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Research on aging has been invigorated by recent findings suggesting certain 

mutations in various invertebrate models (yeast, worms, and flies) can slow down aging 

and improve healthspan. Reactive Oxygen Species (ROS) production and manipulation 

of the nutrient-sensing [mammalian (originally) or mechanistic target of rapamycin] 

mTOR signaling pathway have all been linked to aging and age-related diseases. Thus, 

identifying ways to interfere in these pathways may represent a promising avenue to 

increase longevity and improve healthspan in mammals. Fullerenes are a class of 

nanomaterials best known for their ability to significantly extend mammalian lifespan 

and cognitive function as shown in both mice and rats. Thus, the goal of this proposal is 

to determine possible mechanisms of how fullerenes extend lifespan focusing on mTOR 

signaling pathways and anti-oxidant capabilities to slow down aging and improve 

healthspan. 
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CHAPTER I 

INTRODUCTION 

 

Fullerenes have been regarded as a unique approach to alleviate age-associated 

diseases, due to their high affinity towards free radicals [1-3].   Fullerene’s ability to 

efficiently scavenge free radicals,  without being consumed is attributed to its numerous  

conjugated double bonds and lowest unoccupied molecular orbital (LUMO) [2].  

Previous studies have reported the fullerene derivative C3 (C60-tris malonic acid) acts as a 

superoxide dismutase mimetic (SOD) [4], polyhydroxylated C60 molecules provided 

neuroprotection in cultured cortical neurons [5], and C70-tetraglycolic acid (TGA) 

potential as a therapeutic application for asthma and arthritis in mast cells.  

Published reports have linked many age-related diseases to the mammalian target 

of rapamycin (mTOR) pathway that are critical to age-associated diseases and 

impairment of function can impact healthspan.  Our lab has established that fullerene 

derivatives C3
 , ALM (a liposome encapsulated C70 fullerene) and TGA have the potential 

to alleviate age-related diseases such as asthma, arthritis and atherosclerosis [6-9] as a 

novel therapeutic  to improve the aging body and overall healthspan.  The significance of 

this research is to assess TGA anti-aging effects in an ex vivo human skin model, which 

has sparked our interest in nanomaterials and its impact on biological aging.   
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CHAPTER II 

REVIEW OF LITERATURE 

 

II. 1 Skin and Aging 

 Aging research has stimulated innovation in developing novel strategies to 

investigate the natural biological process of aging.  A process that has been attributed to 

reactive oxygen species (ROS) accumulation in a biological system that was proposed by 

Denham Harman in 1956 [10], which led to his establishment of the mitochondrial free 

radical theory of aging [11].  The free radical theory of aging states that cells age due to 

the accumulation of free radicals over time [10].  Therefore, accumulation of free radicals 

result in degradation of a biological system, but the contradictory nature of this theory is 

also in question.  For example, ROS production extending lifespan in S. cerevisiae by 

Mrg19 depletion [12]; exercise-induced ROS production inducing antioxidants, DNA 

repair and protein degrading enzymes and resulting in decreases in oxidative stress-

related diseases and retardation of the aging process [13]; and reported increased defense 

mechanisms prolong lifespan [14, 15].   
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                                    Figure 1. Illustration showing the oxygen molecule and generation  

                                    of free radicals. 

                                    Source: http://www.clevelandclinic.org/reproductiveresearchcenter 
    

                                         

                      

 If the free radical theory of aging can be both beneficial and detrimental, at this 

juncture, skin the largest organ in the body, constantly exposed to both intrinsic and 

extrinsic insults can be classified as a large producer of free radicals and optimal model 

for aging research.  Intrinsic aging is defined as physiological changes (genetics, 

hormone imbalance, or metabolic reactions) that are uncontrollable and extrinsic aging, 

to some extent, can be categorized as sun and toxin exposure, diet, pollutions and overall 

lifestyle choices [16, 17].   

In its entirety, the skin is comprised of three distinctive layers: epidermis, 

hypodermis, and dermis.  Here we are focusing on two layers: epidermis and dermis.  The 

epidermis is the outermost layer providing the most protection against UV exposure 

(stratum corneum), provides mechanical resistance, and immune surveillance [18].    

Keratinocytes form the outermost barrier of the skin and react against insults by 

mediating pro-inflammatory mediators to elicit an immune response.  Langerhans are 

antigen presenting immune cells (dendritic cells), originating from skin localized Ly-6C 

http://www.clevelandclinic.org/reproductiveresearchcenter
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monocyte precursors that induce immune response or tolerance; induction of 

hypersensitivity, and pathogenesis of chronic inflammatory skin disorders [19-21]. 

Melanocytes function primarily as photoprotection against DNA damage through 

melanin production; cross-talk between different signaling pathways to maintain skin 

homeostasis and actively secretes immunological molecules (i.e. IL-10, IL-1α, TNF-α,  

TGF-β, and nitric oxide)  [22].  Merkel cells are associated as a mechno-receptor and 

paracrine secretion in fetal development and adult homeostasis [23-25].   

Directly below the epidermis is the dermis, providing a scaffold for strength and 

support.  While the dermis is a thick layer of elastic and fibrous tissue, it also contains 

nerve endings, to aid in stress and strain detection.  This layer gives elasticity to the 

integument to resist wrinkling, sagging, and distortion.  Fibroblasts are the dominant cell 

type producing collagen, elastin, glycosaminoglycans, and various proteins in the dermal 

extracellular space [26].  Fibroblasts have been extensively studied in aging research 

ranging from organization of the cytoskeleton structure and senescent cells inability to 

replicate in humans [27]; improved functional and survival ability in mild heat shock 

treatment in vitro  [28]; protection by mitochondria targeted antioxidants from 

endogenous oxidative damage in friedrich ataxia fibroblasts [29]; as well as safety 

evaluation studies using fullerenes for skin irritation assessment in cosmetic applications 

[30].    

Macrophages play a role in innate immunity, in most tissues, their phagocytic 

properties are associated with initiating inflammatory response that recruits neutrophils 

and natural killer cells, regulate maturation, differentiation, and migration of dendritic 
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cells.  The impact of macrophages on innate immunity and aging can be used in 

identifying endogenous and exogenous “danger” signals emitted from damaged tissues 

[31, 32]. Macrophages have been used as an in vitro model for inflammation and 

nanomaterial research.  For example, exposure to fullerenes induced apoptosis by 

changing mitochondrial membrane potential  and decreasing cell viability [33]; and  

macrophages/Kupffer cells treated with dihydroquercin suppressed concanavalin A 

activity in a hepatitis mouse model enhancing heme-oxygenase-1 and MAPK/Nrf2 

antioxidant signaling [34].  C60 treatment have been shown to modify Th2 to Th1 

cytokine production and repair skin barrier function in a mice model of atopic dermatitis 

[35].   

Nanoparticles have been used as vehicles for drug delivery for enhanced 

bioavailability and skin penetration for deposition of biologically active ingredients [36, 

37] and control over compound release to improve efficacy in many skin formulations 

[37, 38].  For example, alginate, a low cost and biodegradable polymer is ideal for 

encapsulating antimicrobial plant extract for skin applications [39].  Trans-resveratrol 

loaded solid lipid nanoparticles penetrated the skin up to 45% after 24 hours, resulting in 

more tyrosinase inhibition over kojic acid and revealed non- toxic effects in keratinocytes 

[40],  Efficacy of  low dose nanoparticles on aging skin preserved spindle shape 

elongation, characteristics of young fibroblasts as seen using electron microscopy [41].  

Efficacy and safety studies are common practices used to create safety profiles 

surrounding short and long term effects of nanoparticles to determine risk assessment of 

chemicals, toxins, and nanomaterials through skin absorption [42].  



 

6 
 

II. 2 Fullerenes as Antioxidants 

Carbon based nanoparticles, fullerenes are carbon allotropes identified as ROS 

scavengers and nano-antioxidants for their potent antioxidant abilities in vitro.   Water 

soluble derivative fullerenes have been designed as effective antioxidants in biological 

systems to reduce free radical damage to biomolecules.  Several fullerene derivatives 

have been identified as neuroprotective  [43], therapeutic treatments against allergic 

diseases [44], inhibitors of inflammatory arthritis [7] and gene and drug delivery carriers 

[45, 46].  This notion has been investigated extensively with C60 fullerenes, based on their 

lowest unoccupied molecular orbit (LUMO) and ability to accept up to six electrons has 

made them suitable electron acceptors [47].  In addition to their knack to react with 

numerous free radicals without being consumed [2].  These same predictions were made 

for C70 with their spherical shape and potential to counteract the formation of superoxide 

anion, while a 100% efficiently is sensitized by C60, C70 sensitizes only  ~81%, in the 

presence of molecular oxygen [48].   

The increased focus on nanomaterials and human health has become an important 

research element for understanding cellular and tissue influences.   Reports on fullerenes 

have incurred favorable and unfavorable support with regard to the usefulness and 

therapeutic applications of functionalized fullerenes.  Many rely on synthesis methods 

and chemicals used to produce these functionalized nanomaterials result in assessment of 

cellular effects due to the biological activity of fullerenes.  Acid-treated single walled 

carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) down-

regulated adhesion related genes and perturbing physiological functions of actin filaments 
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of NIH 3T3 cells and human dermal fibroblasts [49].  Hone and colleagues reported C70-

medium dispersion induced intracellular ROS levels, however, pre-treatment with 

antioxidants prevented intracellular oxidative stress in human keratinocytes [50], 

supporting the notion of a synergistic effect between C70 and antioxidants.   

Interaction of C60 or C70 fullerenes with organic solvents can contribute to ROS 

generation in activated macrophages, as indicated through proinflammatory cytokines.  

Modulation of pro-inflammatory cytokines, tumor necrosis factor- alpha (TNF-α) was 

potentiated upon exposure to tetrahydrofyran(THF/nC60/C70) fullerenes causing increased 

apoptosis/necrosis, however, polyhydroxylated (C60/C70 (OH)n) fullerenes reduced TNF-

α expression and mitochondrial depolarization.  The dichotomy of these fullerenes 

provides the basis of their use in TNF-α based cancer therapy or deterrence against 

uncontrolled tissue damage [51].  The unique chemical and physical properties of 

fullerenes can contribute to beneficial or adverse effects in biological systems, due to 

their exploitation using innumerable side chain configurations [52, 53].     

Nanotechnology’s limitless possibilities have introduced compelling candidates, 

but as humans are the end users for most, if not all applications, these innovations can be 

challenging to the dermal immune system.   To better understand these challenges, well 

designed studies evaluating innate immunity and ROS derived organelles facilitate 

closing the knowledge gap supporting longevity and health span research.   

Innate immune cells, such as mast cells have been used as proinflammatory mediators in 

response to immunological and physico-chemical impetuses [7] [54, 55].  Water-soluble 

fullerenes, dubbed as “radical sponges” utilize electrochemical properties to react with 



 

8 
 

tissue damaging superoxide (O2
•-) and hydroxyl (•OH) radicals [51, 56].  Fullerenes, 

reactive oxygen species modulating agents are ideal interference against TNF-α mediated 

cell and tissue death [51].   Treatment with C60 fullerene, C3 attenuated age associated 

oxidative stress, improved cognitive function and extended lifespan in mice [57].  In a 

report by Hwang and Mauzerall, fullerenes electron-transfer capabilities have made them 

ideal to mediate transmembrane electron transport across lipid bilayer membranes [58].   

Research has taken into consideration fullerene toxicity, adsorption, distribution, 

metabolism and elimination based on functionalization of moieties for various sized 

fullerenes.  Fullerene derivatives have increased biological application compared to 

underivatized fullerenes due to their insolubility and potential for aggregation [59].  

Exploitation of their small size, large surface area, and affinity to react with numerous 

superoxides without being destroyed has been advantageous as an antioxidant [2]. C70 

fullerenes are composed of 70 carbon atoms with a spherical shape made of 25 hexagons 

and 12 pentagons, its antioxidant property has contributed several double bonds and low 

lying unoccupied molecular orbit allowing up to six electrons to be consumed [60].   

Efficacy of fullerenes and its antioxidant properties are not well understood and 

an in-depth investigation of mechanisms driving free radical sequestering, in complex 

biological systems are necessary for improvements in human health. 

II. 3  Mechanisms of Fullerenes  

Future improvements of lifespan and healthspan could be supported through 

nanoparticle-based immunostimulatory moieties activating in safe and efficacious 

combinations with stress response pathway systems.  Ideally, using nanotechnology to 
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advance aging research could aid in modulating ROS production while maintaining 

feasibility and safety to improving overall human health in biomedical applications.  

Studying molecular mechanisms underlying fullerenes and mTOR signaling pathways 

can potentially affect aging by means of altering dermal structure and function.   

Interactions have been investigated through the use of whole transcriptome 

methodologies  for gene expression modulation after treatment with functionalized 

fullerenes along the mTOR pathway [61].  Fullerenes provide a promising opportunity 

for novel therapies as inhibitors in cancer therapy [62, 63] , allergic diseases [44], and 

arthritis [7].   

Our lab has reported possibility for C70-I (myo-inositol) functionalized fullerenes 

as an alternative therapy for steroid resistance asthmatics via inhibition of inflammatory 

mediators in mast cells.  This study reinforced the effects fullerenes have on signaling 

pathways and modulating immune responses instigated by conventional treatments [64] 

and the emergence of fullerenes yielding results promising for current and future 

prospects to ease deleterious side effects of current treatments. 

Mechanistic target of rapamycin is a serine/threonine kinase belonging to a family 

of phosphatidylinositol 3’ kinase related kinase (PIKK), a signaling pathway regulating 

cellular growth, proliferation, survival, and motility, as well as protein synthesis and 

transcription.  The activation of mTOR by PI3K, an upstream regulatory, activating AKT 

via phosphorylation [61]. Originally discovered through a study using rapamycin, an 

immunosuppressant and anti-tumor drug, its effect on inhibiting mTOR signaling 

pathway has been associated in dysregulation of human diseases, such as cancer, 
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diabetes, synaptic plasticity, memory, learning, and aging [65-67].  The mTOR pathway 

consists of two complexes: mTOR Complex 1 (mTORC1) known to control autophagy, 

G1 cell cycle progression, and protein synthesis; and mTOR Complex 2 (mTORC2) is 

involved in regulating cytoskeletal structure through f-actin polymerization [68-70].   

Both mTORC1 and mTORC2 contain components of Deptor (DEP-domain 

containing mTOR-interacting protein) which inhibits kinase activity [71]; Tel 2 (telomere 

maintenance 2) and Tti1 (TELO2-interacting protein 1) form a complex to stabilize PIKK 

proteins and assembly of mTOR complex to maintain activities [72]; while mLST8 

(mammalian lethal with sec-13), also known as GβL, function is unclear in mTORC1, but 

maintains kinase activity in mTORC2 [66].  The protein Raptor (regulatory associated 

protein of mTOR) has a positive role on mTOR activity and is thought to act as a 

scaffold, binding multiple contact points and phosphorylation of downstream components 

(SGK1 and 4E-BP) to mTOR[67], as evidenced by knockdown studies using RNAi in 

mammalian cells [73].  PRAS40 (proline-rich AKT substrate 40 kDa) an interacting 

partner with raptor, negatively regulating mTORC1 kinase activity.  This association is 

attenuated by insulin or amino acids, bringing about dissociation of PRAS40 and 

mTORC1, due to phosphorylation [74] at protein components of mTORC1.   

 The other functional complex mTORC2, consists of similar proteins (DEPTOR, 

TEL2, Tti1 and mLST8), containing Rictor, a protein component essential for mTORC2 

activity.  A study conducted by Lammin et al [75] provided evidence that deletion of 

Rictor decreased lifespan in male mice, not females.  The protein mSIN1 (mammalian 

stress-activated protein kinase interaction protein 1) stabilizes the mTORC2 complex 
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through specificity with SGK-1 (serum glucocorticoid-induced protein kinase 1), PKB 

(protein kinase B/Akt), and PKC (protein kinase C), while Protor-1/PRR5 (Proline Rich 

Protein 5) is not required for activity [76] and does not bind nor sensitive to FKBP12-

rapamycin complex[77, 78].  Although, little is known about mTORC2 role in aging and 

age-related pathologies; it is known that phosphorylation of the hydrophobic regulatory 

region of PKB, SGK, and a few PKCs can promote cell survival.  Furthermore, 

cytoskeleton and cell motility is regulated by small Rho GTPases, and Paxillin within 

mTORC2 complex [79].  Activation of oncogenes PI3K, PKB, and Ras or inhibition of 

PTEN or p53 can dysregulate cellular metabolism and survival, therefore leading to age 

related pathologies.   

The FKBP12 rapamycin complex is necessary for binding to mTOR, through the 

FKBP12 rapamycin binding domain (FRB).  This ternary protein containing FKBP12 is a 

rapamycin-induced complex required for cell cycle progression and growth mediated by 

rapamycin.  Any mutation (point) can lead to FKBP12 rapamycin binding domain 

resistance to mTOR, particularly by modification of the mTORC1 structure [66, 68]. 

  Cellular processes regulating proliferation, growth, and metabolism can be traced 

to mTOR signaling pathway controlled via mTORC1 or mTORC2.  The most well 

studied and understood complex, mTORC1 can be activated through stress, nutrients, 

oxygen levels, and growth factors [80].  Sensing both intracellular and extracellular 

stimuli directly instigates downstream proteins: S6K1 (S6 kinase), 4E-BP1 (eukaryotic 

translation initiation factor 4E-binding protein 1), and SREBP (sterol regulatory element-

binding protein) and autophagy components encouraging  protein synthesis, lysosome 
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biogenesis, and deterring autophagy [81].  Growth signals incorporated through mTOR 

complex 1 sensing energy and nutrient levels encourage proliferation upon promising 

conditions and autophagy upon traumatic conditions [82].   

Tissue damage and repair has be examined through S6K1, a downstream 

regulator, once  activated promotes axon regeneration in a mouse optic nerve crush CNS 

injury model by deleting PTEN (phosphatase and tensin homologue) and TSC1 (tuberous 

sclerosis 1), but not inhibition of 4E-BP [83].  The activation or deactivation of mTORC1 

upon cell or tissue damage invokes molecular signals or biomarkers to initiate adequate 

responses.  For example, enhanced stress resistance and longevity genes were discovered 

in nematode model through inhibition of mTORC1 signaling by regulating SKN-1/Nrf2 

stress transcriptional factor, which is required along with rapamycin [84].   Multiple 

mechanisms are involved in mTOR signaling and mitochondrial function in yeast models, 

demonstrated inhibition on mTORC1 increased chronological lifespan by shifting 

mitochondrial respiration [14]. 

Understanding the inner workings of mTORC2 is not well understood or 

documented as mTORC1.  Mechanisms regarding how stimuli is detected has been 

addressed in yeast and eukaryotes seemed unresponsive to rapamycin (short term 

treatment) and function upstream of Rho GTPases regulating the actin cytoskeleton [85].  

Once activated by ribosomes, mTORC2 solicits help through binding of PI3K, however, 

this mechanism is poorly defined [86].  Several members of AGC (protein kinase A, G 

and C) family of kinases are governed by mTOR complex 2 including Akt, SGK 1( 

serum- and glucocorticoid-induced protein kinase 1) and PKC-α [87].   
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Phosphorylation of AKT at its hydrophobic motif (Serine 473) is required for 

maximal activation of metabolism, cell survival, and apoptosis [88].  Lamming and 

colleagues provided some insight on the role of mTORC2 in three different mouse 

models of RICTOR depletion: heterozygous for RICTOR, RICTOR deleted in the liver, 

and RICTOR induced deletion throughout the mouse model.  Chronic long term 

treatment of rapamycin does effect mTORC1, as well as mTORC2 in vivo, however 

longevity was gender specific, with females outliving their male counterparts [89].   

 

 
 

 Figure 2. Mammalian Target of Rapamycin (mTOR) controls protein synthesis.[90] 
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Interestingly, induction of cytoprotective measures suggests a link between 

mTOR and antioxidant activity, to some degree in some organisms to control a spectrum 

of autoimmune diseases [91, 92], lifespan [35], and mental cognitive abilities [93] [94].  

Pharmacological blockage of mTOR and personalization aimed toward lifespan show 

promise, but not without some adverse events, nonetheless, preventive measures against 

metabolic and neurodegenerative abnormalities provide ideal solutions in the form of 

mTOR inhibitors.   
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CHAPTER III 

EFFICACY OF NANOPARTICLES 

IN AN EX VIVO HUMAN SKIN MODEL OF AGING 

 

III. 1 Introduction  

 

 The skin is the largest and most exposed organ of the body reacts to both natural 

and man-made compounds, making it an ideal model to discern nanoparticle penetration.  

Fullerenes and other substances ability to traverse the skin usually occurs at the stratum 

corneum (Figure 3), outermost layer of the epidermis with a thickness of about 10-40µm 

[95, 96]; this is the rate limiting barrier for absorption of topical formulations [42, 97].  

The route of penetration may occur through hair follicles, sweat ducts, intercellular and 

intracellular corneocyte openings [98, 99].  A thorough understanding of nanoparticles 

penetration process, accumulation in the dermis, and permeability of the stratum corneum 

is not complete and requires more dermal exposure studies to provide a realistic 

representation surrounding skin absorption and nanoparticles [100, 101]. 

 

 
 

                                       Figure 3. Hematoxylin and Eosin (H&E) staining   

                                       representing  the three  layers of human skin.  

                                       Stratum Corneum (SC), Epidermis (E), and Dermis (D).

SC 

E 

D 
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Advancement in nanotechnology have made modifying nanoparticles into 

lipophilic or hydrophilic properties to capitalize on its ability to alter skin morphology. It 

has been well documented that lipophilic molecules less than 600 Daltons (Da) can 

penetrate the skin passively [102], while some have placed maximum size at 400 Da for 

intact skin [103].  Certain areas of the skin allow for nanoparticle penetration, due to the 

lipophilic (stratum corneum) and hydrophilic (epidermis) nature of skin [104]. while, 

others argue due to fullerenes molecular weight (720 Da) prevents skin penetration [105].  

Nanoparticle formulations efficacy on skin can be based on alteration of microscopic 

structures which can be examined by quantitative and qualitative measurements. Souto et 

al [106] reported increased permeation of C₆₀-poly(vinylpyrrolidone) (PVP) upon UVA 

irradiation, indicating human skin being less permeable than porcine skin by means of 

skin diffusion techniques.   

We investigated three nanoformulations (NF) and found remarkable results in 

their ability to provide protection and alter skin architecture.  Each nanoformulation is 

comprised of different functionalized, water soluble fullerenes and efficacy is evaluated 

between different formulations and untreated controls. We used aged human skin as an ex 

vivo model to scientifically document the effects of each nanoformulation alongside 

control, on the basis of skin morphology and histological assessment.  

III. 2 Methods 

 III. 2 .1 Fullerene Preparation 

All fullerene derivatives were obtained from Luna Innovations, Danville, VA.  

Each compound (described previously) [16, 107] was characterized using HPLC, NMR, 
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and MALDI mass spectroscopy. After filtering through 0.22 uM sized membrane filters, 

water solubility was assessed visually using light microscopy and particle sizes were 

analyzed by dynamic light scattering.  

 III. 2 .2 Ex vivo Skin Model    

Human skin was obtained with informed consent from a 35-49 year old females, 

undergoing abdominal or breast reduction from the Cooperative Human Tissue Network. 

All studies were approved by the Human Studies Institutional Review Board. Samples 

had excess fat removed and was placed in RPMI 1640 media (Life Technologies, 

Carlsbad, CA) supplemented with streptavidin and L-glutamine, 10% fetal bovine serum, 

HEPES, and amphotercin B for ~ 1.5 hours.  Afterwards, skin was cut into pieces and 

placed in a 24-well plate with culture medium and incubated at 37°C in 5% CO2.  

Samples were treated with C3
 (C60-tris-malonyl acid), TGA (C70-tetraglycolate), DMAE 

(C60-Dimethylethanolamine) or untreated (control) for two weeks.   

 III. 2 .3 Scanning Electron Microscopy   

Documenting the effects of substances used on skin have been useful to visualize 

alterations in skin surfaces for protein deposits on hair shafts and skin roughness [108]. 

Thus, we used scanning electron microscopy (SEM) on human skin tissue that was 

treated with C3, DMAE and TGA at 1 μg/ml over a two week period. Skin was rinsed 

with 0.1M phosphate buffered saline for 10 minutes and immersed in glutaraldehyde for 

24 hours at room temperature. Skin swatches were washed again to remove excess 

fixation solution. Afterwards, swatches were dehydrated with an increasing gradient of 

acetone at room temperature.  Hexamethylsilane (HMDS) was used to remove excess 
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liquid from the skin sample. Samples were attached to electron microscopy stubs using 

carbon tape and sputter coated with ~10 nm of gold palladium on a Denton Vacuum Inc. 

Desk II Sputter Coater (Denton Vacuum LLC, Moorestown, NJ, USA).  Images were 

captured using a Carl Zeiss Auriga SEM-FIB at magnifications of 47X, 250X and 615X.   

 III. 2 .4 Histology    

Tissues were placed in 70% ethanol and shipped to IHC world (Ellicott City, MD, 

USA) for cutting and staining with Hematoxylin and eosin (H&E)  and Masson-

Trichrome, a three color staining to determine cellular components and epidermal-dermis 

integrity.  Histological procedure was performed in accordance with manufacturer’s 

instructions.  Specimens were visualized using a Zeiss Axio light microscope (Carl Zeiss 

AG, Peabody, MA, USA) for histopathological examination.  Histometric analysis was 

assessed by measuring 150 micrometer width across a 20X H&E image.  Six vertical 

lines were drawn from top of epidermis (minus stratum corneum) to stratum basale to 

transverse across the 150 micrometer width line to collect measurements using Zeiss 

Axio light microscope.   

III. 2 .5 Statistical Analysis 

The data used for histological analysis was analyzed using GraphPad Prism 5.0 

(San Diego, CA) and presented as mean ± SD.  A one-way analysis of variance followed 

by Tukey post test, where p<0.01 was considered significant and highly significant as 

P<0.001. 
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III. 3 Results 

 We used an ex vivo human skin model to assess the skin surface changes induced 

by three nanoformulations.  Control samples (Figure 4A) exhibited some flaking and 

cracking on the stratum corneum, indicative of unhealthy, damaged skin.  Skin samples 

treated with the DMAE, C3, and TGA (Figure 4B, C, and D) displayed minor cracking, 

but less severe compared to untreated naturally aged human skin sample. SEM images of 

skin specimens demonstrated our nanoformulations was more effective at preserving the 

stratum corneum than untreated human skin samples.  

 

 
 

Figure 4.  Nanoformulation creams prevent dermatological destruction associated with 

aging.   Human skin tissue was processed using an ex vivo skin model were treated with various 

              NF (1 μg/ml) over a two week period. Scanning electron microscopy (47X) was used to image 

              samples. Skin pretreatment with A) Control, B) DMAE, C) C3, D) TGA resulted in less flaking  

              of the stratum corneum when compared to control untreated skin. 

 

Skin absorption/penetration was remarkable with the three nanoformulations as 

determined by the quality of the stratum cornuem.  Scanning electron microscopy images 
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from human skin of control, C3, DMAE and TGA groups are presented in Figure 5.  In 

Figure 5A, the image depicts severe damage of untreated skin showing desquamation or 

skin peeling of the tissue at the outermost layer.  Moderate flaking for DMAE (Figure 

5B), C3 (Figure 5C), and TGA (Figure 5D) at higher magnification (250X).  Slight 

peeling on the surface (Figure 5C) revealing pores underneath the stratum corneum can 

be classified as marginal drying of the skin. 

 

 
 

Figure 5. Skin absorption of nanoformulations prevents desquamation. Human skin tissue 

was  processed using an ex vivo skin model were treated with various NF (1 μg/ml) over a two 

week period. Scanning electron microscopy (250X) was used to image samples. Skin 

pretreatment with A) Control, B) DMAE, C) C3, D) TGA resulted in smoother appearance of 

the stratum corneum when compared to untreated skin. 

 

Upon closer SEM examination (615X) definite improvement in skin quality 

proved DMAE and TGA (Figures 6B and 5D) delivered a smoother surface area in 

comparison to control (Figure 6A).  In Figure 6C, C3 did appear to have a slight reduction 
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of desquamation in the outermost layer after two weeks of treatment, confirming some 

beneficial effect over control group but not at levels of DMAE and TGA.  Prominent 

scaling or sheeting seen in Figure 5A (control) measured by the number of raised layers 

on the stratun corneum, indicated quantitatively the efficacy of the nanoformulations.  

Higher magnification for control group (Figure 6A) produced many papule-like structures 

on the epidermis.  Treatment groups DMAE and TGA (Figure 6B and 6D) did not present 

similar structures, but C3
 (Figure 6C) exhibited some characteristics as control group. 

 

 
 

Figure 6. Nanoformulations prevented papular formation. Human skin tissue was treated 

with  various NF (1 μg/ml) over a two week period. Scanning electron microscopy (615X) 

was used to image samples.Skin pretreatment with B) DMAE and D) TGA resulted in 

smoother appearance no papular formation on the stratum corneum when compared to A) 

untreated and C) C3. 
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 To further prove efficacy in an ex vivo human skin model, evaluation of three 

nanoformulations was assessed by hematoxylin and eosin (H&E) staining to determine 

possible tissue pathologies.  The results obtained are presented in Figure 7, which shows 

a transverse section of all groups for characterization of layers and structures of skin 

organization.  Samples treated with nanoformulations (Figures 7B-D) verified SEM 

images (Figures 4-6) and little to no morphological changes in stratum corneum layers 

were detected in comparison to control (Figure 7A).   Histologic analysis revealed tact 

stratum corneum, epidermis, and dermis of DMAE and TGA (Figure 7B and 7D) over 

untreated group (Figure 7A) and C3 (Figure 7C).  

 

 

                      Figure 7. Nanoformulations prevent age-related epidermal detachment. Skin samples 

       treated with and without fullerenes (1 μg/ml) were  placed in 4% paraformaldehyde, mounted,  

       and  stained with Hematoxylin and Eosin (H&E, 10X). The NF prevented the detachment 

       of the epidermal layer compared to non-treated sections.  Groups represented as A) Control,  

       B) DMAE, C) C3, and D) TGA.   
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Microscopically, the human skin model stained with Masson Trichrome revealed 

connective tissue (dark blue), nuclei (red/purple), and cytoplasm (red/pink) as represented 

in Figure 8.  Epidermis and dermis region appeared to be detached from the basement 

membrane in the untreated group (Figure 8A) in comparison to treatment groups (Figure 

8B-D).  In Figure 8B, DMAE produced an intact stratum corneum, epidermis, and dermis 

sections, as well as healthy collagen bundles and epithelial cells.  On the other hand, C3
 

(Figure 8C) showed epidermal-dermis disorganization and separation at the junction.  In 

Figure 8D, TGA caused less epidermal-dermis detachment over control group (Figure 

8A).      

 

 
           

              Figure 8.  Masson Trichrome staining of skin untreated and treated with nanoformulations.  

A) Control, B) DMAE, C) C3, and D) TGA groups treated over a two week period. Skin samples  

processed, mounted, and stained with Masson’s trichrome (10X).  Histological images of collagen    

bundles (dark blue),cytoplasm (red/pink) and nuclei (dark red/purple). 

 

 
All nanoformulations displayed distinct stratified squamous keratinized epithelial 

consisting of keratinocytes, melanocytes and corneocytes in the epidermis layer as well as 
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fibroblasts in the dermis region (Figure 9).  The stratum basale presented a more uniform layer of 

melanocytes and keratinocytes for DMAE (Figure 9B) and fibroblast placement in the dermis 

using higher magnification (20X) as compared to control and other treatments groups (Figure 9C, 

and 9D).  In comparison with control (Figure 9C), C3 presented slight detachment of the 

epidermis-dermis junction but better protection was seen over a two week period in comparison 

to control.  Melanocytes appeared less plentiful at the basement membrane (stratum basale) and 

pale-nuclei of keratinocytes located in the stratum spinosum are more pronounced over control 

(Figure 9A and 9C).  In Figure 9D, stratum basale is heavily populated with resident melanocytes, 

while keratinocytes reside in the upper epidermis layer (stratum spinosum); in addition 

corneocytes (anucleated cells) can be seen in the upper most layer (stratum granulosum) of TGA 

nanoformulation in comparison to control.    

 

 
 

Figure 9. Distinct cell types in the epidermis and dermis layers of skin.  Epidermal-   

dermis junction using Hematoxylin and Eosin (H&E) staining of human skin (20X). 

Stratified squamous keratinized epithelium and connective tissue of the dermis layer 

displayed in A) Control, B) DMAE, C) C3, and D) TGA.   

 
 

Moreover, a diminishing stratum corneum is apparent in all three 

nanoformulations with a complete dissolution in the control group (Figure 10). Densely 
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populated melanocytes and kerationcytes residing in the stratum basale followed by the 

stratum spinosum layer of DMAE, C3, and TGA (Figures 10B-10D) in comparison to 

control group (Figure 10A).  In Figures 10B-10D, all nanoformulations produced normal 

viable cells of the stratum spinosum with well uniform melanocytes and keratinoctyes.  

However, separation of the epidermal-dermis section is seen in C3 (Figure 10C) over 

DMAE and TGA (Figures 10B and 10D) compared to control.  Dermal collagen bundles 

and fibroblast of treatment groups did not show any significant difference to that of 

control. 

 

 
 

     Figure 10. Masson Trichrome staining of epidermal-dermis layers of skin.  
After two weeks of treatments, skin samples were stained with Masson Trichrome (20X).   

Collagen bundles (dark blue), cytoplasm (red-pink) and nuclei (dark/red) can be seen in  

all groups A) Control, B) DMAE, C) C3, and D) TGA.   

 
  
 

A visual difference was detected in the epidermis region of all groups. 

Measurements were taken from stratum lucidum (thin clear layer between stratum 
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corneum and stratum granulosum) to the stratum basale (bottom of epidermis).  

Epidermal thickness was highly significant (p<0.001) for DMAE and TGA while C3 

significantly (p<0.01) increased over control (Figure 11).   
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Figure 11. Measurement of epidermal thickness.  Epidermal 

thickness of human  skin treated with Control, DMAE, C3, and 

  TGA nanoformulations over a two week period, without stratum 

                             corneum. Significance denoted as **p<0.01 and ***p<0.001. 
 

  

III. 4 Conclusions 

 

 To examine the intricacy of skin tissue morphology induced by our 

nanoformulations, histological and scanning electron microscopy techniques provided an 

understanding of skin penetration/absorption with fullerenes.  After two weeks of topical 

treatment, DMAE and TGA maintained an intact epidermis-dermis junction, whereas C3 

and untreated showed signs of disruption.  These finding imply our nanoformulations 

resulted in some protective modifications of the outermost layer of the skin and no 

collagen degradation in the dermis region at a 1µg/ml concentration. 
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 Scanning electron microscopy evaluation of three nanoformulations for their 

ability to topographically alter epidermal skin architecture as shown in Figures 4-6, after 

two weeks of topical treatment.  Microscopy images confirmed treatment groups 

produced a smoother, supple, and healthier surface area over control group, most notably 

DMAE and TGA.  Grossman[109], investigated the safety and efficacy of DMAE 

(dimethylaminoethanol) proving acute skin firming effects measuring quantitatively 

cutaneous tensile strength and improvements (p<0.05) in periorbital fine wrinkles, under 

eye dark circles and neck firmness.   

These findings support our histological analysis (Figures 7B, 8B, 9B, and 10B) of 

fibroblast proliferation in the dermis aiding to increased structural integrity by secreting 

collagen.  Upon microscopic examination, DMAE epidermal thickness and dermal 

density was increased compared to control (Figures 7-10).  The same outcome was seen 

in using DMAE alone and in combination with an  amino acid (AA) compound, once a 

week for 4 weeks of microinjections in rats [110].  According to Proksch et al., skin 

hydration is correlated to integrity of the stratum corneum, indicating good functionality 

of skin mechanism [111].  

 The effects of C3 on skin surface roughness was observed by SEM and histology 

after two weeks of treatment.  Skin flaking can be detected (Figure 6C) but not as severe 

as untreated skin tissue (Figure6A).  Similar results were reported using polymeric 

nanospheres incorporated with water-soluble methylcellulose, for enhanced permeation 

in human cadaver skin after SEM analysis exhibiting some skin flaking [112].  C60 

fullerenes are the most studied nanoparticle due to their ability to scavenge free radicals.  
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What is known about C3 through Dugan et al, is the ability of C3 to act as an superoxide 

dismutase (SOD) mimetic increasing lifespan, reducing free radical production, increased 

mental plasticity in Morris water maze and diminishing age-related immune system 

responses [113, 114].  Interestingly, water-soluble functional groups attached to 

fullerenes reduced cytotoxicity over pristine C60 fullerenes[115].  This suggest C3 

provided some protection against skin surface morphology and cellular function.   

 Microscopic examination of TGA after two weeks of treatment produced an 

increase in epidermal thickness compared to that of control (Figures 9D, 10D and 11). 

This is supported through morphological changes associated with an increased number of 

cells and furrow of the epidermal-dermis junction, indicating proliferating epidermis, 

leading to skin improvement [116]. As previously reported, TGA inhibited cytokine 

production of synovial fibroblast and osteoclast production in an in vivo efficacy study 

[7].  This debunks the notion, TGA provokes inflammatory cells leading to increased 

epidermal thickness.  Upon testing the efficacy of TGA, on an aging skin model, it 

warrants further investigation based on previous research due to its lack of build-up in 

tissue, therefore limiting toxicity[8]. 

 Skin penetration of nanoparticles can be a common strategy for drug delivery to 

transverse intact skin, through weakening highly organized epidermal barrier consisting 

of lipids, stratum corneum, and other epidermal layers [117, 118].  The stratum corneum 

(15µm thick) acts as a barrier to prevent chemicals and particulates from entering the 

body, comprised of anucleated cells (corneocytes) entrenched in a uninterrupted 

intercellular lipid matrix [105].  In Figure 11, a significant difference in epidermal 
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thickness was discovered with all nanoformulations with DMAE and TGA demonstrating 

impressive protection over control. Keratinocytes differentiation, proliferation, and 

cellular death regulates epidermal thickness [119], however, a careful balance must be 

maintained.   

Topical nanoparticles effect on cell morphology and function has come into 

question surrounding viable epidermis ability to change cellular organization.   A study 

conducted by Leite-Silva et al. noted topical application of zinc oxide nanoparticles  on 

the epidermis did not alter metabolic state or morphology of cells in a skin penetration 

study [120].  Although, our nanoformulations differ from Leite-Silva, no cellular 

morphology was detected in this study using topical application in aged human skin.  

Generally speaking, skin penetration of nanoparticles is size, shape, and charge 

dependent as well as mechanical flexion [121, 122].  Additional studies to evaluate 

toxicological effects will need to be conducted to determine safety of these fullerenes in   

human skin.   
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CHAPTER IV 

 

TOXICOLOGICAL ASSESMENT OF NANOFORMULATIONS  

 

 

IV. 1 Introduction 

   

Toxicological evaluations are necessary to understand safety profiles of 

functionalized fullerenes in biological organisms.  Conflicting reports surrounding 

toxicity and inflammatory potential of fullerenes vary based on size[123] , moieties[124], 

and concentration [125, 126]. To address toxic effects of fullerenes a series of 

experiments are needed to estimate genotoxicity, cytotoxicity, dermal and ocular 

irritations corresponding to nanomaterials and biocompatibility.  Most studies have 

focused on short or acute toxicity of fullerenes [127-130] but information on long-term 

human and animal studies are scarce and essential for a thorough risk assessment [42].  

Functionalized fullerenes are attractive nanoparticles due to their cellular 

interactions and solubility in biological systems.   C60 and C70 fullerenes uniqueness 

stems from small size, large surface area, and affinity to react with numerous superoxide 

anions without being destroyed is an advantage as an antioxidant [2].  Radical scavenging 

efficiencies of C60 and C70 fullerenes favor carbon-centered free radicals [131] but 

toxicity of biological function is dependent of chemical moieties attached to the carbon 

cage [44]; allowing up to six electrons to be consumed[2].   

Characterization of chemical toxicities using in vitro cell culture models are 

traditional methods used to screen various concentrations of fullerene derivatives.  
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However, this method, although useful does not fully capture the functionality 

and structural changes associated with ex vivo models of a particular organ system under 

oxidative stress.  Fullerenes have been branded, potent antioxidants, due to their ability to 

scavenge free radicals [5, 132],  protect mouse myoblast cells from oxidative induced 

stress [133], and inhibit organophosphate induced acetylcholinesterase toxicities [134] 

and extend lifespan and rescue age related cognitive impairment in mice [57]. As an 

emerging topic in research, employing fullerenes as novel treatments for cancer, diabetes, 

autoimmune disorders, rheumatoid arthritis, atherosclerosis and hypertension and 

physiological aging can be useful for future therapeutic applications [135, 136]. 

Literature has presented conflicting claims some demonstrating fullerenes as 

potent antioxidants in various cell and tissue types [137, 138], while others have disputed 

this claim [139, 140].  This study is to elucidate functionalized fullerenes mechanism of 

reactive oxygen species generation or elimination, investigated through toxicological 

endpoints.   

IV. 2 Methods 

IV. 2 .1 Fullerene Derivatives  

All fullerene derivatives were obtained from Luna Innovations, Danville, VA.  

Each compound has been described previously [16, 107]. Each was characterized using 

HPLC, NMR, and MALDI mass spectroscopy. After filtering through 0.22 uM sized 

membrane filters, water solubility was assessed visually using light microscopy and 

particle sizes were analyzed by dynamic light scattering.  
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IV. 2 .2 Human Cell and Tissue Culture 

Human skin samples were obtained as noted  above (Chapter 3, Methods) and 

3T3 fibroblasts (ATCC) were maintained at 37°C in a humidified atmosphere with 5% 

CO2, in a HEPES (20mM)–buffered RPMI 1640 cell culture medium (Sigma-Aldrich) 

supplemented with 10% fetal calf serum, 2mM L-glutamine, and 100 IU/ml penicillin 

and streptomycin (Sigma-Aldrich). 

IV. 2 .3 Bacterial Mutagenicity Assay 

 To detect potential fullerene induced gene mutation, Salmonella typhimurium a 

bacterial reverse mutation assay was used to assess DNA damage. Various concentrations 

of fullerenes were mixed with 5 μl of S. typhimurium (TA100) along with reaction 

mixture and grown overnight. Sodium azide was a standard mutagen (positive control) 

and reaction mixture and water (Background) were included in the assay.  Aliquots of 

200 μl of sample material, positive control, and background were added to a 96 well 

plate.  Plates were covered and sealed in an airtight plastic bag and incubated at 37°C for 

three to six days.  Colorimetric analyses of results were based on the number of yellow 

wells (mutated) present in each sample material compared to purple wells (non-mutated).   

IV. 2 .4 Lactate Dehydrogenase (LDH) Cytotoxicity Assay 

To evaluate the release of the enzyme lactate dehydrogenase (LDH) from human 

skin tissue treated with functionalized fullerenes.  Tissues were placed in a 24 well plate 

and media added at the air-liquid interface, exposing only the top layer of the skin 

(stratum corneum). Tissue samples were treated with either DMAE, C3, TGA, or media 

(control) for two weeks.  The release of LDH into tissue culture media was assessed 
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using a commercially available LDH Cytotoxicity Detection Kit (Clontech, Mountian 

View, CA) arding to manufacturer instructions. Experimental controls were as followed: 

Background: tissue culture media and Negative Control: culture media plus tissues.  

Positive Control: tissue treated with 100µM H2O2.  Supernatant (100µl) was removed 

from all groups and plated into a 96-well plate, 100µl LDH assay solution was added to 

each well.  Plates were incubated at room temperature for 30 minutes.   Absorbance was 

measured at 490nm wavelength.  Average of absorbance was calculated for each group in 

triplicate.   

IV. 2 .5 Metabolic Activity Assay (MTT) 

Metabolic activity of 3T3 cells treated with functionalized fullerenes was 

measured using the MTT assay (Invitrogen) based on manufacturer’s instructions.  

Trypan blue was used for cell counting and resulted in 96% viability of untreated cells.  

Cells were plated in a 96 well plate at a density of 1x106 cells/well and treated with 

media (Control), 50µM H2O2. 1µg.ml TGA, or 50µM H2O2/1µg.ml TGA (combination).  

Groups were incubated at 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, and 24 

hours at 37°C in 5% CO2. After designated incubation timepoints, supernatant was 

removed and rinsed with phosphate buffer saline.  A 10µl of MTT reagent was added to 

all wells and plates incubated at 37°C for 4 hours.  Solution was aspirated from each well 

and 100µl of dimethyl suphoxide (DMSO), resulting in formazan crystals solubizing in 

each well.  Abosrbance intensity was detected by plate reader (BioTek, Winooski, VT) at 

570nm.  All experiments were performed in triplicate.    
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IV. 2 .6 Reactive Oxygen Species (ROS) Measurement 

To measure intracellular production of reactive oxygen species, oxidation-

sensitive fluoroprobe 2′,7′-dichlorofluorescin diacetate (DCFH-DA) fibroblasts were 

exposed to functionalized fullerene at preactivation, 0, 30 and 60 minute timepoints.  All 

parameters were expressed in relative fluorescence units and percent increase or decrease 

in ROS formation compared to control (negative) not treated with H2O2 or TGA.  

Adherent cells was incubated with 100µM carboxy-H2DCF at preactivation, 0, 30, and 60 

minutes.  A working solution was made from a stock prep of DCF, using 100mM DCF-

DA  plus 2.0 ml of loading media (99% basal RPMI 1640 + 1% Fetal Bovine Serum) into 

microcentrifuge tube.  Removal of carboxy-DCF was done by rinsing with PBS and 

adding 1.0 ml PBS containing fullerenes, hydrogen peroxide, or L-ascorbic acid (Sigma-

Aldrich) .to designated test wells.  Fluorescence of DCF at pre activation, 0, 30, 

60minutes was detected by plate reader (BioTek, Winooski, VT) with excitation and 

emission wavelength of 485 and 530nm.   

IV. 2 .7 Phototoxicity Measurement 

Fibroblasts cell were exposed for 30 minutes of light and dark, to measure the 

effects of ultraviolet (UV) radiation on 3T3 cells. Cells were seeded 0.5x106/cells in a 96 

well plate and incubated at 37°C at 6% CO2.  Two plates were used and cells treated with 

media (Control), 100µM L-ascorbic acid (Negative control), 100µM H2O2 (positive 

control), 0.01µg TGA, and 1.0µM TGA.  Plate exposed to lighr was put into UV chamber 

for 30 minutes, while second plate was light protected using aluminum foil.  After 30  

minutes, 100µl of supernatant was aliquoted into another 96 well plate.  A 10µl sample of  
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MTT reagent was added to each well, incubated for 2 hours at 37°C in 6% CO2.  All 

plates were run at 590nm absorbance using a plate reader (BioTek, Winooski, VT) 

measuring colrimetric results. All samples were ran at an n=6 for statistical analysis. 

IV. 2 .8 Statistical Analysis 

The data used for MTT, LDH, ROS formation, and photoxicity experiments were 

analyzed using GraphPad Prism 5.0 (San Diego, CA) and presented a mean ± SD. Data 

was analyzed by one-way ANOVA using Tukey’s or Newman-Keuls multiple 

comparison post hoc test (comparison of more than two groups).   

IV. 3 Results 

Fullerene treatment did not mutate Salmonella typhimurium (TA100) compared to 

positive control sodium azide, a known DNA mutagen used to assess genetic 

modification of unknown chemicals. No mutagenic potential was detected for treatment 

groups at all dose concentrations (1.0, 0.1, and 0.01 µg/ml) treated with either DMAE, 

C3, and TGA after observing test samples through Day 6 (Figure 12).  Statistical analysis 

was conducted using two-way ANOVA, Bonferroni post test to compare sodium azide 

(positive control) to groups over six days.   
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Figure 12. No genotoxic effects of fullerene derivatives using Bacterial  

Mutagenicity Assay. Assay shows the frequency of colonies formed proportional  

               to the mutation frequency induced by fullerenes.  All treatment groups did not  

               show signs of mutagenic potential at dose concentrations (0.01 - 1.0 µg/ml).            
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To test the cytotoxicity of human skin tissue treated with fullerene derivatives, we 

measured LDH levels of tissue culture supernatant after two weeks of exposure.  In 

Figure 13A, analysis indicated that DMAE 1.0µg/ml (p<0.05) and lower concentrations 

(0.01-0.1µg/ml) (p<0.0001) did not produce LDH levels above control.  Results for C3 

(Figure 13B) were split with 1.0 and 0.01µg/ml (p<0.05) indicating little release of LDH, 

but mid concentration 0.1µg/ml (p<0.0001) caused far less LDH leakage in comparison 

to control and both high and low concentrations.  Dose response of TGA (0.01 – 

1.0µg/ml) remained consistent and highly significant (P<0.001) to prevent LDH exposure 

compared to control (Figure 13C).  
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Figure 13. Reduction of Lactate Dehydrogenase enzyme by fullerenes.   

Cytotoxic effects of DMAE, C3, and TGA concentrations (0.001 – 1.0µg.ml)  

suppressed LDH levels after two weeks of treatment.  Results were expressed  

as mean ± SD. *p<0.05, **p<0.001, p<0.0001 comparing LDH release with  

control tissue.   
 

 

 Measurement of the metabolic activity (MTT) of fibroblasts in the presence of 

1.0µg/ml TGA and 1µg/ml TGA/50µM H2O2 produced surprising results (Figure 14).  

TGA alone was found to increase metabolic activity after 30 minutes (p<0.0001) to 2 

hours.  After 2 hours of exposure fibroblasts decreased activity around 4 hours (p<0.05) 

and movement based on absorbance was not detected. Although not significant when 
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compared to control, 12 hour timepoint and beyond did result in increased metabolic 

activity.  In contrast, 1µg/ml TGA in combination with 50µM H2O2 inhibited metabolic 

activity in fibroblasts across all timepoints (p<0.001) in comparison to control.   
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Figure 14. Metabolic activity of TGA increased at high concentration. Fibroblast cells metabolic 

activity measured after treatment with media (Control), 50µM H2O2, 1µg/ml TGA, and 1.0µg TGA/50µM 

H2O2 at the following timepoints: 30 minutes, 60 minutes, 2 hours, 4 hours, 8 hours, 12 hours, and 24 

hours.  Absorbance levels are mean ± SD, *p<0.05, **p<0.001, ***p<0.0001 by one-way ANOVA using 

Tukey post test. 
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The ability of TGA to sequester free radical production is important due their 

ability to cause inflammation leading to tissue damage.  Reactive oxygen species are 

implicated in many oxidative stress related diseases and maintaining a homeostatic 

balance is ideal.  After investigating the role of ROS generation in 3T3 cells after TGA 

exposure, preactivation presented no significance amongst groups (Appendix A).  Percent 

change in ROS formation was calculated from preactivation against all remaining 

timepoints (0 minutes, 30 minutes, and 60 minutes), as represented in Figure 15.   

Initial findings show at zero timepoint 0.01µg and 1.0µg TGA values were lower 

than controls, with 1.0µg TGA exhibiting ROS levels similar to L-ascorbic acid.  

However, upon increased exposure past zero timepoint; ROS formation decreases starting 

at 30 minutes and progressing to 60 minutes, both low and high concentrations of TGA 

decrease ROS production dramatically in fluorescence intensity.  The highest amount of 

ROS formation was 50µM H2O2 (positive control) over all groups. 
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Figure 15. Percent change in ROS production by timepoints.  
Fibroblast cells metabolic activity measured after treatment with media 

(Control), 100µM Vitamin C, 0.01µg TGA, and 1.0µg TGA at the following 

 timpoints: 30 minutes, 60 minutes, 2 hours, 4 hours, 8 hours, 12 hours, and  

24 hours.  Absorbance levels are mean ± SD, **p<0.001, ***p<0.0001 by  

one-way ANOVA using Tukey post test. 

 

To gage the ultraviolet (UV) protection of 0.01 and 1.0 µg.ml TGA 

concentrations on fibroblast cells, we examined it against known photo protectant and 

reactive oxygen intermediate, L-ascorbic acid and hydrogen peroxide, respectively.  Cells 
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were pretreated for 24 hours and samples were rinsed prior to experiment.  Figure 16, a 

low concentration of TGA (0.01- 1.0µg.ml) did not provide photo protection after 30 

minutes (p<0.0001) of exposure reducing metabolic activity.  Surprisingly, TGA at a 

higher concentration (1.0µg.ml) surpassed control and L-ascorbic acid after 30 minutes 

without UV exposure (p<0.0001), but no photo protection was observed after 30 minutes 

of UV exposure.   
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Figure 16. Effects of phototoxicity on fibroblasts treated with TGA.  TGA (0.01 and 1.0µg/ml) 

inhibited metabolic activity after 30 minutes of UV exposure. Pre-incubation did increase metabolic 

activity without UV exposure for TGA 1.0µg/ml after 30 minutes.  Values were expressed as mean ± SD. 

***p<0.0001, comparing metabolic activity with control both in dark and UV exposed. 

 

 

IV. 4 Conclusions 

Safety assessment studies are paramount to understand the role fullerenes play in 

nanotoxicology.  Here we investigated fundamental mechanisms leading to toxicity, such 
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as genotoxicity, cell death, and intracellular reactive oxygen species generation.  

Guidelines issued by the Food and Drug Administration (FDA), Cosmetic, Toiletry and 

Fragrance Association (CTFA) and the Organization for Economic Co-operation and 

Development (OECD) [141] are just a few battery of tests utilized in this study to address 

mechanisms of toxicity in fullerenes.    

Mutagenicity assay, also known as the Ames test, was used to determine optimal 

dose concentrations for a series of fullerenes using Salmonella typhimurium strain as a 

reverse bacteria mutation assay.  Bacterial reverse mutagenicity by functionalized 

fullerenes were examined on TA 100 histidine strain of Salmonella typhimurium; 

generally used to test mutagenicity of compounds due to their sensitive nature toward 

mutants of base pair substitutions. Dose concentrations (1- 0.01 µg/ml) did not show a 

significant increase in the number of bacterial reverse mutation colonies in S. 

typhimurium  (TA 100) strain when compared to negative tests.  As a result, 

functionalized fullerenes were determined not to induce DNA mutation under these 

conditions (Figure 12).   

With regard to genotoxicity, Shinohara et al. examined C60 nanoparticles up to 

1000 micrograms/ml and discovered no genotoxic effects using the Ames test in Chinese 

hamster cells [142].   However, some studies have presented genotoxic effects induced by 

fullerenes implicating oxidative stress, a major mechanism associated with redox 

imbalance between reactive oxygen species and antioxidants [143, 144].   Nonetheless, 

additional experiments will need to be conducted to assess DNA integrity in mammalian 

cell and tissue cultures.   
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Water soluble fullerenes were shown to lack mutagenic potential (Figure 12), but 

long term exposure on the body is of great concern.  Here, we investigated the safety of 

three fullerene derivatuves (DMAE, C3, and TGA) on human skin tissue ability to 

prevent or induce the enzyme lactate dehydrogenase after two weeks of treatment.  The 

present study demonstrated significant dose response reduction of LDH in all three 

fullerene derivatives (Figure 13).  Lactate dehydrogenase release was consistent across all 

concentrations (1.0 – 0.01µg/ml) for TGA in comparison to other groups.  Cytotoxic 

effects of water soluble fullerenes have been well documented for inducing LDH release 

[145] but other studies have proven favorable safety profiles of fullerenes in biological 

systems [7, 43, 146].  Cytotoxicity data in this study supports previous literature findings 

of its ability to inhibit LDH.  An ideal candidate to explore safety assessment and anti-

aging effects was TGA, based on genotoxic and cytotoxic information in this study and 

efficacy studies in the previous section. 

 To establish the metabolic activity of fibroblast cells pre-treated with media, 

50µM H2O2, 1.0µg.ml TGA, and 1.0µg.ml TGA/50µM H2O2 using a MTT assay.  A time 

response study revealed a slow increase in cell growth for 1.0µg.ml TGA (Figure 14).  

The fullerene derivative, TGA, never exceeded cellular growth compared to control, but 

cellular growth was seen within this group (TGA 1.0µg.ml), intermittently.  Initial 

metabolic activity levels of all groups at 30 minutes (p<0.0001) started below control 

group.  But data analysis of 50µM H2O2 (p<0.0001)   and 1.0µg.ml TGA/50µM H2O2 

(combination) (p<0.0001) groups, revealed cellular activity remained below control and 

1.0µg.ml TGA.   A similar effect was seen with pristine C70 fullerenes exposed to human 
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keratinocytes and lung carcinoma cells at various concentrations. Cells exposed at 6 and 

24 hours produced very small changes in cell viability [50].  The present results 

demonstrated TGA alone elicited increase in cellular metabolic activity, while 

combination inhibited metabolic activity in fibroblast cells under these condition. 

Fullerenes have potential to act as potent biological antioxidants, by reacting with 

superoxide anions without being consumed [2].  However, fullerenes and other 

nanoparticles have been associated with toxicities through reactive oxygen species 

production.  Reactive oxygen species induced by nanoparticles are usually followed by 

ROS cell-mediated tissue damage, immune cell activation, and inhibition of cell division 

and cell death [147].  

Previous research of TGA inhibited airway inflammation and caused no acute 

toxicity in liver and kidney tissues in mice [8]. We investigated the inhibitory ability of 

low and high dose TGA concentrations, towards intracellular ROS formation in fibroblast 

cells.  In this study, a time dependent decrease in ROS formation was noticed at high 

concentrations of TGA (Figure 15) in comparison to control.  Percent change in ROS 

formation of control surpassed 1.0µg/ml TGA from 0-60 minutes timepoint.   Inhibition 

of ROS by TGA (1.0µg/ml) produced effects similar to L-ascorbic acid.  L-ascorbic acid, 

a potent water soluble antioxidant is biologically active, but unstable.  This non-

enzymatic defense mechanism helps to overturn ROS in healthy cells.   

Pro-oxidants induced by nanoparticles can exhaust antioxidant reservoirs or 

produce intracellular ROS. Research suggest ROS can be both beneficial and detrimental 

to biological processes.[50, 148].  For example,  PVP-fullerene diminished ROS over 
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ascorbic acid derivative in human skin keratinocytes, suggesting development as a 

rejuvenation cosmetic [149].   Liochev addressed the Free Radical Theory of Aging, 

noting how ROS can be the causative agents of aging but trigger pro survival signals in 

cells to extend lifespan[150].  An example of detrimental effect of ROS proved an 

increase in elastin mRNA levels in dermal fibroblasts, due to ROS imbalance resulted in 

photoaging of skin and inflammation [151].  Therefore, under these conditions TGA has 

potential as an effective inhibitor against ROS formation. 

 Antioxidants can either prevent initiation of free radicals or inactivate free 

radicals and can be depleted upon oxidant induced pathologies.  Enzymatic (catalase and 

superoxide dismutase) and non-enzymatic (vitamin A, C, and E) antioxidants protect 

against photo damage in skin induced by ultraviolet exposure.  Particular attention has 

been towards derivatives of C60 and C70 fullerenes impressive scavenging ability against 

ROS [137, 138, 152].  Our study showed significant (p<0.0001) decrease in metabolic 

activity at TGA (0.01-1.0µg/ml ) after 30 minutes of UV exposure in comparison to 

control (Figure 16).  However, 30 minutes of dark exposure, high concentration of TGA 

(p<0.0001) outperformed ascorbic acid, a known antioxidant used to prevent photoaging 

[151].   

Literature review discovered a similar effect was seen in human lens epithelial 

cells and human retinal pigment epithelial cells using fullerol exposed to UVA resulted in 

a decrease in metabolic activity [145, 153].   Here the cytoprotective effects of TGA was 

unsuccessful in protection against UV exposure (decrease in metabolic activity), leading 
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to tissue damage.  These results indicate a creative strategy to incorporate additional 

ROS-scavenging fullerenes or antioxidant to guard skin from deleterious stimuli.   
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CHAPTER V 

PROTEOMIC EVALUATION ON BIOLOGICAL RESPONSE OF TGA 

 

 

V. 1 Introduction  

 In the previous section, toxicology established TGA suppressed reactive oxygen 

species formation similar to L-ascorbic acid (Figure 15), but photo protection was not 

seen using TGA (Figure 16).  Based on this information, TGA on some level, is 

analogous to an antioxidant’s ability to combat ROS generation.  Cellular toxicity was 

unaffected by TGA, but it does not explain mechanism of aging regarding 

fullerene/protein interactions.   

Proteomics are widely used to interpret post translational modifications of 

fullerene and protein interaction in research.  Interactions such as these, explains aging 

mechanisms at the protein level.  Previous literature has shown the unusual effect 

nanomaterials have on biological systems due to their physicochemical modifications, 

particle size, and charge [154].  Nevertheless, compounded with the assortment of 

negative or positively charged and hydrophilic or hydrophobic nature of proteins; 

fullerenes have become prime targets in aging research.  In one study, negatively charged 

fullerene derivatives induced pro-inflammatory cytokine TNF-α in macrophages, but 

positively charged fullerene derivatives were ineffective [155]. Hydrophobic or 

hydrophilic nature of fullerene derivatives can facilitate cellular effects through 

membrane manipulation [156].   
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Regulation of age and age related pathways manipulated by fullerene interaction, 

incorporates a complex arrangement of altering proteins producing both positive and 

negative outcomes.    For instance, deletion of Rictor in keratinocytes increased lifespan, 

protected from senescence, and stress resistance in mitohormesis [157]; however 

dysregulation of TSC/mTOR contributes to tumor angiogenesis [158].  Our lab has 

reported the inhibitory effect of TGA on aging related disorder, inflammatory arthritis, 

suggesting it as a therapy against arthritis [7].  This study can provide insight into 

fullerene’s ability to modulate protein expression along the mTOR pathway and its 

mediators.   

V. 2 Methods 

 

V. 2 .1 Fullerene Derivatives 

  TGA was purchased from Luna Innovations Incorporated (Danville, Va) [8, 9].  

Characterization was done using matrix assisted laser desorption ionization mass 

spectrometry, nuclear magnetic resonance, and high performance liquid chromatography 

[44].  Z-average (mean value of the hydrodynamic diameter) of ~111.2 nm C70-TGA 

(1μg/μl) in sterile water and the zeta potential was obtained by Nano-ZS Zetasizer 

NanoSeries with DTS software (Malvern Instruments, Zetasizer, NanoZS, Westborough, 

MA).  

V. 2 .2 Cell Stress Protein Array 

The expression profile of cell stress related proteins induced by two different 

fullerene derivatives (FD), C3 and TGA.  A protein array was performed using the 

Proteome Profiler Antibody Array kit (R&D Systems, Minneapolis, MN, USA) 
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according to manufacturer’s instructions.  Skin samples were treated with either C3, TGA 

or untreated (control) for two weeks. Protein quantification was performed using a 

Bradford Assay and 300 μg proteins from each sample were incubated with the cell stress 

protein array overnight at 4°C.  Cell stress membranes were quantified and image 

analysis by Bio Rad ChemiDoc (Bio Rad, Hercules, CA, USA) according to 

manufacturer’s instructions. 

V. 2 .3 Ex vivo Skin Model Treated with TGA and H2O2-mediated Activation  

Human skin was obtained with informed consent from a 55 year old female, 

undergoing breast reduction from the Cooperative Human Tissue Network and approved 

by their Human Studies Institutional Review Board. Samples had excess fat removed and 

was placed in RPMI 1640 media (Life Technologies, Carlsbad, CA) supplemented with 

streptavidin and L-glutamine, 10% fetal bovine serum, HEPES, and amphotercin B for ~ 

1.5 hours. Ex vivo human skin treated with TGA and activated with H2O2 (Figure 1), was 

placed in RPMI media and incubated at 37°C in 5% CO2. 
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The next day, skin samples were washed three times in phosphate buffered saline 

and immediately submerged into liquid nitrogen.  All skin samples were placed in -80°C 

until further analysis. The dosage of 50 µM H2O2 was ideal for oxidative stress activation 

based on literature search [159].  Tissue samples were used for microarray and western 

blot analysis to determine TGA effect on protein modification. 

V. 2 .4 Tissue Lysate Preparation and Antibody Protein Array  

Skin tissue was rinsed three times with PBS then ~250mg of tissue was cut from 

sample.   Tissue samples were homogenized on wet ice using a Bio-Gen Pro200 

homogenzier (Pro Scientific, Oxford, CT).  Samples were sonicated four times for 10 

seconds in ice to shear nuclear DNA using a Beckman Microfuge R centrifuge (Beckman 

Coulter, Inc., Pasadena, CA).  Supernatant was transferred to a new tube and protein was 
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quantified using Bradford assay (Bio Rad, Hercules, CA).  All tissue lysates were placed 

immediately in -80⁰C for further analysis by Kinexus™ Antibody Microarray Service. 

Proteins potentially regulated in skin under the conditions above were 

investigated using a KAM-880 protein microarray as we have performed previously 

[160] (Kinexus Bioinformatics Corporation, Vancouver, BC), 50 µg of tissue lysate from 

each sample was covalently labeled with a fluorescent dye (Kinexus Bioinformatics 

proprietary methodology).  Free dye molecules were removed by gel filtration, followed 

by blocking of non-specific sites on the array.  Two samples (control and treated) are 

loaded on the sample chip in duplicate and incubated (details available at 

www.kinexus.ca).  The Kinexus™ protein array profile was used to detect over 800 

different antibodies. Unbound dye-labeled proteins were washed away and protein 

captured using a 16-bit laser array scanner (Perkin Elmer ScanArray Reader, Waltham, 

MA).  Signal quantification measured using ImaGene 9.0 (BioDiscovery, El Sequndo, 

CA) and results were reported in Z scores (±1.2 – 1.5, significant), percent change from 

control (%CFC) and percent range in error and fold changes using globally normalized 

data as expressed spot intensity between control and treatment samples. 

V. 2 .5 Protein Extraction and Western Blot Analysis 

Skin samples were removed from -80⁰C and ~0.1g – 0.2g frozen tissue was added 

to a 2ml microcentrifuge tube containing 1ml of RIPA Buffer (Boston BioProducts, 

Ashland, MA) and 10μl of protease inhibitor (Sigma-Aldrich, St. Louis, MO).  Samples 

were homogenized using a Bio-Gen Pro200 homogenzier (Pro Scientific, Oxford, CT) on 
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ice. Samples were centrifuged at 16,000 g for 25 minutes and protein concentration 

determined using Bradford protein assay (BioRad, Hercules, CA). 

For validation, 100 µg of protein derived from human skin was subjected to 

Western blot analysis.  Samples were mixed with reducing buffer (0.125M Tris-HCl pH 

6.8, 4% sodium dodecyl sulfate, 0.02% bromophenol blue, 10% β-mercapethanol, 20% 

glyercol) and heated to 95⁰C for 5 minutes. Protein lysate were run in duplicate on 4-20% 

gradient SDS-PAGE gel (Invitrogen, Carlsbad, CA) and transferred onto a nitrocellulose 

membrane (Invitrogen, Carlsbad, CA).  Membranes were blocked with LiCor blocking 

buffer (PBS) (Lincoln, NE) for 1 hour at room temperature, then probed with primary 

antibodies mTOR, RAPTOR, RICTOR (Cell Signaling, Danver, MA) diluted with 0.2% 

Tween 20  and LiCor blocking buffer for overnight incubation.  Membrane was washed 

twice for ~10 minutes in PBST, and then probed using a secondary antibody label using 

an IR-Dye 670 or 800cw goat anti-rabbit or anti-mouse antibody mixed with 0.2% Tween 

20 and blocking buffer for 1 hour at room temperature.  Secondary antibodies were 

washed twice at 10 minutes, and then placed in PBS.  Membranes were imaged wet using 

an Odyssey Imaging system (Lincoln, NE).  Band intensity was measured by placing a 

box around bands and using the raw intensity values to quantify protein expression. β-

actin (Sigma Aldrich, St. Louis, MO)was used as a background subtraction to determine 

protein expression levels.   

Protein samples were imaged using chemiluminescent (ECL) and GE Amersham 

Imager 600 (Marlborough, MA).  All protein extraction and preparation was same as 

above.  Membranes were blocked with 5% nonfat dry milk and Tris-buffered saline 
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(TTBS) for 1 hour at room temperature, rinsed three times with TTBS, then probed with 

primary antibodies phospo mTOR, RAPTOR, RICTOR, SOD2, ATG13,pATG13 (Cell 

Signaling, Danver, MA) for overnight incubation.  Membrane was washed three times for 

~10 minutes in TTBS, and then probed using a secondary antibody label using anti-rabbit 

or anti-mouse antibody mixed with TTBS and 5% fetal bovine serum for 1 hour at room 

temperature.  Secondary antibodies were washed three times at 10 minutes, and then 

placed in TTBS.  Membranes were imaged using an Amersham Imaging 600 system 

(Marlborough, MA). 

V. 2 .6 Statistical Analysis 

The data used for these experiments DLS, ζ-potential, and western blot analysis 

was analyzed using GraphPad Prism 5.0 (San Diego, CA) and presented a mean ± SD. 

Data was analyzed by unpaired two-tailed t-test (comparison of two groups) or one-way 

ANOVA using Tukey’s multiple comparison post hoc test (comparison of more than two 

groups).  Significance was reported as a P-value < 0.05. 

V. 3 Results 

  

 A cell stress protein array was used to detect 26 proteins associated with cellular 

stress. Tissue samples were treated for two weeks with C3, TGA, or media (control).  

Superoxide dismutase 2 (SOD2), plays an important role in antioxidant defense against 

superoxide anion (O2-), in relation to, oxidative stress. As shown in Figure 17, C3 and 

TGA decreased the expression of SOD 2 (p<0.0001) and thioredoxin 1 (p<0.05) by C3 

only, suggesting that proteins were under less duress. However, due to inconsistencies 

regarding protein arrays, western blot validation is necessary.   
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Figure 18. Fullerene Derivatives prevent upregulation of age-associated cell stress proteins. Human 

skin  tissue was treated with or without fullerenes (0.01 μg/ml) and total protein extracted after two weeks. 

The protein extracts were examined for relative protein expression of 26 cell stress related proteins using a 

protein array (R&D Systems). Fullerene-treated skin samples significantly inhibited the upregulation of 

SOD2 and Thioredoxin 1. Mean ± SD taken in duplicates.  * p<0.05, # p<0.0001.   

  

To investigate the effects of TGA on oxidative stress-induced in human skin 

tissue was incubated with or without H2O2 following pre-incubation with TGA.  The 

Kinexus™ protein microarray probed over 100 proteins including phosphorylated sites 

using 50µg of protein lysate. Approximately, 71 proteins were inhibited by 10% or more 

when tissue was pre-treated with TGA and activated with 50µM H2O2. , in comparison to 

untreated based on percent change from control (%CFC) data (Appendix A, Table 2).   

Many of these proteins are linked to mTOR, a serine/threonine kinase, responsible for 

many health, disease, and aging related processes [161].   However, pre-incubation of 
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TGA prior to H2O2 challenge prevented the upregulation of several mTOR-related 

proteins. For example, S6K (ribosomal protein S6 kinase), a downstream effector, 

impaired adipocyte generation in mice fed a high fat diet (HFD)-induced obesity [162] as 

seen in Figure 19.  

   

 

 Figure 19. Inhibition of proteins associated with mTOR pathway treated with TGA and/or 50µM 

H2O2. Expression levels of Akt (PKBa-Y474), S6K, 4E-BP1 (S65), p70 S6K, PRAS40, and p70 S6K 

(S411).  Kinexus protein microarray analysis using 50µg protein lysate to probe protein expression.  

Results expressed as relative protein expression levels using percent change from control (%CFC).  Tissue 

lysate measured in duplicate.  Tissues were pretreated with or without 1 µg.ml TGA overnight at 37°C/6% 

CO2. The next day tissues were washed and challenged with (+) or without (-) hydrogen peroxide (50 µM) 

for 24 hours.  Tissue lysate was used for protein isolation and protein microarray as described above or for 

Western blotting.  Each condition was performed in quadruplicate. Shown is the mean relative intensities of 

each protein (±SD of four observed values) normalized against control.  The black bar is the percent change 

in TGA treated tissues compared to hydrogen peroxide (white bar) treated tissues.  The gray bar is the 

percent inhibition comparing FD pretreated and challenged tissues compared to non-FD treated hydrogen 

peroxide tissues.       

 

An increase in total mTOR (43.74%) and pmTOR (S2448) (1.64%) for 

combination was seen over control levels (Figure 20) in samples treated over a three day 
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period.  A few downstream effectors associated with the mTOR pathway were 

upregulated after pretreatment with TGA and activated with H2O2.  In Figure 21, 4E-BP1 

(2.28%), eIF4B (2.35%) and 4E-BP1 (T45) (6.53%) showed increased levels in skin 

tissue.  These are a few proteins known as direct downstream effectors functioning as 

adaptor protein , protein kinase, or translation inhibitor along the mTOR pathway[163] 

[164]. Validation of key microarray protein results were conducted by western blot as an 

alternative approach to reduce false positives or negatives. 

 

 
 
Figure 20. Inhibition of proteins associated with mTOR pathway treated with TGA and/or 50µM 

H2O2.Expression levels of p70 S6K (T421/S424), ATF2 (T69/T71), S6, p70 S6k (S424), AKT1 (PKBa) 

and S473 (eIFG (S1108).  Kinexus protein microarray analysis using 50µg protein lysate to probe protein 

expression.  Results expressed as relative protein expression levels using percent change from control 

(%CFC).  Tissue lysate measured in duplicate. Tissues were pretreated with or without 1 µg.ml TGA 

overnight at 37°C/6% CO2. The next day tissues were washed and challenged with (+) or without (-) 

hydrogen peroxide (50 µM) for 24 hours.  Tissue lysate was used for protein isolation and protein 

microarray as described above or for Western blotting.  Each condition was performed in quadruplicate.  

Shown is the mean relative intensities of each protein (±SD of four observed values) normalized against 

control.  The black bar is the percent change in TGA treated tissues compared to hydrogen peroxide (white 

bar) treated tissues.  The gray bar is the percent inhibition comparing FD pretreated and challenged tissues 

compared to non-FD treated hydrogen peroxide tissues.  
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Figure 21. Inhibition of proteins associated with mTOR pathway treated with TGA and/or 50µM 

H2O2.Expression levels of IRS (Y612), AKT1 (PKBa) Y326, AKT2 (PKBb), eIF4E (S209), IRS1 (S639), 

and PTEN.  Kinexus protein microarray analysis using 50µg protein lysate to probe protein expression.  

Results expressed as relative protein expression levels using percent change from control (%CFC).  Tissue 

lysate measured in duplicate. Tissues were pretreated with or without 1 µg.ml TGA overnight at 37°C/6% 

CO2. The next day tissues were washed and challenged with (+) or without (-) hydrogen peroxide (50 µM) 

for 24 hours.  Tissue lysate was used for protein isolation and protein microarray as described above or for 

Western blotting.  Each condition was performed in quadruplicate.  Shown is the mean relative intensities 

of each protein (±SD of four observed values) normalized against control.  The black bar is the percent 

change in TGA treated tissues compared to hydrogen peroxide (white bar) treated tissues.  The gray bar is 

the percent inhibition comparing FD pretreated and challenged tissues compared to non-FD treated 

hydrogen peroxide tissues.       
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Figure 22. Down and upregulation of proteins associated with mTOR pathway treated with TGA 

and/or50µM H2O2.  Expression levels of PTEN (S380/T382/T383), pmTOR. 4E-BP1, eIF4B (S422), IRS1 

(S312), eIF4E, Akt1 (PKBa), 4E-BP1 (T45), PI3- Kinase, p70 S6K (T229), eIF2e (S52), and mTOR.  

Kinexus protein microarray analysis using 50µg protein lysate to probe protein expression. Results 

expressed as relative protein expression levels using percent change from control (%CFC). Tissues were 

pretreated with or without 1 µg.ml TGA overnight at 37°C/6% CO2 . The next day tissues were washed and 

challenged with (+) or without (-) hydrogen peroxide (50 µM) for 24 hours.  Tissue lysate was used for 

protein isolation and protein microarray as described above or for Western blotting.  Each condition was 

performed in quadruplicate.  Shown is the mean relative intensities of each protein (±SD of four observed 
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values) normalized against control. The black bar is the percent change in TGA treated tissues compared to 

hydrogen peroxide (white bar) treated tissues.  The gray bar is the percent inhibition comparing FD 

pretreated and challenged tissues compared to non-FD treated hydrogen peroxide tissues.  

      

 

 
 
Figure 23. Upregulation of proteins associated with mTOR pathway treated with TGA and/or 50µM 

H2O2. Expression levels of eIF4G (S1232) and eIF2a.  Kinexus protein microarray analysis using 50µg 

protein lysate to probe protein expression.  Results expressed as relative protein expression levels using 

percent change from control (%CFC).  Tissue lysate measured in duplicate.  Tissues were pretreated with 

or without 1 µg.ml TGA overnight at 37°C/6% CO2.  The next day tissues were washed and challenged 

with (+) or without (-) hydrogen peroxide (50 µM) for 24 hours.  Tissue lysate was used for protein 

isolation and protein microarray as described above or for Western blotting.  Each condition was performed 

in quadruplicate. Shown is the mean relative intensities of each protein (±SD of four observed values) 

normalized against control. The black bar is the percent change in TGA treated tissues compared to 

hydrogen peroxide (white bar) treated tissues.  The gray bar is the percent inhibition comparing FD 

pretreated and challenged tissues compared to non-FD treated hydrogen peroxide tissues.       

  

Western blot analysis of tissue lysate was conducted to confirm the microarray 

data examining expression used in the protein array (Figures 19-23). mTOR protein 

levels did not show significant inhibition in either TGA or TGA-H2O2-challenged tissue 

samples compared control (Figure 24). This is a difference in protein microarray data of 

the previous section.  Raptor (an mTOR-binding protein) was significantly inhibited 
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(p<0.0001) when treated with TGA or TGA-H2O2-challenged treated cells over control 

group.  

 

 
 

Figure 24. Western Blot analysis of mTOR and Raptor. A) Western blot analysis for validation of 

mTOR and Raptor protein levels.  B) Quantification of mTOR and Raptor protein levels treated with 50 

μM H202 or 1 μg/ml TGA on human skin samples. Protein results represent the average protein expression 

and SEM of mTOR and Raptor, *** (p<0.001) highly significant changes in expression levels comparing 

all treatment groups to control.   

 

 

 Western blots were conducted using chemiluminescent due to equipment change 

during experimentation. In light of the role mTOR plays in aged skin, we investigated 

proteins associated with the mTOR complex.  Protein expression was seen for mTOR in 

both TGA and TGA challenged with H2O2 (no significance); however, a down regulation 

was seen for RICTOR and RAPTOR (TGA, p<0.05 and TGA/H2O2, p<0.01) in 

comparison to control in Figure 25.  ATG13 was downregulated in all treatment groups 

(p<0.001).  Some slight differences was seen between protein microarray data and 
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western blot analysis.  For example, pmTOR (S2448) microarray TGA was down 

regulated (-2.57%) but visually western blot presented a slight increase in change from 

control.  A complete contradiction in analysis between microarray and western blot 

demonstrated a downregulation for both TGA and H2O2-challenged TGA for total mTOR 

(Figures 24 and 26), but upregulation in microarray(Figure 22).   

 

 
 

Figure 25. Western Blot analysis of proteins associated with the mTOR pathway.  Results of western 

blot analysis of pMTOR (S2448), ATG13, SOD2, RICTOR, RAPTOR, and β-actin in human skin. Samples 

were treated on Day 1 with media (Lane 1), 50µM H2O2 (Lane 2), or TGA (Lane 3 and 4).  Day 2-50µM 

H2O2 added to Lane 4. Day 3 all samples were removed for protein extraction. Lanes are represented as 

followed: Lane 1: Media only (control), Lane 2: 50µM H2O2, Lane 3: TGA, Lane 4: TGA and 50µM H2O2. 
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Figure 26.  Densitometry of proteins associated with the mTOR pathway.  Results of western blot 

analysis of pMTOR (S2448), ATG13, SOD2, RICTOR, RAPTOR, and β-actin in human skin. Samples 

were treated on Day 1 with media (Lane 1), 50µM H2O2 (Lane 2), or TGA (Lane 3 and 4).  Day 2-50µM 

H2O2 added to Lane 4. Day 3 all samples were removed for protein extraction. Lanes are represented as 

followed: Lane 1: Media only (control), Lane 2: 50µM H2O2, Lane 3: TGA, Lane 4: TGA and 50µM H2O2. 

 

 

Skin tissue was exposed to a pro-oxidant (50µM H2O2) to determine protein 

expression levels for superoxide dismutase 2.  Densitometry was performed on 

chemiluminesence, due to fluorescence measurement unavailability.  Previously, in 

Figure 18, a lower concentration of TGA (0.01µg) reduced SOD2 expression (p<0.0001) 

in human skin.  Upon further investigation, TGA (1.0µg) lowered SOD2 protein 

expression (no significant), but H2O2-challenged TGA showed significance (p<0.05) over 

control in reducing antioxidant defense protein, SOD2 (Figure 27).   
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Figure 27.  Inhibition of Superoxide Dismutase by TGA in Human Skin. Skin samples were treated 

over three days with either TGA, TGA and activated with 50µM H2O2, or untreated (Control) in a 24 well 

plate.  Protein lysate was extracted and loaded into a 4-20% Tris-glycine gel. Protein expression levels of 

SOD2 inhibited by TGA in tissue, similar to expression seen in cells. Results depicted as mean ± SD, 

*p<0.05. 
 

 

V. 4 Conclusion 

 

In Figure 17, inhibition of cellular stress in protein lysate of human skin treated 

with C3 or TGA in comparison to control.  Previous results from toxicology assessment 

correlate with the lack of ROS generation, which support these findings at a protein level 

through the reduction of cellular antioxidants induced by fullerene derivatives.  A 

significant attenuation of SOD2 (p<0.0001) by both TGA and C3; while Thioredoxin 1 

showed significance (p<0.05) for C3, no expression was detected for TGA as a means to 

perform as a cellular defense mechanism.  

Thus, we hypothesized that TGA could counteract oxidative stress-induced 

damage to human skin. For instance, previously we examined the effects of fullerene 
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derivatives on aged skin and discovered a thinning epidermis and induction of cellular 

stress response in SOD2 as well as ROS formation in control, while fullerene derivatives 

demonstrated an opposite effect. This and a previous study [165] has established these 

factors essential for understanding the aging process.   These mechanisms are in place to 

alleviate deleterious effects of reactive oxygen species via enzymatic and/or non-

enzymatic antioxidants.  Previous studies have investigated SOD2 and mitochondria 

function related to aging and have shown that tris-malonic acid derivative of the fullerene 

C60 molecule (C3) acts as a SOD2 mimic in Sod2−/− mice, which lack expression of 

mitochondrial manganese superoxide dismutase (MnSOD), increased their life span by 

300% [4].  Nano-Pt has been shown to prolong worm lifespan in a dose-dependent 

removal of superoxide anion and hydrogen peroxide by resembling SOD2/catalase 

biologically [166].   

Thioredoxin 1 expression is found in all mammalian cells and tissues, located in 

the nucleus, plasma membrane and protein secretion.  To reduce ROS damage caused by 

mitochondrial respiration, thioredoxin 1 is utilized by mitochondrion and the nucleus 

requires the presence of reduced thioredoxin for transcription factor activation. Cytosolic 

thioredoxin controls cellular growth, apoptosis and inflammation.  In the cytoplasmic 

regions of the cell is a regulator of cell signaling, stress, and transcription factors [167-

170]. A study conducted by Young, et al., found suppression of thioredoxin 1 in human 

fibroblasts induced premature senescence by upregulating p53/p21 (Cip/Waf1) and p16 

tumor suppressor pathways, in turn may enhance organismal longevity [171] because 

these pathways are believed to promote organism aging [172]. 
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We have previously reported that fullerenes can counteract the effects of various 

ROS inducers including H2O2 [4, 8, 44] and reduce inflammatory mediator release from 

skin mast cells [44].  Upstream effectors of mTOR/Raptor complex such as: AKT, PI3K, 

and MAPK as well as downstream effectors S6 (S235/236), S6K1, and/or 4E-BP1/EIF4E 

are ideal targets for mitigating cellular aging [67].   Upregulation of mTOR by these 

effectors can lead to senescence and aging at both the cellular and organismal level.  

mTOR-related proteins that were significantly inhibited by TGA include Raptor (Figures 

24 - 26).  Our results in this study, follow a similar response in TGA treated samples 

effect on mTOR on aged skin.  Lucafo and colleagues, reported fullerene treated MCF7 

cells inhibited mTOR signaling through investigation of gene expression profiles [61].  

These observations were similar with our lab experiments, and may suggest TGA may 

directly or indirectly influence the mammalian target of rapamycin (mTOR) pathway. 

The current study suggests Raptor’s role as a scaffolding protein connecting 

mTOR and phosphorylating substrates for mTOR activation [173].  The quantitative 

analysis of mTOR substrate signaling, only confirms translational levels, additional in-

depth experiments to understand TGA interaction with the mTOR-Raptor complex are 

necessary to address the underlying molecular mechanisms. The selective mTOR 

inhibitor, rapamycin has been used as a positive control, to attenuate pathological defects 

in Alzheimer’s mouse studies [174], while C60 fullerenes [43],  and single walled carbon 

nanotubes [175]  have been shown to inhibit mTOR activation.  Little research has been 

conducted investigating the mTOR-Raptor complex and the effects of C70 to alter this 

pathway.  Therefore, we can only conclude from previous studies focusing on the mTOR-
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Raptor interaction, that show consistency with other mTOR inhibitor studies [176-178], 

to conclude that dissociation of Raptor from mTOR suppresses mTOR expression via 

TGA administration, thereby potentially suppressing cellular aging.  

Potential target proteins were exposed using a Kinexus microarray to elucidate 

unknown mechanisms of aged skin treated with TGA or H2O2-challenged TGA.  Another 

substrate of mTOR is S6, ribosomal protein S6 and 4E-BP1, plays a major role in cell 

proliferation, growth, and survival [179].  4E-BP1 has several phosphorylation sites 

Thr46, Ser65, Thr70, Ser112, Sear 101, and Thr37[179, 180]; where Ser65 is more 

sensitive than Thr46[181].  These phospho sites are necessary for binding or dissociation 

of 4E-BP1-eIF4E complex. A dephosphorylation of 4E-BP1 and increase in eIF4E is 

correlated with environmental stress or infection [181, 182]. In this study, 4E-BP1 (S65) 

and (Thr46) was downregulated by TGA, whereas H2O2-challenged TGA upregulated 

4E-BP1 (Thr46) and downregulated Ser65.  A similar event was reported by Gingras et 

al., where Thr 46 was relatively insensitive to serum deprivation and rapamycin 

treatment,  thereby blocking translation factor, eIF4E [181].   

Activation of mTOR/S6/4E-BP1 leads to initiation of translation and cell growth, 

cellular senescence and aging[183]. Blocking of eIF4E and eIF4E (S209) was seen across 

both TGA and H2O2-challenged TGA (Appendix A, Table 2.), indicating even partial 

inhibition can impede eIF4E binding to 4E-BP1. Microarray data for S6 (Appendix A, 
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Table 2) produced a reduction in protein expression along with western blot analysis for 

mTOR/Raptor complex (Figure 24) suggesting a decrease in the aging process.   

In contrast, others have argued the suppression of SOD2, inhibition of mTOR 

axis, and induction of autophagy have contributed to senescence, leading to accelerated 

aging [184].  Basal levels of cellular degradation (autophagy) are common to maintain 

cellular homeostasis, but accelerated levels are usually seen with enhanced ROS levels 

[185].  In the current study, ATG13, mTOR, and SOD2 levels were all diminished for 

both TGA and H2O2-challenged TGA (Figures 25, 25 and 27).  It should be noted that 

autophagy is a cytoprotective process, not a destructive one. The role of mTOR and 

autophagy has been establish through various organisms[186, 187]  Inhibition of mTOR 

triggers dephosphorylation of ATG13 allowing the formation of ATG13-ATG1 complex, 

but activation of mTOR phosphorylate ATG!3 preventing ATG1-ATG13 formation 

[185].  A few pieces of the puzzle is missing with this study and that is pATG13.  This 

key component will verify whether TGA or combination can activate pmTOR to 

phosphorylate this protein preventing ATG13-ATG1 formation leading to autophagic 

initiation [185].   

 mTOR is a negative regulator of autophagy and inhibition under starvation 

conditions leads to induction of autophagy by means of activating 

mTOR/ATG13/ULK1/ULK2 [188].  A key component to longevity is caloric restriction, 

which can induce autophagy through inhibition of IGF (Insulin growth factors) and 

mTOR target [189].  In contrast, several researchers have noted that lifespan cannot be 

extended with caloric restriction if mTOR is suppressed as reported in worms, flies, and 
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yeast [189, 190]. Furthermore, inhibition of mTOR-Raptor (mTORC1) on protein 

translation was examined via S6K/4E-BP1/EIF4 complex where inhibition of S6k 

extended lifespan in mammals [191].  Although, an increase in autophagy was not seen in 

this study, it should be noted, normal levels of autophagy could suffice for removal of 

dysfunctional proteins if optimal numbers are maintained [188]. 
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APPENDIX A 
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Figure 28. Relative Intensity of ROS generation using DCF assay. DCF analysis of 

intracellular generation of free radicals in response to C70-TGA.  ROS generation was not seen a 
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0.01 or1 µg TGA for all timepoints measured when compared to control.  No significance was 

seen acrossall treamment groups. Experiment was conducted in triplicate and mean ± SD 

represented in graph. 

 

 

Table 2. List of Proteins affected by TGA and/or 50 μM H2O2. 
 

Target Protein Phospho-site %CFC                

50µM 

H2O2 

%CFC            

1µg/ml 

TGA 

%CFC                

50µM 

H2O2/1µg/ml 

TGA  

MEK2 mouse T394 -30.70 -55.00 -66.23 

IRS1 Y1179 -61.27 -33.90 -59.93 

IR Y972 -21.85 -7.93 -53.38 

p38d MAPK Y182 -9.99 -7.84 -52.65 

ACTA1 (Alpha -

actin) 

Pan-specific -35.31 -16.02 -52.01 

p53 S392 -25.14 -5.04 -51.25 

MEK2 human T394 -34.93 -3.06 -50.71 

p53 Pan-specific -10.59 2.05 -50.69 

MEKK1 Pan-specific -37.88 -38.02 -50.14 

Akt1 (PKBa) Y474 -32.09 -11.64 -47.40 

S6K T412 -32.62 -22.07 -47.30 

4E-BP1 S65 -45.84 -22.00 -47.03 

p38b MAPK T180+pY182 -16.28 -16.24 -46.36 

p70 S6K Pan-specific -24.63 -12.09 -45.52 

MEK1 S298 -41.64 -37.63 -44.65 

PRAS40 T246 -17.87 -23.68 -44.43 

MEK4 S257/T261 -9.47 -11.15 -41.18 

MEK2 T394 -26.89 -7.64 -40.53 

STAT3 Y704 -14.53 -15.08 -39.93 

Abl Y393 -24.16 -19.31 -39.09 

MEK7 Pan-specific -24.65 7.50 -38.51 

Abl Pan-specific -8.50 -6.58 -37.68 

MEK3b Pan-specific -10.44 -20.88 -35.90 

MEK1 S292 -36.91 -8.61 -33.57 

MKK3 S218 -3.10 -12.05 -33.17 

JNK3 Pan-specific -10.61 -12.64 -33.04 

STAT5A S780 -30.11 -5.19 -32.45 

p70 S6K S411 -15.98 4.78 -32.30 

PTEN S380/S382/S385 -33.53 -27.63 -31.80 

MKK3 S189 -28.06 -3.47 -31.31 

Vimentin S33 -32.43 -10.49 -30.99 
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p70 S6K T421/S424 -38.63 -5.19 -30.07 

ATF2 T69+T71 -32.26 -20.55 -29.43 

S6 S235 -38.23 -17.96 -27.70 

Fos T232 -14.74 9.54 -27.35 

IKKa Pan-specific -0.65 -18.46 -26.21 

*List of C70-TGA and/or 50 μM H2O2 affected antibody microarray results (duplicate spots).  

Site of phosphorylation is given after protein name.  %CFC, percent change from control. 
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Table 2. List of Proteins affected by TGA and/or 50 μM H2O2. (Cont’d) 
 

Target Protein Phospho-site %CFC                

50µM H2O2 

%CFC            

1µg/ml TGA 

%CFC   

50µM 

H2O2/1µg/ml 

TGA 

ASK1 S966 -17.00 -31.33 -25.33 

IKKa T23 0.34 1.01 -23.53 

ERK1/2 T202+T185 -29.78 -19.22 -23.42 

p70 S6K S424 -10.76 35.21 -23.39 

Jun S73 -29.92 -17.29 -23.35 

CDK1 Y19 -13.50 -4.97 -21.65 

Hsc70 Pan-specific -23.52 52.54 -21.30 

MAPKAPK2 Pan-specific -42.32 -18.68 -21.14 

MEK3/6 S189 + S207 -34.36 -14.07 -20.20 

SOD (Cu/Zn) Pan-specific -21.14 0.47 -19.93 

DUSP10 Pan-specific 5.89 -7.12 -19.42 

Cyclin D1 Pan-specific 22.37 3.43 -18.28 

Akt1 (PKBa) S473 -16.52 1.26 -18.16 

p53 S6 -4.50 18.48 -16.95 

Jun Pan-specific -24.50 -13.51 -16.37 

eIF4G S1108 -22.39 1.40 -16.20 

p38a (MAPK 14) Pan-specific -12.19 12.90 -15.86 

Shc1 Y239/Y240 6.63 -9.26 -15.53 

STAT1 Y701 -14.81 3.39 -15.52 

ERK1 Y204 -7.10 4.25 -15.33 

Lyn Pan-specific -16.86 -0.77 -15.15 

IRS1 Y612 -17.52 -22.33 -14.99 

Hsp70 Pan-specific -23.91 5.08 -14.86 

MEK6 Pan-specific -31.93 -8.54 -14.51 

STAT1 S727 -1.51 -19.60 -14.21 

p38a MAPK Pan-specific -2.15 -6.88 -13.89 

DUSP11 Pan-specific 3.57 -4.23 -13.85 

p53 S37 -3.75 18.78 -13.46 

MEK1 T292 -25.19 -12.15 -13.31 

Akt1 (PKBa) Y326 -13.01 8.74 -12.91 

MEK1 T386 1.69 18.28 -12.52 

MEKK-NT Pan-specific 19.08 -22.53 -12.46 

Akt2 (PKBb) Pan-specific -7.32 -8.24 -10.41 

DUSP12 Pan-specific 24.61 0.41 -10.34 

Grp75 Pan-specific 8.49 23.62 -10.32 

CDC42 Pan-specific 8.39 -16.64 -9.50 

NFKB p65 S536 -17.17 -9.00 -8.91 

MAPKAPK2 T334 -5.47 1.76 -8.84 

eIF4E S209 -26.33 -8.69 -8.30 

IRS1 S639 25.76 -7.85 -7.58 

VEGFR2 Y1214 -17.76 1.94 -7.49 

*List of C70-TGA and/or 50 μM H2O2 affected antibody microarray results (duplicate spots).   

Site of phosphorylation is given after protein name.  %CFC, percent change from control. 
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Table 2. List of Proteins affected by TGA and/or 50 μM H2O2. (Cont’d) 
 

Target Protein Phospho-site %CFC                

50µM H2O2 

%CFC            

1µg/ml TGA 

%CFC                

50µM 

H2O2/1µg/ml 

TGA  

STAT5 Y694 5.89 -3.48 -7.39 

ERK1/2 Pan-specific -1.38 15.75 -7.23 

Shc1 Y349 7.31 -12.87 -7.12 

Grp78 Pan-specific -15.23 2.51 -6.98 

CDC7 T376 10.57 -9.35 -6.95 

p38b MAPK Pan-specific 17.02 4.14 -6.92 

Hsp27 S15 -13.24 1.70 -6.58 

DUSP2 Pan-specific 0.10 5.41 -6.38 

p38g MAPK Pan-specific 9.12 10.65 -6.33 

ERK1/2 Y204+Y187 -13.39 13.87 -6.20 

MAPKAPK5 T186 -13.15 1.10 -5.75 

p38d MAPK Pan-specific 10.32 -3.14 -5.48 

Tubulin Pan-specific -23.20 -13.86 -2.97 

PTEN Pan-specific 0.69 -10.11 -2.19 

p38a MAPK T180+pY182 2.08 -4.54 -2.03 

ERK5 Y221 -15.95 2.57 -1.07 

PTEN S380/T382/T383 5.12 11.06 -0.63 

MELK Pan-specific 21.32 -7.25 -0.47 

*List of C70-TGA and/or 50 μM H2O2 affected antibody microarray results (duplicate spots).   

Site of phosphorylation is given after protein name.  %CFC, percent change from control. 
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Table 2. List of Proteins affected by TGA and/or 50 μM H2O2. (Cont’d) 

Target Protein Phospho-site %CFC                

50µM 

H2O2 

%CFC            

1µg/ml 

TGA 

%CFC                

50µM 

H2O2/1µ

g/ml 

TGA  

MKP2 Pan-specific -14.65 -8.47 -0.26 

A-Raf Y302 2.26 -1.66 0.52 

ERK1 T202+Y204 -19.55 -0.63 1.40 

mTOR S2448 26.83 -2.57 1.64 

Hsp27 S78 -12.97 6.30 1.92 

4E-BP1 Pan-specific -8.86 -8.65 2.28 

eIF4B S422 -8.33 3.82 2.35 

IRS1 S312 9.82 -10.69 2.42 

Jun Y170 -18.80 22.47 2.50 

eIF4E Pan-specific -16.50 -24.60 3.08 

MEK4 Pan-specific -3.47 16.26 3.25 

ERK4 S186 7.79 -10.52 3.34 

MEK2 Pan-specific 13.54 37.62 3.45 

ERK1 Y204+T207 12.39 37.78 4.19 

Akt1 (PKBa) Pan-specific 5.49 -8.91 4.44 

DUSP5 Pan-specific -4.35 1.25 4.98 

STAT6 Pan-specific -20.18 56.85 5.31 

NFKB p65 S529 -1.47 13.79 6.20 

4E-BP1 T45 -37.41 -0.54 6.53 

JNK 1/2/3 T183/Y185 17.77 -1.93 6.54 

GADD 153 (CHOP) Pan-specific 45.40 6.15 6.60 

Hsp27 S86 -6.56 2.20 7.22 

ERK5 Pan-specific -9.92 0.17 7.24 

GroEL Pan-specific -3.44 -5.42 7.83 

ALK Y1507 37.88 30.23 8.92 

MEKK2 Pan-specific 9.41 0.02 8.93 

PI3-Kinase Pan-specific -28.91 -6.15 9.49 

MEK1 + B23(NPM) S217+S221 -9.03 60.75 9.54 

STAT5A Pan-specific -22.59 -9.74 10.18 

AMPKa2 S377 21.79 2.54 10.93 

DUSP3 Pan-specific 35.71 20.45 11.25 

VGFR1 Pan-specific 8.71 4.65 11.40 

MDM2 S166 -11.96 6.06 11.70 

MEK3/6 S189/193/S207/211 18.28 8.63 12.06 
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p21 CDKI1 Pan-specific -8.01 25.47 12.30 

VEGFR2 Y1059 -7.29 15.67 12.96 

*List of C70-TGA and/or 50 μM H2O2 affected antibody microarray results (duplicate spots).   

Site of phosphorylation is given after protein name.  %CFC, percent change from control. 

 

 

Table 2. List of Proteins affected by TGA and/or 50 μM H2O2. (Cont’d) 

 

Target Protein Phospho-site %CFC                

50µM H2O2 

%CFC            

1µg/ml 

TGA 

%CFC                

50µM 

H2O2/1

µg/ml 

TGA  

Insulin Receptor b Pan-specific -11.86 2.82 13.23 

p38a MAPK T180/Y182 -20.13 -7.00 13.53 

MKK7 Pan-specific -10.39 66.43 13.80 

DUSP7 Pan-specific 27.15 -6.63 13.84 

DUSP1 (MKP1) Pan-specific 18.33 -2.90 13.89 

JNK2 Pan-specific -11.49 -9.01 13.91 

NFKB p65 (Rel A) S276 -12.14 -8.01 15.27 

ERK1 S74 -5.29 13.82 15.95 

MEK3 Pan-specific 21.91 88.77 16.50 

MAPKAPK2 T222 -7.60 22.01 16.62 

MKK3 Pan-specific 1.82 -7.73 16.76 

ERK5 T219+Y221 0.42 13.40 17.29 

MEK1 Pan-specific 2.91 6.35 17.71 

STAT2 Y689 -12.12 4.87 17.72 

Jun S243 11.96 0.91 17.73 

MEK5 Pan-specific 27.10 -6.63 18.12 

ERK2 Pan-specific 11.59 9.82 18.18 

CDK1 Pan-specific 9.70 -3.42 18.71 

p70 S6K T229 6.35 17.92 19.13 

eIF2a S52 1.57 3.24 19.62 

STAT5B Pan-specific 10.19 1.49 20.73 

A-Raf Pan-specific 28.82 8.36 22.08 

p27 Kip1 Pan-specific 13.58 64.07 23.06 

VGFR3 Pan-specific -2.33 16.83 23.93 

ERK5 T218+Y220 -4.01 20.48 25.31 

NFkappaB p50 Pan-specific -12.50 -0.64 25.84 

DUSP9 Pan-specific 24.46 6.00 27.41 

VEGF-C Pan-specific 7.71 10.18 27.45 

CREB1 S133 24.96 4.94 27.54 

DUSP6 Pan-specific 13.61 1.02 27.83 

NFkappaB p65 Pan-specific -3.43 17.28 29.72 

ERK1 T207 21.19 31.45 30.62 

ERK1 Pan-specific 14.95 18.67 30.84 

MKK6 Pan-specific 15.97 4.61 32.28 

STAT1 Pan-specific -4.96 43.28 34.17 

STAT3 Pan-specific -16.95 7.78 34.59 
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ERK3 Pan-specific 3.51 10.60 36.26 

MKK3 Y230 -0.64 -14.56 37.98 

Wee1 Pan-specific 33.47 57.59 40.52 

Hsp105 Pan-specific 30.73 81.93 41.13 

DUSP4 Pan-specific 28.29 7.31 41.20 

*List of C70-TGA and/or 50 μM H2O2 affected antibody microarray results (duplicate spots).   

Site of phosphorylation is given after protein name.  %CFC, percent change from control. 

 

 

Table 2. List of Proteins affected by TGA and/or 50 μM H2O2. (Cont’d) 

 

Target Protein Phospho-site %CFC                

50µM 

H2O2 

%CFC            

1µg/ml 

TGA 

%CFC                

50µM 

H2O2/1µg/

ml TGA  

Jun T91 14.50 20.12 42.22 

MKK4 Pan-specific 25.57 8.86 42.99 

mTOR Pan-specific 29.19 9.25 43.74 

eIF4G S1232 11.01 43.61 44.99 

eIF2a Pan-specific -0.12 21.32 46.50 

DUSP8 Pan-specific 48.35 14.62 48.36 

SODD Pan-specific 57.80 14.61 49.15 

ASK1 Pan-specific 31.91 21.90 49.63 

CREB1 S129/S133 -2.39 23.31 53.17 

JNK1 Pan-specific 49.99 -13.17 58.46 

p53 S33 44.56 7.53 61.82 

Fos Pan-specific 76.56 25.02 64.69 

STAT2 Pan-specific 71.08 57.53 65.77 

VGFR2 Pan-specific 51.76 11.58 69.88 

STAT4 Pan-specific 17.82 40.31 79.30 

ATF2 S94/S112 -4.99 75.33 86.27 

Grp94 Pan-specific 115.25 9.84 119.65 

*List of C70-TGA and/or 50 μM H2O2 affected antibody microarray results (duplicate spots).   

Site of phosphorylation is given after protein name.  %CFC, percent change from control. 

 

 

 

 


