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This thesis has been prepared as a manuscript for submission and potential 

publication in a peer-reviewed academic journal.  This thesis investigates the unique 

spectral reflectance properties of 109 “montane” longleaf pine canopies (Pinus palustris 

Mill.) growing on steep, south-facing slopes as well as 51 “piedmont” individuals 

growing in an area of low topographic relief, all found within the Uwharrie National 

Forest in central North Carolina. The geographic location of all sampled longleaf 

canopies were recorded on a digital map, and then spectrally analyzed to derive unique 

reflectance signatures that would allow for the remote mapping of the species using high-

resolution multispectral WorldView-2 satellite imagery.  Overall accuracies for 

classification procedures range from 91–96% between four study sites.  Longleaf pine 

spectral properties were statistically investigated to quantify differences in reflectance 

due to topography and canopy height.  Significant relationships (p <0.05) were found for 

each variable, and suggest that spectral reflectance values for longleaf pine are not 

uniform throughout the study area and can vary according to topographic and 

morphological canopy features.



 

EXAMINING LONGLEAF PINE SPECTRAL PROPERTIES  

TO REMOTELY MAP RELICT STANDS 

IN CENTRAL NORTH CAROLINA 

 

by 

 

Keith Edgar Watkins  

 

 

 

 

A Thesis Submitted to 

the Faculty of The Graduate School at 

The University of North Carolina at Greensboro 

in Partial Fulfillment 

of the Requirements for the Degree 

Master of Arts  

 

 

 

 

Greensboro 

2017 

 

 

 

 

 

 

 

           Approved by                                                

 

 

                                                                                       

           Committee Chair 



ii 
 

APPROVAL PAGE 

 

This thesis written by Keith Edgar Watkins has been approved by the following 

committee of the Faculty of The Graduate School at The University of North Carolina at 

Greensboro. 

 

 

 

 

 

 Committee Chair         

       Paul A. Knapp 

 

      Committee Members         

       Roy S. Stine 

 

               

       P. Dan Royall 

    

    

 

 

 

 

 

 

 

 

 

_______________________________________________ 

Date of Acceptance by Committee 

 

___________________________________________ 

Date of Final Oral Examination 

 

 

 

 

 

 



iii 
 

ACKNOWLEDGMENTS 

 

 I would like to thank my friends, colleagues and professors who have inspired, 

guided and helped me to cultivate the research that is contained within this thesis. 

Without the expert guidance of my committee chair, Dr. Paul Knapp, and committee 

members Dr. Roy Stine and Dr. Dan Royall, this research would not have been possible. 

 This research required hours of field work to locate individual longleaf samples, 

and luckily most of it was not spent without the company of Dr. Paul Knapp and Dr. 

Tommy Patterson at my side, offering encouragement and helping to develop the 

intricacies of my research.   Finally, I would like to thank my wife Kelly, for providing 

my sanctuary after endless hours spent working in the labs, and for helping me to never 

give up hope. 

 This thesis was funded in part by a research travel grant provided by the 

University of North Carolina at Greensboro’s Graduate Student Association, and by the 

Digital Globe Foundation who has provided the WorldView-2 satellite imagery for this 

research. 

    

 

 

 

 

 

 

 



iv 
 

TABLE OF CONTENTS 

 

Page 

 

LIST OF TABLES .......................................................................................................... v 

 

LIST OF FIGURES  ....................................................................................................... vi 

 

CHAPTER 

 

 I. INTRODUCTION ............................................................................................. 1 

 

            1.1 Historical Background on Longleaf Pine ............................................. 1 

            1.2 Background on Remote Vegetation Mapping ...................................... 4 

            1.3 Spectral Reflectance Properties of Vegetation ..................................... 6 

            1.4 Previous Tree Species Mapping Literature .......................................... 7 

            1.5 Thesis Outline and Objectives ............................................................. 9 

  

 II. CONCEPTUAL FRAMEWORK AND METHODOLOGY ............................. 11 

 

2.1 Discussion of Study Areas ................................................................ 11 

            2.2 Data Sources and Collection  ............................................................ 15 

            2.3 Development of Digital Models ........................................................ 16 

            2.4 Preprocessing of WorldView-2 Imagery ........................................... 20 

            2.5 Spectral Indices ................................................................................ 20 

            2.6 Shadow and Vegetation Masking ...................................................... 22 

            2.7 Spectral Analysis of Tree Canopies ................................................... 24 

            2.7.1 Spectral Relationships with External Influences ................. 24 

            2.7.2 Spectral Relationships Between and Among Species .......... 25 

            2.8 Image Classification  ........................................................................ 26 

            2.8.1 Object-Based Image Classification ..................................... 26 

            2.8.2 Classification Methodology ................................................ 27 

            2.8.3 Accuracy Assessment ......................................................... 30          

         

   III. RESULTS ........................................................................................................ 32 

 

            3.1 Spectral Analysis Results .................................................................. 32 

            3.2 Classification Accuracy and Results  ................................................ 39 

 

 IV. DISCUSSION AND CONCLUSIONS ............................................................. 48 

 

REFERENCES .............................................................................................................. 52 

 



v 
 

LIST OF TABLES 

 

Page 

 

Table 2.1. Summary Of Eight Multispectral And One Panchromatic Band  

                      Contained Within WorldView-2 Imagery, As Well As 

                      Corresponding Wavelengths For Each Band ............................................. 16 

                            

Table 2.2. List Of Eight Spectral Indices Calculated From WorldView-2  

                     Imagery Gathered On December 13, 2011. ................................................ 22 

 

Table 2.3. Number Of Ground Truth Samples Randomly Chosen From  

                      Each Class ................................................................................................ 30 

 

Table 3.1. Pearson Product-Moment Correlations Between Reflectance And 

                     External Variables: Elevation, Slope, Aspect And Canopy Height ............. 33 

 

Table 3.2. Pearson Product-Moment Correlations Between Canopy Height, 

                     Elevation, Slope And Aspect ..................................................................... 34 

 

Table 3.3. Mann-Whitney U-Test Results For Comparison Between Montane  

                      And Piedmont Longleaf Reflectance Across The Eight Bands  

                      Of December WorldView-2 Imagery ........................................................ 35 

                    

Table 3.4. Mann-Whitney U-Test Results For Spectral Comparison of Longleaf  

                      And Shortleaf Pine Reflectance ................................................................ 38 

 

Table 3.5. Mann-Whitney U-Test Results For Spectral Comparison Of Longleaf  

                      And Loblolly Pine Reflectance ................................................................. 38 

 

Table 3.6. Mann-Whitney U-Test Results For Spectral Comparison Of Loblolly  

                      And Shortleaf Pine Reflectance ................................................................ 38 

 

Table 3.7. Accuracy Results For Four Classifications Completed Within The  

                      UNF ......................................................................................................... 40 

 

Table 3.8. Individual Accuracy Results For Fraley Grove .............................................. 42 

 

Table 3.9. Individual Accuracy Results For Goldmine Branch ....................................... 44 

 

Table 3.10. Individual Accuracy Results For Nichols Tract ........................................... 46 

 

 



vi 
 

LIST OF FIGURES 

 

Page 

 

Figure 1.1. The Historic Range Of Longleaf Pine In The Southern United States ............. 2 

 

Figure 2.1. Inset Map Denoting Location Of The Uwharrie National Forest  

                     Within Central North Carolina. .................................................................. 12 

 

Figure 2.2. Study Areas Within UNF Denoted By Stars ................................................. 12 

 

Figure 2.3. WorldView-2 Imagery Of Three Study Sites ................................................ 14 

 

Figure 2.4. Digital Elevation Model (DEM) Of Fraley Grove Study Site........................ 17 

 

Figure 2.5. Digital Surface Model Showing Tree Canopies Derived 

                      From First Return Of Lidar.. ..................................................................... 18 

 

Figure 2.6. Digital Model Of Slopes Throughout The Study Area With Fraley 

                      Circled In Red .......................................................................................... 19 

 

Figure 2.7. Digital Model Of Aspect Throughout The Study Area With Fraley 

                      Circled In Red. ......................................................................................... 19 

 

Figure 2.8. Development Of Raster Mask To Isolate Only Sunlit Tree Crowns. ............. 23 

 

Figure 2.9. Image Segments Developed By The ENVI Feature Extraction  

                       Segmentation Process .............................................................................. 29 

 

Figure 3.1. Mean Reflectance Derived From 54 Piedmont And 54 Montane 

                        Longleaf Samples Gathered From Nichols, Fraley And Goldmine. ......... 35 

 

Figure 3.2. Distribution Of Mean Reflectance Values For Longleaf ............................... 36 

 

Figure 3.3. Mean Reflectance Derived From 160 Longleaf, 150 Shortleaf 

                        And 130 Loblolly Pine Samples Gathered From Nichols,  

                        Fraley And Goldmine ............................................................................. 37 

 

Figure 3.4. Distribution Of Classified Image Objects Throughout Fraley  

                      Grove In The UNF ................................................................................... 41 

 

Figure 3.5. Distribution Of Classified Image Objects Throughout Goldmine 

                      Branch In The UNF .................................................................................. 43 



vii 
 

Figure 3.6. Distribution Of Classified Image Objects Throughout Nichols  

                      Tract In The UNF ..................................................................................... 45 

 

Figure 3.7. Distribution Of Classified Image Objects Throughout The Larger  

                      Portion of The UNF. ................................................................................. 47



 

1 
 

CHAPTER I 

 

INTRODUCTION 

1.1 Historical Background on Longleaf Pine 

The longleaf pine ecosystem (Figure 1.1) spanned ~ 37 million hectares within 

the southern United States prior to European settlement (Jose et al. 2006). Logging and 

turpentine gathering since the early 1700s, coupled with fire suppression practices 

beginning in the early 1900s, has diminished the species range to ~4.5% of the original 

land area with about 25% of this area represented by >25 year-old plantations (Oswalt et 

al., 2012).   The reduction of longleaf pine habitats has provoked researchers and 

government agencies to initiate protocols to maintain the remaining stands across the 

southeastern United States (Brockway 2005).  Longleaf pine is a keystone species and 

integral to the success of many organisms, and the ecosystems within which they grow 

provide habitats for several endangered species including the red-cockaded woodpecker 

(RWC) (James et al. 2001). The RWC (Leuconotopicus borealis Vieillot) was placed on 

the endangered species list in 1979 with only 10,000 known individuals. RCWs create 

and inhabit crevices in old-growth pines, where heart rot allows them to create nests. Due 

to the reduction in old-growth (>150 years old) longleaf pine stands, available habitats 

are a limiting factor for the species and has been associated with their decline during the 

20th century (Carney 2009). 
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Figure 1.1. The Historic Range Of Longleaf Pine In The Southern United States. 

Location of Uwharrie National Forest Is Shown As Red Star In Central North Carolina. 

Source: Arcmap.  

 

 

Many longleaf pine forests in the North Carolina Piedmont region have been 

replanted with other pine species such as shortleaf and loblolly as longleaf pine is 

comparatively slow to germinate and requires frequent (3–5 years) low-intensity fire to 

be competitive with other species.  Combined, these characteristics decrease its economic 

viability (Jose et al. 2006), which have further reduced its geographic range.  Resultantly, 

there are few intact longleaf pine stands remaining–particularly in the central Piedmont 

area of North Carolina –and thus few “blueprints” of intact longleaf pine systems exist to 

improve our understanding of the species.   

Historic Range of Longleaf Pine 
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Most information relating to longleaf systems comes from the sandhills and 

coastal plain ecoregions, while studies investigating stands growing in “mountain” or 

“montane” environments are comparatively underrepresented in the literature (Cipollini 

et al. 2012).  The paucity of research relating to these montane longleaf pine communities 

is troubling, as this longleaf forest type is the most imperiled, inhabiting only two percent 

of the remnant land area (Edelgard et al. 2000).  Further investigation of montane 

longleaf ecosystems is essential for developing and implementing habitat restoration 

methods such as prescribed burnings and undergrowth clearing.   

Montane communities of longleaf pine are typically found in mountainous areas 

of northern Alabama and Georgia, and are situated on steep southerly and southwestern 

slopes within areas of prominent topographic relief (up to 600 m) (Peet 2006, Stokes et 

al. 2010).  Longleaf in montane environments are adapted to shallow, rocky soils, can 

experience ice and snow at higher elevations, and represent a “physiographically and 

climactically distinct” region within the natural range of this species (Stokes et al. 2010).  

This study uses a montane-class distinction of longleaf for samples gathered in areas of 

high topographic relief (>100 m), and a piedmont-class distinction for samples located in 

areas with low topographic relief (<20 m).  

A forest inventory completed by Patterson and Knapp (2016a) located the only 

known old-growth montane longleaf pine stands in central North Carolina.  Their 

research, completed in Uwharrie National Forest, noted the rarity of the montane variant, 

the need to preserve the extant stands by re-establishing frequent low-intensity fires, and 

the importance of locating other montane stands allowing for further insight into their 
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optimum reproductive parameters. In short, successful reestablishment of montane stands 

will be improved if a larger number of stands can be assessed to use as a “blueprint” for 

site characteristics.   

 Traditional means of locating tree stands of a specific species often requires 

extensive surveys to be completed in areas with difficult and hazardous topography such 

as the Uwharrie Mountains.   Spatial and spectral improvements in remote-sensing 

technology have provided more efficient and precise means for investigating and 

classifying land cover,  and improved vegetation mapping accuracies reduce the necessity 

of exhaustive field surveys, which are often more costly and cannot provide complete 

investigation of large areas (Martin et al. 1998).  This study investigates the viability of 

using remote sensing data to aid in the location of remnant longleaf pine stands within the 

Uwharrie National Forest (UNF), in hopes that they may be mapped and studied to 

promote the recovery of these rare habitats. 

1.2 Background on Remote Vegetation Mapping 

Many studies have investigated methodologies for locating individual tree species 

through the spectral analysis of remotely sensed imagery, allowing for species mapping 

across wider geographic areas than can be obtained through in-situ investigations (Carter 

et al. 1998; Di Vittorio & Biging, 2009; Holmgren et al., 2008; Manjunath et al., 2013). 

This paper intends to add to the growing body of literature on remote-vegetation 

mapping, while focusing on a specific species of interest: longleaf pine (Pinus palustris), 

growing within the Uwharrie National Forest and surrounding land holdings in central 

North Carolina.     
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Traditionally, satellite imagery such as that gathered by the Earth Resources 

Technology Satellite 1 (ERTS-1), later renamed Landsat-1, provided images with a 

spatial resolution of 80 m pixels, which is the size of a cell in a derived raster image 

(Dowman et al. 2014) with electromagnetic wave collection across four spectral bands 

between 475 to 1100 nm (Jensen, 2007). When Landsat-1 was launched in 1972, the 80 

m pixels were used as the basic unit of analysis for the remote sensing of landscapes.  

Although this imagery provided valuable information relating to the Earth’s surface, the 

inability of the sensor to capture ground objects smaller than that of the pixel size, limited 

the abilities of the remote-sensing analyst. Smaller objects such as individual tree 

canopies and houses could not be closely analyzed until sensor technology increased and 

the spatial resolution provided smaller units of analysis (Blaschke et al. 2008).  

 The advent of more advanced satellite sensors provided much finer spatial 

resolution, with modern sensors capable of producing imagery with pixel sizes < 0.5 m 

(Dowman et al. 2014). In addition to increased spatial resolution, the ability of sensors to 

gather spectral data across larger portions of the electromagnetic spectrum (EMS) (i.e., 

ultraviolet and near-infrared (NIR) wavelengths) with greater numbers of discrete bands, 

allowed for more precise measurements of spectral reflectance within the imagery. These 

advances have permitted more accurate mapping of vegetation content and health at both 

small and large scales across the landscape through the analysis of spectral reflectance 

across different portions of the electromagnetic spectrum (Martin et al. 1998, Coops et al. 

2006, Nieminen et al. 2014, Waser et al. 2014).   
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1.3 Spectral Reflectance Properties of Vegetation  

The spectral reflectance characteristics of vegetation are directly related to 

varying levels of incident light being absorbed, transmitted, scattered and reflected by the 

plant and its leaves (Richardson et al. 2001).  Properties of absorption, transmittance and 

reflection are influenced both by the surface characteristics of a plant’s leaves (size, 

shape, albedo), and also by the internal structure and biochemical composition within the 

plant’s leaves (Richardson et al. 2001).  Different types of vegetation contain varying 

concentrations of chlorophyll and pigments, causing variations in reflectance across the 

visible and NIR portions of the spectrum for different species (Carter 1993).  Analysis of 

spectral reflectance gathered from multispectral sensors can reveal distinguishing 

reflectance characteristics related to plant stress (Waser et al. 2014), variations between 

tree species (van Aardt and Wynne 2001), and leaf age (Carter et al. 1989).  

Measurements of these spectral variations allow an analyst to identify unique spectral 

signatures within the imagery that pertain to either specific species or varying levels of 

plant health.  Successful spectral discrimination of reflectance values pertaining to 

individual tree types in digital imagery can allow for species mapping across large 

geographic areas. 

External factors can also influence the measured spectral reflectance of tree 

canopies, including variations in incoming solar radiation due to elevation, slope and 

aspect, tree height, stand openness (Carter et al. 1989), and tree-health variations 

associated with topography (Richardson et al. 2001).  Trees growing along elevational 

gradients can decrease photosynthetic efficiency with height, limiting their potential to 
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endure environmental stressors (Richardson et al. 2001).  For certain species, changes in 

environmental conditions relating to higher elevation can lead to adaptation mechanisms 

such as producing foliage with waxy cuticles, low surface area as well as lignified tissue 

(Richardson et al. 2002).  Physiological adaptations in plants, especially those that occur 

because of topographic influences can have a pronounced effect on spectral reflectance 

across the visible and Near Infrared portions of the electromagnetic spectrum.  

1.4 Previous Tree Species Mapping Literature 

Several researchers have developed methods for locating specific species within 

forested environments using remotely sensed data (Carter et al. 1998; Di Vittorio et al., 

2009; Holmgren et al., 2008; Manjunath et al., 2013), although fewer have focused on the 

location of longleaf pine using multispectral satellite imagery (Van Aardt et al. 2007, 

Nieminen et al. 2014). Methods of spectral species identification have been established 

with diverse types of remotely sensed data gathered from a variety of scanners such as 

Light Detection and Ranging (LiDAR) (Holmgren et al. 2001), hyperspectral hand held 

scanners (Di Vittorio and Biging, 2009), hyperspectral imagery (Van Aardt et al 2007), 

aerial imagery (Waser et al. 2014), and multispectral satellite imagery (Waser et al. 

2014). 

Success rates of species identification using remotely sensed data have varied. 

Holmgren et al. (2001) combined LiDAR data with multispectral imagery to identify 

individual species and compared classifications derived from both types, as well as 

individually. The crowns of trees were located using LiDAR, and mapped to 

multispectral images for extraction of spectral reflectance data. The overall classification 
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accuracy of the combined classification of three distinct species within the study area was 

96%.   Vittorio and Biging (2009) investigated the spectral identification of ozone-

damaged pine needles in the Sierra Nevada, using needle samples collected in the study 

area. Needles were grouped based on present damage relating to various causes–green 

(normal), winter flock, sucking-insect damage, scale-insect damage and ozone damage–

and were scanned using a visible spectroradiometer configured to measure radiation at 

more than 2000 wavelength channels between 350–1050 nm (Di Vittorio and Biging, 

2009). Although the needles were optically identical, the high spectral resolution of the 

scanner operating in 2000 bands allowed for specific reflectance values to be identified 

for each subset of needles. Using the lab derived spectral signatures from specific 

wavelengths across the EMS, corresponding bands were found within Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) imagery for the study area. The unique 

signatures found for each damage class could then be used to map the varying levels of 

pine health across the large study area.  

Manjunath et al. (2014) gathered spectral reflectance measurements of individual 

tree species in the Himalaya using a field spectroradiometer, and created a spectral library 

containing reflectance data associated with each species. This library was used to study 

changes in spectral response in plants and trees due to changes in both environment and 

health, while allowing for accurate species identification from hyperspectral imagery of 

the same study area in the Himalaya. The ability of these researchers to obtain distinct 

spectral signatures using high spectral resolution radiometers allows for greater accuracy 

when classifying hyperspectral images. 
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Using aerial imagery with a narrow array of spectral bands centered at 675, 698, 

and 840 nm, Carter et al. (1998) attempted to quantify the spread of the southern pine 

beetle within a mixed forest of conifer and hardwood, based on tree health indices related 

to the infestation of this invasive species. Their research allows for the location of pines 

within a mixed stand, while providing an early warning for the spread of the pests using 

spectral reflectivity.  Although most outbreaks can be easily identified using multispectral 

scanners, the researchers found it moderately difficult to classify some trees due to the 

variability in leaf chlorophyll contents within the same species.  

1.5 Thesis Outline and Objectives 

Three stands of longleaf pine have been mapped and examined through field 

expeditions in the UNF.  Two sites contain montane longleaf communities with 

individuals dating to the early 1700s (Patterson and Knapp 2016a) growing along steep, 

southerly slopes.  The third site contains a community of longleaf growing in an area with 

minimal topographic variation (<20 m) and as such, has been classified with a piedmont-

class distinction.  Finding additional undocumented montane longleaf stands, such as the 

Fraley Grove stand documented in Montgomery County, NC in 2016 has proven to be 

difficult due to travel costs to remote locations within the forest, negotiating the steep 

terrain where remnant old-growth longleaf may exist, and the low rate of success on 

many investigatory trips.   

 The overarching purpose of this research is to determine if longleaf pine canopies 

reflect incoming electromagnetic radiation in a way that is measurably different from 

loblolly and shortleaf pine, both of which are present in the Uwharrie National Forest, 
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thereby allowing for the remote classification and mapping of these a large geographic 

area.  Additionally, this study investigates spectral differences that may be present 

between the two class distinctions of longleaf, montane and piedmont, aiding in the 

location of rare montane habitats.  A methodology for identifying spectral dissimilarities 

between tree species has been developed through the analysis of high spatial resolution, 

multispectral satellite gathered by the WorldView-2 sensor.  This imagery, coupled with 

topographic datasets derived from LiDAR, was used to identify differences in spectral 

reflectance signatures that will help to classify individual canopies of longleaf pine within 

the National Forest with high accuracy (>90%).   

Through the remote investigation of both montane and piedmont stands of 

longleaf pine in the Uwharrie National Forest and adjacent holdings, a better 

understanding of the spectral reflectance properties of the species can be gleaned, which 

will aid in future attempts to map longleaf pine across large geographic areas with 

possible montane populations.  This study evaluates the viability of  using multispectral 

imagery to: 1) isolate specific spectral characteristics to aid in the differentiation of three 

pine species across the UNF, 2) determine if the two class distinctions of longleaf pine 

possess unique spectral characteristics; 3) investigate the influence of topography and 

canopy height on longleaf canopy reflectance; and 4) devise a classification methodology 

for mapping the three species of southern pine (i.e., loblolly, longleaf, and shortleaf) in 

the UNF.
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CHAPTER II 

 

CONCEPTUAL FRAMEWORK AND METHODOLOGY 

2.1 Discussion of Study Areas 

 The UNF is comprised of 20,640 hectares located in Montgomery, Randolph and 

Davidson Counties (Figure 2.1). The forest contains scattered longleaf pine woodlands, 

while shortleaf pine woodlands, loblolly plantations, dry oak-hickory forests, mafic 

hardpan woodlands and xeric forests are more common (USDA, 2012). Three study areas 

within the UNF, two containing montane communities of longleaf pine, and the third 

containing piedmont longleaf growing on a tract of land with low topographic relief have 

been located within the forest (Figure 2.2).  Subsequent analyses will be focused on 

longleaf, shortleaf and loblolly pine growing in these areas to determine if spectral 

differences can be quantified to aid in the differentiation and digital mapping of the three 

pine species.  Additionally, longleaf samples from all three sites will be compared to 

determine if reflectance properties vary between sites of low and high topographic 

prominence.  Once spectral sampling in these areas has provided enough data for 

successful tree species classification, the resulting spectral data will be applied a larger 

subset of the UNF contained within the satellite imagery to locate other potential stands 

of montane and piedmont longleaf pine.  
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Figure 2.1. Inset Map Denoting Location Of The Uwharrie National Forest Within 

Central North Carolina.   

 

 

 
 

Figure 2.2. Study Areas Within UNF Denoted by Stars. 1. Fraley, 2. Goldmine, 3. 

Nichols 

  

UNF Study Areas 
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 The first study area (Figure 2.3), located along Fraley Grove (Fraley), includes 

235 hectares located within the center of the Uwharrie Mountains (35.352◦ N, 80.024◦ 

W), and contains vegetated uplands comprised of oaks and pines. The elevations range 

from 133.5 m to 210 m, with slopes ranging from 0° to greater than 65°.  During field 

expeditions conducted by the Carolina Tree Ring Science Laboratory (CTRSL), montane 

longleaf pine mixed with hardwood species have been located along south-facing slopes 

and ridgelines.   The second study area (Figure 2.3) is located (35.416◦ N, 80.036◦ W) 

along Goldmine Branch (Goldmine), 2.5 km NW of the first study site, and comprises an 

area of 75 hectares with similar aspect, slope and elevational characteristics of Fraley.  

The species composition is similar to Fraley, containing both hardwoods and montane 

longleaf pine along south-facing slopes.  The Nichols Tract (Nichols) is the final study 

area (Figure 2.3) and was used to calibrate the spectral analysis for the other two areas 

because of its uniform elevation (< 15 m variability) and ease of access for in situ 

observations.  Nichols is a 40-ha tract owned by the North Carolina Zoo located (35.456◦ 

N, 79.872◦ W) in Montgomery County, 17 km west of Fraley and contains a mix of 

piedmont longleaf, loblolly and shortleaf pine, eastern red cedar and several types of 

hardwoods. 
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Figure 2.3. WorldView-2 Imagery Of Three Study Sites.  A. Fraley Grove, B. Goldmine 

Branch, C. Nichols Tract. Imagery Was Acquired In December 2011. 
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2.2 Data Sources and Collection 

 Longleaf pine were sampled from three sites during winter 2016 and spring, 2017 

to collect morphological and spectral data from 51 piedmont and 109 montane longleaf 

pine located along Fraley Trail, Goldmine Branch and within Nichols Tract. The trees 

were given ID numbers, and data relating to their diameter, height and canopy structure 

were recorded for each of the mature trees. Each sampled tree was given GPS coordinates 

and corresponding canopies were subsequently mapped within the satellite imagery 

across the tree image datasets.  During the research trips, observations were made about 

the forest composition along the trail, noting the dispersal of individual shortleaf and 

loblolly pines so their location could also be mapped within a satellite image of the study 

area.  A total of 150 shortleaf pine and 130 loblolly pine were geolocated within the three 

study sites.   

High spatial-resolution Worldview-2 satellite imagery containing eight spectral 

and one panchromatic band (Table 2.1) across the visible and near-infrared portions of 

the electromagnetic spectrum was obtained from the Digital Globe Foundation in 

November 2016.  The imagery was captured by the WorldView-2 satellite during leaf-off 

conditions on December 13th 2011.  This acquisition date was selected for this study to 

limit the presence of deciduous leaves within the imagery, which may obscure individual 

longleaf crowns.   The imagery spans an area of 16,182 hectares (160 km2) within the 

UNF (36% coverage) and adjacent areas.  
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Table 2.1. Summary Of Eight Multispectral And One Panchromatic Band Contained 

Within WorldView-2 Imagery, As Well As Corresponding Wavelengths For Each Band.  

 

Band Name WorldView-2 

Panchromatic 450-800 nm 

Coastal Blue 400-450 nm 

Blue 450-510 nm 

Green 510-580 nm 

Yellow 585-625 nm 

Red 630-690 nm 

Red Edge 705-745 nm 

NIR-1 770-895 nm 

NIR-2 860-1040 nm 

 

 Light Detection and Ranging (LiDAR) datasets were gathered from NC One map’s 

geospatial portal.  LiDAR data was collected by an airborne laser scanner during leaf-on 

conditions in Spring 2014, and has a reported point density of two returns per square meter.   

The LiDAR point clouds were processed in ArcMap 10.2.2 to create digital models of the 

terrain and overlying vegetation structure.   

2.3 Development of Digital Models 

 Using Arcmap, LiDAR data were processed to create digital models of the study 

area representing elevations, slopes and aspects, as well as tree-canopy heights and 

extents.  Layer files were created that contained different classes of returns from the 

initial acquisition.  The first layer is the second class of the laser pulses to the sensor, and 
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is used to create models of the ground surface (Chen et al. 2012).  These data produced a 

digital elevation model (DEM) of the study area (Figure 2.4). 

  

   
 

Figure 2.4. Digital Elevation Model (DEM) Of Fraley Grove Study Site.  Positioned In 

Arcscene To Show Third Dimension.  Red Circle Denotes Fraley Study Area. 

 

  

 The second process created a digital surface model (DSM) of the area using 

ground return points from classes 1, 3, 4 and 5.  This selection of points is denoted as the 

“first return”, as it is generally represented by tree canopies and buildings that are the first 

to reflect the laser pulses back to the sensor (Estornell et al. 2012) (Figure 2.5).  Using the 

raster calculator function, DEM values for each pixel were subtracted from DSM values 

for the same pixels, producing a normalized DSM, which in this study is called the 

canopy height model (CHM), which contains tree height values for all vegetation in the 

study area.   
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Figure 2.5.  Digital Surface Model Showing Tree Canopies Derived From First Return Of 

Lidar. This Image Shows The Southwest Slope Of Fraley Grove, Circled In Red. 

 

Using the derived DEM, Spatial Analyst tools within Arcmap were utilized to 

create a digital representation of slopes within the study area (Figure 2.6), which range in 

angle from 5–29o.  Utilizing the same DEM, the Slope tool was used to determine the 

aspect of each slope, with values ranging from 0–360o (Figure 2.7).  The DEM, slope, 

aspect and CHM were then combined into a dataset that could then be added into 

subsequent combination datasets with WV-2 imagery. 
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Figure 2.6. Digital Model Of Slopes Throughout The Study Area With Fraley Circled In 

Red.  Steep Slopes Along Southern Face Of Fraley Grove Are Shaded With Red. 

 

 

   
 

Figure 2.7. Digital Model Of Aspect Throughout The Study Area With Fraley Circled In 

Red.  Darker Slopes Have Southerly Aspects, And Lighter Slopes Have Northerly 

Aspects. 
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2.4 Preprocessing of WorldView-2 Imagery 

 The imagery dataset used in this research contained a set of multispectral bands as 

well as a separate panchromatic band.  The multispectral and panchromatic images were 

orthorectified within ENVI 5.3 (Exelis Visual Information Solutions, Boulder, 

Colorado) using the ground control point file contained with the imagery metadata, as 

well as a 5-m digital elevation model (DEM) of the study area developed from a LiDAR 

point cloud of the study areas.  The orthorectification process used a Cubic Convolution 

Image resampling method with output pixel sizes determined by the input image.   

Once the images had been successfully orthorectified, the multispectral imagery 

datasets were radiometrically calibrated to ground surface reflectance using the Empirical 

Line Calibration discussed by Jensen (2005).  The resulting multispectral image raster 

was then atmospherically corrected using ENVIs FLAASH tool per the date and time of 

acquisition, which allowed for the program to determine the solar elevation and azimuth, 

correcting for atmospheric interference of particles and gasses that can influence the 

reflectance within an image (Jensen 2005).  The corrected multispectral image was then 

pansharpened using the simultaneously gathered 0.5 m panchromatic image to increase 

the spatial resolution from 2 m to 0.5 m (Aguilar et al. 2013).  The resulting calibrated, 

atmospherically corrected, rectified and pansharpened dataset was then used for object-

based image analysis.  

2.5 Spectral Indices 

 Although the eight spectral bands contained within the WorldView-2 imagery 

were suitable for differentiating between pines and hardwoods within the study areas, 
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significant spectral overlap between longleaf, shortleaf and loblolly pines did not produce 

accurate classifications during preliminary tests.  In order to help distinguish between the 

spectrally similar species in the imagery, spectral vegetation indices were calculated 

using two or more of the eight multispectral bands within the image datasets (Table 2.2).  

Calculation and inclusion of band ratios like the Normalized Difference Vegetation Index 

(NDVI) can reveal information pertaining to plant health, and can also improve the 

ability of classification methods to discriminate between species with similar spectral 

reflectance (Haboudane et al. 2004, Sripada et al. 2006, Shamsoddini et al. 2013).  A total 

of eight spectral indices were chosen from 38 available indices within the ENVI program 

based upon visual inspection and referenced literature.  The indices were incorporated 

into the imagery dataset used for subsequent classification assessment.  
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Table 2.2. List Of Eight Spectral Indices Calculated From Worldview-2 Imagery 

Gathered On December 13, 2011.  Abbreviations For Each Index Are Listed In First 

Column, The Full Name Is Listed In The Second Column, The Formula To Derive The 

Indicies Is Listed For Each In The Third Column, And The Reference For Each Is Listed 

In The Fourth Column.  

 

Abbreviation Spectral Index Formula Reference 

(DVI) 
Difference 

vegetation Index 
DVI = NIR - RED (Tucker 1979) 

(MNLI) 
Modified Non-

Linear Index 
MNLI = ((NIR2  - RED) * (1 + 
L))/(NIR2 + RED + L) 

(Yang et al. 2008) 

(NLI) Non-Linear Index NLI =( (NIR2  - RED))/((NIR2  

+ RED)) 
(Goel and Qin 1994) 

(GDVI) 
Green Difference 

Vegetation Index 
GDVI = NIR - GREEN 

(Sripada, R., et al. 
2006) 

(GNDVI) 

Green Normalized 

Difference 

Vegetation Index 

GDVI = (NIR - GREEN)/(NIR 

+ GREEN) 

(Gitelson and 

Merzlyak 1998) 

(NDVI) 

Normalized 

Difference 

Vegetation Index 

NDVI =  ((NIR - RED))/((NIR 

+ RED)) 
(Rouse et al. 1973) 

(TDVI) 

Transformed 

Difference 

Vegetation Index 

TDVI = √ 0.5 + (NIR - 

RED)/(NIR + RED) 

(Asalhi and Teillet 

2002) 

(TCARI) 

Transformed 

Chlorophyll 

Absorption 

Reflectance Index 

TCARI = 3[(R700 - R670)- 

0.2(R700 - R550)(R700/R670)] 

(Haboudane et al. 

2004) 

 

2.6 Shadow and Vegetation Masking  

A raster mask was created for the image datasets so that the only pixels analyzed 

for spectral analysis and classifications were contained within the sunlit portions of 

conifer tree crowns (Xiao et al. 2004).  The mask was developed using the Modified 

Non-Linear Index that had been calculated using the WorldView-2 spectral bands. Visual 

inspection of the MNLI raster revealed that conifer crowns have higher reflectance for 
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this index than do non-conifer pixels in the imagery.   This masking process was 

completed through several iterations to ensure that pixels known to contain shadows, as 

well deciduous trees, understory vegetation, bare earth, water and roads were not 

included in further analysis.   Within the binary mask, pixels containing MNLI values of 

less than 1.46 were assigned a value of 0, while all values greater than this threshold, 

which corresponded to pine canopies, were assigned a value of 1 (Figure 2.8).  Only 

pixels with a mask value of 1 were included in subsequent analysis. 

  

  
 

Figure 2.8. Development Of Raster Mask To Isolate Only Sunlit Tree Crowns. A. False 

Color Image Of Fraley Grove.  B. Raster Color Slice Produced In ENVI Showing MNLI 

Values Within Fraley Study Area.  C. Binary Raster Mask Created In ENVI Using MNLI 

Threshold.  D. Applied Raster Mask Showing Only Sunlit Tree Crowns. 

A B 

C D 
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2.7 Spectral Analysis of Tree Canopies  

2.7.1 Spectral Relationships with External Influences 

Although spectral reflectance in vegetation can be influenced by the physical and 

biochemical characteristics of leaves and needles (Sims and Gamon 2002), this study 

investigates how external variables such as topography and canopy height can influence 

spectral reflectance properties for longleaf pine.  Analysis of external influences on 

spectral reflectance was completed using 109 montane and 51 piedmont longleaf  across 

the three study sites.  Descriptive statistics for the 160 longleaf canopies were calculated, 

resulting in minimum, maximum, mean and standard deviation pixel values for each 

canopy, with values for each of the eight spectral bands in the imagery.  Pixel values for 

each of the descriptive statistics were calculated from each tree’s reflectance, and 

compiled for analysis in IBM’s SPSS statistical software (IBM 2006).   

Testing of the reflectance relationships between topographic and tree height 

variables was completed using a dataset of raster layers which included the eight 

WorldView-2 multispectral bands, as well as elevation, slope, aspect and tree height 

rasters. The December imagery was stacked with the four other layers to create a 12-band 

image file, and then masked using the MNLI binary masking process used above.  Pixel 

values were extracted from each of the 160 longleaf canopies across the three study sites, 

and descriptive statistics were calculated for each layer in the dataset including values for 

the eight spectral bands, as well as elevation, slope, aspect and tree height.   

To determine which of the four variables were significantly correlated with 

canopy reflectance, a Pearson product-moment correlation was implemented, which 
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measured the strength of linear association between reflectance across the eight 

WorldView-2 bands and the external variables included in the dataset (topographic 

variables and canopy height).  Correlation coefficients produced from this analysis were 

compared to determine the strength of individual variables to explain the variance in 

spectral reflectance.   

2.7.2 Spectral Relationships Between and Among Species  

To determine if spectral differences exist between the tree species throughout the 

study areas, samples of competing pine species were also sampled and analyzed.  130 

loblolly pine and 150 shortleaf pine canopies were located throughout the three study 

sites, mapped in the masked satellite imagery and then each canopy was sampled for 

spectral reflectance values.  Descriptive statistics were calculated for each tree of both 

species, and added to the dataset containing canopy values for the 160 longleaf pine.  A 

Mann-Whitney non-parametric test of means (Guo and Guo 2014) was implemented over 

three iterations.  The first test compared reflectance values between longleaf and loblolly, 

the second compared values for shortleaf and longleaf, and the third tested reflectance 

values between shortleaf and loblolly for each of the eight bands in the imagery.  

Significance values derived from this test that are less than or equal to 0.05 are 

statistically significant, and indicate that reflectance between the species was 

significantly different for the band being tested. 

Additionally, to determine whether spectral differences were present between 

montane and piedmont longleaf samples, a Mann-Whitney non-parametric test of means 

was implemented using the previously derived reflectance statistics from 54 montane 
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samples gathered at Goldmine and 54 piedmont samples gathered from Nichols, using 

site location as the independent variable. 

2.8 Image Classification 

2.8.1 Object-Based Image Classification  

Digital image classification techniques can be used to group pixels based on their 

specific spectral reflectance into user defined groups to isolate land cover types (Jensen 

2007). Typically, these groups consist of forested cover, urban areas, grassland, and 

agricultural land, each represented by pixels within an image with similar reflectance 

values. Geographic information systems like ENVI and Arcmap have tools that aid in the 

creation of classifications from digital images. Within these programs, two types of 

classifications can be used to identify and group pixels in the image, although only 

supervised and unsupervised are discussed here. Unsupervised classifications group 

pixels based on reflectance properties, as determined by the user-defined groupings or 

clusters. By selecting the number of groups and the specific wavelengths or bands for the 

software, the image is separated into groups of similar reflectance (Jensen, 2007).  

Supervised pixel-based classifications require a user to select classes; areas in an 

image with homogeneous land cover, such as bodies of water, agricultural fields, built-up 

areas, or specific tree canopies that are manually delineated with vector polygons.  Using 

spectral information gathered from each pixel in each chosen class, the software can 

identify land-cover classes throughout the image based on the measured spectral 

reflectance of individual pixels contained within the chosen training sites. The 



 
 

27 

classification algorithm groups the pixels according to the spectral signatures for each 

class, and creates a raster file showing the clusters within the image (Jensen, 2007).   

Pixel-based classification procedures are not well suited for discrimination 

between species with similar spectral properties as so-called “salt and pepper’ effects 

emerge due to the high variation in reflectance between adjacent pixels that can exist 

within a tree’s canopy due to shadowing, needle length variation and canopy health.   

As an additional measure for classifying objects with similar spectral 

characteristics, a supervised, object-based image analysis (OBIA) can be implemented, 

which creates image segment boundaries, which are discrete regions, created by the 

software within digital imagery based on image objects with similar characteristics 

relating to reflectance, texture or shape (Blaschke et al. 2008).  This segmentation process 

has parameters that can be adjusted to minimize or maximize sensitivity to reflectance 

and object size.  The user then creates training samples by selecting the segmented 

polygons in the image that correspond to a specific land cover type.  

2.8.2 Classification Methodology  

 The classification technique used in this paper is an object-based supervised 

classification.   Despite significant differences in reflectance between the three-pine 

species across eight spectral bands, initial classification attempts were not able to 

accurately differentiate between the species, requiring more spectral data to be included 

in the classification.  The following classifications were implemented on a dataset 

containing eight WorldView-2 bands, as well as eight previously calculated spectral 

indices.  Again, the image had been masked per MNLI values so that the only pixels 
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remaining in the image were composed of the sunlit portions of conifer tree crowns.   An 

individual classification was completed for each of the three study sites, and then a fourth 

classification was implemented for a larger area within the UNF using training samples 

selected from all three locations.   

 The first step in the procedure grouped pixels within the image based on similar 

reflectance values, and was adjusted to focus the segment polygons around entire tree 

canopies (Figure 2.9). The next step required the selection of samples that pertain to the 

classes present within each study site, which in this case were the three species of pine.   

At each of the three study sites, 25 longleaf, shortleaf and loblolly pine canopies were 

selected from the segmented image as training samples to train the classification 

algorithm to differentiate between the segmented image objects.  Twenty-five other 

located samples for each species were retained to calculate the accuracy of each 

classification.  For the larger area, 50 training samples from each species were selected 

for the classification.  
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Figure 2.9. Image Segments Developed By The ENVI Feature Extraction Segmentation 

Process. Shown Encompassing Entire Sunlit Portions Of Tree Crowns.  Image Is A False 

Color Representation, Using Bands 7, 6 And 5 Substituted For Red, Green And Blue 

Respectively. 

 

Once the training samples were selected for each site-classification, a Support 

Vector Machine (SVM) classification method was implemented to group the image 

objects or segments into classes based upon spectral reflectance values across the 16 

bands.  This classifier incorporates spectral data relating to mean, minimum, maximum 

and standard deviation for each class, while also compiling data relating to texture, size 
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and shape of each of the image objects for each class.  The resulting output from this 

classifier is a raster image containing locations across the study site that have been 

classified based on the classification parameters.  Four total classifications were 

implemented, and their accuracies were then assessed. 

2.8.3 Accuracy Assessment 

 To test the accuracy of each classification implemented at the three sites as well 

as across the larger area surrounding Fraley and Goldmine, ground-truth data relating to 

the locations of each geolocated tree canopy were compared to the classification image to 

determine if each tree was correctly classified.  A stratified random sampling method was 

used to select ground truth points from each study site (Jensen, 2007).  For the three sites 

80 samples were randomly selected from the 150 located trees for each site, with 25 set 

as the minimum number of samples for each class (longleaf, shortleaf and loblolly) while 

a minimum of 50 were chosen for the larger area.  These chosen samples are listed in 

Table 2.3. 

 

Table 2.3. Number Of Ground Truth Samples Randomly Chosen From Each Class. 

 

Class Fraley Goldmine  Nichols  Larger Area 

Longleaf 26 27 29 54 

Shortleaf 28 25 25 59 

Loblolly 26 28 
26 

52 

Total 80 80 
80 

155 
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 Accuracy assessments for image classifications are derived from error matrix 

tables, which are produced when ground sample regions are compared to pixel classes 

within classification images (Jensen 2007).  Values within the matrix are derived by 

calculating the number of correctly and incorrectly classified pixels or objects within an 

image.  The first value used to assess accuracy is known as user’s accuracy (UA), and 

calculates errors of commission (Aguilar et al. 2013) by determining the number of pixels 

belonging to an object in one class, but have been classified as another, incorrect class.  

The second metric is producer’s accuracy (PA), which is related to errors of omission and 

is calculated by determining the number of pixels relating to one class that have not been 

grouped within that class.  Overall accuracy (OA) is calculated by dividing the number of 

correctly classified objects or pixels by the total number of objects or pixels.  Lastly, a 

more robust accuracy metric that is calculated is the Kappa Statistic (KS), which 

evaluates how well the classification procedure performed by comparing the results to a 

random classification.  KS values ranges from -1 to 1, with negative values denoting that 

the classification performed worse than random, and 1 meaning that the classification 

performed significantly better than normal (Jensen 2007).  All four accuracy parameters 

have been assessed for the four classifications completed for this research.  
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CHAPTER III 

 

RESULTS  

3.1 Spectral Analysis Results  

Analysis results of topographic influences on spectral reflectance showed 

significant relationships between elevation, slope and aspect for several of the 

WorldView-2 bands across the visible and near-infrared portions of the spectrum (Table 

3.1).   A significant relationship between aspect and reflectance was only present for the 

Green band, with a correlational coefficient of (r = 0.171, p ≤ 0.05). Elevation had a 

stronger relationship with reflectance values from the 160-sampled longleaf, with the 

Blue and Yellow portions of the spectrum exhibiting positive correlations of (r = 0.197 

and r = 0.182; p ≤ 0.05) respectively, and coefficients of (r =0.223 and r = 0.221; p ≤ 

0.01) for the Coastal Blue and Red bands.  

 Relationships between slope and reflectance were highly significant across all 

bands of the imagery with coefficients ranging from (r = -0.616–0.813; p ≤ 0.01) with 

stronger negative relationships present in the near-infrared portions of the spectrum.  The 

Pearson product-moment correlation procedure also revealed strong relationships 

between canopy height and reflectance across each of the eight bands (Table 3.2).  

Coefficient values range from (r = 0.371–0.657; p ≤ 0.01) with all values significant at 

the 0.01 level.  It was also found that tree height is significantly related to both slope (r 

=-0.647; p ≤ 0.01) and elevation (r =-0.380; p ≤ 0.01). 
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Table 3.1. Pearson Product-Moment Correlations Between Reflectance And External Variables: Elevation, Slope, Aspect And 

Canopy Height. Significant Values Are Denoted By * For (p ≤ 0.05) And ** For (p ≤ 0.01)                                               

 
 

Coastal 

Blue 

Blue Green Yellow Red Red 

Edge 

NIR1 NIR2 

Elevation 

Pearson 

Correlati

on 

.223** .197* 0.149 .182* .221** 0.04 0.009 -0.033 

 Sig. (2-

tailed) 
0.007 0.016 0.073 0.027 0.007 0.629 0.911 0.688 

Slope 

Pearson 

Correlati

on 

-.627** -.687** -.681** -.653** -.616** -.781** -.799** -.813** 

 Sig. (2-

tailed) 
(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) 

Aspect 

Pearson 

Correlati

on 

0.156 0.161 .171* 0.131 0.097 0.087 0.072 0.031 

 Sig. (2-
tailed) 

0.058 0.051 0.038 0.112 0.241 0.293 0.383 0.704 

Canopy 

Height 

Pearson 

Correlati

on 

.401** .464** .475** .448** .371** .615** .641** .657** 

 Sig. (2-

tailed) 
(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) 

 
N 160 160 160 160 160 160 160 160 
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Table 3.2. Pearson Product-Moment Correlations Between Canopy Height, Elevation, 

Slope And Aspect. Significant Values Denoted By ** For (p ≤ 0.01). 

  

  Elevation Slope Aspect 

Canopy Height Pearson Correlation -.380** -.647** -0.027 

 Sig. (2-tailed) (<0.01) (<0.01) 0.749 

 N 160 160 160 

 

To determine if spectral reflectance differences were present between montane 

and piedmont longleaf samples, the Mann-Whitney non-parametric test was implemented 

to compare reflectance values between a subset of longleaf sampled from the two 

montane stands (n=54) to the piedmont samples gathered at Nichols (n=54).   Significant 

differences were found for reflectance across all eight bands between the two classes of 

longleaf (p ≤ 0.01) (Table 3.3).  To better visualize the differences in reflectance, mean 

reflectance values for each tree from both subsets were compiled and incorporated into 

two line charts (Figure 3.1).  Additionally, mean reflectance was calculated for each 

montane and piedmont longleaf canopies in the subset, and incorporated into a third chart 

showing the differences in reflectance across each band in the imagery (Figure 3.2).  
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Table 3.3. Mann-Whitney U-Test Results For Comparison Between Montane And 

Piedmont Longleaf Reflectance Across The Eight Bands Of December WorldView-2 

Imagery.  Significance Values (P ≤ 0.05) Are In The Bottom Row.  

 

 

 
 

Figure 3.1. Mean Reflectance Derived From 54 Piedmont And 54 Montane Longleaf 

Samples Gathered From Nichols, Fraley And Goldmine.
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  Coastal 

Blue 

Blue Green Yellow Red RedEdge NIR-1 NIR-2 

Mann-Whitney U 295.5 107.5 97 158 375.5 0 0 0 

Wilcoxon W 1780.5 1592.5 1582 1643 1860.5 1485 1485 1485 

Z 
-8.943 -9.691 -9.728 -9.484 -8.618 -10.112 -10.115 -10.113 

Asymp. Sig. (2-

tailed) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Figure 3.2. Distribution Of Mean Reflectance Values For Longleaf. A.) Subset Of Montane Longleaf Samples Gathered From 

Goldmine And Fraley Grove.  B.) Piedmont Longleaf Gathered From Nichols Tract. 
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  Spectral analysis results indicate that the spectral discrimination of longleaf, 

shortleaf and loblolly pine is possible due to the unique spectral properties of the three 

pine species (Figure 3.3).  Mean reflectance values for the Green, Yellow, Red, and NIR-

1 bands vary between samples of Longleaf and Shortleaf Pine (p <0.05) (Table 3.4).  

Longleaf and Loblolly pine mean reflectance differs significantly across the Green, 

Yellow, Red, Red Edge and NIR-2 bands (p <0.05) (Table 3.5).  Additionally, spectral 

variations in mean reflectance from Green and Red bands were found between shortleaf 

and loblolly pine samples (p <0.05) (Table 3.6).  

 

 
 

Figure 3.3. Mean Reflectance Derived From 160 Longleaf, 150 Shortleaf And 130 

Loblolly Pine Samples Gathered From Nichols, Fraley And Goldmine.  
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Table 3.4.  Mann-Whitney U-Test Results For Spectral Comparison Of Longleaf And 

Shortleaf Pine Reflectance.  Significant Values Are Highlighted (p <0.05) 

 

 

Table 3.5.  Mann-Whitney U-Test Results For Spectral Comparison Of Longleaf And 

Loblolly Pine Reflectance.  Significant Values Are Highlighted (p <0.05) 

 
Test 

Statistics 

  Coastal 

Blue 

Blue Green Yello

w 

Red RedEdge NIR-1 NIR-2 

Mann-

Whitney U 
628.5 497.5 395.5 292 168.5 404 544.5 476.5 

Wilcoxon W 1223.5 1092.5 990.5 887 763.5 999 1139.5 1071.5 
Z -0.382 -1.83 -2.958 -4.103 -5.469 -2.864 -1.31 -2.062 

Asymp. Sig. 

(2-tailed) 
0.703 0.067 0.003 0.000 0.000 0.004 0.19 0.039 

 

 

Table 3.6.  Mann-Whitney U-Test Results For Spectral Comparison Of Loblolly And 

Shortleaf Pine Reflectance.  Significant Values Are Highlighted (p <0.05) 

 
Test 

Statistics 

  Coastal 
Blue 

Blue Green Yello
w 

Red RedEdge NIR-1 NIR-2 

Mann-

Whitney U 3.929 7.574 0.04 0.734 0.04 5.243 13.121 7.03 
Wilcoxon W 1 1 1 1 1 1 1 1 

Z 0.047 0.006 0.841 0.391 0.841 0.022 0 0.008 
Asymp. Sig. 

(2-tailed) 3.929 7.574 0.040 0.734 0.040 5.243 13.121 7.030 

 

 

Test 

Statistics 

  Coastal 

Blue 

Blue Green Yellow Red RedEdge NIR-1 NIR-2 

Mann-

Whitney U 
343.5 387.5 288.5 162 144 380 292 402.5 

Wilcoxon W 694.5 738.5 883.5 757 739 975 643 753.5 

Z -1.47 -0.813 -2.29 -4.177 -4.446 -0.925 -2.238 -0.589 

Asymp. Sig. 

(2-tailed) 
0.142 0.416 0.022 0.000 0.000 0.355 0.025 0.556 
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3.2 Classification Accuracy and Results 

 Overall classification accuracy for the four classified sites ranged between 88.81–

92.54 %, demonstrating highly accurate mapping of the three pine species. Kappa 

Coefficients ranged from 0.78–0.85, indicating that the classifications were significantly 

different from random (Table 3.7).  While overall accuracies were high for the three species, 

errors of commission for longleaf pine were high at some sites, with user accuracies of 

92.11% for Fraley (Figure 3.4), 86.91% for Goldmine (Figure 3.5) and 96.85% for Nichols 

Tract (Figure 3.6), with a UA of 78.53 for the larger area in the UNF (Figure 3.7).  Errors of 

omission for Fraley were moderate with close to 88% (Table 3.8) with producer’s accuracies 

ranging from 93.80% for Goldmine (Table 3.9), 80.12% for Nichols (Table 3.10) and 79.53% 

for the larger classified area.  Accuracies for longleaf pine were lower than the two 

competing pines throughout the four sites (Table 3.7), suggesting that variations in spectral 

reflectance for longleaf may be greater between sites, limiting the ability of the classifier to 

identify all samples present in the imagery.    

 After completing the classification on the larger area, several locations were noted to 

contained tree canopies classified as longleaf pine.  Five sites were chosen for further 

investigation in areas with relatively steep southerly slopes (Figure 3.7).  After visiting these 

sites to check the accuracy of the classification, four of the five sites contained stands of 

either loblolly or shortleaf pine.  The fifth site was located on private property, and was 

therefore not investigated further.    
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Table 3.7. Accuracy Results For Four Classifications Completed Within The UNF.  A. 

User’s Accuracy. B. Producer’s Accuracy. C. Overall Accuracy And Kappa Statistics.  

 

Producer’s Accuracy (%) 

 Longleaf Loblolly Shortleaf 

Fraley 86.45 N/A 91.82 

Goldmine 93.80 77.30 95.77 

Nichols 80.12 97.25 97.61 

Larger Area 78.53 90.97 94.02 

 

User’s Accuracy (%) 

 Longleaf Loblolly Shortleaf 

Fraley 92.11 N/A 85.98 

Goldmine 86.91 94.90 86.02 

Nichols 96.85 99.97 80.99 

Larger Area 78.53 90.97 94.02 

 
Overall Accuracy Kappa Statistic 

Fraley 89.00 % 0.78 

Goldmine 88.81 % 0.83 

Nichols 92.54% 0.88 

Larger Area 91.67 % 0.85 

 

A 

B 

C 
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Figure 3.4. Distribution Of Classified Image Objects Throughout Fraley Grove In The 

UNF.  Red Canopies Are Classified As Longleaf Pine, Blue Canopies Are Classified As 

Loblolly And Green Canopies Are Classified As Shortleaf.   
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Table 3.8. Individual Accuracy Results For Fraley Grove. 

 

Overall 

Accuracy 

(14564/16364) 

(Pixels) 

89.00% 

(Percent)   
Kappa 

Coefficient 0.7802    

     
Pixels Shortleaf Longleaf Total  
Shortleaf 7138 1164 8302  
Longleaf 636 7426 8062  
 Total          7774 8590 16364  

     
Percent Shortleaf Longleaf Total  
Shortleaf 91.82 13.55 50.73  
Longleaf 8.18 86.45 49.27  
Total 100 100 100  

     

 Commission Omission Commission Omission 

Class (Percent) (Percent) (Pixels) (Pixels) 

Shortleaf 14.02 8.18 1164/8302 636/7774 

Longleaf 7.89 13.55 636/8062 1164/8590 

     

 Prod. Acc. User Acc. Prod. Acc. User Acc. 

Class (Percent) (Percent) (Pixels) (Pixels) 

Shortleaf 91.82 85.98 7138/7774 7138/8302 

Longleaf 86.45 92.11 7426/8584 7426/8062 
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Figure 3.5. Distribution Of Classified Image Objects Throughout Goldmine Branch In 

The UNF.  Red Canopies Are Classified As Longleaf Pine, Blue Canopies Are Classified 

As Loblolly And Green Canopies Are Classified As Shortleaf.   
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Table 3.9. Individual Accuracy Results For Goldmine Branch. 

 

Overall 

Accuracy 

(24489/27575) 

(Pixels) 

88.81% 

(Percent)   
Kappa 

Coefficient 0.8323    

     
Pixels Shortleaf Loblolly Longleaf Total 

Shortleaf 8901 899 547 10347 

Longleaf 0 1247 8281 9528 

Loblolly 393 7307 0 7700 

Total 9294 9453 8828 27575 

     
Percent Shortleaf Loblolly Longleaf Total 

Shortleaf 95.77 9.51 6.2 37.52 

Longleaf 0 13.19 93.8 34.55 

Loblolly 4.23 77.3 0 27.92 

     

 Commission Omission Commission Omission 

Class (Percent) (Percent) (Pixels) (Pixels) 

Shortleaf 13.98 4.23 1446/10347 393/9294 

Longleaf 13.09 6.2 1247/9528 547/8828 

Loblolly 5.1 22.7 393/7700 2146/9453 

     

 Prod. Acc. User Acc. Prod. Acc. User Acc. 

Class (Percent) (Percent) (Pixels) (Pixels) 

Shortleaf 95.77 86.02 8901/9294 8901/10347 

Longleaf 93.8 86.91 8281/8828 8281/9528 

Loblolly 77.3 94.9 7307/9453 7307/7700 
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Figure 3.6. Distribution Of Classified Image Objects Throughout Nichols Tract In The 

UNF.  Red Canopies Are Classified As Longleaf Pine, Blue Canopies Are Classified As 

Loblolly And Green Canopies Are Classified As Shortleaf.   
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Table 3.10. Individual Accuracy Results For Nichols Tract. 

 

Overall 

Accuracy 

(33966/36702) 

(Pixels) 

92.54% 

(Percent)   

Kappa Coefficient 0.8861    
     

Pixels Shortleaf Loblolly Longleaf Total 

Shortleaf 257 8258 12 8527 

Longleaf 10494 2045 418 12957 

Loblolly 0 4 15214 15218 

Total 9294 9453 8828 27575 

     

Percent Shortleaf Loblolly Longleaf Total 

Shortleaf 2.39 80.12 0.08 23.23 

Longleaf 97.61 19.84 2.67 35.3 

Loblolly 0 0.04 97.25 41.46 

     
 Commission Omission Commission Omission 

Class (Percent) (Percent) (Pixels) (Pixels) 

Shortleaf 3.15 19.88 269/8527 2049/10307 

Longleaf 19.01 2.39 2463/12957 257/10751 

Loblolly 0.03 2.75 4/15218 430/15644 

     

 Prod. Acc. User Acc. Prod. Acc. User Acc. 

Class (Percent) (Percent) (Pixels) (Pixels) 

Shortleaf 97.61 80.99 10494/10751 10494/12957 

Longleaf 80.12 96.85 8258/10307 8258/8527 

Loblolly 97.25 99.97 15214/15644 15214/15218 
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Figure 3.7. Distribution Of Classified Image Objects Throughout The Larger Portion Of The UNF.  Red Canopies Are 

Classified As Longleaf Pine, Blue Canopies Are Classified As Loblolly And Green Canopies Are Classified As Shortleaf.  

Locations Of Ground Truth Investigation Numbered 1-5.  
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CHAPTER IV 

DISCUSSION AND CONCLUSIONS 

 Through the spectral analysis of longleaf, shortleaf and loblolly pine growing in 

the UNF, a classification procedure has been developed that allows for the mapping of 

individual canopies within both montane and piedmont study areas.  The overall accuracy 

for classifying longleaf pine were moderate, yet the implementation of this procedure 

over a larger area within the UNF resulted in high errors of omission and commission.  

This classification error could possibly be related to differences in spectral reflectance 

related to changes in elevation, slope, aspect and canopy height.  At the individual-stand 

level, these influences are less pronounced, allowing for tree species to be accurately 

mapped with average OA = 90.11, and KS=0.83, but the spectral differences that can 

arise over larger areas with varying topography make it difficult to differentiate between 

the three species of pine present.   

 Previous studies have had success mapping longleaf pine with overall accuracies 

of 76% (Hughes et al. 1986), 85% (Van Aardt and Wynne 2007), 96% (Nieminen 2014), 

although the sites used in those did not contain areas with considerable topographic 

variation (> 100 m vertical relief) such as those found within the UNF.  When comparing 

the overall accuracy of the species classification map produced for Nichols Tract (< 10 m 

vertical relief) to a similar study conducted by Nieminen (2014) in the De Soto National 

Forest in southeastern Mississippi, accuracy results are similar 92.54% ~96.00%.  High  
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classification accuracy obtained for piedmont longleaf sampled from Nichols, and low 

accuracies for the montane sites suggest that topographic influences may be the major 

cause for reduced classification success in sites of high relief (> 100 m).   

 Spectral analysis of both montane and piedmont longleaf pine showed significant 

variation in reflectance values between the two varieties.  This variance could be 

attributed to several of the influences examined in this study.  Changes in slope and 

elevation appear to have significant influence on spectral reflectance across the 

electromagnetic range, and cause a decrease in reflectance with increases in topographic 

prominence.  Additionally, tree canopy height is positively correlated with reflectance 

values for the longleaf sampled in this study.  While reflectance increases with canopy 

height, canopy height tends to decrease with elevation and slope within the study areas, 

and this pattern is mirrored by decreases in canopy reflectance across all eight bands of 

the WorldView-2 imagery.    

 While determining the actual cause of reflectance variations due to topography 

and canopy height is beyond the scope of this research, it is possible that trees growing in 

areas of high topographic prominence may not have the same nutrient and water 

availability as those growing in areas of lower relief due to decreased soil depth on the 

rocky slopes.  Additionally, environmental conditions in areas of higher elevation relating 

to precipitation and temperature gradients may reduce the trees’ overall health, negatively 

influencing growth characteristics, resulting in shorter canopy heights, and subsequently 

decreasing reflectance for montane longleaf pine across the visible and near-infrared 

portions of the electromagnetic spectrum. 
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 Incorporation of this measured spectral variance between the two classes of 

longleaf pine may allow future researchers to develop classification strategies capable of 

mapping longleaf even more accurately, permitting the discovery of unknown montane 

stands suitable for habitat restoration initiatives such as undergrowth thinning and 

prescribed burning.   

 Although ground verification of likely sites within the larger-classified area did 

not result in the location of new montane stands, the implementation of this procedure 

over other areas within the UNF may still produce favorable results for future studies.  

Montane communities of longleaf within North Carolina are rare, with only two known 

stands in existence: Fraley Grove and Goldmine Branch.  While this research was not 

able to locate new montane stands within the study area, there is a possibility that no 

other stands present in the UNF.  Implementation of this classification method in other 

adjacent land holdings within the National Forest is necessary to make this determination 

final. 

To establish a methodology for returning the longleaf pine ecosystem to its 

historic extent across the southeastern United States, researchers must examine existing 

stands of these pines to determine certain parameters that provide optimum habitats for 

growth and subsequent regeneration.  This process has been initiated by the National 

Forest Service and the Longleaf Alliance across the southeastern United States in 

delineated and protected stands (Jose et al., 2006).  Research on the natural growth 

characteristics of longleaf pine has helped to reveal practices that positively influence the 

longevity of the species, including selective harvesting and prescribed fires in the 
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understory (Brockway, 2005).  Locating new areas containing longleaf pine ecosystems, 

especially montane longleaf growing within areas of varying topography can allow for 

greater insight into their unique ecosystems. 

 Through the remote investigation of longleaf pine spectral properties from stands 

in the Uwharrie National Forest, a more detailed understanding of the spectral reflectance 

properties of the species has been has been developed for both montane and piedmont 

varieties.  When attempting to generate species maps from remotely sensed data, a 

singular spectral signature derived reflectance data alone is insufficient to create accurate 

maps in areas of varying topography, tree age and height, as well as different seasons of 

imagery acquisition.  Understanding how reflectance can vary between areas of differing 

elevation and slope is essential to mapping this species across large geographic areas like 

the Uwharrie National Forest. 
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