identity matrix.
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m← 1

G

M∑
i=1

N∑
j=1

(
xji − ai − bj − uiv

j
) {
xji is known

}
(2.22)

ai ←
1

Gi + λ

N∑
j=1

(
xji −m− bj − uiv

j
) {
xji is known

}
(2.23)

bj ←
1

Gj + λ

M∑
i=1

(
xji −m− ai − uiv

j
) {
xji is known

}
(2.24)

Y ← X−m− a− b (2.25)

ui ← ỹiṼ
T
i

(
ṼiṼ

T
i + λI

)−1

(2.26)

vj ←
(
ŨT

j Ũj + λI
)−1

ŨT
j ỹ

j (2.27)
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These updates are performed 1,000 times or until convergence as shown in Algorithm 1.
Algorithm 1: Pseudocode for the PCA model

Result: m, a, b, U, and V
Initialize m to be zero;
Initialize a to be a M × 1 vector of zeroes;
Initialize b to be a 1×N vector of zeroes;
Initialize U to be a M × P matrix of zeroes;
Initialize V to be a P ×N matrix of small random values;
error = ∞;
while True do

Update m according to Equation 2.22;
for i← 1 to M do

Update ai according to Equation 2.23;
end
for j ← 1 to N do

Update bj according to Equation 2.24;
end
Y = X−m− a− b;
for i← 1 to M do

Update ui according to Equation 2.26;
end
for j ← 1 to N do

Update vj according to Equation 2.27;
end
Normalize each row of V so it has unit length, and scale the
corresponding column of U accordingly;
Calculate the root mean squared error (RMSE) of the known values;
Break if RMSE < 1e− 05 or the percent difference in the previous and
current error ≤ 1e− 05;

end
Orthogonalize the columns of U and rows of V using SVD;

After fitting, the SVD is used to produce orthogonal axes in U and V.
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2.4 Model Evaluation

Each model has multiple parameters that it must learn. In addition, all but one of the

described models has a tuning parameter, λ that controls against overfitting. Specifically,

we consider powers of ten between 0.0001 and 1,000 [10]. We vary λ and select the one

that produces the lowest test error in a grid search [8].

Nested cross-validation is used to find the best λ and compare the models. In this

approach, ten stratified folds are used, similar to cross-validation. However, the training

set is then split into nine folds: eight are used to train the model with an experimental λ,

while the ninth fold gauges how well the model estimates unseen data. If we come across

students that have not been seen, then we only use m and b to estimate their grades.

Using the best λ, we train on all nine folds and test on the tenth fold. Once again, the

RMSE provides a number detailing how well each model performed.



Chapter 3 - Results

We compare 14 total models: m, m + a, m + b, m + a + b, and PCA with between

1 and 10 components. In addition, all but one model have a λ parameter that must be

tuned. These models are compared using two data sets: the computer science data set

and the more general data set.

3.1 Testing the Approach

To check whether or not the model behaves as expected, we generate synthetic data for

each of the models where m, a, b, U, and V are known. The variables are drawn from

a uniform normal distribution whose range of values is [-0.5, 0.5), except m which is

between 2 and 3. Each data set contains 1,000 rows and 30 columns. Each model is fit

with its specific data set and scored with the same data. Table 3.1 shows the RMSE

values of the different models.

20
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Table 3.1: RMSE Values for the Random Models

Model RMSE Mean
m 0

m+ b 3.7551× 10−15

m+ a 0
m+ a + b 3.7370× 10−15

PCA1 3.1250× 10−15

PCA2 1.6676× 10−15

PCA3 2.1116× 10−15

PCA4 1.3782× 10−14

PCA5 1.6045× 10−13

PCA6 1.3964× 10−11

PCA7 5.0431× 10−12

PCA8 2.6321× 10−12

PCA9 4.4230× 10−11

PCA10 2.5892× 10−10

Each model learns the variables such that the RMSE is near zero. Since the

RMSE is near zero, each variable is learned with little error. In the case of the m and

m+a models, the RMSE is zero. This shows the models is capable of inferring users and

classes, given complete control of the data.

3.2 Results for the Computer Science Data Set

First, we consider every model and choice of λ, and compare them based on cross-

validation performance. We use ten fold stratified cross-validation, which preserves the

number of grades per student across folds. Specifically, we use sklearn’s GridSearchCV

function [11]. Below is a heatmap detailing the results:
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Figure 3.1: Heatmap of RMSEs for the PCA model

In this figure, the simplest models are in the bottom-left portion of the figure, while

the most complex models are in the top-right. Simpler models have larger λ values. The

simplest models are the m models (the first column of values). The mb column is for the

m + b models, while the ma column is for the m + a models. The 0 column is for the

the m + a + b models, while numbers 1-10 indicate the number of components for the

PCA models. The darker region on the left suggests that these models are too simple,

while the darker region in the top-right indicates models that are too complex. There is

a band of lighter colors that have the lowest RMSEs.

The PCA8 model where λ = 10 is the one that is used for the modeling of com-

puter science students. Since this model has the lowest RMSE of any model presented,
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it seems that having components helps estimate a student’s grade. This suggests that

students may have an affinity for certain classes, which are shown by these components.

3.3 Interpreting Components of Computer Science Grades

After training the models, they have now learned students and classes in a P -dimensional

subspace. The best model was the PCA8 model, so each student and each class is now

represented by eight distinct values.

The U matrix shows how a student is projected onto a particular axis, depending

on the column of U. The value a student gets in this column relates to the same com-

ponent of V, which is a row. Positive students and positive classes, as well as negative

students and negative classes, give a grade boost for that component. If the student’s

value and class’s value are not the same sign, then it is a detriment to the estimated

grade. Figure 3.2 shows the distribution of the students in U’s all eight components as

a histogram.
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Figure 3.2: The eight U components in the PCA8 model

The mean for each of the curves is near zero, while the standard deviation is one. Compo-

nents 3, 5, and 7 slightly favor positive values, while the sixth component favors negative

values. Many students have values near zero, meaning that these components have little

effect on the estimated grade for that student. However, a student that is one standard

deviation above the mean would get their estimate increased by the height of the class’s

bar in the component’s corresponding V figure. These figures show the representation of

each class in the corresponding component. The first component of V is shown in Figure

3.3.
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Figure 3.3: First V component in the PCA model

An interesting feature in Figure 3.3 is that Programming Languages (CS 3490) and

Software Engineering (CS 3667) are near zero. This indicates that this component has

little to no effect on the grades earned in these courses by the students who have taken

them. The largest values are for Intro to Computer Systems (CS 2450), Calculus 2 (MAT

1120), and Linear Algebra (MAT 2240). Each of these classes are near or above 0.6. All

classes in this component are positive. However, the second component, shown in Figure

3.4, shows some classes with negative values.
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Figure 3.4: Second V component in the PCA model

In this figure, Calculus 1 (MAT 1110) and Calculus 2 (MAT 1120) are both below

-0.25, while the next lowest class is Junior Seminar (CS 3100) close to -0.1. The largest

two values shown in this graph are for Theoretical Computer Science (CS 2490) and

Database (CS 3430).
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Figure 3.5: Third V component in the PCA model

Intro to Physical Geology (GLY 1101) and CHE 1120 are both positive in this figure,

while MAT 2240 and Statistical Data Analysis 1 (STT 3850) are near -0.1. STT 3850

becomes positive in Figure 3.6.
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Figure 3.6: Fourth V component in the PCA model

CHE 1120 and MAT 2240 are positive in this figure. Calculus 2 and Intro to Historical

Geology (GLY 1102) are the only two classes below -0.1. This trend continues in Figure

3.7.
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Figure 3.7: Fifth V component in the PCA model

The largest positive values in component five are CS 3490 and CHE 1120. The only three

classes below -0.05 are Computer Science 1 (CS 1440), GLY 1102, and MAT 2240. CS

1440 also has one of the most negative values in Figure 3.8.
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Figure 3.8: Sixth V component in the PCA model

Many of the beginning computer science courses, barring CS 1100, are negative in this

dimension. The Astronomy courses, as well as MAT 1110 and Numerical Linear Algebra

(MAT 4990), are also negative. However, many classes are either negative or near zero.

This trend continues in Figure 3.9.
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Figure 3.9: Seventh V component in the PCA model

Most classes are either negative or close to zero in this component. The GLY courses

and MAT 1110 are among the most negative. CS 1440, CHE 1120, and MAT 1120 are

among the most positive. Many classes are far from zero in Figure 3.10.
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Figure 3.10: Eighth V component in the PCA model

There are many classes that have positive values, including Physics 1 (PHY 1150) and

STT 3850. All of the math classes, except MAT 4990, are negative in this dimension.

After observing the components and using a grid search to find the optimal pa-

rameters for this data set, a nested cross-validation is done to see which model was the

best at estimating future performance. Below is a table comparing the models.
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Table 3.2: RMSE Values for the Optimal CS Models

Model RMSE Mean RMSE St. Dev.
m 1.1191 0.0194

m+ b 1.0773 0.0193
m+ a 0.9055 0.0172

m+ a + b 0.8770 0.0175
PCA1 0.8468 0.0148
PCA2 0.8398 0.0152
PCA3 0.8376 0.0154
PCA4 0.8381 0.0143
PCA5 0.8369 0.0149
PCA6* 0.8348 0.0153
PCA7* 0.8334 0.0149
PCA8* 0.8335 0.0150
PCA9* 0.8338 0.0154
PCA10* 0.8334 0.0151

* Models that are not significantly different from the top performing model, as determined by a paired
t-test resulting in a p-value > 0.05

The PCA7 and PCA10 models have the lowest RMSE by 0.0001 over the PCA8

model. Every PCA model performs better than the m + a + b model, whose RMSE is

0.0302 higher than any of the PCA models.

3.4 Results for the More General Data Set

Similarly to Section 3.2, ten folds are used to evaluate the models for the data set that

involves the CS classes, as well as classes in the most common courses that are not already

in the list. This changes the data set from 1,177 students by 38 classes to 9,554 students

by 70 classes. Below is a heatmap of the RMSE values for all the models.
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Figure 3.11: Heatmap of RMSEs for the PCA model

The models for this data set act similarly to those in the CS data set. However, there are

several λ values that are close with a lower number of components, specifically 0.1 and

1. The other models optimized at different positions. The lowest RMSE was observed

to be 0.8641 using the PCA1 model, which is an improvement of 0.0055 over not using

PCA.

3.5 Interpreting Components of More General Grades

The PCA1 model has now learned students and classes in a one-dimensional subspace.

U and V are used to find potential student-class interactions in this one-dimensional
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subspace. The distribution of the U matrix for the single component is shown in Figure

3.12.

Figure 3.12: First U component in the PCA model

This distribution has a mean of 0.3790, which would mean that many students are slightly

positive when it comes to favoring certain classes in the only component of this model.

The standard deviation is once again 1, while the positive tail is longer than the negative

tail. There are a few outliers, which are shown in the tails reaching -6 and 8.

The V matrix contains all 70 classes and how they are projected in the single-

dimension subspace the model found. Graphing these values visually describes how the

classes relate to each other. For example, if one class is positive in V and another is

negative, then doing well in one would lower the grade received in the other. Figure 3.13

shows these classes and their values in V.
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Figure 3.13: First V component in the PCA model

Most courses are positive in this component, including most computer science and math

classes. However, there are several classes that are negative, which include ART 2011,

CS 3100, ECO 2100, and MAT 1030.

After observing the components and using a grid search to find the optimal pa-

rameters for this data set, a nested cross-validation is done to see which model was best

at estimating future grades. Below is a table comparing the models.
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Table 3.3: RMSE Values for the Optimal General Models

Model RMSE Mean RMSE St. Dev.
m 1.0944 0.0044

m+ b 1.0455 0.0055
m+ a 0.9532 0.0081

m+ a + b 1.0054 0.0052
PCA1 1.0049 0.0052
PCA2 1.0035 0.0052
PCA3 1.0022 0.0051
PCA4 1.0009 0.0051
PCA5 0.9997 0.0051
PCA6 0.9985 0.0051
PCA7 0.9973 0.0051
PCA8 0.9962 0.0051
PCA9 0.9951 0.0051
PCA10 0.9941 0.0051

With this data set, the best model was m + a. This suggests that there is not

enough information to properly learn characteristics about the classes. Nearly half the

classes in this data set are considered general education, which may also add additional

levels of complexity for the models to interpret.



Chapter 4 - Conclusion and Future Work

The models used in this thesis were able to provide insight about student-class interac-

tions. The models using Principal Components Analysis achieved a lower RMSE than

those without PCA. Knowing this can help the understanding of the types of students

and classes that are in the computer science undergraduate curriculum at Appalachian

State University. The model with the best performance was the PCA8 model for the

computer science data set. This model’s first component shows that the most positive

class is CS 2450, while the smallest value is for CS 3667. This component could show the

variance of the classes after the university mean, user means, and class means have been

removed. Students who are a standard deviation above the average would get their esti-

mate significantly boosted for CS 2450, but not for CS 3667. The second dimension could

represent programming classes in contrast to classes that do not involve programming.

Most computer science classes are positive, as is STT 3850, which uses the R statistical

programming language. Classes that do not rely as much on programming skills, like

MAT 1110 and GLY 1101, are negative in this component. The third axis supplied by

this model may relate to analytical classes versus hands-on laboratory classes. CHE 1120

and GLY 1101 are both classes that require interaction with the material in labs. CS

2450 is similar in this manner, as this class introduces assembly language. Classes, such

38
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as MAT 1120 and MAT 2240, are more analytical in the fact that students have to apply

the concepts learned through assignments, rather than labs.

Adding general education classes into the data set introduced over 8,000 new

students and 32 classes. The overall error for this data set was higher than using only

computer science data. However, the models using PCA were unable to estimate grades

as accurately as the m+a model, possibly because many of the general education classes

are from different disciplines. Many students only took one or two computer science

courses, but took at least ten general education classes. PCA has the potential to point

out some features of students and classes, given the right data and circumstances. The

results detailed in the previous chapter show that more research is needed to better

understand the full potential of this approach for estimating grades.

4.1 Future Work

In the future, the models shown in this thesis should be attempted with a larger data

set, in order to understand how well this approach works. These models could also be

applied to other majors, such as Biology or Art. This would allow for the interpretation

of other majors in order to learn the relationships between their classes and the students

who take them.
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The λ parameter could possibly be better tuned. Only models that used either

1 or 10 were able to estimate student grades effectively. If the values between 1 and 10

were used, there is a possibility that the grades would be better estimated.

Other machine learning algorithms may also be applicable to this problem. An

exploration of these algorithms, and whether or not they could be applied to a problem

similar to this, could aid in learning the different types of classes and students. One

potential for improvement would be to change the focus of the components from being

an axis to a vector. This would show how much of a particular component is present in

the data, instead of having the possibility of containing the ’opposite’ of that component.
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