ON DENSITY OF RATIO SETS OF POWERS OF PRIMES

János Tóth and László Zsilinszky

College of Education, Mathematics Department, Farská 19, 949 74 Nitra, Slovakia

INTRODUCTION

Denote by \mathbb{R}^+ and \mathbb{N} the set of all positive real numbers and the natural numbers, respectively. Let $P = \{p_1, \ldots, p_n, \ldots\}$ be the set of all primes enumerated in increasing order. Denote by $R(A, B) = \{\frac{a}{b}; a \in A, b \in B\}$ the ratio set of $A, B \subset \mathbb{R}^+$ and put R(A) = R(A, A) for $A \subset \mathbb{R}^+$ (cf. [3],[4],[5]). Note that $R(A, B) \neq R(B, A)$ in general, however R(A, B) is dense in \mathbb{R}^+ if and only if R(B, A) is dense in \mathbb{R}^+ .

If we consider the sets of powers of prime numbers $K_{\alpha} = \{p^{\alpha}; p \in P\}$ for $\alpha > 0$ and $K = \{p^{p}; p \in P\}$ it can be shown that they are sparser on the real line than P. More precisely, denote by $K_{\alpha}(x), K(x)$ and $\pi(x)$, respectively, the number of elements of K_{α}, K and P, respectively, not exceeding $x \in \mathbb{N}$. Then clearly $K_{\alpha}(x) = \pi(x^{1/\alpha})$, hence if $\alpha > 1$, then

$$0 \le \frac{K_{\alpha}(x)}{\pi(x)} = \frac{\pi(x^{1/\alpha})}{\pi(x)} \sim \alpha x^{\frac{1}{\alpha}-1} \to 0 \ (x \to \infty)$$

by the Prime Number Theorem (cf.[2],p.152). Further let $\alpha > 0$. Choose $\beta > \alpha$ and let x be sufficiently large so that $p_n > \beta$, where n = K(x). Then $K(x) \leq K_{\beta}(x)$ and hence

$$0 \le \frac{K(x)}{K_{\alpha}(x)} \le \frac{K_{\beta}(x)}{K_{\alpha}(x)} = \frac{\pi(x^{1/\beta})}{\pi(x^{1/\alpha})} \sim \frac{\beta}{\alpha} x^{\frac{1}{\beta} - \frac{1}{\alpha}} \to 0 \ (x \to \infty)$$

by the Prime Number Theorem.

On the other hand it is known that R(P) is dense in \mathbb{R}^+ (see [2],p.155 and [1]), thus in light of the previous considerations it is of interest to investigate what is the density of sets R(A, B) if we choose for A, B the sets K_{α} and K, respectively.

It is the purpose of this note to show that the sets $R(K_{\alpha}, K_{\beta})$ and $R(K_{\alpha}, K)$, respectively are still dense in \mathbb{R}^+ , while R(K) already consists of isolated points in \mathbb{R}^+ as do the larger sets $\mathcal{A}_0 = \{(\frac{m}{n})^m; m, n \in \mathbb{N}\}$ and $\mathcal{A}_1 = \{(\frac{m}{n})^n; m, n \in \mathbb{N}\}$, respectively.

We will say that the set A of values of the sequence $\{a_n\}_{n=1}^{\infty}$ of positive real numbers is *lacunary* if $\liminf_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$. The symbol X^d will stand for the set of all accumulation points of $X \subset \mathbb{R}^+$.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

MAIN RESULTS

An argument similar to that of [2] justifying the density of R(P) in \mathbb{R}^+ yields the following

Proposition 1. The set $R(K_{\alpha}, K_{\beta})$ is dense in \mathbb{R}^+ for every $\alpha, \beta > 0$.

Proof. Choose 0 < a < b arbitrarily. It is not hard to show by the Prime Number Theorem ([2],p.152) that $\frac{\pi((bx)^{1/\alpha})}{\pi((ax)^{1/\alpha})} \to (\frac{b}{a})^{1/\alpha}$ as $x \to \infty$. Further $(\frac{b}{a})^{1/\alpha} > 1$, and consequently there exists an $x_0 > 0$ such that $\pi((bx)^{1/\alpha}) - \pi((ax)^{1/\alpha}) > 0$ for all $x \ge x_0$.

It means that there exist primes p, q such that

$$(aq^{\beta})^{1/\alpha}$$

Hence $R(K_{\alpha}, K_{\beta})$ is dense in \mathbb{R}^+ . \Box

Further we have

Proposition 2. The set $R(K, K_{\alpha})$ is dense in \mathbb{R}^+ for all $\alpha > 0$.

Proof. Choose 0 < a < b arbitrarily. It is known that $\frac{p_{n+1}}{p_n} \to 1$ as $n \to \infty$ (see [2],p.153), thus $(\frac{p_{n+1}}{p_n})^{\alpha} \to 1$ as $n \to \infty$. Therefore we can find $m \in \mathbb{N}$ such that for each $n \ge m$

(1)
$$\frac{p_{n+1}^{\alpha}}{p_n^{\alpha}} < \frac{b}{a}.$$

Pick $p_0 \in P$ for which $p_m^{\alpha} a < p_0^{p_0}$ and put

$$q_0 = \max\{p \in P; p \ge p_m \text{ and } p^{\alpha}a < p_0^{p_0}\}.$$

Then clearly $q_0 \in P$, say $q_0 = p_s$ $(s \ge m)$, and by (1) we get

$$q_0^{\alpha}a = p_s^{\alpha}a < p_0^{p_0} \le p_{s+1}^{\alpha}a < p_s^{\alpha}b = q_0^{\alpha}b, \text{ hence } \frac{p_0^{p_0}}{q_0^{\alpha}} \in (a,b) \cap R(K,K_{\alpha}),$$

which proves the density of $R(K, K_{\alpha})$ in \mathbb{R}^+ . \Box

The following proposition demonstrates that R(K) cannot be dense:

Proposition 3. Let the sequence $0 < a_1 < a_2 < \dots$ be lacunary. Denote

$$\liminf_{n \to \infty} \frac{a_{n+1}}{a_n} = c \text{ where } c \in (1, +\infty].$$

Then R(A) is not dense in \mathbb{R}^+ , moreover

(2)
$$R(A)^d \cap (\frac{1}{c}, c) = \emptyset.$$

Proof. Let $t \in R(A)^d$. Clearly $t \neq 1$. Suppose t > 1. Then there exist increasing sequences $\{m_k\}_{k=1}^{\infty}$ and $\{n_k\}_{k=1}^{\infty}$ of natural numbers such that $m_k > n_k$ $(k \in \mathbb{N})$ and $\frac{a_{m_k}}{a_{n_k}} \to t$ $(k \to \infty)$. The sequence $\{a_n\}_{n=1}^{\infty}$ is increasing thus

$$t \ge \liminf_{n \to \infty} \frac{a_{n+1}}{a_n} = c.$$

If t < 1 we analogously get that

$$t \le \limsup_{n \to \infty} \frac{a_n}{a_{n+1}} = \frac{1}{c}.$$

This justifies (2). \Box

Corollary. Each point of R(K) is isolated in \mathbb{R}^+ .

Proof. It suffices to observe that K is lacunary, moreover $\lim_{n\to\infty} \frac{p_{n+1}^{p_{n+1}}}{p_n^{p_n}} = +\infty$. Therefore in view of (2) we get $R(K)^d \cap (0, +\infty) = \emptyset$. \Box

Finally we have

Proposition 4. The sets A_0 and A_1 consist of isolated points in \mathbb{R}^+ .

Proof. Let $t \in \mathcal{A}_0^d$. We can easily see that $t \neq 1$. Suppose t > 1 and denote by $t_k = \left(\frac{m_k}{n_k}\right)^{m_k} \in \mathcal{A}_0$ a sequence converging to t such that $t_k > 1$ for all $k \in \mathbb{N}$. There are two possibilities:

i) there exists an $s \in \mathbb{N}$ such that $m_k = n_k + s$ for infinitely many indices k. Then we can find a subsequence $\{t_{k_l}\}_{l=1}^{\infty}$ of $\{t_k\}_{k=1}^{\infty}$ for which

$$t_{k_l} = (\frac{n_{k_l} + s}{n_{k_l}})^{n_{k_l} + s} = (1 + \frac{s}{n_{k_l}})^{n_{k_l}} (1 + \frac{s}{n_{k_l}})^s \to e^s, \text{ as } l \to \infty.$$

Consequently $t = e^s$.

ii) for all $s \in \mathbb{N}$ there are only finitely many k's such that $m_k = n_k + s$. Then there exists an increasing sequence $\{k_s\}_{s=1}^{\infty}$ of natural numbers such that $m_{k_s} > n_{k_s} + s$ for each $s \in \mathbb{N}$. In view of the well-known Bernoulli's inequality we get

$$t_{k_s} = (\frac{m_{k_s}}{n_{k_s}})^{m_{k_s}} > (1 + \frac{s}{n_{k_s}})^{n_{k_s}} \ge 1 + s \text{ for every } s \in \mathbb{N},$$

accordingly $t = +\infty$.

Considering the case t < 1 we can similarly get that $e^{-s} \in \mathcal{A}_0^d$ for all $s \in \mathbb{N}$ and $0 \in \mathcal{A}_0^d$. It is now clear that

$$\mathcal{A}_0^d = \{0, +\infty\} \cup \{e^s; s = \pm 1, \pm 2, \dots\},\$$

thus $\mathcal{A}_0 \cap \mathcal{A}_0^d = \emptyset$ since the elements of \mathcal{A}_0 are positive rationals.

A similar argument applies to \mathcal{A}_1 . \Box

Remark. In connection with Proposition 1 and the Corollary Prof. Šalát has posed the following problem:

Characterize sequences $\{\alpha_n\}_{n=1}^{\infty}$ of positive reals for which the ratio set of $\{p_1^{\alpha_1}, p_2^{\alpha_2}, \ldots\}$ is dense in \mathbb{R}^+ .

JÁNOS TÓTH AND LÁSZLÓ ZSILINSZKY

References

- [1] D.Hobby and D.M.Silberger, Quotients of Primes, Amer. Math. Monthly 100 (1993), 50-52.
- [2] W.Sierpiński, Elementary Theory of Numbers, PWN, Warszawa, 1964.
- [3] J.Smítal, Remarks on ratio sets of sets of natural numbers, Acta F.R.N. Univ. Comen.-Math. 25 (1971), 93-99.
- [4] T.Šalát, On ratio sets of sets of natural numbers, Acta Arith. 15 (1969), 273-278.
- [5] T.Šalát, Quotientbasen und (R)-dichte Mengen, Acta Arith. 19 (1971), 63-78.