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Abstract

Across the entire distribution of a species, populations may have variable responses to envi-

ronmental perturbations. Many bat species experience mortality in large portions of their

range during hibernation and along migratory paths to and from wintering grounds, from

White-nose syndrome (WNS) and wind energy development, respectively. In some areas,

warm temperatures may allow bats to remain active through winter, thus decreasing their

susceptibility to WNS and/or mortality associated with migration to wintering grounds.

These areas could act as a refugia and be important for the persistence of local populations.

To determine if warmer temperatures affect bat activity, we compared year-round activity of

bat populations in the Coastal Plain and Piedmont of North Carolina, USA, two regions that

differ in winter temperature. We established six recording stations, four along a 295-kilome-

ter north-south transect in the Coastal Plain, and two in the Piedmont of North Carolina. We

recorded bat activity over two years. We supplemented our recordings with mist-net data.

Although bat activity was lower during winter at all sites, the odds of recording a bat during

winter were higher at Coastal Plain sites when compared with Piedmont sites. Further, bats

in the Piedmont had a lower level of winter activity compared to summer activity than bats in

the Coastal Plain that had more similar levels of activity in the winter and summer. We found

high bat species richness on the Coastal Plain in winter, with winter-active species including

those known to hibernate throughout most of their range and others known to be long dis-

tance migrants. In particular, two species impacted by WNS, the northern long-eared bat

(Myotis septentrionalis) and tricolored bat (Perimyotis subflavus), were present year round

in the Coastal Plain. The tricolored bat was also present year-round in the Piedmont. In the

Coastal Plain, the long distance migratory hoary bat (Lasiurus cinereus) was active in the

winter but not present during the other seasons, and the long distance migratory silver-

haired bat (Lasionycteris noctivagans) was active primarily in the winter, suggesting the

Coastal Plain may be an overwintering ground for these two species. We suggest that the

winter activity exhibited by populations of bats on the North Carolina Coastal Plain has
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important conservation implications and these populations should be carefully monitored

and afforded protection.

Introduction

In temperate regions during the winter, bats generally migrate, either to hibernacula or

warmer wintering grounds. Bats that hibernate in winter when food becomes scarce often

undertake regional migrations up to several hundred kilometers [1]. Alternatively, some tem-

perate bat species such as Lasiurus cinereus and Lasionycteris noctivagans, migrate long dis-

tances to warmer wintering grounds [1,2]. During these movements, bats use distinct

geographic features for navigation, and forested areas for brief stopovers to forage and roost

[3–5]. Although rare, some individuals do not leave their summering area, but instead remain

resident and active, or remain resident and use a combination of activity and short torpor

bouts [6,7]. This winter residency is possible where nightly temperatures are warm enough for

insectivorous prey to be active.

Currently, seven temperate bat species in eastern North America have shown symptoms of

White-nose syndrome (WNS) with some species experiencing high mortality during hiberna-

tion [8]. WNS is caused by Pseudogymnoascus destructans, a fungus that grows on the skin of

bats during hibernation [9,10]. While death from WNS is not fully understood, the disease

causes more frequent arousal events during winter torpor bouts, leading to death [11,12].

WNS has killed millions of bats in the United States [13], with several species seeing significant

declines [14]. Bats that do not succumb to WNS in the winter months often show signs of dete-

riorated wings and poor body condition, which can lower future foraging and reproductive

success [15].

Bats have also seen increased mortality associated with wind turbines. Bat fatalities from

wind turbines occur predominantly in Lasiurus cinereus, Lasiurus borealis, and Lasionycteris
noctivagans in late summer and early autumn, coinciding with their seasonal migration

[1,16,17]. Arnett and Baerwald [18] estimated that hundreds of thousands to> 1 million bats

died from wind turbines between 2000 and 2011. Hypotheses about why bats are killed at wind

turbines center on pre-existing sensory biases that make turbines attractive to bats [16]. Bats

may not have the cognitive ability to distinguish turbines from trees, and may approach tur-

bines expecting to land at potential roost sites, find insects aggregations on the leeward side, or

find other bats as potential mates [16,17]. Regardless of why bats are attracted to wind tur-

bines, fatalities are increased because wind turbines are often placed adjacent to migratory cor-

ridors, such as forested ridgetops [3]. Thus, bats that make seasonal movements associated

with the onset and retreat of winter are more susceptible to mortality from wind turbines than

resident bats.

Semi-tropical and temperate coastal areas, like those of the Coastal Plain of the southeastern

United States, may be warm enough for bats to remain active year-round. These areas have

mild winters due to pole-ward movement of ocean waters that release heat to surrounding

land masses as they move from tropical regions, a process of land warming that has more influ-

ence on temperature during winter months [19,20]. Six of the species that occur in the North

Carolina Coastal Plain have experienced mortality over some of their range due to WNS and

wind turbines. If populations of these species use different behaviors and are active in the

Coastal Plain year round, they could avoid contact with, or have reduced mortality from WNS.

If the tree bat species do not migrate, then they may also have lower fatalities from wind
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turbines. The objective of this study was to determine if populations of bats in the North Caro-

lina Coastal Plain sustain higher winter activity than non-coastal populations.

Methods

We examined bat activity at six sites in the Coastal Plain and Piedmont of North Carolina (Fig

1). Sites represented common forest types of each region. The Coastal Plain sites included two

intensively managed forest (Parker Tract and Lenoir 1), and two bottomland hardwood forest

(North River Game Land, and South River) sites. The South River site was originally located

on Whitehall Plantation Game Land (near South River) but equipment was vandalized and

subsequently moved to South River in February 2013. Sites in the Piedmont contained an

urban eastern mixed hardwood forest (Greensboro) and an eastern mixed hardwood forest

(Uwharrie National Forest).

Fig 1. Location of field sites in the Piedmont and Coastal Plain regions of North Carolina, USA. The two Piedmont sites are Greensboro and the

Uwharrie National Forest. The four Coastal Plain sites are North River, Parker Tract, Lenoir 1, and South River. Despite the proximity of regions,

winters are milder in the Coastal Plain than the Piedmont.

doi:10.1371/journal.pone.0166512.g001
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Field Methods

Bat activity was measured using Song Meter SM2 and SM2+ bat ultrasound detectors (hence-

forth “detectors”; Wildlife Acoustics, Concord, Massachusetts), which recorded sunset to sun-

rise, each night. Microphones were set 10 to 30 feet off the ground. For recording consistency

among detectors, we used the following settings: recording at 48 decibels, high-pass filter set to

1000 Hertz, and sampling rate set to 192,000 Hz (the only option for the SM2+).

Acoustic data were collected on 2,885 nights from 1 September 2012 to 31 August 2014. Sta-

tions operated for an average of 480.8 (SD 137.2) nights during the study. Recording did not

take place every night due to equipment malfunction, theft, and wildlife encounters. During

the winter of 2012, recording stations were missing the first hour of recording for three days at

three coastal sites due to a mistake in settings on the recording units. These nine days were

included, even though they underestimated winter activity.

We measured relative bat activity by manually examining and counting all recorded .wav

files in SonoBat 3.2 NE (henceforth “SonoBat”; DND Designs, Arcata, California). Files con-

taining at least one bat echolocation pulse were counted as a single echolocation sequence

(henceforth sequence) for the night it was recorded. Files with recordings from more than one

bat were conservatively counted as a single sequence. Files that contained bat social calls (ie,

calls not part of an echolocation sequence) were counted as a sequence if a search phase echo-

location pulse was in the recording. Eleven winter nights with high numbers of sequences

were randomly selected to determine if they contained feeding buzzes [21,22]

Sequences were analyzed to species using the auto classifiers SonoBat 3.2 NE and BCID

East 2.6a (henceforth “BCID”; Bat Call Identification Inc., Kansas City, Missouri). SonoBat

contains all species potentially present, except for the Southeastern myotis (M. austroriparius),
Seminole bat (Lasiurus seminolus) and Northern yellow bat (Lasiurus intermedius). BCID con-

tains all species potentially present with the exception of the Seminole bat and the Northern

yellow bat. For auto classification, files were first processed through the SonoBat SM2 Batch

Attributer and Batch Scrubber 5.2 to compensate for using xms-ultrasound microphones and

to remove low quality recordings. Second, remaining files were run through SonoBat using

recommended settings for SM2 and SM2+ recordings as maximum number of calls to con-

sider per file = 8, acceptable call quality = 0.7, and decision threshold = 0.9. Further, identified

echolocation sequences were not accepted unless a minimum of 3 pulses was identified and

there was “consensus” species decision. All sequences identified using SonoBat were then con-

verted to zero-cross files using Kaleidoscope software 2.0.7 (Wildlife Acoustics, Concord, Mas-

sachusetts). Converted zero-cross files were then identified a second time using BCID, to

validate the initial classification made in SonoBat. In BCID the default settings were used, and

at least five identifiable pulses were needed to identify a species. All identified calls from the

genus Myotis were manually inspected to confirm identification and were put into one group,

Myotis. Identifications were only accepted and used for analysis if there was concordance

between SonoBat and BCID.

In total, 152,078 echolocation sequences were recorded. On average 25,346.3 (SD 23,466.9)

sequences were recorded at each site, and across all sites an average of 3,543.2 (SD 5,923.3)

sequences were recorded during each season. Of the 152,078 sequences recorded, 36,632 could

be identified to species using SonoBat and of these, 7,238 could be identified to the same spe-

cies using BCID. Although 7,238 recorded files could be identified to species (S1 Table), mak-

ing inferences about seasonal changes in species composition was limited by small sample

sizes at some sites. Thus, we examined species presence based on acoustic recordings by

region.
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Both relative bat activity and species-specific relative bat activity were examined in relation

to nightly temperature and season to assess differences in winter activity between Piedmont

and Coastal Plain populations. We defined winter as December–February, spring as March–

May, summer as June–August, and autumn as September–November. Nightly temperature

was determined for all recording nights by calculating a mean of all hourly temperature mea-

surements between sunset and sunrise. Hourly temperature measurements were obtained

from weather stations run by the North Carolina State Climate office (http://www.nc-climate.

ncsu.edu). Weather stations were 12.3 km (SD 6.1) with a range of 4.2 to 22.9 km, from record-

ing sites. Nights with missing temperature data were only used if two or fewer non-consecu-

tive, hourly temperature measurements were missing. Our seasonal definitions corresponded

to warmest and coldest months, for summer and winter, respectively, based on actual tempera-

tures during this study.

Mist netting for bats in the Coastal Plain occurred on 61 nights between summer 2012 and

winter 2013 with the majority of effort occurring in summer 2012 (S2 Table). We used mist

netting to complement bat activity data and to confirm the presence of species detected

through recordings. Mist netting occurred at all Coastal Plain sites during summer 2012 and

sporadically in the spring and winter of 2013. Mist-nets were set up on road/forest corridors

or around bodies of water using standard mist netting techniques [23] and under the permis-

sion of the North Carolina Wildlife Resources Commission and the UNCG Institutional Ani-

mal Care and Use Committee.

Statistical Methods

Normality and equality of variance of activity data were tested using Shapiro-Wilk and

Levene’s tests, respectively. Data violating parametric assumptions were normalized using nat-

ural log transformations. When transformations failed to normalize data, non-parametric tests

were used. Because of missing activity data during parts of some seasons in some years, year

could not be used as a unit of replication. Instead, seasons were pooled across years (i.e., a

summer night in 2012 and 2013 was coded as “summer”).

Kruskal-Wallis tests were used to compare winter temperatures between the Piedmont and

Coastal Plain regions. A ratio of the sum of summer sequences to winter sequences was calcu-

lated for each site to determine likelihood of recording summer vs winter echolocation pulse

sequences. Seasons did not have the same number of recording nights, therefore, all ratio

numerators and denominators were constrained to the smaller number of sampling nights by

averaging the sum of 1000 random subsets of nights from the season with the larger number of

sampling nights. We only had 2 Piedmont sites; therefore we did not statistically compare

ratios, but describe magnitude of difference of ratios between selected sites in each region. A

generalized linear mixed effects model was used to analyze the effects of temperature (Celsius),

region (Piedmont and Coastal Plain), season (winter and summer), and site (as a random

effect) on bat activity (calls/night). The model was run on untransformed data [24]. Because

our sample consists of count data, our sample size is large, and our data are robust to interpre-

tation issues from transformations, a generalized mixed effect model with a negative binomial

distribution (log link) and zero-inflation was used to account for overdispersion and excess

zeros, respectively. Residual and qq plots were used to determine that the negative binomial

distribution was the best fit for the data. Rather than using an automated selection process,

only biologically relevant models were considered. Model selection was based on Akaike infor-

mation criterion (AIC) values and the Akaike’s weights of the limited model set. Models were

further validated with Markov Chain Monte Carlo methods [25,26]. Although not all main

effects were statistically significant, all remained in the model to include interactions. Program
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R 3.3.0 [27] was used for all statistical analyses [packages: glmmADMB [25,26], and pgirmess

[28]].

Results

Coastal Plain sites were warmer on winter nights than Piedmont sites (Kruskal-Wallis chi-

squared = 24.33, df = 1, p< 0.001). The average nightly winter temperature at Piedmont sites

was 4.1 (SD 5.7) ˚C (n = 358 nights) whereas the average nightly winter temperature at Coastal

Plain sites was 6.0 (SD 5.9) ˚C (n = 689 nights).

Ratios of summer to winter sequences (Table 1) were highest in the two Piedmont sites and

Lenoir 1, a Coastal Plain site. Except for Lenoir 1, ratios were an order of magnitude less, and

closer to 1:1 in the Coastal Plain when compared to the Piedmont (Table 1). For example, in

Greensboro there were 37.8 times more summer bat echolocation pulse sequences recorded

than winter bat echolocation pulse sequences, whereas those values in Parker Tract and South

River were only 1.2 and 2.5, respectively (Table 1). The highest Piedmont ratio (Greensboro)

was 31.5 times that of the lowest Coastal Plain ratio (Parker Tract) and the lowest Piedmont

ratio (Uwharrie National Forest) was still 1.8 times that of the highest Coastal Plain ratio

(Lenoir 1; Table 1).

Our top generalized linear mixed effects model assessing fixed effects of temperature,

region, and season, with site as a random effect on bat activity had a three-way interaction of

temperature, season, and region (Tables 2 and 3).

Bat activity responded positively to temperature regardless of region (Fig 2). Given the

same increase in temperature, bats respond with higher activity in winter than summer (Fig 2).

Table 1. Average (± 1SE) number of echolocation pulse sequences at each site per night, and ratios of the sum of summer echolocation pulse

sequences divided by the sum of winter echolocation pulse sequences.

Site Region Summer Winter Adjusted Ratio

Greensboro Piedmont 25.4±1.9 0.7±0.1 37.8

Uwharrie Piedmont 529.4±38.6 21.5±9.0 24.7

North River Coastal Plain 85.7±6.6 11.2±2.3 7.6

Parker Tract Coastal Plain 10.4±0.6 8.9±2.6 1.2

Lenoir 1 Coastal Plain 10.2±2.1 0.8±0.4 13.5

South River Coastal Plain 110.6±13.3 56.2±15.1 2.5

Ratios were adjusted to account for differences in the number of days sampled between seasons.

doi:10.1371/journal.pone.0166512.t001

Table 2. Top models investigated to explain variation in calls per night with number of parameters

per model (k).

Model k wi Δ AIC

Activity ~ {t+r+s+t:r+r:s+t:r:s+(t:s|site)} 13 0.707 0.0

Activity ~ {t+s+(t:s|site)} 8 0.293 1.8

Activity ~ {t+r+s+t:r+r:s+t:s+t:r:s+(1|site)} 11 0.000 129.5

Activity ~ {r+t:r+(t|site)} 8 0.000 149.8

Activity ~ {1+(1|site)} 4 0.000 1162.0

The best model (bold) was selected based on AIC and normalized Akaike weight (wi). Temperature (t),

region (r), and season (s) were fixed effects and site was a random effect. For model syntax, we used a (:) to

denote an interaction and (|) to denote a random effect with effect|grouping factor; see [29] for more detailed

syntax description.

doi:10.1371/journal.pone.0166512.t002
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Activity during summer and winter was dependent on region, with Piedmont bats showing a

lower level of winter activity compared to summer activity and Coastal bats showing more sim-

ilar levels of activity in the winter and summer (Fig 2). The relationship between temperature

and activity was different in the summer between regions with bat activity in the Piedmont

being more positively related to temperature than bat activity in the Coastal Plain (Fig 2).

Table 3. Coefficient estimates from the best fit model using reference groups region = Piedmont and season = summer.

Estimate SE z P value

InterceptPiedmont and Summer 2.89 1.03 2.79 0.01

Temperature 0.09 0.06 1.58 0.11

RegionCoastal Plain -0.27 1.21 -0.22 0.82

SeasonWinter -4.15 0.88 -4.71 <0.01

Temperature: RegionCoastal Plain -0.05 0.07 -0.76 0.45

RegionCoastal Plain: SeasonWinter 0.29 1.02 0.29 0.77

Temperature: RegionPiedmont: SeasonWinter 0.23 0.09 2.42 0.02

Temperature: RegionCoastal Plain: SeasonWinter 0.25 0.06 3.89 <0.01

For all re-leveling see S3 Table. Data were collected in the Coastal Plain and Piedmont regions of North Carolina from 1 September 2012 to 31 August

2014. Best fit model: Activity ~ Temperature+Region+Season+Temperature:Region+Region:Season+Temperature:Region:Season+ (Temperature:

Season | Site).

doi:10.1371/journal.pone.0166512.t003

Fig 2. Scatterplots by region of the natural log number of echolocation pulses recorded per night by average nightly temperature, in both

summer and winter. Lines were fit based on the best fit model: Activity ~ Temperature+Region+Season+Temperature:Region+Region:Season+

Temperature:Region:Season+(Temperature:Season | Site). Predicted bat activity values were derived on the log link scale. The difference in bat

activity between summer and winter is greater in the Piedmont than the Coastal Plain. The positive relationship between temperature and activity is

similar between Piedmont and Coastal Plain in the winter, but differs in the summer with a more positive relationship in the Piedmont than the Coastal

Plain.

doi:10.1371/journal.pone.0166512.g002
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An analysis of 11 randomly selected subset of nights with high winter activity revealed that

bats were feeding. The percentage of calls with feeding buzzes in the Coastal Plain was 13.4

(SD 5.7) % (range = 5.5–21.1%, n = 6 nights) and in the Piedmont was 12.9 (SD 10.9) %

(range = 2.4–28.5%, n = 5 nights). Therefore, the bats that were active during the winter in

both the Coastal Plain and the Piedmont were feeding.

Species richness was high (6 species) in the spring and summer, but low (2 species) in the

autumn and winter in the Piedmont (Fig 3). Winter was the season with the highest richness

in the Coastal Plain (7 species). In both regions, L. borealis and Perimyotis subflavus were

recorded year round. Additionally, Eptesicus fuscus, Nycticeius humeralis, and M. septentriona-
lis were recorded year round in the Coastal Plain. The migratory tree bats, L. cinereus and L.

noctivagans, were only detected in the spring and summer in the Piedmont, but were present

during the winter in Coastal Plain. Furthermore, L. cinereus and L. noctivagans were the only

species recorded at Parker Tract in winter and they were not recorded during any time other

than the winter at Parker Tract and South River (S1 Table), suggesting the Coastal Plain is a

wintering site for these two species. During spring in the Piedmont (specifically the Uwharrie

National Forest–S1 Table), six species were present including L. cinereus, L. noctivagans, N.

Fig 3. Species presence by season and region. Presence was determined from an acoustic detection, mist-net capture, or both. In the Piedmont,

species richness was high in the spring and summer, but not the fall and winter. In contrast, species richness was high in all seasons in the Coastal

Plain.

doi:10.1371/journal.pone.0166512.g003
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humeralis, E. fuscus, L. borealis, and P. subflavus, suggesting L. cinereus and L. noctivagans were

spring migrants either into or through the area.

Supplementing acoustic data with mist netting data from the Coastal Plain supported sea-

sonal acoustic results (Fig 3). Both M. austroriparius and M. septentrionalis were present in the

winter, along with the migratory tree bat species, L. cinereus and L. noctivagans, and the more

common species that included N. humeralis, E. fuscus, L. borealis, and P. subflavus. We cap-

tured Corynorhinus rafinesquii in spring and summer.

Discussion

We found that although bat activity was lower during winter than summer at all sites, bats in

the Piedmont had a lower level of winter activity compared to summer activity than bats in

Coastal Plain that had more similar levels of activity in summer and winter. We found high

species richness on the Coastal Plain in the winter, including species known to hibernate

throughout most of their distribution, and others known to be long distance migrants. Long

distance migratory bats used the Coastal Plain and Piedmont regions differently. L. cinereus
and L. noctivagans appeared to use the Piedmont for migration and the Coastal Plain as a win-

tering ground, whereas L. borealis appeared to be resident, year round, in both regions. Thus,

our results show that bats on the Coastal Plain have a unique winter biology that is important

for multiple species’ conservation in the face of winter mortality associated with WNS and col-

lisions with wind turbines during migration. For example, on the Coastal Plain, resident and

winter-active species such as M. septentrionalis, E. fuscus, and P. subflavus potentially avoid

mortality due to WNS and L. borealis potentially avoids mortality due to wind-turbine colli-

sions during migration. Therefore, we suggest careful monitoring and protection of Coastal

Plain populations.

For a bat to remain resident in an area over winter, temperatures must be warm enough for

bats and their insect prey to stay active. Although the average nightly temperature was only ~

1.5˚C higher on the Coastal Plain, it was near the lower temperature limit for flying insects,

e.g., [30]. The Coastal Plain may offer more opportunities for winter foraging activity by bats

and our bat activity, feeding buzz, and richness results suggest that small differences in average

nightly temperature can influence the winter biology of bats. Our study confirmed that tem-

perature positively influences bat activity [7,31–33]; however, this positive relationship did not

explain all the variation seen in regions and seasons, especially in the summer. Potential abiotic

mediators may be humidity, air pressure, and precipitation.

A comparable level of summer and winter bat activity in the Coastal Plain contradicts typi-

cal behavior of temperate bat species which hibernate or migrate during colder parts of the

year [2,34]. Not hibernating could mean lower reproductive success for some species since

hibernacula are known as important sites for mating of many temperate bat species. Alterna-

tively, bats on the Coastal Plain may not rely on autumn mating swarms for mating, but

instead may mate during other times of the year. There is evidence that bats in warmer tem-

perate areas do not copulate until the spring [6]. Regardless, bats that forgo migration to stay

resident and active on the Coastal Plain could see reduced mortality from the physiological

stresses associated with migration and hibernation in other parts of their range [1].

We saw consistent patterns between seasons, with winter having overall lower activity levels

than summer, but with the difference between summer and winter activity levels being less in

the Coastal Plain than in the Piedmont. Low levels of winter activity have been found in other

studies of bats [33,35]. The odds of recording an echolocation sequence in the winter, com-

pared to the summer, in the North Carolina Coastal Plain was much higher than in the Pied-

mont and this was true for every Coastal Plain site. For example, activity was almost 38 times
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higher in summer than winter at Greensboro (Piedmont), while activity between summer and

winter at Parker Tract (Coastal Plain) was nearly equal. Importantly, there was still feeding

activity at all sites, including Piedmont sites, during the winter and our findings for winter

behavior, even at Piedmont sites with low winter activity relative to summer activity, are con-

sistent with previous reports of winter feeding by bats [6,7,36], including a study from the

Coastal Plain of North Carolina and Virginia that showed L. borealis was able to forage during

winter [37].

Ratios of summer to winter activity also showed site-specific variability in bat activity. On

the Coastal Plain, managed pine forest sites (Parker Tract and Lenoir 1) had lower activity

than bottomland hardwood sites. Managed pine forests likely had lower activity because bats

favor vertical structure, tree species richness, and large roost trees in open areas which are not

commonly found in managed timber lands [38,39]. Lower activity at Lenoir 1 may have also

been due to microphone placement in the interior of an unmanaged pine stand where activity

is generally lower than on the edge of stands [40]. The Uwharrie National Forest, in the Pied-

mont, had the highest level of activity out of all six sites likely due to the recording station

being located near a bright light that illuminated the site at night. Light sources are known to

attract insects at night and this can influence bat activity [41]. Site level differences were not

known a priori, and are common in studies of bats [31,42]. Because of the inherent differences

in sites, site was included as a random effect in the generalized mixed effect models. That

allowed for focus on effects of temperature, region, and season.

We were conservative with species identification to ensure calls were identified correctly

and are confident about species presence based on acoustic sampling. In the Coastal Plain,

year round residents included M. septentrionalis, L. borealis, N. humeralis, and P. subflavus,
whereas year round residents in the Piedmont included L. borealis and P. subflavus. There are

three species of bats associated with long distance migration that occur in the study area, L.

cinereus, L. noctivagans, and L. borealis [1,2]. Of these, L. borealis was the most common spe-

cies captured or recorded during each season suggesting that it does not migrate in either the

Piedmont or the Coastal Plain. On the other hand, L. cinereus and L. noctivagans were only

detected intermittently on the Coastal Plain and occurred during different times of the year in

the Piedmont and Coastal Plain. L. cinereus and L. noctivagans were present almost exclusively

(except for 1 recording of L. noctivagans in the spring; S1 Table) during the winter on the

Coastal Plain, whereas they were present in the Piedmont during spring and summer and

never detected in the Piedmont during the autumn. In particular, in the Piedmont, L. cinereus
had high activity during the spring. Our results suggest that L. cinereus and L. noctivagans used

Piedmont sites as stopover points along spring migratory routes whereas the Coastal Plain was

used as a wintering ground. Previous studies have shown that stopover points are commonly

used during bat migration and can be important sites for bats to rest along their migratory

pathway [5,43]. Thus, our results suggest bats may use different migratory routes across

seasons.

Wind Turbines

Long distance migratory bat species face a growing threat from encounters with wind turbines

along their migratory corridors [17,44]. Currently there are a few smaller wind turbines in the

Coastal Plain of North Carolina with most of them on the Outer Banks [45]; however, if a bat

is remaining resident it is less likely to experience mortality from wind turbines since mortality

primarily occurs during migration. Furthermore, the prime areas for wind energy in the

Coastal Plain are offshore and not likely to affect resident bats if ever constructed [46]. Year

round activity of L. borealis on the Coastal Plain suggests that some individuals are not
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migrating and may not experience mortality from wind facilities. Other long distance migra-

tory bats however, such as L. noctivagans and L. cinereus, were never detected in summer but

were detected in the winter suggesting that these species are making seasonal migrations

which may put them at risk for mortality associated with wind facilities [44].

WNS

Throughout most of their range, M. septentrionalis and P. subflavus are known to make sea-

sonal movements to caves for hibernation [47,48], where there is high mortality from WNS. In

contrast, our study shows that these species can remain active year round on the Coastal Plain

of North Carolina, where there are no known hibernacula. Recent mist-netting efforts have

confirmed our conclusion that M. septentrionalis is present year round in the Coastal Plain as

individuals have been captured during the 2015/2016 winter season (K. Caldwell, North Caro-

lina Wildlife Resources Commission, personal communication). While it is currently

unknown whether or not WNS is present on the Coastal Plain, it is not predicted to reach the

region until after the year 2050, largely due to its isolation from known areas of occurrence

[49]. Thus, individuals remaining resident on the Coastal Plain could suffer less mortality

from WNS. However, the viability of persistence and number of individuals within these

potential refugial populations is unknown.

Previous research showed that bats displayed different behavior throughout their range

[6,50]. This study provides further evidence that populations of bats in the Coastal Plain of

North Carolina sustain more consistent year round activity than inland populations. These

populations’ ability to sustain higher activity throughout winter could result in less mortality

associated with WNS [9] and anthropogenic factors, such as wind facilities found in other

parts of the species range [17]. These factors could ultimately lead to populations of bats in the

Coastal Plain becoming source or rescue populations for re-colonization of locally extinct or

depleted populations. Results from this study suggest that these refugial populations could be

valuable for the conservation efforts of some bat species. However, without knowledge on the

number and age structure of individuals in these populations, their long term viability is

uncertain [51]. Abundance has been shown to be a key factor in the persistence of populations,

and if coastal populations are too small or rely on individuals dispersing from the other areas,

they will likely not persist [52,53].

Supporting Information

S1 Table. Recordings identified to species through automated acoustic ID programs at

each site by season in 2012 and 2013. Years are pooled. Numbers indicate how many files

were identified for a given species during a particular season. Seasons are abbreviated S

(spring), M (summer), A (autumn), and W (winter). Piedmont sites are Greensboro and the

Uwharrie National Forest. Coastal Plain sites are North River, Parker Tract, Lenoir 1, and

South River.

(DOCX)

S2 Table. Capture data from mist-netting in 2012 and 2013 on the Coastal Plain of North

Carolina. The numbers in brackets represent the number of female and male bats captures

(female, male). In some cases where the bat escaped before gender could be determined, the

number of males and females will not add up to the total.

(DOCX)

S3 Table. Coefficient estimates from the best fit model re-leveling the reference groups of

region and season. Data were collected in the Coastal Plain and Piedmont regions of North
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