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ABSTRACT 

 

SIGN LANGUAGE STATIC GESTURE RECOGNITION USING LEAP MOTION 
 
Stephen H. McNeil, Jr., M.S.T 
 
Western Carolina University (November 2017) 
 
Director:  Dr. Robert Adams 
 

Currently scientists and engineers are using near-infrared (NIR) technology to detect 

motions of human body parts, and can develop programming for gesture recognition.  Software 

is being developed by researchers for both stationary and mobile NIR cameras to operate as Sign 

Language Recognition devices.  This thesis focus was on adapting an application of a NIR 

camera to be used on any device with application compatibility, essentially allowing a Hearing 

Impaired (HI) person to use a highly portable camera to communicate with non-speakers of Sign 

Language.  Some examples of the devices that are able to use this technology include computers, 

tablets, and smart phones.  I have developed a Sign Language recognition technology to establish 

better techniques, databases, and interactive applications for improved function of 

communication in the HI culture.  The algorithm performed at a 76.67% accuracy across all 

gestures tested for first-time participants. 

 



 
 

CHAPTER ONE: INTRODUCTION 

The ability to communicate is extremely important to human existence.  The natural form 

of conversational communication for most humans is oral, but this is a problem for Hearing 

Impaired (HI) people due to auditory impairment.  The HI community, or culture, consists of 

people that experience either partial or full deafness. The HI culture has had to rely on Normal 

Hearing (NH) individuals to learn Sign Language in order to communicate more rapidly.  NH 

people who learn Sign Language do so in order to interact with, teach, or interpret for HI people.  

Modern technology provides new resources for the HI culture to communicate more effectively 

in a dominantly NH society without the assistance of another person [1].     

This research effort involves the use of Near Infrared (NIR) technology to implement 

computer recognition of hand gestures.  NIR technology can be used to provide tracking of key 

hand skeletal positions, including the positions of all finger joints.  The process of teaching a 

computer to recognize gestures may be accomplished by evaluating a few levels of skeletal 

tracking and data analysis.  The first step in developing such a training program is to assemble a 

database of key hand skeletal positions for a set of sign language gestures.  In this study, a set of 

sign language gesture for 36 letters and numbers were chosen to be included in the database.  

The database is constructed by having an individual fluent in sign language perform a gesture 

multiple times, in satisfactory view of a NIR camera.  Next, a computer is programmed to 

acquire a set of data from the NIR camera for each gesture, typically involving skeletal 

recognition and motion tracking.  Then recognized joint information is extracted, ordered, and 

combined.  The data provides x, y, and z coordinates of key hand features that can be used to 

measure distance of critical components for each gesture.  Next, these distances are averaged in 

order to provide a more accurate database for the tested gestures. An algorithm analyzes the 
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performed gestures and compares them to the established database.  In this research effort, three 

statistical analysis methods were employed to make the comparison between database gestures 

and participant gestures. The accuracy of the three methods in recognizing hand gestures is 

compared.  This recognition can allow an HI person to use their natural form of person-to-person 

communication to more effectively communicate with NH individuals. 

This thesis is organized as follows.  First, a brief overview of Sign Language, and 

challenges for the HI culture is presented.  This is followed by a discussion of current 

technologies that are being developed, and how the Leap Motion sensor can provide more 

accurate recognition for a more complete database.  Analysis methods are then presented. 

Finally, I will explain the mathematical process for the analysis of the data, as well as achieved 

results. 

1.1 Key Terms 

Euclidean Norm/ Euclidean Distance: Most common method for measuring distance of x, 

y, and z coordinates for points of interest. 

Frobenius Norm: Also known as the matrix norm, and is used to measure distances of 

higher degree matrices. 

MATLAB: Short for “Matrix Laboratory,” and is a technical computing program that will 

be used for technical computation of mathematical data.



 
 

CHAPTER TWO: LITERATURE REVIEW 

2.1 Sign Language in the United States. 

 Just like the vocabulary of any spoken language, Sign Language has gestures to express 

meaning and intent.  Some may assume that Sign Language is a literal translation of English to a 

nonverbal form, but this is not the case.  For example, the English word “right” is used to express 

correctness or direction, meaning the opposite of “wrong” or “left” respectively.  In Sign 

Language the two different meanings of “right” are expressed with two different gestures in 

ASL[3].  On the other hand, the English words “help” and “therapy” are very close in meaning 

and likewise the corresponding hand gestures are very similar and are difficult to differentiate.  

Since gestures express a meaning, or idea, a single sign might be able to express an entire 

sentence or collection of words.  In Figure 2.1 we see simple gestures for “I ask her,” and “she 

asks me.” [3] 
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Figure 2.1: Context in Sign Language [3] 

The hand orientation, finger position, and direction of the gesture are all used to express the 

meaning and intent in conversation [3]. 

 In the United States there are three major forms of Sign Language: American Sign 

Language (ASL), Pidgin Signed English (PSE), and Signed Exact English (SEE).  ASL is 

preferred in the deaf culture since PSE and SEE require speech-reading or listening skills to be 

fluent.  Since ASL has its own syntax and grammar it is considered a separate language and can 

be taught as a second language in university level education.  The vocabulary for ASL is also 

used in PSE and SEE with some variations that make them easier for NH people to use.  PSE is 

the most widely used form of Sign Languages in America due to its popularity with NH persons 

who interact with the deaf culture on a more regular basis.  Words that do not carry information, 

such as “to,” “the,” and “am,” as well as word endings, such as “-ed,” “-s,” and “-ment,” are 
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often dropped.  This allows a signer to gesture at a pace with spoken English, and does not 

require the understanding of the structure or idioms of ASL.  Opposite of PSE, SEE expands the 

ASL vocabulary to include words, tenses, prefixes, and endings.  This provides a complete visual 

representation of conversational English.  SEE requires more time to sign than PSE due to these 

additions, but is typically preferred by NH people since it follows the same structure as spoken 

English [4]. 

2.2 Technologies Used for Gesture Recognition 

 Technology involving sensor gloves, image capturing, and depth sensing cameras have 

been used to develop methods for software to digitally recognize Sign Language gestures.  The 

information captured by these methods can be analyzed computationally using Hidden Markov 

Models, Nearest Neighbor algorithms, Local Orientation Histograms, Neural Network Models, 

Bottom-up and Top-down Approach, Zernike moments, etc. [2,5].  The following sections 

discuss some of the strengths and weaknesses of the implementation of these technologies and 

respective analysis techniques. 

2.2.1 Sensor Gloves 

 Sensor gloves are typically made out of cloth and have a particular number of sensors 

depending on the need of data analysis.  The sensors are connected by wires to a computer and 

provide position information of key points on the hand.   The gloves can provide more flexibility 

than a stationary camera, but have a limited range due to the wired connection to the computer.   

Kahn and Mehdi [5] use 7-sensor gloves for their research with five sensors for the fingers and 

thumb, and two for tilt and rotation of the hand.  The sensors are optic fibers that can relay 

flexures of fingers and thumb numerically.  One of the greatest weaknesses of using these gloves 

is the inability to recognize motion since they only capture information about the shape of the 
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hand.  By applying sensor glove data and appropriate weights to an Artificial Neural Network, 

Khan and Mehdi were able to recognize static gestures, such as letters and numbers, to an 

accuracy rate of 88%. 

2.2.2 Histogram Matching 

 Pansare et al [6] have shown that a method involving image capture, skin color detection, 

edge detection combined with histogram matching provides fairly accurate recognition of hand 

gestures.  The first part Pansare’s system uses an 8 Megapixel webcam and the RGB color space 

method to capture images of a gesture.  Next, in pre-processing, the RGB image is converted to a 

Hue Saturation Value (HSV) image.  This allows the researchers to use Gaussian Filters to 

preserve edges and gray scale image smoothening.  Then a Region of Interest is calculated, and 

edges are stored as vectors in an analysis software database.  Finally, they are able to match a 

gray scale image histogram of the frequency of gray levels, and calculate maximum similarity 

values of the images in their developed database.  Using a least Euclidian distance algorithm to 

detect static Devnagri Sign Language gestures, this system achieved an accuracy rate of 87.82% 

[6]. 

2.2.3 Depth Sensing Cameras 

 Depth sensing cameras are also referred to as RGB-D cameras due to color (RGB) and 

depth (D) sensing components within the device.  The most widely known RGB-D camera is the 

Kinect made by Microsoft.  The Kinect has an RGB Camera that delivers three basic color 

components of the video.  The camera operates at 30 frames per second, and can offer images at 

640 ×480 pixels with a resolution of 8-bits per pixel.  Kinect also has the option to produce 

higher resolution images, running at 10 frames per second at the resolution of 1280 × 1024 

pixels.  For depth sensing the Kinect consists of an infrared (IR) laser projector and an IR 
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camera. Together, the projector and the camera create a depth map, which provides the distance 

information between an object and the camera. The sensor has a practical ranging limit of 0.8m − 

3.5m distance, and due to its range and resolution the Kinect has shown weakness in tracking 

gestures that require finger position analysis [7, 8]. 

2.3 Leap Motion Controller 

 We used the Leap Motion Controller for this project.  The Controller costs approximately 

$80, and the software, app store, and software development kit (SDK) is free.  The software can 

be downloaded without registering an account with the company, but the SDK required 

registration and a non-disclosure agreement.  Leap Motion seems to be making great effort to 

provide any necessary resources to developers.  The app store comes with introductory programs 

designed to help users familiarize themselves with the NUI (Natural User Interface).  More 

interactive apps are available varying in cost from free to just over $10 [9]. 

 Since a large portion of Sign Language is dependent on alphabet gestures, we focused on 

creating a database of alphabet and numeric characters.  We analyzed the Leap Motion 

Controller sensor camera’s capability to interface with programming to correctly recognize and 

identify these static Sign Language gestures.  NUI hardware, like the Leap Motion Controller, 

maps objects within a limited focal region directly to 2D or 3D coordinates in a virtual space.  

The coordinates for joints (vertices) and bones (edges) can be extracted from the Diagnostic 

Visualizer provided by Leap Motion.  For this research, we focused on extracting 3D coordinates 

for finger tips, proximal finger joints, and the palm position from Leap Motion’s “Hand 

Hierarchy” shown in Figure 2.2 [9].   
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Figure 2.2: Hand Hierarchy [9] 

 The controller tracks infrared light with a wavelength of 850 nanometers, and tracking is 

optimal when no external sources of infrared light are present.  Since infrared light is invisible to 

the human eye precautions were taken to control lighting conditions during data collection and 

experimental testing.  Natural and incandescent light may contain the infrared wavelength, so we 

operated the controller in fluorescent lighting since florescent lights do not emit energy in the 

infrared region.  The controller has an effective range that is approximately 25 to 600 millimeters 

above the device, and it can track movements at more than 200 frames per second.  We 

performed gestures in what Leap Motion calls an Interaction Box, which is a 3D rectangular 

space that is a subspace of the controller’s field of view.  The Interaction Box provides a 

guarantee of image capture, provided the user keeps a hand or finger in the Box.  The Interaction 

box is approximately 82.5 millimeters above the controller, and has a length, width, and height 

of 147, 235, and 235 millimeters respectively.  The controller provides x, y, and z coordinates for 
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all objects that it tracks as shown in Figure 2.3.  It is significant to note that name of an axis is 

irrelevant to the calculation of Euclidean Distance, a key analysis measure that is discussed later 

in this paper [9].  

 

Figure 2.3: Leap Motion Controller Axes [9] 

The Controller allows for increased sensitivity during motion tracking by allowing users 

to manipulate the scale for the axes, but since we are only interested in static gestures this is not 

relevant to methodology.  However, the size of an individual’s hand greatly affected the 

Euclidean Distance between our chosen critical vertices.  Due to variations in the size of 

individual’s hands, we needed to collect distance information on a large sample from multiple 

subjects [9].  Guna’s study [14] of the Leap Motion sensor’s precision and reliability 

demonstrated a standard deviation of tracking position no greater than 0.5 millimeters at all 

times, and an optimal scenario of less than 0.01 millimeters.  Because of its accuracy we have 

chosen the Leap Motion Controller for this project.  We discuss the data collection and 

methodology in Chapter 3. 
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CHAPTER THREE: METHODOLOGY 

3.1 Selection of Static Gestures 

 Figure 3.1 shows the sign language gestures for letters of the alphabet and single digit 

numbers.   

 

Figure 3.1: Sign Language Letter and Number Gestures 

The gesture for “10” does not appear in Figure 3.1, but is included in the testing process 

for this project.  The gesture “10” resembles what most are familiar with as a “Thumbs-Up” 

gesture and a representation can be seen in Figure 4.3.  We have selected the following 28 

gestures to use in our study:  

[A, B, C, D, E, F, G, H, I, K, L, M, N, O, R, S, T, V, W, X, Y, 1, 3, 4, 5, 7, 8, 10] 

Gestures that are similar in shape, but vary in position orientation were not considered in 

this study.  These include gestures for “P” and “Q” which are transpositions of the gestures “K” 

and “G” respectively as shown in Figure 3.1 and have been omitted from analysis.  Similarly, 

“0”, “2”, “6”, and “9” are exact duplicates of letters “O”, “V”, “W”, and “F” respectively and 

will also not be included for our database or testing.  Recognition of these gestures that are 

identical, but only differ in context of use, is out of the scope of this study.    



11 
 

3.2 Development of Database 

 

Figure 3.2: Recorded Vertices (shown in yellow) for Data Collection 

In order to enable a recognition process, it was necessary to construct a database of 

accurate hand gestures.  There are several steps required to constructing this database. First, an 

individual proficient in American Sign Language was selected to make accurate hand gestures. 

Secondly, the Leap Motion controller captured from this individual 20 samples for each of 28 

targeted hand gestures.  The data collected by the leap motion controller included the 3D 

coordinates of each of the 11 hand joints illustrated in Figure 3.2.  Thirdly, for each gesture and 

for each sample, we calculated the Euclidian distances between the 11 key hand vertices.  In all 

there are 55 distances between the 11 vertices.  Next, for each gesture, the 55 distances were 

averaged over all 20 samples and then were stored in a matrix.  This process was repeated for all 

28 targeted gestures to form a database consisting of 28 matrices of mean Euclidian distances.  

The Diagnostic Visualizer provided by Leap Motion was used to ensure that the controller and 

participant were observing correct hand skeletal positioning.   
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The vertices chosen include each fingertip, proximal knuckle (closer to the palm), and the 

hand’s palm centroid, providing 11 critical 3D coordinates for comparison. These particular 

vertices were chosen because they are widely distributed throughout the hand and provide the 

variation for tracking differences in the gestures.  All distances related to each vertex were 

captured as seen in Figure 3.3, and recorded in respective rows of the matrices.  Figure 3.5 shows 

the database matrix for the letter A.  Notice that there are 55 non-zero entries.  These numbers 

represent the average distance in mm for each of the 55 collected hand gesture distances. Figure 

3.3 shows the 10 distances collected from the tip of the thumb.  These 10 entries were placed in 

the first row of the distance matrix.  Figure 3.3 also shows the 9 distances collected from the 

thumb proximal knuckle.  These 9 entries were placed in the second row of the distance matrix.  

Accuracy was insured by averaging multiple samples, and implementation of a scaling factor for 

the test subject’s gesture.  After collecting multiple sets of data on our chosen critical vertices for 

each gesture, we then calculated the Euclidean Distance of each individual vertex to all of the 

other chosen vertices.  These distances have been averaged and collected into a database for 

comparison to data recorded from test subjects.  Due to the distinct nature of hand skeleton 

positioning for the Sign Language alphabet and numbers, this method provided a distinct matrix 

for each of the selected static gestures.  The 11 vertices used to construct the database are labeled 

and recorded as seen in Table 3.1.   
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Table 3.1: Variables of Reference for Hand Skeleton 

Variable Hand Skeletal Reference 
t1 End of Thumb 
t2 Thumb Proximal Knuckle 
i1 End of 1st Digit 
i2 1st Digit Proximal Knuckle 
m1 End of 2nd Digit 
m2 2nd Digit Proximal Knuckle 
r1 End of 3rd Digit 
r2 3rd Digit Proximal Knuckle 
p1 End of 4th Digit 
p2 4th Digit Proximal Knuckle 
Pc Palm Centroid 

 

Leap Motion offers software development kits (SDK) for almost every programming 

platform.  We decided to create our data collection programs in Java because of its popularity.  The 

Leap Motion camera reports a vast amount of data including shapes, lengths, and coordinates.  We 

created a container program to manage the data capture program, which “Listened” to the 

information being emitted from the Leap Motion camera.  We wrote a program to accept a key 

stroke to capture the necessary data for one hand gesture.  The data was then written as a comma-

delimited string to a text (.txt) file to be interpreted by our Matlab algorithms. We set variables in 

the listener program to record the three-dimensional coordinates from the points of interest listed 

in Table 3.1.  When the Matlab programs search through lines of the text file they sort the 

coordinates into three-dimensional vectors so that we can start measuring the Euclidean distances.  

This provided the measurements for the matrices used in our comparison algorithm. 
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Figure 3.3: Tip of Thumb and Thumb Proximal Knuckle Distances 

The distances between these critical vertices are measured by a Euclidean Norm of the 

difference in each point’s x, y, and z coordinates [13].  For example, the mathematical formula 

for the Euclidean Distance D between vertices t1 and i1 is 

𝐷𝐷 = ��𝑡𝑡1(𝑥𝑥) − 𝑖𝑖1(𝑥𝑥)�
2

+ �𝑡𝑡1(𝑦𝑦) − 𝑖𝑖1(𝑦𝑦)�
2

+ �𝑡𝑡1(𝑧𝑧) − 𝑖𝑖1(𝑧𝑧)�
2
,                  (3-1) 

which provides a distance in millimeters to be placed in the matrix for the specific gesture.  An 

example of visualization for the gesture of the letter “A” is shown in Figure 3.4, along with a 

distance matrix for fingertip position in Figure 3.5.  The matrix of Euclidean distances provides 

the distances between each combination of fingertips.  For example, the 1st row refers to the tip 

of the thumb and the 4th column refers to the proximal knuckle of the 1st digit (index finger).  

Therefore the element A(1,4) = 31 means that there is a distance of 31 mm between the thumb 

fingertip and the 1st digit’s proximal knuckle.   
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Figure 3.4: Leap Motion’s Visualization of the Letter A 

 

 

Figure 3.5: Matrix for “A” of Rounded Euclidean Distances 

For contrast, one of the larger spanning gestures, the number “5”, is shown visually and 

mathematically in Figures 3.6 & 3.7, respectively.  Here we can see the distance from the tip of 

the thumb and the proximal knuckle of the 1st digit FIVE(1,4) = 102 mm, a much larger distance 

than the 31 mm recorded for “A”.  Similar to this singular measurement, most of the distances of 

critical vertices recorded in the matrix for “5” are greater than their counterparts for the smaller 

gesture “A”.  We can also see that elements that are not capable of drastic changes are similar in 

A = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 47 40 31 50 46 63 67 73 87 73
0   0  47 62 54 72 64 83 72 95 60
0   0   0  35 11 35 24 44 36 58 50
0   0   0   0  44 18 52 40 56 61 58
0   0   0   0    0  40 15 44 29 54 52
0   0   0   0    0    0  44 23 44 45 54
0   0   0   0    0    0    0  40 16 44 49
0   0   0   0    0    0    0   0  33 22 49
0   0   0   0    0    0    0   0   0   31 42
0   0   0   0    0    0    0   0   0    0  51
0   0   0   0    0    0    0   0   0    0    0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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both matrices.  For instance the distance from the thumb’s end to its proximal knuckle has a 5 

mm difference between the smaller and larger gesture, A(1,2) = 47 and FIVE(1,2) = 52. 

 

Figure 3.6: Leap Motion’s Visualization of the Number 5 
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Figure 3.7: Matrix for “5” of Rounded Euclidean Distances 

The distances shown in the previous figures are in millimeters, and have been rounded to 

the nearest millimeter.  The actual data collected from the Leap Motion camera, rounded to the 

nearest ten-thousandth of a millimeter, provides more accuracy for the recognition algorithm.  

Coordinates were converted to vectors and recorded as variables listed in Table 3.1 using 

MATLAB.  The Euclidean distances were stored in matrices similar to Figures 3.5 & 3.7 for 

each sample gesture collected. Individual matrices generated by this method for the same gesture 

were added together, and finally divided by the number of samples collected to generate average 

distance matrices for each gesture.  This resulted in a database consisting of 28 distance matrices, 

one for each of the selected gestures. 

The overall size and skew of these matrices, which is measured by the Frobenius norm, 

‖𝐴𝐴‖𝐹𝐹 = �∑ ∑ |𝑎𝑎𝑖𝑖,𝑗𝑗|211
𝑗𝑗=1

11
𝑖𝑖=1 ,                                                   (3-2) 
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where 𝑎𝑎𝑖𝑖,𝑗𝑗 is the element corresponding to row i and column j, played a large role in the 

identification and scaling algorithms [15].  Using the Frobenius norm we were able to verify that 

data from each sample used was consistent with the expected result, and outliers were removed.  

These outliers could have come from samples that were corrupted during the recording or 

transferring process.  Further exploration of accuracy evaluation when writing, transferring, and 

reading data through multiple programs and devices may be evaluated in future studies.   

Table 3.2: Comparison of Database Collector to Tested Gestures 

Expected A B C D E F G H I K L M N O R S T U V W X Y 1 3 4 5 7 8 10 
Recognized A B C D E F G H I K L T N O R S T U V W X Y 1 3 4 5 7 8 10 

MoS 30 30 19 46 22 40 35 33 36 60 109 80 72 30 30 30 56 47 65 44 58 78 52 37 29 40 45 39 85 
 

 The algorithm was initially tested on the individual from whom we collected the 

database.  We computed the Frobenius norm of the difference between the performed gesture 

and each of the data base gestures.  Later we will refer to this value as the metric of similarity 

(MoS) used in the last stage of recognition algorithms discussed in Section 3.3.  Table 3.2 shows 

the recognized gesture and the MoS associated with that gesture.  Note that all gestures were 

correctly identified except for “M,” which was recognized as a “T.”  This result is similar to the 

findings in subsection 4.2.1 in which we analyze tightly clustered gestures. 

 At the beginning of the experiment each test subject was asked to perform an open hand 

(“5”) gesture so that we could get an unobscured view of their skeletal structure by using Leap 

Motion controller.  This initial gesture allowed us to calculate scaling factors as needed when 

performing the analysis portion of this project.  We assumed a scaling factor would be necessary 

because of the difference in overall size of the hand used for database collection and each 

individual test subject’s hands.  A scaling factor allows us to make a more accurate recognition 

algorithm. 
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The first scaling factor (SF1) that we decided to use also came from the Frobenius norm 

for the gesture “5”.  Since this sign is performed by extending all fingers as far from the palm as 

possible, as seen in Figure 3.6, we were able to observe and compare the size of the test subject’s 

hand to the size of the hand used for database collection.  Next, we incorporated these norms into 

a scaling variable 

𝑆𝑆𝑆𝑆1 =  ‖𝑇𝑇𝑇𝑇𝑇𝑇(5)‖𝐹𝐹
‖𝐷𝐷𝐷𝐷(5)‖𝐹𝐹 

                                                                 (3-3) 

where 𝑇𝑇𝑆𝑆𝑇𝑇(5) is the distance matrix for the test subject’s open hand (“5”) gesture, and 𝐷𝐷𝐷𝐷(5) is 

the distance matrix for the database “5” gesture.  In order to ensure accuracy, we expanded 

potential scaling factors beyond this method.  The other two scaling factors (SF2 and SF3) 

considered the distance to the palm centroid from the tip of the thumb and middle finger tip as 

seen in Figure 3.8.  The corresponding equations for SF2 and SF3 are shown in Equations 3-4 

and 3-5: 

𝑆𝑆𝑆𝑆2 =  𝑇𝑇𝑇𝑇𝑇𝑇(5)𝑡𝑡1,𝑝𝑝𝑝𝑝

𝐷𝐷𝐷𝐷(5)𝑡𝑡1,𝑝𝑝𝑝𝑝
                                                                 (3-4) 

𝑆𝑆𝑆𝑆3 =  𝑇𝑇𝑇𝑇𝑇𝑇(5)𝑚𝑚1,𝑝𝑝𝑝𝑝

𝐷𝐷𝐷𝐷(5)𝑚𝑚1,𝑝𝑝𝑝𝑝
                                                                 (3-5) 

where 𝑇𝑇𝑆𝑆𝑇𝑇(5)𝑡𝑡1,𝑝𝑝𝑝𝑝 refers to a distance from the test subject’s gesture and t1, m1, and pc refer to 

the tip of the thumb, tip of the middle finger, and palm centroid, respectively.  Visual 

representations of these distances are shown in Figure 3.8. 
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Figure 3.8: 2nd Scaling Factor (SF2) Distance and 3rd Scaling Factor (SF3) Distance 

The scaling factor is greater than 1 (SF > 1) for any hands larger than the one used for 

data collection, and less than 1, (SF < 1), for hands that were smaller.  Finally, each of the test 

subjects distance matrices were divided by this scaling factor,  

𝑇𝑇𝑆𝑆𝑇𝑇∗ = 𝑇𝑇𝑇𝑇𝑇𝑇(∗)
𝑇𝑇𝐹𝐹

                                                              (3-6) 

where 𝑇𝑇𝑆𝑆𝑇𝑇(∗) was the sample matrix collected and 𝑇𝑇𝑆𝑆𝑇𝑇∗ was the resulting normalized test 

subject gesture that could then be used in the recognition algorithm.  This increased the value of 

the distance matrix elements for test subjects with smaller hands, and decreased the ones from 

larger hands. 

3.3 Analysis Procedure for Static Hand Gesture Recognition 

 To test my design I recruited eight volunteers, and recorded static information from their 

performance of all letter and number gestures collected in the database.  The recorded data 

consists of a collection of normal and blind study samples from each test subject’s right hand to 

ensure program and testing accuracy.  The “Recognizer” program accurately, and consistently, 
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identifies static gestures within a certain threshold of error, which will be discussed in Chapter 4.  

After the test subject’s gestures were collected the Frobenius Norm F is computed as 

𝑆𝑆 = �∑ ∑ |(𝑎𝑎𝑖𝑖,𝑗𝑗 − 𝑏𝑏𝑖𝑖,𝑗𝑗)|211
𝑗𝑗=1

11
𝑖𝑖=1 ,                                               (3-7) 

where a and b are representative of elements from two different matrices [14, 15].  The smallest 

absolute values from this calculation imply the greatest similarity for the test gesture and 

established gestures in the database.   

 We chose to compute a metric of similarity (MoS) to judge how close a user’s gesture was 

to a given database gesture.  This metric is the Frobenius norm function performed on the 

difference between a given database distance matrix and the test subject’s distance matrix, and is 

computed using: 

𝑀𝑀𝑀𝑀𝑆𝑆 = 𝑆𝑆(𝐷𝐷𝐷𝐷∗ − 𝑇𝑇𝑆𝑆𝑇𝑇∗)                                                         (3-8) 

where 𝐷𝐷𝐷𝐷∗ is the database distance matrix for a given symbol under test and 𝑇𝑇𝑆𝑆𝑇𝑇∗ is the normalized 

test subject’s distance matrix.   For example, the Frobenius norm expression 𝑆𝑆(𝐷𝐷𝐷𝐷𝐴𝐴 − 𝑇𝑇𝑆𝑆𝑇𝑇∗) is a 

measure of how close database gesture A is to the test subject’s gesture.  The smaller this metric 

is, the closer the test subject’s gesture is to the given data base gesture.  The algorithm computes 

the MoS for each symbol under test, and then finds the symbol with the smallest MoS using: 

𝑛𝑛 = min[𝑆𝑆(𝐷𝐷𝐷𝐷𝐴𝐴 − 𝑇𝑇𝑆𝑆𝑇𝑇∗),𝑆𝑆(𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑇𝑇𝑆𝑆𝑇𝑇∗),𝑆𝑆(𝐷𝐷𝐷𝐷𝐶𝐶 − 𝑇𝑇𝑆𝑆𝑇𝑇∗)⋯𝑆𝑆(𝐷𝐷𝐷𝐷10 − 𝑇𝑇𝑆𝑆𝑇𝑇∗)]       (3-9) 

where 𝐷𝐷𝐷𝐷𝐴𝐴 , 𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷𝐷𝐷𝐶𝐶, etc. are the database distance matrices for the symbols A, B, C, etc. We 

stored n and the database gesture associated with the smallest MoS.  This process was repeated 

for all three scaling factors given in equations (3-3) through (3-5).  The recognized gesture was 

chosen based on the smallest calculated MoS.  An example is shown in Table 3.3. In this 

example, computed metrics of similarity, given by 𝑆𝑆(𝐷𝐷𝐷𝐷∗ − 𝑇𝑇𝑆𝑆𝑇𝑇∗), are tabulated for a test 

subject who performed a “W” Hand Gesture.   In this example, 53 is the smallest MoS, and was 
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computed using scaling factor 3 with the Database Gesture “W.”  The best fit algorithm correctly 

recognized the “W” gesture, because the lowest MoS value was associated with the Database 

Gesture “W”.  Note that the letter “W” had the smallest metric of similarity for all scaling 

factors, and thus showed that the test subject’s gesture most closely matches the letter “W”.      

Table 3.3: Computed Metrics for a Sample Test Subject Presenting a “W” Hand Gesture 

Database Gesture A B C D E F G H I K L M N O R S T U V W X Y 1 3 4 5 7 8 10 

Metric of 
similarity 

SF1 3 6 2 2 4 4 2 6 2 2 8 6 2 8 0 2 7 7 3 4 6 2 6 6 3 3 7 2 5 8 3 0 5 3 5 3 3 5 2 3 4 2 2 4 6 3 7 6 3 4 0 2 3 3 2 3 1  67   3 2 9 3 3 8 3 2 0 2 5 6 1 9 8 3 1 4 2 3 2 2 6 8 3 5 9 

SF2 372 251 269 292 288 281 356 275 345 265 309 363 362 351 254 386 350 239 235 75 337 344 328 257 202 313 237 271 367 

SF3 323 216 238 260 250 266 309 231 307 233 290 312 312 304 219 335 300 213 216 53 294 320 293 259 186 322 216 258 325 

 
Table 3.4 shows an example in which the best fit algorithm did recognize the test subject’s 

gesture, but not all scaling factor methods did. Table 3.4 we can see that the MoS for recognizing 

“K” was the lowest in comparison with all other gestures for both SF1 and SF2. However, the 

MoS for SF3 was lowest for “G.”  Since the lowest MoS of 101 occurred while comparing the 

database ‘K” with the user’s gesture, the “Best Fit” process correctly identified ‘K’ as the user’s 

gesture.  

Table 3.4: Computed Metrics for a Sample Test Subject Presenting a “K” Hand Gesture 

Database 
Gesture A B C D E F G H I K L M N O R S T U V W X Y 1 3 4 5 7 8 10 

Metric of 
similarity 

SF1 228 255 263 170 245 288 130 155 260 105 235 212 209 224 187 226 203 211 218 269 141 325 148 310 262 407 237 263 260 
SF2 233 256 263 169 246 286 134 157 262 101 232 218 214 228 186 231 208 209 215 267 144 325 147 306 259 404 234 260 263 
SF3 210 255 265 179 242 300 113 153 254 127 250 192 190 208 193 205 185 223 234 281 135 328 155 330 274 423 250 278 249 

 
Table 3.5 shows an example in which the best fit algorithm did not recognize the test 

subject’s gesture. In this example the test subject was signing an “M.”  The best fit algorithm 

identified 106 as the smallest MoS associated with the letter ‘N” and therefore chose “N” as the 

recognized gesture.  It is notable that the two gestures are very similar and this test revealed 

some vulnerabilities with our methods.   Table 3.5 shows that the MoS for “M” is only slightly 

larger than “N” for SF1 and SF2, and “S” for SF3.  This is an example of how our algorithm 

recorded similar MoS values for these three gestures.  The gestures “M”, “N”, and “S” are 
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examples of tightly clustered gestures.  We provide results and analysis concerning these types 

of gestures in subsection 4.2.1. 

Table 3.5: Computed Metrics for a Sample Test Subject Presenting a “M” Hand Gesture 

Database 
Gesture A B C D E F G H I K L M N O R S T U V W X Y 1 3 4 5 7 8 10 

Metric of 
similarity 

SF1 137 250 271 254 232 361 157 197 242 258 351 110 107 135 255 109 112 299 325 331 180 351 247 429 323 491 311 350 226 
SF2 136 247 267 250 229 358 155 194 239 255 348 108 106 132 251 108 110 295 321 327 177 349 243 425 319 487 307 346 225 
SF3 144 266 286 270 247 377 167 212 253 275 365 121 118 147 270 115 124 314 341 349 193 363 260 445 341 507 328 366 234 
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CHAPTER FOUR:  RESULTS AND ANALYSIS 

4.1 General Analysis 

The final difference metric selected the gesture from the method that computed the best 

or closest fit.  By looking for the smallest comparison (n) value we were able to see which 

gesture was recognized with the least amount of difference in distance between the sample and 

all gestures in the database.  As shown in Table 4.1, the first scaling factor, using the Frobenius 

norm of an open hand, provided a 72.86% accuracy for all gestures tested.  The other two scaling 

factors, using single distances from thumb and middle finger tip to palm centroid (Figure 3.8), 

provided a 72.38% and 66.67% accuracy respectively.  The best fit difference metric consisted of 

choosing the reported gesture with the smallest Frobenius norm of difference, or “least” 

difference, from all three scaling factors.   Using this method, we were able to improve accuracy 

to 76.67% across all gestures.  The “Best Fit” measures are highlighted in the test subject’s 

reported gestures in Appendices A-1 through A-7. 

Table 4.1: Recognition Accuracy of Scaled Algorithms by Test Subject 

 

 

4.2 Digital Relationships 

 The most significant factor for recognition accuracy is discovered when considering the 

number of fingers extended for a particular gesture, position of visible fingers, and 

Test Subject Scale 1 Accuracy Scale 2 Accuracy Scale 3 Accuracy Best Fit Accuracy
1 56.67% 56.67% 46.67% 56.67%
2 76.67% 70.00% 73.33% 73.33%
3 83.33% 83.33% 73.33% 83.33%
4 70.00% 76.67% 60.00% 83.33%
5 70.00% 66.67% 76.67% 83.33%
6 76.67% 76.67% 66.67% 76.67%
7 76.67% 76.67% 70.00% 80.00%

Average 72.86% 72.38% 66.67% 76.67%
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correspondence to neighboring fingers.  All three of these factors give us a clear look at what the 

Leap Motion camera is capable of distinguishing for the purpose of gesture recognition, and 

which weaknesses need to be considered for further development.  Further research might also 

include directional orientation so that gestures such as “P”, “Q”, and “U” can be distinguished 

from “K”, “G”, and “H”. 

4.2.1 Tightly Clustered Gestures 

 

Figure 4.1: Tightly Clustered Gestures 

 

Table 4.2: Accuracy Comparison for Tightly Clustered Gestures 

Gesture Scale 1 Scale 2 Scale 3 Best Fit 
Mistaken 
Gesture 

(of 7 subjects) 
A 100.00% 100.00% 85.71% 100.00% All Correct 
M 0.00% 0.00% 0.00% 0.00% S,I,N,N,N,N,S 
N 42.86% 28.57% 57.14% 57.14% S,T,H 
S 85.71% 85.71% 100.00% 100.00% All Correct 
T 42.86% 28.57% 14.29% 42.86% S,O,S,S 

 

 The gestures above are tightly clustered and lacking digital, or finger, extensions away 

from the palm.  This category of gestures has the most diverse results as can be seen in Table 4.2.  

The most critical factor for these gestures is finger visibility.  “A” and “S” have all five fingers 

exposed to the camera and provide the most accuracy.  Each scaling factor is above average for 
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reporting the correct gesture, which also provides above average results for the Best Fit 

difference metric as well. 

When the camera tries to distinguish between gestures where some fingers are covered 

the accuracy decreases, and no matter which scaling factor is used, the results are below average 

for the study.  Although “M” is the only gesture in this study with a 0% accuracy, the algorithm 

falsely recognized it as either “N” or “S” for over 85% of the test subjects.  Our algorithm 

considers M, N, and S to be very similar, because the differences in distance are very similar for 

all three gestures.  In addition, difficulty discerning “M”, “N”, and “T” fits a hypothesis made 

earlier when we considered “shadowing” glitches that were observed when the Leap Motion 

camera had difficulty discerning fingers that were blocked from view.  “N” had the best results 

for a gesture that involved crossing the thumb, and was confused with “S” and “T” for only 

28.57% of test subjects.  “T” was just as likely to be correctly reported as it was to register as 

“S”.  We assume that these gestures might be more easily identified if thumb visibility is 

addressed in the algorithm, or if we were to integrate the new Leap Motion “IsExtended” 

parameter in the data collection, which provides a True/False condition for whether a finger is 

extended or not. 
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4.2.2 Clustered With “Half” Extensions 

 

Figure 4.2: Gestures with Clustered Partial Finger Extensions 

 

Table 4.3: Accuracy of Half Extended Gestures with Corresponding Fingers 

Gesture Scale 1 Scale 2 Scale 3 Best 
Fit 

Mistaken 
Gesture 

(of 7 subjects) 
O 57.14% 28.57% 14.29% 57.14% S,S,S 
E 57.14% 71.43% 57.14% 57.14% S,S,O 
C 57.14% 57.14% 42.86% 57.14% B,E,E 

 

We can see more conformity for this grouping of gestures, but with all scaling factors 

reporting below average results there is no significant improvement of accuracy.  When the 

algorithm failed to recognize “O” it reported “S” for all test subjects, which may be a result from 

a blocked view as observed in the gestures from section 4.2.1.  Similarly, “E” was mistaken as 

“S” or “O” 42.86% of the time.  “C” was incorrectly recorded as “E” for 28.57% of test subjects 

and “B” for 14.29%.  In this set we can see that SF1 matched the accuracy of the Best Fit 

difference metric, while the other two scaling factors were not as accurate.  These gestures might 

be more easily identified by an additional algorithmic condition involving the distance of the 

finger tips do the palm centroid. 
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4.2.3 One Digital Extension 

 

Figure 4.3: Gestures with One Finger Extension 

 

Table 4.4: Accuracy of Gestures with One Extended Finger 

Gesture Scale 1 Scale 2 Scale 3 Best Fit 
Mistaken 
Gesture 

(of 7 subjects) 
D 85.71% 85.71% 14.29% 57.14% G,1,1 
G 42.86% 42.86% 71.43% 71.43% X,D 
I 100.00% 100.00% 71.43% 100.00% All Correct 
X 42.86% 42.86% 57.14% 57.14% G,G,G 
1 71.43% 71.43% 57.14% 71.43% X,X 
10 100.00% 100.00% 85.71% 100.00% All Correct 

 

 The four gestures on the left (D, G, X, 1) are all performed by fully, or partially, 

extending the index finger from a closed hand, or fist.  The letter “D” is performed by making an 

“O” and extending the index finger.  Whenever a recognition algorithm has to discern between 

gestures that have slight differences, there will be falsely recognized gestures.  For example, “X” 

and “1” are very similar in shape and they only differ by the degree to which the index finger is 



29 
 

extended.  For this reason, it may explain why “D”, “G”, “X”, and “1” were not perfectly 

recognized.  For these four gestures, all scaling factors performed slightly below their total 

average of accuracy with the exception of recognizing the gesture “D”.  This is one of only two 

gestures that one or more of the scaling factors, in this case SF1 and SF2, actually reported the 

correct gesture with greater accuracy than the Best Fit selection of samples.  The letter “X” was 

reported as “G” incorrectly for 42.86% of test subjects, which is assumed to be due to the 

proximity of the thumb and index finger in both gestures. 

 While the two gestures on the right, “I” and “10”, also involved extension of one finger, 

and no other gestures exclusively involve the extension of only the pinky or thumb.  Initial 

hypothesis of the combined algorithm was confirmed when these gestures resulted with 100% 

accuracy when using SF1, SF2, and Best Fit difference metric.  Several suggested improvements 

would be to further distinguish between these gestures by 1) using the new Leap Motion 

“IsExtended” parameter to determine which finger is extended, 2) calculating finger azimuth and 

elevation angles to distinguish orientation differences, and 3) using coordinate data to compare 

curvature of the fingers (since “X” has a bent index finger). 

4.2.4 Two Adjoined Digital Extensions 

 

Figure 4.4: Gestures with Two Extended, Touching Fingers 
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Table 4.5: Accuracy of Gestures with Two Adjoined Extended Fingers 

Gesture Scale 1 Scale 2 Scale 3 Best 
Fit 

Mistaken 
Gesture 

(of 7 subjects) 
H 57.14% 85.71% 85.71% 85.71% R 
R 42.86% 28.57% 42.86% 42.86% H,H,U,H 
U 28.57% 28.57% 14.29% 28.57% R,R,R,R,R 

 

 H, R, U are gestures in which two neighboring fingers adjoin, meaning they are extended 

and touching.  The accuracy level for “R” and “U” is decreased for all scaling factors.  “R” was 

confused for either one of the other gestures from this group for 57.14% of the test subjects, and 

“U” was recognized as “R” for 71.43% of users.  One will notice that U and H are very similar 

except that the orientation is different between the two.  The algorithm used for recognition was 

distance-based and did not consider angles in computing the metric of similarity.  After 

experience with how our data collection worked with our algorithms we should not have 

analyzed both “H” and “U”, but should have chosen only one of these to include the list of 

chosen gestures to test with our recognition algorithm.   It is suggested that future research 

efforts develop a gesture recognition algorithm that combines both distance measures and angles 

in computing a metric of similarity. 

Although there is a “crossing” of the fingers for “R” there is no real difference for the 

distance between vertices for the extended fingers in “R” and “U”.  Correspondence to a 

neighboring finger in gestures that are perpendicular to the camera seems to have caused greater 

confusion for the data collection due to visual interference from other fingers clustered below the 

extended fingers.  The gesture “H” is performed by making a gesture parallel to the desk top 

surface providing a better view of the extended fingers.  When considering the false positives for 

these gestures we can see that the algorithm may not have been specific enough to detect much 
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variation between them.   One improvement for better recognition of these gestures could be to 

detect whether two adjacent fingers are crossed or not.  This could be implemented by computing 

the angle between the two adjacent fingers.    

4.2.5 Two Non-Adjoined Digital Extensions 

 

Figure 4.5: Gestures with Two Extended Non-Adjoined Fingers 

 

Table 4.6: Accuracy of Gestures with Two Non-Adjoined Extended Fingers 

Gesture Scale 1 Scale 2 Scale 3 Best Fit 
Mistaken 
Gesture 

(of 7 subjects) 
K 57.14% 57.14% 28.57% 42.86% H,H,H,H 
L 100.00% 100.00% 100.00% 100.00% All Correct 
V 100.00% 100.00% 71.43% 100.00% All Correct 
Y 100.00% 100.00% 100.00% 100.00% All Correct 

 

While this group also involves two extended fingers, we call them non-adjoining because 

they are not touching.  For this set we can see the algorithm had difficulty correctly identifying 

the gesture “K”, and it assumed the data reported from the Leap Motion camera was an “H” for 

57.14% of the test subjects.  This is likely due to the thumb blocking the camera’s view of the 

index finger because of the orientation of the gesture “K”, and would cause the camera to assume 

the finger behind the thumb was extended as well.  The gesture “K” is the second out of two 

gestures to have higher accuracy with SF1 and SF2 than with the Best Fit selection.   
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The gestures “L”, “V”, and “Y” were detected with complete accuracy across all scaling 

factors with the exception of how SF3 worked with the gesture “V”.  Again, we consider this to 

be a greater error with the camera’s capability to collect data due to difficulty with visibility of the 

extended fingers. We are assuming the increase in accuracy for this group is because there are no 

other gestures that use two non-adjoining extended fingers.  This category is extremely accurate 

compared to the sections before, but the confusion with “K” and “H” might be resolved by 

determining parallelism for the index and middle fingers.  

4.2.6 Three Digital Extensions 

 

Figure 4.6: Gestures with Three Extended Fingers 

 

Table 4.7: Accuracy of Gestures with Three Extended Fingers 

Gesture Scale 1 Scale 2 Scale 3 Best Fit 
Mistaken 
Gesture 

(of 7 subjects) 
F 100.00% 100.00% 100.00% 100.00% All Correct 
W 100.00% 100.00% 100.00% 100.00% All Correct 
3 100.00% 100.00% 85.71% 100.00% All Correct 
7 100.00% 100.00% 100.00% 100.00% All Correct 
8 85.71% 85.71% 85.71% 85.71% B 

 

 The gestures with a more open hand, or more extended fingers, have the greatest 

accuracy in this algorithm, and seem to be less affected by correspondence and visibility, or 
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shadowing, errors.  Here we can see that the scaling factors have 100% accuracy across the 

study, with the exception of how our algorithm records “3” with SF3 and each with the gesture 

“8”.  These instances still have an accuracy above the average recognition capability for their 

perspective scaling factors.  The only gesture from this group that did not reach complete 

accuracy with the Best Fit difference metric was “8”, which was falsely recognized as “B” for 

14.29% of test subjects.  We believe this is also due to the thumb’s line-of-sight interference with 

the camera on the tabletop.  Otherwise this group of gestures is completely accurate with this 

algorithm. 

4.2.7 Four to Five Digital Extensions 

 

Figure 4.7: Gestures with Four or Five Extended Fingers 

 

Table 4.8: Accuracy of Gestures with Four or Five Extended Fingers 

Gesture Scale 1 Scale 2 Scale 3 Best Fit 
Mistaken 
Gesture 

(of 7 subjects) 
B 28.57% 42.86% 100.00% 100.00% All Correct 
4 100.00% 100.00% 100.00% 100.00% All Correct 
5 100.00% 100.00% 100.00% 100.00% All Correct 

 

 As hypothesized, this is the most accurate set of gestures with complete accuracy for all 

three gestures with the Best Fit consideration.  We are assuming that this is because the extended 

and open fingers eliminate error of detection for the 3D camera.  During formation of database 
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and testing we were able to observe the Leap Motion program would typically assume that a 

finger was extended if it did not have a “clear” view of it.  We assume the falsely recognized “B” 

gestures using SF1 and SF2 were due to visibility errors and proximity to corresponding fingers.   

One of our original hypotheses was that the algorithm would have trouble differing 

between the gestures “B” and “4”.  This showed to be true for recognition using SF1 and SF2, 

but SF3 was 100% accurate, and provided the Best Fit, as can be seen in tables in the appendices.  

While “B” was reported incorrectly for “C” and “8” there were no instances of it reported for the 

gesture “4”. 
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CHAPTER FIVE: CONCLUSIONS AND FUTURE CONSIDERATION 

 This study was focused on developing and measuring the accuracy of a static gesture 

recognition method using modern innovative technologies.  This was accomplished with the 

Leap Motion camera and distance analysis algorithms through the computational software 

Matlab.  A combination of a difference metric for best fit among three scaling methods provided 

a 76.67% accuracy for all gestures tested. 

 We collected data from seven test subjects that were at least moderately familiar with the 

set of tested static gestures. To ensure confidence, the test subjects would practice the gestures 

with the test administrator before they were recorded for data collection.  The subjects were also 

shown a demonstration with the Leap Motion camera, and giving them time to interact with it 

helped them understand and orient to the camera’s capability.  Once they were comfortable with 

the equipment and confident of their capability to perform the correct gestures we initiated the 

interaction of the Java program and the camera.  We collected 29 differing gestures to compare 

against a database that had been previously recorded by the test administrator. 

 Using a Leap Motion camera, we have collected data on skeletal structure of the 

human hand while performing sign language gestures.  We selected to record the Euclidean 

coordinates for critical vertices, or finger joints and the center of the palm, that would shift in 

location or orientation, across all selected gestures.  The Leap Motion camera emits a great 

amount of data for the hand that it observes, and we developed a java program that could collect 

the specified data desired.  Once we had this data stored into a delimited line of text in a file we 

were able to export/import the information into Matlab which we used for analysis.  We 

developed a Matlab program to measure and store the distances for all of the recorded three-
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dimensional coordinates for all vertices.  We designed an algorithm that would search for the 

closest match to our database using the Frobenius norm for matrix comparisons. 

In order to eliminate issues with size or skeletal structure that may differ from person-to-

person we introduced scaling factors for the assembled matrices.  The first scaling factor used the 

Frobenius norm of the distances of the test subjects open hand.  For SF2 we chose the distance 

from the tip of an extended thumb to what was recorded as the center of the palm.  Similarly, 

SF3 was created using a comparison of the distance from the tip of the middle finger and the 

center of the palm.  SF1 was slightly more accurate than SF2, and considerably better than SF3, 

across all test subjects and gestures.  In order to take advantage of all three scaling factors, we 

developed a best fit model that selected the gesture recognized by the method with the smallest 

difference metric.   Our combination of algorithms showed the most accuracy when the skeletal 

structure of the hand was most open.  The more fingers that were extended and separated 

provided more accurate recognition.  The overall recognition accuracy was 77% for all gestures 

and all test subjects. 

In future studies, we believe we can eliminate one of our algorithm’s weaknesses by 

introducing consideration for the orientation, or direction, of the hand in similarly structured 

gestures.  Since gestures are typically performed away from the person a cradle to hold the Leap 

Motion camera might make it easier to recognize hand structure from a more forward vantage 

point.  Recognition could be improved by refining algorithms for certain categories of gestures, 

such as adding a method for determining if fingers are crossed and amount of curvature for 

specific fingers. Updating our SDK would allow us to record parameters that have been added in 

newer versions, such as detecting whether or not a finger is extended.  We would also be 

interested in considering a scaling factor that could be measured for each individual gesture 
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rather than one that was recorded and set before we initiated the recognition algorithm.  We hope 

to make information from this study available on Leap Motion’s open forum so that our findings 

might help software developers with future recognition projects, and advance the sign language 

recognition capability of the Leap Motion camera. 
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Appendix A: Test Subject Data 

Tables A1 through A7 present the recognized gesture and the associated metric of similarity (as 

defined in section 3.3) for each test subject and for each scaling factor.  The shaded cells identify 

the gesture recognized by the best fit method and the associated metric of similarity. 

Table A1: Recognized Gestures from Test Subject #1 

 

Gesture Metric of 
Similarity

Recorded 
Gesture

Metric of 
Similarity

 Recorded 
Gesture

Metric of 
Similarity

 Recorded 
Gesture

A 46.33 A 43.61 A 59.91 A
B 38.13 B 38.31 B 49.05 B
C 81.07 B 77.59 B 98.11 B
D 99.17 Q 98.95 Q 103.14 Q
E 103.28 S 103.49 S 104.64 S
F 102.99 F 106.54 F 95.98 F
G 74.82 X 76.94 X 71.52 X
H 60.04 H 61.77 H 60.10 H
I 125.94 I 122.60 I 138.00 I
K 60.05 H 64.46 H 48.46 H
L 65.39 L 61.18 L 87.25 L
M 73.77 S 72.43 S 81.47 S
N 118.73 S 117.76 S 124.04 S
O 96.65 S 96.22 S 100.52 S
R 62.44 H 65.42 H 57.20 H
S 95.54 S 93.72 S 104.26 S
T 88.26 S 86.63 S 96.49 S
U 47.72 R 48.40 R 55.09 R
V 58.91 V 56.31 V 76.76 V
W 66.38 W 63.53 W 84.62 W
X 96.73 Q 96.71 Q 100.07 Q
Y 58.89 Y 53.74 Y 82.95 Y
1 70.07 1 66.09 1 72.25 X
3 98.88 3 92.34 3 127.32 3
4 41.99 4 41.21 4 58.01 4
5 56.85 5 58.14 5 68.89 5
7 78.92 7 73.73 7 102.38 7
8 124.18 E 123.15 8 126.08 O

10 79.59 10 75.64 10 88.21 A

Scale 1 Scale 2 Scale 3



41 
 

Table A2: Recognized Gestures from Test Subject #2 

 

 

 

  

Gesture Metric of 
Similarity

Recorded 
Gesture

Metric of 
Similarity

Recorded 
Gesture

Metric of 
Similarity

Recorded 
Gesture

A 26.60  A 39.03  A 29.07  A
B 73.74  B 83.29 4 42.47  B
C 64.42  C 87.79  C 38.38  C
D 56.30  D 63.79  D 47.45 1
E 81.11  S 85.78  S 81.11  S
F 107.62  F 138.37  F 60.30  F
G 61.03  D 55.06  D 77.38  X
H 59.76  R 60.14  U 54.00  R
I 80.06  I 101.46  I 51.46  I
K 81.86 K 90.56 K 81.88 K
L 70.63  L 94.12  L 50.46  L
M 100.43  I 96.42  I 116.05  I
N 81.11  N 89.52  O 74.84  N
O 75.66  S 76.50  S 82.04  S
R 114.64  R 125.78  U 97.02  R
S 62.98  S 71.51  S 58.54  S
T 65.14  O 80.14  O 49.41  O
U 90.49  V 99.12  V 86.10  R
V 73.30  V 82.70  V 80.68  V
W 71.43  W 83.53  W 76.21  W
X 70.79  X 78.24  X 72.19  X
Y 79.93  Y 107.40  Y 41.29  Y
1 71.20 1 83.39 1 68.02 1
3 84.87 3 114.11 3 53.47 3
4 100.76 4 130.92 4 53.93 4
5 74.50 5 104.91 5 50.78 5
7 81.81 7 104.18 7 60.42 7
8 96.59 8 118.59 8 75.84 8

10 93.41 10 113.86 10 63.46 10

Scale 1 Scale 2 Scale 3
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Table A3: Recognized Gestures from Test Subject #3 

 

 

 

  

Gesture
Metric of 
Similarity

Recorded 
Gesture

Metric of 
Similarity

Recorded 
Gesture

Metric of 
Similarity

Recorded 
Gesture

A 66.87  A 67.75  A 69.91  A
B 103.07 4 104.58 4 88.43  B
C 44.64  C 44.20  C 62.65  C
D 96.88  D 97.71  D 96.48 1
E 31.72  E 28.33  E 57.51  E
F 62.25  F 67.22  F 61.80  F
G 47.82  G 51.46  G 44.08  G
H 61.23  H 62.40  H 67.37  H
I 101.73  I 104.02  I 99.71  I
K 105.50  K 101.43  K 113.23  G
L 46.46  L 47.82  L 62.61  L
M 107.49  N 105.57  N 115.43  S
N 94.39  T 92.72  T 98.86  S
O 114.23  S 113.84  S 118.78  S
R 107.85  H 108.72  H 110.49  H
S 58.37  S 56.58  S 70.47  S
T 77.30  T 74.59  T 91.15  S
U 30.08  U 32.47  U 41.63  R
V 36.65  V 40.86  V 47.81  V
W 67.33  W 74.71  W 53.33  W
X 86.33  X 83.55  X 102.19  X
Y 60.11  Y 63.34  Y 64.54  Y
1 108.42 1 112.61 1 98.81 1
3 41.65 3 36.06 3 79.60 3
4 61.76 4 66.50 4 61.37 4
5 62.29 5 64.62 5 78.80 5
7 83.22 7 92.47 7 53.77 7
8 52.65 8 51.95 8 73.75 8

10 42.67 10 44.40 10 49.44 10

Scale 1 Scale 2 Scale 3
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Table A4: Recognized Gestures from Test Subject #4 

 

 

 

 

 

Gesture
Metric of 
Similarity

Recorded 
Gesture

Metric of 
Similarity

Recorded 
Gesture

Metric of 
Similarity

Recorded 
Gesture

A 55.01  A 58.73  A 73.48  S
B 107.15 4 112.28 4 27.01  B
C 75.52  C 86.20  C 77.49  B
D 79.64  D 87.27  D 90.32  X
E 83.37  O 85.56  E 53.75  O
F 215.88  F 234.48  F 91.15  F
G 127.39 K 134.95  D 55.56 G
H 139.08  R 146.72  U 105.66  H
I 80.17  I 81.46  I 114.11  S
K 79.62  V 85.68  V 65.73  H
L 144.00  L 158.95  L 83.09  L
M 113.74  N 117.73  N 110.53  S
N 95.56  O 101.45  O 66.24  N
O 84.14  O 90.94  O 79.30  O
R 140.25  V 155.00  V 45.14  U
S 83.01  S 85.88  S 95.46  S
T 73.92  T 78.09  T 78.91  S
U 197.75  V 212.92  V 100.40  U
V 212.12  V 229.75  V 94.75  V
W 88.19  W 102.91  W 75.92  W
X 75.78  D 80.12  D 100.37  X
Y 84.96  Y 98.43  Y 76.30  Y
1 93.77 1 105.14 1 72.06 1
3 126.24 3 123.01 3 124.02 3
4 141.89 4 158.21 4 64.59 4
5 121.24 5 128.97 5 92.59 5
7 138.66 7 151.80 7 96.82 7
8 99.94 8 106.56 8 133.02 8

10 41.23 10 49.88 10 71.13 10

Scale 1 Scale 2 Scale 3
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Table A5: Recognized Gestures from Test Subject #5 

 

 

 

  

Gesture
Metric of 
Similarity

Recorded 
Gesture

Metric of 
Similarity

Recorded 
Gesture

Metric of 
Similarity

Recorded 
Gesture

A 53.60  A 71.87  A 49.75  A
B 113.43  C 128.73 4 60.36  B
C 53.69  C 84.71  C 52.45  C
D 62.40  D 87.05  D 67.60  D
E 41.57  E 62.85  E 64.58  E
F 80.33  F 115.58  F 64.61  F
G 111.48 1 123.80 1 67.96  G
H 87.75  V 118.76  V 56.94  U
I 88.42  I 106.21  I 86.86  I
K 96.87  U 108.97  U 83.42  H
L 76.29  L 114.75  L 46.56  L
M 114.94  N 128.27  O 95.16  N
N 104.76  H 105.53  H 126.73  H
O 64.65  O 70.81  O 73.11  S
R 134.71 7 144.03 7 109.34  H
S 69.80  O 77.15 O 53.23  S
T 82.57  T 96.33 G 61.39  T
U 94.31  V 114.77  V 70.93  R
V 92.34  V 134.61  V 24.02  V
W 130.64  W 174.34  W 53.41  W
X 63.46  X 89.76  X 45.06  X
Y 91.29  Y 126.39  Y 58.19  Y
1 92.40 1 114.67 1 82.71 1
3 60.03 3 85.63 3 96.41 3
4 91.58 4 126.52 4 65.52 4
5 75.11 5 101.55 5 108.43 5
7 56.52 7 81.10 7 78.80 7
8 91.72 8 106.88 8 113.66 8

10 43.23 10 62.72 10 56.72 10

Scale 1 Scale 2 Scale 3
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Table A6: Recognized Gestures from Test Subject #6 

 

 

  

Gesture Metric of 
Similarity

Recorded 
Gesture

Metric of 
Similarity

Recorded 
Gesture

Metric of 
Similarity

Recorded 
Gesture

A 54.50  A 57.01  A 65.59  A
B 76.11 4 70.83  B 56.18  B
C 47.42  E 46.94  E 52.94  E
D 71.37  D 76.61  D 86.24  X
E 39.16  E 44.67  E 61.45  E
F 71.86  F 79.78  F 101.29  F
G 88.37 G 89.87 G 95.90 G
H 57.78  H 63.08  H 78.02  H
I 75.60  I 79.58  I 91.77  I
K 88.03  K 88.91  K 78.82  H
L 52.02  L 59.39  L 80.48  L
M 79.01  S 80.31  S 85.36  S
N 49.93  N 51.69  N 59.08  N
O 64.28  O 65.20  S 67.72  S
R 56.56  R 56.08  R 61.60  R
S 48.19  S 52.97  S 65.55  S
T 48.11  S 48.37  S 52.55  S
U 50.70  R 51.49  R 60.13  R
V 48.82  V 55.28  V 65.91  R
W 52.75  W 58.98  W 78.48  W
X 77.23 G 77.02 G 79.78 G
Y 58.65  Y 63.67  Y 80.26  Y
1 83.72  X 84.70  X 90.10  X
3 64.85 3 71.46 3 92.53 3
4 53.16 4 56.05 4 70.17 4
5 57.06 5 63.94 5 87.33 5
7 49.79 7 55.41 7 73.77 7
8 91.45 8 98.05 8 116.68 8

10 52.21 10 53.84 10 62.05 10

Scale 1 Scale 2 Scale 3
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Table A7: Recognized Gestures from Test Subject #7 

 

Gesture
Metric of 
Similarity

Recorded 
Gesture

Metric of 
Similarity

Recorded 
Gesture

Metric of 
Similarity

Recorded 
Gesture

A 54.50  A 57.01  A 65.59  A
B 76.11 4 70.83  B 56.18  B
C 47.42  E 46.94  E 52.94  E
D 71.37  D 76.61  D 86.24  X
E 39.16  E 44.67  E 61.45  E
F 71.86  F 79.78  F 101.29  F
G 88.37 G 89.87 G 95.90 G
H 57.78  H 63.08  H 78.02  H
I 75.60  I 79.58  I 91.77  I
K 88.03  K 88.91  K 78.82  K
L 52.02  L 59.39  L 80.48  L
M 79.01  S 80.31  S 85.36  S
N 49.93  N 51.69  N 59.08  N
O 64.28 O 65.20  S 67.72  S
R 56.56  R 56.08  R 61.60  R
S 48.19  S 52.97  S 65.55  S
T 48.11  S 48.37  S 52.55  S
U 50.70  R 51.49  R 60.13  R
V 48.82  V 55.28  V 65.91  R
W 52.75  W 58.98  W 78.48  W
X 77.23 G 77.02 G 79.78 G
Y 58.65  Y 63.67  Y 80.26  Y
1 83.72  X 84.70  X 90.10  X
3 64.85 3 71.46 3 92.53 3
4 53.16 4 56.05 4 70.17 4
5 57.06 5 63.94 5 87.33 5
7 49.79 7 55.41 7 73.77 7
8 91.45 8 98.05 8 116.68 8

10 52.21 10 53.84 10 62.05 10

Scale 1 Scale 2 Scale 3
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