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Abstract: 

One fundamental ingredient of our work is to formally split the signals into strong and weak 
ones. The rationale is that the usual one-step method such as the least absolute shrinkage and 
selection operator (LASSO) may be very effective in detecting strong signals while failing to 
identify some weak ones, which in turn has a significant impact on the model fitting, as well as 
prediction. The discussions of both Fan and QYY contain very interesting comments on the 
separation of the three sets of variables. Regarding Assumption (A2) about the weak signal set 
S2, we admit that the original version was not as rigorous as it could have been, as it could have 
contained the variables in S3. We now propose the following Assumption (A2') that replaces 
(A2) in the original paper. 
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Article: 

We sincerely thank all the discussants Kjell Doksum and Joan Fujimura (DF); Jianqing Fan 
(Fan); Peihua Qiu, Kai Yang, and Lu You (QYY); and Yanming Li, Hyokyoung Grace Hong, 
and Yi Li (LHL) for the thought-provoking and insightful discussions on our paper. We would 
also like to thank the Editor Fabrizio Ruggeri for processing and organizing the discussion. 
Ahmed would like to specially thank him for his encouragement on this paper and patience. 

1 Strong signal, weak signal, and noise 

One fundamental ingredient of our work is to formally split the signals into strong and weak 
ones. The rationale is that the usual one-step method such as the least absolute shrinkage and 
selection operator (LASSO) may be very effective in detecting strong signals while failing to 
identify some weak ones, which in turn has a significant impact on the model fitting, as well as 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345085363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://libres.uncg.edu/ir/uncg/clist.aspx?id=9596
http://onlinelibrary.wiley.com/wol1/doi/10.1002/asmb.2245/full


prediction. The discussions of both Fan and QYY contain very interesting comments on the 
separation of the three sets of variables. Regarding Assumption (A2) about the weak signal 
set S2, we admit that the original version was not as rigorous as it could have been, as it could 
have contained the variables in S3. We now propose the following Assumption (A2') that 
replaces (A2) in the original paper. 

(A2'): The parameter vector β∗ satisfies that  for some 0<τ<1, where ∥·∥ is 

the ℓ2 norm and  for any j∈S2. 

QYY mentioned that in practice, it is sometimes difficult to have a subjective separation of 
strong and weak signals. First of all, we would like to emphasize that the conditions imposed in 
the paper are from an asymptotic point of view, which demonstrate the great performance of the 
proposed estimators in the specified scalings and covariance structure. Second, we would like to 
argue that this separation is sometimes unnecessary in practice as the ultimate goal of high-
dimensional regression is to provide accurate predictions for future data after variable selection 
and insightful interpretations on the importance of the predictors in terms of explaining the 
response. Third, the separation of strong and weak signals was mainly used to stimulate the post-
selection shrinkage estimation (PSE) method, and the variables identified as ‘strong’ or ‘weak’ 
by PSE do not necessarily have a natural separation in terms of true regression coefficients, at 
least for a fixed sample size. 

2 Conditions on designed matrix 

We thank Fan for pointing out that the assumption on the design matrix could be strong. In fact, 
condition (B2) is mainly motivated from [1], and it requires the weak signals to be correlated to 
strong ones, in order for it to be detectable using the weighted ridge regression. On the other 
hand, condition (B4) requires that the eigenvalues of the design matrix corresponding to both 
strong and weak signals are bounded away from both 0 and infinity. Now, we describe one 
specific example. Consider an n×p design matrix X=[X1,X2,X3]. X1 and X2 correspond to strong 
and weak signals, and X3 includes noises. Suppose all signals in Z=[X1,X2] are correlated with 
constant correlation coefficient of r and uncorrelated with noises in X3. Then, such a design 
matrix satisfies both conditions (B2) and (B4). We agree that some reasonably correlated design 
matrix for all variables could be excluded under those conditions. 

3 MUJI variables 

We thank LHL for bringing up the marginally unimportant but jointly informative (MUJI) 
variable set [2], namely, ‘marginally unimportant but jointly important’ variables. Indeed, the 
inclusion of MUJI variables could significantly improve the performance of the vanilla sure 
independence screening approach [3]. However, we would like to argue that in our proposal, the 
estimation of S1 could be done by any variable selection method that could identify the strong 
signals, for example, LASSO. As a result, S1 could already contain the MUJI variables as it 
considers the joint regression on all predictors. 

Motivated by the MUJI variables, LHL proposed a new shrinkage estimator called Covariance 
Insured Screening-based PSE (CIS-PSE), which uses two simulation examples to compare HD-



PSE and CIS-PSE. They conclude that using MUJI can help to improve the risk performance of 
the shrinkage estimator. However, the comparison could be a little unfair because S1 in CIS-PSE 
is generated by marginal correlation, while S1 in HD-PSE is from LASSO. Thus, S1 generated 
from two methods can be different. To ensure a fair comparison, we let S1 in the first step from 
both CIS-PSE and HD-PSE be consistent. We consider different scenarios: (i) S1 is selected by 
LASSO; (ii) S1 is selected by the minimax concave penalty (MCP); (iii) S1 is selected using the 
marginal strong set suggested by LHL in the first step while producing CIS-PSE. For each of 

those aforementioned three cases, we compute the MUJI set  as suggested by LHL and 

then shrinking  in the direction of . We define those three estimates as 
LASSO-PSE, MCP-PSE, and CIS-PSE, correspondingly. We then recheck those two examples, 
compare their performance, and report the results in Tables 1 and 2 ‡. When pn=100,000, we 
apply ridge regression and keep the 500 variables with the largest absolute coefficients before 
applying our algorithm. 

Table 1. Simulated results for example 1 

Method MUJI 
(Y/N) 

  pn=400 pn=100,000 

LASSO-
PSE 

  
 

6 6 

  No MSE 0.0015 0.0046 
    MPE 0.0501 0.1661 
    RMSE 5.0701 3.1477 
  Yes MSE 0.0022 0.0129 
    MPE 0.0279 0.5374 
    RMSE 3.4907 1.0945 
MCP-PSE   

 

3 3 
  No MSE 0.1284 0.0196 
    MPE 1.9041 0.2629 
    RMSE 0.3456 0.6933 
  Yes MSE 0.0154 0.0049 
    MPE 0.2447 0.0755 
    RMSE 2.8821 2.6005 
CIS-PSE   

 

3 3 
  No MSE 1.4339 0.1215 
    MPE 20.5638 1.6907 
    RMSE 0.0754 0.5184 
  Yes MSE 0.0431 0.0151 
    MPE 0.5850 0.3049 
    RMSE 2.5070 1.9322 

Larger RMSE, smaller MSE, and smaller MPE indicate better performance. CIS, Covariance 
Insured Screening; MPE, mean prediction error; MSE, mean squared error; PSE, post-selection 
shrinkage estimation; RMSE, relative mean squared error. 



Table 2. Simulated results for example 2 

Method MUJI(Y/N)   pn=400 pn=100,000 
LASSO-
PSE 

  
 

3 3 

  No MSE 0.0018 0.0100 
    MPE 0.0225 0.1594 
    RMSE 8.4982 4.6249 
  Yes MSE 0.0067 0.0294 
    MPE 0.0917 0.4487 
    RMSE 2.3025 1.5091 
MCP-PSE   

 

3 3 
  No MSE 0.0018 0.0100 
    MPE 0.0225 0.1594 
    RMSE 8.4982 4.6249 
  Yes MSE 0.0067 0.0294 
    MPE 0.0917 0.4487 
    RMSE 2.2974 1.5091 
CIS-PSE   

 

3 3 
  No MSE 1.2953 0.0100 
    MPE 13.5683 0.1594 
    RMSE 0.0719 4.6249 
  Yes MSE 0.0262 0.0294 
    MPE 0.3166 0.4487 
    RMSE 2.5238 1.5091  

Larger RMSE, smaller MSE, smaller MPE indicate better performance. CIS, Covariance Insured 
Screening; MPE, mean prediction error; MSE, mean squared error; PSE, post-selection shrinkage 
estimation; RMSE, relative mean squared error.  

In the tables, we report mean squared error and relative mean squared error. We also report the 
mean prediction error based upon the selected subset, defined as 

 

In Example 1 in LHL, there is strong correlation among three covariates with weak signals and 
three covariates with strong signals. From the evaluation results reported in Table 1, we observe 
that when using the MCP-PSE and CIS-PSE, incorporating the MUJI variables improves the 
performance of the method as it can include additional signals from the MUJI set. However, 
when using LASSO-PSE, it is clear that using MUJI actually deteriorates the performance of the 
method by having larger mean squared errors and smaller relative mean squared errors. This is 
probably because LASSO already selects some weak signals in additional to the strong signals, 
which makes the MUJI detection step unnecessary. In Example 2 in LHL, there is strong 
correlation among three noise covariates and three covariates with strong signals. From the 
evaluation results reported in Table 2, we observe that both Lasso and MCP only select strong 
signals with no weak signals. Incorporating MUJI variables deteriorates the performances of 



both MCP-PSE and LASSO-PSE in this case. This is because MUJI variables may pick up those 
noises in the second step. However, CIS-PSE with MUJI variables can help to improve the 
performance of the method. 

From this preliminary numerical study, we can see that including MUJI variables may or may 
not improve the performance of the PSE, depending on the selected submodel. 

The corresponding theoretical analysis regarding when the MUJI variables help the final 
estimation is an interesting open research question. 

4 About the algorithm 

DF suggested to use the partial least square method in the second step to select the weak signals, 
as opposed to the current weighted ridge regression. We appreciate the suggestion; however, one 
still needs to impose regularization on the estimates, which would lead to a different strategy and 
should be of interest for further research. 

QYY posed the question about the selection of the tuning parameters an and rn in the PSE 
strategy. We agree that the proposed cross-validation method, while effective in our limited 
numerical experience, may need further theoretical justification. Recently, [4, 5] conducted a 
systematic study on the cross-validation-based tuning parameter selection method for high-
dimensional penalized regression problems. Some work along similar lines could be an 
interesting research project. In addition, it is also important to develop a certain adaptive tuning 
parameter selection method and demonstrate its robustness against model misspecification. 

5 Future directions 

This paper introduced the post-shrinkage estimation framework and used specific methods to 
select the strong and weak signals. The shrinkage estimation received a lot of attention since its 
inception decades ago. It strikes a balance between post-selected submodels and high-
dimensional weighted ridge estimators and is proved to be an effective strategy. 

There are a number of alternatives to mimick the ideas of the PSE. For example, Fan suggested a 
great idea involving using the penalized least square with different penalty levels, closely related 
to the folded concave penalties including the smoothly clipped absolute deviations penalty 
(SCAD) and MCP. 

The current methodology can be extended in a host of directions, including nonparametric 
models (suggested by QYY), spatially corrected data, among others. We would like to remark 
here that shrinkage estimation strategies have already been applied to some nonparametric 
models in low-dimensional cases such as [6-8], among others that can be extended to high-
dimensional cases. 

Another interesting direction would be to study the shrinkage method in robust high-dimensional 
data analysis, such as M-estimation. Recently, [9, 10] proposed penalized weighted least squares 
and penalized weighted least absolute deviation methods to study robust high-dimensional 
regression. The methods unify the M-estimation in a penalized weighted least squares and least 



absolute deviation framework. Such a connection will enable us to extend the post-selection 
shrinkage strategy to robust high-dimensional regression models. 

The scope of research in PSE is expanding. How to develop a system of diagnostic tools for the 
high-dimensional post-shrinkage estimators is an important direction for future research, as 
suggested by QYY. 
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