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Abstract 

 

A COMPARISON OF METHODS FOR SCALING FIELD DATA FOR USE IN MAPPING 

DRYLAND ECOSYSTEM VEGETATION WITH AIRBORNE IMAGING 

SPECTROSCOPY 

Megan Maloney 

B.A., Sweet Briar College 

M.A., Appalachian State University 

 

 

Chairperson:  Jessica Mitchell, Ph.D. 

 

 

 Dryland ecosystems cover 41% of Earth’s terrestrial surface. Globally, these lands 

house a third of our growing human population as well as many endangered and listed 

species. Drylands provide essential ecosystem services such as rangeland, water filtration, 

soil genesis, wildlife habitat, and carbon sequestration. Drylands store twice the organic 

carbon of forest ecosystems due to their large area and high soil organic carbon pool. 

However, recent research shows interannual variation in drylands is responsible for 39% of 

the variability in global carbon sequestration rates. Interconnected pressures with poorly 

understood feedback interactions degrade land and limit ecosystem services.  

 Foliar nitrogen (N) is commonly used as an indicator of vegetative growth due to its 

role in photosynthetic processes, which relates to the ability of dryland ecosystems to provide 

these services. This research investigates scaling methods of field data to interpret aerial 

surveys for N estimation using imaging spectroscopy. I compared the performance of four 

field-based methods to scale sagebrush foliar N estimates from shrub to the plot level (10 m x 
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10 m) for 21 plots collected in a dryland ecosystem in 2014 and 2015. Partial least squares 

regression was used to relate the four series of foliar N plot estimates to imaging 

spectroscopy variables to determine which field data collection variables and scaling 

methods provided strong relationships between the foliar N estimates and the remote sensing 

data. The regression models were ranked using adjusted R2 and RMSE. Results showed 

sensitivity to scaling method; pretreatment of imaging spectroscopy signals; subdividing the 

dataset into years; reducing predictor variables to reduce noise; and the number of model 

iterations. The best performing scaling methods used biomass allometry with density counts 

or cover estimates with leaf thickness with a log transformation and Savitzky-Golay 

smoothing method. Regression models selected different sets of wavelengths as significant 

predictors, with several relying on wavelengths in the visual range associated with 

chlorophyll absorbance and few relying on wavelengths in the "red edge" of 800-850 nm. 

The best performing model (R2 = .88; RMSE = 0.14 g/m2) used biomass allometry to scale 

from leaf N to plot-level N and a subset of wavelengths that consistently performed well 

across model iterations: 677 (near the 660 absorption feature for chlorophyll a), 992 (near the 

990 absorption feature for starch), 1133, 1208 (near the 1200 absorption feature for water, 

cellulose, starch, lignin), 1213, 1218, 1223, and 1263 nm. The coefficients of this model 

were applied to imaging spectroscopy data at a 1 m2 resolution across the study area, the 

Reynolds Creek Experimental Watershed in Idaho, USA, to create a wall to wall map of 

predicted foliar N values. The methods reported here can generate foliar N maps to 1) inform 

rangeland and conservation managers on forage quality, 2) investigate patterns in weed 

invasions and fire regimes, and 3) parameterize Ecosystem Demographics Models to predict 

future ecosystem scale structural dynamics, including carbon sequestration.  
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Abbreviations 

 

ACCP: Accelerated Canopy Chemistry Program 

AGB: Above ground biomass, the combined woody and green biomass of destructively 

sampled shrubs, provided in grams 

AIS : Airborne Imaging Spectrometer 

AVIRIS-NG: Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) Next Generation 

instrument 

CA: Crown area, calculated from the major and perpendicular minor canopy widths 

CO2: Carbon dioxide 

CVHt: Crown volume, calculated from crown area and height 

FIAT: Fire and Invasive Assessment Tool 

GB: Green biomass; the leaves and stems of destructively sampled shrubs, provided in grams 

LAI: Leaf area index 

Landsat: Sensor providing long-term moderate-resolution land remote sensing data 

Lidar: Light Detection and Ranging 

LMA: Leaf mass per unit area, the dry weight of leaves divided be the area of those leaves, 

provided in grams per square centimeter 

MODIS: Moderate Resolution Imaging Spectroradiometer sensor 

N: Nitrogen 

NIFC: National Interagency Fire Center 

NIR: Near infrared spectral range from 700-1300 nm 

NPP: Net primary productivity 

NPV: Non-photosynthetic vegetation such as woody biomass and leaf litter 

PLSR: Partial least squares regression 

RCEW: Reynolds Creek Experimental Watershed in Idaho, USA; the collection site for this 

study.  

Red edge: Range of the spectral from 800-850 nm where vegetative signals show a sharp 

increase in reflectance 

RMSE: Root mean square error 

SG: Savitzky-Golay; a smoothing algorithm used in this study to reduce signal noise by 

applying a first derivative transformation to reflectance measurement using a polynomial 

fitting and variable window for its moving average 

SLA: Specific leaf area, the inverse of LMA 

SNV: Standard Normal Variate; a function that transforms reflectance measurements to 

normalize readings across plots 

SOC: Soil organic carbon 

SWIR: Short wave infrared 1500-2500 nm 

UV: Ultra violet  

VIS: Visible range of the spectrum from 400-700nm in which chlorophyll absorbance 

features occur 

WB: Woody biomass; the branches and trunks of destructively sampled shrubs, provided in 

grams 
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Foreword 

 

 

 Chapters 1 through 6 of this thesis will be submitted to Ecological Indicators, a peer-

reviewed journal. These chapters and their references are formatted according to the style 

guide of the journal. The introduction and conclusions of the thesis are incorporated into the 

article. 
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1. Introduction and background 

 

Dryland ecosystems, which include semi-arid lands in the Western US, cover 41% of 

Earth’s terrestrial surface, yet their sensitivity and ability to drive climate change are poorly 

understood (Adeel and World Resources Institute, 2005; Ahlström et al., 2015; United 

Nations Environment Management Group, 2011). Globally, these lands house 35.5% of our 

growing human population, 90% of whom live in developing countries and may be 

particularly vulnerable to environmental changes and dependent on ecosystem services 

(Adeel and World Resources Institute, 2005; Gilbert, 2011; United Nations Environment 

Management Group, 2011). Drylands are habitat for important species, many of which are 

endangered, listed, or endemic; these species provide for pollination, ecotourism and 

recreation activity, forage for grazing, pharmaceuticals and medicinal research, and genetic 

resources that are important to adaptation and survival in a changing climate (United Nations 

Environment Management Group, 2011). This biodiversity supports essential ecosystem 

services such as provisioning of food and rangeland, erosion control and soil genesis, carbon 

fixation, water purification and provisioning, recreation, and cultural resources (United 

Nations Environment Management Group, 2011). Interconnected pressures with poorly 

understood feedback interactions are resulting in land degradation and the subsequent 

limitation of sustainable ecosystem services. To maintain these ecosystem services, research 

is needed to quantify and monitor how drylands respond to and drive environmental 

variables. 

Drylands store roughly 15% of Earth's total soil organic carbon (SOC) due to their 

large size and high SOC pools (Noojipady et al., 2015). This is twice the organic carbon of 

forest ecosystems despite the sparse vegetation and low carbon sequestration rates of 
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drylands (sequestration is estimated at 703 ±44 g/m2 for drylands as opposed to 869±34 g/m2 

for forests and woodlands in one global model derived from satellite observations) (Cao et 

al., 2004; Noojipady et al., 2015; Safriel et al., 2006). New research is finding that drylands 

exert major influence on the interannual variability of the global carbon sink (Ahlström et al., 

2015; Poulter et al., 2014). This influence is caused by their large area and sensitivity to 

rainfall, temperature, and disturbances, which alter dryland ecosystem net primary 

productivity (NPP), carbon fixation, and emission (Ahlström et al., 2015; Poulter et al., 

2014). For example, increases in precipitation cause greater plant growth and carbon fixation 

and suppress fire; drier conditions reduce plant growth and carbon fixation and make fire 

related emissions more likely (Poulter et al., 2014). Dryland ecosystems are historically 

subject to natural disturbance regimes including wildfire and drought (Field et al., 2014) and 

vulnerable to desertification and wind erosion; between 10-20% are estimated to already be 

degraded by desertification and a larger amount is at risk (Adeel and World Resources 

Institute, 2005). Additional changes which alter carbon emissions and fixation rates include 

anthropogenic climate change and associated disturbances in rainfall patterns, increasing 

atmospheric carbon dioxide (CO2) concentrations, and changes in temperature averages and 

extremes (Ahlström et al., 2015; Field et al., 2014). Direct land use pressures and 

development also alter carbon emissions and fixation rates; for example, conversion to 

grazing and crops, suppression of regional rainfall through changes in albedo and 

evapotranspiration from altering surfaces, and increases in sources of fire ignition (Field et 

al., 2014). All of these factors are expected to exacerbate pressure on ecosystem services and 

increase the rate of habitat shift and loss and the frequency and intensity of wildfires, 

droughts, floods, and erosion (Adeel and World Resources Institute, 2005; Field et al., 2014).  
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Changes in vegetative growth and wildfires are two important processes to consider 

when examining the interaction of drylands and climate. Recent literature hypothesized that 

observed "greening" of drylands was attributable to rising atmospheric carbon dioxide (CO2) 

allowing more efficient carbon fixation (Poulter et al., 2014). This allows plants to keep their 

stomata closed more often and retain more water, reserving soil water levels without 

decreasing productivity (Donahue et al., 2013). In water limited biomes like drylands, 

increased soil water, an effect of efficient water use due to carbon fertilization, is 

hypothesized to increase vegetative growth (Donahue et al., 2013). In contrast, in situ studies 

have shown that small increases in temperatures in dryland sites, such as those expected to 

occur as CO2 rises, may reduce soil water and limit growth and productivity, possibly also 

favoring certain species and affecting invasion patterns of non-natives (Wertin et al., 2017). 

Vegetative presence and structure affects hydrology as well as resistance to wind erosion in 

drylands, creating of microclimates with lower temperatures and evaporative rates under the 

canopy (Breshears and Nyhan, 1998). Woody vegetation may create heterogeneous aeolian 

transport of sediments which changes patterns of nutrient distribution and may drive land 

degradation and desertification (Mueller et al., 2007; Okin, 2008; Sankey et al., 2012). A 

changing climate can affect species composition and productivity, which in turn drives 

climate change through CO2 emission rates. 

Fire, in turn, increases wind erosion but allows redistribution of soil nutrients (Ravi et 

al., 2009). Climate change driven variation in rainfall patterns affects species distribution and 

abundance by altering seasonal water balance (Field et al., 2014). Increasing temperatures 

may extend the growing season or shorten it by changing water availability and evaporative 

demand (Field et al., 2014). Together, changing climate and vegetation affects nitrogen 
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mineralization (Bobbink et al., 2010), soil structure, and soil microbial communities (Field et 

al., 2014; Hu et al., 2016). Despite variation in greening and water retention, globally the 

changes in climate and land use have resulted in overall increased aridity, drought, and wind 

erosion (Field et al., 2014).  

In short, relationships that describe how dryland ecosystems drive and react to 

climate change are complex and interactive. While vegetation is relatively sparse compared 

to other ecosystems, the immense size of these ecosystems and our heavy reliance on the 

services they provide make these feedbacks important to quantify when evaluating 

management choices. High resolution synoptic mapping will improve our understanding of 

complex multi-scale processes and inform management decisions.  

1.2 Semi-arid rangelands in the Great Basin 

The Great Basin region in the western US provides a representative, national study 

site to examine global dryland dynamics related to desertification, land use change, grazing 

pressure, biological invasion, fire regimes, nutrient cycling, and climate change interactions. 

Sagebrush-dominant communities are characteristic of semiarid landscapes in the Western 

US (West and Young, 2000) and are part of a larger global distribution of dryland systems 

that collectively exert significant influence on interannual variability in carbon stocks 

(Ahlström et al., 2015). They may act as a substantial carbon sink on their own in years of 

vegetative growth (Svejcar et al., 2008) or substantial sources of carbon in years of 

vegetative loss (Poulter et al., 2014). Sagebrush and other woody plants drive rates of 

evapotranspiration, erosion (Breshears and Nyhan, 1998; Prater et al., 2006), and carbon and 

nutrient cycling (Breshears et al., 2006, Yang et al., 2012) for arid and semi-arid regions. 

These processes indirectly drive forage production, habitat quality, and aforementioned 
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ecosystems services, all of which will be further impacted by climate change (Polley et al., 

2013). The variation between locations in species composition, environmental variables, and 

disturbance events (Hasselquist et al., 2011) illuminates the need for real time monitoring 

and frequent re-sampling over these prohibitively large and difficult to access areas to 

quantify and monitor climate change impacts and feedbacks over seasonal and annual 

changes (Olsoy et al., 2016).  

Finally, there is recent public acknowledgement of the importance of geospatial 

science applications for semi-arid systems in the US. A mandate was issued to develop 

research to protect and restore these areas to maintain the ecosystem services they provide, 

including control of extreme megafires (Barret et al., 2016). The Department of the Interior 

Secretary Sally Jewell, through Secretarial Order 3336 (S.O. 3336), "Rangeland Fire 

Prevention, Management, and Restoration," created task forces to ensure to science-based 

policies and strategies would be made available to the public for use in fire management, 

restoration, and conservation (Barret et al., 2016). The order emphasizes the development of 

geospatial science and distribution through mobile devices in coordination with the National 

Interagency Fire Center's (NIFC) Fire and Invasive Assessment Tool (FIAT) to support and 

speed up management decisions to monitor resource conditions and reduce likelihood of 

habitat loss in fire events (Barret et al., 2016). 

1.3 Sagebrush structure and foliar nitrogen 

Foliar nitrogen (N) influences the quantity and quality of forage (Frye et al., 2013; 

Skidmore et al., 2010). Climate pressures such as elevated ultra violet (UV) light, 

temperature, and drought may alter the dietary quality, palatability, and amount of forage 

available to herbivores by influencing the amount of constituents such as crude protein 
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(mostly N) and defensive chemicals, such as monoterpenes and phenolics (Forbey et al., 

2013). Remote sensing of foliar N can therefore be used to infer and monitor rangeland 

health and herbivory patterns (Forbey et al., 2013). Foliar N data can also be applied to 

studies of atmospheric N deposition, productivity patterns, and invasive species invasion 

patterns (Ollinger, 2011). 

Additionally, foliar N is used to monitor ecosystem processes because it is a critical 

growth element in plants due to its role in carbon fixation during photosynthesis (Field and 

Mooney, 1986; Lepine et al., 2016; Mattson, 1980). Dryland ecosystems are co-limited by 

water and N (Hooper and Johnson, 1999; Sinsabaugh et al., 2015), and absence of N limits 

the advantages of increasing atmospheric CO2 for net carbon storage (Moorcraft, 2006). 

Photosynthetic capacity scales with the investment of N in foliar biochemical compounds and 

components central to photosynthetic function such as thylakoids, chlorophyll, and soluble 

proteins (Evans, 1989; Field and Mooney, 1986; Wright et al., 2004). Foliar N is thus an 

important indicator of ecosystem metabolism and health as it relates to net primary 

productivity, rate of photosynthetic capacity, and light use efficiency (Lepine et al., 2016; 

Ollinger and Smith, 2005; Ollinger et al., 2008). Foliar N also influences availability of N in 

soils and carbon assimilation through influencing litter decay, competition between plants 

and microbial communities, net mineralization, and plant N uptake mechanisms (Hu et al., 

2016; Lepine et al., 2016). 

1.4 Remote sensing  

Remote sensing is a cost effective alternative that provides rapid quantitative 

mapping for regions in which large-scale sampling is prohibitively expensive and labor-

intense (Hunt et al., 2003). Remote sensing refers to the use of sensors without direct contact 
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with the target, such as when data are recorded at a distance using a terrestrial (e.g. 

handheld), aerial (plane or unmanned aerial vehicle mounted), or satellite platform 

(Campbell and Wynne, 2011). Remote sensing data such as imaging spectroscopy can be 

used to passively measure biochemical content, such as foliar N, while lidar (Light Detection 

and Ranging) uses the active emission of laser beams and can measure vegetative structure, 

including biomass, across a landscape. As foliar N and vegetative structure are important 

indicators of ecosystem health, remotely monitoring these variables supports carbon flux 

research and land management decision-making. 

1.4.1 Imaging spectroscopy  

Imaging spectroscopy refers to the analysis of wavelength intervals along the 

electromagnetic spectrum to infer information about a target. Imaging spectroscopy data can 

be used to detect and map vegetation through proxy indicators such as N content. As shown 

in Figure 1, vegetation commonly displays spectral features which can be used for 

identification and characterization. These features include high reflectance in the near 

infrared (NIR) range and an extreme slope around 700 nm which is referred to as the “red 

edge” and caused by leaf structures that transmit non-photosynthetic wavelengths to avoid 

overheating (Curran, 1989). Additionally, water-related absorption points in vegetation occur 

at 970, 1200, 1400, and 1940 nm, and proximity of a band measurement to a water 

absorption range will increase measurement error (Curran, 1989). Chlorophyll absorption 

points for photosynthesis occur in the visible range of the spectrum (VIS) of red and blue 

light from 400 to 700 nm (Curran, 1989).  

Drylands present particular challenges to remote sensing methods developed for other 

biomes due to their sparse vegetation, high albedo soils, and the nonlinear mixing that occurs 
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between these and other background materials such as rock and grasses (Borel and Gerstl, 

1994; Ray and Murray, 1996). The reflectance signal from sagebrush shrubs is relatively 

weak and contains a high degree of mixing as cover decreases (Borel and Gerstl, 1994; Ray 

and Murray, 1996). As an illustration, note that in Figure 1, an imaging spectroscopy pixel 

that is associated with low sagebrush cover (8%) does not display chlorophyll absorption or 

NIR reflectance as strongly as a pixel associated with high sagebrush cover (58%). Open 

shrub canopies with low percent cover mix with bright soil reflectance that dominates the 

background. Plant evolutionary adaptations to dryland light and heat conditions, such as 

small or vertically oriented leaves that reduce sun exposure, gray trichomes (leaf hairs) that 

trap moist air near the leaf surface, or reflective waxy coatings, influence expected vegetation 

spectral responses, such as leaf pigment absorptions in portions of the visible region of the 

electromagnetic spectrum and a strong "red edge" in the near infrared, and are present in 

other spectral features such as wax absorbance at 1720 nm (Mitchell et al., 2012b; Okin et 

al., 2001). Discrimination of non-photosynthetic vegetation (NPV) in drylands appears 

spectrally similar to soil and additionally complicates interpretation of spectral signals 

(Roberts et al., 1993). These difficulties impede direct mapping of vegetation.  
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Figure 1. Reflectance signatures for imaging spectroscopy pixels extracted from low and 

high sagebrush canopy cover are graphed beside a nearly pure vegetation pixel with 

characteristic vegetation features, such as a strong red edge near 700 nm and chlorophyll 

absorbance in the visible region. 

 

The process of relating biochemical characteristics to remote sensing data using 

imaging spectroscopy is an ongoing field of study that became established with NASA’s 

Accelerated Canopy Chemistry Program (ACCP) in 1991–1992 (ACCP, 2004; Ustin, 2013). 

Imaging spectroscopy is used to identify and quantify vegetative biochemistry such as 

pigment, water, nitrogen, and carbon (Asner et al., 2007; Ustin et al., 2004). Nitrogen content 

is indicated by the shape and depth of the signal at wavelengths: 1020, 1510, 1980, 2060, 

2130, 2180, and 2300 nm (Curran, 1989). Near infrared reflectance spectroscopy has been 

used successfully to measure nitrogen-based crude protein estimates in agriculture and food 

science generally and specifically for sagebrush in a lab setting by Olsoy et al. (2016), using 

wavelengths 1000-2500 nm.  
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Imaging spectroscopy is also used to estimate canopy chemistry such as foliar N and 

N-containing chlorophyll and proteins (Asner and Martin, 2008; Lepine et al., 2016; Martin 

et al., 2008; Ollinger and Smith, 2005; Ollinger et al., 2008; Ustin et al., 2013; Wang et al., 

2016). Detecting these signatures ideally requires narrow 10 nm intervals and a signal to 

noise ratio high enough to distinguish target features (Curran, 1989). This is provided in 

imaging spectroscopy sensors such as the Airborne Visible/InfraRed Imaging Spectrometer 

(AVIRIS) Next Generation instrument (Chrien et al., 1990). Imaging spectroscopy records a 

wide range (400-2500 nm) of wavelengths in near-continuous narrow (10-20 nm) band 

intervals (Curran, 1989).  

The imaging spectroscopy sensor AVIRIS was used in detection of N in early efforts 

by Martin and Aber (1997) which related AVIRIS data to field measurements of foliar N 

first-difference reflectance bands at 950 and 2290 nm. Recently, aggregated AVIRIS data 

were found to improve detection of canopy N content compared to satellite platforms such as 

MODIS and Landsat (Lepine et al., 2016). Asner and Lobell (2000) found that modeling 

using the 2100-2400 nm range successfully mapped cover and distinguished between 

signatures of bright, reflective soils, green canopy, and NPV in arid regions. The narrow 

bandwidth of imaging spectrometers was identified as particularly necessary to discriminate 

between soil and vegetation (Borel and Gerstl, 1994).  

1.4.2 The influence of canopy structure on foliar Nitrogen detection 

Investigating imaging spectroscopy responses associated with foliar N addresses a 

current discussion in the literature. The depths and shapes of absorption features are highly 

correlated with foliar chemistry and caused by vibrations of chemical bonds and overtones 

which overlap and interact (Kokaly and Clark, 1999). Different wavelength regions contain 
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absorption features that are indicative of foliar N content and associated with constituents 

such as proteins in chlorophyll (Curran, 1989).  

Past research has drawn attention to the strong correlation between laboratory-

measurements of foliar N in specimens collected from the field and variations in NIR (700-

1300 nm) reflectance obtained from airborne platforms (e.g., Wessman et al., 1988; Martin et 

al., 2008). Airborne studies in a range of ecosystems have identified high reflectance in 

wavelengths in the NIR region of the electromagnetic spectrum to be strong predictors of 

foliar N (e.g., Asner et al., 2008; Martin et al., 2008; Ollinger et al., 2008). Strong reflectance 

in NIR is presumably an indicator of vegetation as foliar structural characteristics that scatter 

these wavelengths; NIR wavelengths are not used in photosynthesis, and it is advantageous 

for leaves to reflect or transmit them to avoid overheating (Curran, 1989; Knyazikhin et al., 

2013). In other words, spectral response in the NIR region is largely driven by plant structure 

rather than physical mechanisms such as known absorption features such as those associated 

with, for example, protein bonds (Kokaly and Clark, 1999). The extent to which foliar N has 

a direct physical connection to plant structure is debatable (Knyazikhin et al., 2013; Ollinger 

et al., 2013; Townsend et al., 2013; Ustin, 2013) and studies designed to decouple the two 

variables are limited (Knyazikhin et al., 2013; Latorre-Carmona et al., 2013). Knyazikhin et 

al. (2013) isolated structural variables from a subset of the data used in Ollinger et al. (2008) 

and concluded that the distribution of canopy gaps, not N absorption, drove the correlation of 

foliar N content and NIR reflectance, and that subtracting structural effects removed 

correlation of foliar N content to high NIR reflectance. Knyazikhin et al. (2013) suggested 

that without a mechanism relating foliar N content to structure, the predictive relationship is 

not necessarily reliable and that confounding effects associated with structure should be 
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removed before analysis. Ollinger et al. (2013) responded that the strong correlation which 

emerged across biomes in Ollinger et al. (2008) likely indicated that the importance of N in 

plant function, particularly in N limited ecosystems, drives structural phenology, and that 

reflectance may be indirectly measuring a consistent relationship of N that covaries with 

plant functional type.  

In systems with sparse canopies, such as sagebrush-dominated arid and semi-arid 

grasslands with low stem density and lower LAI, NIR may contain important wavelengths 

that detect structure. By extension these may be used to predict foliar N content, assuming 

physical mechanisms relate foliar N to plant functions that determine structure, such as the 

influence of metabolism on growth. However, the relatively low stature and sparse canopy 

structure of dryland vegetation, including interspersed NPV, may complicate NIR detection 

of structure. Plants like sagebrush and bitterbrush have leaves that are narrow, small, and 

vertically oriented. This may alter structural correlation between foliar N and NIR observed 

in other ecosystems. Conversely, these plants may display higher albedo due to light colored 

trichomes, creating similar or alternate structural signals. While N limitations and 

relationship to growth and structure of sagebrush and other dryland vegetation may provide a 

predictive relationship, it is unlikely to be the same relationship defined in forest areas. 

In forests, some of the defined differences have been broad high N deciduous leaves with 

high reflectance versus vertical and narrow low N pine needles with lower reflectance over 

continuous cover. In drylands the differences may be between bright high reflectance zero N 

bare ground and litter versus bright light colored vertical and narrow low N sagebrush leaves. 

Consequently, inclusion of VIS in analysis may boost interpretation due to the correlation 

between N and chlorophyll (Lepine et al., 2016). Additionally, short wave infrared (SWIR, 
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1500-2500 nm) reflectance is useful to detect N bonds (Curran, 1989). Mitchell et al. (2012b) 

identified predictive wavelengths associated with β-carotene and chlorophyll features in the 

VIS region and shifted N absorption features present throughout the infrared region.  

The study presented herein follows previous imaging spectroscopy research methods 

in dryland ecosystems which successfully use partial least squares regression (PLSR) to 

identify potential biochemical absorption features and structural patterns from dominant 

dryland species to investigate relationships between reflectance signals and foliar N (Kokaly 

et al., 2003; Mitchell et al., 2012a; Mitchell et al., 2012b; Yi et al., in review; Dashti et al., in 

review).  In order to address remote sensing challenges associated with sparse canopy 

structure and high degrees of spectral mixing, which may present plant functional types and 

indirect relationships and spectral features that are different from ecosystems in other studies 

(Townsend et al., 2013), the full narrowband spectrum from 400 to 2500 nm is retained for 

analysis. This includes chlorophyll contributions in the VIS region (Mitchell et al., 2012a; 

Mitchell et al., 2012b; Lepine et al., 2016), NIR/SWIR regions (>1,100 nm) where leaf level 

foliar nutrients are captured (Asner et al., 2011; Kokaly et al., 2009; Ollinger , 2011) as well 

as other N absorbance features in longer wavelengths (Curran, 1989). 

 This thesis aims to more efficiently address challenges associated with remote 

sensing of vegetative characteristics in dryland ecosystems by identifying an optimal field 

data collection method for scaling foliar N content from the leaf to plot scale for high 

resolution airborne N mapping at the watershed scale. Unique remote sensing challenges 

include nonlinear mixing and detection of low stature desert adapted vegetation with open 

canopies against a high albedo background. Foliar N tends to have a strong signal and can be 

a useful indicator of ecosystem services, such as forage quality for conservation and 
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rangeland, wildfire mitigation, and carbon sequestration (Forbey et al., 2013; Frye et al., 

2013; Ollinger, 2011; Skidmore et al., 2010). However, the structural variables that 

contribute to complex scattering are numerous and include low open canopy mixing with 

bare ground and litter. Vegetative adaptations to dryland ecosystems at leaf and canopy 

levels are very different from other ecosystems, and structural variation is expected to 

strongly influence spectral response (Asner, 1998; Borel and Gerstl, 1994; Knyazikhin et al., 

2013; Mitchell et al., 2015; Ray and Murray, 1996).  

This work ranked four methods for scaling ground reference samples from shrub level 

to plot level in order to identify which field data variables are most useful to inform remote 

sensing detection of foliar N and to identify the best performing scaling method. The selected 

method was used to develop PLSR models that rely on important wavelength ranges to 

predict foliar N content. The best performing model coefficients were used to map vegetative 

foliar N across the Reynolds Creek Experimental Watershed study area.  

Comparing the model performance of different scaling methods can inform 

researchers and land managers on which vegetation characteristics to sample in the field to 

remotely predict sagebrush foliar N. Narrowing down which field variables are necessary 

will minimize the field time and resources needed to parameterize models. Scaling methods 

that include variables for deriving more precise estimates of shrub volume on a mass basis 

(e.g.,biomass, specific leaf area (SLA), shrub density, LAI) are expected to outperform 

scaling methods based on coarser estimates of shrub volume (e.g., shrub cover and height) 

In addition to identify optimal scaling methods, PLSR model performance can also 

compare the relative importance of different remote sensing wavelengths regions on foliar N 

prediction. It is anticipated that wavelengths in the VIS associated with chlorophyll pigments, 
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wavelengths in NIR associated with the red edge, and wavelengths in the NIR/SWIR 

associated with known N absorption features will be consistently selected by the model as 

significantly correlated to N (specific wavelengths identified by Curran, 1989, are listed in 

the appendices). It is also expected that the selection of important wavelength predictors will 

be sensitive to the type of transformation that are applied to the reflectance spectra prior to 

analysis (e.g., log transform, first derivative). 

Models using PLSR generate regression coefficients that can be applied to imaging 

spectroscopy raster data to predictively estimate foliar N estimates across the watershed. 

Quantifiable uncertainty (RMSE) can be reported for the mapping. The high resolution N 

mapping generated as part of this study is expected to consistently and accurately identify 

features on the landscape associated with high foliar N content (e.g., riparian corridors). As 

land cover types diverge and fine scale heterogeneity increases with decreased shrub cover 

and the mixing of grasses, bare ground, and litter, N estimations are expected to become 

more uncertain and less reliable.  

This work extends N prediction methods by testing various combinations of field data 

that represent structural variables, evaluating them for their ability to successfully scale leaf 

level N to airborne imaging spectroscopy data. Results were used to predictively map foliar 

N across a watershed with the goal of identifying spectral regions that are strong predictors 

of foliar N at the airborne scale for use in the context of regional upscaling. 
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2. Materials and methods 

2.1 Site selection 

 Data were collected at the Reynolds Creek Experimental Watershed (RCEW) (Figure 

2), a 238 km2 cold semi-arid desert sagebrush-steppe ecosystem in the Owyhee Mountains of 

southern Idaho, USA with significant climate, elevation, and precipitation gradients (Li et al., 

2015). The average air temperature is 11.7° C and varies from between 1.4° C minimum to 

16.2° C maximum (WRCC, 2009). Elevation ranges from 1049 to 2245 meters. Mean annual 

precipitation varies from ~250 mm in the north to >1100 mm in the southwest (Marks et al., 

2007). Vegetative cover is predominantly grassland and sagebrush species such as low 

sagebrush (Artemisia arbuscula Nutt.), big sagebrush (Artemisia tridentata Nutt. subsp. 

vaseyana [Rydb.] Beetle and subsp. wyomingensis) and bitterbrush (Purshia tridentata 

[Pursh] DC), which respectively average 50 cm, 50–100 cm, and 60–185 cm in height 

(Mitchell et al., 2015). Twenty one field sampling locations within the study site were 

selected in which sagebrush species were the dominant vegetative cover in order to minimize 

potential mixing of signal responses and to create homogenous samples to correlate to 

spectral and lidar variation (Mitchell et al., 2015). Lidar and AVIRIS imagery coverage were 

obtained for the entire watershed for both 2014 and 2015 (Mitchell et al., 2015).  
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Figure 2. Reynolds Creek Experimental Watershed (RCEW) where airborne AVIRIS-NG 

and lidar data were acquired. Spectral data were acquired on September 14, 2014, and June 

11, 2015. Twenty one 10 x 10 m plots were sampled, nine in 2014 from September 16th 
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through October 3rd, and twelve from May 11th through the 28th, 2015. Lidar were collected 

in 2015.   

2.2 Field and remote sensing data collection  

2.2.1 Vegetation sampling 

Twenty-one 10 x 10 m plots were established wherein ground reference data were 

collected to develop scalable vegetation products. Nine plots were sampled in September, 

2014 and 11 plots were sampled from May, 2015. Ground reference data variables included: 

LAI for selected shrubs; leaf sample dry weight, area, and percent N content; height and 

major and minor canopy widths measured from terrestrial lidar scans of selected shrubs; plot 

percent cover estimate; and plot density count of live sagebrush species individuals. LAI was 

collected for 20 shrubs in each plot, along transects set at 1, 3, 5, 7, and 9 meters, and at  2, 4, 

6, and 8 meters down each transect.  

Allometric biomass equations were developed for scaling sagebrush canopy 

measurements using a relationship between terrestrial laser scanning measurements and 

weights from destructive sampling conducted in summer and fall 2012 at RCEW, Idaho 

National Laboratory, and Hollister, Idaho (Olsoy et al., 2014).  

Phenological differences may occur between the two collection years which were 

taken in different seasons. Sagebrush grow two crops of leaves: ephemeral leaves, which 

have larger surface area to take advantage of water available for evaporative cooling earlier 

in the season; and perennial leaves, which are smaller and more resilient to hot, dry 

conditions (Miller and Shultz, 1987). In our September collection and late summer collection 

of imaging spectroscopy data, ephemeral leaves may have dropped and more resilient, 

smaller leaves may have become dominant. Thus our sampling for May showed roughly 



 

19 
 

double the leaf area of the September leaf samples and as a result a higher LAI. In previous 

survey work, shrubs which shed ephemeral leaves during the summer drought lost two thirds 

of their leaf weight (Miller and Shultz, 1987).  

2.2.2 Sagebrush biomass allometry 

 A method using allometry of canopy was developed to investigate the use of 

terrestrial lidar in measurement and the use of canopy width and biomass estimates in scaling 

products. The predictor variables of canopy major and minor width and plant height were 

measured using RiScan software (RIEGL Laser Measurement Systems GmbH, Horn, 

Austria) with terrestrial lidar scans of the shrubs that were later destructively sampled to 

produce biomass measurements (Olsoy et al., 2015).  The training dataset included three 

types of biomass measurements taken through destructive sampling: green biomass (GB) 

consisting of foliage, woody biomass (WB) consisting of stems and branches, and total 

aboveground biomass (AGB). These were used individually and aggregated into area and 

volume metrics as predictors. The predictors and independent data were linearly regressed 

and then back-transformed to express predictions in grams. The crown area method was 

based on the formula for elliptical area, using half of the major and minor canopy width 

measurements for inputs. The crown volume method additionally incorporated height using 

an ellipsoid volume estimate.  

2.2.3 Leaf area estimation 

 Leaf mass area (LMA), the dry weight of the leaf per unit of leaf surface, was used in 

three of the scaling methods tested. Leaf samples from six randomly selected shrubs of 

representative size were collected and weighed twice, first fresh to determine wet weight, and 

then after drying. Prior to drying, the leaf samples were scanned in groups and processed for 
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area estimates using pixel selection. Selections were counted twice and averaged using an 

automated technique developed by the author (Appendix A). Multiplying the selected leaf 

pixels by DPI provided leaf area metrics for use in scaling methods. 

2.2.4 Plot level scaling of nitrogen content 

 Four methods were tested. Each method estimated plot level foliar nitrogen by 

combining ground reference data. The four methods included: a green biomass and density 

method based on Cleary et al. (2008); a leaf area index (LAI; a characterization of canopy 

density) and species density method based on Smith et al. (2001); a percent species cover and 

specific area method based on Serbin et al. (2014); and a percent species cover and plant 

height method based on Serrano and Ustin (2002).  

The first method used the allometric equations derived from the Olsoy TLS dataset in 

combination with leaf area and weight measurements to first estimate total sagebrush leaf 

area per plot. The percent nitrogen was then combined to estimate foliar nitrogen per plot in 

grams. Three density measurements were tested: all shrubs, live shrubs only, and live 

sagebrush only.  
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Figure 3. The method based on Cleary et al. (2008) uses canopy measurements and density 

(number of shrubs per plot). 

 

 The second method (LAI/Density/LMA) depended on a plot level density count and 

LAI. All live shrubs and all live sagebrush shrubs were tested. Density was adjusted by the 

LAI per shrub and averaged to plot. This estimate was adjusted by plot specific leaf nitrogen 

to provide foliar nitrogen in grams per square meter. 
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Figure 4. The method based on Smith et al. (2001) uses LAI and density count. 

 

 The third method (Cover/LMA) used a percent cover measurement determined by 

counting the proportion of transect measurements which cross above sagebrush canopy. This 

plot level cover measurement was adjusted by weight, leaf area, and then foliar nitrogen to 

determine grams of nitrogen per square meter for the plot.  

 

Figure 5. The method based on Serbin et al. (2014) uses percent cover to scale specific leaf 

area.  
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 The fourth method (Height/Cover) uses height as a proxy for LAI measurements. 

Combined with percent foliar nitrogen and plot level sagebrush cover, this method estimates 

a concentration of nitrogen expected in the plot canopy.  

 

 

Figure 6. The method based on Serrano and Ustin (2002) uses the percent species cover and 

plant height.  

2.3 Remote sensing data  

 Imaging spectroscopy data were obtained from the AVIRIS-NG instrument at an 

aerial level for the entire RCEW site in 2014 and 2015. The AVIRIS instrument was flown in 

a Twin Otter aircraft. Data in 2014 were collected in September, which was selected to be 

advantageous for model parameterization as grasses have senesced by this time and to 

complement the timing of existing datasets. Data were later collected in June, 2015, which 

was selected to explore the advantage of sampling while ephemeral leaves were present. 

Atmospheric corrections were applied, as recommended in previous work (Martin and Aber, 

1997). 
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Imaging spectroscopy and lidar data were extracted using polygonal site boundaries. 

The data were imported into ENVI imagery analysis software (Exelis Visual Information 

Solutions, ENVI/IDL 5.2.1, Boulder, Colorado) and compared to imported vector data of site 

boundaries. Values encompassed in the site boundaries were extracted and averaged. If 

multiple flight lines overlay the same plot, those values were also averaged. These values 

were exported for use in the PLSR analysis.  

2.3.1 Imaging spectroscopy pre-processing 

 Imaging spectroscopy data were pre-processed to remove bad bands. Bands were 

examined visually in ENVI using band animation, and bands with notable distortions were 

excluded from analysis. Removed bands included: 381-416, 722, 907, 947, 1123, 1228, 1343, 

1453, 1954, 1999, 2004-2024, and 2470-2505 nm. 

The imaging spectroscopy values were transformed prior to the PLSR analysis. 

Analysis was attempted on original reflectance data, as well as data transformed to 

absorbance and then transformed with either a gap derivative or Savitzky-Golay smoothing 

(Savitzky and Golay, 1964). The data were transformed to absorbance using the Compute 

General function in Unscrambler software (version 10.4, CAMO ASA, Norway) using the 

formula: log10(1/X) (Ollinger and Smith, 2005). For the subsequent gap derivative 

transformation, a gap of 3 and 5 were tried, but model performance results showed low R2 

values.  In the Savitzky-Golay smoothing formula, symmetrical points of 1, 2, and 3 were 

chosen, and combined with polynomial orders of 1, 2, 3, and 4.  

Additionally, a Standard Normal Variate (SNV) and detrending transformation were 

modeled. Results were promising, though these models were not selected for mapping due to 

processing limitations.   
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2.4. Data Analysis 

2.4.1 Partial least squares regression 

 The pre-processed dependent predictor variables (the imaging spectroscopy 

wavelengths extracted by plot boundaries and averaged) and independent measured variables 

(the plot level foliar N estimates from the four scaling methods) were input into the PLSR 

model in Unscrambler for data exploration of model sensitivity to different transformation 

settings. R code was then used to compare the model output by calculating adjusted R2 values 

from the predicted R2 provided by Unscrambler.  

Variation in sample subsetting was tested. To avoid gaps produced by large water 

absorption ranges, data were broken into intervals: 451-1338, 1433-1773, and 1959-2464 nm. 

Subsets using only samples with 15% and 20% cover were run. Additionally, a bare ground 

sample was used to explore bias associated with a heterogeneous sample set, such as concern 

that the model was relying on creating a y-intercept that approximated the average N of the 

sites. A visually identified bare ground area was extracted, processed similarly, and inserted 

into the sample set while given a foliar nitrogen content of zero, replicated either 1, 10, or in 

numbers equivalent to the selection of vegetated plots.  

Model RMSE, predicted and adjusted R2, and number of factors were compared. Beta 

coefficients were graphed and compared to the 42 absorption features associated with 

vegetation listed in Curran (1989). Influential segments of the imaging spectroscopy data 

indicated by very high or low beta coefficients were considered relevant to predicting foliar 

nitrogen. Beta coefficients which were marked as significant at a p < .05 alpha level were 

marked and the model was rerun with only these.  
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2.5 Nitrogen mapping for Reynolds Creek Experimental Watershed 

Beta coefficients produced by the model were applied to imaging spectroscopy data 

using R programming in R Studio. The code is provided in the appendix. Prior to import, the 

imaging spectroscopy data were transformed using absorbance and Savitzky-Golay (1,3,1) 

smoothing in ENVI software.  As the imaging spectroscopy data used were resampled down 

to 1 m2 from 2-3 m2 pixels, beta coefficients were produced at a unit measurement of foliar N 

per 1 m2 rather than plot level to ease interpretation. Blocks of the imaging spectroscopy data 

were subset, and then values per cell were extracted and beta coefficients were used to 

calculate foliar N estimates. The code creates a raster identical in size to the input imaging 

spectroscopy data. The foliar N estimate for that cell is calculated and written to the new 

raster, which is saved. 

3 Results 

3.1 Field data collection results 

Field data were averaged to the plot scale (Table 1). Green biomass estimates using 

live shrubs were estimated to be an average of 5107 grams per plot. There was an average of 

162 live shrubs per plot. LAI was low, averaging 0.68, and variable, with a range of 0.22-

1.54. Average sagebrush shrub height was 50 cm. Though plots were chosen to contain 

dominant sagebrush cover, overall sagebrush canopy cover was low, an average of 22%. Leaf 

area averaged 3.5 cm2. Average dry weight of leaf samples was 0.048 grams. Average LMA 

was 0.015 g/cm2. N values, averaged to plot level, ranged from 1.2-2.3% with an average of 

1.8%, similar to previous sagebrush sampling (1.5-2.8% in Mitchell et al., 2012b; 1.6-2.4% 

in Dashti et al., in review; 2.3% average in Yi et al., in review) and mixed canopy forest from 

other studies (0.9-1.8% in Knyazikhin et al., 2013). Shrubs in 2014 had slightly higher 
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average green biomass, despite having few shrubs per plot with less dense canopies, as 

indicated by LAI measurements. Overall, the plots were variable, for example, plot N-Sage15 

had one of the lowest density values but relatively high green biomass predicted from canopy 

widths and allometry, which was nearly twice the biomass predicted for a plot with similar 

density: N-Sage07. A number of the plots were unusual when compared to the group and 

appeared as outliers in some PLSR models. For example, Sagebrush9 and N-Sage17 had 

approximately four times the density of other plots.  
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Plots  
(2014, 2015) 

Green 
biomass 

[g] 

Density 
(number 

of live 
shrubs) LAI 

Average 
sagebrush  
height per 
plot [cm] 

% Cover of 
sagebrush 

per plot 

Leaf area 

[cm2] 

Average 
sample dry 

weight 
 [g] 

 
LMA 

[g/cm2] Foliar N 
content 

Sagebrush2 4401 57 0.86 67 32% 2.6 0.058 0.022 2.1% 

Sagebrush3 2961 92 0.53 47 17% 2.0 0.044 0.022 2.2% 

Sagebrush4 2302 54 0.22 48 15% 1.6 0.033 0.020 2.3% 

Sagebrush5 2973 56 0.47 48 8% 2.5 0.047 0.019 2.0% 

Sagebrush6 3777 84 0.34 44 25% 2.4 0.048 0.021 1.9% 

Sagebrush7 5604 174 0.42 42 25% 2.4 0.047 0.020 2.3% 

Sagebrush8 5146 101 0.44 47 22% 1.9 0.043 0.022 2.0% 

Sagebrush9 11391 422 1.36 56 36% 2.4 0.062 0.025 1.9% 

Sagebrush10 6730 103 0.90 55 28% 1.9 0.040 0.020 1.9% 

N-Sage01 4462 128 0.44 54 13% 4.7 0.071 0.016 1.7% 

N-Sage02 1742 154 0.33 28 5% 3.4 0.037 0.011 1.9% 

N-Sage03 7889 59 1.54 77 21% 4.0 0.046 0.012 1.2% 

N-Sage06 2945 135 0.45 37 14% 5.2 0.068 0.013 1.3% 

N-Sage07 3478 42 0.49 52 10% 5.1 0.059 0.012 1.4% 

N-Sage11 3739 794 0.25 20 19% 2.3 0.021 0.009 1.6% 

N-Sage12 5079 135 0.49 27 26% 5.2 0.037 0.007 2.2% 

N-Sage13 3144 111 0.47 42 14% 5.3 0.044 0.008 2.0% 

N-Sage14 6962 98 1.12 48 19% 5.2 0.051 0.010 1.7% 

N-Sage15 6578 44 1.44 110 19% 5.0 0.047 0.009 2.0% 

N-Sage17 10208 468 1.05 26 58% 2.9 0.030 0.011 1.5% 

H-Sage01 5728 81 0.61 78 33% 6.0 0.066 0.011 1.5% 

          
Total avg 5107 162 0.68 50 22% 3.5 0.048 0.015 1.84% 

2014 avg 5032 127 0.62 50 23% 2.2 0.047 0.021 2.07% 

2015 avg 5163 187 0.72 50 21% 4.5 0.048 0.011 1.67% 
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Table 1. Descriptive statistics for the 21 sites sampled. Green biomass is calculated at plot level using a density count of live shrubs 

with allometric equations (leaf area is not included). Averages between the year subsets are listed below. 
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3.1.2 Biomass allometry 

The simpler crown area method consistently outperformed the crown volume method, as 

seen in the following regression R2 table (Table 2). The crown area formulas that determine 

predicted weights are reported below each graph, which show the relationship of the predicted 

weights to actual weights (Figures 7-9). As size increased and there were fewer representative 

samples, the model becomes less accurate (Figures 7-9). 

Compared measurements - 

y axis 

R2 using Ln(CVHt): 

Ln(π*a*b*ht) as x axis 

R2 using Ln(CA): 

Ln(π*a*b) as x axis 

Above Ground Biomass 0.84 0.88 

Green Biomass 0.79 0.80 

Woody Biomass 0.84 0.88 

 

Table 2. The R2 values here describe the relationship of the biomass measurements to their 

estimates using two different equations. Including height in the estimation formula consistently 

decreased correlation. The improved R2 values where height was omitted are in the third column. 
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Figure 7. Aboveground biomass results. The aboveground biomass (AGB) prediction (y) using 

the crown area (CA) (x) yields the equation: AGB = e ^ [1.208 * ln(CA) + 7.7226] (r2=0.88, P< 

0.01, n=91). A 1:1 line is drawn is gray to show ideal prediction. 
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Figure 8. Woody biomass results. The woody biomass (WB) prediction (y) using the crown area 

(CA) (x) yields the equation: WB = e ^ [1.2543 * ln(CA) + 7.6312] (r2=0.88, P< 0.01, n=91).   
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Figure 9. Green biomass results. The green biomass (GB) prediction (y) using the crown area 

(CA) (x) yields the equation: GB =  e ^ [0.9387 * ln(CA) + 5.2129] (r2=0.80, P< 0.01, n=91).   

3.2 Partial least squares regression 

Variations within scaling methods were tested. Averaging shrub level field sampling 

before calculation improved the Cover/LMA models compared to averaging after calculation, 

despite expectations that averaging later preserved accuracy and would improve models. Use of 

all live shrubs in density counts, rather than all shrubs or only live sagebrush shrubs, improved 

models for Biomass/Density. However, using a density count of only live sagebrush shrubs 
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improved performance over all live shrubs for the LAI/Density/LMA method. Improvements 

were generally slight. Removing all scaling adjustments to regress against average percent of 

foliar N for the plot improved over two methods in this case but not Cover/LMA or 

Biomass/Density (live). Restricting plot cover was also tested, though there were not enough 

plots with cover greater than 20% to successfully run the model. Using only plots with cover 

greater than 15% restricted the sample to 14 plots. The resulting models had lower adjusted R2 

values but inconsistently improved RMSE values.  

 Biomass/Density, using all live shrubs for density, was used going forward with the 

absorbance and SG (1,3,1) smoothing transformations. This is one of the methods which showed 

RMSE improvement and only small change to adjusted R2 values after applying restricting 

samples to only those with cover greater than 15%. However, due to concern about the already 

small sample size, subsetting for cover was not used further. Further variations in model settings 

were tested. Model repetitions were run to compare variation in performance metrics caused by 

the random selection elements of the bootstrapping components of PLSR. Repetitions produced 

variation in adjusted R2 in the hundredths and in RMSE values in the tenths. Exclusion of 

wavelength values (leaving out 0, 1 or 3 values on either side) near water absorbance regions and 

weighting were applied out of concern that smoothing over large ranges of removed bands would 

affect wavelength values and degrade analysis. However, after averaging five repetitions, 

exclusion of values produced similar RMSE and adjusted R2 values. No exclusions and multiple 

model runs were used going forward.  

Preliminary testing on the model prediction on imaging spectroscopy rasters showed low 

values were not produced for bare ground or other areas that were likely low in foliar N due to 

the model's beta coefficients including a high y-intercept value. While a homogenous sample set 
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is useful to identify consistently important wavelength predictors, the regression is limited to the 

range of its samples. Lacking a range in landscape types degrades the models ability to predict 

for types not represented in the sample. To test this, imaging spectroscopy data for a bare ground 

plot was visually selected, extracted, and transformed, and then assigned a value of zero for 

foliar N. This artificial bare ground plot was added to the plot samples in replicates of 1, 10, and 

21. The mean was used to compare results rather than sum as the pixels overlapped the plot 

boundaries, selecting areas larger than 10x10 m, resulting in the model overestimating the foliar 

N sum compared to the plot scaling method. Figure 13 compares the scaling mean to the means 

including 1, 12, and 21 (equal to sample size) ground samples set at zero foliar N. These were 

selected to prevent the model from assuming a high base average N for all pixels. 

Inclusions of bare ground samples in increasing amounts lowered the y intercept, moved 

predictions closer to scaling estimations, and appeared to more accurately represent a lack of 

foliage in the bare ground plot. However, while this experiment illustrates a need for further 

sampling, and representative sampling in number and type to the landscape being predicted, the 

bare ground samples were not used for the final model as they were not based on verified ground 

sampling.  
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Figure 13. Higher amounts improved prediction for all sites and the bare ground sample, though 

higher amounts did not differ from each other. 

Ten repetitions of the Biomass/Density (live) SG (1,3,1) models were run using the 

uncertainty test provided in the Unscrambler validation options. The uncertainty test works with 

the submodels created during cross validation to measure stability and identify important 

predictor variables. Predictors that were significant at a .05 alpha were marked, and the models 

were each rerun. The unmarked variables that showed unstructured variation and added noise to 

the model were excluded using downweighting, which multiplies insignificant variables by a 

very small value to reduce their influence. This inconsistently improved the model RMSE and 

adjusted R2 values.  
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When the predicted plot values of the two best performing models were graphed against 

the field estimates, they showed an association to either 2014 or 2015 samples. Samples were 

subset by year and rerun.  

 

 

Figure 14. The first repetition of the model better predicted the 2015 plots, while the seventh 

repetition was a better predictor of 2014 plots. The five samples below zero are spurious, a 

function of the PLSR model allowing negative predictions.  
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Scaling method 
Spectral 

transformation 

RMSE 

(grams per 

m2) 

Adjusted 

R2 
Factors 

Sample 

size 
Description 

Biomass/Density 

(live) 

SG (1,3,1) 

downweighted 
.18 .77 5 21 Rep. 1 

Biomass/Density 

(live) 

SG (1,3,1) 

downweighted 
.18 .78 5 21 Rep. 7 

Biomass/Density 

(live) 

SG (1,3,1) 

downweighted 
.19 .76 3 9 

2014 field 

samples 

Biomass/Density 

(live) 

SG (1,3,1) 

downweighted 
.09 .85 7 12 

2015 field 

samples 

Biomass/Density 

(live) 

SG (1,3,1) 

downweighted 

.14 .88 3 21 Combined 

repetitions 

 

Table 3. The two best performing final model repetitions (1 and 7) and repetitions using subsets 

of 2014 and 2015 samples only, as well as the final multi-modal combination of repetitions. 

 While the 2014 showed similar RMSE and adjusted R2 values, the 2015 run showed 

improvement. The significant coefficients used for downweighting the 2014 and 2015 models 

match poorly and contradict. For example, in the 1100 nm range 2015 negatively correlates with 

the results of the repetitions which used both sets of samples, while the 2014 has a strong 

positive correlation at 1128 nm that isn't found in the other models. From the 600 to 900 nm 

range, the 2015 model showed a number of significant wavelengths that were not identified by 

the 2014 model or models using both sets of samples.  

The selected significant wavelengths of the best performing models are shown in Figure 

15 (Appendix F), which includes two repetitions using all samples and two subsets, each using 

either only 2014 or 2015 samples. They are annotated with absorption features from Curran 

(1989). The results are notably different between 2014 and 2015, and though the repetitions and 

2014 samples often grouped together, there are contradictions such as 2014 selecting no VIS 

wavelengths, or Repetition 7 contradicting values around 640 nm. Excluding the C-H stretch at 
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1690 for the 2014 model, most wavelengths associated with N features were not identified as 

significant or were minimal contributors; in the 2015 model, starch overtones were selected 

while N features were not. 

3.3 Plot level scaling of foliar N content  

The Biomass/Density based scaling method produced the best N estimation results with 

PLSR adjusted R2 = .63, and the Cover/LMA produced similar prediction results (R2 = 58). 

Different scaling methods favored different SG settings. Due to the disparate units between 

methods, models using the same method were compared to each other using RMSE and adjusted 

R2 first. The best model of each group was selected and then compared using adjusted R2. Using 

3 points on either side for smoothing worked best for three methods.  

Scaling method Spectral 

transformation 

RMSE (grams per 

plot) 

RMSE 

coefficient 

of variance 

Adjusted 

R2 

Factors 

Biomass/Density 

(live) 

SG (1,3,1) 22.69 

(grams per plot) 

25% 0.63 5 

LAI/Density/LMA SG (1,3,2) 407.8 

(grams per m2) 

163% -0.03 5 

Cover/LMA SG (1,2,2) .257 

(grams per cm2 * 

fractional cover) 

40% 0.58 5 

Height/Cover SG (1,3,4) 10.48 

(absolute bulk 

cover) 

53% .21 2 

Average percent 

foliar N 

SG (1,3,2) 0.22 

(average percent of 

foliar N at plot 

level) 

12% .47 1 
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Table 4. SG transformation settings were varied, annotated above as: (derivative, number of 

symmetrical points, and polynomial order used). Models within each scaling method were 

compared using RMSE, adjusted R2 and the number of ideal components selected.  

 As Biomass/Density and Cover/LMA had similar performance, all beta coefficients for 

their SG models were graphed in order to determine 1) if there were notable differences between 

SG transformation settings, and 2) if the spectral features being identified by the models were 

correlating with known N absorption features. The graphs were annotated with vegetative 

features that may be relevant to the coefficients shown. (See Figures 10, 11, and 12 in Appendix 

F.) 

 The general shape of features produced through different SG settings was consistent for 

both models, particularly the better performing Biomass/Density models. More noise and 

disagreement appears in the Cover/LMA model. Similar patterns appear in both. There is a 

possibly shifted spike of chlorophyll a near 670, a large cellulose/lignin/water drop at 1200, and 

a spread increase around both the 1690 and 2130 nitrogen features. The imaging spectroscopy 

data were sampled in intervals and then smoothed further, so some shift is expected. However, 

many N features were not notably detected or readings were inconsistent.  

Average nitrogen was additionally examined with two settings. No scaling was applied. 

Results appeared noisy. The chlorophyll a spike was reduced; N features at 1020, 1980, and 2350 

N feature were identified which were absent in the scaling methods' coefficients; the 1200 

feature was notably inversely related.  
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3.4 Spectral transformation  

 The spectral wavelength dataset was separated into subsets to compare performance of 

portions of spectrum known to be associated with N. The Biomass/Density (live) scaling method 

performed well previously and was used in subsequent experimentation to optimize the model. 

Breaking data into intervals when using reflectance data showed improvements when using the 

1433-1773 nm range rather than the entire wavelength set; the 451-1338 range nm gave similar 

results to using the entire range, with worse performance using the 1959-2464 range nm. Models 

using log transformed absorbance data reacted similarly. Transforming the data using SG 

improved performance, but eliminated benefits of subsetting. These results guided the decision to 

use SG without subsetting in this work.  
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Spectral transformation 

method 

RMSE (grams 

per plot) 
R2 Pearson Adjusted R2 Factors 

Reflectance 34.57 0.41 0.16 6 

Reflectance (451-1338 

nm) 
34.76 0.42 0.23 5 

Reflectance (1433-1773 

nm) 
31.68 0.53 0.28 7 

Reflectance (1959-2464 

nm) 
42.29 0.16 -0.05 4 

Log Transformed 

Reflectance 
34.68 0.46 0.17 7 

(451-1338 nm) 32.76 0.48 0.31 5 

Log Transformed 

Reflectance (1433-1773 

nm) 

30.40 0.56 0.32 7 

Log Transformed 

Reflectance (1959-2464 

nm) 

40.96 0.24 -0.01 5 

First Derivative 

Reflectance SG (1,1,2) 
27.98 0.58 0.44 5 

First Derivative 

Reflectance SG (1,1,2) 

(451-1338 nm) 

28.08 0.6 0.50 4 

First Derivative 

Reflectance SG (1,1,2) 

(1433-1773 nm) 

35.46 0.33 0.21 3 

First Derivative 

Reflectance SG (1,1,2) 

(1959-2464 nm) 

38.80 0.29 -0.01 6 

 

Table 5. Within the Biomass/Density scaling method, using all live shrubs for the density count, 

transforming the data improved measurements. In raw data, subsetting data shows improvements 

over using the full dataset; however, as data were smoothed, gains lessened. The subset above 

1959 nm consistently performed poorly.  

Additional applications of gap derivative smoothing did not perform as well as SG 

smoothing. Detrending transformation (using polynomial settings of 1,2, and 4) followed by a 

Standard Normal Variate (SNV) transformation on SG (1,3,1) data for models using the 
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Biomass/Density scaling method also performed poorly, with low adjusted R2 values in 

comparison to models without the additional transformations. Given those results, additional 

transformations were not investigated in this study. 

3.5 Wavelength selection using model repetitions 

 Random elements of the PLSR model produced different wavelength selections and beta 

coefficients when repeatedly run using the same model parameters and input data (Table 6). 

Multimodal analysis was performed in this study as it has been shown to improve consistency in 

selection (Feilhauer et al., 2015). To improve consistency here, the beta coefficients of the 

downweighted reruns of ten repetitions of the Biomass/Density (live) SG (1,3,1) models were 

examined and combined.  Three models with poor results were excluded. If a wavelength was 

selected as a positive or negative predictor by four of the remaining seven, and was not 

contradicted by any model (i.e. if a wavelength was positively indicated by at least four models it 

would be used unless another model selected it as a negative correlation) it was included in the 

subset.  

 A PLSR model was created using this combined subset. The model was rerun using 

downweighting. This selected the following bands: 677 (near the 660 absorption feature for 

chlorophyll a), 992 (near the 990 absorption feature for starch), 1133, 1208 (near the 1200 

absorption feature for water, cellulose, starch, lignin), 1213, 1218, 1223, and 1263 nm. The 

model produced a 0.14 g/m2 RMSE and 0.88 adjusted R2, performing better than the 2014 subset 

and uncombined model results, and with an improved adjusted R2 over all models while using the 

entire set of plots. 
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Method Wavelength selection 

Biomass/Density 

(live) – Rep. 1 

592, 597, 602, 607, 612, 622, 627, 672, 677, 987, 992, 997, 1133, 

1138, 1143, 1208, 1213, 1218, 1223, 1233, 1263, 1318, 1528, 1583, 

1588, 1714, 1749, 1974, 1989, 2044, 2049, 2099, 2104, 2109  

Biomass/Density 

(live) – Rep. 3 

672, 917, 922, 927, 952, 957, 1133, 1208, 1213, 1218, 1223, 1233, 

1248, 1679, 1729, 1734, 1744, 2149, 2340 

Biomass/Density 

(live) – Rep. 5 

917, 922, 927, 952, 1133, 1208, 1213, 1218, 1223, 1233, 1248, 1588, 

1669, 1679, 1729, 1734, 1744, 2149, 2340 

Biomass/Density 

(live) – Rep. 7 

672, 677, 992, 1133, 1138, 1143, 1208, 1213, 1218, 1223, 1233, 1588, 

1744, 1749, 2104, 2109 

Biomass/Density 

(live) – Rep. 8 

592, 597, 602, 607, 617, 622, 627, 672, 677, 987, 992, 997, 1138, 

1143, 1208, 1213, 1218, 1223, 1233, 1263, 1528, 1583, 1588, 1714, 

1749, 1974, 1989, 2049, 2099, 2104, 2109 

Biomass/Density 

(live) – Rep. 9 

597, 602, 617, 622, 627, 677, 1138, 1143, 1208, 1213, 1218, 1223, 

1233, 1238, 1248, 1263, 1528, 1583, 1588, 1739, 1744, 1749, 2099, 

2104, 2109 

Biomass/Density 

(live) – Rep. 10 

592, 597, 602, 607, 612, 617, 622, 627, 672, 677, 987, 992, 997, 1138, 

1143, 1208, 1213, 1218, 1223, 1233, 1263, 1528, 1583, 1588, 1714, 

1749, 1974, 1989, 2049, 2099, 2104, 2109 

Biomass/Density 

(live) – 2014 subset 

917, 922, 932, 987, 992, 1128, 1213, 1679 

Biomass/Density 

(live) – 2015 subset 

622, 627, 642, 687, 697,702,712, 717, 727, 732, 837, 937, 942, 952, 

962, 1118, 1133, 1138, 1143, 1148, 1158, 1163, 1323, 1593 

 

Table 6. Wavelengths selected as significant by multiple repetitions using the full sample set as 

well as year subsets.  

3.6 SLA and Cover results 

Specific leaf area (the inverse of leaf mass area) was modeled against spectral predictors 

using PLSR and SG smoothing with settings of a first derivative transformation and then 

symmetrical points of 1, 2, or 3 and polynomial orders of 1, 2, 3, or 4. Models were then rerun 

using a subset of plots with cover of  >15%. The best models of each group are listed below 

(Table 7). Results for both groups of models produced similar results, all with RMSE ranging 

10-13 cm2/g and adjusted R2 ranging .82-.85. Models were rerun, using downweighting to 
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include only variables significant at a .05 alpha. The downweighted models selected similar 

wavelengths as significant predictors, both selecting: 502-547, 697-717 (near chlorophyll a 

absorption feature), 942 (near an oil feature), 1048-1053 (near an oil feature), 1128-1178, 1248-

1283, 1298, 1333, 1443 (near a starch and sugar feature), 1458-1468 (near a cellulose and water 

feature), 1478-1483 (near cellulose, sugar, and water features), 1553-1563 (near a starch and 

sugar feature), 1749-1764, 2375, 2435, and 2455 nm (Curran, 1989). The model using all 

samples selected more narrow regions than the model using only samples with plot cover >15%. 

Similar to other models, downweighting insignificant indicators appeared to reduce noise and 

improve the relationship, indicated by the RMSE and adjusted R2, while reducing the number of 

factors needed, though the improvements made by excluding low cover plots are small. LMA 

(using the inverse, SLA) was additionally graphed against foliar N content, but had no 

correlation. 

Predicted value 
Spectral 

transformation 

RMSE 

(cm2/g) 

Adjusted 

R2 
Factors 

Sample 

size 

SLA (cm2/g) SG (1,1,2) 10.7 .85 3 21 

SLA (cm2/g) 

SG (1,1,2) 

unmarked 

downweighted 

9.5 .90 2 21 

SLA (cm2/g) SG (1,2,2) 11.4 .84 3 14 

SLA (cm2/g) 

SG (1,2,2) 

unmarked 

downweighted 

9.0 .92 2 14 

 

Table 7. Results for PLSR models comparing SLA (the inverse of LMA) to smoothed spectral 

wavelengths.  
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3.7 Map of predicted foliar N values 

The raster file of the foliar N map created using the final models (Figure 16) is included 

in the supplementary materials. 
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Figure 16. A wall to wall map depicting the distribution of foliar N for the Reynolds Creek 

Experimental Watershed (RCEW) at 1m2 pixel resolution. 

4. Discussion 

4.1 Partial least squares regression 

PLSR results were limited by constraints of method development, as time did not allow 

for full exploration of parameter options that could have influenced model performance. For 

example, models that performed poorly in this study may improve with different subsetting of 

wavelengths, exclusion of outlier samples, or increased repetitions. The high variability between 

repetitions when using the PLSR model suggests more experimentation is needed to determine 

how many repetitions are needed for a given sample size in order for to results to stabilize . The 

ranking of the scaling methods is very sensitive to what bands were dismissed from further 

analysis. For example, some bands appear “noisy” in the regression coefficient graphs for some 

scaling methods and not others. The result is that if a band that is only noisy for one method is 

included as input in the model, that method may appear to underperform due to an arbitrary 

choice made by the modeler.  One of the challenges to comparing methods was the large number 

of variations to test in PLSR. Later improvements provided by the "unmarked downweighted" 

refinement may have improved some models but could also have made discarded sampling 

methods more competitive. Models based on different sampling methods responded to different 

bands. Overall, data exploration and model performance was limited due to the small number of 

samples. For example, a larger dataset would allow experimentation with thresholds or gradients 

of variables, such as subsets of plots with greater cover or density. Increasing the sample size 

would give more options for investigating other variables and subsets and excluding potential 
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outliers without decreasing predictive power. Most importantly, the ability of the model to 

predict foliar N content for new locations is limited by a low number of sample plots with high 

foliar N content.  

Variation in PLSR results produced by the random elements of the model enforces the 

need for repetition and is exacerbated by the small sample size of the dataset. Early data 

exploration using untransformed reflectance data and only subsets of selected wavelength 

intervals suggest irregular amounts of noise along the spectrum, particularly beyond second 

water absorption feature (1773-1959 nm). However, many of the best performing models had 

significant, though often contradicting, predictors in this region.  

 The final models were consistent with earlier work in showing shifted and unexpected 

peaks that did not correlate well to known N features, though other features were selected, 

particularly starch features (Figure 10-12, 15; Table 6; Curran, 1989). Some known nitrogen 

features were absent (Curran, 1989). Other unknown features were strongly and consistently 

present, such as peaks in the 1100-1160 nm range. A subset of 2014 samples did select the 1690 

C-H stretch which includes N, and the mixed sample repetitions identified some N features in the 

2000-2100 nm range. Outputs aligned with some expected features but had no response to others. 

Selected wavelengths did not align with N features identified by Curran (1989) (few within 20 

nm of 2060 and 2130 and none at 1020, 2180, and 2300 and only slight negative correlation in 

one final model with 1510 and 1980); however, the 2015 model identified numerous positive 

correlations with known wavelength features in the VIS, including 640 and 660 chlorophyll 

features and one water absorbance feature around 970. 

All models found strong (though often negative) correlations in numerous NIR and SWIR 

bands in agreement with literature findings (Ollinger et al., 2008; Ollinger, 2011; Martin et al., 
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2008). The majority of model repetitions which used the full sample set and the 2015 subset also 

selected VIS wavelengths as predictors, diverging from previous findings that the inclusion of 

VIS wavelengths in analysis added noise and degraded correlation (Lepine et al., 2016; Martin et 

al., 2008; Ollinger et al., 2008; Ollinger, 2011) and in agreement with Mitchell et al. (2012). The 

majority of models using all samples and the 2014 subset model selected bands with strong 

negative correlations near the 1200 nm water absorption features in the NIR region, similar to 

Smith et al. (2003) and overlapping with results from Mitchell et al. (2012), which identified 

similar or identical bands at 1200, 1232, and 1263 nm. Ollinger (2011) states bands near water 

absorption features are influenced by structural effects. 

While the models support the idea that the number of needed wavelengths could be 

reduced for prediction, though in model creation a large range of input bands is helpful, the 

disparity in the 2014 and 2015 model selections of important bands suggest that within dryland 

sagebrush ecosystems there is additional influence either from site or seasonal structural 

characteristics. The two subset models had little overlap in selection. The disparate selection in 

significant wavelengths may be a function of the discussed limitation introduced by field 

collection dates. Samples collected in the early wet May, 2015, season have a higher LAI (more 

dense canopy) and double the leaf area of the September, 2014, samples which were taken after 

summer droughts (Table 1). However, the 2014 season field samples on average had higher 

foliar N content than in 2015 and roughly half the SLA (Table 1). Thus the 2014 subset might be 

expected to produce a stronger spectral signature, having more and more concentrated foliar N; 

however, the 2015 subset produced a stronger model relationship. This may indicate a structural 

influence of the larger leaves and denser canopy or associated traits in 2015 allowed the model to 
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rely on VIS wavelengths that increased prediction, as well as relying on NIR and SWIR bands 

selected by the 2014 model.  

As leaf absorbance and scattering within the canopy are influenced by leaf orientation 

and size, which differs between the ephemeral and perennial phenological states in sagebrush, 

the 2014 and 2015 differences may be due to structural differences in the canopy of these shrubs, 

particularly in the NIR response at 1213 nm. This may be useful to characterize signal 

differences between ephemeral and perennial foliage and identify the timing and extent of 

summer drought conditions on ephemeral foliage. Subsetting the 2014 samples produced a 

model fitting the spectral features of a canopy dominated by perennial foliage, while the 2015 

samples identified spectral features from a canopy dominated by ephemeral foliage, and using 

the full sample set may identify generalized wavelengths predictors that can infer foliar N for 

both canopy types. While the full dataset may give a good general detection, subset models 

appear to generate more specialized datasets for ephemeral or perennial leaves, though the 

validity of that inference is unclear until it is verified by field tests. Additionally, this difference 

in selected wavelength may be attributable to site choice, since the 2015 field collection did not 

return to 2014 sites.  

It is unusual that the larger sample size of 2015 was not more influential in dampening 

characteristic signals of the 2014 plots in the two repetitions using mixed samples. This may be 

related to the 2014 beta coefficients having greater magnitude than those produced in the 2015 

model or higher and more concentrated foliar N in sampling. Future researchers may want to 

note that samples which mix phenological states selected different predictors than either of the 

more homogenous subsets in this work.  For landscape modeling, it may be preferable to restrict 

sampling and aerial collection dates to within dates capturing a single phenological state. The 
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choice of which state should be informed by the goals of the project. In projects seeking to look 

at ecological questions, certain ecological states may be better suited, or both may be collected to 

investigate generalized ecological dynamics. 

 The final model, which used only wavelengths consistently selected in the same 

direction, evidencing benefits of using multiple repetitions to stabilize the random variation 

produced within the model development. Multimodal analysis or repetitive combinations may 

stabilize predictive wavelengths in future work, as suggested in literature (Feilhauer et al., 2015). 

This may improve transferability between sites within the Great Basin. The model repetitions 

notably relied on different subsets of wavelengths to generate predictions with similar success, 

suggesting combinations of wavelengths may substitute for one another as indicators. This 

supports the suggestion that use of large VIS, NIR, and SWIR ranges may be stronger than 

attempts to use limited regions to reduce noise or to assume model transferability. 

4.2 Field collection discussion 

Several field data variables occur in both successful and underperforming methods: 

LMA, density counts, and fractional cover (Table 8). Shrub height and LAI appear only in 

methods which performed poorly. Canopy width was successfully used to establish allometric 

relationships that reduced need for destructive sampling, and scaling using allometric estimation 

of green biomass performed well. Future data collection may exclude low performing variables 

such as LAI and height, while including cover, canopy allometry, LMA, and density counts. 

Future scaling work may examine additional combinations of variables.  
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Shrub 

height 

Canopy 

width 

Leaf 

area 

Leaf 

weight 
Cover Density LAI 

LAI/Density/LMA   yes yes  yes yes 

Height/Cover yes    yes   

Cover/LMA   yes yes yes   

Biomass/Density  yes    yes  

Table 8. A comparison of variables present in each model.  

The Cover/LMA model (R2 = .58) supports previous work (Mitchell et al., 2012b) that 

suggest LMA is a useful metric for scaling sagebrush foliar N in airborne imaging spectroscopy 

studies. In contrast, alternative scaling metrics explored in this thesis such as LAI/Density/LMA 

and Height/Cover scaling methods performed poorly in this study, with R2 values consistently 

below 0.60. Underperformance of the LAI/Density/LMA model may be attributable to the open 

canopy structure of sagebrush, which correlates poorly with LAI (Hurcom and Harrison, 1998; 

Lepine et al., 2016; Ollinger et al., 2008). Ollinger (2011) criticized LAI for aggregating the 

canopy variables which relate to foliage distribution patterns and branching and thus obscuring 

differences in scattering. LAI may be unsuited to evaluating dryland ecosystems with low 

density, cover, and canopy closure despite its use in other ecosystems (Hurcom and Harrison, 

1998).     

In the development of the allometry values, use of a height variable in a volume formula 

reduced correlations, as compared to excluding height in area formula. This suggests height may 

also interfere with scaling methods for estimating sagebrush foliar N, as evidenced by the poor 

performance of the Height/Cover scaling method (R2 = .21). The distance between shrubs as a 

function of water competition and abundant light availability may reduce the advantages of using 

height in sagebrush scaling methods. 
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  The Biomass/Density (live only density) scaling method performed well (R2 = .63), as did 

the Cover/LMA model (R2 = .58). Canopy width measurements may be a better representation of 

sagebrush foliage than height or LAI. The Biomass/Density model also did not rely on leaf area 

directly, but through allometric data based on a much larger dataset with mixed seasons (fall and 

summer). The greater sample size may have stabilized the relationships or its mixed seasonality 

may have better represented the mixed seasonality of RCEW samples. However, as the model 

based on the Cover/LMA scaling method used the 2014/2015 RCEW leaf area values and 

performed similarly, this would suggest that seasonal differences in LMA may not be the 

variable negatively influencing the model based on the LAI/Density/LMA scaling method. 

4.3 Transformations and subsetting 

In this work, using raw data, first derivative, or gap derivative processing alone was 

insufficient. The combination of first derivative and SG smoothing prepared the data well for 

PLSR. However, while transforming the data using SG improved performance, the benefits of 

subsetting data declined, suggesting irregular levels of noise between subsets was smoothed out 

by the transformation. More noise and disagreement appears in the Cover/LMA model results 

than the biomass as well, which may indicate a greater sensitivity for this method to 

transformation settings.  

4.4 Mapping predicted foliar N 

Mapping produced anomalous results over land cover types which were not included in 

the creation of the model. For example, water showed unusual and varying patterns in N 

distribution and such results are unlikely to be valid, while irrigated fields associated with 

relatively large patches of high biomass did not display high N values as expected. In particular, 
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water and irrigated fields could be excluded with masking in future mapping. Trees appear to be 

represented more accurately, as well as low stature shrub vegetation that was well represented in 

the sampled plots. Additionally, despite physical impossibility, the model allows for the 

generation of negative predictions.  

Depending on the goals of future studies, the sample set may benefit from including 

representation of multiple landscape types. While a homogenous sample is useful for identifying 

consistent spectral features, heterogeneous plots such as those with bare ground should be 

included to represent instances that will occur in high resolution mapping. This work would 

indicate that models which do not include the landscape types in the sample will likely 

overestimate foliar N for bare ground cover and incorrectly represent water and agricultural 

fields.  

Full geotiff files for this model are included in supplementary materials.  

5. Conclusions 

Findings from this work can limit the time are resources necessary to collect vegetation 

variables in the field. In addition, this study identifies transformations and regression methods 

that are useful in identifying wavelengths for continuous N mapping at the watershed scale. The 

best performing scaling method included density counts and canopy width measurements of live 

shrubs, as well as leaf sampling and laboratory processing for N. Development of allometric 

biomass relationships based on canopy width inputs can replace destructive sampling. If 

allometry is not available, use of fractional cover and leaf sampling performs similarly. Height 

and LAI appear unnecessary to collect. Estimating vegetative area through cover or density is 

important. Species identification in density counts was not important when used with the canopy 
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allometry, but was used for fractional cover; species composition and abundance may influence 

whether identification is necessary. Canopy widths, density counts without species identification, 

and leaf nitrogen analysis would be sufficient to apply this model. 

The lack of alignment to known N spectral features and between models suggests that 

regional field sampling is still necessary, as wavelength selections may not be accurately 

transferred between sites, seasons, or years. Transformations can be used to reduce noise. PLSR 

and subsetting can be used to further exclude noise and reduce wavelengths needed for 

prediction. However, model results are sensitive to band removal, transformations, sampling 

biases, model settings, and random variation within model creation. Few band selections from 

the subsets corresponded to N features, while the best performing model used wavelengths 

associated with starches, suggesting that correlations should be investigated for physical causes 

to better interpret model predictions. This may support the assertion that indirect measurements 

of N are being selected as predictors.  

Large scale mapping of foliar N can be combined with maps of biomass to assess 

nutritional quality and quantity of foliage for rangeland management and to infer patterns of 

wildlife habitat selection, movement, and abundance. Foliar N maps can also be used to assess 

photosynthetic activity and N-cycling to improve climate models. Over a large area, these maps 

can be combined with climate variables to investigate vegetative growth patterns for invasive 

and fire management. Land covers not represented in sampling were poorly predicted and should 

either be excluded from mapping or included in sampling and model development. Future work 

would benefit from increased sampling which represented seasonal and regional variations as 

well as different land cover types. The results of this study can be used to evaluate N prediction 

from satellite platforms such as Landsat, Sentinel-2, and MODIS.  
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Appendices 

Appendix A. Leaf area estimation 

 Specific leaf area (SLA) is a ratio measure of foliar weight to area. This is useful in 

estimating proportional foliar nitrogen (Smith et al., 2001) and was used in three of the scaling 

methods tested. Leaf samples from six randomly selected shrubs of representative size were 

collected and weighed twice, first fresh to determine wet weight, and then after drying. Prior to 

drying, the leaf samples were scanned in groups, as seen in the image below. These images were 

processed for area estimates as subsequently described. 

 

Figure 17. Leaf subset, single shrub, grouped with label.  

 

The data were received as photographs taken at a measured distance, with one to three 

groups of 10 - 15 leaves per photo, labeled and on a white background. These were processed in 

Adobe Photoshop according to a process described in an instructional video by Jarou (2009), in 

which a collection of sample pixels are manually selected and extrapolated to a larger selection 

to encompass the selected group of leaves.  

Multiplying the selected leaf pixels by dots per inch (DPI) provided leaf area that could 

be compared to other leaf sample measurements to form metrics used in models. This process 

has the benefit of precision and human judgement and attention, but is time intensive, requires 
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training, and is based on subjective judgement which produced results that can vary between 

researchers. Because of this, the process was conducted twice on each group of leaves and 

averaged to reduce error, although it did increase the time and labor costs.  

To process photos more quickly and reduce subjective judgment, the photos were read 

into Matlab software using an image processing routine. To segment the multigroup photos, 

pixels were compared over a three dimensional scaling of hue, saturation, and value.  

 

Figure 18. Pixels from leaf scans were projected into two types of multidimensional space. 

 

Green pixels were selected and used to mark rows in which groups of leaves were 

present. Green was defined as a hue value between 0.2 and 0.3, and a saturation between 0.5 and 

0.8. Periods of vacant rows were used to mark the boundaries of these groups. Segmented 

subsets of images were then cropped horizontally along these boundaries. The process was 

repeated vertically using the same method to exclude the labels.  
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The leaves were then processed in a three dimensional space of lightness, range from red 

to green, and range from blue to yellow. Limits were set on these to categorize which pixels 

belonged to leaves and which to background or shadow. Selection included lightness less than a 

value of 25 and a red/green ranking of less than 120. Pixels were counted for the leaf category of 

the binary image produced, seen below, and area was calculated from the pixels.  
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Figure 19. Three images depict the final pixel selections for segmented leaf groups. These are 

used for pixel counts and saved for manual quality control. Image A, B, and C show the variation 

A.  

B.  C.  
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in spacing, shape, and number of leaves. In B, a leaf scar is visible, which was excluded due to 

the yellow and grey coloring, which was similar to shadow.  

 

The choice of range for the selections was done through visual inspection and trial and 

error, and introduced human subjectivity and reliance on training data that promoted overfitting, 

as discussed in more detail below. The program also had a number of segmenting limitations 

relating to the irregular arrangement and colors of labels used, which require oversight or if 

possible more regular placement during photography. The program can be set to save the binary 

images it uses in pixel estimations to allow for quick visual QA/QC.  

The automatic estimation was compared to manual estimations through a series of 2-

tailed paired sample t-tests. The two manual counts that I performed were compared to each 

other and then to the automatic count. The error between my counts was similar to the error 

between the program count and manual count. This suggests that using the program is as 

accurate as having the same researcher take a count at different times, and may offer an efficient, 

practical alternative.  

However, the program did not perform as well on a separate group of leaves. This 

suggests that the color thresholds should be reset and the performance closely monitored. 

Developing a GUI for this may be a venue for future work. Code is included below. 

Appendix B. Leaf area code 

 

The Matlab code for automatic leaf analysis is included below. 

 

% Specific Leaf Analysis 

% Developed by Amanda Smith, Megan Maloney, Dr. Jessica Mitchell, Dr. Mitch Parry of 

Appalachian State University 

% Conceptual development acknowledgement: Zach Jarou, Biva Shresta 
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%closes anything open that might be running from other projects 

close all; 

%clear any variables in the workspace leftover from other projects 

clear all; 

 

%sets "cform" variable equal to a colorspace transformation from sRGB into L*a*b, a more 

inclusive colorspace whose components are: 

%L = lightness 

%a = positive for redness and negative for greenness 

%b = positive for yellow colors and negative for blue colors 

%setting this here as it only needs to be made once, not each iteration 

cform = makecform('srgb2lab');  %for leaf selections 

 

%Create a cell array to store counts and names. This is later saved as an Excel file with xlswrite 

%We also set headings for the three columns of data we'll be copying over 

output = {'Filename', 'Group', 'Pixel Count'}; 

 

%set directory name to d, so we don't have to keep retyping it 

d = 'C:/Users/MaloneyMC/Downloads/Final_SLA/Final_SLA/'; 

%The line below reads in the image file that will be processed 

files = dir(strcat(d, '*.jpg')); 

 

for i = 1:length(files) 

    %defines file as whatever file we're on, based on i 

    file = files(i); 

    disp(file.name); 

    I = imread(strcat(d, file.name)); 

  

    [m,n,p]=size(I); 

    %figure(12); imagesc(I) %sets figure number to prevent overwriting, shows image 

    %set(gcf, 'name', 'Image to be processed'); 

     

    %convert to hue 

    I_hsv = rgb2hsv(I); 

     

    %Plots 3d scatterplot of pixels on h s v dimensions 

    I_hsv = reshape(I_hsv,m*n,p); %reshapes to 3 columns 

%      index = randperm(size(I_hsv,1), 10000);  

%      I = reshape(I, m*n, p);  

%      csB = double(I(index,:)); 

%      figure(13); scatter3(I_hsv(index,1), I_hsv(index,2), I_hsv(index,3), [], csB/255); %csB sec 

uses original colors on points 

%      xlabel('h') 

%      ylabel('s') 

%      zlabel('v')   
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    I = reshape(I,[m,n,p]); % reshaping from pixel matrix to row/col/rgb 

     

    %first, select only green pixels 

    green = I_hsv(:,1)>.2 & I_hsv(:,1)<.3 & I_hsv(:,3)<.8 & I_hsv(:,3)>.5; %thresholds define 

green color 

    green = reshape(green,m,n); %makes into matrix 

    figure(14); imagesc(green); 

    set(gcf, 'name', 'Binary image of groups with break lines'); 

    S = sum(green,2); 

    S(S < 10) = 0; 

    S([1,end]) = 0; 

    %figure(15); plot(S) 

     

    w = hann(201);  %creates window to fit data into  

    w = w/sum(w); % fits data in and normalizes, so takes mean rather than sum 

    filtered =conv(S,w,'same'); %filtered S by window, same size as S....sums 101 values to 

smooth curve (convolution) 

    %figure(15); plot(1:length(S),[S,filtered]) %plots green sum against  

    %set(gcf, 'name', 'Binary, green pixels by rows'); 

     

    filtered = [0;filtered]; filtered = [filtered;0]; 

    S = [0;S];  

    S = [S;0]; 

    binary = logical(filtered);  %T/f if value 

    %figure(15); plot(1:length(S),[S,filtered,binary*100]); 

     

    breaks = diff(binary); 

    breaks(end+1)=0; 

    %figure(15); plot(1:length(S),[S,filtered,binary*100,(breaks+1)*100]); 

    %saveas(gcf,strcat(row{1},'_',row{2},'_fig15.png')) 

     

    %first start   

    starts = find(breaks == 1); 

    stops = find(breaks == -1); 

        

    half = round((starts(2:end) - stops(1:end-1))/2 + stops(1:end-1)); 

    figure(14); hold on;  

    if ~isempty(half)  

        plot([0,n],[half(1), half(1)],'w-') 

    end 

    if length(half) > 1 

        plot([0,n],[half(2), half(2)],'w-') 

    end 

    hold off; 
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    %%crop out post its - move greens 

    vertcol = sum(green,1); %sum green pixels in each column, 1 

    vertcol(vertcol < 10) = 0; 

    vertcol([1,end]) = 0; 

        

    %figure(16); plot(vertcol); set(gcf, 'name', 'Binary, green pixels by columns'); 

    w = hann(201);  %creates window to fit data into, 101 pixels 

    w = w/sum(w); % fits data in and normalizes, so takes mean rather than sum 

    filtered =conv(vertcol',w,'same'); %filtered S by window, same size as S....sums 101 values to 

smooth curve (convolution) 

    %figure(16); plot(1:size(vertcol'),[vertcol',filtered]) %plots green sum against  

    binary = logical(filtered); 

    %figure(16); plot(1:size(vertcol'),[vertcol',filtered,binary*100]); 

    breaks2 = diff(binary); 

    breaks2(end+1)=0; 

    %figure(16); plot(1:size(vertcol'),[vertcol',filtered,binary*100,(breaks2+1)*100]); 

    stops = find(breaks2 == -1);   

    if length(stops) ~= 1 

        stops = stops(1); %this tells it that if there are two (vertical) stops, take the first one. This 

MAY clip off a leaf if it's separated from the group. It is designed to deal with "green" pixels 

being selected in the post its 

    end 

 

    [pathstr,name,ext] = fileparts(file.name) %breaks input image file name into part to separate 

name from extension etc 

     

    edge = stops + n*.005; 

    figure(14); hold on; 

    plot([edge,edge], [0,m], '-w'); 

    hold off;  

    saveas(gcf,strcat(d,name,'_fig14_breaklines.png')) 

     

    groups = [1, half', m]; 

    for j = 1:length(groups)-1 

        %defines a row with three things to be added to output (filename, group, pixel count) 

        row = cell(1,3); 

        row{1} = name 

        row{2} = j; 

        J = I(groups(j):groups(j+1), 1:ceil(edge), :); %create subimage 

        lab_he = applycform(J, cform); %applies the cform colorspace to image 

        [m, n, p] = size(lab_he); %creates an array of transformed image, assigning the size of  

        %each dimension to a separate variable  

 

        %resets to three columns L a b 

        lab_he = reshape(lab_he, m*n, p); 
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        %%Begin classifications: 

 

        %This section looks at the second col a, which is red vs green and checks that red-green is > 

120. 

        %(120 was selected manually from a visual examination of the scatterplot) 

        %The below lines select more reddish pixels (warm yellow tones in shadow, white 

background) for exclusion. 

        %shadow = lab_he(:,2) > 120; 

        %figure(7); imagesc(reshape(shadow,m,n)); 

         

        %The below lines select greenish pixels for inclusion 

        leaf  = lab_he(:,2) < 120; %Reminder: this is in LAB now, not HSV - make new scatterplot 

to view. 

        count = sum(leaf); 

        %figure(11); imagesc(reshape(leaf,m,n)); 

        %saveas(gcf,strcat(row{1},'_',num2str(row{2}),'_fig11_leafbinary.png')) 

 

        %looks at first col checks if lightness is >25 

        %This catches black values that are actually leaf. 

        black = lab_he(:,1) < 25; 

        count2 = sum(black); 

        %figure(9); imagesc(reshape(black,m,n)); 

 

        %adds black and green selections for the leaf pixel counts 

        totalcount = count + count2;    

        %Store with name 

        row{3} = totalcount; 

       

        %append output cell to array that will be written to the output file 

        output = [output;row]; 

    

        %%final figure, related to totalcount 

        figure(19); imagesc(reshape(black | leaf,m,n)); 

        set(gcf, 'name', 'Final pixel selection for count'); 

        saveas(gcf,strcat(d,num2str(row{1}),'_group',num2str(row{2}),'_fig11_leafbinary.png')) 

    end 

         

%% Turn on below line to show what's being selected as shadow. 

    %figure(4); imshow(reshape(white & ~shadow, m, n)); 

     

%%Turn on below line to see what’s selected as 

    %figure(5); imagesc(reshape(new_image,m,n)); 

 

end 
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% Writes the collected rows in 'output' to an Excel file, located in same 

% folder 

xlswrite(strcat(d, 'PixelCount.xlsx'), output); 

 

Appendix C. Lidar fusion 

Lidar datasets be used to derive metrics such as canopy relief ratio, foliage height 

diversity, and texture of vegetation heights which can then be used for classification (Glenn et al, 

2010) and characterization of canopy structural measurements such as height (Mitchell et al, 

2011), crown shape, vertical layer, and position in terrain (Asner et al, 2007). These metrics can 

be related to estimate age of vegetation, cover area, use as wildlife habitat, fuel loading, erosion, 

infiltration, evapotranspiration, disturbance history, and biomass, which are related to 

ecosystems' resilience, vulnerability, and ability to provide services. Lidar measures of 

vegetative structure may directly relate to ecosystem dynamics, such as nitrogen cycling 

(Moorcraft et al, 2001). Lidar has additional value in improving the analysis of hyperspectral 

data, such as estimations of chlorophyll (Gokkaya et al, 2014; Simic et al, 2009; Thomas et al, 

2006), photosynthetic pigments (Blackburn, 2002) and absorbed photosynthetically active 

radiation (fPAR) (Thomas et al, 2006) by masking noise (Blackburn, 2002) or providing relevant 

structural information to stratify spectrally similar groups (Koetz et al, 2007). Common synergies 

of lidar and hyperspectral include adjusting for the effects of vegetative structure on reflectance 

and the expression of biochemical and physical traits within the canopy, and using hyperspectral 

data to characterize lidar estimates of biomass through functional type and for water content 

(Asner et al, 2007).  

In sagebrush specifically, integrating lidar and hyperspectral imagery improved 

classification accuracy of sagebrush from 74% to 89% (Mundt et al, 2006). As foliar N is closely 
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related to growth and structure, additional lidar metrics may also improve hyperspectral 

detection. When lidar is combined with hyperspectral imaging spectroscopy in other ecosystems, 

Luo et al. reported overall classification accuracies improved by 9.1% over multispectral data 

alone and 19.6% over lidar data alone (Luo et al, 2016a). In a separate forest biomass estimation 

project, compared to lidar alone the “fused lidar and hyperspectral data improved R-squared (R2) 

by 5.8%, 2.2% and 2.6%…and reduced RMSE by 8.6%, 7.9% and 8.3%” for below ground, 

above ground, and total biomass respectively (Luo et al, 2016b). In a shrub ecosystem, Riano et 

al. were able to use orthoimagery to improve shrub height predictions from lidar significantly 

(2007). Fusion of lidar and imagery offers complementary strengths that improve results.  

 

C.1 Lidar collection  

Lidar (Leica ALS50II) data were collected from an airborne platform for the entire 

RCEW site in 2014. This was during the same phenological period in which the hyperspectral 

data were collected (Glenn, et al - proposal). Lidar data were pre-processed by Nayani 

Ilangakoon at Boise State University; vegetation products include height intervals, canopy relief 

ratio, foliage height diversity, and texture of vegetation heights.  

C.2 Lidar data preprocessing 

 Pre-processed lidar data from 2015, containing 35 vegetation metrics at 1 and then 5 

meter resolution, were extracted for 2014 sites and 2015 sites. These metrics include height 

intervals, canopy relief ratio, foliage height diversity, and texture of vegetation heights.  

 However, addition of lidar variables did not improve performance consistently in early 

trials. Lidar metrics were compared to average foliar percent N content in simple linear 
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regression (Table 9). Height related variables showed some correlation and potential use in the 

Height/Cover method, which number to total and ground returns correlated to Cover/LMA.  

 

Method Lidar variable P value Corr. Coef. (R) R^2 (corr coef ^2) 

Biomass/ 

Density (live) 

MAD height .0686 .405 0.16 

 25th percentile height .0840 .386 0.15 

 50th percentile height .0616 .415 0.17 

Height/Cover Max height .0235 .492 0.24 

 Range height .0238 .491 0.24 

 Mean height .0321 .469 0.22 

 MAD height .0398 .452 0.20 

 AAD height .0302 .473 0.22 

 Variance height .0267 .483 0.23 

 Standard deviation height .0249 .488 0.24 

 Interquartile range height .0392 .453 0.21 

 25th per height .0624 .414 0.17 

 50th per height .0400 .451 0.20 

 75th per height .0394 .453 0.21 

 90th per height .0399 .452 0.20 

 95th per height .0187 .508 0.26 

 Per ground returns .0337 .465 0.22 

 Veg % 0-1m in height .0771 -.394 0.16 

Cover/LMA Number of returns .0071 .568 0.32 

 Number of ground returns .0099 .549 0.30 
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Table 9. Correlation of lidar variables to scaled foliar N estimates. 

 

Appendix D. Code for foliar N prediction using PLSR coefficients 

 

Below is the R code for processing preprocessed, transformed, and smoothed spectral input into 

foliar N maps using beta coefficients of a model corresponding to the input imagery.  

 

setwd("L:/Research/maloneymc/N") #Replace with address of desired workspace folder. 

getwd()   #Check workspace.  

 

rm(list=ls(all=TRUE))  #Clear workspace 

graphics.off()      #Clear graphics 

 

#Install packages and libraries as needed  

library(rgdal) 

#install.packages("raster") 

library(raster) 

#install.packages("signal") 

library(signal) 

library(prospectr) 

install.packages("pracma") 

library(pracma) 

install.packages("pls") 

library(pls) 

install.packages("xlsx") 

library(xlsx) 

 

#get weighted beta coefficients into formats for use  

beta_c<-read.xlsx("C:/Users/MaloneyMC/Documents/ASU Winter 

2017/Thesis/Final_model_wout1208.xlsx", 1) #Replace with desired file address. 

yint<- beta_c[1,2]    #Assign y integer 

beta_c<- beta_c[2:nrow(beta_c),] #Truncate y integer from coefficients 

waveschar <- as.character(beta_c[,1])  #Convert to character for string editing 

typeof(waveschar)  #check type 

wavescharshort <- gsub("\\..*","",waveschar)  #Edit string 

beta_t <- t(beta_c)    #Transpose  

beta_t <- rbind(beta_t,wavescharshort)  #Reattach edited names 

colnames(beta_t) = beta_t[3, ] # Assign third row as column headers  

beta_t = beta_t[-1, ]  #Delete redundant first row 

beta_t = beta_t[-2,]  #Delete redundant second row 

beta_t <- t(as.matrix(beta_t)) #Change to matrix to view easily in RStudio to check data 

colnames(beta_t) <- paste0("X", colnames(beta_t))  #May be required  

test <- colnames(beta_t) #Make list for selection 
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sagebrick=brick(choose.files()) #Choose a hyperspectral brick 

names(sagebrick) <- gsub(".*img...", "", names(sagebrick)) #Edit names for selection 

names(sagebrick) <- gsub("\\..*","",names(sagebrick)) #Edit names 

sagedrop <- subset(sagebrick, test, drop=TRUE) #Drop layers lacking a matching coefficient 

 

#Generate a rasterlayer obj to store output values 

Nitro <-raster(sagedrop) 

 

#Apply coefficients 

for (i in 1:nlayers(sagedrop)) 

{  

  sagelayer <- raster(sagedrop, layer=i) 

  beta_coef <- as.numeric(beta_t[i]) 

  newlayer <- sagelayer*beta_coef 

  Nitro <- addLayer(Nitro, newlayer) 

} 

 

Nsum <- calc(Nitro, sum) #Sum layers which were multiplied by coefficients 

NsumY <- Nsum+yint #Add y integers 

 

#Write in chosen format 

writeRaster(NsumY, filename = "Nitrogen_203933ENVI", format="ENVI", overwrite=TRUE) 

writeRaster(NsumY, filename = "Nitrogen_200350_no1208dGTiff", format="GTiff", 

overwrite=TRUE) 

writeRaster(Nitro, filename = "NitroStack_200350_no1208ENVI", format="ENVI", 

overwrite=TRUE) 

############### 
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Appendix E. Bands from Curran (1989) 
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Appendix F. Annotated graphs of model coefficients along the spectrum 

 

Figure 10. Biomass/Density model coefficients displayed with annotation of vegetative spectral features. 

 

Figure 11. Cover/LMA model coefficients displayed with annotation of vegetative spectral features. 
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Figure 12. Average N values from lab sampling, which were used in multiple scaling methods, were applied without scaling in PLSR to two SG transformations. 

 

Figure 15. Selected significant wavelengths for two repetitions using all samples and two subsets using either only 2014 or 2015 samples, annotated with absorbance features from Curran (1989).
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