ON DENSITY OF RATIO SETS OF POWERS OF PRIMES

JÁnos Tóth and LászLó Zsilinszky

College of Education, Mathematics Department, Farská 19, 94974 Nitra, Slovakia

Introduction

Denote by \mathbb{R}^{+}and \mathbb{N} the set of all positive real numbers and the natural numbers, respectively. Let $P=\left\{p_{1}, \ldots, p_{n}, \ldots\right\}$ be the set of all primes enumerated in increasing order. Denote by $R(A, B)=\left\{\frac{a}{b} ; a \in A, b \in B\right\}$ the ratio set of $A, B \subset \mathbb{R}^{+}$ and put $R(A)=R(A, A)$ for $A \subset \mathbb{R}^{+}$(cf. [3],[4],[5]). Note that $R(A, B) \neq R(B, A)$ in general, however $R(A, B)$ is dense in \mathbb{R}^{+}if and only if $R(B, A)$ is dense in \mathbb{R}^{+}.

If we consider the sets of powers of prime numbers $K_{\alpha}=\left\{p^{\alpha} ; p \in P\right\}$ for $\alpha>0$ and $K=\left\{p^{p} ; p \in P\right\}$ it can be shown that they are sparser on the real line than P. More precisely, denote by $K_{\alpha}(x), K(x)$ and $\pi(x)$, respectively, the number of elements of K_{α}, K and P, respectively, not exceeding $x \in \mathbb{N}$. Then clearly $K_{\alpha}(x)=\pi\left(x^{1 / \alpha}\right)$, hence if $\alpha>1$, then

$$
0 \leq \frac{K_{\alpha}(x)}{\pi(x)}=\frac{\pi\left(x^{1 / \alpha}\right)}{\pi(x)} \sim \alpha x^{\frac{1}{\alpha}-1} \rightarrow 0(x \rightarrow \infty)
$$

by the Prime Number Theorem (cf.[2],p.152). Further let $\alpha>0$. Choose $\beta>\alpha$ and let x be sufficiently large so that $p_{n}>\beta$, where $n=K(x)$. Then $K(x) \leq K_{\beta}(x)$ and hence

$$
0 \leq \frac{K(x)}{K_{\alpha}(x)} \leq \frac{K_{\beta}(x)}{K_{\alpha}(x)}=\frac{\pi\left(x^{1 / \beta}\right)}{\pi\left(x^{1 / \alpha}\right)} \sim \frac{\beta}{\alpha} x^{\frac{1}{\beta}-\frac{1}{\alpha}} \rightarrow 0(x \rightarrow \infty)
$$

by the Prime Number Theorem.
On the other hand it is known that $R(P)$ is dense in \mathbb{R}^{+}(see [2],p. 155 and [1]), thus in light of the previous considerations it is of interest to investigate what is the density of sets $R(A, B)$ if we choose for A, B the sets K_{α} and K, respectively.

It is the purpose of this note to show that the sets $R\left(K_{\alpha}, K_{\beta}\right)$ and $R\left(K_{\alpha}, K\right)$, respectively are still dense in \mathbb{R}^{+}, while $R(K)$ already consists of isolated points in \mathbb{R}^{+}as do the larger sets $\mathcal{A}_{0}=\left\{\left(\frac{m}{n}\right)^{m} ; m, n \in \mathbb{N}\right\}$ and $\mathcal{A}_{1}=\left\{\left(\frac{m}{n}\right)^{n} ; m, n \in \mathbb{N}\right\}$, respectively.

We will say that the set A of values of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of positive real numbers is lacunary if $\liminf _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1$. The symbol X^{d} will stand for the set of all accumulation points of $X \subset \mathbb{R}^{+}$.

Main Results

An argument similar to that of [2] justifying the density of $R(P)$ in \mathbb{R}^{+}yields the following

Proposition 1. The set $R\left(K_{\alpha}, K_{\beta}\right)$ is dense in \mathbb{R}^{+}for every $\alpha, \beta>0$.
Proof. Choose $0<a<b$ arbitrarily. It is not hard to show by the Prime Number Theorem ([2],p.152) that $\frac{\pi\left((b x)^{1 / \alpha}\right)}{\pi\left((a x)^{1 / \alpha}\right)} \rightarrow\left(\frac{b}{a}\right)^{1 / \alpha}$ as $x \rightarrow \infty$. Further $\left(\frac{b}{a}\right)^{1 / \alpha}>1$, and consequently there exists an $x_{0}>0$ such that $\pi\left((b x)^{1 / \alpha}\right)-\pi\left((a x)^{1 / \alpha}\right)>0$ for all $x \geq x_{0}$.

It means that there exist primes p, q such that

$$
\left(a q^{\beta}\right)^{1 / \alpha}<p<\left(b q^{\beta}\right)^{1 / \alpha} \text {, i.e. } \frac{p^{\alpha}}{q^{\beta}} \in(a, b) \cap R\left(K_{\alpha}, K_{\beta}\right) .
$$

Hence $R\left(K_{\alpha}, K_{\beta}\right)$ is dense in \mathbb{R}^{+}.
Further we have
Proposition 2. The set $R\left(K, K_{\alpha}\right)$ is dense in \mathbb{R}^{+}for all $\alpha>0$.
Proof. Choose $0<a<b$ arbitrarily. It is known that $\frac{p_{n+1}}{p_{n}} \rightarrow 1$ as $n \rightarrow \infty$ (see [2],p.153), thus $\left(\frac{p_{n+1}}{p_{n}}\right)^{\alpha} \rightarrow 1$ as $n \rightarrow \infty$.

Therefore we can find $m \in \mathbb{N}$ such that for each $n \geq m$

$$
\begin{equation*}
\frac{p_{n+1}^{\alpha}}{p_{n}^{\alpha}}<\frac{b}{a} . \tag{1}
\end{equation*}
$$

Pick $p_{0} \in P$ for which $p_{m}^{\alpha} a<p_{0}^{p_{0}}$ and put

$$
q_{0}=\max \left\{p \in P ; p \geq p_{m} \text { and } p^{\alpha} a<p_{0}^{p_{0}}\right\} .
$$

Then clearly $q_{0} \in P$, say $q_{0}=p_{s}(s \geq m)$, and by (1) we get

$$
q_{0}^{\alpha} a=p_{s}^{\alpha} a<p_{0}^{p_{0}} \leq p_{s+1}^{\alpha} a<p_{s}^{\alpha} b=q_{0}^{\alpha} b, \text { hence } \frac{p_{0}^{p_{0}}}{q_{0}^{\alpha}} \in(a, b) \cap R\left(K, K_{\alpha}\right)
$$

which proves the density of $R\left(K, K_{\alpha}\right)$ in \mathbb{R}^{+}.
The following proposition demonstrates that $R(K)$ cannot be dense:
Proposition 3. Let the sequence $0<a_{1}<a_{2}<\ldots$ be lacunary. Denote

$$
\liminf _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=c \text { where } c \in(1,+\infty] \text {. }
$$

Then $R(A)$ is not dense in \mathbb{R}^{+}, moreover

$$
\begin{equation*}
R(A)^{d} \cap\left(\frac{1}{c}, c\right)=\emptyset \tag{2}
\end{equation*}
$$

Proof. Let $t \in R(A)^{d}$. Clearly $t \neq 1$. Suppose $t>1$. Then there exist increasing sequences $\left\{m_{k}\right\}_{k=1}^{\infty}$ and $\left\{n_{k}\right\}_{k=1}^{\infty}$ of natural numbers such that $m_{k}>n_{k}(k \in \mathbb{N})$ and $\frac{a_{m_{k}}}{a_{n_{k}}} \rightarrow t(k \rightarrow \infty)$. The sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is increasing thus

$$
t \geq \liminf _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=c .
$$

If $t<1$ we analogously get that

$$
t \leq \limsup _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=\frac{1}{c}
$$

This justifies (2).
Corollary. Each point of $R(K)$ is isolated in \mathbb{R}^{+}.
Proof. It suffices to observe that K is lacunary, moreover $\lim _{n \rightarrow \infty} \frac{p_{n+1}^{p_{n+1}}}{p_{n}^{p n}}=+\infty$. Therefore in view of (2) we get $R(K)^{d} \cap(0,+\infty)=\emptyset$.

Finally we have
Proposition 4. The sets \mathcal{A}_{0} and \mathcal{A}_{1} consist of isolated points in \mathbb{R}^{+}.
Proof. Let $t \in \mathcal{A}_{0}^{d}$. We can easily see that $t \neq 1$. Suppose $t>1$ and denote by $t_{k}=\left(\frac{m_{k}}{n_{k}}\right)^{m_{k}} \in \mathcal{A}_{0}$ a sequence converging to t such that $t_{k}>1$ for all $k \in \mathbb{N}$. There are two possibilities:
i) there exists an $s \in \mathbb{N}$ such that $m_{k}=n_{k}+s$ for infinitely many indices k. Then we can find a subsequence $\left\{t_{k_{l}}\right\}_{l=1}^{\infty}$ of $\left\{t_{k}\right\}_{k=1}^{\infty}$ for which

$$
t_{k_{l}}=\left(\frac{n_{k_{l}}+s}{n_{k_{l}}}\right)^{n_{k_{l}}+s}=\left(1+\frac{s}{n_{k_{l}}}\right)^{n_{k_{l}}}\left(1+\frac{s}{n_{k_{l}}}\right)^{s} \rightarrow e^{s}, \text { as } l \rightarrow \infty .
$$

Consequently $t=e^{s}$.
ii) for all $s \in \mathbb{N}$ there are only finitely many k 's such that $m_{k}=n_{k}+s$. Then there exists an increasing sequence $\left\{k_{s}\right\}_{s=1}^{\infty}$ of natural numbers such that $m_{k_{s}}>n_{k_{s}}+s$ for each $s \in \mathbb{N}$. In view of the well-known Bernoulli's inequality we get

$$
t_{k_{s}}=\left(\frac{m_{k_{s}}}{n_{k_{s}}}\right)^{m_{k_{s}}}>\left(1+\frac{s}{n_{k_{s}}}\right)^{n_{k_{s}}} \geq 1+s \text { for every } s \in \mathbb{N}
$$

accordingly $t=+\infty$.
Considering the case $t<1$ we can similarly get that $e^{-s} \in \mathcal{A}_{0}^{d}$ for all $s \in \mathbb{N}$ and $0 \in \mathcal{A}_{0}^{d}$. It is now clear that

$$
\mathcal{A}_{0}^{d}=\{0,+\infty\} \cup\left\{e^{s} ; s= \pm 1, \pm 2, \ldots\right\}
$$

thus $\mathcal{A}_{0} \cap \mathcal{A}_{0}^{d}=\emptyset$ since the elements of \mathcal{A}_{0} are positive rationals.
A similar argument applies to \mathcal{A}_{1}.
Remark. In connection with Proposition 1 and the Corollary Prof. Šalát has posed the following problem:

Characterize sequences $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ of positive reals for which the ratio set of $\left\{p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}}, \ldots\right\}$ is dense in \mathbb{R}^{+}.

References

[1] D.Hobby and D.M.Silberger, Quotients of Primes, Amer. Math. Monthly 100 (1993), 50-52.
[2] W.Sierpiński, Elementary Theory of Numbers, PWN, Warszawa, 1964.
[3] J.Smítal, Remarks on ratio sets of sets of natural numbers, Acta F.R.N. Univ. Comen.-Math. 25 (1971), 93-99.
[4] T.Šalát, On ratio sets of sets of natural numbers, Acta Arith. 15 (1969), 273-278.
[5] T.Šalát, Quotientbasen und (R)-dichte Mengen, Acta Arith. 19 (1971), 63-78.

