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Doxorubicin (Dox) is one of the most potent anti-neoplastic agents approved by 

the Food and Drug Administration. Its efficacy, however, is limited due to its well-

documented cardiotoxic side effect. Since the first observation of this dosage-dependent 

side effect, the mechanisms and events leading to cardiotoxicity following exposure to 

doxorubicin have received much attention. However, the exact pathogenesis of Dox-

induced cardiotoxicity remains to be elucidated. Although increased production of 

reactive oxygen species (ROS) from the redox cycling of Dox has been recognized as the 

primary mechanism of Dox-induced cardiotoxicity, it must be noted that many of the 

studies supporting the oxidative stress-induced cardiotoxicity hypothesis were conducted 

with supraclinical drug concentrations. This study examined the effect of clinically-

relevant concentrations of Dox on H9c2 rat cardiomyoblasts. Through MTT-reduction 

cell viability assay, it was determined that exposure of H9c2 cells to Dox concentrations 

above 0.5 µM for more than 12 hours resulted in significant reduction in cell viability. To 

verify the role of oxidative stress on the development of cytotoxicity, ROS levels after 

exposure to low concentrations of Dox (less than 2 µM) were measured. Quantitative 

measurements of both cellular and mitochondrial ROS levels revealed no significant 

changes to superoxide presence while exhibiting significant decrease in hydrogen 

peroxide presence. However, despite the decreased presence of two major types of ROS, 

the potency of antioxidant responses from the H9c2 cells were found to have significantly 
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increased. Also, exposure to Dox at clinically relevant concentrations led to significant 

increase in the gene expressions of vascular cell adhesion molecule 1 (VCAM-1) and 

intercellular adhesion molecule 1(ICAM-1), two key adhesion molecules that have been 

implicated in Dox-induced cardiotoxicity. These results suggest that lower concentrations 

of Dox can stimulate intracellular anti-oxidative response that may thwart intracellular 

ROS levels required for maintaining of proper cell functions, ultimately leading to redox 

imbalance and inflammation in cardiomyocytes.  

While attempting to further investigate into the specific mode of cell death 

induced by Dox treatment, it was found that the innate fluorescence of Dox may be 

potent enough to be recognized by various fluorescence-based detection methods. Dox 

was found to exhibit fluorescence spectra consisting of a maximum excitation 

wavelength of 493 nm and a maximum emission wavelength of 592 nm, which were 

similar to the fluorescence characteristics of common fluorescent markers such as FITC, 

PI, MitoSOX, and DCF-DA which are widely used to assess cell viability, as well as ROS 

production. Furthermore, nuclear accumulation of Dox was confirmed by fluorescence 

microscopy, and spectrofluorometric measurements which detected the cellular uptake of 

Dox. This suggests that the innate fluorescence of Dox can be a valid probe used for 

future investigations for the uptake, release and distribution of Dox both in vitro and in 

vivo.  

Altogether, this study demonstrated for the first time that exposure to Dox at 

clinically relevant plasma concentrations significantly decreased hydrogen peroxide 

levels below the basal levels in both intact H9c2 rat cardiomyocytes and in isolated 



 

 

mitochondria. Cells treated with Dox showed a significant increase in the expression of 

genes associated with anti-oxidative response and inflammation. Utilizing the intrinsic 

fluorescence of Dox, it was found that incubation of H9c2 cells with Dox resulted in 

time-dependent intracellular uptake of Dox. This study may contribute in advancing our 

understanding of mechanisms responsible for Dox-induced cardiotoxicity and thereby 

improving the efficacy of Dox, one of the most prominent components of many 

chemotherapy regimens. 
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CHAPTER I 
 

INTRODUCTION 
 
 

Anthracyclines: An Overview 

Anthracyclines were first introduced in the 1960’s and have remained as a 

mainstay of chemotherapy, treating patients suffering from leukemias, lymphomas, 

breast, stomach, ovarian, and lung cancers. Anthracyclines contribute to the high survival 

rates of 70 and 75% in pediatrics and breast cancer, respectively [2].  

Doxorubicin is a member of anthracycline antitumor antibiotics that are 

commonly used to treat a wide variety of cancers [3]. Its anti-malignancy effect is 

modulated by the ability of doxorubicin 

to intercalate between the base pairs of 

double-stranded DNA, thereby 

inhibiting DNA topoisomerase II (Topo 

II) activity. The inhibition of Topo II 

activity compromises the structural 

integrity of DNA, inducing a double 

stranded break in DNA, halting the DNA 

replication process, which is 

instrumental for rapidly proliferating 

tumor cells. Inhibition of Topo II also leads to activation of p53 and the production of 

 
 

 
 
Figure 1. Structure of Doxorubicin. 
 
 
Dox is comprised of a tetracyclic ring with quinone and hydro
quinone groups along with methoxy substituent side chain grou
p and a carbonyl group[1]. 
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several proteins that promote cell cycle arrest and apoptosis [4]. Additionally, Dox 

inhibits the natural DNA repairing mechanism of topoisomerase II by stabilizing the 

formation of DNA-enzyme intermediate which consists of 5’-phosphoryl end of the 

nicked DNA covalently bonded to the tyrosine residues of topoisomerase II. This 

eventually hinders DNA rejoining process that follows. Such DNA damage induced by 

Topoisomerase II results in a growth arrest in the G1 and G2 phases and apoptosis [5]. 

 

Pharmacokinetics of Doxorubicin  

Early investigation using the innate fluorescence of Dox to follow the cellular 

uptake revealed subsequent localization of Dox in the nucleus [6]. Proceeded studies 

have confirmed that Dox is able to cross the cell membrane via passive diffusion [1, 7]. 

While the distribution half-life of Dox ranges from 3 to 5 minutes, the terminal half-life 

of Dox of 24 to 36 hours indicates quick uptake and slow elimination of Dox by target 

tissues. Such kinetics results in intracellular concentration of Dox being 10 to 500-fold 

higher than extracellular environment. Nuclear levels of Dox are found to be higher than 

cytoplasmic Dox level by 50-fold with concentrations up to 340uM. This suggests that 

Dox is capable of intercalating at every fifth base pair on the DNA strand [8]. 

The lipophilic characteristic of Dox along with its DNA intercalating property 

allow Dox to quickly penetrate tissues and prolong its presence within the target tissue. 

This phenomenon is clinically observed as a rapid drop in plasma Dox levels in patients’ 

blood is seen while Dox levels in bone marrow and white blood cells become 200-500 

times higher than that found in blood [8]. 
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The biotransformation of Dox occurs in the liver as it is metabolized to 

doxorubicinol by aldo-keto reductase. Doxorubicinol, a dihydrodiol derivative which 

maintains Dox’s antitumor activity, can be further metabolized by cytochrome P450 

(CYP) reductase to cleave the glycosidic bond and release aglycone metabolites that are 

believed to be involved in the development of cardiotoxicity. Both metabolites are 

excreted extensively into the bile by various transporters including P-glycoprotein [9]. 

Half of the excreted drug is in the bile, usually being excreted within 5 to 7 days of 

treatment, while only 5 to 12% of Dox is found in urine during the same time period. 

After 24 hours, 10 to 20% of Dox is excreted in feces, and 50% after 150 hours [10]. 

 

Doxorubicin-Induced Cardiotoxicity  

Despite its extensive utilization in clinical setting, the efficacy of doxorubicin’s 

therapeutic effect is limited by cumulative dose-dependent cardiotoxicity that may, 

ultimately, result in heart failure [11]. Since the 1970s, cumulative dose-dependent cases 

of heart failures have been continuously observed in cancer patients who underwent 

anthracycline chemotherapy, indicating possible anthracycline-induced cardiotoxicity 

[12]. Two major types of cardiotoxicity have been observed in clinical settings – acute 

and chronic. Acute cardiotoxicity, characterized by arrhythmias and a reversible decrease 

in ventricular output [11], was found to be occurring during and within 2-3 days of 

administration with an incidence of approximately 11% [13, 14]. Chronic cardiotoxicity 

is characterized by mostly irreversible decrease in ventricular output with a direct 

relationship to the cumulative dose of doxorubicin [15]. Clinical analysis of doxorubicin-
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treated patients revealed that 4% of patients exhibited signs of cardiotoxicity when 

cumulative doxorubicin dose was 500 – 550 mg/m2. Cumulative doxorubicin dose of 551 

– 600 mg/m2 increased the incidence to 18% while cumulative dose exceeding 600 

mg/m2 resulted in incidence of 36% [16]. 

 

Mechanism of Doxorubicin Cardiotoxicity Remains Unclear 

Although medical advancements in terms of diagnosis, treatment, and prevention 

along with improved understanding of cancer pathogenesis have greatly increased cancer 

survival rates across various parameters; the risk of anthracycline-induced cardiotoxicity 

has not been abated largely due to lack of clear understanding of the mechanisms through 

which doxorubicin causes irreversible myocardial injury. The following are several 

mechanisms of doxorubicin cardiotoxicity have been proposed and have received much 

attention : increased oxidative stress [14, 17], decreased expression of antioxidants [17, 

18], ROS-induced inflammation, and mitochondrial dysfunction [19].  

Evidenced by increased generation of reactive oxygen species, oxidative stress 

has been implicated to doxorubicin-induced cardiotoxicity leading to heart failure. 

Although heart failure, in general, is multifactorial, substantial evidence has suggested 

that a failed defense against ROS resulting in oxidative stress is one of the primary 

underlying causes of heart failure. Increased lipid peroxidation was observed in 

congestive heart failure patients [20] and animal models of heart failure also detected 

superoxide anion and hydrogen peroxide [21, 22]. It is suggested that the quinone form of 

doxorubicin can accept an electron to produce the semiquinone form of doxorubicin. 
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Incomplete reduction of molecular oxygen can cause the redox cycling of doxorubicin as 

the semiquinone form is oxidized back to the original quinone form. During this process, 

the molecular oxygen becomes incompletely reduced and becomes a superoxide anion 

radical (O2
•-) [23]. Superoxide radicals, considered as primary reactive oxygen species 

(ROS), then undergo further metabolism and interact with other molecules to generate 

secondary ROS such as hydrogen peroxide (H2O2) and highly-reactive hydroxyl radicals 

(•OH) [24]. ROS are often characterized by their capability to bring incredible amounts of 

both discriminant and indiscriminate damage to biomolecules including protein, lipids, 

and nucleic acids. The interaction between ROS and biomolecules often result in chain 

reactions that lead to the generation of electrophiles that are detrimental to host cells’ 

health [25]. 

In addition to inducing direct cellular damage, another way ROS may contribute 

to inducing heart failure is by inducing inflammation. Although inflammatory responses 

are vital part of the innate immunity, these non-specific immune responses should be 

temporary as extended or chronic inflammation may cause tissue injury leading to 

various diseases [26]. ROS-induced inflammation has been reported to play an important 

role in cardiovascular diseases [27-30]. ROS signaling is involved in various aspects of 

immune response against environmental chemicals. In cell-mediated immunity, T-

lymphocyte activation was found to be enhanced by presence of ROS [31]. In primary 

immune response, massive production of ROS, also known as oxidative burst, is 

observed in activated neutrophils and macrophages as an inflammatory response against 
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environmental pathogens. However, the same process can also induce tissue injury as 

ROS released by neutrophils may indiscriminately harm uninjured cells. Additionally, 

ROS have been implicated as an important messenger involved in the activation of NFκB 

(also known as p65/50), a ubiquitously expressed transcription factor involved in 

inflammatory response [32]. Although ROS has not been shown to directly activate the 

cytosolic NFκB molecules, it does so via its involvement with tumor necrosis factor 

(TNF) and interleukin-1 (IL-1) [33]. Activation of NFκB has shown to induce expression 

of various inflammatory mediators such as monocyte chemotactic protein 1 (MCP-1), 

interleukin 6 (IL-6), IL-8, E-selectin, intracellular adhesion molecule-1 (ICAM-1), and 

vascular cell adhesion molecule-1 (VCAM-1) [34-36]. Inflammatory mediators, 

particularly IL-2 and TNF-α, have been implicated in doxorubicin-induced cardiotoxicity 

[37]. Since cardiomyocytes express functional receptors for these cytokines, the release 

of these cytokines has been suggested to be involved in dilated cardiomyopathy observed 

in patients treated with doxorubicin [37].  

Although ROS are predominantly implicated in causing cell damage, recent 

studies have provided new insights into ROS as having major physiological roles in cell 

signaling and signal transduction pathways involved in cell growth, differentiation [34, 

38, 39], and, as previously mentioned, in host defense mechanism by acting as a 

component of the killing response of immune cells to invasion by infectious agents [40]. 

ROS-mediated redox signaling pathways found in cells under normal physiological 

conditions explains the capability of many types of cells to produce endogenous ROS. 

Some of the signaling mechanisms involving transcription factors, protein tyrosine 
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phosphatases, selective classes of kinases, and JNK MAPK signaling pathways respond 

to this temporary imbalance in redox homeostasis [32, 38]. It is currently understood that 

ROS is involved in both pathological mechanisms and normal physiological functions, 

and this double-edged characteristic of ROS further highlights the significance in fully 

understanding its potential mechanisms linking doxorubicin exposure to cardiotoxicity. 

 

The Selective Toxicity of Doxorubicin to the Heart  

Several factors are believed to contribute as to why doxorubicin selectively 

damages the myocardium, resulting in cardio-specific toxicity. Firstly, myocardium is 

highly oxygenated, favoring ROS and reactive nitrogen species (RNS) production. 

Specifically, myocardial cells of the left ventricle (LV) receive an oxygen-rich supply of 

blood. Interestingly, one of the main characteristics of Dox-induced cardiotoxicity is 

dysfunctional LV. Additionally, due to their role in oxidative phosphorylation, 

cardiomyocytes have been found to be rich in mitochondria, making at least 30% of the 

cell’s volume [41]. The abundant presence of mitochondria and the continuous 

production of ATP via electron transport chain (ETC), a process known to have potential 

for ROS production, favors redox cycling of Dox to generate semiquinone radicals and 

ROS/RNS. Thirdly, previous studies have implicated that Dox has a high affinity for 

cardiolipin, an acidic phospholipid molecule found primarily in the inner mitochondrial 

membrane. The interaction between Dox and mitochondrial cardiolipin is thought to be 

involved in the Dox-induced cardiotoxicity [42]. There is accumulating evidence that 

suggests that the oxidation of cardiolipin due to oxidative stress leads to release of 
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cytochrome c, a critical event in apoptosis. Lastly, cardiomyocytes have relatively low 

expression of ROS-detoxifying enzymes such as superoxide dismutase (SOD), 

glutathione peroxidase (GPX), peroxiredoxins, thioredoxin reductase, catalase, and non-

enzymatic antioxidant molecules [43-45].  

With high oxidative metabolism coupled with poor reserve of antioxidants in 

cardiomyocytes, the hypothesis of increased oxidative stress due to redox cycling of the 

quinone moiety of doxorubicin leading to production of ROS has often been considered 

as the primary mechanism behind doxorubicin-induced cardiotoxicity. However, it must 

be emphasized that many of the past studies supporting the oxidative stress-induced 

cardiotoxicity hypothesis were conducted under supraclinical drug concentrations that 

were, in some cases, several log orders higher than that observed in clinical settings [46-

55]. It has been suggested that clinically relevant plasma concentrations of doxorubicin 

range from 11 nM to 2 μM [56]. The initial observation of doxorubicin concentration in 

blood plasma of cancer patients under bolus administration was approximately 2.78 μM 

with terminal half-life of 39.5±10.4 hours [57]. However, plasma concentrations of those 

who underwent prolonged continuous infusion of doxorubicin (96 hours) was lower as it 

was observed to be approximately 21nM with slighter longer half-life of 44.6±8.5 hours. 

Therefore, it is important to note that the results from previous studies involving 

supraclinical concentrations of doxorubicin may not accurately reflect the mechanism of 

doxorubicin-induced cardiomyopathy at normal physiological conditions. 
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Proposed Study 

The primary goal of this study is to elucidate the underlying mechanisms leading 

to Dox-induced cytotoxicity of H9c2 rat cardiomyoblasts following exposure to 

clinically-relevant concentrations of Dox. Based on the preliminary data observed 

previously, the hypothesis of the thesis was that H9c2 cells, when exposed to clinically-

relevant concentrations of Dox, initiate antioxidative response that inadvertently lower 

ROS presence below the basal intracellular ROS level required for maintaining of proper 

cell functions, ultimately leading to redox imbalance and cell death.  

In accordance with the hypothesis, the first objective of this study was to assess 

the cytotoxicity induced on the H9c2 rat cardiomyoblasts by clinically-relevant 

concentrations of Dox. Upon determination of Dox concentration and exposure time 

needed to induce cytotoxicity in H9c2 cells, cells’ redox balance state was examined by 

analyzing the readiness and potency of the cells’ antioxidative response and quantitatively 

measuring the ROS presence. The second aim was to investigate the innate fluorescence 

of Dox in hopes to validate the practicality in utilizing the fluorescence capability of Dox 

as a possible tool for future investigations of Dox-induced cytotoxicity.  
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CHAPTER II 
 

MATERIALS AND METHODS 
 
 

Chemicals and Materials 

Dulbecco’s Modified Eagle’s Medium (DMEM), penicillin/streptomycin, fetal 

bovine serum (FBS), and trypsin were purchased from Gibco, Invitrogen. 2-Cyano-3, 12-

dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) was purchased from Toronto Research 

Chemicals, Inc. Reduced glutathione, oxidized glutathione, o-phthalaldehyde (OPT), 

NADPH, MTT, and BSA were purchased from Calbiochem. Doxorubicin and hydrogen 

peroxide were purchased from Sigma. Tissue culture flasks (75 cm2) and 12-, 24-, 48-, 

and 96-well plates were purchased from Greiner Bio-One and Corning. 

 

Cell Culture 

H9C2 Rattus norvegicus myocardial cell line was cultured in Dulbecco’s 

Modified Eagle’s Medium with following components: 1% Penicillin Streptomycin (P/S) 

and 10% Fetal Bovine Serum (FBS). 75cm2 Cellstar® cell culture flasks from Greiner 

Bio-One (Catalog number: 658170) were used. The flasks containing the H9C2 cells 

were maintained in a humidified environment with temperature of 37°C and 5% CO2. 

DMEM was renewed every 2 to 3 days, and the cells were passaged at 80% confluency.  
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Doxorubicin Treatments and Cell Extraction Preparation 

H9C2 rat cardiomyocytes were exposed to Dox in both time-dependent (0, 1, 3, 6, 

12, 24 hours) and concentration-dependent (0, 0.1, 0.5, 1, 2, 4μM) manners in DMEM 

supplemented with 10% FBS and 1% P/S. At the termination of the treatments, media 

were aspirated, and cells were washed twice with sterile phosphate-buffered saline (PBS) 

solution to remove excess trace of DMEM. Cell detachment was carried out by applying 

4~5 mL of trypsin. After 3~5 minutes of incubation at 37°C, fresh ice-cold DMEM 

(10%FBS, 1% P/S) was added to neutralize trypsin activity. Resulting mixture underwent 

an initial centrifugation at 1,000 RPM for 7 minutes at 4°C. Cells were then resuspended 

in 1 mL of PBS and centrifuged at 5,000 RPM for 5 minutes at 4°C. The resulting pellet 

was resuspended in 300 μL KH2PO4/K2HPO4 buffer (pH 7.4) containing 2 mM EDTA. 

Cells were then sonicated during three cycles consisting of 12 seconds of sonication and 

5 seconds of rest to prevent denaturing of cellular protein due to heat. The resulting 

mixture was centrifuged at 13,000 RPM for 10 minutes at 4°C. Supernatants were 

collected and stored on ice for quantitative measurement of cellular GSH content, NQO1, 

and GST activity.  

 

Total Protein Quantification Assay 

790 μL of deionized water, 200 μL of Bio-Rad Protein Assay Dye Reagent 

Concentrate® (Cat #500-0006) and 10 μL of cell extraction lysate was added and 

vortexed. Using Beckman Coulter DU800 spectrophotometer, absorbance at 595 nm was 

measured. The observed absorbance reading of the samples were compared to the 
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absorbance reading of a 1.48 mg/ml Bovine Serum Albumin (BSA) standard to determine 

the total protein concentration of the samples. 

 

Cellular Glutathione (GSH) Assay 

10 μL of cell extraction lysate samples were mixed with 12.5 μL of 25% 

metaphosphoric acid (HPO3) and 37 μL of 0.1M sodium phosphate buffer (pH 8.0). The 

mixtures were incubated for 10 minutes at 4°C followed by centrifugation at 13,000 RPM 

for 5 minutes at 4°C. 40 μL of the resulting supernatant were incubated with 1.86 mL of 

0.1M sodium phosphate buffer and 100 μL of o-phthalaldehyde (OPT) for 15 minutes at 

room temperature shielded from light. After the 15-minute incubation, samples were 

transferred to black 96-well plate and the intensity of the fluorescence was measured at 

an excitation wavelength of 350 nm and an emission wavelength of 420 nm. The 

observed fluorescence readings of the samples were compared to fluorescence of a 1.25 

μg/ml GSH standard to determine the total GSH.  

 

Cellular NADPH Quinone Oxidoreductase-1 Activity Assay 

NQO1 reaction mix was prepared immediately prior to measurement by mixing 

12 mL of 50 mM Tris-HCl buffer (pH 7.5, 0.08% Triton X-100), 36 μL of 50 mM 

Nicotinamide adenine dinucleotide phosphate (NADPH), and 48 μL of 

Dichlorophenolindophenol (DCPIP). 4 μL of sample and 2.8 μL of dimethyl sulfoxide 

(DMSO) were mixed with 696 μL of the reaction mix. The NQO1 enzymatic activity, the 

rate at which DCPIP is being reduced by NQO1, was determined by measuring 
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absorbance at 600 nm for three minutes in 20 second intervals using the DU800 

spectrophotometer. 

 

Flow Cytometric Analysis for Cell Death 

Following a 24-hour treatment of H9C2 cells with appropriate concentrations of 

Dox, the cells were trypsinized and centrifuged at 1,000 RPM for 7 minutes at 4°C. The 

resulting pellet was suspended in appropriate volume of PBS in order to induce target cell 

concentration range of 1 x 106 and 1 x 107cells per mL and incubated with 2 μg/ml 

Annexin V-FITC and 2.5 μg/ml PI for 30 min at 4 °C. The cells were analyzed using 

Guava® easyCyte Flow Cytometer. easyCyte flow cytometer used blue laser with 

excitation wavelength of 488 mm and three distinct filters for detection (525/30 nm, 

583/26 nm, 695/50 nm).  

 

MTT Cell Viability Assay 

H9C2 cells were grown to about 70% confluence in a 24-well Costar® cell culture 

plate. Cells were exposed to appropriate concentrations of Dox and incubated in 

humidified environment with temperature of 37°C and 5% CO2 for target time periods. 

At the termination of the Dox treatment, the media were replaced with 500 µL/well of 

DMEM (10% FBS, 1% P/S) supplemented with 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazoliμM bromide (MTT) reagent (final concentration of 0.2 mg/mL) and 

incubated for 1.5 hours in humidified environment with temperature of 37°C and 5% 
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CO2. After the 1.5-hour incubation, media was carefully aspirated, and 200 µL of 7:3 

dimethyl sulfoxide to water dissolving solution was added to solubilize the resulting 

formazan crystals. Cell viability was determined by quantifying the amount of dissolved 

formazan by analyzing absorbance at 570 nm using the Bio-Tek® microplate reader. 

 

LDH Cell Viability Assay 

H9C2 cells were cultured to approximately 90% confluency in a 24well Costar® 

clear cell culture plate using non-phenol red 10% FBS DMEM. The cells were then 

treated with appropriate concentrations of Dox in 10% FBS DMEM for 24 hours. Media 

from each well was collected into 1.5 mL microcentrifuge tubes and centrifuged for 5 

minutes at 13,000 rcf. The resulting supernatant was collected for spectrophotometric 

analysis. 

 

Glutathione S-Transferase (GST) Assay 

GST reaction mix was first prepared with 15 mL of 0.1 M phosphate buffer (pH 

6.5), 45 mg of BSA, 300 μL of 50 mM 2,4-Dinitrochlorobenzene (CDNB), and 150 μL of 

100 mM GSH. The mixture was transferred to a clear cuvette into which 15 μL of cell 

extraction lysate sample was added. Formation of CDNB-GSH conjugate was 

quantitatively measured by observing the absorbance at 340 nm for 5 minutes in 30 

second intervals. 
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Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) 

 H9C2 cells were grown to approximately 80% confluence and treated with 

appropriate concentrations of Dox for 24 hours. TRIzol® Reagent (ambion® Ref. number: 

15596-018) was used to extract total RNA from the cells. Protocol for RNA isolation 

provided by the manufacturer (Life Technologies) was used. Using Nanodrop 2000® 

(Thermo Scientific), the purity and concentration of the isolated RNA was determined. 

For reverse transcription of the isolated RNA, 2 μL of RNA, 1.25 μL of deoxynucleotide 

triphosphates (dNTP) solution, 1.25 μL of random primers, 0.625 μL of Moloney Murine 

leukemia virus reverse transcriptase (MMLV RT), was added to 14.875 μL of diethyl 

pyrocarbonate-treated (DEPC) water to a total volume of 25 μL. The resulting 

complementary DNA was diluted (1:9 ratio with DEPC water) and added to the Life 

TechnologiesTM Power SYBR® Green PCR Master Mix and rat/mouse primers sets 

(forward and reverse) for NQO1, Glutamine-cysteine ligase catalytic subunit (GCLC), 

vascular cell adhesion protein (VCAM), and intercellular adhesion molecule (ICAM). To 

normalize the expression of the target genes, the target gene expressions were compared 

to that of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene expression. A total 

of 40 cycles was performed for each run as follows: 95ºC for 15 seconds, 58ºC for 1 

minute, and 60ºC for 15 seconds. The comparative threshold cycle CT method was used 

to quantify gene expressions. The following description details the nucleic acid sequence 

of the forward and reverse primers used: ICAM forward primer sequence(5’-

CAATTTCTCATGCCGCACAG-3’) ICAM reverse primer sequence (5’-

AGCTGGAAGATCGAAAGTCCG-3’) VCAM forward primer sequence (5’-
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TGAACCCAAACAGAGGCAGAGT-3’) VCAM reverse primer sequence (5’-

GGTATCCCATCACTTGAGCAGG-3’) GCLC forward primer sequence (5’-

AACACAGACCCAACCCAGAG-3’) GCLC reverse primer sequence (5’-

TGGCACATTGATGACAACCT-3’) NOQ1 forward primer sequence (5’-

CACGCATATACCCGCTACCT-3’) NQO1 reverse primer sequence (5’-

CCAGAGTGTTCATTCGAGCA-3’) GAPDH forward primer sequence (5’-

GGAGAAACCTGCCAAGTATGA-3’) GAPDH reverse primer sequence (5’-

TACTCCTTGGAGGCCATGTA-3’) 

 

Cellular Reactive Oxygen Species (ROS) Detection Assay 

Complete phosphate buffered saline (cPBS) solution was first prepared by 

supplementing phosphate buffered saline (PBS) solution with 0.5 mM MgCl2, 0.7% mM 

CaCl2, and 0.1% glucose. An automatic air pump was used to saturate the prepared cPBS 

with oxygen for 30 minutes at 37ºC. H9c2 cells, grown to 90% confluence, were 

harvested and suspended in the oxygen-enriched cPBS. The cells were counted and 

diluted to 2 x 106 cells and aliquoted into 1.5 mL Eppendorf® microcentrifuge tubes. 5 μL 

of luminol and 5 μL of horseradish peroxidase (HPR) was added into the micro centrifuge 

tubes with cells. The suspension was mixed, and luminescence was measured in real time 

using Berthold Biolumat LB 9505 luminometer. The intensity of the luminescence of 

treated cells will be compared to that of an untreated control. 
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Fluorescence Microscopic Imaging 

H9c2 rat cardiomyoblasts were seeded into Corning 100 mm TC-treated culture 

dishes. The cells were then exposed to target concentrations of Dox in 10% FBS DMEM 

for 24 hours. At the termination of the treatments, cells were rinsed twice with sterile 

PBS and 5 mL of PBS was added. An EVOS Floid cell imaging system (Thermo Fisher) 

was used to capture images using bright field, GFP, RFP capture options as well as to 

generate an overlay of images from the bright field and the RFP imaging options. 

 

Fluorescence Spectrometric Characteristics of Doxorubicin 

To realize the fluorescence spectrometric characteristics of Dox, Varian Cary 50 

Bio UV Vis Spectrometer was used to observe the emission and excitation spectra of 

Dox. 10 uL of 10 mM Dox was added to 3 mL of PBS to observe the fluorescence spectra 

of Dox. 

 

Fluorescence-based Analysis of Cellular Uptake of Doxorubicin 

H9c2 rat cardiomyoblasts were seeded into PerkinElmer Viewplate- 96 Black, 

Optically clear bottom tissue culture plates. Upon reaching 70% confluency, cells were 

exposed to the appropriate concentrations of Dox for up to 12 hours in 10% FBS- and 1% 

P/S-supplemented DMEM. At the termination of Dox exposure, all media were carefully 

aspirated, and cells were washed twice with 200 uL of sterile PBS. 100 uL of sterile PBS 

was added, and the Bio-Tek® Synergy2 microplate reader was used to analyze the 

fluorescence of intracellular Dox. Bandpass filters permitting excitation wavelength 
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range of 490/20 nm and emission wavelength range of 590/35 nm were used. To further 

increase the gain and sensitivity for fluorescence intensity, 510 nm dichroic mirror was 

applied. 

 

Mitochondrial Isolation and Mitochondrial Lysate Preparation 

H9c2 rat cardiomyoblasts were cultured until 80% confluency. Cells were 

collected using trypsin and rinsed one with PBS. The cell pellet was resuspended in 5 mL 

sucrose buffer consisting of 0.25 M sucrose, 1 mm EGTA, 10 mM HEPES, and 0.5% 

BSA (pH 7.4). Using a Dounce homogenizer on ice, the cell pellet was homogenized 

until methyl blue staining of the homogenate indicated rupturing of most of the cells. 

Differential centrifugation was implemented to separate the proportion of the homogenate 

containing only mitochondria. The homogenate was then centrifuged at 10,000g at 4°C 

for 10 minutes to produce mitochondrial pellet. The homogenate was then resuspended in 

1 mL of sucrose buffer without BSA. For mitochondrial ROS analysis, the resuspended 

pellets were stored in -80°C. For mitochondrial antioxidant quantification and phase 2 

enzyme activity level investigations, the mitochondrial pellet was lysed via sonication 

immediately followed by mitochondrial protein concentration analysis. 

 

Mitochondrial ROS Detection Assay 

For detection of superoxide production in isolated mitochondria, the reaction 

mixture contained 0.5 mg/ml of isolated mitochondria in 1 ml of air-saturated 

mitochondrial respiration buffer consisting of 70 mM sucrose, 220 mM mannitol, 2.5 
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mM KH2PO4, 2.5 mM MgCl2, 2 mM HEPES, 0.5 Mm EDTA, and 0.1% BSA (pH 7.4). 

After the addition of various concentrations of Dox, 6 mM succinate and lucigenin was 

added to initiate the chemiluminescence response. The resulting real-time CL responses 

were observed for 30 minutes. 

For detection of hydrogen peroxide production in isolated mitochondria, the 

reaction mixture contained 50 ng/ml (5 uL of 1 mg/mL suspension of isolated 

mitochondria) of isolated mitochondria in air-saturated mitochondrial respiration buffer 

pre-warmed to 37°C. After the addition of various concentrations of Dox, succinate was 

supplemented to final concentration of 5 mM. To initiate the CL response, 5 uL of 2 mM 

luminol along with 5 uL of 2 mg/mL Horseradish Peroxidase (HRP) was added to the 

reaction mixture. The resulting real-time CL responses were observed for 30 minutes. 
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CHAPTER III 
 

RESULTS 
 
 

Dox-induced Concentration-dependent and Time-dependent Cytotoxicity  

 In the current study, the cellular toxicity of rat H9c2 cardiomyoblasts upon 

exposure to different concentrations of Dox was first assessed by quantitatively 

measuring the reduction of MTT. H9c2 cells, seeded on clear 24-well cell-culture plates, 

were exposed to 0, 0.1, 0.5, and 1 µM of Dox for up to 24 hours. After two PBS rinses, 

the cells were incubated in MTT solution for 1.5 hours, resulting in the formation of 

formazan crystals. Formazan crystals were dissolved using 1 mL of dissolving solution 

consisting of 7:3 ratio of DMSO and water. The resulting solution containing dissolved 

formazan crystals was analyzed for absorbance at 570nm as an indication of cell viability. 
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Figure 2. Time and Dosage Dependent Data on Dox-Induced Cytotoxicity in H9c2 Cells.  
 
 
H9c2 cells were exposed to various concentrations of Dox for up to 24 hours. After two PBS rinses, the cells were 
incubated in MTT solution for 1.5h hours, resulting in formation of formazan crystals. The formazan crystals were 
dissolved using DMSO and absorbance at 570nm was observed as indication of cell viability. All data represent 
mean ± SEM. *P<0.05 in comparison to the control group (n=4). 

C) B) A) 
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Figure 2 depicts time-dependent cytotoxicity of Dox on H9c2 cardiomyoblasts. 

Incubation with 0.5 µM and 1 µM of Dox caused significant cell death after 12 hours (P 

< 0.05). These results from time-dependent observations were further corroborated by 

results in a dose-dependent observation as represented in figure 3-A. MTT analysis of 

H9c2 cells treated with various concentrations of Dox for 24 hours caused significant 

toxicity starting at 0.5 µM Dox. It is important to note that the Dox concentrations (0.1-2 

µM) used in this study is clinically plasma relevant to humans since clinically relevant 

plasma concentrations of doxorubicin have been reported to be ranging from 11 nM to 2 

μM in human [56, 57]. To further confirm the cytotoxicity of Dox in H9c2 cells, Dox-

induced cytotoxicity was assayed by LDH release. As shown in figure 3-B, upon 

exposure to 0, 0.1, 0.5, 1, and 2 µM of Dox for 24 hours, Dox, only at 2 µM, significantly 

induced LDH release compared to control (P < 0.05).  
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Figure 3. Dosage Dependent Dox Treatment For 24 Hours Decreases Overall Cell Viability of H9c2 Cells.  
 
 
(A) H9c2 cells were exposed to Dox concentrations up to 2uM for 24 hours. Cells were incubated with MTT 
solution for 1.5 hours, resulting in formation of formazan crystals.  The formazan crystals were dissolved using 
DMSO and absorbance at 570nm was observed as indication of cell viability. (B) H9c2 cells were exposed to Dox 
concentrations up to 2uM for 24 hours in phenol red-free media. Supernatant of the samples were collected for 
absorption observation at 340 nm as indication of the amount of LDH released. All data represent mean ± SEM.  
*P<0.05 in comparison to the control group (n=4). 

A) B) MTT LDH 
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Analysis of Dox-induced Cell Death and Detection of Interference by the Innate 

Fluorescence of Doxorubicin 

In effort to determine specific modes of cell death associated with Dox 

cytotoxicity, flow cytometric analysis using FITC-labelled annexin V and propidium 

iodide (PI) as fluorescence markers of apoptosis and necrosis, respectively, was 

performed according to details provided in the “Materials and Methods.” During 

apoptosis, phosphatidylserine (PS) is known to translocate from the inner membrane to 

the outer membrane of the phospholipid bilayer of cell membrane. Such process allows 

 
Figure 4. Innate Dox Fluorescence Produces Misleading Results.  
 
 
H9c2 cells were exposed to various concentrations of Dox for 24 hours. Cells were collected and immediate analysis of 
the cells using flow cytometer was conducted. Although there were no trace dyes used, analysis via flow cytometer 
showed significant shift across various parameters falsely indicating concentration-dependent increase in number of cells 
that are apoptotic and necrotic. 
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PS-FITC conjugation that leads to emission of green fluorescence. PI is known to utilize 

compromised membrane integrity of necrotic cells to bind to DNA of the cells. Thus, 

cells negative for both FITC Annexin V and PI are considered viable cells with intact 

membrane. Apoptotic cells will stain Annexin V positive and PI negative, while cells that 

are positive for both FITC Annexin V and PI detection are considered to be necrotic. 

However, as shown in figure 4, cells exposed to Dox concentration as low as 0.1 µM 

without incubation with any FITC conjugate of Annexin V marker showed increased shift 

towards FITC green fluoresce intensity compared to control. These results suggested that 

Dox has its own innate fluorescent that may overlap the emission range with FITC and 

thus affects FITC-Annexin-V Staining assay.  

 

 
 
 
 

 
Figure 5. Characteristics of Innate Dox Fluorescence and An Overlay of Emission Spectra of Dox and Various 
Fluorophores Previously Used in Analyzing Cytotoxicity of Dox. 
 
 
(A) Dox in PBS was analyzed using a fluorimeter. Excitation peak of 493nm and emission peak of 592nm was 
observed. (B) The overlay of emission spectra shows overlap between Dox and fluorescent markers commonly used 
to analyze ROS production and cell viability.  
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Characterization of Innate Fluorescence of Doxorubicin  

To characterize the innate fluorescence property of Dox, 10 µL of 10 mM Dox 

dissolved in DMSO was added to 3 mL of sterile PBS. The solution was then analyzed 

using a Cary Eclipse Fluorimeter. As shown in figure 5-A, Dox displays a maximum 

excitation peak located at 493 nm and a maximum emission peak at 592 nm. Dox 

exhibited a broad emission spectrum that ranged from 540 nm to 630 nm that produced a 

relative intensity greater than 50%. Further investigation into the fluorescence spectra of 

other commonly used fluorochromes including FITC, PI, DCF-DA and MitoSOX showed 

that Dox’s inherent fluorescence range was broad enough overlap with several emission 

spectra of these fluorescent probes quite commonly used in analyzing various biological 

systems (Fig. 5-B). For example, as shown in figure 5-B, the emission spectrum of Dox 

was most similar to that of MitoSOX, a fluorescent dye commonly used as indicators of 

mitochondrial superoxide presence. Propidium iodide (PI), a widely used indicator of 

necrosis, was found to have its entire emission range within that of Dox. Although the 

maximum emission peaks of FITC and DCFDA were well beyond the emission 

wavelength range of Dox, there were some overlapping of emission range with Dox (Fig. 

5-B).  DCFDA, as a chemically reduced form of fluorescein, has been widely used as an 

indicator for ROS, mainly hydrogen peroxide in the cells.  

 

Cellular Uptake of Doxorubicin  

Previously shown in figure 5-A, Dox possesses fluorescence capability that was 

depicted to have an excitation wavelength at 493 nm and an emission wavelength at 592 



 

25 

 

nm, which allows it to be easily identified through spectrofluorometry, flow cytometry, 

and/or fluorescence microscopy. This same feature can be very useful for studying the 

cellular uptake of Dox by H9c2 cells. To do so H9c2 cells were first treated with various 

concentration of Dox. Cells were then washed two times with PBS (pH 7.4) to remove 

the excess Dox for the uptake assay.  
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Figure 6. Cellular Uptake of Dox.  
 
 
H9c2 cells were exposed to various concentrations of Dox for up to 12 hours (A) and 16 hours (B). Cells were 
collected, rinsed twice with sterile PBS, and resuspended in sterile PBS. Fluorescence was analyzed by Bio-Tek 
Synergy 2 microplate reader (A), easyCyte flow cytometer (B) and EVOS fluorescence microscope in 10X 
magnification (C: 0uM Dox exposure, D: 10uM Dox 1hr exposure, Bright field[left], RFP[middle], and BF & RFP 
overlay[right]). In Panel A, all data represent mean ± SEM. *P<0.05 in comparison to the control group (n=3). 
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As shown in figure 6-A, Dox was taken by cells in both time- and dose-dependent 

manners. The higher fluorescence intensity of Dox was found after incubating the cells 

with doxorubicin for 12 hours. Comparable results were observed using flow cytometry 

studies as emission at the yellow fluorescence with the wavelength bandwidth of 583/26 

nm exhibited a concentration-dependent shift compared to the control group (Fig. 6-B). 

Intracellular uptake of Dox was further identified by visualization under a fluorescence 

microscope with the excitation wavelength bandwidth of 531/40 nm and emission 

wavelength bandwidth of 593/40 nm (Fig. 6-C&D).  

 

 
 
 
Cellular Production of Hydrogen Peroxide in H9c2 Cells Following Exposure to Dox  

Numerous studies have previously exhibited the role of ROS and oxidative stress 

in Dox-induced cardiotoxicity [58-60]. To investigate if exposures to low concentrations 

of Dox can still trigger cell-mediated redox cycling of Dox and stimulate ROS production 

0 0.1 0.5 1
0

2.0×106

4.0×106

6.0×106

8.0×106

1.0×107

* *

Doxorubicin Concentration (µM)

   
  C

e
llu

la
r 

H
2O

2
P

ro
d

uc
ti

o
n

(I
nt

eg
ra

te
d 

Lu
m

in
ol

-d
ep

en
de

nt
 C

L)

 
Figure 7. Effect of Dox Exposure on Intracellular H2O2 Levels in H9c2 Cells.  
 
H9c2 cells (1 X 106) were suspended in complete PBS (cPBS) and incubated with different concentrations of 
Dox in presence of 10 µM luminol and 10 µg/ml horse radish peroxidase as described in “Materials and 
Methods,” and chemiluminescence was recorded immediately. (A) Real-time measurement of the CL responses 
from the samples. (B) Area under the curve for each of the luminol-dependent CL response curves from the 
samples. Data are mean ±SEM from three experiments. *P<0.05 compared to control group (n=3). 
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in H9c2 cells, luminol- and lucigenin-derived chemiluminescence (CL) assays were 

conducted. CL techniques have been commonly used to detect ROS production in both 

whole cells and isolated mitochondria [61-64]. In this study, luminol, in the presence of 

horseradish peroxidase (HRP), was used to detect H2O2 formation while lucigenin was 

used to detect superoxide in H9c2 cells. With regards to H2O2 presence, real-time CL 

data can be seen in figure 7. Luminol-derived CL was observed with H9c2 cells alone 

indicating the basal cellular level of H2O2 that plays a key role in cell survival and cell 

cycle. Interestingly, exposure to Dox resulted in decreased CL responses in a 

concentration-dependent manner, suggesting a reduction in r H2O2 presence. Significant 

H2O2 reduction was detected in cells treated with 0.5 and 1 µM of Dox (p < 0.05).  
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Figure 8. Flow Cytometric Analysis of Cellular H2O2 Presence in H9c2 Cells After Exposure to Dox.  
 
 
H9c2 cells were exposed to various concentrations of Dox for 16 hours. Samples from the cell suspensions were initially 
analyzed with a microcapillary flow cytometry system (easyCyte, MilliporeSigma, USA) without any application of the 
fluorescence markers to the samples. Excitation wavelength of 488 nm was used, and the histogram was produced from the 
initial fluorescence observation using an emission filter with wavelength bandwidth capability of 525/30 nm. Data collected 
were analyzed in guavaSoft analysis software (MilliporeSigma, USA). Although no dyes were used, flow cytometric analysis 
shows significant shift across DCF-DA (Green Fluorescence) intensity by Dox treatment. 
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To further confirm our luminol-derived CL data, we conducted flow cytometric 

analysis on intracellular presence of hydrogen peroxide following exposures to low 

concentrations of Dox. DCF-DA, a fluorescent dye commonly used as indicators of 

hydrogen peroxide presence, was chosen because its excitation/emission spectra of 

493/522 nm were in accord with the technical specifications of the esayCyte 5 flow 

cytometer used in the analysis. However, as shown in figure 8, a histogram representation 

of the initial analysis of the samples without the fluorescent marker DCF-DA showed a 

concentration-dependent shift that was almost a log order greater than the control group. 

This result accentuated the significance of the partial overlap in fluorescence spectra of 

DCF-DA and Dox (Refer to Fig. 5-B) while providing evidence that the innate 

fluorescence of Dox can interfere with the DCF-DA flow cytometry assay.  
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Figure 9. Effect of Dox Exposure on Intracellular Superoxide Levels in H9c2 Cells.  
 
 
H9c2 cells (1 X 106) were suspended in air-saturated complete phosphate buffered saline (cPBS) and incubated with 
different concentrations of Dox in presence of 10 µM lucigenin as described in the “Materials and Methods,” and 
chemiluminescence was recorded immediately. (A) Real-time measurement of the lucigenin-derived CL responses 
from the samples. X-axis represents time points (30 minutes divided into 100 time points). Y-axis represents 
fluorescence events. (B) Area under the curve for each of the CL response curves from the samples. Data for panel B 
represent mean ±SEM. *P<0.05 compared to control group (n=3). 
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 In addition, lucigenin-derived CL detection assay was implemented to detect 

superoxide presence in H9c2 cells following exposures to low concentrations of Dox. 

Lucigenin-derived CL responses were not observed following Dox treatment suggesting 

that Dox, at concentrations below 1 µM, does not induce significant superoxide 

production in H9c2 cells (Fig. 9). 

 

Decrease in Mitochondrial Hydrogen Peroxide Presence Following Exposure to Dox 

Previous studies suggested that the mitochondria may be critically involved in 

mediating the redox cycling of Dox to produce ROS in cardiomyocytes [42, 65-67]. To 

further examine the effect of Dox on mitochondrial hydrogen peroxide presence and the 

subsequent role it may have in Dox-induced cytotoxicity, mitochondria were isolated 

from the H9c2 cells. 9,10-Phenanthraquinone (PNQ), a compound previously identified 

to undergo redox cycling to produce ROS [68], was implemented as a positive control to 

induce ROS production (Fig. 10A).  

As shown in Fig. 10 B-C, incubation of succinate-supplemented mitochondria in 

various concentrations of Dox (0.1, 0.5, 1 µM) resulted in a concentration-dependent 

decrease in luminol-derived CL, indicating a reduction in mitochondrial hydrogen 

peroxide presence, corresponding to the observation of cellular hydrogen peroxide in 

intact H9c2 cells following exposure to the same concentrations of Dox (Fig. 7). Also, 

addition of Dox to substrate-supported mitochondria did not have any significant effect 

on lucigenin-derived CL (Fig. 11), suggesting that low concentrations of Dox does not 

trigger the production of mitochondria-derived superoxide in H9c2 cells.  



 

30 

 

 
 
 

 
 

0 0.1 0.5 1
0.0

0.5

1.0

1.5

* *

Doxorubicin Concentration (µM)

    
 M

ito
ch

on
dr

ial
H 2O

2P
ro

du
ct

ion
(In

te
gr

at
ed

 Lu
mi

no
l-d

ep
en

de
nt

 C
L)

 
Figure 10. Effect of Dox Exposure on Mitochondrial H2O2 Levels. 
 
 
Mitochondrial hydrogen peroxide was detected by luminol-derived chemiluminescence in the mitochondrial 
extract of H9c2 cells. Mitochondria were isolated from freshly harvested H9c2 cells. 25 µg/ml of mitochondrial 
extract was incubated with varying concentration of Dox or PNQ in presence of succinate. (A) Comparison of 
real-time CL responses from the control group and the experimental groups exposed to either 0.5 µM PNQ or 1 
µM Dox. (B) Comparison of real-time CL responses from the control group and the experimental groups 
exposed to either 0.1, 0.5, or 1 µM Dox. (C) Area under the curve representation for each of the CL response 
curves from panel B. Data for panel C represent mean ±SEM. *P<0.05 compared to control group (n=3). 
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Figure 11. Lucigenin-Derived Chemiluminescence Responses Indicate No Significant Change in Superoxide 
in Mitochondria of H9c2 Cells Following Dox Treatment.  
 
 
Mitochondrial superoxide was detected by lucigenin-derived chemiluminescence in the mitochondrial extract of 
H9c2 cells. Mitochondria were isolated from freshly harvested H9c2 cells. 50 µg/ml of mitochondrial extract 
was incubated with varying concentration of Dox. (A) Real-time measurement of the CL responses from the 
samples.  (B) Area under the curve for each of the CL response curves from the samples. Data represent mean 
± SEM.  *P<0.05 compared to control group (n=3). 
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Effects of Dox on Components of Cellular Antioxidative Response in H9c2 Cells 

Glutathione (GSH) is one of the most vital components of cellular antioxidative 

responses against exogenously or endogenously produced reactive oxygen and nitrogen 

species (ROS and RNS). To investigate the effects of low concentrations of Dox on 

intracellular levels of GSH, H9c2 cells were exposed to various concentrations of Dox for 

24 hours. The effect of Dox on GSH content was examined using an OPT-GSH 

fluorescence assay. As depicted in figure 11-A, there was a significant increase in cellular 

GSH level after exposure to 0.5 µM Dox. However, treatment with 1 µM Dox did not 

show any significant change in cellular GSH content level compared to the control group. 

Another important component in cells efforts to maintain redox balance is the activity of 

phase II detoxification enzymes. Enzymatic activities of both NQO1 and GST, key phase 

II enzymes, were determined by quantitatively measuring the rate of NADPH oxidation.  
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Figure 12. Effect of Dox Treatment on GSH Content and Enzymatic Activities of NQO1 and GST in Cells 
Treated With or Without Various Concentrations of Dox.  
 
 
H9c2 cells were incubated with indicated concentrations of Dox for 24 hours. Cells were collected and processed 
for measurement of total cellular GSH content (A), NQO1 activity (B), and GST activity (C). All data represent 
mean ± SEM. *P<0.05 in comparison to the control group (n=4). 
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 As depicted in figure 12, the activities of cellular NQO1 and GST did not deviate 

much from those of the control groups, although the activity rates for both enzymes 

displayed an increasing trend up to the 0.5 µM Dox treatment. qRT-PCR analysis was 

performed to evaluate the effects of Dox treatment on gene expression levels of GCLC 

and NOQ1. GCLC encodes for the catalytic subunit of glutamate-cysteine ligase, a key 

enzyme in the synthesis of GSH. H9c2 cells showed significant increases in the 

expression of GCLC and NQO1 following 16 hours of 0.5 µM Dox treatment (Fig. 13).  

 

 
 

Overall, the gene expressions of both GCLC and NQO1 produced similar dose-

dependent trends to which were also observed in cellular GSH content and NQO1 

enzymatic activity levels (Fig. 12). Figure 13-C shows time-dependent observations of 
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Figure 13. Dox Treatment Up-Regulates the Gene Expressions of GCLC and NOQ1 in H9c2 Cells.  
 
 
H9c2 cells were exposed to indicated concentrations of Dox for 16 hours (A and B) or to 0.5 µM Dox for various 
hours (C and D). The relative mRNA abundance in each sample was evaluated by real-time PCR and changes in 
transcript abundance were normalized based on the mean of control gene GAPDH. All data represent mean ± SEM. 
*P<0.05 in comparison to the control group (n=3). 
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GCLC expression with a significant increase in GCLC expression beginning with 3 hours 

of exposure to 0.5 µM Dox. Similar time-dependent observation of NQO1 gene 

expression showed nearly a two-fold increase after 12 hours and a significant increase in 

NQO1 expression after 16 hours of exposure to 0.5 µM Dox (Fig. 13-D). 

 

 
 
 
Upregulation of Inflammatory Response Genes  

Expressions of various inflammatory mediators such as intracellular adhesion 

molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) have been 

implicated in doxorubicin- induced cardiotoxicity [37]. In the same experiments 

described for the gene expression of GCLC an NQO1 (Figure 13), the effects of Dox on 

the expression levels for inflammatory marker genes ICAM and VCAM were determined 

via qRT-PCR. Figure 14-A illustrates a dose-dependent increase in ICAM expression 

following treatments of 0, 0.1, 0.5, and 1uM Dox for 16 hours. Panel B describes similar 
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Figure 14. Dox Treatment Up-Regulates the Gene Expressions of Proinflammatory Genes ICAM and VCAM 
in H9c2 Cells.  
 
 
H9c2 cells were exposed to indicated concentrations of Dox for 16 hours (A and B) or to 0.5 µM Dox for various 
hours (C and D). The relative mRNA abundance in each sample was evaluated by real-time PCR and changes in 
transcript abundance were normalized based on the mean of control gene GAPDH. All data represent mean ± SEM.  
*P<0.05 in comparison to the control group (n=3). 
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dose-dependent increase in VCAM expression up to 0.5 µM followed by decrease in the 

gene expression level that was comparable to that of the control group. Time-dependent 

observations of ICAM expression supported the dose-dependent observation as 

significant increase in ICAM expression was observed after 3 hours of exposure to 0.5 

µM Dox. 

 

Upregulation of GSH and NQO1 by CDDO-Im Provided Minimal Protection Against 

Dox-induced Cytotoxicity  

To further investigate the role of oxidative stress on Dox-induced cytotoxicity, 

antioxidant response of H9c2 upon exposure to Dox was augmented by CDDO-Im. 

CDDO-Im is a synthetic triterpenoid previously characterized as being potent in 

providing protection against several types of oxidative stress [69].  

Panels A and B of figure 15 represent significant increases in gene expressions of 

both NQO1 and GCLC following 3-hour and 6-hour exposure to 100 nM of CDDO-Im. 

Panels C and D of the same figure depicts quantitative calculation of cellular GSH 

presence and NQO1 activity following a 24-hour exposure to 100 nM of CDDO-Im. To 

study whether upregulated levels of GSH and NQO1 by CDDO-Im can protect cells 

against Dox-induced cytotoxicity, we co-treated 100nM of CDDO-Im with various 

concentrations of Dox for 24 hours. As shown in figure 14-E, incubation of H9c2 cells 

with various concentrations of Dox for 24 h led to significant decreases in cell viability, 

as detected by MTT reduction assay. Co-treatment of cells with 100 nM CDDO-Im 

afforded a significant protection against cytotoxicity induced by Dox at 0.5 µM. 
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However, treatments involving greater than 1 µM of Dox showed no cytoprotection (Fig. 

15-E). 

 

0 3 6
0

2

4

6

8

10
* *

Time (Hours)
CDDO-IM

Re
la

tiv
e

NQ
O

1 
G

en
e 

Ex
pr

es
si

on
(%

 C
on

tr
ol

)

0 3 6
0

1

2

3

4

5 * *

Time (Hours)
CDDO-IM

Re
la

tiv
e

G
CL

C 
G

en
e 

Ex
pr

es
si

on
(%

 C
on

tr
ol

)

 
Figure 15. Upregulation of GSH and NQO1 by CDDO-Im Provided Minimal Protection Against Dox-
induced Cytotoxicity in H9c2 Cells.  
 
 
H9c2 cells were treated with either vehicle DMSO or 100uM CDDO-Im in DMSO for 6 hours (A& B) or up to 
6 hours (C& D). Panels A and B indicated total cellular GSH content and NQO1 enzymatic activity, 
respectively, following a 6-hour treatment with 100nM CDDO-Im. Panels C and D indicate qualitative analysis 
of NQO1 and GCLC mRNA expression, respectively, at the indicated time points after treatment with 100nM 
CDDO-Im for 0, 3, and 6 hours. Both values were relative to those of each control group. All data represent 
mean ± SEM. *P<0.05 in comparison to the control group (n=3). In Panel E, the cells were co-treated with 
100nM of CDDO-Im and various concentrations of Dox for 24 hours. Cell viability was then measured using 
MTT assay. All data represent mean ±SEM. *, p<0.05 vs. control; #, p<0.05 vs. Dox alone-treated cells (n=8). 
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CHAPTER IV 

DISCUSSION 
 
 

Doxorubicin’s prominence as one of the most successful chemotherapeutic agents 

treating a wide range of cancers has endured for over 40 years. Although Dox remains 

one of the most effective antineoplastic agents, Dox-induced cardiotoxicity leading to 

heart failure has been recognized as a frequent problem and hallmark side effect related 

to cumulative dose of Dox administered over the lifetime of the recipient. Many of 

previous studies demonstrated that Dox may exert the cardiotoxicity by increases in 

oxidative stress [14, 17], DNA damage leading to impeded synthesis of biomolecules, 

decrease in the expression of antioxidants [17, 18], and mitochondrial dysfunction [19]. 

However, the concentrations of Dox used in most of these studies are not physiologically 

relevant in some cases, the treatment concentrations are several log orders higher than the 

clinically-observed concentrations [46-55]. 

Of course, due to the complexity and variability of the immediate interaction 

between Dox and the physiological environment of the system into which it has been 

injected, it is nearly impossible to precisely define “clinically-relevant concentration of 

Dox” with an exact value. It is only possible to deduce a range of values based on data 

from various clinical studies. Several studies in their attempts to provide the necessary 

data have shown that clinically-observed concentrations of Dox vary mostly on the 

method of administration. For bolus administration of Dox, initial plasma concentration, 



 

37 

 

in general, was observed to be between 1 to 2 uM [57, 70, 71] while continuous infusion 

administration of Dox showed initial plasma concentration of Dox falling into the range 

of 25-250 nM [72]. Therefore, in order for the results of this study to more accurately 

reflect the mechanism of doxorubicin-induced cardiotoxicity, the current study involving 

the H9c2 rat cardiomyocyte was designed to utilize various concentrations of Dox less 

than 2uM. As our experimental model system, H9c2 rat cardiomyoblasts were used in 

current investigation because these clonal cardioblasts from the rat heart are 

used extensively in in vitro model for studies associated with cardiomyocyte physiology 

including ischemia, reperfusion injury, and chronic heart failure [73-75].  

To first examine the cytotoxic effect of Dox at clinically-relevant concentrations, 

we used 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) cell 

viability assay, one of the most widely-used cell viability assays that is dependent on the 

cells’ metabolic capability to reduce MTT into formazan crystals. Through this analysis, 

we demonstrated that the cell viability decreased following a 24-hour of treatment with 

both 0.5 and 1 μM Dox. Time-dependent observation of the same analysis revealed that 

the cytotoxic effect of 0.5 and 1 μM Dox on H9c2 cells begins after 12 hours (Figs. 2 & 

3). We then tried to confirm our data from the MTT cell viability analysis by 

quantitatively measuring LDH release. LDH is a cytosolic enzyme and can be leaked out 

from cells when the plasma membranes are damaged. Therefore, the release of the LDH 

is a key signature for necrotic cell death due to plasma membrane damage. However, the 

quantitative analysis of LDH release suggested a significant LDH release following a 24-

hour exposure to 2 μM Dox, indicating Dox-induced necrosis death only at 2 μM (Fig. 3-
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B). Considering that MTT-reduction assay measures mitochondrial respiration activity 

rate as an indicator of cell viability while LDH release is a good indicator for necrosis, 

we tentatively interpreted the discrepancy from the two viability assays as evidence that 

may suggest that exposure to low concentrations of Dox (up to 1 µM) mainly 

compromised mitochondrial function while exposure to high concentrations of Dox can 

cause necrosis in H9c2 cells. In a temporal perspective, it provides evidence that 

compromised mitochondrial function precedes the impediment of cellular membrane 

integrity. 

In our efforts to further investigate the extent to which both apoptotic and 

necrotic modes of cell death characterize Dox-induced cell death at various 

concentrations, we conducted fluorescence-based Annexin V FITC/PI flow cytometric 

cell viability assay. However, the data from the flow cytometric analysis showed a 

significant increase in FITC-positive cells from Dox treatment group even when no FITC 

fluorescent marker was applied to the cells (Fig. 4). This suggested that the intensity of 

the innate fluorescence of Dox may be potent enough to be detected by flow cytometer, 

producing results that may lead to misrepresentation of the proportion of apoptotic cells. 

To elucidate the possible interference effect of Dox fluorescence on the Annexin V 

FITC/PI cell viability assay, fluorometric analysis of Dox was done to characterize the its 

innate fluorescence property.  

As shown in figure 5-A, Dox was found to exhibit fluorescence spectra 

consisting of a maximum excitation wavelength of 493 nm and a maximum emission 

wavelength of 592 nm. When the fluorescence spectra of Dox was compared to the 
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fluorescent spectra of multiple fluorescent probes and markers used to assess cell 

viability and ROS presence, it was found that fluorescent indicators, DCF-DA, FITC, 

MitoSOX, and PI, utilized in these assays exhibited fluorescence spectrometric 

characteristics that were, in varying degrees, similar to that of Dox (Fig 5-B). It is 

important to note that FITC conjugated Annexin V has been widely used in the past three 

decades to determine prevalence of apoptosis in Dox-induced cell death in various cells 

and tissues [76-82]. However, these studies failed to mention innate fluorescence 

capability of Dox and how such property may produce misleading results. Our data 

suggest that such inherent fluorescence capability of Dox be considered when 

investigative procedures require the use of fluorescence-based assays such as the 

MitoSOX- or the DCFDA-integrated ROS detection assays or the Annexin V FITC/PI-

integrated cell death determination assay. 

The intrinsic fluorescence of Dox allowed Dox, at clinically-relevant 

concentrations, to be detectable at cellular level not only by flow cytometry, but also by 

spectrofluorometric measurement and fluorescence microscopic imaging as shown in 

figure 5. Incubation of H9c2 cells with Dox resulted in time-dependent intracellular 

amassing of Dox (Fig. 6B). The fluorescence microscopic imaging of H9c2 cells having 

been exposed to Dox confirmed the spectrofluorometric measurement on intracellular 

accumulation of Dox and, even more, revealed that the intracellular accumulation of Dox 

was more prevalent in the nuclear region than the cytoplasm of the cells (Fig 6C). The 

cellular uptake assay used in the current study may be of importance towards validating 
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the practicality of utilizing the fluorescence capability of Dox as a tool for future 

investigations of Dox-induced cytotoxicity. Such confirmation will certainly lead to the 

development of novel methods that may further elucidate the details of Dox uptake and 

distribution which will clarify the interaction between Dox and various intracellular 

components instrumental in Dox-induced cardiotoxicity.  

Previous studies have indicated redox cycling of quinone moiety of Dox 

resulting in overproduction of ROS that eventually overcome cells’ natural detoxification 

measures leading to the subsequent oxidative stress as the primary event responsible for 

Dox-induced cardiotoxicity. It is suggested that the quinone moiety of doxorubicin can 

accept an electron to produce the semiquinone form of doxorubicin. Incomplete reduction 

of molecular oxygen can cause the redox cycling of doxorubicin as the semiquinone form 

is oxidized back to the original quinone form. During this process, the molecular oxygen 

becomes incompletely reduced into a superoxide anion radical (O2
•-) [23]. However, 

based on the results from the current study, we do not believe that the overproduction 

of ROS and its association with the oxidative stress are primary driving forces behind 

Dox-induced cardiotoxicity following exposure to clinically-relevant concentrations of 

Dox. Firstly, as stated earlier, most of the studies reporting ROS production involved Dox 

concentrations that were well above those observed in clinical settings. Secondly, some of 

the evidence advocating ROS production was derived from fluorescence-based 

investigations, such as DCF-DA-integrated ROS detection [83-87], that failed to consider 

the inherent fluorescence of Dox. These authors failed to distinguish whether the increase 
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in fluorescence intensity was due to increase in ROS production or simply due to 

increased cellular accumulation of Dox. Thirdly, our data suggests that Dox, at clinically 

relevant concentrations, significantly decreased hydrogen peroxide presence in H9c2 

cells in an inverse concentration-dependent manner (Fig.7). Fourthly, upregulation of 

GSH and NQO1 by CDDO-Im provided only minimal protection against Dox-induced 

cytotoxicity in H9c2 cells (Fig. 15). Lastly, consistent to our in vitro results, many of the 

previous studies have suggested that ROS scavengers failed to prevent cardiotoxicity [58-

60] while some studies failed to detect free radicals even at supraclinical Dox 

concentrations [88-90].  

Mammalian cells have evolved an efficient ROS detoxifying system to protect 

cells from oxidative damage. ROS detoxification system included GSH and NQO1 and 

others [91-93]. In this study, exposure to Dox at clinically relevant concentrations led to 

significant increase in the expressions of GSH and NQO1 genes in a dose- and time-

dependent manner (Figs. 13). Induction of GHS and NQO1 by Dox may diminish the 

endogenous basal hydrogen peroxide, which functions as a component of redox 

homeostasis as well as an intracellular signal. Thus, it is likely that Dox can stimulate an 

intracellular anti-oxidative response that can blunt normal ROS signaling when there is 

an imbalance between the ROS detoxification system and the endogenous basal ROS 

production, which further leads to induce inflammation in cardiomyocytes by increases in 

gene expression of adhesion molecules like VCAM-1 and ICAM-1 (Fig. 14). The0 

expression of adhesion molecules and cytokines was found to exhibit a role in the multi-
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factorial cardiomyopathy induced by Dox [32, 37]. However, how Dox stimulates ROS 

detoxifying antioxidants/enzymes like GSH and NQO1 remains unclear. Studies showed 

that activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) has been reported to 

coordinately upregulate GSH and NQO1 as well as other ROS detoxification enzymes 

both in in vitro and in vivo [94-98].  
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Figure 16. Dox-Induced Cardiotoxicity on H9c2 Cells Following Exposure to Physiologically Relevant 
Concentrations of Dox.  
 
 
Diagram of prosed roles ROS and redox balance on the development of Dox-induced cardiotoxicity in H9c2 rat 
cardiomyoblasts.  Increased anti-oxidative response and decreased ROS presence results in redox imbalance.  
One of the ways that this can be detrimental to the cells is that such redox imbalance can compromise ROS-
dependent cell signaling pathways that are often associated with cell survival and proliferation. Increased 
expression of pro-inflammatory genes provide evidence that inflammation takes part in the process. However, it 
is unsure if inflammation is a contributing cause towards cardiotoxicity or a consequence result from cardiotoxicity 
and is playing a role in cell death. 
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 Nrf2 is a critical transcription factor that binds to the antioxidant response 

element (ARE) in the promoter region of multiple genes whose products regulate an array 

of cellular activities related to cell proliferation, defense, and signal transduction [94-98]. 

A significant decrease in the expression and induction of NQO1 in Nrf2-disrupted mice 

further confirmed the role of Nrf2 in ARE-mediated antioxidant response [99]. The Nrf2-

dependent anti-oxidative pathway is seemingly the most important in terms of host cell’s 

defense against stress from excess ROS and electrophiles due to introduction of 

exogenous and endogenous chemicals, metals, and radiation [100]. In response to various 

stimuli, Nrf2 is released from Keap-1 and translocated into the nucleus to form 

heterodimers with Maf proteins. This complex bind to antioxidant response element 

(ARE) of the promoter region of antioxidant genes stimulating their expression [101]. 

Examination of the direct effect of Dox on the Nrf2/ARE signaling pathway will 

contribute to understanding the action of Dox in stimulating GSH and NOQ1. Activation 

of Nrf2/ARE pathway would dampens the redox homeostasis that may be involved in 

Dox-induced cardiotoxicity.  

Previous studies showed that mitochondria play a crucial role in generation of 

substantial amounts of ROS by electron leakage from the oxidative phosphorylation 

pathway and mitochondrial electron transport chain (METC) has been shown to be one of 

the main locations redox cycling of Dox to generate ROS [14, 19]. One of the unique 

characteristics of cardiomyocytes is the increased oxidative metabolism due to the 

abundance of mitochondria. In this study, with mitochondria isolated from H9c2 cells, 

Dox at clinically relevant plasma concentrations also led to decreases in basal hydrogen 
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peroxide (Fig. 10), the similar effects observed with intact cells (Fig. 7). Thus, the results 

with isolated intact mitochondria demonstrated that Dox could 

particularly target mitochondria and subsequently decrease basal ROS production. 

Lucigenin-derived CL was further employed to detect mitochondria-derived superoxide 

production. However, addition of Dox to succinate-supported mitochondria has no effect 

on lucigenin-derived CL. A previous study showed that lucigenin-derived CL is highly 

dependent on the mitochondrial membrane potential [62]. Thus, the failure of Dox to 

effect on the lucigenin-derived CL both in intact H9c2 cells and the isolated mitochondria 

(Figs. 9 and 11) can occur when Dox damages the mitochondrial membrane potential. 

Mitochondrial complexes have been shown to be involved in the reduction of molecular 

oxygen to superoxide and mitochondrial complex I has been suggested to be the specific 

site in catalyzing the redox cycling of Dox [14, 19]. Also, Dox has been found to have 

high affinity for mitochondrial DNA. Studies involving bolus and continuous infusion 

administrations of Dox showed accumulation of 8-hydroxydeoxyguanosine, a biomarker 

for DNA damage, preferentially in mitochondrial DNA when compared with nuclear 

DNA [102, 103]. Since TOPO2B is also expressed in the mitochondrial DNA, Dox 

inhibition of topoisomerase IIβ in the mtDNA may result in mitochondrial dysfunction 

and cause electron leakage along with superoxide formation from the METC. Future 

work could investigate how Dox at varying clinically relevant plasma concentrations 

affect the mtDNA damage and the role of cytochrome c release from mitochondria into 

the soluble cytoplasm in triggering Dox-induced cell death.  
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In summary, this study demonstrates that exposure to Dox at clinically relevant 

plasma concentrations (0.1-2µM) significantly decreased hydrogen peroxide levels in an 

inverse concentration-dependent manner both in intact H9c2 rat cardiomyocyte H9c2 

cells and the isolated mitochondria. H9c2 cells treated with Dox showed a significant 

increase in the expressions of genes for intracellular anti-oxidative response that can 

blunt normal ROS signaling and thus may induce inflammation in cardiomyocytes. This 

study may contribute to the understanding of mechanism associated with increased risk of 

cardiotoxicity by Dox, which is an important component of various chemotherapy 

regimens.
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