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Michael Crawford 

B.S., Appalachian State University 

M.S., Appalachian State University 

 

 

Chairperson:  Rahman Tashakkori 

 

 

 In recent years beekeepers have faced significant losses to their populations of 

managed honey bees, a phenomenon known as Colony Collapse Disorder (CCD).  

Many researchers are studying CCD, attempting to determine its cause and how its 

effects can be mitigated.  Some research efforts have focused on the analysis of bee 

hive audio and video recordings to better understand the behavior of bees and the 

health of the hive.  To provide data for this research, it is important to have a means 

of capturing audio, video, and other sensor data, using a system that is reliable, 

inexpensive, and causes minimal disruption to the bees’ behavior.  This thesis details 

the design and implementation of a data collection system, known as BeeMon, which 

is based around the Raspberry Pi.  This system automatically captures sensor data and 

sends it to a remote server for analysis.  With the ability to operate continuously in an 

outdoor apiary environment, it allows for constant, near real-time data collection.  

The results of several years of real world operation are discussed, as well as some 

research that has used the data collected.  
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Chapter 1 - Introduction 

1.1 Background 

Honey bees are an essential part of our environment and the world’s economy.  More 

than one-third of global food production is reliant on pollination by honey bees [1], and as of 

the year 2000 their value to the United States’ agricultural industry was estimated to be 

greater than $14 billion [2].  However, the number of managed bee colonies in the U.S. 

steadily declined through the second half of the 20th century, and, in the early 2000s, some 

beekeepers began reporting large numbers of bee die-offs to unknown causes [3, 4], a 

phenomenon which is now known as Colony Collapse Disorder (CCD).  Honey bee 

populations have also declined in Europe [1].   

Since the discovery of CCD, much of the honey bee related research has been 

conducted seeking to determine the cause of the bee population’s decline [3].  Some of these 

research projects have attempted to bring automation to the study of honey bees [5, 6, 7], but 

there remains much room for improvement in taking advantage of technological resources 

that were not available even a decade ago.  Many of these projects are described in greater 

detail in Chapter 2. 

1.2 Research Overview 

At present, most beekeepers determine the health of their hives by physically visiting 

the hive, opening it, and visually inspecting the hive and its surroundings for problems.  

While this approach has worked successfully for millennia [8], the challenges of CCD 
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warrant a new approach.  An automated bee hive monitoring system has the potential to help 

minimize losses in honey bee populations by enabling beekeepers to remotely assess the 

status of their hives.  Additionally, it can avoid stress on the bees, which is a consequence of 

opening the hive for inspection. 

The first building block necessary to create an automated hive monitoring system is a 

system capable of capturing data that may then be analyzed to determine the health and status 

of the bee hive.  This system must be capable of withstanding an outdoor environment for 

long periods of time.  Exposure to wind, rain, direct sunlight, etc., are all environmental 

factors that are detrimental to most electronic equipment.  The components of the system 

located within the hive must be able to withstand humidity, attack by the bees, and being 

coated with propolis.  The system must also be capable of recording high quality audio and 

video of the bee hive, and must be able to do so for long periods without requiring human 

interaction to retrieve or move the data to a location suitable for analysis.  The ability to 

integrate with other types of devices, such as temperature or humidity sensors, is another 

desirable quality. 

1.3 Thesis Organization 

This thesis presents the design and implementation of such a system, known as 

BeeMon (Beehive Monitor), as well some of the research that has been done using data 

collected by the system.  Also discussed are many of the alternate approaches that were 

explored or investigated in detail, though they were not used in the final system. 

Chapter 2 includes a discussion of the history of attempts to automate bee hive 

research, as well as examining more recent works that have analyzed audio and video 

recordings of bee hives in order to extract useful information.  Chapter 3 discusses the 
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hardware components used in the project, as well as the software tools and applications that 

are used.  Chapter 4 details the design of the system.  Section 4.2 enumerates some 

preliminary work that was not successful, but had a significant influence on the design of the 

system.  Section 4.3 discusses the final design of the BeeMon system, detailing the hardware 

components as well as the custom application that powers the system.  Chapter 5 presents the 

results of data collected by the system and some of the research that has been enabled by that 

data.  Chapter 6 concludes the thesis, summarizing the system and discussing some options 

for future work to enhance the design. 

1.4 Contributions 

 The BeeMon project was a collaborative effort including work by Nathan Hernandez 

and Aleksander Ratzloff.  While this thesis describes the overall project, it does not attempt 

to detail every piece of work that was involved in the project’s design and implementation.  

The author served as the overall manager for the BeeMon project, and the following list 

summarizes his major project contributions: 

 The selection of hardware devices and software tools (Section 3.2 and Section 3.3). 

 The microcontroller audio recording system (Section 4.2.2). 

 The CAD design and 3D printing of the custom Raspberry Pi case (Section 4.3.2). 

 The BeeMon application (Section 4.3.4) was designed by the author, and he assisted 

Aleksander Ratzloff in its implementation. 

 The additional exploration detailed in Section 4.4. 
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Chapter 2 - Related Work 

Many approaches have been used throughout the years to leverage technology to 

assist in the collection of data that can be used to study the health and behavior of individual 

honey bees as well as entire bee hives.  Earlier efforts in the field often relied on electro-

mechanical devices or analog records to obtain their information, although, without the 

assistance of any technology the study of bees must often fall back on tedious manual 

methods.  For example, Seeley et al. [9] studied the decision making behavior of bees by 

painting tags on the bees and manually counting them as they appeared at feeders.  While 

such studies have provided much valuable data, their ability to scale to multiple hives as well 

as their ability to monitor bee hives in the field is severely limited by the amount of labor 

required by their methods. 

In the last 25 years, computer technology has been applied to the study of honey bees 

[10].  A large body of work has been done using computerized systems to record and/or 

analyze audio [11, 12, 13, 14, 15] and video [6, 7, 16, 17, 18, 19] data to gain valuable 

information about bees, such as the behaviors of individual bees [11, 12, 20], tracking the 

number of bees entering and leaving the hive [5, 10, 18, 19], or monitoring the overall health 

of the hive [13, 14, 15, 16].  Data collection systems may also capture additional information, 

such as temperature or humidity [18], that helps researchers better understand the context for 

the audio or video data that is their primary interest. 

One of the earliest bee-counting experiments was done in 1925 by Lundie [21], who 

constructed a device that tracked bees entering and exiting a hive by means of sensitive 

pressure plates connected to electrical circuits activated by the weight of a bee walking 

across the plate.  These plates are contained within a channel that is gated on each end, with 
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the gates connected to a seesaw mechanism that allows a gate to be opened only on one end 

at a time.  When a bee enters the hive through a gate, the incoming gate is closed and the 

outgoing gate is opened, meaning that the next honey bee allowed to pass through that 

channel must be leaving the hive.  This gating mechanism allowed Lundie to count the 

number of entering and exiting bees without direct human intervention.  While this was an 

ambitious effort, there were numerous flaws that prevented the system from being viable for 

long term research.  Among other issues, the device interfered with the hive operation 

because it significantly restricted the flow of bees into and out of the hive, and it was difficult 

to gain an accurate count of bee traffic due to multiple bees passing through a channel at the 

same time.  

A more advanced bee counting system constructed by Struye et al. [10] used a system 

of infrared sensors to accurately count the number of bees entering and leaving a hive.  The 

system uses 32 passages large enough for a single bee to pass through, with two infrared 

beams that detect movement within the passage.  The direction of the bee’s movement is 

determined by the order in which the beams are interrupted, indicating whether the bee is 

entering or leaving the hive.  Microprocessors check the status of the infrared beams 2000 

times per second, allowing for extremely accurate counts that are regularly recorded to a 

floppy disk for storage. 

Similar efforts to count or track bees near the hive entrance have been done by 

Campbell et al. [5], who also forced bees to pass through tunnels, but counted their passage 

by using capacitance bridges.  Another common approach to counting or tracking bees is the 

usage of radio frequency identifier (RFID) systems, as used by Decourtye et al. [22], Streit et 

al. [20], and Chen et al [19].  However, all of these approaches involve trade-offs that prevent 
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them from being ideal.  Those systems that use specialized equipment at the hive entrance are 

often expensive and complex to set up, and may risk compromising the normal behavior of 

the hive.  RFID based systems are not practical to use at a large scale, since they require an 

RFID tag to be purchased and applied to every bee that will be tracked, incurring both a high 

monetary cost and a prohibitive amount of manual labor.  RFID tags weigh enough to be a 

significant encumbrance to a honey bee, particularly since they must be carried by the bee at 

all times.  Additionally, they require the use of a RFID reader that emits strong 

electromagnetic (EM) waves.  It is not currently known how the additional weight or the 

exposure to EM waves may affect the behaviors of individual bees or the hive as a whole. 

Analysis of the sounds made by honey bees is another area that has seen significant 

research.  The sounds made by bees are an important part of their communications 

mechanism, and are a component of the “waggle dance,” as originally discovered by Von 

Frisch [23] in 1967.  Neih [11] did not attempt to analyze recorded audio, but rather used a 

probe and speaker to emit sounds emulating the stop signal of the waggle dance described by 

Von Frisch.  More recently, Okada et al. [12] found that the sounds made during the waggle 

dance are emitted by vibrations of the bee’s wings, though their significance is unknown, 

since the sound is only audible to a small portion of the hive. 

Much of the research related to the sounds of honey bees has focused on attempting 

to predict the swarming behavior of a hive.  Work by Mezquida et al. [13] was done to 

develop an audio monitoring system that stored hourly recordings from a hive, with the goal 

of eventually predicting swarming events.  However, the audio recordings were short (eight 

seconds), and relatively low quality (8 bit samples, 6.25 kHz sample rate).  Ferrari et al. [14] 

performed similar research, recording audio with 16 bit samples at a 2 kHz sample rate.  
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However, their system was not intended for long term deployment in the field but was 

instead deployed specifically to record a series of swarming events at a research farm.  One 

slightly different variation on this topic was done by Bencsik et al. [15].  Rather than 

recording audible sounds made by the bee hive during the swarming process, they embedded 

accelerometers into the frame of the hive and recorded the vibrations emitted during 

swarming.  Their data was captured in a manner very similar to audio recordings, using 16 bit 

samples and an 8 kHz sample rate. 

Research using video to track and analyze honey bee behavior is mostly limited to the 

past few decades, as video recording devices and storage tools became available at more 

accessible prices commercially.  Estivill-Castro et al. [7] demonstrated one of the earlier 

techniques for tracking honey bees using video.  Their experimental setup involved 

inexpensive color charge-coupled device cameras mounted in waterproof boxes along with a 

battery power source.  These cameras were placed in an orchard, positioned to capture video 

of bees visiting the flowers of trees that were in bloom.  Video was captured at a resolution 

of 320x240 pixels at 24 frames per second (FPS), with one minute of video captured at ten 

minute intervals.  As they note, their results were limited by the quality of the video, as well 

as the battery power source, which prevented them from capturing more frequent recordings. 

Knauer et al. [16] took advantage of digital video and computer image analysis to 

perform automated bee tracking.  However, their area of interest specifically involved the 

interior of the bee hive, so their recordings were made using an infrared camera, with 

illumination provided by near-infrared LEDs that emit wavelengths of light invisible to the 

honey bees.  The camera system was limited to low resolution 480x348 video, and the 
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researchers fit each bee in the experiment with individually numbered badges for 

identification.  Video was stored in a long duration digital video recorder. 

Within the past decade, much research has been done to apply digital image analysis 

to video of honey bees.  To date this technique has primarily focused on tracking the 

movements of bees.  Kimura et al. [17] captured recordings using a JVC GR-HD1 digital 

video camera, at a resolution of 720x480 at 29.97 FPS.  Recordings were made of a bee hive 

frame, and a ten second video clip was analyzed using vector quantization methods in order 

to track the movement of bees walking across the frame, as well as identification of bees 

performing the waggle dance. 

Campbell et al. [6] revisited the concept of counting bees as they enter and exit the 

hive, using digital video to capture the bees’ movement and image analysis to identify bees 

and track their movements.  Video was captured at the hive entrance using a small digital 

camera board mounted to the hive in a protective housing.  Unlike previous bee-counting 

efforts, this approach had the benefit of avoiding disruption of the hive’s normal behavior, 

and the camera mount was largely ignored by the bees after installation.  Video was captured 

at a resolution of 640x480 at 30 FPS.  By using adaptive background subtraction to detect the 

bees and a maximum weighted bipartite graph matching algorithm to track bee motion, they 

were able to count the incoming and outgoing bees with high accuracy. 

The work that most directly precedes this thesis is that done by Ghadiri [18], who 

used wireless surveillance cameras that were either attached to the top of the bee hive, or 

placed in front of it.  These cameras recorded digital video at a resolution of 640x480 that 

was transmitted wirelessly to a digital video recorder for storage.  However, the recorder 

used SD cards as its storage medium, and the 16 GB cards available at the time could only 
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record 72 hours of continuous video before they had to be changed, and the data manually 

uploaded to a server for storage and analysis.  One limitation of this video system was the 

difficulty of capturing the date and time of the video.  To capture this information, a feature 

of the surveillance camera was used to place a timestamp in the corner of the video, and 

image processing techniques were used to extract the timestamp from each frame of video.  

Analysis was done by breaking the video down into individual frames and using an 

illumination-invariant change detection algorithm to estimate the number of bees present in 

an image.  This project also captured local weather information such as temperature and 

humidity from the National Weather Service website, and attempted to correlate these 

parameters with the observed movements of the bees. 

As this chapter has shown, previous work has demonstrated that monitoring the 

activity of bees in and around the bee hive, such as counting the number of bees entering and 

leaving the hive or monitoring the hive for signs of swarming behavior, provides information 

of interest to researchers.  However, most monitoring systems require significant manual 

setup, or frequent manual intervention to retrieve data from the system.  Very few research 

platforms have been designed for continuous unattended data collection over a long period of 

time.  In addition, many previous efforts have been hampered by both audio and video data 

that is of limited quality.  This thesis explores the development of a fully automated data 

collection system capable of capturing both audio and video data at high quality. 
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Chapter 3 - Methodology 

3.1 Introduction 

Section 3.2 introduces the major hardware components that were used in the BeeMon 

system.  Section 3.3 discusses software development tools and libraries that were used when 

implementing the project’s custom software, while Section 3.4 covers the third party 

applications integrated into the project’s tooling. 

3.2 Hardware 

A wide variety of hardware was explored during the course of this project.  While the 

project was always intended to be based around the Raspberry Pi, our preliminary work 

investigated integration with devices such as the ATtiny2313 [24] and ATmega328P [25] 

microcontrollers, which were used to interface with temperature and humidity sensors [26, 

27], as well as peripherals such as Analog to Digital Convertors (ADCs) [28, 29], external 

SRAM chips [30], multiplexers [31], etcetera.  Later work explored alternatives to the 

Raspberry Pi such as the UDOO [32].  However, these devices ultimately were not used in 

our final system.   

The following sections detail the Raspberry Pi and the peripherals used to implement 

the BeeMon system. 

3.2.1 Raspberry Pi 

 The Raspberry Pi [33] (Figure 3.1) is a family of single-board computers, 

approximately the size of a credit card.  Developed by the non-profit Raspberry Pi 

Foundation with the goal of promoting computer science education in schools and 

developing countries, the original Raspberry Pi 1 Model B was first released in February 
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2012.  The Raspberry Pi has proven to be extremely popular, seeing use in applications such 

as robotics and cluster computing. 

 
Figure 3.1: Raspberry Pi 1 Model B 

 

Since 2012 several upgraded models have been released, however, the pricing for the 

“standard” Raspberry Pi model has remained constant at $35, with less powerful models 

available at lower price points.  These models (the Model A/A+ and Zero) were not used in 

this project due to their lack of connectivity and limited processing power.  This project 

primarily uses the Raspberry Pi 1 Model B, which features a Broadcom BCM2835 System-

on-Chip (SoC) that integrates the CPU, RAM, GPU, and other common peripherals into a 

single chip.  With a 700 MHz CPU and 512MB RAM, this gives the system computing 

power equivalent to an early smartphone, such as the iPhone 3GS.  Later variants of the 

Model B (the Model 1 B+ and Model 2/3) are candidates for future work.  

Table 3.1 provides a comparison of the main hardware features of the Raspberry Pi 

Model B variants currently available.  



12 

Table 3.1: Comparison of Raspberry Pi Models [34, 35, 36, 37] 

Raspberry Pi 1 Model B 1 Model B+ 2 Model B 3 Model B 

Architecture ARM v6 ARM v6 ARM v7 ARM v8 

SoC BCM2835 BCM2835 BCM2836 BCM2837 

CPU ARM1176JZF-S ARM1176JZF-S Cortex-A7 Cortex-A53 

CPU Cores 1 1 4 4 

CPU Frequency 700 MHz 700 MHz 900 MHz 1.2 GHz 

RAM 512 MB 512 MB 1 GB 1 GB 

USB Ports 2 4 4 4 

Network 
10/100 Mbit/s 

Ethernet 

10/100 Mbit/s 

Ethernet 

10/100 

Mbit/s 

Ethernet 

10/100 Mbit/s 

Ethernet, 

802.11n 

Wireless, 

Bluetooth 4.1 

 

Connectors for USB, Ethernet, audio output, HDMI video, and RCA video are 

provided on the Raspberry Pi board.  In addition, it includes 17 pins for attaching peripherals, 

eight of which are dedicated General Purpose Input/Output (GPIO) pins, with the remaining 

eleven able to serve as GPIO, though they are primarily connected to controllers for the 

following communications protocols:  

 Universal Asynchronous Receiver/Transmitter (UART) 

 Serial Peripheral Interface (SPI) 

 Inter-IC Sound (I2S) 

 Inter-Integrated Circuit  (I2C) 

The board also includes a Camera Serial Interface (CSI) connector for attaching a color or 

infrared camera module. 

 Unlike a typical computer, the Raspberry Pi stores its data on a removable SD card 

rather than using a hard drive.  At the time of its release, the Raspberry Pi supported standard 

SD cards as well as high capacity SDHC cards as large as 64 GB [38].  The board receives 
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power through a micro USB connector, and can be powered by any 5V power source that 

provides sufficient amperage.  

3.2.2 Raspberry Pi Camera Module 

 The Raspberry Pi Camera Module is a high definition video and still photograph 

camera package that connects to the CSI port on the Raspberry Pi board [39].  The module 

includes a five megapixel, fixed-focus camera that supports still image capture at up to five 

megapixel (2592x1944 pixel) resolution, or video capture in the following resolutions: 

1920x1080 at 30 FPS, 1280x720 at 60 FPS, or 640x480 at either 60 or 90 FPS. 

3.2.3 Microphones 

 Our preliminary work used a preassembled Adafruit Industries microphone package 

combining a 20-20,000 Hz electret condenser microphone with a Maxim MAX4466 25-125x 

adjustable gain preamplifier [40].  Later work moved towards the use of low cost, off the 

shelf complete computer microphone packages with USB connectivity, such as [41]. 

3.3 Software Tools and Libraries 

Whenever possible, existing applications were used to fill needs in the project (see 

Section 3.4).  However, some custom software was necessary to match the requirements of 

our problem domain.   

Development of software was done entirely using C++, primarily due to the need to 

access hardware at a low level.  In particular, usage of the Raspberry Pi’s GPIO pins to 

interface with microcontrollers and other peripherals was felt to necessitate the use of a lower 

level language.  Such communication typically requires significant amounts of bit and byte 

level data manipulation as well as a measure of control over the timing of the program.  

However, it was decided early in the project that any C++ development would make use of 
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the latest version of the language at the time, the 2011 C++ ISO standard (C++11) [42].  

C++11 adds many enhancements to the language that help with pitfalls common to 

traditional C++ development.  For example, the std::shared_ptr<T> [43] class added to 

the standard library provides a reference counted managed pointer implementation, which 

removes the need to manually manage memory allocation and deallocation in many 

situations.   

All C++ development was done on the Raspberry Pi itself.  Some attempts were made 

to set up a cross-compiler which would allow development to be done on a Linux based 

desktop, and the finished application to be uploaded and run on the Pi.  This approach proved 

sufficiently problematic that it was abandoned in favor of direct development on the Pi.  This 

choice necessitated some limitation in the choice of C++ libraries used in the project.  The 

limited hardware resources of the Raspberry Pi combined with the complexity of compiling 

and linking C++ applications meant that even relatively simple programs could take several 

minutes to compile.  For example, early in the development process the Boost C++ Libraries 

[44] were added to an application, but ultimately had to be replaced because they caused 

build times to increase by a factor of ten. 

The primary software library used during development for the Raspberry Pi was the 

WiringPi library.  WiringPi is a set of open source libraries and tools that facilitate 

programmatic access to the GPIO pins and some other hardware peripherals on the 

Raspberry Pi [45].  Additionally, the library includes Linux command line applications to 

access and control GPIO pins, allowing for testing and basic prototyping using the Linux 

terminal or scripts.  The C/C++ portion of the library is structured similarly to the Arduino 

software libraries, making it very accessible and convenient in a project such as this where 



15 

Raspberry Pi’s and Arduino systems are used side by side.  WiringPi proved to be our 

primary resource for interfacing with GPIO in our Raspberry Pi applications. 

Additional libraries used in our development include GNU Readline, a library used to 

enhance the functionality of command line interfaces within an application [46], as well as 

TinyXML, a minimalist XML parser library allowing for easy parsing and manipulation of 

XML in C++ [47]. 

3.4 Third Party Applications 

A number of third party open source Linux applications are leveraged on the 

Raspberry Pi to assist with data acquisition and management.  These applications include: 

 ecasound 

A Linux audio processing application [48].  When using microphones that connect 

via USB, each connected microphone appears as a separate sound device.  Ecasound 

interacts with these devices to record sound to a file, allowing the configuration of 

many different recording parameters.  However, the main limitation of the program is 

that it only records to uncompressed Waveform Audio File Format (WAV) files.  

Conversion to a more space efficient format such as MPEG Audio Layer III (MP3) 

must be done separately using a tool such as LAME. 

 LAME MP3 Encoder 

LAME is an open source audio encoder that supports converting a variety of audio 

file formats to MP3 [49].  LAME includes numerous options to control the 

conversion process, determining how much space may be saved by the compression, 

but also how much audio quality may potentially be lost. 
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 mjpg-streamer 

Originally intended to work with webcams, mjpg-streamer is a tool that can take a 

series of JPG images and stream them as a Motion-JPG (M-JPG) [50].  These streams 

may be displayed in a web browser or video player, or saved to a file.  The 

application uses a plugin based architecture, and the input_raspicam plugin [51] is 

necessary to allow it to process images from the Raspberry Pi Camera Module. 

 raspistill/raspivid 

These applications created by the Raspberry Pi Foundation assist with the capture of 

still images and video using the Raspberry Pi Camera Module [52, 53].  Both 

programs support a variety of options to control configuration such as the 

image/video height, width, quality, image/video compression, output format, and 

etcetera. 
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Chapter 4 - Design 

4.1 Introduction 

Our system went through a number of prototypes before converging on the beehive 

data collection and monitoring system, hereafter referred to as BeeMon, which was deployed 

in the field.  Section 4.2 provides an overview of some preliminary work that was 

unsuccessful, though it did influence our decisions when implementing the final BeeMon 

system.  Section 4.3 details the structure of the BeeMon system.  Sections 4.3.1, 4.3.2, and 

4.3.3 discuss the hardware and supporting systems that make up BeeMon, while Section 

4.3.4 describes the design of the custom software that integrates with the BeeMon hardware 

to enable data collection.  Finally, Section 4.4 explores alternative systems and how they 

could be used to enhance BeeMon.  

4.2 Preliminary Work 

Our earliest efforts were driven by the desire to minimize the total cost of the data 

collection system.  It is typical for even a small scale hobbyist beekeeper to own three to five 

bee hives.  Small scale commercial operations may own several dozen to as many as several 

hundred hives, while large scale commercial operations often own thousands of hives.  Our 

goal was to develop a system whose cost would make it viable for apiculturists at any level to 

deploy the system to the majority of their hives. 

4.2.1 Audio Recording Formats 

Audio recordings made for human consumption are typically recorded at a sample 

rate of 44.1 kHz, since the highest frequencies audible to the human ear are in the 20 kHz 

range, and the Nyquist-Shannon sampling theorem dictates that the sample rate must be 

greater than double the highest frequency that one wishes to capture.  Existing literature 
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analyzing the sounds produced by bees has focused primarily on frequencies lower than 1 

kHz, so it was believed likely that our system could record at a sample rate significantly 

lower than 44.1 kHz.  However, since it was uncertain what aspects of the audio data might 

prove to be the most useful during later analysis, our development goal was to record audio 

at 44.1 kHz.   

Additionally, CD quality audio is encoded using a resolution of 16 bits.  That is, each 

of the 44,100 samples captured during a second of audio is quantized into one of 65,535 

values, stored in a 16 bit integer.  There exist high-resolution audio formats that use a sample 

size of 24 bits, however, there is some debate over whether humans can determine a 

difference in audio quality between these formats.   

ADCs that support a 16 bit resolution are available, but models capable of a 44.1 kHz 

sample rate typically cost at least $5-10 per device.  The ATmega328P’s internal ADC is 

capable of a 44.1 kHz sample rate, though it is limited to a resolution of 10 bits (each sample 

is still stored using 16 bits of memory).  Since our audio was not intended for human 

consumption but rather for algorithmic analysis, this was considered to be an acceptable 

trade-off. 

4.2.2 Microcontroller Sound Recording 

Initial work focused around the use of the Atmel ATmega328p microcontroller, via 

the Arduino Uno development board [54], as the primary interface with our sensors and data 

capture devices.  As a microcontroller, the Arduino is ideally suited to sensor interaction.  No 

code runs on the device except for that specified by the developer, so the processor can 

perform rapid operations with very precise timing. 
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One downside to using the ATmega328P for audio recording, however, is the very 

limited amount of storage available on the device.  The math is straightforward: each second 

of audio captured at 44.1 kHz requires 88,200 bytes of storage, compared to the 2048 bytes 

of RAM available on the microcontroller.  Realistically, the amount of RAM that can 

actually be dedicated to audio storage is much lower, because the RAM must also store the 

application’s call stack and its data. 

In order to overcome this limitation, our design made use of a data transfer bus 

consisting of two levels of data buffering, with each data level using a double buffering 

system.  The first buffer level lies within the onboard RAM of the ATmega processor, as a 

pair of 512 byte buffers.  The second buffering level is implemented using a pair of 256 kB 

SRAM chips [30] that are connected to both the ATmega328P and to its controlling 

Raspberry Pi.  A system of multiplexers [31] and control lines provide synchronization and 

allows the Raspberry Pi to interact with one SRAM chip using SPI, while the microcontroller 

interacts with the second chip.  Figure 4.1 shows the wiring diagram for this bus. 

Each first level buffer on the ATmega is capable of holding 32 samples, or 

approximately 725 μs of audio data.  When a first level buffer is filled, the buffers are 

swapped.  The program then proceeds to write audio samples to the second buffer, while 

simultaneously transmitting data from the first buffer to the external SRAM chips of the 

second buffering level.  With 256 kB of storage available, each SRAM chip can hold up to 

131,072 samples, or approximately 2.97 s of audio data.  As a SRAM chip in the second 

buffer level is filled to capacity, the SRAM chips are swapped so that the Raspberry Pi may 

begin reading data from the chip that is filled, while the ATmega pushes its filled internal 

buffers to the second, now empty SRAM chip.  As the Raspberry Pi reads a chunk of data 
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from a SRAM buffer, it will append that data to its existing audio data, writing the data as 

audio files at an interval determined by the desired file size or recording length. 

 
Figure 4.1: Arduino - Raspberry Pi data transfer bus 

This system would also be capable of supporting a limited number of additional 

sensors.  Most additional sensors of interest to us, such as temperature and humidity require 

very infrequent readings in comparison to audio recordings.  The DHT22 sensor, for 

example, can only provide readings at a maximum rate of once every two seconds.  This 
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makes these sensor readings relatively easy to schedule alongside the audio recording, and 

only a few bytes in the SRAM buffer need to be devoted to holding their most recent 

readings. 

Unfortunately, testing revealed that while this design appeared conceptually sound, it 

contained some practical flaws.  The SPI protocol uses a four wire serial bus to transfer data 

between the master and slave devices: 

 Serial Clock (SCLK) carries a clock signal from the master to synchronize the 

transmission. 

 Master Output, Slave Input (MOSI) transfers data from the master to the slave. 

 Master Input, Slave Output (MISO) transfers data from slave to master. 

 Slave Select (SS) does not directly carry data, but is used to signal a slave device that 

it is active on the bus. 

 In order to achieve the data transmission rates necessary for audio recordings, as 

detailed above, the SPI clock must be driven at a relatively high clock rate.  The minimum 

speed needed for the bus is roughly 100 kB/s: 88,200 bytes of audio data, plus a ~10% 

allowance for overhead and additional data.  Achieving this transfer rate requires a SPI clock 

speed of > 700 kHz.  However, the nature of the buffering system in our design requires 

higher transfer rates.  Our system does not continuously stream data to and from the SRAM 

chips, but rather sends the data in bursts as a buffer fills, necessitating that these bursts occur 

at a higher speed.  Our design anticipated the need for a target transfer rate of 256 kB/s (~2 

MHz clock speed), capable of reading or writing the entire contents of the SRAM chip in one 

second.  
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These clock speeds are theoretically possible.  For example, the ATmega328p drives 

its SPI clock by applying a divider to the main processor’s clock source.  With a maximum 

supported processor clock speed of 20 MHz, and a minimum divider of two, SPI clock 

speeds of up to 10 MHz are obtainable.  Similarly, the Raspberry Pi’s SPI controller supports 

clock speeds of up to 32 MHz.  However, the primary limitation encountered in our testing 

lay within the system’s wiring.  Our prototype system could support SPI clock rates no 

higher than 1-200 kHz before data transfers to the SRAM chips became badly corrupted.  

Some testing was attempted using shorter, more carefully placed wires, rather than the long 

precut wire segments pictured in Figure 4.2, but no significant increase in SPI clock speeds 

was obtained.  Ultimately, we concluded that this system would only be viable if the 

hardware was mounted to a circuit board utilizing properly designed and routed traces to 

connect the components.  Such a design could not be achieved within the budgetary and time 

constraints of this project, but it may be worth revisiting in the future. 

 
Figure 4.2: Arduino with bus prototype 
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4.2.3 Linux Timing Limitations 

A recurring theme throughout our design is the need to write code that operates with 

precise timing, in order to interact with sensors and other low level hardware devices.  Linux 

provides the nanosleep [55] system call, which theoretically allows applications to sleep 

for as little as 1 ns.  However, the actual minimum sleep time varies depending on the 

capabilities of the underlying hardware and the settings used to build the Linux kernel. 

The primary operating system of the Raspberry Pi is Raspbian [56], a variant of the 

Debian Linux operating system developed by the Raspberry Pi Foundation that is optimized 

for the ARM processor on the Raspberry Pi.  Testing determined that the minimum possible 

sleep time in Raspbian was on the order of 150 μs, with 1 ns sleep requests often resulting a 

latency of 200-250 μs.  While adequate for many applications, this level of latency was much 

too large for some of our sensors.  For example, the DHT22 uses a data transmission protocol 

that sends a binary number by using the length of the signal to distinguish between binary 

digits [57].  Signals are transmitted at 50 μs intervals, with a signal lasting 26-28 μs 

indicating “0,” while a 70 μs signal indicates “1.”  Clearly, the Raspberry Pi lacks the ability 

to read this protocol when nanosleep is used. 

One possible solution to this issue is busy waiting, which is used by some libraries 

such as WiringPi.  A nanosleep system call makes a request to the operating system kernel 

to put the calling process to sleep, and awaken it after the requested time interval has elapsed.  

By contrast, busy waiting uses a loop within the process itself, continually checking the 

system’s high resolution clock to determine when the desired amount of time has passed.  

However, this approach has a significant disadvantage; it requires the process to fully utilize 

the CPU while waiting.  The Raspberry Pi 1 Model B used in our research includes a single 
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core, single threaded CPU.  A preemptive multitasking operating system such as Linux 

provides the illusion of multiple processes running simultaneously on this type of CPU by 

rapidly switching between processes, allowing each to use the CPU for a short amount of 

time.  If a single process attempts to fully utilize the CPU, such as while busy waiting, it 

severely restricts the ability of the operating system to multitask.  We knew that our system 

would need to rely heavily on multitasking, therefore busy waiting was not an acceptable 

solution. 

An alternative approach used by some in the Raspberry Pi community is the 

installation of a custom Linux kernel that includes patches developed by the Real-Time 

Linux community [58].  By default, the Linux kernel provides a limited list of scenarios in 

which one process may preempt another, i.e., return from nanosleep to its calling process 

[59].  This means that even if the system is idle and the sleep time requested by nanosleep 

has elapsed, the kernel may not immediately return to the calling process if a preemption 

scenario has not occurred.  The PREEMP_RT kernel patch developed by the Real-Time Linux 

community expands the set of possible preemption scenarios, as well as other changes that 

allow Linux to behave more like a real-time operating system. 

Our testing found that the real-time patches did improve the minimum sleep time to 

approximately 100 μs.  However, the patched kernel proved to be extremely unstable, and 

100 μs was still not sufficient to interact with all of our sensors.  As a result, our designs for 

these sensors focus on using microcontrollers to collect sensor data, which is later transferred 

to the Raspberry Pi.  In this structure, the microcontroller can handle all time sensitive 

operations, while data transfer to the Raspberry Pi is handled via standard protocols such as 

UART or SPI.  The Raspberry Pi includes dedicated hardware controllers for these 
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communications protocols (see Section 3.2.1), meaning that these operations are not handled 

by the main CPU or operating system, and are not subject to the timing issues discussed in 

this section. 

4.3 BeeMon Implementation 

The resulting BeeMon system for this thesis can be summarized as a set of hardware 

devices that capture data of interest from a bee hive and upload that data to a remote storage 

location for later processing.  Figure 4.3 summarizes the flow of data: BeeMon systems are 

deployed to multiple hives, they collect data from those hives, and that data is uploaded via 

the internet to a file server.  The following sections detail the design and implementation of 

this system.  

 
Figure 4.3: BeeMon data collection and transfer 

4.3.1 Hardware 

As discussed in Section 3.2, the BeeMon system that was deployed to the field 

consists of a Raspberry Pi 1 Model B, a Raspberry Pi Camera Module, and two USB 

microphones. The Raspberry Pi runs the BeeMon application that is responsible for both 
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audio and video data collection (see Section 4.3.4), serves as a temporary data storage device, 

and uploads the recorded data to a remote server for archiving and analysis. 

Our testing found that it is important to use a high quality SD card with the Raspberry 

Pi when running BeeMon.  While most SD cards are very slow [60] compared to mechanical 

hard drives or solid state drives, the most common Class 2 and Class 4 SD cards are simply 

too slow to support the needs of the BeeMon system.  At a minimum, BeeMon must perform 

the recording of HD video and two CD quality audio streams, as well the normal, 

unavoidable, disk operations of a Linux operating system.  A Class 10 SD card should 

always be used to ensure that disk performance does not cause a bottleneck in the data 

collection systems. 

The Raspberry Pi is mounted to the bee hive using a custom 3D printed case, as 

detailed in Section 4.3.2.  Section 4.3.3 discusses the strategies used to mount the 

microphones and camera to the hive for data collection.  In order to avoid unnecessary 

complications in our system, we chose to deploy only to bee hives that were “on the grid,” 

where the hive was already located near a building that could supply power and internet 

connectivity via extension cords and Ethernet cables. 

4.3.2 Raspberry Pi Case 

The standard Raspberry Pi is only available as a bare circuit board (see Figure 3.1).  

While desirable for its low price, and convenient for rapid prototyping and testing, this 

configuration is not suitable for deployment in real-world outdoor conditions where the board 

will be exposed to moisture, weather, and other hazards.  A wide variety of cases for the 

Raspberry Pi are available from the Raspberry Pi Foundation as well as numerous third party 

vendors.  However, at the time we were preparing to deploy the BeeMon system, we were 
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unable to find a case suitable for outdoor use; most cases were either decorative or meant to 

mount the Raspberry Pi indoors.  Our initial deployments of the system secured the device in 

the top of the hive, as shown in Figure 4.4, where it was protected from weather and would 

not be attacked by the bees, but it was clear that a better long term solution was needed.  

 
Figure 4.4: An early BeeMon prototype with audio and temperature sensor 

Eventually it was decided that a custom 3D printed case was the best solution, since 

this allowed for the creation of a custom design that could address three areas of concern: 

securely mounting the Raspberry Pi to the bee hive, securely mounting the Raspberry Pi 

Camera Module, and protecting both devices from weather, primarily moisture.  Design of 

the case was done using PTC’s Creo Parametric 3D Computer Aided Design (CAD) software 
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[61], and it was printed on a MakerGear M2 3D printer [62] using Polylactic Acid (PLA) 

plastic.  

Thanks to the rapid prototyping allowed by 3D printing, the case evolved through 

numerous iterations before converging into the final design comprising six parts that are 

assembled into four main components: 

1. Case Body 

The body of the case, shown in Figure 4.5, contains the Raspberry Pi circuit board, 

fully enclosing it except for the connectors needed for our system (power, SD card, 

USB, Ethernet).  Mounting rails are formed into the sides of the case, allowing the 

unit to be screwed securely onto the side of a bee hive and providing some ability to 

adjust its height and angle.  Additionally, two cable management hooks are included 

on the case’s left side, allowing the Ethernet cable to be routed along the side of the 

case to ensure that it does not fall into the Camera Module’s field of view. 

 
Figure 4.5: Raspberry Pi case, lid removed 
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2. Case Lid 

The case’s lid, visible in Figure 4.6, fits snugly over the top of the body, with a lip 

overhanging the body to ensure that water cannot easily penetrate the lid.  Hinges are 

built into the rear of the lid, which pivot on pins extending from the case body.  

Likewise, two snaps at the front of the lid snap onto pins integrated in the case body 

to hold the lid securely closed.  The lid also features a small slot allowing the 

Raspberry Pi Camera Module’s ribbon cable to exit.  This slot is angled so that, when 

the case is mounted vertically, water will be unable to enter the opening.  The case lid 

also incorporates a mount for the Camera Module that is printed as a separate piece 

and permanently attached to the lid using epoxy.  Two rails on the camera mount 

enable the camera case to be attached with a pair of screws, and the camera’s distance 

from the side of the bee hive to be adjusted. 

3. Camera Case 

A camera case and case back plate are printed separately for the Camera Module.  

These pieces snap together, and are held tightly closed by friction.  When the 

Raspberry Pi is mounted to a bee hive, the camera case is the component farthest 

from the side of the hive, and mostly likely to be exposed to wind-driven rain or other 

weather.  To minimize the chances of moisture entering the camera case, the back 

plate is a single piece, and the entrance for the Camera Module’s ribbon cable is 

tightly sealed when the camera case is assembled.  The only exposed opening in the 

case is the hole allowing the camera lens to see out; however, this hole is always 

facing downward and presents little risk of moisture invasion.  
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Figure 4.6: Raspberry Pi case, lid open 

4. Rain Shield 

The design of the Raspberry Pi makes it difficult to create a fully sealed or enclosed 

case, since using the device effectively requires that the power cable, Ethernet cable, 

SD card, and multiple USB devices be connected, all of which protrude significantly 

from the unit’s main board.  To provide additional protection for these openings and 

the device as a whole, our case incorporates a detachable rain shield, shown in Figure 

4.7.  Two arms attach the shield to the case body, and a brace ensures that it remains 

vertically oriented to provide effective protection. 
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Figure 4.7: Raspberry Pi case, fully assembled 

 The case was split into six pieces primarily to facilitate printing with a 3D printer, 

allowing all of the pieces to be printed simultaneously in a single print job requiring 

approximately five hours to complete.  This approach also reduces the amount of material 

needed to support the parts during printing, material which is discarded as waste when 

printing is complete.  All parts are printed with an 80% infill setting, providing a balance 

between part strength and unnecessary material usage. 

 The use of PLA plastic for the case material provides several advantages.  PLA is 

both one of the cheapest 3D printing materials available, and one of the easiest to work with.  

It is also an environmentally friendly bioplastic [63] made from plant based renewable 

resources, and it is biodegradable; breaking down after extended exposure to the elements.  

This led to some concerns about the durability of PLA, since our cases would need to survive 

outdoors for months at a time.  These concerns proved to be unfounded, however, as our 

cases showed no significant degradation after being deployed for a full season of bee hive 
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activity.  Thanks to the low cost of PLA, the material cost of a complete case is 

approximately $5. 

4.3.3 Sensor Installation 

The deployed BeeMon system collects only audio and video data.  Audio recording is 

handled by a pair of microphones mounted on opposite sides of the bee hive, allowing 

comparison of stereo audio tracks. 

To determine the optimal mounting locations for the two microphones, a series of 

tests were performed using an unoccupied hive in a quiet environment.  Three pairs of holes 

were drilled through the sides of the hive body at regular intervals, and another pair of holes 

were drilled centered on the ends of the hive body.  These holes were then filled using 

temporary plugs, except for the pair of holes being tested.  A recording of a bee hive was 

played through an omnidirectional speaker mounted in the center of the hive body, and test 

recordings were made of the pairs of microphones placed in different combinations of the 

eight holes.  Afterwards, the audio recordings were compared to determine if there were any 

noticeable differences in the audio quality, volume, etc. of the various locations.   

No significant difference was found between the mounting locations, so centered 

mounting holes on the sides of the body were used for simplicity.  All bee hives used were 

Langstroth hives with 10 frame deep bodies.  The exterior dimensions of these bodies are 

19.875 in. x 9.25 in. x 9.5 in. [64], placing our microphones approximately 9.94 in. from the 

front and rear faces of the body, and 4.75 in. from the top and bottom.  The holes were 

approximately 0.5 in. in diameter, to allow the microphones to move freely in the hole with 

minimal tension in order to reduce the risk of damaging wiring as they are inserted and 

removed.   
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Bees tend to attack anything that they perceive as a foreign object in the hive, and 

will also cover gaps or openings with a type of resin known as propolis [65], as shown in 

Figure 4.8.  In order to reduce the bees’ ability to damage the microphones and minimize the 

area that they could fill with propolis, the interior opening of the microphone hole was 

covered with a fine mesh, the microphone was inserted flush against the mesh, and a plug 

was inserted into the hole’s exterior opening to hold the microphone in place and prevent 

weather or foreign insects from entering the hive.  Figure 4.9 shows a microphone installed 

using this method.  It was found in our deployed systems that the bees would still attack the 

microphone through its protective mesh and attempt to apply some propolis to it.  However, 

the microphones were sufficiently protected to allow them to survive through most of the 

bees’ active season.  Because the USB microphones used in the deployed system were 

inexpensive, this was considered an acceptable lifetime. 

 
Figure 4.8: Microphone, partially clogged with propolis 
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Figure 4.9: Preferred microphone installation 

 

The microphone installation described above is the preferred style, but it requires that 

the BeeMon system be set up before the hive is populated, since drilling the necessary 

mounting holes and attaching protective wire mesh would cause significant disruption to an 

active hive.  In situations where microphones needed to be added to an active hive the 

microphone was suspended by its wiring as shown in Figure 4.10, and secured in place in the 

approximate position where the normal mounting holes would be drilled.  This approach does 

expose the microphone to more attacks by the bees, since it is an obvious foreign object 

within the hive. 

 

Figure 4.10: Temporary microphone installation 
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The Raspberry Pi Camera Module is mounted to the Raspberry Pi’s case, as detailed 

in Section 4.3.2.  The case is always mounted above the hive entrance with the camera facing 

down, though the exact location varies depending on the configuration of the bee hive.  The 

case’s mounting rails allow for some adjustment of the camera’s angle in the plane of the 

hive’s front face, though significant changes may require the mounting location to be 

changed.  The camera is contained in its own case that mounts to the main Raspberry Pi case 

on rails, allowing the camera’s distance from the front face of the hive to be adjusted.  Figure 

4.11 and Figure 4.12 show front and rear views of the camera mounting system. 

 
Figure 4.11: Raspberry Pi case, camera mount (front) 

One issue encountered with the Raspberry Pi Camera Module is its fixed focus, which 

is specified as being able to focus at a minimum distance of one meter.  Since a typical bee 

hive has a total height of approximately one meter, and the Raspberry Pi + Camera Module 

package is mounted to the side of the hive, the camera must be closer to the entrance.  After 

some investigation, we determined that the lens of the camera module was held in place with 

glue.  This glue can be carefully cut using a small knife, such as an X-ACTO type hobby 

knife.  Once freed, the camera lens can be adjusted, using a pencil eraser as a tool, to achieve 

the desired focus distance, after which it is glued in place again to ensure that its focus does 
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not change.  While this adjustment does limit the camera’s ability to focus on more distant 

objects, this was not a concern for our application.  

 

Figure 4.12: Raspberry Pi case, camera mount (rear) 

4.3.4 Application 

 The BeeMon application is a multi-tasking, multi-threaded, command-line C++ 

application used to control the BeeMon system.  At a high level, it initiates the recording of 

audio and video data, manages the storage of the recorded data on the Raspberry Pi, and 

uploads data to a remote server for storage and analysis. The application also maintains a 

detailed log of its activities to facilitate in diagnostics and troubleshooting of problems, as 

well as status monitoring.  To prevent logging from having an impact on time sensitive 

recording operations, log messages are passed to the log writer using a thread-safe, multi-

reader multi-writer queue, and the output file is written to asynchronously using a dedicated 

logging thread.   
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 Each subsystem within BeeMon runs independently in its own thread to reduce the 

chances for one subsystem to affect timing of another subsystem.  Whenever possible, 

actions are performed by invoking existing third party programs rather than implementing 

custom functionality.  When such a program is called, it is run as a child process of BeeMon 

so that its status can be monitored and any output or error messages directed into BeeMon’s 

logs.  Unless otherwise noted, the applications referenced in this section are detailed in 

Section 3.4. 

 The core of the BeeMon application is its command-line terminal interface, which 

runs on the application’s main thread.  After the application startup is complete this interface 

waits for user input and attempts to match any input to a set of known commands.  If 

matched, the command is executed allowing the terminal to control the behavior of any 

aspect of the system.  The terminal also supports a set of features to enhance its usability, 

including a history of recently entered commands, a listing of the available commands, and 

help text for each available command.  Since the Raspberry Pis used in the BeeMon system 

are typically configured in a headless setup with no monitor or keyboard attached, the 

application is usually started and controlled using SSH.  To ensure that the application 

continues running after the SSH session ends, it is necessary to run BeeMon from within a 

terminal manager program such as tmux [66] or GNU Screen [67].  These programs allow 

BeeMon to be started within a terminal session, to be detached from the current SSH session, 

and to remain active even after the SSH session has been terminated. 

 In order to reduce the amount of manual configuration information that must be 

entered when using the application, BeeMon supports the use of an XML configuration file 

containing predefined settings.  Essentially every setting available in the application can be 
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included in this file.  For example, the configuration file may include settings indicating that 

audio recording should be performed from 5:00 A.M. to 9:00 P.M., and all audio recordings 

should be uploaded in a daily batch at 1:00 A.M.  This allows audio recording to be started 

with a single short command, rather than requiring all of the recording options to be specified 

as part of the command.  Configuration settings specified in the file may be overridden via 

the command line arguments provided when BeeMon is started, or by supplying them when 

invoking the relevant command.  Some settings are required and must be provided in either 

the configuration file or the application command line arguments.  Most settings, however, 

have a built-in default value that is used if the setting is not otherwise specified. 

 The BeeMon audio recording subsystem allows for recording audio from two 

microphones, in order to capture sound from both sides of the hive.  Two instances of the 

ecasound application are triggered to perform the recording task.  Recordings are always 

captured as WAV files, using 16 bit samples and a 44.1 kHz sample rate.  Additional 

parameters specify the duration of the recording (typically one minute), the microphone to 

record (left or right), and the output path for the recording file.  In order for the application to 

address microphones attached to the Raspberry Pi as “left” or “right,” an asoundrc 

configuration file is installed along with BeeMon, configuring the USB microphones to be 

addressed using those aliases. 

The duration of each set of recordings is configurable, along with the output directory 

used for recordings.  If desired, recordings may also be limited to only the left or right 

channel using configuration options.  BeeMon also supports several audio capture modes: 

 Continuous recording, where a new set of recordings begins immediately after the 

current set of recordings are completed. 
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 Interval recording, where there is a configurable time delay between each set of 

recordings. 

 Scheduled recordings, where the system records daily between a designated start time 

and end time.  Interval settings may also be used with this mode. 

Audio recordings may either be uploaded as soon as they are complete, or uploaded in a daily 

batch at a time designated in the configuration. 

The BeeMon video recording subsystem makes use of the Raspberry Pi Camera 

Module to capture video of the bee hive.  While our primary interest was in the more 

common version of the Camera Module that captures visible light video, this entire 

subsystem is fully compatible with the infrared version of the Camera Module, if it is 

installed.  Video capture offers options very similar to audio, although video recording is 

always continuous when enabled.  The raspivid application is used to capture the recording, 

and it is passed options specifying the video’s width and height, in pixels, its framerate, 

duration, and output file name.  Video is always encoded using the H264 format.  Like audio, 

video recording supports options to record only during specific time intervals, and to limit 

uploads to a daily batch.  All of these options may be changed in the application’s 

configuration file or when issuing the start video recording command. 

The upload subsystem of BeeMon is shared between the other data collection 

subsystems.  This system is based around the use of File Transfer Protocol (FTP) to upload 

data files.  The BeeMon configuration includes settings that are common to all data areas, 

such as the FTP server host, server credentials, and a base directory that will be prepended to 

the upload directories for audio, video, and other data.  This allows for flexibility in the 

server’s directory layout.  For example, each BeeMon system could be assigned its own 
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directory on the server, with its data uploaded to audio, video, etc. subdirectories.  

Alternatively, the server could contain top level directories for audio, video, etc., with each 

BeeMon system assigned a subdirectory in the respective data areas. 

4.4 Additional Exploration 

The UDOO [32] was explored as a possible alternative to the Raspberry Pi as the 

primary platform for BeeMon.  It was hoped that the powerful features of the UDOO such as 

quad core CPU, integrated microcontroller, and SATA hard drive support would allow the 

UDOO to collect data from multiple bee hives simultaneously, reducing the overall cost of 

the system.  Our intention was to use the UDOO’s powerful microcontroller to manage many 

microphones, similar to the system described in Section 4.2.2.  However, testing determined 

that while the CPU and the microcontroller of the UDOO are directly connected, the only 

communications channels connected on the device’s circuit board are those for the UART 

serial interface which, on those devices, does not provide sufficient bandwidth to support the 

transfer of audio data.  Without the ability to capture audio from many hives simultaneously, 

the UDOO offered few advantages over the Raspberry Pi, at a much higher cost: 

approximately four Raspberry Pi’s could be purchased for the price of a single UDOO. 

An alternative use considered for the UDOO was a role as an on-site server, 

effectively a data collection middleman.  Our test bee hives were located in a residential area, 

and the internet connection used for BeeMon’s data uploads was a residential cable internet 

service.  Internet Service Providers typically limit residential plans to relatively low upload 

bandwidths, directing customers who need more upload bandwidth to purchase much more 

expensive commercial plans.  The limited upload bandwidth did not directly impact the 

performance of our system, however, continuous uploading by the BeeMon systems did 
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consume enough bandwidth to noticeably impact internet performance for the home’s 

residents.   

The UDOO can store large amounts of data when configured with an external SATA 

hard drive, allowing it to act as a low cost server and upload target for the local BeeMon 

systems.  With a sufficiently large hard drive, weeks or even months of data can be recorded, 

removing pressure from home internet connections or allowing BeeMon systems to be 

deployed to locations where power is available, but internet service is limited or non-existent.  

Additionally, the multi-core CPU of the UDOO is powerful enough to encode WAV audio 

files to MP3 as they are received, significantly increasing the amount of data that can be 

stored. 

The UDOO investigations discussed above were done after the initial BeeMon design 

had been completed and was deployed in the field.  While the “UDOO as a server” option 

offers some attractive benefits, by the time it could be investigated in detail the batch upload 

features were added to the BeeMon application, and performing nightly uploads proved 

sufficient to minimize the effect on the residential internet service. 
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Chapter 5 - Results 

5.1 Data Collection 

Initial deployments of the BeeMon system took place in the spring of 2014, as shown 

in Figure 5.1.  The first two bee hives to be monitored recorded only audio, because at that 

time there was no solution available for securely mounting the Raspberry Pi Camera Module 

to allow video recording of the hive entrance.  During the summer of 2014 the Raspberry Pi 

case (see Section 4.3.2) was designed, and video recordings began to be captured.  By the fall 

of 2014, the case had been completed and the system as described in Section 4.3 was 

deployed in the field collecting data.  Figure 5.2 shows the completed system. 

 
Figure 5.1: A BeeMon prototype with audio and video recording 
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Figure 5.2: A completed BeeMon system 

Recordings continued throughout the fall of 2014, until the bees’ activity declined 

due to cold weather.  Data collection resumed in the spring of 2015, with BeeMon systems 

deployed to three bee hives.  Additional deployments have been done in 2016 and 2017, 

however, by that time the system had been modified and upgraded beyond the initial 

BeeMon system described in this thesis. 

As of this writing, more than five terabytes of combined audio and video data have 

been captured by various BeeMon installations deployed to real-world bee hives.  Some 

research has already been completed using data collected by the BeeMon system.  Several 

additional research projects are currently underway at Appalachian State University, using 

both the audio and video data to gain insight into the health and behavior of honey bees and 

to work towards the eventual goal of implementing a fully automated bee hive monitoring 
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system.  Figure 5.3 displays an audio sample from a BeeMon audio recording.  Figure 5.4 

shows a frame taken from a BeeMon video recording. 

 
Figure 5.3: Sample BeeMon audio recording 

 
Figure 5.4: Sample frame from a BeeMon video recording 
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5.2 System Cost 

 One of the primary goals of this project was the development of a system that was 

inexpensive, allowing it to be deployed in large quantities.  Table 5.1 lists the cost of the 

components used in the final BeeMon system, as discussed in Section 3.2 and Section 4.3.1.  

While the cost is low considering the audio and video recording capabilities of the system, it 

is expensive enough to be prohibitive when considering the deployment of dozens or 

hundreds of systems. 

 A significant factor contributing to the price of the BeeMon system is the goal of 

capturing high quality audio and video.  This decision was made due to uncertainty regarding 

the quality of data needed to be viable for data analysis.  After sufficient analysis has been 

done to determine with some degree of certainty what level of data quality is required, it will 

be possible to revisit the BeeMon system and update it to use lower cost components that 

provide data of adequate quality. 

Table 5.1: BeeMon Component Cost 

Component Cost 

Raspberry Pi 1 Model B $35 

Power Supply for Raspberry Pi $7 

16 GB Class 10 SD Card $9 

Raspberry Pi Camera Module $29 

2x USB Microphones $16 

Raspberry Pi Case (PLA material cost) $5 

Total $101 
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5.3 Computer Vision Analysis 

One of the initial research projects to use BeeMon data is a thesis by Kale [68], who 

applies computer vision object detection and motion tracking to videos recorded by BeeMon.  

Using these techniques, he is able to count the number of bees visible near the hive entrance 

and track bees to determine if they are entering or leaving the hive.  As one minute long 

videos are uploaded to the file server by BeeMon, they are downloaded automatically by his 

application for processing. 

For each frame in the video, the frame image is converted to grayscale and 

background subtraction is applied using a Gaussian mixture model (GMM).  Since the video 

is split into one minute clips, this model is initialized using the first 100 frames of the clip, 

after which the video is reset to the first frame, and actual processing begins.  The adaptive 

nature of the GMM was shown to be ideal for processing video taken in an outdoor 

environment where lighting conditions are often imperfect.  It is also able to handle periodic 

changes in the background such as grass or leaves swaying in the wind.  However, the 

performance of background subtraction can become inconsistent when the entrance of the 

hive is crowded with bees, due to the GMM adapting to consider clusters of bees as part of 

the background.  Application of background subtraction produces a binary foreground mask, 

as shown in  

Next, Kale compares two methods for detecting bees in the image.  Blob analysis 

detects clusters (or blobs) of foreground pixels that correspond to areas of the image 

occupied by moving objects, which can then be used to determine a border around the object.  

Alternatively, cascade classification is a machine learning algorithm that can detect objects 
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regardless of their environment, without requiring knowledge of the image background.  

Figure 5.6 and Figure 5.7 show examples of the two methods applied to a video frame.   

Figure 5.5: Video frame and foreground mask 

Figure 5.6: Video frame with blob analysis 

When applied to his set of test data, Kale found that blob analysis performed 

significantly better than cascade classification.  He hypothesizes that the performance of 

cascade classification could be improved by expanding the training data for the machine 

learning algorithm to include a bees in a wider variety of poses, so that it can better recognize 

them.   
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Figure 5.7: Video frame with cascade classification 

Finally, Kale compares two approaches for tracking the motion of bees in the video.  

The optical flow method uses a variant of Lucas-Kanade optical flow estimation to find the 

motion of a region of pixels (i.e., a bee) between two images.  The primary disadvantage of 

this method is that it is stateless, as it only compares two frames of the video simultaneously.  

The Kalman filter, however, maintains tracks for moving objects detected in the video, 

allowing it to make predictions about an object’s location and to retain knowledge of objects 

that are not detected in the current frame.  Figure 5.8 and Figure 5.9 demonstrate the motion 

tracking techniques applied to a frame of video.  

The performance of the motion tracking methods was compared by having them 

count the number of bees entering and leaving the hive during two test video sequences, one 

with shadows and one without.  The optical flow method was very inconsistent in 

performance, sometimes returning counts that were off by as much as 50%.  However, it 

never over counted either arrivals or departures. The Kalman filtering was much more 

consistent in performance, displaying a similar amount of error for both arrivals and 

departures in both tests, though it did over count the number of arrivals in each test. 
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Figure 5.8: Video frame with optical flow 

 
Figure 5.9: Video frame with Kalman filtering 
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Chapter 6 - Conclusion 

6.1 BeeMon System 

This thesis presented the design for an automated bee hive data collection system, 

capable of recording audio and video data.  The system is built around the Raspberry Pi 

Model 1 B computer board.  Audio capture is provided by a pair of USB microphones, while 

high definition video can be recorded using a Raspberry Pi Camera Module.  This system is 

protected from the environment using a 3D printed case combining environmental protection, 

bee hive mounting system, and camera mount into a single unit. 

The BeeMon application manages the system, providing the ability to control all 

aspects of audio and video recordings.  Both types of data may be recorded using several 

scheduling options and quality settings, allowing the captured data to be configured for the 

bee hive being monitored and the needs of the research application consuming the audio or 

video.  Once recorded, this data is temporarily stored on the Raspberry Pi until it can be 

uploaded to a remote server for storage and analysis. 

After the BeeMon system has been installed on a bee hive and the application 

configured and started, the system is capable of completely autonomous operation.  Manual 

action is only required if the data capture or upload settings need to be modified, or if a 

hardware failure occurs. 

6.2 Data Collection and Analysis 

The BeeMon design presented here has been deployed on multiple real-world bee 

hives and has been capturing data for three years.  In that time a large volume of data has 

been recorded, providing a rich data set for use by other researchers that are investigating the 

sounds and motions of honey bees. 
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One research project has already been completed using data provided by BeeMon.  In 

that project, computer vision techniques were applied to video recorded at the entrance of a 

bee hive in order to count the number of bees at the entrance, and track the number of bees 

entering and leaving the hive.  The project was able to determine that a Gaussian mixture 

model provided good background subtraction results in most circumstances.  It also 

concluded that blob analysis provided better performance for object detection than cascade 

classification, and that motion tracking results were more consistent when using the Kalman 

filter algorithm as opposed to optical flow. 

6.3 Future Work 

Numerous opportunities exist to enhance and expand the BeeMon system.  In the time 

since this project began, several updated versions of the Raspberry Pi have been released (see 

infrared camera module.), providing increased processing power and capabilities while 

maintaining the same low cost.  Future work could take advantage of this CPU power by 

having the Raspberry Pi perform onboard data conversions, for example, converting WAV 

audio files to the more space efficient MP3 format.  The potential also exists for audio and/or 

video analysis to be performed directly on the Raspberry Pi in real time, enabling the 

Raspberry Pi to host a truly self-contained monitoring system that would need to transmit 

only the results of its analysis, rather than uploading large volumes of recorded data. 

The integration of additional sensors into the BeeMon system is another area that 

future work could address.  Microcontrollers such as the ATmega328P have the ability to 

interface with a wide variety of sensors and devices that are difficult to control using a higher 

level device like the Raspberry Pi.  At the most basic level, the microcontroller would 

interface with sensors to record their readings, and it would expose a simple communication 
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interface by which the Raspberry Pi master unit could query it for the sensor readings.  More 

advanced integration could allow for remote interaction with the hive being monitored.  For 

example, the microcontroller could control a servo in order to perform a knock test; the 

command would be received by the internet connected Raspberry Pi and passed on to the 

microcontroller, which would then perform the detailed servo movements required. 

In the current design, the server component of the BeeMon system is essentially a 

dumb file store whose only purpose is to receive recordings uploaded by the Raspberry Pi 

system.  A more organized server component using a database to store file metadata and 

sensor readings would make it significantly easier to manage and query large amounts of bee 

hive data, particularly if temperature, humidity, or other sensors are added to the system.  

Such an enhancement will likely prove necessary before any future BeeMon-based 

monitoring system can be deployed at scale to a large number of bee hives. 

Finally, the current BeeMon application is written C++ because it was believed that it 

would be necessary for it to directly access sensors at a low level.  Section 4.2.3 details 

limitations of the Linux operating system that prevent this from being viable, meaning there 

is little reason for the application to be written in a low level language.  Rewriting BeeMon in 

a higher level language such as Python would simplify the application, making it easier to 

perform maintenance and add new features.  As discussed above, additional sensors added to 

the system would need to be managed using microcontrollers.  Communication with these 

microcontrollers can be implemented using hardware built into the Raspberry Pi’s processor, 

allowing the communications code to be written in a high level language. 
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