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We study positive radial solutions for classes of steady state reaction di�usion

problems on the exterior of a ball with both Dirichlet and nonlinear boundary con-

ditions. We consider p-Laplacian problems (p > 1) with reaction terms which are

superlinear at in�nity and semipositone.

In the case p = 2, using variational methods, we establish the existence of a

solution, and via detailed analysis of the Green's function, we prove the positivity of

the solution. In the case p 6= 2, we again use variational methods to establish the

existence of a solution, but the positivity of the solution is achieved via sophisticated

a priori estimates. In the case p 6= 2, the Green's function analysis is no longer

available. Our results signi�cantly enhance the literature on superlinear semipositone

problems.

Finally, we provide algorithms for the numerical generation of exact bifurca-

tion curves for one-dimensional problems. In the autonomous case, we extend and

analyze a quadrature method, and using nonlinear solvers in Mathematica, gener-

ate bifurcation curves. In the nonautonomous case, we employ shooting methods in

Mathematica to generate bifurcation curves.
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CHAPTER I

INTRODUCTION

Consider the nonlinear reaction-di�usion problem


ut = d∆pu+ f(u); x ∈ Ω, t > 0,

u(x, 0) = ψ0(x); x ∈ Ω,

Bu = 0; x ∈ ∂Ω, t > 0,

(1.1)

where d > 0 is the di�usion coe�cient, ∆pz = div(|∇z|p−2∇z) with p > 1, f :

[0,∞)→ R is a continuous function, Ω ⊂ RN , and B is a generic, possibly nonlinear,

operator to be speci�ed later. Such problems arise in the study of nonlinear heat

generation, combustion theory, chemical reactor theory and population dynamics.

For such applications, only non-negative solutions (u ≥ 0 in Ω) are relevant. The

study of steady states (if they exist) for (1.1) is of great importance in understanding

the dynamics of the solutions of (1.1), and researchers (since 1967, see [KC67]) have

focused on the study of nonlinear eigenvalue problems of the form:

 −∆pu = λf(u); x ∈ Ω,

Bu = 0; x ∈ ∂Ω,
(1.2)

where λ = 1
d
is a positive parameter.

In the case that f is positive and monotone, (1.2) is referred to in the litera-

ture as a �positone" problem (see Figure 1). Classical examples arise in the theory of

nonlinear heat generation (see [KC67] where the authors consider the reaction term
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f(u) = eu) and combustion theory (see [BIS81] where the authors consider the reac-

tion f(u) = e
αu
α+u ; α > 0). For a rich history of results related to positive solutions

of such positone problems in the case p = 2, we refer the reader to [KC67], [Ama76],

[Rab71], [CL70], [CR73], [CR75], [Par61], [Sat75], [Par74], [Tam79], [Ari69], [Ama72],

[WL79], [KJD+79], [Lae71], and [AC77]. In particular, the celebrated SIAM Review

paper of P. L. Lions in 1982 (see [Lio82]) provides an excellent overview of results for

positone problems, as well as a list of open problems at the time.

Figure 1. An Example of a Positone f

Of particular interest in this dissertation is one such problem, the case where

f satis�es,

(F1) f(0) < 0, f is monotone and eventually positive.

which is referred to in the literature as a semipositone problem (see Figure 2). The

study of positive solutions to semipostone problems is considerably more challenging,

since the range of a solution must include regions where f is negative as well as where

f is positive. Such problems were discussed in [Lio82], and it was noted that they

posed sign�cant challenges, a fact later con�rmed by H. Berestycki, L.A. Ca�arelli,
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and L. Nirenberg in 1996 (see [BCN96]). The study of semipositone problems was

�rst formally introduced by Castro and Shivaji in 1988 (see [CS88]) in the case of

Dirichlet boundary conditions, where several challenging di�erences were noted in

their study when compared to the study of positone problems. See also [BS83], where

Brown and Shivaji, in 1982, �rst encountered the di�culty with semipositone prob-

lems in a study of perturbed bifurcation theory. Castro and Shivaji's initial work

in [CS88] has lead to a plethora of work in recent years, particularly in the case

Bu = u (Dirichlet boundary conditions) and Ω is a bounded domain in RN . See

[ANZ92], [AAB94], [CG09], [CG13], [CHS03], [HSC01], [JS04], [BCS89], [CS89a],

[CS89b], [BS91], [CGS93], [CGS95], [CHS95], [AHS96], [CS98], [HS99], [OSS02],

[HS03], [HS04], [DOS06], [CCSU07], [SY07], [SY11], [CSS12], and [SSS13] for results

for problems with Dirichlet boundary conditions on bounded domains. An important

application of semipositone problems arises in the study of population dynamics with

constant yield harvesting, as was illustrated by Oruganti, Shi, and Shivaji in 2002

(see [OSS02]).

Figure 2. An Example of a Semipositone f

3



The focus of this dissertation is to enrich the literature on a class of semi-

positone problems, namely, when the reaction term f is p-superlinear at in�nity

(lims→∞
f(s)
sp−1 = ∞). In the case p = 2, Castro and Shivaji in 1989 made signi�cant

breakthroughs in the study of such problems when Ω is a ball in RN , N > 1, by �rst

proving that non-negative solutions are in fact positive and, hence, radially symmet-

ric (see [CS89b]), and then establishing an optimal existence result for λ ≈ 0 (see

[CS89a]). Also, in 1989, Brown, Castro, and Shivaji established a non-existence re-

sult for λ >> 1 (see [BCS89]). Further, in 1993, Ali, Castro, and Shivaji established

the uniqueness of this positive solution for λ ≈ 0 under additional assumptions on f

(see [ACS93]). The existence result was extended to a general bounded domain by

Allegretto, Nistri, and Zecca in 1992 (see [ANZ92]); Ambrosetti, Arcoya, and Bu�oni

in 1994 (see [AAB94]); and Sumallee in 1988 (see [Uns88]). Further, non-existence for

λ >> 1 was extended to a general bounded domain by Allegretto, Nistri, and Zecca

in 1992 (see [ANZ92]).

See [ACS93], [ANZ92], [AAB94], [AHS96], [AZ94], [BCS89], [BS91], [CCSU07],

[CDS15], [CdFL16], [CS88], [CS89a], [CS89b], [CG09], [CG13], [DOS06], [HSC01],

[Hai14], [HSS98], [JS04], [SW87], [Uns88] for results on p-superlinear, semipositone

problems in both p = 2 and p > 1 cases where Ω is a general bounded domain.

To date, the extension of the uniqueness result to general bounded domains remains

open.
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A more challenging problem is to consider such superlinear, semipositone prob-

lems on unbounded domains. In this dissertation, we will consider the problems


−∆pu = λK(|x|)f(u); x ∈ Ωe,

u = 0; |x| = r0,

u→ 0; |x| → ∞,

(1.3)

and 
−∆pu = λK(|x|)f(u); x ∈ Ωe,

∂u
∂η

+ c̃(u)u = 0; |x| = r0,

u→ 0; |x| → ∞,

(1.4)

where λ > 0 is a parameter, ∆pz = div(|∇z|p−2∇z) with p > 1,

Ωe =
{
x ∈ RN | |x| > r0, r0 > 0, N > p

}
,

K ∈ C ([r0,∞), (0,∞)) satis�es K(r) ≤ 1
rN+µ ; µ > 0 for r >> 1 and K is eventually

decreasing, ∂
∂η

is the outward normal derivative, and c̃ ∈ C ([0,∞), (0,∞)).

We assume the reaction term f satis�es the additional condition

(F2) there exist A,B ∈ (0,∞) and q ∈ (p − 1,∞) such that for s > 0 su�ciently

large, Asq ≤ f(s) ≤ Bsq.

In addition to (F1) and (F2), we make the following technical assumptions:

(AR1) there exists θ > p such that for s su�ciently large, sf(s) > θF (s), where

F (s) =

∫ s

0

f(z) dz,
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and

(AR2) for θ satisfying (AR1),

c(s)sp < θ

∫ s

0

c(z)φp(z) dz

for s su�ciently large, where φp(z) = |z|p−2z.

Remark. If we take f(s) = sq−1 with q > p−1 and c(s) = sδ+1 with 0 < δ < q+1−p,

then for any θ ∈ [δ + p, q + 1], it is easy to show that (AR1) and (AR2) are satis�ed

(in fact) for all s > 0.

In an e�ort to �nd positive, radial solutions of (1.3) and (1.4), we apply the

change of variables ζ = |x| and t =
(
ζ
r0

) p−N
p−1

to transform (1.3) and (1.4) to the

boundary value problems

 − (φp(u
′))′ = λh(t)f(u); t ∈ (0, 1),

u(0) = 0 = u(1),
(1.5)

and 
− (φp(u

′))′ = λh(t)f(u); t ∈ (0, 1),

u(0) = 0,

φp (u′(1)) + c(u(1))φp (u(1)) = 0,

(1.6)

respectively, where φp(s) = |s|p−2s,

h(t) =

(
p− 1

N − p
r0

)p
t−

p(N−1)
N−p K

(
r0t

1−p
N−p

)
,
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and c(s) =
(
r0(p−1)
N−p c̃(s)

)p−1

. Due to our earlier assumptions onK, the weight function

h ∈ C(0, 1] ∩ L1(0, 1) and infx∈[0,1] h(x) > 0. See Appendix A.1 for full details of the

transformation.

Remark. We may consider the related problems on the annulus, namely


−∆pu = λK(|x|)f(u); x ∈ Ωa,

u(x) = 0; |x| = R1,

u(x) = 0; |x| = R2,

(1.7)

and 
−∆pu = λK(|x|)f(u); x ∈ Ωa,

u(x) = 0; |x| = R1,

∂u
∂η

+ c̃(u)u = 0; |x| = R2,

(1.8)

where Ωa =
{
x ∈ RN |R1 < |x| < R2;R2 > R1 > 0, N > p

}
andK ∈ C([R1, R2], (0,∞)).

Applying a change of variables from [GLS10] (see Appendix A.2), we may transform

the problems into (1.5) and (1.6), respectively, where now h ∈ C[0, 1].

In the case p = 2 with Dirichlet boundary conditions, Abebe, Chhetri, Sankar,

and Shivaji proved existence of a positive, radial solution on the exterior of a ball in

RN for λ ≈ 0 in [ACSS14] using degree theory. The more general p > 1 case and the

case of nonlinear boundary conditions both remained untreated until now.
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(a) Dirichlet Boundary Condition as in

(1.3)

(b) Nonlinear Boundary Condition as in

(1.4)

Figure 3. Exterior Domains with Boundary Conditions

We consider the semilinear (p = 2) cases of (1.3) and (1.4), where ∆2 = ∆ is

the usual Laplace operator. In this case, (1.5) and (1.6) become

 −u
′′ = λh(t)f(u); t ∈ (0, 1),

u(0) = 0 = u(1),
(1.9)

and 
−u′′ = λh(t)f(u); t ∈ (0, 1),

u(0) = 0,

u′(1) + c(u(1))u(1) = 0,

(1.10)

where h(t) =
r20

(2−N)2
t
−2(N−1)
N−2 K

(
r0t

1
2−N

)
and c(s) = r0

N−2
c̃(s).

We establish the following result for (1.9) and (1.10), respectively.
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Theorem 1.1. Let p = 2 and f satisfy (F1), (F2), and (AR1). There exists λ > 0

so that (1.9) has a positive solution, uλ ∈ C2(0, 1) ∩ C1[0, 1], for all λ ∈ (0, λ).

Theorem 1.2. Let p = 2 and f satisfy (F1), (F2), and (AR1), and let c satisfy

(AR2) with p = 2. There exists λ̃ > 0 so that (1.10) has a positive solution, uλ ∈

C2(0, 1) ∩ C1[0, 1], for all λ ∈ (0, λ̃).

We prove Theorem 1.1 and Theorem 1.2 by employing variational methods,

namely the Mountain Pass Theorem, to establish the existence of a solution. In

particular, conditions (AR1) and (AR2) are Ambrosetti-Rabinowitz-type conditions

which are used to establish that the functionals associated to (1.9) and (1.10) satisfy

the Palais-Smale compactness condition. Since f(0) < 0, it is challenging to establish

that the mountain pass solution is in fact positive. Crucial a priori estimates of the

solutions when λ ≈ 0 and estimates of the Green's function near the boundary will be

used to overcome this di�culty. We note that positive solutions to (1.9) and (1.10)

give rise to positive radial solutions of (1.3) and (1.4), respectively.

We also treat the quasilinear (p 6= 2) cases of (1.3) and (1.4), where ∆p is the

p-Laplace operator. We establish the following results for (1.5) and (1.6), respectively.

Theorem 1.3. Let f satisfy (F1), (F2), and (AR1). There exists λ̂ > 0 so that (1.5)

has a positive solution, uλ ∈ C1[0, 1], for all λ ∈ (0, λ̂).

Theorem 1.4. Let f satisfy (F1), (F2), and (AR1), and let c satisfy (AR2). There

exists λ̌ > 0 so that (1.6) has a positive solution, uλ ∈ C1[0, 1], for all λ ∈ (0, λ̌).

Remark. Note that solutions to (1.9), (1.10), (1.5), and (1.6), by reversing the earlier

change of variables, guarantee positive, radial solutions to (1.3), (1.4), (1.7), and

(1.8), respectively, in the both the p = 2 and p 6= 2 cases.
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While the variational framework developed in the semilinear case can be

adapted with only minor modi�cations, we face a more di�cult challenge in prov-

ing positivity of the solutions for the quasilinear case, since the Green's function is

no longer available. Though some recent work had been done in this direction on

bounded domains without singular weights (see [CdFL16] and [CDS15]), we address

(1.3) and (1.4) for the �rst time on exterior domains, which leads to the presence

of singular weight functions. Again obtaining crucial a priori estimates of the solu-

tions, we show by contradiction that, for λ ≈ 0, the mountain pass solution must be

positive.

Finally, we establish numerical and computational schemes for generating bi-

furcation curves of positive solutions to problems (1.9) and (1.10). Of particular

interest in the study of (1.9) and (1.10) is the shape of bifurcation curves of positive

solutions. Laetsch studied the autonomous case (h(t) = 1 for all t ∈ (0, 1)) of (1.9)

in [Lae71] using a quadrature method (or time map analysis) and here, we establish

such a method for the autonomous case of (1.10). We also employ shooting methods

and nonlinear solvers to plot bifurcation curves in the nonautonomous cases of (1.9)

and (1.10).

In order to prove Theorems 1.1�1.4, we employ variational methods, and in

particular the Mountain Pass Theorem. In Chapter 2, we introduce the necessary

background material. In Chapter 3, we deal with the case p = 2, proving Theorems 1.1

and 1.2. In Chapter 4, we deal with the more general p 6= 2 case, proving Theorems 1.3

and 1.4. In Chapters 5 and 6, we provide the numerical and computational methods

for generating exact bifurcation curves in the autonomous and nonautonomous cases,

respectively, as well as their application to some superlinear problems.
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CHAPTER II

PRELIMINARIES

In order to establish the existence of solutions to (1.5), (1.6), (1.9), and (1.10),

we will employ variational methods. The fundamental idea behind variational meth-

ods is to reformulate the search for solutions of an equation as a search for critical

points of an appropriate functional. To this end, we employ several Banach spaces,

C[0, 1], C1[0, 1], Ls(0, 1), and W 1,p
0 (0, 1), whose de�nitions we now recall.

De�nition 2.1. Given 1 ≤ s <∞ and 1 ≤ p <∞, we de�ne the following function

spaces as,

C[0, 1] := {u : [0, 1]→ R | u is continuous on [0, 1]}

C1[0, 1] := {u : [0, 1]→ R | u ∈ C[0, 1] and u′ ∈ C[0, 1]}

Ls(0, 1) :=

{
u : [0, 1]→ R | u is measurable and

∫ 1

0

|u(r)|s dr <∞
}

W 1,p(0, 1) := {u : [0, 1]→ R | u ∈ Lp(0, 1) and u′ ∈ Lp(0, 1)}

W 1,p
0 (0, 1) :=

{
u : [0, 1]→ R | u ∈ W 1,p(0, 1) and u(0) = 0 = u(1)

}
To give the idea of the variational method, consider the case p = 2 with

Dirichlet boundary conditions. We de�ne a weak solution to (1.9) as follows.

De�nition 2.2. A function u0 ∈ W 1,2
0 (0, 1) is said to be a weak solution to (1.9) if

∫ 1

0

u′0v
′ dx− λ

∫ 1

0

f(u0)v dx = 0 ∀v ∈ W 1,2
0 (0, 1).
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To �nd a weak solution directly, we seek a functional J : W 1,2
0 (0, 1)→ R such

that J ′(u) at any u ∈ W 1,2
0 (0, 1) satis�es

< J ′(u), v > =

∫ 1

0

u′v′ dx− λ
∫ 1

0

f(u)v dx ∀v ∈ W 1,2
0 (0, 1).

Critical points of such a functional are clearly weak solutions of (1.9).

Now, we may turn our focus to �nding critical points of a functional J . In

order to do this, we recall the celebrated Mountain Pass Theorem which is stated

below.

Theorem 2.3 (Mountain Pass Theorem (see [AR73])). Let X be a Banach space,

and let J ∈ C1(X;R) satisfy:

(PS) any sequence {un} ⊂ X such that J(un) is bounded and J ′(un)→ 0 as n→∞

possesses a convergent subsequence,

(MP1) J(0) = 0,

(MP2) there exist α,R > 0 such that J(u) ≥ α ∀‖u‖X = R, and

(MP3) there exists v ∈ X such that ‖v‖X > R and J(v) < 0.

Further, let

Γ := {γ ∈ C ([0, 1];X) | γ(0) = 0, γ(1) = v} ,

and

ĉ := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)).
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Then ĉ is a critical value of the functional J .

The condition (PS) is the well-known Palais-Smale condition developed by R.

Palais and S. Smale (see [Pal63], [Pal66], [PS64], and [Sma64]) which is su�cient to

prove the existence of ĉ. The condition ensures an appropriate sense of compactness

in the functional J by ensuring that the set {u ∈ X|J(u) = c and J ′(u) = 0} is

compact for each c ∈ R. The other three conditions (MP1)�(MP3) ensure that the

functional has the correct geometry. See Figure 4 for a visualization of the Mountain

Pass Theorem.

Figure 4. A Visualization of the Mountain Pass Theorem. The red points correspond

to 0 and v, and each orange curve represents an element of Γ. The orange points

are the maximum value of each curve, and by taking the in�mum of all such orange

points, we �nd a critical value.
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It is well known (see [Ada75]) that each of the spaces C[0, 1], C1[0, 1], Ls(0, 1),

W 1,p(0, 1), and W 1,p
0 (0, 1) are Banach spaces when paired with the norms

‖u‖∞ := max
[0,1]
|u(t)|,

‖u‖C1 := ‖u‖∞ + ‖u′‖∞,

‖u‖s :=

(∫ 1

0

|u(r)|s dr
) 1

s

,

‖u‖1,p :=
(
‖u‖pp + ‖u′‖pp

) 1
p , and

‖u‖1,p,0 := ‖u′‖p,

respectively.

In the special cases s = 2 or p = 2, we recall that the spaces L2(0, 1),W 1,2(0, 1),

and W 1,2
0 (0, 1) are all Hilbert spaces. We also recall that W 1,p(0, 1) is compactly

embedded in C[0, 1], which implies the existence of a constant k > 0 such that

‖u‖∞ ≤ k‖u‖1,p for every u ∈ W 1,p(0, 1) (see [Ada75]).

We will also be interested in a particular subspace of W 1,p(0, 1), namely the

subset

W̃ 1,p(0, 1) =
{
u ∈ W 1,p(0, 1) | u(0) = 0

}
.

The subspace is well de�ned due to the compact embedding of W 1,p(0, 1) into C[0, 1],

and, further, we may show that the norms ‖ · ‖1,p,0 and ‖ · ‖1,p are equivalent on

W̃ 1,p(0, 1).

Proposition 2.4. Let ‖u‖1,p and ‖u‖1,p,0 be de�ned on W̃ 1,p(0, 1). Then ‖ · ‖1,p,0 is

equivalent to ‖ · ‖1,p on W̃
1,p(0, 1).
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Proof. Let u ∈ W̃ 1,p(0, 1). Then clearly, ‖u‖1,p,0 ≤ ‖u‖1,p. Further, applying Jensen's

inequality, we have

∫ 1

0

|u(x)|p dx =

∫ 1

0

∣∣∣∣∫ x

0

u′(s) ds

∣∣∣∣p dx
≤
∫ 1

0

(∫ x

0

|u′(s)| ds
)p

dx

≤
∫ 1

0

(∫ 1

0

|u′(s)| ds
)p

dx

≤
∫ 1

0

∫ 1

0

|u′(s)|p ds dx

=

∫ 1

0

|u′(s)|p ds,

which implies that

‖u‖1,p =

(∫ 1

0

|u|p dx+

∫ 1

0

|u′|p dx
) 1

p

≤
(

2

∫ 1

0

|u′|p dx
) 1

p

= 2
1
p‖u‖1,p,0.

Hence, ‖ · ‖1,p,0 is equivalent to ‖ · ‖1,p on W̃
1,p(0, 1).

We also recall the concept of the (S+) condition (see [Bro70]). The proof of

the following proposition can be found in [GP04].

Proposition 2.5 ((S+) Property). Let Ψ : W 1,p(0, 1)→ [0,∞) be de�ned by Ψ(u) =

1
p

∫ 1

0
|u′|p dx. Then Ψ′ exists,

〈Ψ′(u), v〉 =

∫ 1

0

|u′|p−2u′v′ dx ∀v ∈ W 1,p(0, 1),

and if un converges weakly to u and lim supn→∞ 〈Ψ′(un), un − u〉 ≤ 0, then un → u

strongly in W 1,p(0, 1).
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While we will use the Mountain Pass Theorem to prove the existence of weak

solutions to (1.5) and (1.6), we show that these solutions have higher regularity. In

particular, by solution to (1.5) or (1.6), we mean u ∈ C1[0, 1] and φp(u
′) ∈ W 1,1(0, 1)

satisfying equation (1.5) or (1.6), respectively. In the case p = 2 (i.e., (1.9) and

(1.10)), we further mean that u ∈ C2(0, 1) ∩ C1[0, 1].

Finally, we state the following proposition, which provides alternative forms

of the growth condition (F2) and Ambrosetti-Rabinowitz type conditions (AR1) and

(AR2).

Proposition 2.6. Given the extension of f(s) := f(0); s < 0, (F2) implies that there

exists constants Ã, B̃ > 0 so that

f(s) ≥ A|s|q − Ã ∀s ≥ 0,

and

f(s) ≤ B|s|q + B̃ ∀s ∈ R.

Furthermore, there exist constants A1, B1, Ã1, B̃1 > 0 such that

F (s) ≥ A1|s|q+1 − Ã1 ∀s ≥ 0,

and

F (s) ≤ B1|s|q+1 + B̃1 ∀s ∈ R.
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Similarly, if f satis�es (AR1), then there exists a constant θ̃ > 0 such that

sf(s) > θF (s)− θ̃ ∀s ≥ 0.

Finally, (AR2) combined with the extension c(s) := c(−s); s < 0 implies that there

exists θ̃1 ∈ R such that

θ̃1 < θ

∫ s

0

c(z)φp(z) dz − c(s)|s|p

for all s ∈ R since c(z)φp(z) = −c(−z)φp(−z), and hence

∫ s

0

c(z)φp(z) dz =

∫ −s
0

c(z)φp(z) dz,

for all s < 0.

The proposition follows directly from (F2), (AR1), and (AR2).
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CHAPTER III

THE SEMILINEAR CASE

3.1 Proof of Theorem 1.1

We will work primarily with three spaces, W 1,2
0 (0, 1), C[0, 1], and Lp(0, 1) for

p = 1, 2 with the standard norms on each space. For ease of notation in this chapter,

we set H = W 1,2
0 (0, 1), Ω = (0, 1), and let ‖ · ‖H = ‖ · ‖1,2,0.

Let J : H → R be de�ned by

J(u) =
1

2

∫ 1

0

(u′)2 dx− λ
∫ 1

0

hF (u) dx. (3.1)

The second term in the de�nition of J is well-de�ned, since H ↪→ C[0, 1] and

∣∣∣∣λ∫ 1

0

hF (u) dx

∣∣∣∣ ≤ λ‖h‖1 max
−M1≤s≤M1

|F (s)| where M1 = ‖u‖∞.

Since f is a C1 map, we �nd that the map J is continuous, di�erentiable and

J ′(u)(v) =

∫ 1

0

u′v′ dx− λ
∫ 1

0

hf(u)v dx ∀v ∈ H.

Next we will show that J is a C1 map. De�ne

Lu(v) :=

∫ 1

0

hf(u)v dx ∀v ∈ H.

18



If ‖u1 − u2‖H < ε, then

|Lu1(v)− Lu2(v)| = |
∫ 1

0

h(x)(f(u1)− f(u2))v dx|

≤
∫ 1

0

|h(x)||f ′(η)||u1 − u2||v| dx,

where η(x) is such that min{u1(x), u2(x)} < η(x) < max{u1(x), u2(x)} for any �xed

x. Since u1, u2 ∈ H and f ′ is continuous we have

|Lu1(v)− Lu2(v)| ≤ Cε‖h‖1‖v‖H ,

for some C > 0, and hence J is C1. The critical points of the functional J are weak

solutions of (1.9).

We will �rst establish the existence of a solution for (1.9) using the Mountain

Pass Theorem and then prove that the solution thus obtained is positive.

3.1.1 Existence of a Mountain Pass Solution

We wish to apply the standard Mountain Pass Theorem.

3.1.1.1 J Satis�es (PS)

Lemma 3.1. The map J satis�es the Palais-Smale condition.

Proof. First, we wish to show that any sequence, {un} ⊂ H, satisfying the hypotheses

of (PS) must be bounded. Assume to the contrary that {un} is such that J ′(un)→ 0,

there exists someM > 0 such that |J(un)| < M for all n ≥ 1, and ‖un‖H →∞. Then

consider the quantity θJ(un)−〈J ′(un),un〉
‖un‖H

, where θ > 2 is chosen as in (AR1). Taking a

limit as n→∞, we see that limn→∞
θJ(un)−〈J ′(un),un〉

‖un‖H
= 0, since J(un) is bounded and
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J ′(un)→ 0. Also we can write

θJ(un)− 〈J ′(un), un〉 =

(
θ

2
− 1

)∫ 1

0

(u′n)2 dx

− λ
∫ 1

0

h(x) (θF (un)− f(un)un) dx.

Note that when un ≥ 0, θF (un) − f(un)un ≤ θ̃ and when un < 0, θF (un) −

f(un)un = (θ − 1)f(0)un. Hence

θJ(un)− 〈J ′(un), un〉 ≥
(
θ

2
− 1

)∫ 1

0

(u′n)2 dx− λθ̃‖h‖1

− λ(θ − 1)|f(0)|‖un‖∞‖h‖1

≥
(
θ

2
− 1

)
‖un‖2

H − λθ̃‖h‖1

− λk(θ − 1)|f(0)|‖un‖H‖h‖1,

where k > 0 satis�es ‖z‖∞ ≤ k‖z‖H for all z ∈ H. Dividing both sides by ‖un‖H and

taking a limit as n→∞, we get a contradiction. Hence, {un} is bounded in H. Since

it is bounded in H, there exists a subsequence, call it again {un}, which converges

weakly in H and strongly in C[0, 1].

Now, since J ′(un) → 0, it is easy to show that {un} is Cauchy in H and

therefore, converges strongly in H. Hence, the Palais-Smale compactness condition

holds.
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3.1.1.2 Geometry of J

First, note that J(0) = 0. Now for any v ∈ H such that ‖v‖H = 1, v(x) > 0

for all x ∈ (0, 1) and any parameter s > 0, we have

J(sv) =
s2

2
− λ

2

∫ 1

0

h(x)F (sv) dx

≤ s2

2
+ s

(
λÃ

2

∫ 1

0

h(x)v dx

)
− sq+1

(
λA

2(q + 1)

∫ 1

0

h(x)vq+1 dx

)
,

since F (s̃) ≥ A
q+1

(s̃)q+1 − Ãs̃ for all s̃ > 0.

Now, letting s → ∞, we note that lims→∞ J(sv) = −∞ since q > 1. Choose

s∗ >> 1 such that J(s∗v) < 0.

Now, in order to apply the Mountain Pass Theorem we need a lemma which

will show that there exists an r > 0 and an α > 0 such that J(u) > α for all ‖u‖ = r.

Later, however, we will also need information on how J grows when r → 0+ in order

to show that the mountain pass solution is positive. We prove:

Lemma 3.2. There exists λ > 0 such that if λ ∈ (0, λ), then for any u ∈ H such

that ‖u‖H = λ
−1
q−1 ,

J(u) ≥ 1

4
λ−

2
q−1 .

Proof. Let ‖u‖H = r, where r = λ
−1
q−1 . Now, rewriting J(u) as

J(u) =
1

2
r2 − λ

∫
Ω1

hF (u) dx− λ
∫

Ω2

hF (u) dx− λ
∫

Ω3

hF (u) dx (3.2)
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where Ω1 := {x ∈ (0, 1) : u(x) < 0}, Ω2 := {x ∈ (0, 1) : 0 ≤ u(x) ≤ β̃}, and

Ω3 := {x ∈ (0, 1) : β̃ < u(x)}, where β̃ > 0 is the unique value where F (β̃) = 0, we

obtain,

J(u) ≥ 1

2
r2 − λ

∫
Ω1

hf(0)u dx− λ
∫

Ω3

hF (u) dx. (3.3)

Hence, applying (AR1) to (3.3), we obtain,

J(u) ≥ 1

2
r2 + λf(0)‖h‖1k‖u‖H −

λB

q + 1
‖h‖1k

q+1‖u‖q+1
H − λB̃‖h‖1k‖u‖H

= λ
−2
q−1

(
1

2
− ‖h‖1k(|f(0)|+ B̃)λ

q
q−1 − B

q + 1
‖h‖1k

q+1λ
2q+2
q−1

)
.

Hence, for λ su�ciently small, J(u) ≥ 1
4
λ
−2
q−1 .

Hence, the hypotheses of the Mountain Pass Theorem have been satis�ed, and

we have the existence of at least one weak solution uλ of (1.9).

3.1.2 Positivity of Solution uλ for λ ≈ 0.

We �rst establish an upper bound on ‖uλ‖∞.

Lemma 3.3. There exists λ̂ ∈ (0, λ) and c4 > 0, independent of λ, such that for

λ ∈ (0, λ̂), ‖uλ‖∞ ≤ c4λ
− 1
q−1 .

Proof. Let v1 denote the eigenfunction corresponding to the principal eigenvalue, λ1,

of −u′′ with Dirichlet boundary conditions with v1 > 0 and ‖v1‖H = 1. Then, for
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s ≥ 0,

J(sv1) =
1

2
s2 − λ

∫ 1

0

hF (sv1) dx

≤ 1

2
s2 − λ

∫ 1

0

h
(
A1(sv1)q+1 − Ã1

)
dx

=
1

2
s2 − λAsq+1

q + 1

∫ 1

0

hvq+1
1 dx+ λÃ1

∫ 1

0

h dx

≤ 1

2
s2 − λAc1s

q+1

q + 1
+ λÃ1‖h‖1

= p(s) (say),

where c1 =
∫ 1

0
hvq+1

1 dx.

Now p(s) is maximized when s = (λAc1)
−1
q−1 , and hence for λ ≈ 0,

J(sv1) ≤
(

1

2
− 1

q + 1

)
(Ac1)

−2
q−1λ

−2
q−1 + λÃ1‖h‖1 ≤ c2λ

−2
q−1 ,

for some c2 > 0 independent of λ. Hence, J(uλ) ≤ c2λ
−2
q−1 , for λ ≈ 0.
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Now, recalling that θF (s)− f(s)s ≤ θ̃ for s ≥ 0,

‖uλ‖2
H = 2J(uλ) + 2λ

∫
Ω1

hF (uλ) dx+ 2λ

∫
Ωc1

hF (uλ) dx

≤ 2c2λ
−2
q−1 + 2λ

∫
Ω1

huλf(0) dx+ 2λ

∫ 1

0

h

(
uλf(uλ)

θ
+
θ̃

θ

)
dx

− 2λ

∫
Ω1

h

(
uλf(0)

θ
+
θ̃

θ

)
dx

= 2c2λ
−2
q−1 + 2λ

(
1− 1

θ

)∫
Ω1

huλf(0) dx− 2λ

∫
Ω1

h
θ̃

θ
dx

+
2λ

θ

∫ 1

0

huλf(uλ) dx+ 2λ
θ̃

θ
‖h‖1

≤ 3c2λ
−2
q−1 + 2λk|f(0)|‖h‖1‖uλ‖H +

2

θ
‖uλ‖2

H ,

for λ > 0 small.

Now, this implies that a‖uλ‖2
H +bλ‖uλ‖H−3c2λ

−2
q−1 < 0, for a = 1− 2

θ
> 0 and

b = −2k|f(0)|‖h‖1 < 0. So, ‖uλ‖H must be less than the largest root of the quadratic

as2 + bλs− 3c2λ
−2
q−1 . In other words, ‖uλ‖H ≤ −bλ+

√
b2λ2+12ac2λ

−2
q−1

2a
≤ c3λ

−1
q−1 for some

constant c3, for λ > 0 small. Hence, ‖uλ‖∞ ≤ c4λ
−1
q−1 where c4 = kc3.

3.1.2.1 Proof of Main Result

First we note that

λ

∫ 1

0

hf(uλ)uλ dx = 2J(uλ) + 2λ

∫ 1

0

hF (u) dx

≥ 1

2
λ−

2
q−1 + 2λF (β)

∫ 1

0

h dx (3.4)

≥ 1

4
λ−

2
q−1
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for λ > 0 su�ciently small. Now, choose γ > 0 such that B̂‖h‖1γ
q+1 = 1

16
, where

B̂ = max{B, B̃}, and de�ne Ωλ := {x|uλ(x) ≥ γλ−
1
q−1}. Then for λ su�ciently small,

uλ(x) will be su�ciently large on Ωλ and hence f(uλ(x)) < Buλ(x)q on Ωλ. Then

λ

∫ 1

0

hf(uλ)uλ dx = λ

∫
Ωλ

hf(uλ)uλ dx+ λ

∫
Ωcλ

hf(uλ)uλ dx

≤ λ

∫
Ωλ

hBuq+1
λ dx+ λ

∫
Ωcλ

h
(
B |uλ|q + B̃

)
|uλ| dx, (3.5)

since f(s) ≤ B|s|q + B̃ for all s ∈ R. Now, recalling that on Ωc
λ, uλ(x) ≤ γλ−

1
q−1 and,

by Lemma 3.3, on Ωλ, uλ(x) ≤ c4λ
− 1
q−1 , from (3.4) and (3.5) for λ ≈ 0 we have,

1

4
λ−

2
q−1 ≤ B|Ωλ|‖h‖1c

q+1
4 λ−

2
q−1 +B(1− |Ωλ|)‖h‖1γ

q+1λ−
2
q−1

+ B̃(1− |Ωλ|)‖h‖1γλ
−1
q−1

≤ B̂‖h‖1λ
− 2
q−1

(
|Ωλ|cq+1

4 + γq+1 + γλ
1
q−1

)
≤ B̂‖h‖1λ

− 2
q−1
(
|Ωλ|cq+1

4 + 2γq+1
)

Hence, by the de�nition of γ, we may conclude that |Ωλ| ≥ 1

8B̂‖h‖1cq+1
4

= K, (say).

Let Nε := [0, ε) ∪ (1 − ε, 1] for ε ∈ (0, 1
2
), where ε is chosen su�ciently small such

that |Nε| ≤ K
2
. Letting Kλ := Ωλ −Nε, we also have that |Kλ| ≥ K

2
. Recall that the

Green's function for the second derivative operator with Dirichlet boundary conditions

is given by

G(x, ξ) =

 (1− x)ξ; 0 ≤ ξ ≤ x ≤ 1,

(1− ξ)x; 0 ≤ x ≤ ξ ≤ 1.
(3.6)
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De�ne d(ξ) = min{ξ, 1 − ξ} and ĥ = inft∈(0,1] h(t). Then for x ∈ Kλ and

ξ ∈ Nε, we have that G(x, ξ) ≥ εd(ξ). So, for any ξ such that d(ξ) < ε, for λ ≈ 0, we

have

uλ(ξ) = λ

∫ 1

0

G(x, ξ)hf(uλ) dx

≥ λ

∫
Kλ

G(x, ξ)hA(uλ)
q dx+ λf(0)

∫ 1

0

G(x, ξ)h dx

≥ Aλ−
1
q−1 ĥ

∫
Kλ

εd(ξ)γq dx+ λf(0)‖h‖1

≥ Aλ−
1
q−1 ĥεd(ξ)γq

K

2
+ λf(0)‖h‖1

≥ c5d(ξ)λ−
1
q−1 , (3.7)

for some c5 > 0.

We de�ne wλ and zλ such that

 −w
′′
λ = λhf+(uλ); x ∈ (0, 1),

wλ(0) = 0 = wλ(1),

and  −z
′′
λ = λhf−(uλ); x ∈ (0, 1),

zλ(0) = 0 = zλ(1)

where f+(s) = max{f(s), 0} and f−(s) = min{f(s), 0}.

Clearly, uλ = wλ + zλ, and also zλ(ξ) = λ
∫ 1

0
G(x, ξ)h(x)f−(uλ(x)) dx

≤ 0 since f−(uλ(x)) ≤ 0 and G(x, ξ), h(x) ≥ 0. Furthermore, since f−(uλ(x)) ≥ f(0),

we see that zλ(ξ) = λ
∫ 1

0
hG(x, ξ)f−(uλ(x)) dx ≥ λf(0)‖h‖1. So λf(0)‖h‖1
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≤ zλ(ξ) ≤ 0. Also, for ξ such that d(ξ) = ε, we have wλ(ξ) = uλ(ξ) − zλ(ξ) ≥

uλ(ξ) ≥ c5ελ
− 1
q−1 . Hence, by the maximum principle, we have wλ(ξ) ≥ c5ελ

− 1
q−1 for

all ξ ∈ Ω−Nε. Therefore, uλ(ξ) = wλ(ξ) + zλ(ξ) ≥ c5ελ
− 1
q−1 +λf(0)‖h‖1, and hence,

for λ > 0 small enough, uλ > 0 on Ω−Nε. This, combined with the earlier proof that

uλ(ξ) ≥ c5d(ξ)λ−
1
q−1 for all ξ ∈ Nε, completes the proof of the theorem.

3.2 Proof of Theorem 1.2

Here we establish the existence result for λ ≈ 0 for the boundary value problem

(1.10) which involves a nonlinear boundary condition at x = 1.

3.2.1 Variational Formulation

For ease of notation, in this chapter we take H̃ = W̃ 1,p(0, 1) and take ‖ · ‖H

as before (see Proposition 2.4 for justi�cation). We extend the function c by letting

c(s) = c(−s) for s < 0, and de�ne E : H̃ → R by

E(u) = J(u) + g(u(1)). (3.8)

where

g(s) =

∫ s

0

c(z)z dz,

and J(u) is de�ned as before.

Now, we wish to establish a regularity result to show that critical points of E

are solutions to (1.10).
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De�nition 3.4. We say u ∈ H̃ is a critical point of E if

∫ 1

0

u′ϕ′ dx− λ
∫ 1

0

h(x)f(u)ϕ dx+ g′(u(1))ϕ(1) = 0 ∀ϕ ∈ H̃.

Lemma 3.5. If u is a critical point of E, then u satis�es (1.10) almost everywhere

in (0, 1) and the boundary conditions in the classical sense. Additionally, if we know

that h(x) is locally Hölder continuous in (0, 1), then the solution u ∈ C2(0, 1)∩C[0, 1]

and the equation is satis�ed in the classical sense.

Proof. Clearly u(0) = 0 since the critical point u ∈ H̃. If ϕ ∈ C∞c (0, 1), then we have

∫ 1

0

u′ϕ′ − λ
∫ 1

0

h(x)f(u)ϕ = 0. (3.9)

In other words, u is a weak solution of−u′′ = λh(x)f(u). But from the assumptions on

h and since u ∈ H̃ ⊂ C[0, 1] we have λh(x)f(u(x)) ∈ L∞loc((0, 1]). By standard elliptic

regularity, u ∈ W 2,2
loc (0, 1), and from the de�nition of the weak second derivative, we

have −
∫ 1

0
u′′ϕ dx =

∫ 1

0
u′ϕ′ dx for all ϕ ∈ C∞c (0, 1). Now, from (3.9), we have

−
∫ 1

0

u′′ϕ dx− λ
∫ 1

0

h(x)f(u)ϕ dx = 0 ∀ϕ ∈ C∞c (0, 1).

Since we now know that u′′ + λh(x)f(u) ∈ L1
loc(0, 1) from the previous expression,

then we have that,

− u′′ = λh(x)f(u) a.e in (0, 1). (3.10)
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Since u ∈ H̃, we have both u and u′ in L1(0, 1). Now from the previous representation,

u′′ = −λh(x)f(u) ∈ L1(0, 1). Thus we have improved regularity, with u ∈ W 2,1(0, 1)∩

W 2,2
loc (0, 1).

Now we know that u ∈ W 2,1(0, 1). So u′ ∈ W 1,1(0, 1), and hence u′ is an

absolutely continuous function in [0, 1]. Therefore, it now makes sense to talk about

the pointwise value u′(1).

Finally, we will show that u′(1) + c(u(1))u(1) = 0. Let

C = {ϕ ∈ C∞(0, 1) ∩ C1[0, 1] | support(ϕ) ⊂⊂ (0, 1], ϕ(1) 6= 0}.

Clearly C ⊂ H̃. From De�nition 3.4 applied for an arbitrary ϕ ∈ C we have,

∫ 1

0

u′ϕ′ dx− λ
∫ 1

0

h(x)f(u)ϕ dx+ g′(u(1))ϕ(1) = 0.

Using the integration by parts formula on W 2,1(0, 1), we have

∫ 1

0

u′ϕ′ dx = −
∫ 1

0

u′′ϕ dx+ ϕu′]10,

and hence,

−
∫ 1

0

(u′′ϕ+ λh(x)f(u))ϕ dx+ ϕ(1)u′(1) + g′(u(1))ϕ(1) = 0 ∀ϕ ∈ C.

Using (3.9) we have u′(1) + g′(u(1)) = 0, i.e u satis�es the boundary condition at

x = 1.
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3.2.2 Existence of a Mountain Pass Solution

3.2.2.1 E is C1

Recall that E(u) = J(u) + g(u(1)). Since J has already been shown to be a

C1 functional, we need only show that g(u(1)) is C1 to conclude that E is C1.

Fix u ∈ H̃ and consider the functional H(u) := g(u(1)). For any v ∈ H̃,

〈H ′(u), v〉 = g′(u(1))v(1). It is clear that the fuction g(s), as previously de�ned, is

di�erentiable. Further, since pointwise evaluation is a continuous operation, we may

conclude that the derivative is also continuous. Hence, E(u) is a C1 functional.

3.2.2.2 E Satis�es (PS)

Again, we �rst wish to show that any sequence {un} satisfying the hypotheses

of (PS) must be bounded. Assume to the contrary that {un} is such that E ′(un)→ 0,

there exists some M > 0 such that |E(un)| < M for all n ≥ 1, and ‖un‖H → ∞.

Then consider the quantity θE(un)−〈E′(un),un〉
‖un‖H

where θ > 2 is chosen as in (AR1).

Taking a limit as n→∞, we see that limn→∞
θE(un)−〈E′(un),un〉

‖un‖H
= 0 since J(un)

is bounded and J ′(un)→ 0. However,

θE(un)− 〈E ′(un), un〉 = (θJ(un)− 〈J ′(un), un〉)

+
(
θg(un(1))− c(un(1)) (un(1))2)

≥ c‖un‖2
H − λθ̃‖h‖1

+
(
θg(un(1))− c(un(1)) (un(1))2)

≥ c‖un‖2
H − λθ̃‖h‖1

− λk(θ − 1)|f(0)|‖un‖H‖h‖1 + θ̃1,
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for some c > 0. Dividing both sides by ‖un‖H and taking a limit as n→∞, we get a

contradiction. Hence, {un} is bounded in H̃. Since it is bounded in H̃, there exists a

subsequence, call it again {un}, which converges weakly in H̃ and strongly in C[0, 1].

Since {un} converges strongly in C[0, 1], for any ε > 0, there exists an N1 > 0

such that for all n,m > N1, ‖un − um‖∞ < ε. Further, since E ′(un) → 0, for any

ε > 0, there exists an N2 > 0 such that for all n,m > N2, ‖E ′(un) − E ′(um)‖∗ < ε,

where ‖ · ‖∗ is the associated operator norm. Furthermore, since un converges in

C[0, 1], there exists an M̃ > 0 so that |f(un) − f(um)| ≤ M̃ . Hence, we may choose

N = max{N1, N2}, and, for all n,m > N ,

‖un − um‖2
H = 〈E ′(un)− E ′(um), un − um〉

+ λ

∫ 1

0

h(x)(f(un)− f(um))(un − um) dx

− c (un(1)− um(1)) · (un(1)− um(1))2

≤ ‖J ′(un)− J ′(um)‖∗‖un − um‖L2

+ λ‖h‖1‖f(un)− f(um)‖∞‖un − um‖∞

≤ ε2 + λ‖h‖1‖f(un)− f(um)‖∞ε.

Hence {un} is a Cauchy sequence in H̃, and therefore {un} converges strongly

in H̃. This proves the Palais-Smale Compactness Condition.

3.2.2.3 Geometry of E

Again, we wish to show that the function E satis�es the appropriate geometric

conditions of the Mountain Pass Theorem. It is again clear that E(0) = 0. We again

take v1 to be the principle eigenfunction of the operator −u′′ with Dirichlet boundary

conditions such that ‖v1‖H = 1 and v(x) > 0 for all x ∈ (0, 1), and note that since
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H ⊂ H̃, then v1 ∈ H̃. Then we note that E(sv1) = J(sv1) + g(v1(1)) = J(sv1) and

hence, as before, E(sv1)→ −∞ as s→∞. Thus, we may choose s∗ >> 1 su�ciently

large so that E(s∗v1) < 0.

Finally, we establish a lemma similar to Lemma 3.2.

Lemma 3.6. There exists λ > 0 such that if λ ∈ (0, λ), then for any uλ ∈ H̃ such

that ‖uλ‖H = λ
−1
q−1 , E(uλ) ≥ 1

4
λ−

2
q−1 .

Proof. Recall again that E(uλ) = J(uλ) +g (uλ(1)). But recall that as in Lemma 3.2,

J(uλ) ≥ 1
4
λ−

2
q−1 . Since g(s) ≥ 0 by de�nition, E(uλ) ≥ J(uλ) ≥ 1

4
λ−

2
q−1 .

Hence, E satis�es the hypotheses of the Mountain Pass Theorem, and there-

fore, there exists a solution uλ to (1.10).

3.2.3 Positivity of Solution uλ for λ ≈ 0.

We again need a lemma similar to Lemma 3.3 in order to establish the result.

Lemma 3.7. There exists λ̂ ∈ (0, λ) and c6 > 0, independent of λ, such that for

λ ∈ (0, λ̂), ‖uλ‖∞ ≤ c6λ
− 1
q−1 .

Proof. Let v1 be as before. We note that for any s > 0, since v1(1) = 0, for λ ≈ 0,

E(sv1) = J(sv1) + g(sv1(1)) = J(sv1) ≤ c2λ
−2
q−1 as before. Hence, E(uλ) ≤ c2λ

−2
q−1 for

λ ≈ 0.
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Now, by Proposition 2.6,

‖uλ‖2
H = 2E(uλ) + 2λ

∫
Ω1

hF (uλ) dx+ 2λ

∫
Ωc1

hF (uλ) dx− 2g(uλ(1))

≤ 2c2λ
−2
q−1 + 2λ

∫
Ω1

huλf(0) dx+ 2λ

∫ 1

0

h

(
uλf(uλ)

θ
+
θ̃

θ

)
dx

− 2λ

∫
Ω1

h

(
uλf(0)

θ
+
θ̃

θ

)
dx− 2g(uλ(1))

= 2c2λ
−2
q−1 + 2λ

(
1− 1

θ

)∫
Ω1

huλf(0) dx− 2λ

∫
Ω1

h
θ̃

θ
dx

+
2λ

θ

∫ 1

0

huλf(uλ) dx+ 2λ
θ̃

θ
‖h‖1 − 2g(uλ(1))

≤ 2c2λ
−2
q−1 + 2λ|f(0)|‖h‖1‖uλ‖∞ +

2

θ
‖uλ‖2

H +
2

θ
c(uλ(1))(uλ(1))2

+ 2λ
θ̃

θ
‖h‖1 − 2g(uλ(1))

= 2c2λ
−2
q−1 + 2λ|f(0)|‖h‖1‖uλ‖∞ +

2

θ
‖uλ‖2

H + 2λ
θ̃

θ
‖h‖1

+
2

θ

(
c(uλ(1))(uλ(1))2 − θg(uλ(1))

)
≤ 2c2λ

−2
q−1 + 2λ|f(0)|‖h‖1‖uλ‖∞ +

2

θ
‖uλ‖2

H + 2λ
θ̃

θ
‖h‖1 − 2

θ̃1

θ

≤ 3c2λ
−2
q−1 + 2λ|f(0)|‖h‖1‖uλ‖∞ +

2

θ
‖uλ‖2

H ,

for λ > 0 small.

Now, similar to the Dirichlet case, this implies that a‖uλ‖2
H + bλ‖uλ‖H −

3c2λ
−2
q−1 < 0 for a = 1 − 2

θ
> 0 and b = −2k|f(0)|‖h‖1 < 0. So, ‖uλ‖H must

be less than the largest root of the quadratic as2 + bλs − 3c2λ
−2
q−1 . In other words,

‖uλ‖H ≤ −bλ+

√
b2λ2+12ac2λ

−2
q−1

2a
≤ c5λ

−1
q−1 , for some constant c5 > 0, for λ > 0 small.

Hence ‖uλ‖∞ ≤ c6λ
−1
q−1 where c6 = kc5.
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3.2.3.1 Proof of Main Result

First, we note that

λ

∫ 1

0

hf(uλ)uλ dx = ‖uλ‖2
H + c(uλ(1)) (uλ(1))2

= 2J(uλ) + 2λ

∫ 1

0

hF (uλ) dx+ c(uλ(1)) (uλ(1))2

≥ c2
1

2
λ−

2
q−1 + 2λF (β)

∫ 1

0

h dx

≥ c2
1

4
λ−

2
q−1 , (3.11)

for λ > 0 su�ciently small. Now, choose γ > 0 such that B̂‖h‖1γ
q+1 =

c21
16
, where

B̂ = max{B, B̃}, and de�ne Ωλ := {x|uλ(x) ≥ γλ−
1
q−1} as before. Then for λ

su�ciently small, uλ(x) will be su�ciently large on Ωλ and hence f(uλ(x)) ≤ Buλ(x)q

on Ωλ. Hence,

λ

∫ 1

0

hf(uλ)uλ dx = λ

∫
Ωλ

hf(uλ)uλ dx+ λ

∫
Ωcλ

hf(uλ)uλ dx

≤ λ

∫
Ωλ

hBuq+1
λ dx+ λ

∫
Ωcλ

h
(
B |uλ|q + B̃

)
|uλ| dx. (3.12)

Now, recalling that on Ωc
λ, uλ(x) ≤ γλ−

1
q−1 and, by Lemma 3.7, on Ωλ, uλ(x) ≤

c4λ
− 1
q−1 , then combining (3.11) and (3.12), for λ ≈ 0 we have,

c2
1

4
λ−

2
q−1 ≤ B|Ωλ|‖h‖1c

q+1
4 λ−

2
q−1 +B(1− |Ωλ|)‖h‖1γ

q+1λ−
2
q−1

+ B̃(1− |Ωλ|)‖h‖1γλ
−1
q−1

≤ B̂‖h‖1λ
− 2
q−1

(
|Ωλ|cq+1

4 + γq+1 + γλ
1
q−1

)
≤ B̂‖h‖1λ

− 2
q−1
(
|Ωλ|cq+1

4 + 2γq+1
)
.
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Hence, by the de�nition of γ, we may conclude that |Ωλ| ≥ 1

8B̂‖h‖1cq+1
4

≡ K. De�ning

Nε and Kλ as before, we again see that |Kλ| ≥ K
2
. Now, we de�ne the new Green's

function, G̃(x, ε) to be

G̃(x, ξ) =

 ξ; 0 ≤ ξ ≤ x ≤ 1,

x; 0 ≤ x ≤ ξ ≤ 1,

so that

uλ(ξ) = λ

∫ 1

0

G̃(x, ξ)h(x)f(uλ(x)) dx− c(uλ(1))uλ(1)ξ. (3.13)

Using the boundary condition u′λ(1) + c(uλ(1))uλ(1) = 0, we may rewrite (3.13) as

uλ(ξ) = λ

∫ 1

0

G̃(x, ξ)h(x)f(uλ(x)) dx+ u′λ(1)ξ. (3.14)

Further, since u′λ(1) = uλ(1)−
∫ 1

0
xu′′(x) dx = uλ(1)− λ

∫ 1

0
xh(x)f(uλ(x)) dx,

by substituting we obtain,

uλ(ξ) = λ

∫ 1

0

G(x, ξ)h(x)f(uλ(x)) dx+ uλ(1)ξ, (3.15)

where G is as in (3.6).

Now, proceeding as before, we recall that by (3.7),

uλ(ε) ≥ c5d(ξ)λ
−1
q−1 + uλ(1)ξ,
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for ξ ∈ Nε. Hence, if uλ(1) were nonnegative for λ > 0 su�ciently small, then we

could conclude that uλ(ξ) ≥ c5d(ξ)λ
−1
q−1 for all ξ ∈ Nε.

Assume, to the contrary, that uλ(1) < 0. Then by (3.13) and the fact that

c(s) > 0 for s < 0,

uλ(1) = λ

∫ 1

0

xh(x)f(uλ(x)) dx− c(uλ(1))uλ(1)

≥ λ

∫ 1

0

xh(x)f(uλ(x)) dx

≥ λ

∫
Kλ

xh(x)f(uλ(x)) dx+ λf(0)‖h‖1

≥ Aĥεγqλ
−1
q−1 + λf(0)‖h‖1

> 0

for λ > 0 su�ciently small. Hence, we have a contradiction, and uλ(1) ≥ 0. Therefore,

uλ(ξ) ≥ c5d(ξ)λ
−1
q−1 for all ξ ∈ Nε.

Now, let wλ and zλ be de�ned as


−w′′λ = λh(x)f+(uλ); x ∈ (0, 1),

wλ(0) = 0,

w′λ(1) + c(uλ(1))wλ(1) = 0,

(3.16)

and 
−z′′λ = λh(x)f−(uλ); x ∈ (0, 1),

zλ(0) = 0,

z′λ(1) + c(uλ(1))zλ(1) = 0.

(3.17)
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Then clearly uλ = wλ + zλ. Further, note that since z′′λ(x) ≥ 0 and z′λ(1) =

−c(uλ(1))zλ(1), then zλ(x) < 0 for all x ∈ (0, 1].

Also, zλ(ξ) = λ
∫ 1

0
G̃(x, ξ)h(x)f−(uλ(x)) dx − c(uλ(1))zλ(1)ξ ≥ λf(0)‖h‖1.

So λf(0)‖h‖1 ≤ zλ(ξ) ≤ 0. Further, for ξ such that d(ξ) = ε, we have wλ(ξ) =

uλ(ξ) − zλ(ξ) ≥ uλ(ξ) ≥ c5ελ
−1
q−1 . Hence, by the maximum principle, we have that

wλ(ξ) ≥ c5ελ
−1
q−1 for all ξ ∈ (0, 1)−Nε. Therefore, uλ(ξ) = wλ(ξ) + zλ(ξ) ≥ c5ελ

−1
q−1 +

λf(0)‖h‖1, and hence for λ su�ciently small, we have that uλ(ξ) > 0 on (0, 1)−Nε.

This, combined with the estimate of uλ(ξ) on Nε, completes the proof.
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CHAPTER IV

THE QUASILINEAR CASE

4.1 Proof of Theorem 1.3

For ease of notation in this chapter, we take W = W 1,p
0 (0, 1) and let ‖ · ‖W =

‖ · ‖1,p,0.

Let J : W → R be de�ned by

J(u) =
1

p

∫ 1

0

(u′)p dx− λ
∫ 1

0

hF (u) dx. (4.1)

The second term in the de�nition of J is well de�ned, since W ↪→ C[0, 1] and

∣∣∣∣λ∫ 1

0

hF (u) dx

∣∣∣∣ ≤ λ‖h‖1 max
−M1≤s≤M1

|F (s)| where M1 = ‖u‖∞.

Further, the map J is continuously di�erentiable and

〈J ′(u), v〉 =

∫ 1

0

|u′|p−2
u′v′ dx− λ

∫ 1

0

hf(u)v dx ∀v ∈ W.

Clearly, the �rst term of J ′ is well de�ned. The second term is well de�ned since

W ↪→ C[0, 1] and the extended function f ∈ C (R). Indeed, to show that J ′ is a

continuous map, let us show that Lu(v) :=
∫ 1

0
hf(u)v dx is continuous for any v ∈ W .

Let ε > 0 be given. Since the extended function f is continuous, there exists

δ1 > 0 so that for every t1, t2 ∈ R such that |t2 − t1| < δ1, |f(t2)− f(t1)| < ε
k‖h‖1 .
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Choose δ = δ1
k
so that when ‖u1 − u2‖W < δ, we have ‖u1 − u2‖∞ < δ1. Then

for any �xed v ∈ W with ‖v‖W ≤ 1,

|Lu1(v)− Lu2(v)| = |
∫ 1

0

h(f(u1)− f(u2))v dx|

≤
∫ 1

0

h|f(u1)− f(u2)|‖v‖∞ dx

≤ k

∫ 1

0

h|f(u1)− f(u2)| dx

≤ k

∫ 1

0

h
ε

k‖h‖1

dx

= ε,

for all u1, u2 with ‖u1 − u2‖W < δ. Hence,

‖Lu1 − Lu2‖ = sup
‖v‖W≤1

{|Lu1(v)− Lu2(v)|} ≤ ε.

Therefore, J is C1.

We will �rst establish the existence of a solution for (1.5) using the Mountain

Pass Theorem and then prove that the solution thus obtained is positive.

Lemma 4.1. The critical point u ∈ W of (4.1) is a solution of (1.5).

Proof. If u is a critical point of (4.1), then

∫ 1

0

φp(u
′(s))v′(s) ds = λ

∫ 1

0

h(s)f(u(s))v(s) ds ∀v ∈ C∞0 [0, 1].

Using integration by parts, we then have,

∫ 1

0

((φp(u
′(s))′ + λh(s)f(u(s))) v(s) ds = 0 ∀v ∈ C∞0 [0, 1].
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Hence, (φp(u
′(x)))′ = −λh(x)f(u(x)) almost everywhere in (0,1). But since f is

continuous, u ∈ C[0, 1], and h ∈ C(0, 1), then (φp(u
′(x)))′ = −λh(x)f(u(x)) holds for

every x ∈ (0, 1). Furthermore, since h ∈ L1(0, 1), f is continuous, and u ∈ C[0, 1], we

have that (φp(u
′))′ ∈ L1(0, 1), i.e., φp(u

′) ∈ W 1,1(0, 1).

Let x0 ∈ (0, 1) so that u′(x0) = 0. Then,

u′(x) = φ−1
p

(
−λ
∫ x

x0

h(s)f(u(s)) ds

)
.

Since h is continuous on (0, 1] and f is continuous on [0,∞), −λ
∫ x
x0
h(s)f(u(s)) ds is

continuous for all x ∈ (0, 1]. Since φ−1
p is also continuous, we �nd that u′ is continuous

on (0, 1].

For x = 0, we have

lim
x→0+

u′(x) = lim
x→0+

φ−1
p

(
−λ
∫ x

x0

h(s)f(u(s)) ds

)
= φ−1

p

(
−λ
∫ 0

x0

h(s)f(u(s)) ds

)
,

exists since φ−1
p is a continuous function and h ∈ L1(0, 1). Hence, u ∈ C1[0, 1].

4.1.1 Existence of a Mountain Pass Solution

In the following theorem, we establish the existence of a Mountain Pass solu-

tion.

Theorem 4.2. For λ ≈ 0, the hypotheses of the Mountain Pass Theorem are satis�ed,

and there exists a solution uλ to (1.5).

In order to prove Theorem 4.2, we �rst prove several lemmas. Throughout the

calculations to follow, we let r = 1
q+1−p .
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Lemma 4.3. The map J satis�es the Palais-Smale condition.

Proof. First, we wish to show that any sequence, {un} satisfying the hypotheses of

(PS) must be bounded. Assume to the contrary that {un} is a sequence such that

J ′(un) → 0, there exists some M > 0 such that |J(un)| < M for all n ≥ 1, and

‖un‖W →∞. Then consider the quantity

θJ(un)− 〈J ′(un), un〉
‖un‖W

,

where θ > p is chosen as in (AR1). Taking a limit as n→∞, we see that

lim
n→∞

θJ(un)− 〈J ′(un), un〉
‖un‖W

= 0,

since J(un) is bounded and J ′(un)→ 0. Also we can write

θJ(un)− 〈J ′(un), un〉 =

(
θ

p
− 1

)∫ 1

0

(u′n)p dx

− λ
∫ 1

0

h (θF (un)− f(un)un) dx.

Note that when un ≥ 0, θF (un)− f(un)un ≤ θ̃, and when un < 0,

θF (un)− f(un)un = θunf(0)− f(0)un

= (θ − 1)f(0)un.
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Hence

θJ(un)− 〈J ′(un), un〉 ≥
(
θ

p
− 1

)∫ 1

0

(u′n)p dx− λθ̃‖h‖1

− λ(θ − 1)|f(0)|‖un‖∞‖h‖1

≥
(
θ

p
− 1

)
‖un‖pW − λθ̃‖h‖1 − λk(θ − 1)|f(0)|‖un‖W‖h‖1.

Dividing both sides by ‖un‖W and taking a limit as n→∞, we get a contradiction.

Hence, {un} is bounded in W and therefore there exists a subsequence, call it again

{un}, which converges weakly in W and strongly in C[0, 1].

Since un → u strongly in C[0, 1], then

lim
n→∞

∫ 1

0

hf(un)(un − u) dx→ 0.

Furthermore, since {un} is a Palais-Smale sequence, J ′(un) → 0. Therefore, since

un − u is bounded in W , we obtain

lim
n→∞

〈J ′(un), un − u〉 → 0.

Hence,

〈J ′(un), un − u〉+ λ

∫ 1

0

hf(un)(un − u) dx = 〈Ψ′(un), un − u〉 → 0,

where Ψ is as in Proposition 2.5. Therefore, by the (S+) property, un → u strongly

in W , and so J satis�es (PS).

Lemma 4.4. There exists λ̄ > 0 and u ∈ W such that if λ ∈ (0, λ̄), then J(u) < 0.
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Proof. Let v1 ∈ W such that ‖v1‖W = 1, v1(x) > 0 for all x ∈ (0, 1) (which implies

that v1 ∈ Lq+1(0, 1) ), and c1 =

(
2

pA1ĥ‖v1‖q+1
q+1

)r
. Then for s = c1λ

−r,

J(sv1) =
1

p

∫ 1

0

((sv1)′)p dx− λ
∫ 1

0

hF (sv1) dx

≤ sp

p
− λ

∫ 1

0

h(A1s
q+1vq+1

1 − Ã1) dx

≤ sp

p
− λA1s

q+1ĥ‖v1‖q+1
q+1 + λÃ1‖h‖1 (4.2)

= cp1

(
λ−rp

p
− λĥA1c

q+1−p
1 λ−r(q+1)‖v1‖q+1

q+1

)
+ λÃ1‖h‖1.

Now, substituting in our choice of c1, we have

J(sv1) ≤ cp1

(
λ−rp

p
− 2

p
λ1−r(q+1)

)
+ λÃ1‖h‖1

= cp1λ
−rp
(

1

p
− 2

p
λ1−r(q+1−p)

)
+ λÃ1‖h‖1

= −cp1λ−rp
1

p
+ λÃ1‖h‖1

= λ−rp
(
−cp1
p

+ λ1+rpÃ1‖h‖1

)
.

Hence, choosing λ̄ <
(
p‖h‖1Ã1c

−p
1

) −1
1+rp

, we see that for all λ ∈ (0, λ̄), there exists s∗

(for example s∗ = c1

(
λ̄
2

)−r
) so that J(u) < 0 for u = s∗v1.

Lemma 4.5. There exist τ ∈ (0, c1) and λ̃ > 0 such that if ‖u‖W = τλ−r, then

J(u) ≥ c2(τλ−r)p for all λ ∈ (0, λ̃), where c2 = 1
4p
.

43



Proof. Let ‖u‖W = τλ−r, where τ > 0 is to be chosen later. Then

J(u) =
(τλ−r)p

p
− λ

∫ 1

0

hF (u) dx

≥ (τλ−r)p

p
− λB1

∫ 1

0

h|u|q+1 dx− λB̃1‖h‖1

≥ (τλ−r)p

p
− λB1‖h‖1‖u‖q+1

∞ − λB̃1‖h‖1

≥ (τλ−r)p

p
− λkq+1B1‖h‖1‖u‖q+1

W − λB̃1‖h‖1

=
(τλ−r)p

p
− λkq+1B1‖h‖1

(
τλ−r

)q+1 − λB̃1‖h‖1

≥ λ−rp
(
τ p

2p
− λ1+rpB̃1‖h‖1

)
,

where τ < min

{(
1

2pB1‖h‖1kq+1

) 1
r
, c1

}
has now been chosen. Taking

λ̃ = τ
p

1+rp

(
4pB̃1‖h‖1

)− 1
1+rp

,

we have J(u) ≥ c2τ
pλ−rp for all λ ∈ (0, λ̃) which proves the claim.

4.1.1.1 Proof of Theorem 4.2

We have already established that J ∈ C1(W ;R). Observe that J(0) = 0 and

by Lemmas 4.3, 4.4, and 4.5, for λ < min{λ, λ̃}, we have satis�ed hypotheses (PS),

(MP1)-(MP3) of the Mountain Pass Theorem (where we note that the choice τ < c1

in Lemma 4.5 is su�cient to ensure ‖v‖W > R in hypothesis (MP2)). Hence, there

exists a solution uλ to (1.5).
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Remark. To show the simple existence of a mountain pass solution (not necessarily

positive) to (1.5), we may choose ‖u‖W su�ciently small and quickly get the desired

result. However this solution likely has negative values, and therefore does not make

sense in the context of the problems (1.3), since f(s) is only de�ned for s ≥ 0.

4.1.2 Positivity of Solution

Let uλ be as in Theorem 4.2 as the mountain pass solution to (1.5). We �rst

establish two a priori bounds on uλ which are necessary for establishing positivity.

Lemma 4.6. Let uλ be as in Theorem 4.2. Then there exist an M0 > 0 and λ̂ > 0

such that,

M0λ
−r ≤ ‖uλ‖∞,

for all λ ∈ (0, λ̂).

Proof. Recall that J(uλ) ≥ c2τ
pλ−rp for λ ∈ (0, λ̃), 0 > F̂ := infs∈R F (s) > −∞, and

f(s)s ≤ B̂ (|s|q+1 + |s|) for all s ∈ R, where B̂ = max{B, B̃}. Letting

λ̂ = min


(

(p− 1)c2τ
p

p|F̂ |‖h‖1

) 1
1+rp

, (2B̂‖h‖1c
−1
2 τ−p)−

1
1+rp , λ̃

 ,

45



we have

λ

∫ 1

0

hf(uλ)uλ dx =

∫ 1

0

|u′λ|p dx

= pJ(uλ) + pλ

∫ 1

0

hF (uλ) dx

≥ pc2τ
pλ−rp − p|F̂ |‖h‖1λ

≥ c2τ
pλ−rp, (4.3)

for λ ∈ (0, λ̂). We further note that

c2τ
pλ−rp ≤ λ

∫ 1

0

hf(uλ)uλ dx

≤ B̂λ

∫ 1

0

h
(
|uλ|q+1 + |uλ|

)
dx

≤ B̂λ

∫ 1

0

h
(
‖uλ‖q+1

∞ + ‖uλ‖∞
)
dx

≤ B̂λ‖h‖1(‖uλ‖q+1
∞ + ‖uλ‖∞),

so that for λ < λ̂ ≤ (2B̂‖h‖1c
−1
2 τ−p)−

1
1+rp , ‖uλ‖∞ ≥ 1. We also have that

λ

∫ 1

0

hf(uλ)uλ dx ≤ B̂λ

∫ 1

0

h
(
|uλ|q+1 + |uλ|

)
dx

≤ B̂λ

∫ 1

0

h
(
‖uλ‖q+1

∞ + ‖uλ‖∞
)
dx

≤ 2B̂λ‖h‖1‖uλ‖q+1
∞ , (4.4)

since ‖uλ‖∞ ≥ 1. Combining (4.3) and (4.4) and taking M0 =
(

c2τp

2B̂‖h‖1

) 1
q+1

, the claim

is proven.
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Lemma 4.7. Let uλ be as in Theorem 4.2. Then there exist c3 > 0 and λ∗ > 0 such

that,

‖uλ‖pW ≤ c3λ
−rp

for all λ ∈ (0, λ∗).

Proof. Let Ω+ = {x ∈ [0, 1] | uλ(x) ≥ 0} and Ω− = [0, 1]\Ω+. Since uλ is a critical

point of J and using Proposition 2.6,

‖uλ‖pW = pJ(uλ) + pλ

∫
Ω−
hF (uλ) dx+ pλ

∫ 1

0

hF (uλ) dx− pλ
∫

Ω−
hF (uλ) dx

≤ pJ(uλ) + pλ

∫
Ω−
huλf(0) dx+ pλ

∫ 1

0

h

(
uλf(uλ)

θ
+
θ̃

θ

)
dx

− pλ
∫

Ω−
h

(
uλf(0)

θ
+
θ̃

θ

)
dx

= pJ(uλ) + pλ

(
1− 1

θ

)∫
Ω−
huλf(0) dx− pλ

∫
Ω−
h
θ̃

θ
dx

+
pλ

θ

∫ 1

0

huλf(uλ) dx+ pλ
θ̃

θ
‖h‖1

≤ pJ(uλ) + pλk|f(0)|‖h‖1‖uλ‖W +
p

θ
‖uλ‖pW + pλ

θ̃

θ
‖h‖1. (4.5)

On the other hand, by the mountain pass characterization of uλ,

J(uλ) ≤ max
s≥0
{J(sv1)}

≤ max
s≥0

{
sp

p
− λA1s

q+1ĥ‖v1‖q+1
q+1 + λÃ1‖h‖1

}
, (4.6)
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as in (4.2). Let

p(s) :=
sp

p
− λA1s

q+1ĥ‖v1‖q+1
q+1 + λÃ1‖h‖1,

so that by solving p′(s) = 0, we �nd that p(s) is maximized when s = K̄λ−r where

K̄ =
(
A1(q + 1)ĥ‖v1‖q+1

q+1

)−r
.

Hence, if λ ≤ 1, then λ−rp ≥ λ, and therefore,

pJ(uλ) + pλ
θ̃

θ
‖h‖1 ≤ K̄pλ−rp − pλA1ĥK̄

q+1λ−r(q+1)‖v1‖q+1
q+1 + λp

(
Ã1 +

θ̃

θ

)
‖h‖1

≤ K̄pλ−rp − pA1ĥK̄
q+1λ−rp‖v1‖q+1

q+1 + λ−rpp

(
Ã1 +

θ̃

θ

)
‖h‖1

≤

(
K̄p − pA1ĥK̄

q+1‖v1‖q+1
q+1 + p

(
Ã1 +

θ̃

θ

)
‖h‖1

)
λ−rp

= c̃3λ
−rp, (4.7)

where c̃3 = K̄p − pA1ĥK̄
q+1‖v1‖q+1

q+1 + p
(
Ã1 + θ̃

θ

)
‖h‖1.

By Lemma 4.6, if λ < min

{
λ̂,
(

k
M0

)− 1
r

}
, then

‖uλ‖W ≥
1

k
‖uλ‖∞ ≥

M0

k
λ−r ≥ 1.

From (4.5) and (4.7), we have that

a‖uλ‖pW ≤ bλ‖uλ‖W + c̃3λ
−rp,
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for a = 1− p
θ
> 0 and b = pk|f(0)|‖h‖1 > 0. Since ‖uλ‖W ≥ 1,

a‖uλ‖pW ≤ bλ‖uλ‖pW + c̃3λ
−rp.

Hence if λ ≤ a
2b

= θ−p
2θpk|f(0)|‖h‖1 , then

(a− bλ)‖uλ‖pW ≤ c̃3λ
−rp,

implies that

1

2
a‖uλ‖pW ≤ c̃3λ

−rp.

The lemma is proven taking c3 = 2c̃3
a
and λ∗ = min

{
1, λ̂,

(
k
M0

)− 1
r
, θ−p

2θpk|f(0)|‖h‖1

}
.

4.1.2.1 Proof of Theorem 1.3

We prove the theorem by contradiction. Suppose there exists a sequence

{(λj, uλj)}∞j=1 ⊂ (0, 1)× C1[0, 1]

of mountain pass solutions to (1.5) as in Theorem 4.2, such that λj → 0, and

m
({
x ∈ (0, 1)|uλj(x) ≤ 0

})
> 0. Let wj =

uλj
‖uλj ‖∞

. Then we have,

−
(
φp
(
w′j
))′

= λjh
f(uλj)

‖uλj‖
p−1
∞

.
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By (F2) and Lemmas 4.6 and 4.7,

∣∣λjf(uλj)‖uλj‖1−p
∞
∣∣ ≤ λjB̂

(
‖uλj‖q+1−p

∞ + ‖uλj‖1−p
∞
)

≤ λjB̂
(
k

1
r ‖uλj‖

1
r
W +M1−p

0 λ−r(1−p)
)

≤ λjB̂c4

(
λ−1
j + λ

−r(1−p)
j

)
, (4.8)

where c4 = max{(c3k)
1
r ,M1−p

0 }. Hence, we observe from (4.8) that

∣∣λjf(uλj)‖uλj‖1−p
∞
∣∣ ≤ B̂c4 + B̂c4λ

−r(1−p)+1
j

≤ B̂c4 + B̂c4λ
q

q+1−p
j

≤ 2B̂c4, (4.9)

for λj su�ciently small. Hence λjf(uλj(x))‖uλj‖1−p
∞ converges to a limit, z1(x), for

every x ∈ [0, 1]. Furthermore, since λj‖uλj‖1−p
∞ → 0 as j →∞ and f is bounded from

below,

z1(x) = lim
j→∞

λjf(uλj(x))‖uλj‖1−p
∞

≥ lim
j→∞
−λj|f(0)|‖uλj‖1−p

∞

= 0.

Therefore,

λjh(x)f(uλj(x))‖uλj‖1−p
∞ → h(x)z1(x) =: z(x) ∀x ∈ (0, 1],

and z(x) ≥ 0 for all x ∈ (0, 1].
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Let xj ∈ (0, 1) be a maximum of wj(x). Then,

φp(w
′
j(x)) =

∫ xj

x

−
(
φp(w

′
j(s)

)′
ds

=

∫ xj

x

λjh(s)f(uλj(s))‖uλj‖1−p
∞ ds.

By (4.9), this implies that |φp(w′j(x))| ≤ 2B̂c4‖h‖1 for all x ∈ [0, 1], and therefore

|w′j(x)| ≤
(

2B̂c4‖h‖1

) 1
p−1

for all x ∈ [0, 1]. By the Arzela-Ascoli Theorem, this

implies that there exists w ∈ C[0, 1] so that wj → w in C[0, 1].

Meanwhile, again by (4.9), we have that
∣∣λjh(x)f(uλj(x))‖uλj‖1−p

∞
∣∣ ≤ 2B̂c4h(x)

for all x ∈ (0, 1]. Since h ∈ L1(0, 1), by the Lebesgue Dominated Convergence Theo-

rem, we may choose a subsequence uλj with xj → x0 so that

∫ xj

x

λjh(s)f(uλj(s))‖uλj‖1−p
∞ ds→

∫ x0

x

h(s)z1(s) ds =

∫ x0

x

z(s) ds.

Hence,

φ−1
p

(∫ xj

x

λjh(s)f(uλj(s))‖uλj‖1−p
∞ ds

)
→ φ−1

p

(∫ x0

x

z(s) ds

)
,

and therefore

∫ t

0

φ−1
p

(∫ xj

x

λjh(s)f(uλj(s)) ‖uλj‖1−p
∞ ds

)
dx

→
∫ t

0

φ−1
p

(∫ x0

x

z(s) ds

)
dx.
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Furthermore, observe that wj(t)→
∫ t

0
φ−1
p

(∫ x0
x
z(s) ds

)
dx = w(t), and consequently

w′j(t) = φ−1
p

(∫ xj

t

λjh(s)f(uλj(s))‖uλj‖1−p
∞ ds

)
→ φ−1

p

(∫ x0

t

z(s) ds

)
= w′(t),

for all t ∈ [0, 1].

Hence, − (φp (w′))′ = z ≥ 0 with w(0) = 0 = w(1). Since ‖wj‖∞ = 1, w 6≡ 0

and since w is concave, w > 0 in (0, 1), w′(0) > 0, and w′(1) < 0. Since wj → w in

C1[0, 1], then wj(x) > 0 for all x ∈ (0, 1) for j su�ciently large. Hence, uλj(x) > 0 for

all x ∈ (0, 1) for j su�ciently large, which implies that m
(
{x ∈ (0, 1);uλj(x) ≤ 0}

)
=

0 for all j su�ciently large, a contradiction. Therefore, there exists some λ̌ such that

(1.5) has a positive solution for all λ ∈ (0, λ̌).

Remark. By Lemmas 4.6 and 4.7, we have

‖wj‖W ≤
c3

M0

,

where we note that c3 and M0 are independent of λ, and therefore independent of j.

In the case that h ∈ C[0, 1] (that is, µ ≥ N−p
p−1

), Proposition 3.7 in [dFGU09] implies

that the sequence {wj}∞j=1 is uniformly bounded in C1,β
0 [0, 1] for some β ∈ (0, 1). We

could then conclude that w ∈ C1,β∗ [0, 1] for some β∗ ∈ (0, β). This makes the proof

simpler when h ∈ C[0, 1].

52



4.2 Proof of Theorem 1.4

We begin by establishing the appropriate variational formulation of the prob-

lem. Let W̃ := W̃ 1,p(0, 1) and take ‖ · ‖W̃ = ‖ · ‖1,p,0. Let E be de�ned on W̃

as

E(u) = J(u) + g(u(1)), (4.10)

where

g(s) =

∫ s

0

c(z)φp(z) dz,

and J(u) is as in (4.1). Once again, the compact embedding of W 1,p(0, 1) into C[0, 1]

implies that E is well de�ned.

Since we have already established that J is a C1 functional, we need only to

show that H(u) := g(u(1)) is C1. Fix u ∈ W̃ so that for any v ∈ W̃ , 〈H ′(u), v〉 =

g′(u(1))v(1). It is clear that the function g(s) as previously de�ned is continuously

di�erentiable, and further, since pointwise evaluation is a continuous operation, we

may conclude that the H ′(u) is a continuous functional on W̃ . Hence, E(u) is a C1

functional as it is the sum of two C1 functionals.

By Proposition 2.4, we may continue our analysis using

‖u‖W̃ = ‖u‖1,p,0.

Lemma 4.8. The critical point u ∈ W̃ of (4.10) is a solution of (1.6).
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Proof. If u is a critical point of (4.10), then

∫ 1

0

φp(u
′(s))v′(s) ds+ g′(u(1))v(1) = λ

∫ 1

0

h(s)f(u(s))v(s) ds ∀v ∈ C∞0 [0, 1].

Using integration by parts and the fact that v(1) = 0, we have that

∫ 1

0

((φp(u
′(s))′ + λh(s)f(u(s))) v(s) ds = 0 ∀v ∈ C∞0 [0, 1].

As in the proof of Lemma 4.1, we have that (φp(u
′(x)))′ = −λh(x)f(u(x)) for all

x ∈ (0, 1), φp(u
′) ∈ W 1,1(0, 1), and u ∈ C1[0, 1].

Clearly, u(0) = 0 since u ∈ W̃ . Let C̃ = {v ∈ C∞[0, 1] | v(0) = 0}. Then since

C̃ ⊂ W̃ and u is a critical point of (4.10),

∫ 1

0

φ(u′(s))v′(s) ds+ g′(u(1))v(1) = λ

∫ 1

0

h(s)f(u(s))v(s) ds ∀v ∈ C̃.

Hence, using integration by parts,

φp(u
′(1))v(1)−

∫ 1

0

(φp(u
′(s)))

′
v(s) ds+ g′(u(1))v(1)

= λ

∫ 1

0

h(s)f(u(s))v(s) ds ∀v ∈ C̃,

which implies that for all v ∈ C̃,

(φp(u
′(1)) + c(u(1))φp(u(1))) v(1) = φp(u

′(1))v(1) + g′(u(1))v(1)

=

∫ 1

0

(
(φp(u

′(s)))
′
+ λh(s)f(u(s))

)
v(s) ds

= 0
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since (φp(u
′(x)))′ + λh(x)f(u(x)) = 0 almost everywhere in (0, 1). Since v(1) is

arbitrary, we may conclude that φp(u
′(1)) + c(u(1))φp(u(1)) = 0, and therefore the

boundary conditions are satis�ed.

4.2.1 Existence of a Mountain Pass Solution

Again, our goal will be to establish the existence of a mountain pass solution.

Theorem 4.9. For λ ≈ 0, the hypotheses of the Mountain Pass Theorem are satis�ed,

and there exists a solution uλ to (1.6).

We again establish several lemmas which will help to prove the theorem.

Lemma 4.10. The map E satis�es the Palais-Smale condition.

Proof. As before, we �rst wish to show that any sequence, {un} satisfying the hy-

potheses of (PS) must be bounded. Assume to the contrary that {un} is a sequence

such that E ′(un)→ 0, there exists some M > 0 such that |E(un)| < M for all n ≥ 1,

and ‖un‖W̃ →∞. Then, choosing θ > p satisfying (AR1) and (AR2), we note that

lim
n→∞

θE(un)− 〈E ′(un), un〉
‖un‖W̃

= 0.

Also note that

θE(un)− 〈E ′(un), un〉 = (θJ(un)− 〈J ′(un), un〉)

+ (θg(un(1))− c(un(1))(un(1))p)

≥
(
θ

p
− 1

)
‖un‖p

W̃
− λθ̃‖h‖1

− λk(θ − 1)|f(0)|‖un‖W̃‖h‖1 + θ̃1,
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by combining the earlier estimate on θJ(un) − 〈J ′(un), un〉 with (AR2). But this

implies,

0 = lim
n→∞

θE(un)− 〈E ′(un), un〉
‖un‖W̃

≥ lim
n→∞

(
θ
p
− 1
)
‖un‖p

W̃
− λθ̃‖h‖1 − λk(θ − 1)|f(0)|‖un‖W̃‖h‖1 + θ̃1

‖un‖W̃

=∞,

a contradiction. Hence, {un} is bounded in W̃ , and therefore contains a subsequence

which converges weakly in W̃ and strongly in C[0, 1].

Since un → u strongly in C[0, 1], then

lim
n→∞

∫ 1

0

hf(un)(un − u) dx→ 0.

Furthermore, since {un} is a Palais-Smale sequence, E ′(un) → 0. Therefore, since

un − u is bounded in W̃ , we obtain

lim
n→∞

〈E ′(un), un − u〉 → 0.

Finally, we note that

c(un(1))φp(un(1))(un(1)− u(1))→ 0
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since un → u strongly in C[0, 1] implies pointwise convergence and c, φp are both

continuous functions. Hence,

〈E ′(un), un − u〉+λ
∫ 1

0

hf(un)(un − u) dx

− c(un(1)) · φp(un(1)) · (un(1)− u(1))

= 〈Ψ′(un), un − u〉

→ 0.

Therefore, by the (S+) property, un → u strongly in W̃ , and so E satis�es (PS).

The following two lemmas are analogous to Lemmas 4.4 and 4.5 presented in

the Dirichlet case, and rely heavily on the estimates there.

Lemma 4.11. Let u and λ > 0 be as in Lemma 4.4. Then for λ ∈ (0, λ), E(u) < 0.

Proof. Choose v1 ∈ W ⊂ W̃ as in the proof of Lemma 4.4. Then E(sv1) = J(sv1) +

g(sv1(1)) = J(sv1) since v1(1) = 0 and g(0) = 0. The conclusion follows from Lemma

4.4.

Lemma 4.12. Let τ ∈ (0, c1) and c2, λ̃ > 0 be as in Lemma 4.5. Then if ‖u‖W̃ =

τλ−r, E(u) ≥ c2(τλ−r)p for all λ ∈ (0, λ̃).

Proof. Since g(s) ≥ 0 for all s ∈ R, we have that E(u) ≥ J(u). From Lemma 4.5,

J(u) ≥ c2(τλ−r)p for all λ ∈ (0, λ̃). This completes the proof.

4.2.1.1 Proof of Theorem 4.9

Again, E ∈ C1(W,R), E(0) = 0 and by Lemmas 4.10, 4.11, and 4.12, for

λ < min{λ, λ̃}, we have satis�ed hypotheses (PS) and (MP1)-(MP3) of the Mountain

Pass Theorem. Hence, there exists a solution uλ to (1.6).
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4.2.2 Positivity of Solution

To utilize the argument as in the proof of Theorem 1.3, we need two lemmas

as before.

Lemma 4.13. Let uλ be as in Theorem 4.9. For M0 > 0 and λ̂ > 0 as in Lemma

4.6,

M0λ
−r ≤ ‖uλ‖∞,

for all λ ∈ (0, λ̂).

Proof. Using the same notation as in the proof of Lemma 4.6, since uλ is a solution

to (1.6), we have that

λ

∫ 1

0

hf(uλ)uλ dx =

∫ 1

0

|u′λ|p dx+ c(uλ(1))φp(uλ(1))uλ(1)

= pJ(uλ) + pλ

∫ 1

0

hF (uλ) dx+ c(uλ(1)) |uλ(1)|p

≥ pc2λ
−rp − p|F̂ |‖h‖1λ

≥ c2λ
−rp, (4.11)

for λ ∈ (0, λ̂). The conclusion follows from the argument in the proof of Lemma

4.6.

Lemma 4.14. Let uλ be as in Theorem 4.9. There exist C3 > 0 and Λ∗ > 0 such

that,

‖uλ‖p
W̃
≤ C3λ

−rp
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for all λ ∈ (0,Λ∗).

Proof. Since uλ is a critical point of E and using Proposition 2.6,

‖uλ‖p
W̃

= pE(uλ) + pλ

∫
Ω−
hF (uλ) dx+ pλ

∫
Ω+

hF (uλ) dx− pg(uλ(1))

≤ pE(uλ) + pλ

∫
Ω−
huλf(0) dx+ pλ

∫ 1

0

h

(
uλf(uλ)

θ
+
θ̃

θ

)
dx

− pλ
∫

Ω−
h

(
uλf(0)

θ
+
θ̃

θ

)
dx− pg(uλ(1))

= pE(uλ) + pλ

(
1− 1

θ

)∫
Ω−
huλf(0) dx− pλ

∫
Ω−
h
θ̃

θ
dx

+
pλ

θ

∫ 1

0

huλf(uλ) dx+ pλ
θ̃

θ
‖h‖1 − pg(uλ(1))

≤ pE(uλ) + pλk|f(0)|‖h‖1‖uλ‖W̃

+
p

θ
‖uλ‖p

W̃
+
p

θ
c(uλ(1))φp (uλ(1))uλ(1) + pλ

θ̃

θ
‖h‖1 − pg(uλ(1))

= pE(uλ) + pλk|f(0)|‖h‖1‖uλ‖W̃ +
p

θ
‖u‖p

W̃
+ pλ

θ̃

θ
‖h‖1

+
p

θ
(c(uλ(1)) |uλ(1)|p − θg(uλ(1)))

≤ pE(uλ) + pλk|f(0)|‖h‖1‖uλ‖W̃ +
p

θ
‖uλ‖p

W̃
+ pλ

θ̃

θ
‖h‖1 − p

θ̃1

θ
.

Finally, if we choose λ ≤
(
|θ̃1|
M0

)− 1
rp
, then −θ̃1 ≤M0λ

−rp, so that

‖uλ‖p
W̃
≤ pE(uλ) + pλk|f(0)|‖h‖1‖uλ‖W̃ +

p

θ
‖uλ‖p

W̃
+ pλ

θ̃

θ
‖h‖1 − p

θ̃1

θ

≤ pE(uλ) + pλk|f(0)|‖h‖1‖uλ‖W̃ +
p

θ
‖uλ‖p

W̃
(4.12)

+ pλ
θ̃

θ
‖h‖1 + p

M0λ
−rp

θ
.
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By the mountain pass characterization of uλ,

E(uλ) ≤ max
s≥0
{E(sv1)}

= max
s≥0
{J(sv1)}

≤ max
s≥0

{
sp

p
− λA1s

q+1ĥ‖v1‖q+1
q+1 + λÃ1‖h‖1

}
, (4.13)

by (4.2).

Now, note that the inequality (4.13) is identical to the inequality (4.6), except

that the functional J has now been replaced by the functional E. Hence, we may

conclude from (4.13) that

pE(uλ) + pλ
θ̃

θ
‖h‖1 ≤ c̃3λ

−rp, (4.14)

where c̃3 = K̄p − pA1ĥK̄
q+1‖v1‖q+1

q+1 + p
(
Ã1 + θ̃

θ

)
‖h‖1 as in Lemma 4.7.

Hence, following the proof of Lemma 4.7, we may combine (4.12) and (4.14)

to observe that

a‖uλ‖p
W̃
≤ bλ‖uλ‖W̃ + C̃3λ

−rp

for a = 1 − p
θ
> 0, b = pk|f(0)|‖h‖1 > 0, and C̃3 = c̃3 + pM0

θ
. Now, choosing λ ≤ a

2b

and taking C3 = 2C̃3

a
, we may follow the proof of Lemma 4.7 to conclude that

‖uλ‖p
W̃
≤ C3λ

−rp

for all λ ∈ (0,Λ∗), where Λ∗ = min

{
1, λ̂,

(
|θ̃1|
M0

)− 1
rp
, θ−p

2θpk|f(0)|‖h‖1

}
.
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4.2.2.1 Proof of Theorem 1.4

We again prove the theorem by contradiction. Suppose there exists a sequence

{(λj, uλj)}∞j=1 ⊂ (0, 1) × C1[0, 1] of mountain pass solutions to (1.6) as in Theorem

4.9, such that λj → 0 and m
({
x ∈ (0, 1)|uλj(x) ≤ 0

})
> 0.

Let wj =
uλj
‖uλj ‖∞

. Then


−
(
φp(w

′
j)
)′

= λh
f(uλj )

‖uλj ‖
p−1
∞

; x ∈ (0, 1),

wj(0) = 0,

φp(w
′
j(1)) + c(uλj(1))φp(wj(1)) = 0,

(4.15)

and as in the proof of Theorem 1.3, wj → w strongly in C1[0, 1] with w satisfying,


− (φp(w

′))′ = z; x ∈ (0, 1),

w(0) = 0,

φp(w
′(1)) + c(L)φp(w(1)) = 0,

(4.16)

where L = limj→∞ uλj(1).

Since ‖wj‖∞ = 1, w 6≡ 0. Furthermore, since z ≥ 0 and c(L) > 0, w is concave

and satis�es the nonlinear boundary condition at x = 1 so that w′(0) > 0, w′(1) < 0,

w(1) > 0, and w > 0 in (0, 1). The conclusion follows from the same argument as in

the proof of Theorem 1.3.
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CHAPTER V

COMPUTATIONALLY GENERATED BIFURCATION CURVES FOR

AUTONOMOUS PROBLEMS

Throughout this chapter, we are interested in problems (1.9) and (1.10) in the

case h(t) = 1 for all t ∈ (0, 1) (i.e., the autonomous case). Speci�cally, we consider

two-point boundary value problems of the form,

 −u
′′(t) = λf(u(t)); t ∈ (0, 1),

u(0) = 0 = u(1),
(5.1)

and 
−u′′(t) = λf(u(t)); t ∈ (0, 1),

u(0) = 0,

u′(1) = −c(u(1))u(1),

(5.2)

where f : [0,∞)→ R is a continuously di�erentiable function and c : [0,∞)→ (0,∞)

is a continuous function. Here, we study positive solutions of (5.1) and (5.2) when

the function f satis�es the hypothesis,

(S) there exist unique β, θ > 0 such that f(s) < 0 for s ∈ [0, β), f(s) > 0 for

s ∈ (β,∞), and F (θ) = 0.

We note that any solution of (5.1) or (5.2) must be symmetric about any point

t0 ∈ (0, 1) where u′(t0) = 0 (see the proof of Lemma 5.6). Further, in the case of

(5.2), since we will be only interested in the case where u(1) > 0, we must have
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u′(1) < 0. Now, when (S) is satis�ed, solutions are convex near t = 0 and t = 1 in

the Dirichlet case, and convex near t = 0 (and possibly near t = 1) in the case of

nonlinear boundary conditions, and concave otherwise. See Figure 5 for examples.

(a) Shape of Solution to (5.1) (b) Shape of Solution to (5.2)

Figure 5. Possible Solution Shapes for Semipositone Problems

Of particular interest in this chapter is the shape of the corresponding bifurca-

tion curves. Laetsch studied bifurcation curves of (5.1) in [Lae71] using a quadrature

method (or time map analysis). He established the following relationship between

the parameter λ and ‖u‖∞.

Theorem 5.1 (see [Lae71]). There exists a positive solution u ∈ C2[0, 1] of (5.1)

with ‖u‖∞ = ρ if and only if

λ = 2

(∫ ρ

0

ds√
F (ρ)− F (s)

)2

. (5.3)

Further, for a (λ, ρ) satisfying (5.3), (5.1) has a positive solution u given by u
(

1
2

)
= ρ,

t
√

2λ =

∫ u(t)

0

ds√
F (ρ)− F (s)

; t ∈
(

0,
1

2

)
,
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and u(t) = u(1− t) for all t ∈
(

1
2
, 1
)
.

The ideas of Laetsch have been been adapted to problems with a number of dif-

ferent boundary conditions, for example Neumann (see [MS93]), mixed (see [AMS99]),

and nonlinear boundary conditions (see [GPS17]). In particular, in [GPS17], the au-

thors study a certain example of c arising in population dynamics involving density

dependent dispersal on the boundary. Here, we expand the ideas in [GPS17] for

general classes of c when f satis�es (S). In particular, we provide more detailed anal-

ysis of the quadrature method for such two-point boundary value problems involving

nonlinear boundary conditions. Namely, we establish:

Theorem 5.2. For f satisfying (S), there exists a positive solution u ∈ C2(0, 1) ∩

C1[0, 1] of (5.2) with ‖u‖∞ = ρ, u(1) = q, and 0 < q < ρ if and only if

∫ ρ

0

ds√
F (ρ)− F (s)

+

∫ ρ

q

ds√
F (ρ)− F (s)

− c(q)q√
F (ρ)− F (q)

= 0, (5.4)

and

√
2λ =

c(q)q√
F (ρ)− F (q)

, (5.5)

hold. Further, for a (λ, ρ, q) satisfying (5.4) and (5.5), (5.2) has a positive solution

given by

t
√

2λ =

∫ u(t)

0

ds√
F (ρ)− F (s)

; t ∈ [0, t0),

(1− t)
√

2λ =

∫ u(t)

q

ds√
F (ρ)− F (s)

; t ∈ (t0, 1],
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u(t0) = ρ and u(1) = q, where t0 satis�es

t0 =

∫ ρ

0

ds√
F (ρ)− F (s)

/ (∫ ρ

0

ds√
F (ρ)− F (s)

+

∫ ρ

q

ds√
F (ρ)− F (s)

)
.

Theorem 5.3. If f satis�es (S), then for every ρ ≥ θ, there exists q > 0 so that

(5.4) is satis�ed.

Theorem 5.4. If f satis�es (S), c(s)s is continuously di�erentiable, and either

(S1) s+c(s)s√
−F (s)

is nondecreasing for s ∈ (0, β) and s + c(s)s is nondecreasing for all

s > 0, or

(S2) (f(s)c(s)s)′ > 2f(s) for s ∈ (0, β) and c(s)s is nondecreasing for all s > 0,

is satis�ed, then for each �xed ρ ≥ θ, there exists a unique q > 0 so that (5.4) is

satis�ed.

In Section 5.1, we prove Theorems 5.2-5.4. In Sections 5.2 and 5.3, we pro-

vide Mathematica-generated plots of the bifurcation curves for some speci�c super-

linear semipositone problems with Dirichlet and nonlinear boundary conditions, re-

spectively, and highlight interesting behavior of solutions in Section 5.4. Finally, in

Section 5.5, we present an interesting example and its bifurcation diagram where the

hypotheses of Theorem 5.4 are violated, and for �xed ρ in a certain range, there exist

multiple values of q satisfying (5.4).

5.1 Proofs of Theorems 5.2-5.4

5.1.1 Proof of Theorem 5.2

First we establish the following two lemmas needed to prove our results.
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Lemma 5.5. If f satis�es (S) and ρ < θ, then there is no λ > 0 for which (5.2) has

a positive solution, u, satisfying ‖u‖∞ = ρ.

Proof. Assume to the contrary that u is a positive solution to (5.2) for some λ > 0

such that ‖u‖∞ = ρ < θ. Note that u′(1) < 0 since we are only interested in the case

where u(1) > 0. Hence, there exists t0 ∈ (0, 1) such that u′(t0) = 0 and u(t0) = ρ.

Now, multiplying the di�erential equation by u′, we obtain:

−
[

(u′(t))2

2

]′
= λ (F (u(t)))′ .

Further, integrating we obtain

(u′(t))2 = 2λ [F (ρ)− F (u(t))] ; t ∈ (0, t0). (5.6)

But this implies that (u′(0))2 = 2λF (ρ) < 0, a contradiction. Hence, no such solution

can exist.

Lemma 5.6. Any positive solution u of (5.2) has a unique interior maximum at

some t0 ∈ (0, 1), is strictly increasing on (0, t0), is strictly decreasing on (t0, 1), and

is symmetric about t0.

Proof. Let t0 ∈ (0, 1) be such that ‖u‖∞ = u(t0) = ρ. Suppose there exists another

local maximum. Then there must be a local minimum at some t1 ∈ (0, 1), at which

u′′(t1) ≥ 0, which implies that u(t1) ≤ β. Let E(t) = λF (u(t)) + 1
2
(u′(t))2 for

t ∈ (0, 1). A simple calculation will show that E ′(t) = 0, and hence E(t) is constant

on [0, 1]. But E(t0) = λF (ρ) ≥ 0 while E(t1) = λF (u(t1)) < 0, and hence we have a

contradiction. Therefore, t0 is the unique critical point and from (5.6), we easily see
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that

u′(t) =


√

2λ [F (ρ)− F (u(t))] > 0; t ∈ (0, t0),

−
√

2λ [F (ρ)− F (u(t))] < 0; t ∈ (t0, 1).
(5.7)

Further, note that both w1(t) = u(t0 + t) and w2(t) = u(t0 − t) satisfy
−w′′(t) = λf(w(t)); t ∈ (0, 1),

w(0) = ρ,

w′(0) = 0.

Hence, by Picard's Theorem, we have w1(t) = w2(t) which implies that u is symmetric

about t0.

We now begin the proof of Theorem 5.2 by showing �rst that if u ∈ C2(0, 1]∩

C1[0, 1] is a positive solution to (5.2) with ‖u‖∞ = u(t0) = ρ and u(1) = q, then λ, ρ,

and q must satisfy (5.4) and (5.5). We note here that the improper integral in (5.4)

is convergent since f(ρ) > 0.

Integrating (5.7), we obtain

t
√

2λ =

∫ u(t)

0

ds√
F (ρ)− F (s)

; t ∈ (0, t0), (5.8)

and

(1− t)
√

2λ =

∫ u(t)

q

ds√
F (ρ)− F (s)

; t ∈ (t0, 1). (5.9)
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Setting t = t0, we obtain

t0
√

2λ =

∫ ρ

0

ds√
F (ρ)− F (s)

(5.10)

and

(1− t0)
√

2λ =

∫ ρ

q

ds√
F (ρ)− F (s)

. (5.11)

Adding (5.10) and (5.11), we obtain

√
2λ =

∫ ρ

0

ds√
F (ρ)− F (s)

+

∫ ρ

q

ds√
F (ρ)− F (s)

,

and hence from (5.10) we obtain

t0 =

∫ ρ

0

ds√
F (ρ)− F (s)

/ (∫ ρ

0

ds√
F (ρ)− F (s)

+

∫ ρ

q

ds√
F (ρ)− F (s)

)
. (5.12)

Further, using the boundary conditions and (5.7), we obtain

u′(1) = c(q)q =
√

2λ [F (ρ)− F (q)].

Hence (5.4) and (5.5) are satis�ed.

Next, if λ, ρ, and q satisfy (5.4) and (5.5), let t0 be de�ned by (5.12), and

de�ne u : [0, 1] → [0, ρ] via (5.8) and (5.9) for t ∈ (0, t0) ∪ (t0, 1) with u(0) = 0,

u(t0) = ρ, u(1) = q. Note that u is well de�ned on (0, t0) since both

∫ u

0

ds√
F (ρ)− F (s)
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and t
√

2λ increase from 0 to

∫ ρ

0

ds√
F (ρ)− F (s)

as u increases from 0 to ρ and t increases from 0 to t0, respectively. Also, u is well

de�ned on (t0, 1) since both

∫ u

q

ds√
F (ρ)− F (s)

,

and (1− t)
√

2λ decrease from

∫ ρ

q

ds√
F (ρ)− F (s)

,

to 0 as u decreases from ρ to q and t increases from t0 to 1, respectively. Now, de�ne

H : (0, t0)× (0, ρ)→ R by

H(`, v) =

∫ v

0

ds√
F (ρ)− F (s)

− `
√

2λ.

Clearly H is C1, H(t, u(t)) = 0 for t ∈ (0, t0), and

Hv |(t,u(t))=
1√

F (ρ)− F (u(t))
6= 0.
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Hence, by the Implicit Function Theorem, u is C1 on (0, t0). Similarly, u is C1 on

(t0, 1), and from (5.8)-(5.9), we get

u′(t) =


√

2λ [F (ρ)− F (u(t))]; t ∈ (0, t0),

−
√

2λ [F (ρ)− F (u(t))]; t ∈ (t0, 1).
(5.13)

Di�erentiating (5.13) again, we get

−u′′(t) = λf(u(t)); t ∈ (0, t0) ∪ (t0, 1).

But u(t0) = ρ and f is continuous, and hence u ∈ C2(0, 1) ∩ C1[0, 1]. Further,

(5.13) implies that −u′(1) =
√

2λ [F (ρ)− F (q)], and hence by (5.5) we have u′(1) +

c(u(1))u(1) = 0. Thus u is a solution of (5.2).

5.1.2 Proof of Theorem 5.3

De�ne

J(ρ, q) :=

∫ ρ

0

ds√
F (ρ)− F (s)

+

∫ ρ

q

ds√
F (ρ)− F (s)

− c(q)q√
F (ρ)− F (q)

,

and note that if (S) is satis�ed, then for every �xed ρ > θ, there exists a q > 0 so

that J(ρ, q) = 0 since

J(ρ, 0) = 2

∫ ρ

0

ds√
F (ρ)− F (s)

> 0 and lim
q→ρ−

J(ρ, q) = −∞.
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Hence, ρ, q satisfy (5.4). For ρ = θ, we again have

lim
q→θ

J(θ, q) = −∞

and observe that

lim
q→0+

J(θ, q) = 2

∫ θ

0

ds√
−F (s)

− lim
q→0+

c(q)q√
−F (q)

= 2

∫ θ

0

ds√
−F (s)

− lim
q→0+

c(q)q√
−qf(z)

= 2

∫ θ

0

ds√
−F (s)

> 0

for some z ∈ (0, q). Hence, there exists q > 0 satisfying (5.4) for all ρ ≥ θ.

5.1.3 Proof of Theorem 5.4

Let ρ ≥ θ be �xed. The existence of q > 0 follows from Theorem 5.3. As for

the uniqueness of q, a straightforward calculation will show

Jq(ρ, q) = −2[1 + (c(q)q)′](F (ρ)− F (q)) + f(q)c(q)q

2 (F (ρ)− F (q))
3
2

. (5.14)

If (S1) holds, then for s ∈ (0, β),

(
ln

(
s+ c(s)s√
−F (s)

))′
≥ 0.
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A straightforward calculation will show that this implies that

1 + (c(s)s)′

s+ c(s)s
≥ −f(s)

2(−F (s))
, (5.15)

and we further observe from (5.15) that, for all s ∈ (0, β),

1 + (c(s)s)′

c(s)s
≥ 1 + (c(s)s)′

s+ c(s)s
≥ −f(s)

2(−F (s))
≥ −f(s)

2(F (ρ)− F (s))
. (5.16)

Hence, using (5.16), we conclude that

2[1 + (c(s)s)′](F (ρ)− F (s)) + f(s)c(s)s > 0 (5.17)

for s ∈ (0, β). Since f(s) ≥ 0 for all s ∈ [β,∞), it is easy to see that the inequality

(5.17) also holds for s ∈ [β, ρ). Therefore, by (5.14), we have Jq(ρ, q) < 0 for all

q > 0, and the result follows.

If (S2) holds, then let

g(s) = 2(F (ρ)− F (s)) + f(s)c(s)s,

and observe that g is continuous on [0, ρ], g(0) = 2F (ρ) ≥ 0, and g′(s) > 0 for

s ∈ (0, β) by (S4). Hence, g(s) > 0 on (0, β]. Now, (c(s)s)′ ≥ 0 implies 1+(c(s)s)′ ≥ 1,

and therefore, Jq(ρ, q) < 0 for q ∈ (0, β]. For q ∈ (β, ρ), since f(s) > 0 for all

s ∈ (β, ρ), it easily follows that Jq(ρ, q) < 0 for all q > 0 from (5.14), and the result

follows.
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5.2 Bifurcation Diagrams for Dirichlet Problems

In this section, we will provide two examples of bifurcation curves for problems

with Dirichlet boundary conditions which are numerically generated in Mathematica.

The general procedure is outlined in Algorithm 5.7

Algorithm 5.7 (Quadrature Method for Dirichlet Boundary Conditions). This is a

numerical method for generating bifurcation curves for (5.1).

Input: List of N values of ρ

Output: List of N corresponding λ values

(1) Create empty list of points pts = {}.

(2) for i = 1 : N .

(a) Evaluate (5.3) given ρ = ρ(i) to �nd λ(i).

(b) Append {λ(i), ρ(i)} to the list pts.

(3) Plot the ordered pairs in pts.

We apply this algorithm to the problems,

 −u
′′(t) = λ((u(t))2 − 3), t ∈ (0, 1),

u(0) = 0 = u(1),
(5.18)

and  −u
′′(t) = λ((u(t))3 − 10(u(t))2 + 40u(t)− 10), t ∈ (0, 1),

u(0) = 0 = u(1).
(5.19)
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Note that the reaction terms in both (5.18) and (5.19) are semipositone and

superlinear. Bifurcation diagrams for these problems are shown in Figure 6.

(a) Bifurcation Curve for (5.18) (b) Bifurcation Curve for (5.19)

Figure 6. Bifurcation Diagrams for Two Di�erent Autonomous Semipositone Prob-

lems with Dirichlet Boundary Conditions. Plots of solutions corresponding to selected

(λ, ρ) pairs can be found in Section 5.4.

It is well known that the shape of bifurcation curves depends on characteristics

of the nonlinearity f (see [Lio82]). The nonlinearities in (5.18) and (5.19) are both

superlinear at in�nity, and indeed we observe that ‖u‖∞ → ∞ as λ → 0+. Further-

more, the nonlinearity in (5.19) gives rise to what is referred to in the literature as

a reverse S-shaped bifurcation curve. See [CS88] for early work on reverse S-shaped

bifurcation curves.

5.3 Bifurcation Diagrams for Problems with Nonlinear Boundary Con-

ditions

In this section, we provide two examples of bifurcation diagrams for problems

with nonlinear boundary conditions which are numerically generated in Mathematica.

The general procedure is outlined in Algorithm 5.8.
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Algorithm 5.8 (Quadrature Method for Nonlinear Boundary Conditions). This is

a numerical method for generating bifurcation curves for (5.2).

Input: List of N values of ρ

Output: List of N corresponding λ values

(1) Create empty list of points pts = {}.

(2) for i = 1 : N .

(a) Use FindRoot to solve (5.4) for q(i) given ρ = ρ(i).

(b) Evaluate (5.5) given ρ = ρ(i) and q = q(i) to �nd λ(i).

(c) Append {λ(i), ρ(i)} to the list pts.

(3) Plot the ordered pairs in pts.

We apply this algorithm to the problems


−u′′(t) = λ((u(t))2 − 3), t ∈ (0, 1),

u(0) = 0,

u′(1) = −e
u(1)

1+u(1)u(1),

(5.20)

and 
−u′′(t) = λ((u(t))3 − 10(u(t))2 + 40u(t)− 10), t ∈ (0, 1),

u(0) = 0,

u′(1) = − 1
1+u(1)

u(1).

(5.21)
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Note again that the reaction terms in (5.20) and (5.21) are both semipositone

and superlinear, and the functions f and c satisfy (S2). Hence, the results of Theorem

5.4 apply. Bifurcation diagrams for these problems are shown in Figure 7.

As before, the nonlinearities in the di�erential equations are both superlinear

at in�nity, and we again observe that ‖u‖∞ → ∞ as λ → 0+. Furthermore, the

bifurcation diagram for (5.21) remains reverse S-shaped despite the addition of the

nonlinear boundary condition.

5.4 Behavior of Solutions

We observe from Figures 6 and 7 that the bifurcation diagrams for (5.18),

(5.19), (5.20), and (5.21) end at some maximal value of λ, say λ∗, for which each

problem has a solution. Indeed, the exact end point of the each bifurcation curve is

the point (λ∗, θ).

(a) Bifurcation Curve for (5.20) (b) Bifurcation Curve for (5.21)

Figure 7. Bifurcation Diagrams for Two Autonomous Semipositone Problems with

Nonlinear Boundary Conditions. Plots of solutions corresponding to selected (λ, ρ)

pairs can be found in Section 5.4.
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It is known in the Dirichlet case that the solution to (5.18) and (5.19) with

λ = λ∗ is such that u′(0) = 0 = u′(1) (see [CS88]). See Figure 8 for a plot of the

solution to (5.18) in the case λ ≈ λ∗.

Figure 8. Solution Plot for (5.18) with λ = λ∗. We �nd that λ∗ ≈ 13.7504 using

FindRoot. Solution for λ = 13.7504 obtained using NDSolve command in Mathemat-

ica using conditions u(0) = 0 and u
(

1
2

)
= 3 (since θ = 3 for f(u) = u2 − 3). The

derivates u′(0) ≈ u′(1) ≈ 1.54019× 10−3.

We see from (5.6) that if ‖u‖∞ = θ, then any solution of (5.2) must also

satisfy u′(0) = 0. In Figures 9 and 10, we illustrate for problems (5.20) and (5.21),

respectively, that as λ→ λ∗, ‖u‖∞ → θ and u′(0)→ 0.
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(a) Bifurcation Curve for (5.20). The curve

ends at λ∗ ≈ 5.27171.

(b) Solution with λ = 2.5152. Here,

‖u‖∞ ≈ 3.658 and u′(0) ≈ 5.18379.

(c) Solution with λ = 3.77645. Here,

‖u‖∞ ≈ 3.141 and u′(0) ≈ 2.61673.

(d) Solution with λ = 5.27171. Here,

‖u‖∞ ≈ 3 and u′(0) ≈ 0 .

Figure 9. Bifurcation Curve and Solution Plots for (5.20). Here, we show plots of

solutions for varying values of λ converging to λ∗ ≈ 5.27171. Note that as λ → λ∗,

the solutions are such that ‖u‖∞ → θ = 3 and u′(0) → 0. Solutions obtained using

NDSolve command in Mathematica with conditions u(1) = q and u′(1) = −c(q)q,

where q is found by using the FindRoot command to solve (5.5) for ρ given λ and

then using FindRoot again to solve (5.4) for q given ρ.
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(a) Bifurcation Curve for (5.21). The curve

ends at λ∗ ≈ 0.357438.

(b) Solution with λ = 0.158524. Here,

‖u‖∞ ≈ 1.98744 and u′(0) ≈ 3.41839.

(c) Solution with λ = 0.161253. Here,

‖u‖∞ ≈ 1.22881 and u′(0) ≈ 1.99141.

(d) Solution with λ = 0.357438. Here,

‖u‖∞ ≈ 0.547992 and u′(0) ≈ 3.08611 ×

10−8 .

Figure 10. Bifurcation Curve and Solution Plots for (5.21). Here, we show plots of

solutions for varying values of λ converging to λ∗ ≈ 0.357438. Note that as λ →

λ∗, the solutions are such that ‖u‖∞ → θ = 0.547992 and u′(0) → 0. Solutions

obtained using NDSolve command in Mathematica with conditions u(1) = q and

u′(1) = −c(q)q, where q is found by using the FindRoot command to solve (5.5) for

ρ given λ and then using FindRoot again to solve (5.4) for q given ρ.
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We also note that, due to the reverse S-shape of the bifurcation curves for (5.19)

and (5.21), there exist ranges of λ for each problem where three solutions exist. For

example, taking λ = 0.6 in (5.19), we observe from Figure 6b that there are three

distinct solutions with distinct norms. It remains an open problem to establish such

a result analytically in higher dimension. In Figure 11, we provide plots of these

solution curves.

Figure 11. Solution Plot for (5.19) with λ = 0.6. The FindRoot command was

used to �nd the three distinct values, ρ1 ≈ 0.742067, ρ2 ≈ 3.21472, and ρ3 ≈ 7.41075.

Solution obtained using NDSolve command in Mathematica using conditions u(0) = 0

and u′(0) =
√

2λF (ρi) for i = 1, 2, 3. See [CS88] for justi�cation of this boundary

condition.
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Similarly, taking λ = 0.18 in (5.21), we observe from Figure 7b that there are

again three distinct solutions with distinct maximum values. In Figure 12, we provide

plots of these solution curves.

Figure 12. Solution Plot for (5.21) with λ = 0.18. The FindRoot command was

used to �nd the three distinct pairs, (ρ1, q1) ≈ (0.897735, 0.864852), (ρ2, q2) ≈

(3.211253, 3.178000), and (ρ3, q3) ≈ (6.753183, 6.734341) satisfying (5.4) and (5.5)

for λ = 0.18. Solution obtained using NDSolve command in Mathematica using

conditions u(1) = qi and u
′(1) = −c(qi)qi for i = 1, 2, 3.
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5.5 Multiplicity Generated by s + c(s)s Oscillation

In the case that (s∗+ c(s∗)s∗)′ < 0 for some s∗ ∈ [0,∞), Theorem 5.4 does not

apply. In this case, it is possible that for some �xed ρ ≥ θ, there are multiple values

of q > 0 so that (5.4) is satis�ed. Below, we provide such an example.

Consider 
−u′′(t) = λ ((u(t))2 − 3) , t ∈ (0, 1),

u(0) = 0,

u′(1) = −
(

1
2
(u(1)− 10)2 + 1

)
u(1),

(5.22)

and note that although s+c(s)s√
−F (s)

is nondecreasing on (0,
√

3), s+ c(s)s is decreasing on

the interval

(
20− 2

√
22

3
,
20 + 2

√
22

3

)
.

Applying Algorithm 5.8 to (5.22) , we now need to consider the possibility that for a

�xed ρ ≥ θ, there may exist multiple q values so that (5.4) is satis�ed. In Figure 13,

we provide the numerically generated bifurcation curve. Observe that the oscillation

of s + c(s)s has introduced multiple solutions to (5.22) with the same norm. For

example, if we take ρ = 20, then there are three values of λ for which (5.22) has a

solution with ‖u‖∞ = ρ. See Figure 14 for plots of such solutions.

In particular, if we track q values as we plot the bifurcation diagram, we observe

numerical evidence of some correspondence to changes in the sign of (s+ c(s)s)′. See

Figure 15, where (λ, ρ) pairs are visually associated with (q, q + c(q)q) pairs.
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Figure 13. Bifurcation Curve for (5.22)

Many problems related to the existence, uniqueness, and exact multiplicity

of solutions to (5.2) remain open. Our aim in this chapter has been to provide a

quadrature method framework for addressing such problems, proofs of some results

related to solutions of (5.4), and numerically generated bifurcation curves, which

motivate further inquiry.
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Figure 14. Solution Plots for (5.22) with ‖u‖∞ = 20. The FindRoot command was

used to �nd the three distinct values, q1 = 1.44725, q2 = 6.33969, and q3 = 12.0901

so that (5.4) is satis�ed for ρ = 20. Then (5.5) is evaluated for ρ = 20 and each qi

for i = 1, 2, 3 to generate λ1 = 0.566512, λ2 = 0.468819, λ3 = 0.360811. Solutions

for (5.22) with each λi are obtained using NDSolve command in Mathematica using

conditions u(1) = qi and u
′(1) = −c(qi)qi for i = 1, 2, 3.
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(a) Bifurcation Curve for (5.22)

(b) Graph of s+ c(s)s

Figure 15. Correspondence Between Shape of the Bifurcation Diagram and Shape of

s+ c(s)s
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CHAPTER VI

COMPUTATIONALLY GENERATED BIFURCATION CURVES FOR

NONAUTONOMOUS PROBLEMS

In this chapter, we consider problems of the form (1.9) and (1.10), where

h(t) ∈ C(0, 1]∩L1(0, 1) satis�es the more general condition h(t) > 0 for all t ∈ (0, 1).

As this problem is no longer autonomous, the theory developed in Chapter V no

longer applies, and more traditional numerical schemes for solving ordinary di�erential

equations must be implemented. In particular, we will implement shooting methods

to numerically generate bifurcation curves for problem (1.9) and (1.10).

In the case of problem (1.9), we consider the related initial value problem


−v′′(t) = λh(t)f(v(t)); t ∈ (0, 1),

v(1) = 0,

v′(1) = −α,

(6.1)

which has a unique solution, say v(t, λ, α), guaranteed by Picard's Theorem. For this

problem, we take a �xed α∗ > 0 and search for λ∗ > 0 so that v(0, λ∗, α∗) = 0. If

such a λ∗ can be found, then v(t, λ∗, α∗) is a solution to (1.9) with λ = λ∗.
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Similarly, in the case of problem (1.10), we consider the related initial value

problem


−w′′(t) = λh(t)f(w(t)); t ∈ (0, 1),

w(1) = q,

w′(1) = −c(q)q,

(6.2)

which has a unique solution, say w(t, λ, q), guaranteed by Picard's Theorem. For a

�xed q∗ > 0, we search for λ∗ > 0 so that w(0, λ∗, q∗) = 0. If such a λ∗ can be found,

then w(t, λ∗, q∗) is a solution to (1.10) with λ = λ∗.

Remark. In setting up the shooting method for problems (1.9) and (1.10), we have

chosen initial conditions at t = 1 for problems (6.1) and (6.2). The choice of t = 1

(as opposed to t = 0) is made due to the fact that h may be singular at t = 0.

6.1 Bifurcation Diagrams for Dirichlet Problems

We now provide two examples of bifurcation curves for nonautonomous prob-

lems with Dirichlet boundary conditions which are numerically generated in Mathe-

matica. The general procedure is outlined in Algorithm 6.1.

Algorithm 6.1 (Shooting Method for Dirichlet Boundary Conditions). This is a

numerical method for generating bifurcation curves for (1.9).

Input: List of N values of α

Output: List of N corresponding (λ, ρ) pairs.

(1) De�ne V (λ, α) := v(0, λ, α).

(2) for i = 1 : N .
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(a) For α∗ = α(i), use FindRoot to �nd λ∗ such that V (λ∗, α∗) = 0. Set

λ(i) = λ∗.

(b) Use NDSolve to numerically solve (6.1) with α = α(i) and λ = λ(i). Set

ρ(i) = max
t∈(0,1)

v(t).

(c) Append {λ(i), ρ(i)} to the list pts.

(3) Plot the ordered pairs in pts.

We apply Algorithm 6.1 to the problems,

 −u
′′(t) = λt−

1
3 ((u(t))2 − 3); t ∈ (0, 1),

u(0) = 0 = u(1),
(6.3)

and  −u
′′(t) = λt−

1
3 ((u(t))3 − 10(u(t))2 + 40u(t)− 10); t ∈ (0, 1),

u(0) = 0 = u(1).
(6.4)

We have chosen the same nonlinear functions f and c in (6.3) and (6.4) as were

used in the autonomous cases, (5.18) and (5.19) respectively, but have here added

the singular weight function h(t) = t−
1
3 . Bifurcation diagrams for these problems are

shown in Figure 16.

6.2 Bifurcation Diagrams for Problems with Nonlinear Boundary Con-

ditions

In order to generate bifurcation curves for problem (1.10), we implement Al-

gorithm 6.2.
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(a) Bifurcation Curve for (6.3) (b) Bifurcation Curve for (6.4)

Figure 16. Bifurcation Diagrams for Two Nonautonomous Semipositone Problems

with Dirichlet Boundary Conditions

Algorithm 6.2 (Shooting Method for Nonlinear Boundary Conditions). This is a

numerical method for generating bifurcation curves for (1.10).

Input: List of N values of q

Output: List of N corresponding (λ, ρ) pairs

(1) De�ne W (λ, q) := w(0, λ, q).

(2) for i = 1 : N .

(a) For q∗ = q(i), use FindRoot to �nd λ∗ such that W (λ∗, q∗) = 0. Set

λ(i) = λ∗.

(b) Use NDSolve to numerically solve (6.2) with q = q(i) and λ = λ(i). Set

ρ(i) = max
t∈(0,1)

w(t).

(c) Append {λ(i), ρ(i)} to the list pts.

(3) Plot the ordered pairs in pts.
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We apply Algorithm 6.2 to the problems,


−u′′(t) = λt−

1
3 ((u(t))2 − 3); t ∈ (0, 1),

u(0) = 0,

u′(1) = −e
u(1)

1+u(1)u(1),

(6.5)

and 
−u′′(t) = λt−

1
3 ((u(t))3 − 10(u(t))2 + 40u(t)− 10); t ∈ (0, 1),

u(0) = 0,

u′(1) = − 1
1+u(1)

u(1).

(6.6)

We have chosen the same nonlinear functions f and c in (6.5) and (6.6) as were

used in the autonomous cases, (5.20) and (5.21) respectively, but have here added

the singular weight function h(t) = t−
1
3 . Bifurcation diagrams for these problems are

shown in Figure 17.

(a) Bifurcation Curve for (6.5) (b) Bifurcation Curve for (6.6)

Figure 17. Bifurcation Diagrams for Two Nonautonomous Semipositone Problems

with Nonlinear Boundary Conditions
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6.3 Behavior of Solutions

As in the autonomous case, we observe from Figures 16 and 17 that the bifur-

cation diagrams for (6.3), (6.4), (6.5), and (6.6) end at some maximal value of λ, say

λ∗.

It is known that when h is a decreasing function, nonnegative solutions of (1.9)

have a unique interior maximum, say at t0, with u(t0) = ‖u‖∞ > θ (see [CSS12]).

The case where h is increasing on some portion of the domain remains open.

In Figures 18 and 19, we illustrate the behavior of solutions as λ → λ∗ for

problems (6.5) and (6.6), respectively.

We also note that, due to the reverse S-shape of the bifurcation curves for

(6.4) and (6.6), there exist ranges of λ for each problem where at least three solutions

exist. For example, taking λ = 0.45 in (6.4), we observe from Figure 16b that there

are three distinct solutions with distinct maximum values. In Figure 20, we provide

plots of these solutions curves. Similarly, taking λ = 0.16 in (6.6), we observe from

Figure 17b that there are again three distinct solutions with distinct maximum values.

In Figure 21, we provide plots of these solution curves.
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(a) Bifurcation Curve for (6.5). The curve

ends at (λ∗, ρ) ≈ (3.32009, 3.27078).

(b) Solution with λ = 0.333696. Here,

‖u‖∞ ≈ 16.6106 and u′(0) ≈ 37.2779.

(c) Solution with λ = 0.655625. Here,

‖u‖∞ ≈ 8.6796 and u′(0) ≈ 18.4024.

(d) Solution with λ = 3.32009. Here,

‖u‖∞ ≈ 3.27078 and u′(0) ≈ 0.0504337.

Figure 18. Bifurcation Curve and Solution Plots for (6.5). Here, we show plots of

solutions for varying values of λ converging to λ∗ ≈ 3.32009. Note that as λ → λ∗,

the solutions are such that ‖u‖∞ 6→ θ = 3, as they did in the autonomous case,

however u′(0) → 0. Solutions obtained using NDSolve command in Mathematica

with conditions u(1) = q and u′(1) = −c(q)q, where q is found using the procedure

outlined in Algorithm 6.2.
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(a) Bifurcation Curve for (6.6). The curve

ends at (λ∗, ρ) ≈ (0.266674, 0.872975).

(b) Solution with λ = 0.135132. Here,

‖u‖∞ ≈ 1.51014 and u′(0) ≈ 2.55737.

(c) Solution with λ = 0.141907. Here,

‖u‖∞ ≈ 1.15532 and u′(0) ≈ 1.76858.

(d) Solution with λ = 0.266674. Here,

‖u‖∞ ≈ 0.872975 and u′(0) ≈ 0.345048.

Figure 19. Bifurcation Curve and Solution Plots for (6.6). Here, we show plots of

solutions for varying values of λ converging to λ∗ ≈ 0.266674. Note that as λ → λ∗,

the solutions are such that ‖u‖∞ 6→ θ = 0.547992. It is di�cult, in this case, to

conclude whether u′(0) → 0. Solutions obtained using the NDSolve command in

Mathematica with conditions u(1) = q and u′(1) = −c(q)q, where q is found using

the procedure outlined in Algorithm 6.2.
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Figure 20. Solution Plots for (6.4) with λ = 0.45. The FindRoot command was used

to �nd the three distinct values, α1, α2, and α3 so that V (λ, αi) = 0 for i = 1, 2, 3. So-

lution obtained using the NDSolve command in Mathematica with conditions u(1) = 0

and u′(1) = αi for i = 1, 2, 3. The maximum of the solutions are ρ1 ≈ 0.780876,

ρ2 ≈ 3.16105, and ρ3 ≈ 7.49173, occuring at t1 ≈ 0.479972, t2 ≈ 0.469016, and

t3 ≈ 0.472155, respectively. In the nonautonomous case, solutions need not be sym-

metric, and hence the location of the maximum may change.
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Figure 21. Solution Plots for (6.6) with λ = 0.16. The FindRoot command was used

to �nd the three distinct values, q1 ≈ 0.846099, q2 ≈ 3.575090, and q3 ≈ 6.484586

satisfying W (λ, qi) = 0 for i = 1, 2, 3. Solution obtained using the NDSolve command

in Mathematica with conditions u(1) = qi and u
′(1) = −c(qi)qi for i = 1, 2, 3. The

maximum of the solutions are ρ1 ≈ 0.882413, ρ2 ≈ 3.6121, and ρ3 ≈ 6.50745, occuring

at t1 ≈ 0.844304, t2 ≈ 0.905882, and t3 ≈ 0.947446, respectively.
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CHAPTER VII

CONCLUSION AND FUTURE DIRECTIONS

7.1 Conclusion

In this dissertation, we have established the existence of positive radial so-

lutions for classes of superlinear, semipositone Laplacian and p-Laplacian problems

with singular weights and both Dirichlet and nonlinear boundary conditions for small

values of the parameter λ. In particular, we have exhibited methods for overcoming

the di�culties posed by the semipositone nature of the reaction terms, the presence of

singular weights, and nonlinear boundary conditions. These contributions have been

published or accepted for publication in [DMS16] and [MSS16].

Further, we provided a detailed analysis of the quadrature method for au-

tonomous ordinary di�erential equations with nonlinear boundary conditions, and

provided algorithms which are suitably versatile to allow implementation in many

programs. We have also provided algorithms for generating bifurcation curves for

nonautonomous problems via shooting methods. Finally, we have obtained (com-

putationally) exact bifurcation diagrams for several one-dimensional problems with

both Dirichlet and nonlinear boundary conditions.

7.2 Future Directions

7.2.1 Existence of Non-radial Solutions

While Theorems 1.1-1.4 prove the existence of a positive radial solution on the

exterior of a radial domain, these results may be extended to the non-radial cases by
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again employing variational methods. There are a number of natural generalizations,

the �rst being simply to consider non-radial solutions to (1.3) and (1.4). Beyond that,

one may also consider solutions on the exterior of a non-radial domain, or solutions on

the exterior of a ball with non-radial weight K. While a mountain pass solution may

be tractable in the correct variational setting (by separate analyses of the solution on

both the interior and exterior of a su�ciently large ball), showing the positivity of

the solution in these cases poses challenges which cannot be addressed by our current

methods. See Figure 22 for examples.

7.2.2 Uniqueness

In addition to extending existence results, the question of the uniqueness of

solutions to semipostione superlinear problems is wide open. The only uniqueness

result for such superlinear semipositone problems that is available in the literature

is [ACS93], where they study radial solutions in the ball via bifurcation theory and

implicit function theorem arguments. All other cases, even in the case of general

bounded domains, remain open, and no results are available in the case of unbounded

domains.

7.2.3 In�nite Semipositone Problems

A natural extension of (1.3) and (1.4) is to consider f(u) = g(u)
uα

with g being

superlinear and semipositone, and α > 0 small. In this case, lim
s→0

f(s) = −∞, which

will pose signi�cant challenges in the analysis.

7.2.4 Numerical Methods

Our computational results in both the autonomous and nonautonomous cases

treat only the p = 2 case. More work is needed to develop numerical methods to
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treat the cases when p 6= 2, including the development of a quadrature method for

such problems, as well as adapting shooting methods to treat such problems.

(a) One May Consider Non-radial Solu-

tions on a Radial Exterior Domain.

(b) One May Also Consider Solutions on

a Non-radial Exterior Domain.

Figure 22. Extensions of (1.3) and (1.4) to Non-radial Cases
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APPENDIX A

KELVIN TRANSFORMATIONS

A.1 Kelvin Transformation on the Exterior of a Ball

We �rst consider the problem


−∆pu = λK(|x|)f(u), x ∈ Ωe,

u = 0, |x| = r0,

u→ 0, |x| → ∞,

(A.1)

where λ > 0 is a parameter, ∆pz = div(|∇z|p−2∇z) with p > 1,

Ωe =
{
x ∈ RN | |x| > r0, r0 > 0, N > p

}
,

and K ∈ C ([r0,∞), (0,∞)) satis�es K(r) ≤ 1
rN+µ ; µ > 0 for r >> 1. Let r = |x| and

v(r) = u(x). Then,

−∆pu(x) = r1−N (rN−1|v′(r)|p−2v′(r)
)′
.

Substituting into (A.1), we see


−
(
rN−1|v′(r)|p−2v′(r)

)′
= λrN−1K(r)f(v(r)), r0 < r <∞,

v(r0) = 0,

v(r)→ 0, r →∞.

(A.2)
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If we now let t =
(
r
r0

) p−N
p−1

and z(t) = v(r), then we note that since

v′(r) = z′(t)
p−N
p− 1

(
r

r0

) 1−N
p−1

=
p−N
p− 1

t
1−N
p−N z′(t), (A.3)

we have

−
(
rN−1|v′(r)|p−2v′(r)

)′
=

(
N − p
p− 1

)p(
1

r0

)p−N+1

t
1−N
p−N

(
|z′(t)|p−2

z′(t)
)′
.

Hence, substituting back into (A.2) we observe that

(
|z′(t)|p−2

z′(t)
)′

=

(
p− 1

N − p

)p
rp−N+1

0 t
N−1
p−N λ

(
r0t

p−1
p−N

)N−1

K
(
r0t

p−1
p−N

)
f(z(t))

= λ

(
p− 1

N − p

)p
rp0t

p(1−N)
N−p K

(
r0t

p−1
p−N

)
f(z(t)).

Therefore, the problem (A.1) is reduced to

 −(φp(z
′(t)))′ = λh(t)f(z(t)), t ∈ (0, 1),

z(0) = 0 = z(1),
(A.4)

where h(t) =
(
p−1
N−pr0

)p
t−

p(N−1)
N−p K

(
r0t

1−p
p−N

)
.

We may apply the same transformation to


−∆pu = λK(|x|)f(u), x ∈ Ωe,

∂u
∂η

+ c̃(u)u = 0, |x| = r0,

u→ 0, |x| → ∞,

(A.5)
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and observe that the di�erential equation transforms as before. Additionally,

0 =
∂u

∂η
+ c̃(u(x))u(x) = − 1

r0

v′(r0) + c̃(v(r0))v(r0), |x| = r0,

and hence, by (A.3),

0 = φp

(
N − p
r0(p− 1)

z′(1)

)
+ φp (c̃(z(1))z(1))

=

(
N − p
r0(p− 1)

)p−1

φp(z
′(1)) + (c̃(z(1))p−1φp(z(1)).

Dividing through by
(

N−p
r0(p−1)

)p−1

gives

φp(z
′(1)) + c(z(1))φp(z(1)) = 0,

with c(s) =
(
r0(p−1)
N−p c̃(s)

)p−1

. Hence, (A.5) has been transformed to


− (φp(z

′))′ = λh(t)f(z), t ∈ (0, 1),

u(0) = 0,

φp (z′(1)) + c(z(1))φp (z(1)) = 0.

(A.6)

A.2 Kelvin Transformation on an Annulus

In the case of an annular domain, we �rst consider the problem,


−∆pu = λK(|x|)f(u); x ∈ Ωa,

u(x) = 0; |x| = R1,

u(x) = 0; |x| = R2.

(A.7)
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As in Section A.1, making the change of variables r = |x| and taking v(r) = u(x)

yields


−
(
rN−1|v′(r)|p−2v′(r)

)′
= λrN−1K(r)f(v(r)), R1 < r < R2,

v(R1) = 0,

v(R2) = 0.

(A.8)

Now, making the change of variables s = −
∫ R2

r
τ

1−N
p−1 dτ , letting m = −

∫ R2

R1
τ

1−N
p−1 dτ ,

and taking w(s) = v(r) yields,


− (|w′(s)|p−2w′(s))

′
= λh̃(s)f(w(s)), m < s < 0,

w(m) = 0,

w(0) = 0,

(A.9)

where

h̃(s) =

(
R

p−N
p−1

2 − N − p
p− 1

s

) 2(N−1)(p−1)
p−N

K

((
R

p−N
p−1

2 − N − p
p− 1

s

) p−1
p−N
)
.

Finally, making the change of variables t = m−s
m

and taking z(t) = w(s), we

see 
−(φp(z(t)))′ = λh(t)f(z(t)), 0 < t < 1,

z(0) = 0,

z(1) = 0,

(A.10)
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where

h(t) = mp−1(h1(t))2(N−1)K (h1(t))

with

h1(t) =

(
R

p−N
p−1

2 − m(1− t)(N − p)
p− 1

) p−1
p−N

.

We observe that h ∈ C[0, 1] as long as K ∈ C[R1, R2].

We next apply the same transformation to


−∆pu = λK(|x|)f(u); x ∈ Ωa,

u(x) = 0; |x| = R1,

∂u
∂η

+ c̃(u)u = 0; |x| = R2,

(A.11)

and observe that the di�erential equation transforms as before. Additionally,

0 =
∂u

∂η
+ c̃(u(x))u(x) =

1

R2

v′(R2) + c̃(v(R2))v(R2), |x| = R2.

Note, however, that

v′(R2) = R
1−N
p−1

2 w′(0) = − 1

m
R

1−N
p−1

2 z′(1).

Hence, we have

0 =
1

R2

v′(R2) + c̃(v(R2))v(R2) = − 1

m
R

2−N−p
p−1

2 z′(1) + c̃(z(1))z(1).
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But this is equivalent to

φp(z
′(1)) + c(z(1))φp(z(1)) = 0,

where c(z(1)) = −mRN+p−2
2 (c̃(z(1)))p−1, and hence the problem (A.11) is trans-

formed into 
− (φp(z

′))′ = λh(t)f(z), t ∈ (0, 1),

z(0) = 0,

φp (z′(1)) + c(z(1))φp (z(1)) = 0.

(A.12)
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