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Social Desirability Bias (SDB) is the tendency in respondents to answer ques-

tions untruthfully in the hope of giving good impression to others. SDB occurs

when the survey question is highly sensitive or personal, and responses cause sample

statistics to systematically overestimate or underestimate corresponding population

parameters. The Randomized Response Technique (RRT) is one of several methods

to get around SDB in surveys involving sensitive questions in a face-to-face interview.

We first review some of the well-established binary response RRT models in-

cluding the two-parameter models such as the two-stage RRT model and the optional

RRT model. Then, we examine an optional RRT model based on the unrelated

question RRT as presented by Gupta, Tuck, Spears Gill, and Crowe (2013). Also,

we show another optional RRT model based on the two-stage RRT. Next, we carry

out efficiency comparisons between these models and show simulation results. While

these two models are all based on the split-sample approach to estimate two unknown

parameters of interest (π and ω—the prevalence of sensitive characteristic and the

sensitivity level of the underlying question respectively), the next two models utilize

the two-question approach instead. One of them relies on the unrelated question RRT

model. And the other relies on the two-stage optional RRT model. Again, efficiencies

of estimators are compared and simulation results are provided.

In the end, simulation results and figures are presented and some conclusions

are made regarding which estimator performs better. It turns out that the two-stage

optional indirect RRT model with two-question approach performs better than other

binary optional RRT models.
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CHAPTER I

INTRODUCTION

1.1 Privacy Protection in Surveying Sensitive Questions

Social Desirability Bias (SDB) is the idiosyncrasy created by respondents in

answering sensitive questions unfaithfully in the hope of leaving good impression on

others. In addition to this Impression Management component, there also exists Self-

Deception component in SDB. Some people just tend to believe that they are not

engaged in socially undesirable activities and report to the interviewer accordingly,

causing different kind of SDB. Paulhus (1984) recommends that Impression Manage-

ment, not Self-Deception, be controlled in survey research. SDB can happen when

the survey question is highly sensitive or personal. This is one of the many biases

which occur during survey sampling. Other typical biases are evasive answer bias,

refusal bias, nonresponse bias, selection bias, voluntary response bias, and so forth.

These biases create a problem because they cause sample statistics to systematically

overestimate or underestimate corresponding population parameters.

There are several techniques to promote faithful answers and to avoid Im-

pression Management component of SDB such as the Bogus Pipeline Technique, the

Unmatched Count Technique, and the Randomized Response Technique. But, in

light of the principle of privacy protection, the Bogus Pipeline Technique would be

a lot less desirable than other methods because it simply tricks the respondent to

tell the truth and there is no privacy protected whatsoever. Privacy protection can

be equated with the interviewee’s power to hide his or her sensitive and personal

1



information. Both the Unmatched Count Technique and the Randomized Response

Technique adopt randomization device between the respondent and the interviewer.

By placing stochastic devices between them, these two methods not only elicit truthful

answers, but also protect each respondent’s privacy as well.

In the following sections, we review those techniques in detail and discuss

possible new applications of the Randomized Response Technique to the area of con-

fidentiality protection in data mining and redacted datasets.

1.2 Various Approaches Including RRT to Circumvent SDB

1.2.1 Unmatched Count Technique

This technique has a couple of different names; the Item Count Technique

and the List Technique. The basic idea of the Unmatched Count Technique (UCT)

is very simple. Randomly selected respondents in the control group receive a group

of non-sensitive questions, and are asked to report the number of “yes” answers.

After one sensitive question is added to the existing set of questions, the new set

of questions is given to the other group. As members of both groups are randomly

selected, we can assume that their proportions of “yes” responses towards the non-

sensitive questions would be the same. Thus, we can get the unmatched count from

the experimental group. As the respondents are required to simply report the number

of “yes” answers, Impression Management component of SDB can be avoided. The

population proportion of “yes” answers to the sensitive question can now be deduced

statistically.

In many cases, it would be easy for the researcher to implement the UCT.

Just paper and pencils are needed and no other complex randomization devices are

required. Also, for the participants, the UCT is quite easy to understand and straight-
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forward, providing a strong perceived sense of privacy. Studies such as Coutts and

Jann (2011) and Lavender and Anderson (2009) have shown that, in practice, the UCT

is more effective than other techniques because the highest perception of anonymity is

found for the UCT among the respondents. However, the theory for the UTC model

is not as extensive as is for the RRT models. The RRT models allow many different

kinds of improvements which make these models more efficient. These improvements

include optional models and two-stage models.

1.2.2 Bogus Pipeline Method

The term Bogus Pipeline (BPL) was coined by Jones and Sigall (1971) to

describe an imaginary dream device for psychologists, which would provide a direct

pipeline to the soul. Thus, they could have access to reliable psychological indicators.

Jones and Sigall (1971) proposed that respondents’ answers wouldn’t be contaminated

by many of the biases, including SDB, if they were convinced that the device in front

of them was an actual lie detector. Their explanation was that respondents didn’t

want to be second-guessed by a machine, trying to avoid possible loss of face while

believing the true answers would be revealed regardless of their response. Roese and

Jamieson (1993) showed that the BPL produced reliable effects consistent with a

reduction in SDB after meta-analyzing 31 studies that had used the bogus pipeline

for their research.

1.2.3 Randomized Response Technique

The Randomized Response Technique (RRT) was first proposed by Warner

(1965). It is a survey research method specifically designed to ask sensitive questions.

3



Suppose we need to estimate the proportion of drug abusers in the last 3

months in the target population. Let us have a deck of cards where 10% of the

cards have the statement “I have used controlled substances without prescription at

least once in the last 3 months.” The rest of the cards have the statement “I have

not used controlled substances without prescription in the last 3 months,” written

on them. The respondents are expected to give a binary answer—either “yes, this

statement is correct,” or “no, this statement is not correct”—to the statement on

the card which they draw from the deck. Due to the randomization device—10%

probability of drawing drug abuse question, the researcher has no idea of what a

“yes” answer means individually or what a “no” answer means individually.

Notice that it is quite important in practice for the respondent to understand

that the RRT maintains privacy, as the randomization device is invisible. Some of

the respondents might not be able to grasp this probability concept easily. Without

this understanding, Impression Management component of SDB cannot be overcome.

Since the RRTmethod was first introduced in 1965, there are many areas where

the RRT models have been used. The most widely applied area for the RRT would be

surveys on controlled substances and illicit drug use. Brewer (1981) estimated mari-

juana usage using the RRT in a population survey of Canberra, Australia and found

out some paradoxical results. Akers, Massey, Clarke, and Lauer (1983) conducted

a survey of teenage smoking in a Midwestern community and validated teenagers’

responses by the RRT with their biochemical measure of smoking. Weissman, Steer,

and Lipton (1986) conducted telephone interviews through the use of the RRT to

estimate illicit drug use.
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Another interesting area where the RRT plays an important role would be

business management and regulatory compliance. For example, Buchman and Tracy

(1982) reported a tendency toward more honest answers through the use of the RRT

when they surveyed auditors’ dishonest professional behavior of false sign-offs dur-

ing audit procedures. Wimbush and Dalton (1997) estimated the base rate of em-

ployee theft for those personnel with access to cash, supplies, merchandise, or cash-

convertible products by using two different types of the RRT. Houston and Tran

(2001) conducted a mail questionnaire survey using both the RRT and the direct

questioning to estimate the prevalence and type of income tax evasion. Elffers, van der

Heijden, and Hezemans (2003) studied the evidence of compliance with two Dutch

laws and measured self-reported compliance by use of the RRT and the adapted logis-

tic regression. Schneider (2003) conducted an experimental study to examine whether

compensation and stock ownership affect internal auditors’ objectivity. In order to

elicit truthful responses and overcome SDB from active internal auditors, Schnei-

der adopted the RRT and collected randomized responses from 172 participants. It

was found that stock ownership did not affect internal auditors’ reporting decisions

while compensation tied to stock prices made internal auditors report violations less

frequently.

In the Netherlands, Lensvelt-Mulders, van der Heijden, Laudy, and van Gils

(2006) validated a computer assisted RRT survey to estimate the prevalence of fraud

in disability benefits. By the time of Lensvelt-Mulders et al.’s research, the actual

survey to estimate the disability fraud in the Netherlands included home interviews

by trained interviewers with randomized response questions. Lavender and Anderson

(2009) assessed the effect of perceived anonymity on endorsements of eating disorder
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behaviors and attitudes among 469 undergraduate women from a university in the

Northeastern United States. They used a standard anonymous true/false survey,

the UCT, and the RRT. Then they compared the results generated by those three

different survey techniques.

In Germany, Ostrapczuk, Musch, and Moshagen (2009) studied SDB among

the highly educated and the less educated in their attitude towards foreigners, com-

paring their answers from direct questioning conditions and the RRT conditions. Sim-

ilarly, Krumpal (2012) estimated the prevalence of xenophobia and anti–Semitism by

using both the RRT as well as the direct questioning. Their results suggested that

the RRT was an effective method eliciting more socially undesirable opinions and

yielding more valid prevalence estimates of xenophobia and anti–Semitism than di-

rect questioning. Also, the results indicated that with increasing topic sensitivity, the

benefits of using the RRT also increased.

It is also quite common to use the RRT in order to estimate the prevalence

of illegal and wrongful activities. In Hong Kong, Kwan, So, and Tam (2010) showed

how truthful answers to sensitive questions about software piracy can be estimated

by using the RRT. In 2011, a team of researchers at the World Anti–Doping Agency

conducted their interviews with athletes at two major track and field events and

surveyed how many of them had used performance enhancing drugs in the past 12

months with scrambled questions with the randomized response techniques (Rohan,

2016). Another study done by Striegel, Ulrich, and Simon (2010) estimated the

prevalence of doping and illicit drug use among elite athletes by using the RRT. In

the field of natural resources management, St John et al. (2011) have used the RRT

6



to discourage environmentally harmful behaviors and estimated the proportion of

farmers in north-eastern South Africa killing carnivores.

Lensvelt-Mulders, Hox, van der Heijden, and Maas (2005) discussed two meta-

analyses on the RRT studies, the first on 6 individual validation studies and the

second on 32 comparative studies. The authors measured the percentage of incorrect

answers and found out that compared to other methods, the randomized response

designs produced more valid results. They also found out that the more sensitive the

topic under investigation, the higher the validity of the RRT results were.

1.3 Confidentiality Protection in Data Mining & Redacted Datasets

In the preceding sections, we reviewed the major characteristics and main ap-

plication examples of the Randomized Response Technique in the context of privacy

protection in surveying sensitive questions. But, the stochastic devices which are

placed between the respondent and the interviewer in surveying sensitive questions

can also be placed between collected datasets and the general public. Many govern-

ments and public organizations allow access to vast amounts of data to the general

public in order to promote better decision making and to meet the needs of the var-

ious members of civil society. And they are legally bound to protect the identities

of those individuals included in the specific dataset. In order to safeguard and share

confidential datasets simultaneously, statisticians have developed a new field of study

which is called, Statistical Disclosure Control. There are many methodologies which

can strip unique identifiers to prevent data snoopers from re-identifying individuals in

the released datasets. Among these are Data Aggregation, Data Swapping, Synthetic

Datasets, and Adding Random Noise (Reiter & Slavkovic, 2012). Nayak, Zhang, and
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Adeshiyan (2015) suggested that the Randomized Response Technique be successfully

used and developed for contemporary problems like Statistical Disclosure Control.

Traditionally, the Randomized Response Technique has been employed in sur-

veying sensitive questions to protect the respondent’s privacy. As vast amount of

confidential datasets have been accumulated and released, thanks to the advances in

computer technologies and cheap storage costs, there exists an urgent need for confi-

dentiality protection of redacted datasets. Nayak, Adeshiyan, and Zhang (2016) and

Nayak and Adeshiyan (2016) emphasized the difference between the traditional usage

of the Randomized Response Technique in privacy protection and the emerging ap-

plications of the RRT to confidentiality protection of individual identities in redacted

datasets and data mining. We expect that much of the new development in the study

of the Randomized Response Technique will take place in the field of confidentiality

protection of data mining and redacted datasets.

1.4 Motivation for & Outline of the Dissertation

Chapter I has presented a brief introduction to Social Desirability Bias and

discussed several techniques to promote faithful answers to sensitive questions. It

has also discussed how those techniques were applied in practice. Furthermore, we

compared the traditional role which the RRT has played in privacy protection with

the emerging application in confidentiality protection and privacy-preserving in data

mining.

Chapter II presents four foundational studies in the RRT field and correspond-

ing models including both binary and quantitative models, which serve as the basis

for the proposed models in this dissertation.
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Chapter III discusses the traditional split-sample based binary RRT models.

The first one is based on Greenberg’s unrelated question model and the other on

Warner’s indirect question model.

Chapter IV presents the latest advances in the binary RRT area with two-

question approach. Instead of using the traditional split-sample approach, we in-

troduce the two-question approach to estimate the level of sensitivity. By choosing

appropriate value of the two-stage parameter T , the proposed model achieves smaller

estimator variance than the competing model.

Chapter V presents how the simulations are set up and discusses the results of

simulations for the comparison of the estimators. We also present the results of the

suitable T intervals by using hit or miss simulation methods.

Chapter VI presents the concluding remarks of this dissertation and possible

future work.

Appendix A & B present the R program codes for the simulations on comparing

performances of the various estimators.

9



CHAPTER II

VARIOUS RRT MODELS

2.1 Indirect Question RRT

The basic idea of the Randomized Response Technique is rather simple. If a

randomization mechanism can be placed between the interviewee and the interviewer,

who thus is not allowed to distinguish the meaning of each individual response, then

increased level of privacy will be ensured. This increased level of privacy will facilitate

increased level of cooperation and elicit a more truthful answer from the interviewee.

Warner (1965) pioneered this very interesting idea of putting a randomization de-

vice to deal with evasive answer bias, especially associated with those personal or

controversial survey questions.

As in Warner (1965), it is assumed likewise that a simple random sample

is drawn with replacement from the population throughout this dissertation. In this

section, we show two models of the indirect question RRT; one for the binary response

(Warner, 1965) and another for the quantitative response (Warner, 1971).

2.1.1 Binary Indirect Question RRT

Warner (1965) proposed a spinner with probability p pointing to the letter

A and with probability (1 − p) pointing to the letter B. Every respondent belongs

to either Group A (the sensitive group) or Group B (the non-sensitive group). The

spinner is run without the interviewer’s presence and the interviewee is to report a

“Yes” or a “No” to indicate whether or not the group the spinner is pointing to is the

group he or she actually belongs to.
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Let Py be the probability of a “Yes” response from a respondent. Note that a

“Yes” response can be provided in two ways. One is when the respondent belongs to

Group A while the spinner points to A. Another is when he or she belongs to Group

B while the spinner points to B. Let π be the proportion of a population that belongs

to Group A. We want to estimate π.

Then Py can be expressed as follows.

Py = πp+ (1− π)(1− p). (2.1)

Solving for π, we have

π =
Py − (1− p)

2p− 1
.

Thus, the Warner’s estimate of π is given by

π̂w =
P̂y − (1− p)

2p− 1

(
p 6= 1

2

)
, (2.2)

where P̂y is the proportion of “Yes” responses in the survey.

Notice that P̂y is an unbiased estimator as well as the Maximum Likelihood

Estimator (MLE) of Py. Taking expected value on Equation (2.2), we get

E (π̂w) =
E
(
P̂y

)
− (1− p)

2p− 1
=
Py − (1− p)

2p− 1
= π.

Thus, π̂ from Equation (2.2) is an unbiased estimator of π.
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The variance of π̂ is given by

V ar (π̂w) =
1

(2p− 1)2
V ar

(
P̂y

)
(2.3)

=
1

(2p− 1)2

{
Py(1− Py)

n

}
. (2.4)

after using V ar(P̂y) = Py(1 − Py)/n. On substituting Py from Equation (2.1) into

Equation (2.4), we have the variance of the Warner’s estimator as given by

V ar(π̂w) =
π(1− π)

n
+

p(1− p)
n(2p− 1)2

(2.5)

with

V̂ ar(π̂w) =
π̂(1− π̂)

n− 1
+

p(1− p)
n(2p− 1)2

. (2.6)

The second term in Equation (2.6) is the penalty for using the RRT and will

go down as n increases. It is advised that one should select p away from 1
2
as shown

in Equation (2.2), and close to 0 or 1.

2.1.2 Quantitative Indirect Question RRT

The quantitative models of the indirect question Randomized Response Tech-

nique was first proposed by Warner (1971) in a rather passing manner without any

formal presentation.
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First, Warner (1971) briefly discussed the additive model, saying “One Obvious

approach is to specify that the reported Z would be the true X plus a random term Y

from a known distribution, the random term Y being selected and added in private.”

Gupta, Shabbir, and Sehra (2010) later generalized this first additive model and

formally presented the two-stage optional additive model of the indirect question

RRT. One can verify this by substituting ω = 1 and T = 1 for the generalized model

of Gupta, Shabbir, and Sehra (2010).

Second, Warner (1971) also proposed the multiplicative model right after the

preceding sentence, adding “A related model could specify that the reported Z would

be the true X multiplied by a random term Y from a known distribution, the multi-

plier Y being selected and the multiplication accomplished in private.” This second

suggested model would be later presented in a formal manner by Eichhorn and Hayre

(1983). They also showed that this model is generally superior to the quantitative

unrelated question RRT model which is described in Subsection 2.2.2.

Let us briefly talk about these two quantitative models which were originally

suggested by Warner (1971).

2.1.2.1 Additive Model

The first quantitative model of Warner (1971) is the additive model which

is quite trivial as shown below. Let µy and σ2
y respectively be the known mean and

variance from a known distribution, and µx and σ2
x respectively be the unknown mean

and variance of the sensitive question in the population. Assume random variables

X and Y are independent. Let Z be the reported response from a respondent. Then

Z can be expressed as

13



Z = X + Y

with

E(Z) = µz = µx + µy, (2.7)

V ar(Z) = V ar(X) + V ar(Y )

= σ2
x + σ2

y. (2.8)

Solving Equation (2.7) for µx, we have

µx = µz − µy.

This leads to the following estimator,

µ̂x = Z − µy, (2.9)

where Z is the sample mean of the quantitative responses in the survey.

It is easy to verify that µ̂x is an unbiased estimator with its variance given by

V ar (µ̂x) =
1

n
V ar (Z) =

1

n

(
σ2
x + σ2

y

)
. (2.10)
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2.1.2.2 Multiplicative Model

The second model of Warner (1971) was the multiplicative model, which later

was formally presented by Eichhorn and Hayre (1983). Let X denote the answer

to the sensitive question with unknown µx and σ2
x. Let Y be a random variable

independent of X with known µy and σ2
y. Assume also X ≥ 0 and Y > 0. Let Z be

the reported response from a respondent. Then Z can be expressed as

Z = X × Y

with

E(Z) = µz = E(XY ) = E(X)E(Y ) = µxµy, (2.11)

V ar(Z) = E(X2)E(Y 2)− (E(X))
2

(E(Y ))
2

=
(
σ2
x + µ2

x

) (
σ2
y + µ2

y

)
− µ2

xµ
2
y

=
(
σ2
x + µ2

x

)
σ2
y +

(
σ2
x + µ2

x

)
µ2
y − µ2

xµ
2
y

=
(
σ2
x + µ2

x

)
σ2
y + σ2

xµ
2
y. (2.12)

In this setup, the multiplicative model can compromise anonymity because

a non-zero reported response Z means X must be non-zero, which clearly indicates

some degree of sensitive behavior is taking place.
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Solving Equation (2.11) for µx, we have

µx =
µz
µy
.

This leads to the following estimator,

µ̂x =
Z

µy
, (2.13)

where Z is the sample mean of the quantitative responses in the survey. It is easy to

verify that µ̂x is an unbiased estimator with its variance given by

V ar (µ̂x) =
1

nµ2
y

V ar (Z) =
1

nµ2
y

{(
σ2
x + µ2

x

)
σ2
y + σ2

xµ
2
y

}
=

1

n

{(
σ2
x + µ2

x

)(σy
µy

)2

+ σ2
x

}
. (2.14)

2.2 Unrelated Question RRT

The unrelated question model was first proposed by Greenberg, Abul-Ela,

Simmons, and Horvitz (1969). It was the binary model and soon after, Greenberg,

Kuebler, Abernathy, and Horvitz (1971) introduced the quantitative version of the

Unrelated Question RRT. The main idea behind these models was that, by adding in-

nocuous questions to the questionnaire with a pre-assigned probability, the response

would be scrambled and the researcher could protect the respondent’s privacy to

elicit truthful answers. In this section, we first discuss two binary unrelated question

models; one with known prevalence of the innocuous characteristic and another with
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unknown prevalence of the innocuous characteristic. Then we examine the quantita-

tive unrelated question model later in the section.

The main advantage of the unrelated question RRT model is that some of the

respondents answer a non-sensitive question, thereby increasing cooperation from the

respondents.

2.2.1 Binary Unrelated Question RRT

In this binary model, a randomization device is used to ask a respondent the

sensitive binary question with pre-assigned probability pa as well as an innocuous

question (whose prevalence is already known) with probability (1− pa).
Let πa be the known prevalence of the unrelated characteristic and π be the

unknown prevalence of the sensitive characteristic. Let Py be the probability of a

“Yes” response from a respondent. Then Py can be expressed as

Py = paπ + (1− pa)πa. (2.15)

Solving for π, we have

π =
Py − (1− pa)πa

pa
.

This leads to the estimator of Greenberg et al. (1969)

π̂ =
P̂y − (1− pa)πa

pa
, (2.16)
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where P̂y is the proportion of “Yes” responses in the survey. It is easy to show that

π̂ is an unbiased estimator with its variance given by

V ar (π̂) =
Py(1− Py)

np2a
. (2.17)

2.2.2 Binary Unrelated Question RRT with Unknown πa

The model described in this subsection is almost identical to the model in the

preceding subsection. The only difference is that we no longer assume we somehow

know the prevalence of the innocuous characteristic. Instead, we treat it as unknown.

A randomization device is used to ask a respondent the sensitive binary question

with pre-assigned probability pi as well as an innocuous question (whose prevalence

is unknown) with probability (1− pi).
Let πa be the unknown prevalence of the unrelated characteristic and π be

the unknown prevalence of the sensitive characteristic. Let Py be the probability of

a “Yes” response from a respondent. Then Py can be expressed as

Py = pπ + (1− p)πa. (2.18)

Equation (2.18) can be rearranged as

Py − pπ = (1− p)πa. (2.19)

As Equation (2.19) includes two parameters (π and πa), it cannot be handled

with one set of responses. Assume we have two independent samples with sizes n1

and n2 respectively (n1+n2 = n). Let us also assume that p1 and p2 are two different
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pre-assigned probabilities associated with the different randomization devices used in

the two samples. Using Equation (2.19) for the two independent samples, we have

Py1 − p1π = (1− p1)πa and Py2 − p2π = (1− p2)πa. (2.20)

With λ = (p1−1)
(p2−1) as in Greenberg et al. (1969), we have

π =
λPy2 − Py1
λp2 − p1

. (2.21)

From Equation (2.21), we have the estimator for π as

π̂ =
λP̂y2 − P̂y1
λp2 − p1

, (2.22)

where P̂y1 and P̂y2 are the proportions of “Yes” responses in the two samples with

sample size n1 and n2 respectively. Note that π̂ is unbiased as shown below.

E (π̂) =
λE
(
P̂y2

)
− E

(
P̂y1

)
λp2 − p1

=
λPy2 − Py1
λp2 − p1

= π. (2.23)

Using V ar(P̂y1) = Py1(1− Py1)/n1 and V ar(P̂y2) = Py2(1− Py2)/n2, the vari-

ance of π̂ is

V ar(π̂) =
1

(λp2 − p1)2
{λ2V ar(P̂y2) + V ar(P̂y1)}

=
1

(λp2 − p1)2

{
λ2
Py2(1− Py2)

n2
+
Py1(1− Py1)

n1

}
. (2.24)

19



Notice that the two samples are independent so that the covariance term does

not exist in Equation (2.24). Using n1 = n− n2, we can rewrite Equation (2.24) as

V ar(π̂) =
1

(λp2 − p1)2

{
λ2
Py2(1− Py2)

n2
+
Py1(1− Py1)

n− n2

}
. (2.25)

After taking partial derivative of Equation (2.25), the optimal ratio of n1

n2
,

which gives the minimum variance, can be obtained:

∂V ar(π̂)

∂n2
=

1

(λp2 − p1)2
∂

∂n2

(
−λ2Py2(1− Py2)

n22
+
Py1(1− Py1)

(n− n2)2

)
= 0. (2.26)

Solving Equation (2.26) for n1

n2
, the optimal ratio of

(
n1

n2

)
opt(π̂)

will be

(
n1
n2

)
opt(π̂)

=
1

λ

√
Py1(1− Py1)

Py2(1− Py2)
=

(1− p2)

(1− p1)

√
Py1(1− Py1)

Py2(1− Py2)
. (2.27)

Let us solve Equations (2.20) for πa. We have

p2Py1 − p1Py2 = (p2 − p1)πa. (2.28)

Solving Equation (2.28) for πa, we have

πa =
p2Py1 − p1Py2

p2 − p1
. (2.29)
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By replacing Py1 and Py2 with their unbiased MLEs, the estimator for πa is

π̂a =
p2P̂y1 − p1P̂y2

p2 − p1
. (2.30)

It is easy to show that π̂a is unbiased for πa with its variance given by

V ar (π̂a) =
1

(p2 − p1)2

{
p2

2

{
Py1(1− Py1)

n1

}
+ p1

2

{
Py2(1− Py2)

n2

}}
. (2.31)

2.2.3 Quantitative Unrelated Question RRT

Very much like the binary response models in previous subsections, the re-

searcher in this quantitative model will also ask a sensitive question with pre-assigned

probability pa and an innocuous question with probability (1− pa).

Let µy and σ2
y be the known mean and variance of an unrelated question.

And let µx and σ2
x be the unknown mean and variance of the sensitive question in

the population. Let Z be the reported response from a respondent. Then Z can be

expressed as

Z =


X with probability pa (sensitive question),

Y with probability (1− pa) (non-sensitive question),

with
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E(Z) = µz = paµx + (1− pa)µy, (2.32)

V ar(Z) = paE
(
X2
)

+ (1− pa)E
(
Y 2
)
− µ2

z

= pa
(
σ2
x + µ2

x

)
+ (1− pa)

(
σ2
y + µ2

y

)
− µ2

z. (2.33)

Solving Equation (2.32) for µx, we have

µx =
µz − (1− pa)µy

pa
.

This leads to the estimator of Greenberg et al. (1971),

µ̂x =
Z − (1− pa)µy

pa
, (2.34)

where Z is the sample mean of the quantitative responses in the survey. It is easy to

show that µ̂x is an unbiased estimator with its variance given by

V ar (µ̂x) =
1

np2a
V ar (Z) =

1

np2a

(
σ2
y + pa(σ2

x − σ2
y) + pa(1− pa)(µx − µy)2

)
. (2.35)
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2.3 Two-Stage RRT

Mangat and Singh (1990) introduced a Two-Stage RRT model by injecting an

element of truthful responses into the indirect binary question randomized response

model of Warner (1965).

In order to have more truthful answers, they placed one more randomization

device into the original Warner’s model. The first randomization device has two

options: (1) ‘Do you belong to Group A?’, and (2) ‘Go to the second randomization

device,’ And, the second stage—or the second randomization device—is nothing but

the Warner’s randomization device. The pre-assigned probabilities of two options

(1) and (2) are T and (1 − T ), respectively. Because the entire process remains

unobserved by the interviewer, as in the Warner’s model, the interviewee can maintain

privacy regardless of the answer either from the first randomization device or from

the Warner’s randomization device.

Let Py be the probability of a “Yes” response from a respondent under this

model. Py is given by

Py = Tπ + (1− T ){πp+ (1− π)(1− p)} = {T + (2p− 1)(1− T )}π + (1− T )(1− p). (2.36)

Rewriting this equation for π, we have

π =
Py − (1− p)(1− T )

T + (2p− 1)(1− T )
=

Py − (1− p)(1− T )

(2p− 1) + 2T (1− p)
.
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This leads to the Mangat and Singh’s estimator for π, given by

π̂m =
P̂y − (1− p)(1− T )

(2p− 1) + 2T (1− p)
. (2.37)

where P̂y is the proportion of “Yes” responses in the survey. As P̂y is both unbiased

and the MLE of Py, π̂m is unbiased too. This can be verified from the following.

E (π̂m) =
E
(
P̂y

)
− (1− p)(1− T )

(2p− 1) + 2T (1− p)
=

Py − (1− p)(1− T )

(2p− 1) + 2T (1− p)
= π.

Also the variance of the estimator is given by

V ar(π̂m) =
1

{(2p− 1) + 2T (1− p)}2
V ar(P̂y) (2.38)

=
1

{(2p− 1) + 2T (1− p)}2

{
Py(1− Py)

n

}
. (2.39)

Using Equation (2.36), this can be rewritten as

V ar(π̂m) =
π(1− π)

n
+

(1− T )(1− p){1− (1− T )(1− p)}
n{(2p− 1) + 2T (1− p)}2

(2.40)

with

V̂ ar(π̂m) =
π̂m(1− π̂m)

n− 1
+

(1− T )(1− p){1− (1− T )(1− p)}
n{(2p− 1) + 2T (1− p)}2

. (2.41)
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Mangat and Singh (1990) also showed that V ar(π̂m), the variance of their

estimator, is smaller than V ar(π̂w) of Warner (1965), when T > 1−2p
1−p . As 1−2p

1−p < 1

for 0 < p < 1, we can always assign a meaningful value of T between 1−2p
1−p and 1.

2.4 Optional RRT

It is reasonable to assume that some proportion of the population might not

feel the survey question is sensitive and would give candid answers if they get the op-

tion to answer truthfully. Instead of injecting an element of truth by the researchers,

as in the Two-Stage Model of Mangat and Singh (1990), we can incorporate this

unknown proportion of truthfulness in a different manner into a new model. In this

Optional Model, the respondent has the freedom to choose how to answer the ques-

tion. If the respondent feels the question is sensitive, he or she can give a scrambled

response. If the respondent doesn’t feel it’s a sensitive question, he or she can just

give a true answer. This optional randomization process takes place without being

observed by the researcher, who has no idea of what method the respondent chose

and what a “Yes” response means.

In the Two-Stage Model of Section 2.3, the truth parameter T is pre–assigned

by the interviewer, thus was a known constant prior to using the two randomization

devices. In this Optional Model, the sensitivity level (ω) of a specific question is

defined to be the population proportion of subjects who feel the question is sensitive.

Notice that there are two unknown parameters in this model (π and ω). The Optional

Randomized Response models were first proposed by Gupta (2001) for the binary case,

and by Gupta, Gupta, and Singh (2002) for the quantitative case. The characteristics

of the models have been discussed in great depth by Gupta and Thornton (2002),
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Gupta and Shabbir (2004), Gupta, Thornton, Shabbir, and Singhal (2006), Gupta,

Shabbir, and Sehra (2010), and Gupta, Mehta, Shabbir, and Dass (2013).

In this section, the binary optional model of Gupta (2001) is discussed first

and the quantitative optional model of Gupta, Gupta, and Singh (2002) is examined

next.

2.4.1 Binary Optional RRT

The probability of a “Yes” response in this model can be expressed as

Py = (1− ω)π + ω{πp+ (1− π)(1− p)}. (2.42)

Equation (2.42) can be rearranged as

Py − π = (p− 1)(2π − 1)ω. (2.43)

As Equation (2.43) includes two parameters (π and ω), it cannot be handled

with one set of responses. Assume we have two independent samples with sizes n1

and n2 respectively (n1 + n2 = n). Let us also assume that p1 and p2 are different

probabilities associated with the different Warner’s devices used in the two samples.

Using Equation (2.43) for the two independent samples, we have

Py1 − π = (p1 − 1)(2π − 1)ω and Py2 − π = (p2 − 1)(2π − 1)ω. (2.44)

With λ = (p1 − 1)/(p2 − 1) as in Greenberg et al. (1969), we have

π =
λPy2 − Py1
λ− 1

. (2.45)
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From Equation (2.45), we have the Gupta estimator for π as

π̂g =
λP̂y2 − P̂y1
λ− 1

. (2.46)

where P̂y1 and P̂y2 are the proportions of “Yes” responses in the two samples with

sample size n1 and n2 respectively. Note that π̂g is unbiased as shown below:

E (π̂g) =
λE
(
P̂y2

)
− E

(
P̂y1

)
λ− 1

=
λPy2 − Py1
λ− 1

= π. (2.47)

Using V ar(P̂y1) = Py1(1− Py1)/n1 and V ar(P̂y2) = Py2(1− Py2)/n2, the vari-

ance of π̂g is

V ar(π̂g) =
1

(λ− 1)2
{λ2V ar(P̂y2) + V ar(P̂y1)}

=
1

(λ− 1)2

{
λ2
Py2(1− Py2)

n2
+
Py1(1− Py1)

n1

}
. (2.48)

Notice that the two samples are independent so that the covariance term does

not exist in Equation (2.48). Using n1 = n− n2, we can rewrite Equation (2.48) as

V ar(π̂g) =
1

(λ− 1)2

{
λ2
Py2(1− Py2)

n2
+
Py1(1− Py1)

n− n2

}
(2.49)
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After taking partial derivative of Equation (2.49), the optimal ratio of n1

n2
,

which gives the minimum variance, can be obtained:

∂V ar(π̂g)

∂n2
=

1

(λ− 1)2
∂

∂n2

(
−λ2Py2(1− Py2)

n22
+
Py1(1− Py1)

(n− n2)2

)
= 0. (2.50)

Solving Equation (2.50) for n1

n2
, the optimal ratio of

(
n1

n2

)
opt(π̂g)

will be

(
n1
n2

)
opt(π̂g)

=
1

λ

√
Py1(1− Py1)

Py2(1− Py2)
=

(1− p2)

(1− p1)

√
Py1(1− Py1)

Py2(1− Py2)
. (2.51)

Let us solve Equations (2.44) for ω. We have

Py1 − Py2 = (p1 − p2)(2π − 1)ω. (2.52)

Solving Equation (2.52) for ω and substituting π =
λPy2−Py1

λ−1 and λ = (p1−1)
(p2−1)

from Equations (2.45), we have

ω =
Py1 − Py2

2Py1(1− p2)− 2Py2(1− p1)− (p1 − p2)
. (2.53)

By replacing Py1 and Py2 with their unbiased MLEs, the Gupta estimator for ω is

ω̂g =
P̂y1 − P̂y2

2P̂y1(1− p2)− 2P̂y2(1− p1)− (p1 − p2)
. (2.54)

Given the fact that ω̂g is a ratio of combinations of two random variables,

calculation of its mean and variance will require some approximation. Sihm and
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Gupta (2015) showed, up to first–order Taylor approximation, ω̂g is an unbiased

estimator for ω with its variance given by

V ar (ω̂g) ≈
(p1 − p2)2

{
(2Py2 − 1)2

{
Py1

(1−Py1
)

n1

}
+ (2Py1 − 1)2

{
Py2

(1−Py2
)

n2

}}
{(1− p2)(2Py1 − 1)− (1− p1)(2Py2 − 1)}4

. (2.55)

2.4.2 Quantitative Optional RRT

The quantitative optional RRT model was first proposed by Gupta, Gupta,

and Singh (2002). It was an improvement on the multiplicative model of Eichhorn

and Hayre (1983) with the option of answering the sensitive question directly without

any randomization device if the respondent would feel comfortable about doing so.

Gupta, Gupta, and Singh (2002) showed that the new estimator is more efficient than

the Eichhorn and Hayre (1983) estimator.

Each respondent selected chooses one of the following two options. (1) The

respondent reports the truthful responseX directly if the respondent feels comfortable

about doing so, and (2) The respondent reports the scrambled response SX, where

S denotes the independent scrambling variable with µs = 1 and known σs. Let Z be

the reported response from a respondent. Assuming both random variables X and S

are positive valued, the model is given by

Z = SYX, (2.56)
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where Y is a random variable defined as

Y =


1 with unknown probability ω,

0 with unknown probability (1− ω).
(2.57)

Let µx and σ2
x respectively be the unknown mean and variance of the sensitive

question in the population. We can show that

E(Z) = E(SYX) = E(SYX | Y = 1)P (Y = 1) + E(SYX | Y = 0)P (Y = 0)

= E(SX)P (Y = 1) + E(X)P (Y = 0)

= E(S)E(X)ω + E(X)(1− ω)

= µxω + µx(1− ω) = µx. (2.58)

Thus, an unbiased estimator is given by

µ̂x = Z̄, (2.59)

with

V ar (µ̂x) =
1

n

{(
σ2
x + µ2

x

)
σ2
y ω + σ2

x

}
. (2.60)
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It is easy to show that the variance in Equation (2.60) is smaller than the

variance in Equation (2.14) because 0 ≤ ω ≤ 1. Gupta, Gupta, and Singh (2002)

proposed an estimator for ω, up to first-order Taylor approximation, given by

ω̂ ≈
1
n

∑
log(Zi)− log

(
1
n

∑
Zi
)

E(log(S))
, (2.61)

with

V̂ ar (ω̂) ≈ ω̂(1− ω̂)

n− 1
. (2.62)

2.5 Conclusion

In this chapter, we presented four foundational studies in the RRT field and

corresponding models including both binary and quantitative models. For several

decades, these models have been developed to improve the efficiency of the RRT

models. The binary models in this chapter will be used as the building blocks for the

later models in Chapter III and IV.
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CHAPTER III

MODIFIED BINARY OPTIONAL RRT MODELS WITH SPLIT-SAMPLE

APPROACH

3.1 Introduction

Greenberg et al. (1969) used multiple sub-samples for estimating multiple pa-

rameters associated with the RRT methods. We discuss here two methods that have

been particularly developed for binary RRT models to estimate the prevalence of a

sensitive characteristic and the sensitivity level of the underlying research question.

The first one is based on the unrelated binary question RRT model of Greenberg et

al. (1969). It was developed by Gupta, Tuck, Spears Gill, and Crowe (2013) . The

second split-sample method is based on the Warner’s indirect question RRT model

and was proposed by Sihm and Gupta (2015).

In this chapter, major characteristics of these two models are discussed. And

their estimators are proposed and variances are derived up to first-order Taylor ap-

proximation. A feature that renders the split-sample approach less acceptable is its

relatively low efficiency. In most of the cases, the split-sample approach requires big-

ger sample size to achieve a level of efficiency associated with other models. This

leads us to another method of estimating multiple parameters in the next chapter.

3.2 Binary Optional Unrelated RRT

This model was proposed by Gupta, Tuck, Spears Gill, and Crowe (2013) as a

generalization of the original Greenberg et al. (1969, 1971) unrelated question models

by giving respondents the option of responding to the sensitive question directly if

32



they consider the question non-sensitive, while they can still give scrambled response

by using the Greenberg et al. (1969) model for binary response and by using the

Greenberg et al. (1971) model for quantitative response, if they feel the question is

sensitive.

Let πa be the known prevalence of an unrelated characteristic, π be the un-

known prevalence of the sensitive characteristic, p be the pre-assigned probability of

the respondent selecting the sensitive question, and ω be the unknown sensitivity

level of the survey question in the population. Sensitivity level means the propor-

tion of respondents in the population who would consider the question sensitive and

subsequently opt to use a randomization device.

The probability of a “Yes” response (Py) in this model can be expressed as

Py = (1− ω)π + ω{πp+ (1− p)πa}. (3.1)

Equation (3.1) can be rearranged as

Py − π = ω(1− p)(πa − π). (3.2)

Using two independent samples with sizes n1 and n2 respectively, and assuming

that p1 and p2 are two different pre-assigned probabilities of the respondents selecting

the sensitive question in the two samples, Equation (3.2) can be written as

Py1 − π = ω(1− p1)(πa − π) and Py2 − π = ω(1− p2)(πa − π). (3.3)
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Solving for π, we have

π =
λPy2 − Py1
λ− 1

(p1 6= 1, p2 6= 1, p1 6= p2, πa 6= π), where λ =
(p1 − 1)

(p2 − 1)
. (3.4)

Equation (3.4) leads to the unbiased estimator of Gupta, Tuck, Spears Gill,

and Crowe (2013) for π, given by

π̂gu =
λP̂y2 − P̂y1
λ− 1

, (3.5)

with its variance given by

V ar(π̂gu) =
1

(λ− 1)2

{
λ2
Py2(1− Py2)

n2
+
Py1(1− Py1)

n1

}
. (3.6)

Similarly from Equations (3.3), we have

Py1 − Py2 = ω(p2 − p1)(πa − π). (3.7)

Solving Equation (3.7) for ω and substituting π =
λPy2−Py1

λ−1 and λ = (p1−1)
(p2−1)

from Equations (3.4), we have,

ω =
Py1 − Py2

(p2 − p1)πa + (1− p2)Py1 − (1− p1)Py2
(p1 6= p2, πa 6= π), (3.8)
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which leads to an estimator of ω given by

ω̂gu =
P̂y1 − P̂y2

(p2 − p1)πa + (1− p2)P̂y1 − (1− p1)P̂y2
. (3.9)

Gupta, Tuck, Spears Gill, and Crowe (2013) approximate the mean and vari-
ance of this estimator by using first-order Taylor expansion. We first rewrite ω̂gu as

ω̂gu ≈ ω̂(Py1 , Py2 ) +
∂ω̂(P̂y1 , P̂y2 )

∂P̂y1

∣∣∣∣∣
Py1 ,Py2

(P̂y1 − Py1 ) +
∂ω̂(P̂y1 , P̂y2 )

∂P̂y2

∣∣∣∣∣
Py1 ,Py2

(P̂y2 − Py2 ). (3.10)

Thus we have

ω̂gu≈
Py1 − Py2

(p2 − p1)πa + (1− p2)Py1 − (1− p1)Py2
+

(p2 − p1)(πa − Py2 )(P̂y1 − Py1 )
{(p2 − p1)πa + (1− p2)Py1 − (1− p1)Py2}2

−
(p2 − p1)(πa − Py1 )(P̂y2 − Py2 )

{(p2 − p1)πa + (1− p2)Py1 − (1− p1)Py2}2
. (3.11)

In Gupta, Tuck, Spears Gill, and Crowe (2013), it is also shown that up to

first-order Taylor approximation, ω̂gu is an unbiased estimator for ω,

E (ω̂gu) ≈ Py1 − Py2
(p2 − p1)πa + (1− p2)Py1 − (1− p1)Py2

(
∵ E

[
P̂yi − Pyi

]
= 0
)
. (3.12)

Also, up to first-order Taylor approximation, its variance is given by

V ar (ω̂gu) ≈
(p2 − p1)2

{
(πa − Py2)2

Py1
(1−Py1

)

n1
+ (πa − Py1)2

Py2
(1−Py2

)

n2

}
{(p2 − p1)πa + (1− p2)Py1 − (1− p1)Py2}4

. (3.13)

35



Notice that the optimal sample size ratio of the optional unrelated RRT model

for binary response is given by n2

n1
= λ

√
Py2 (1−Py2 )
Py1 (1−Py1 )

, which generates the smallest

possible value of V ar(π̂gu).

3.3 Two-Stage Optional Warner’s RRT

This RRTmodel of Sihm and Gupta (2015) is a mixture of three RRTmethods—

the indirect response technique of Warner (1965), the two-stage RRT model of Mangat

and Singh (1990), and the optional RRT model of Gupta (2001). It contains two ran-

domization devices. The first device is the one used in the two-stage RRT model of

Mangat and Singh (1990) and the second is the one used in the optional RRT model

of Gupta (2001).

Let T be the pre-assigned probability of asking the sensitive characteristic of

the respondents directly in the first stage. Also let π be the unknown prevalence of

the sensitive characteristic in the population, p be the pre-assigned probability of the

respondent selecting the sensitive question directly in the second stage, and ω be the

unknown sensitivity level of the survey question in the population.

The probability of “Yes” response (Py) in this model can be expressed as

Py = Tπ + (1− T ) {(1− ω)π + ω{pπ + (1− p)(1− π)}} . (3.14)

Using two independent samples with sizes n1 and n2 respectively, and assuming

that p1 and p2 are two different pre-assigned probabilities of the respondents selecting

the sensitive question in the two samples, Equation (3.14) can be written as

Py1 − π = (1− T )(p1 − 1)(2π − 1)ω and Py2 − π = (1− T )(p2 − 1)(2π − 1)ω. (3.15)
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Solving for π, we have

π =
λPy2 − Py1
λ− 1

(
p1 6= 1, p2 6= 1, p1 6= p2, π 6=

1

2
, and T 6= 1

)
, where λ =

(1− p1)

(1− p2)
. (3.16)

Equation (3.16) leads to the following unbiased estimator for π, given by

π̂ =
λP̂y2 − P̂y1
λ− 1

, (3.17)

with its variance given by

V ar(π̂) =
1

(λ− 1)2

{
λ2
Py2(1− Py2)

n2
+
Py1(1− Py1)

n1

}
. (3.18)

The optimal sample sizes n1 and n2 for the two independent samples to mini-

mize V ar (π̂) are given by

(
n1
n2

)
opt(π̂)

=
1

λ

√
Py1(1− Py1)

Py2(1− Py2)
. (3.19)

Similarly from Equations (3.15), we have

ω =
Py1 − Py2

(1− T ) {(1− p2)(2Py1 − 1)− (1− p1)(2Py2 − 1)}

(
p1 6= p2, T 6= 1, and π 6= 1

2

)
, (3.20)
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which leads to an estimator of ω given by

ω̂ =
P̂y1 − P̂y2

(1− T )
{

(1− p2)(2P̂y1 − 1)− (1− p1)(2P̂y2 − 1)
} . (3.21)

Sihm and Gupta (2015) approximate the mean and variance of this estimator
by using first-order Taylor expansion. Let us rewrite ω̂ as

ω̂ ≈ ω̂(Py1 , Py2 ) +
∂ω̂(P̂y1 , P̂y2 )

∂P̂y1

∣∣∣∣∣
Py1

,Py2

(P̂y1 − Py1 ) +
∂ω̂(P̂y1 , P̂y2 )

∂P̂y2

∣∣∣∣∣
Py1

,Py2

(P̂y2 − Py2 ). (3.22)

With (θi = 2Pyi − 1), we have

ω̂≈
1

2(1− T )

{
θ1 − θ2

(1− p2)θ1 − (1− p1)θ2
+

(p1 − p2)θ2(θ̂1 − θ1)
{(1− p2)θ1 − (1− p1)θ2}2

−
(p1 − p2)θ1(θ̂2 − θ2)

{(1− p2)θ1 − (1− p1)θ2}2

}
. (3.23)

In Sihm and Gupta (2015), it is also shown that up to first-order Taylor ap-

proximation, ω̂ is an unbiased estimator for ω,

E (ω̂) ≈ Py1 − Py2
(1− T ){(1− p2)θ1 − (1− p1)θ2}

(
∵ E

[
θ̂i − θi

]
= 0
)
. (3.24)

Also, up to first-order Taylor approximation, its variance is given by

V ar (ω̂) ≈
(p1 − p2)2

{
(2Py2 − 1)2

Py1 (1−Py1 )
n1

+ (2Py1 − 1)2
Py2 (1−Py2 )

n2

}
(1− T )2{(1− p2)(2Py1 − 1)− (1− p1)(2Py2 − 1)}4

. (3.25)
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Notice that the optimal sample size ratio of the two-stage optional Warner’s

RRT model for binary response is given by n2

n1
= λ

√
Py2 (1−Py2 )
Py1 (1−Py1 )

, which generates the

smallest possible value of V ar(π̂).

Sihm and Gupta (2015) proved that the variance of the estimator π̂ from

Equation (3.18) in this section can be always made smaller than the variance of the

estimator π̂g from Equation (2.50) of Gupta (2001) in Section 2.4.1.

Using Equations (2.50) and (3.18), we can solve the inequality such that

V ar(π̂) < V ar (π̂g)

=⇒
n1λ
{
2(1− p2)ω − 1

}
+ n2

{
2(1− p1)ω − 1

}
ωn(1− p1)

< T < 1 (3.26)

(
with λ =

p1 − 1

p2 − 1

)
.

Thus, a meaningful value of T that satisfies Equation (3.26) can always be

chosen (Sihm and Gupta, 2015).

3.4 Efficiency Comparisons

For all the tables in Chapter V (Simulation Results), the first two columns

are for Section 3.2 RRT model of Gupta, Tuck, Spears Gill, and Crowe (2013) and

Section 3.3 RRT model of Sihm and Gupta (2015). The variances of the estimators

from these two models are not much different, and most of the time, the Section 3.2

binary optional unrelated RRT model of Gupta, Tuck, Spears Gill, and Crowe (2013)
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performs a little better than the Section 3.3 model, with a small value of T ; however

this can always be reversed by assigning a bigger value of T by the interviewer.

For Tables 1 - 4 (π = 0.1, ω = 0.1, 0.3, 0.7, 0.9), simulated values and theo-

retical values of V ar(πgu) of Gupta, Tuck, Spears Gill, and Crowe (2013) in Section

3.2 and those of V ar(π) of Sihm and Gupta (2015) in Section 3.3 are very similar to

each other. The similarity between V ar(πgu) and V ar(π) doesn’t change for Tables

5 - 12 either; but, there are a few things to notice in Tables 5 - 12. For Tables 5 - 8

(π = 0.3, ω = 0.1, 0.3, 0.7, 0.9), simulated values of E(ω̂) are sometimes negative or

even greater than 1 while V ar(ω) gets very volatile for the model of Gupta, Tuck,

Spears Gill, and Crowe (2013) in Section 3.2. This is because the combination of pre-

assigned proportions as well as simulated parameter values make the denominator of

Equation (3.8) close to zero, increasing variability of the estimator for ω. Likewise

for Tables 9 - 12 (π = 0.6, ω = 0.1, 0.3, 0.7, 0.9), the same thing occurs to the model

of Sihm and Gupta (2015) in Section 3.3, making the denominator of Equation (3.20)

close to zero. Thus, we have negative estimates for the proportion as well as very big

values of variance of the estimator ω̂.

By carefully assigning p1 and p2 so that Equations (3.8) and (3.20) do not

have division by zero, we can avoid these unfortunate cases in which the amount of

variance spikes due to small or near zero value of the denominator. Other than that,

the two models covered in this chapter deliver very similar performance when it comes

to estimating the prevalence of sensitive characteristic and the level of sensitivity.

3.5 Conclusion

As one can easily notice from Tables 1 - 12 in Chapter V, the RRT methods

in this chapter do not outperform other RRT methods in Chapter IV. By splitting
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the given sample, the methods in this chapter reduce the amount of available sample

in order to estimate two parameters simultaneously. In the next chapter, we discuss

a new technique that does not increase the sampling burden while estimating two

parameters simultaneously.
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CHAPTER IV

MODIFIED BINARY OPTIONAL RRT MODELS WITH TWO-QUESTION

APPROACH

4.1 Introduction

Our proposed model is a modified two-stage binary optional RRT model based

on the RRT model of Sihm and Gupta (2015). Unlike the model of Sihm and Gupta

(2015), which uses the split-sample approach to estimate π and ω, the new model

asks two separate questions of the same sample of respondents. Question 1 is the

auxiliary question to estimate the level of sensitivity of the main research question

in the population while Question 2 is the main research question to estimate the

prevalence of the sensitive characteristic in the population. This technique was first

explored in Sihm, Chhabra, and Gupta (2016) and allowed a smaller sample size for

a given efficiency level.

4.2 Binary Optional Unrelated RRT with Two-Question Approach

The main motivation for the binary model of Sihm, Chhabra, and Gupta

(2016) is to avoid the split-sample approach, which requires a larger sample size.

This is done by asking respondents two separate questions. Question 1 is the auxiliary

question about whether or not the main research question is sensitive enough for the

respondent to opt for a scrambled response. Question 2 is the main research question

which the respondent answers by using the optional binary unrelated question RRT

model of Gupta, Tuck, Spears Gill, and Crowe (2013) in Section 3.2. Respondents
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will answer Question 1 by using the original binary unrelated question RRT model of

Greenberg et al. (1969).

Let πa be the known prevalence of an unrelated innocuous characteristic, πb

be the known prevalence of another unrelated innocuous characteristic, π be the

unknown prevalence of the sensitive characteristic, pa be the pre-assigned probability

of the respondent selecting the sensitive question in answering Question 1, pb be the

pre-assigned probability of the respondent selecting the question about sensitivity in

answering Question 2, and ω be the unknown sensitivity level of the survey question

in the population.

Let Pyi be the probability of “Yes” response from a respondent to Question i

(i = 1, 2). Then,

Py1 = paω + (1− pa)πa (4.1)

Py2 = (1− ω)π + ω{πpb + (1− pb)πb}. (4.2)

Solving Equations (4.1) and (4.2) for π and ω respectively, we have

π =
Py2 − (1− pb)ωπb

1− (1− pb)ω
, and ω =

Py1 − (1− pa)πa
pa

, (4.3)

which lead to the estimators

π̂ =
P̂y2 − (1− pb)ω̂πb

1− (1− pb)ω̂
, and ω̂ =

P̂y1 − (1− pa)πa
pa

, (4.4)
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where P̂yi is the proportion of “Yes” responses in the sample to Question i (i = 1, 2).

It is easy to see that ω̂ is an unbiased estimator:

E (ω̂) = E

(
P̂y1 − (1− pa)πa

pa

)
=
E
(
P̂y1

)
− (1− pa)πa

pa
=
Py1 − (1− pa)πa

pa
= ω. (4.5)

The variance of the estimator ω̂ is given by

V ar (ω̂) = V ar

(
P̂y1 − (1− pa)πa

pa

)
=
V ar

(
P̂y1

)
− (1− pa)πa

pa
=
Py1(1− Py1)

np2a
. (4.6)

Sihm, Chhabra, and Gupta (2016) approximate the mean and variance of the

estimator for π by using first-order Taylor expansion. We first rewrite π as

π̂ ≈ π̂(Py2 , ω) +
∂π̂(P̂y2 , ω̂)

∂P̂y2

∣∣∣∣∣
Py2

,ω

(P̂y2 − Py2) +
∂π̂(P̂y2 , ω̂)

∂ω̂

∣∣∣∣∣
Py2

,ω

(ω̂ − ω). (4.7)

After getting the partial derivatives, we have

π̂ ≈ Py2 − ω(1− pb)πb
1− (1− pb)ω

+
P̂y2 − Py2

1− (1− pb)ω
+

(1− pb)(Py2 − πb)(ω̂ − ω)

{1− (1− pb)ω}2
. (4.8)

Sihm, Chhabra, and Gupta (2016) show that up to first-order Taylor approx-

imation, π̂ is an unbiased estimator for π,

E (π) ≈ Py2 − ω(1− pb)πb
1− (1− pb)ω

(
∵ E

[
P̂y2 − Py2

]
= 0 and E [ω̂ − ω] = 0

)
. (4.9)
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Also, up to first-order Taylor approximation, its variance is given by

V ar (π̂) ≈ 1

{1− (1− pb)ω}2

{
Py2(1− Py2)

n

}
+

(1− pb)2(Py2 − πb)2

{1− (1− pb)ω}4

{
Py1(1− Py1)

np2a

}
. (4.10)

4.3 Revised Binary Optional Unrelated RRT with Two-Question Ap-

proach

For the model discussed in the previous section, we assume that πa and πb

are somehow known, but it is more realistic to assume that they are unknown when

the survey is being done. If both πa and πb are assumed to be unknown, we can

still estimate π and ω by using a combination of the split-sample and two-question

approaches.

The probability of “Yes” response (Py) to the auxiliary question in this model

can be expressed as

Py1 = paω + (1− pa)πa. (4.11)

Using two independent samples with sizes n1 and n2 respectively, and assum-

ing that pa1 and pa2 are two different pre-assigned probabilities of the respondents

selecting the sensitive question in the two samples, Equation (4.11) can be written as

Py11 = pa1ω + (1− pa1)πa and Py12 = pa2ω + (1− pa2)πa. (4.12)
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Solving for ω, we have

ω =
λaPy12 − Py11
λapa2 − pa1

(pa1 6= 1, pa2 6= 1, and pa1 6= pa2) , where λa =
(1− pa1)

(1− pa2)
. (4.13)

Equation (4.13) leads to the following unbiased estimator for ω, given by

ω̂ =
λaP̂y12 − P̂y11
λapa2 − pa1

, (4.14)

with its variance given by

V ar(ω̂) =
1

(λapa2 − pa1)2

{
λ2a
Py12(1− Py12)

n2
+
Py11(1− Py11)

n1

}
. (4.15)

The probability of “Yes” response (Py) to the main research question can be

expressed as

Py2 = (1− ω)π + ω{pπ + (1− p)πb}. (4.16)

Using the same two samples, and assuming that pb1 and pb2 are two different

pre-assigned probabilities of the respondents selecting the sensitive question in the

two samples, Equation (4.16) can be written as

Py21 = π + ω(1− pb1)(πb − π) and Py22 = π + ω(1− pb2)(πb − π). (4.17)
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Solving for π, we have

π =
λbPy22 − Py21

λb − 1
(pb1 6= 1, pb2 6= 1, pb1 6= pb2 , and πb 6= π, ) , where λb =

(1− pb1)

(1− pb2)
. (4.18)

This leads to the following unbiased estimator for π, given by

π̂r =
λbP̂y22 − P̂y21

λb − 1
, (4.19)

with its variance given by

V ar(π̂r) =
1

(λb − 1)2

{
λ2b
Py22(1− Py22)

n2
+
Py21(1− Py21)

n1

}
. (4.20)

The optimal sample sizes n1 and n2 are used for the two independent samples

to minimize V ar (π̂r) and the ratio is given by

(
n1
n2

)
opt(π̂r)

=
1

λb

√
Py21(1− Py21)

Py22(1− Py22)
. (4.21)

4.4 Two-Stage Optional Indirect RRT with Two-Question Approach

The underlying structure of our proposed model in this section is the same

as in Sihm and Gupta (2015) model of Section 3.3, except that we now employ the

two-question technique of Sihm, Chhabra, and Gupta (2016) from Section 4.2 instead

of using the split-sample approach.
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Here, we ask two separate questions of the same sample. With Question 1,

we estimate the level of sensitivity to the main research question among the popu-

lation by using the indirect question RRT model of Warner (1965). With Question

2, we estimate the prevalence of the sensitive characteristic associated with the main

research question by using the same two-stage binary optional indirect question RRT

model as in Sihm and Gupta (2015), which was discussed in Section 3.3.

Let pa be the pre-assigned probability of the respondent selecting the direct

question about sensitivity in answering Question 1, ω be the unknown sensitivity level

of the survey question in the population, T be the pre-assigned probability of asking

the sensitive characteristic of the respondents directly in the first stage of answering

Question 2, π be the unknown prevalence of the sensitive characteristic, and pb be

the pre-assigned probability of the respondent selecting the sensitive question in the

second stage of answering Question 2.

Let Pyi be the probability of “Yes” response from a respondent to Question i

(i = 1, 2), we have

Py1 = paω + (1− pa)(1− ω) (4.22)

Py2 = Tπ + (1− T ) {(1− ω)π + ω{pbπ + (1− pb)(1− π)}} . (4.23)

Solving Equations (4.22) and (4.23) for π and ω respectively, we have

ω =
Py1 − (1− pa)

2pa − 1
, and π =

Py2 − (1− T )(1− pb)ω
1− 2(1− T )(1− pb)ω

(
pa 6=

1

2

)
, (4.24)
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which lead to the estimators

ω̂ =
P̂y1 − (1− pa)

2pa − 1
and π̂p =

P̂y2 − (1− T )(1− pb)ω̂
1− 2(1− T )(1− pb)ω̂

(
pa 6=

1

2

)
, (4.25)

where P̂yi is the proportion of “Yes” responses in the sample to Question i (i = 1, 2).

Notice that ω̂ is an unbiased estimator for ω such that

E (ω̂) = E

(
P̂y1 − (1− pa)

2pa − 1

)
=
E
(
P̂y1

)
− (1− pa)

2pa − 1
=
Py1 − (1− pa)

2pa − 1
= ω. (4.26)

Its variance is given by

V ar (ω̂) = V ar

(
P̂y1 − (1− pa)

2pa − 1

)
=
Py1(1− Py1)

n(2pa − 1)2
. (4.27)

The mean and variance of the estimator for π is estimated by first-order Taylor

expansion. We first rewrite π̂p as

π̂p ≈ π̂(Py2 , ω) +
∂π̂(P̂y2 , ω̂)

∂P̂y2

∣∣∣∣∣
Py2

,ω

(P̂y2 − Py2) +
∂π̂(P̂y2 , ω̂)

∂ω̂

∣∣∣∣∣
Py2

,ω

(ω̂ − ω). (4.28)

Thus, we have

π̂p≈
Py2 − (1− T )(1− pb)ω
1− 2(1− T )(1− pb)ω

+
P̂y2 − Py2

1− 2(1− T )(1− pb)ω
+

(1− T )(1− pb)(2Py2 − 1)(ω̂ − ω)

{1− 2(1− T )(1− pb)ω}2
. (4.29)
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Up to first-order Taylor approximation, π̂p is an unbiased estimator for π,

E (π̂p)≈
Py2 − (1− T )(1− pb)ω
1− 2(1− T )(1− pb)ω

(
∵ E

(
P̂y2 − Py2

)
= 0 and E (ω̂ − ω) = 0

)
. (4.30)

Also, up to first-order Taylor expansion, its variance is given by

V ar (π̂p) ≈ Py2(1− Py2)

n{1− 2(1− T )(1− pb)ω}2
+

(1− T )2(1− pb)2(2Py2 − 1)2Py1(1− Py1)

n{1− 2(1− T )(1− pb)ω}4(2pa − 1)2
. (4.31)

4.5 Efficiency Comparisons

From Tables 1 - 12 in Chapter V, one can easily see that the proposed model of

Section 4.4 performs as well as the binary optional unrelated question RRT with two

questions in Section 4.3, except for occasional spikes of variances of the estimators

due to near zero value of the denominator of the estimator caused by unfortunate

combination of pre–assigned proportions. This can be easily avoided in real life sce-

narios, simply by plugging in those values to the formula such as Equation (4.25) to

see if the denominator gets closer to zero or not.

Now let us develop a more systematical way of determining suitable interval of

T in contrast with other parameters to get a more efficient estimator. Let us compare

the theoretical variance of each estimator for π from Section 4.3 and Section 4.4. For

the proposed model, we have the variance of the estimator π̂p from Equation (4.31),

V ar (π̂p) ≈ Py2(1− Py2)

n{1− 2(1− T )(1− pb)ω}2
+

(1− T )2(1− pb)2(2Py2 − 1)2Py1(1− Py1)

n{1− 2(1− T )(1− pb)ω}4(2pa − 1)2
. (4.32)
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For the revised model of Sihm, Chhabra, and Gupta (2016) , we have the

variance of the estimator π̂r from Equation (4.20),

V ar(π̂r) =
1

(λb − 1)2

{
λ2b
Py22(1− Py22)

n2
+
Py21(1− Py21)

n1

}
. (4.33)

Solving the inequality V ar (π̂p) < V ar(π̂r) with respect to T would be quite

a complex undertaking. Sihm and Gupta (2015) actually did very similar thing to

get a suitable interval of T and eventually proved that it’s always possible to get an

appropriate T to have smaller variance than other models. But it was a quadratic

equation in T . Here, we have a quartic expression in T to solve the inequality.

Instead of solving it and get an algebraic solution for the suitable interval of T which

guarantees smaller variance of the estimator, let us again use computer simulation to

figure out where the interval of T will reside, especially in combination with another

parameter pa to which we can assign any value.

The R code for this efficiency comparison is listed in APPENDIX B. Let us

first run a “hit or miss” simulation on Table 1. For every value of T , Table 1 shows

that V ar (π̂p) is always smaller than V ar(π̂r). Thus, we don’t have to actively seek

an appropriate value of T to get a smaller variance on Table 1. Figure 1 clearly shows

this. The blue line in Figure 1 indicates the pre-assigned value of pa = 0.8. The red

area is where V ar (π̂p) is smaller than V ar(π̂r) and for the black area, it’s the opposite.

From Figure 1, it’s clear that every value of T will lead to V ar (π̂p) < V ar(π̂r) as

pa = 0.8.
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On the other hand, Tables 4, 8, and 12 show the opposite cases. These three

cases all have ω = 0.9, which means the level of sensitivity is extremely high and

almost all of the respondents prefer using randomization device. In these cases, we

can still select meaningful value of T , for example T = 0.6, to achieve better efficiency

with the proposed model. Figures 4, 8, and 12 display this graphically.

4.6 Conclusion

In this chapter, we first presented the model of Sihm, Chhabra, and Gupta

(2016) in Section 4.2 to show how much improvement in efficiency we could get by

switching from the split-sample approach to the two-question approach. But the

model of Sihm, Chhabra, and Gupta (2016) has one drawback that requires the

researcher to know the prevalence of the innocuous characters (πa and πb) among the

population before carrying out survey study. Instead of assuming πa and πb to be

known, we discussed a more realistic revision of the model in Section 4.3. After that,

we proposed our final binary optional RRT model in Section 4.4.

The nice thing about our proposed model in Section 4.4 is that it doesn’t re-

quire the demanding assumption of exactly knowing the prevalence of an innocuous

characteristic unlike most of the models associated with unrelated question models.

We showed that by simply asking one more question, we are able to significantly im-

prove the efficiency of our estimator. In addition to that, we propose a new method

that doesn’t require the onerous condition of knowing the other parameters to prop-

erly use the method. Using simulation study, as shown in Section 5.3, we demon-

strated that we can always select a value of T which will improve the efficiency of

the new estimator as compared to the revised model of Sihm, Chhabra, and Gupta

(2016) in Section 4.3.
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CHAPTER V

SIMULATION RESULTS

5.1 Introduction

In this simulation study, we included a more realistic version of Sihm, Chhabra,

and Gupta (2016) model in the second column from the right. This model was dis-

cussed in detail in Section 4.3 and assumes the prevalence of innocuous characteristics

πa and πb are actually unknown to us. We assigned the following values to the var-

ious parameters: pa1 = 0.8, pa2 = 0.2, pb1 = 0.7, pb2 = 0.4, pa = 0.8, pb = 0.3,

n = 1, 000, πa = 0.35, and πb = 0.25. The number of trials for each table is set to be

10,000. Statistical software R version 3.3.3 (R Core Team, 2017) was used for all

the simulations in this study.

These parameters can be assigned at our will and can be changed without

difficulties. Notice that we can also set the value of the two-stage parameter T freely

before any survey begins.

Due to the algebraic limitations (division by zero), from time to time, some

combinations of these parameters produce unusually high variances. These incidents

are entirely avoidable because, in the first place, we can clearly measure how closely

the denominator approaches zero by substituting these values into the estimators.

For examples, let us talk about Equation (4.24).

ω =
Py1 − (1− pa)

2pa − 1
, and π =

Py2 − (1− T )(1− pb)ω
1− 2(1− T )(1− pb)ω

(
pa 6=

1

2

)
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If we assign a value close to 0.5 to pa, the estimator for ω will be extremely

unstable and will produce a large variance. Likewise if we happen to have all the

parameter values in such a way that (1− 2(1− T )(1− pb)ω) gets very close to zero,

then the estimator would be useless. That’s exactly what happened to Tables 4, 7, 8,

11, and 12. In Table 4, when T = 0.2, the theoretical variance and empirical variance

of the proposed model suddenly became large. If all the parameter values are plugged

in to the denominator, it will be 1−2×(1−0.2)(1−0.3)×0.9 = −0.008, which is very

close to zero. And this creates unusually high values of the empirical and theoretical

variances for the estimator.

5.2 Simulation Results to Compare Efficiency

For Tables 1 - 12, the first column is for the model of Gupta, Tuck, Spears Gill,

and Crowe (2013) in Section 3.2 and the second for the model of Sihm and Gupta

(2015) in Section 3.3. These two models are based on the split-sample approach and

the simulation results clearly show their bigger variances of the estimators. The third

column from the left is for the model of Sihm, Chhabra, and Gupta (2016) in Section

4.2; the fourth for the revised model of Sihm, Chhabra, and Gupta (2016) in Section

4.3 with realistic assumptions of unknown πa and πb; the fifth for the propose model

in Section 4.4. Notice that even though the model of Sihm, Chhabra, and Gupta

(2016) originally didn’t use the split-sample approach, the revised model has to use

it as there are four unknown parameters in the model and that’s the only way to

estimate them all.

For those models with the split-sample approach, the optimal ratios of n1/n2

were calculated and two sub-samples were grouped that way.
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Table 1. Comparison of Different Two-Stage Model Estimators (π = 0.1 & ω = 0.1)

Gupta, Tuck, Spears Gill, Sihm and Gupta Sihm, Chhabra, Revised Sihm, Chhabra, Proposed
π = 0.1, ω = 0.1 and Crowe (2013) (2015) and Gupta (2016) and Gupta (2016)∗ § 4.4

T = 0.0 T = 0.0

Empirical Mean(π̂) 0.099924 0.100342 0.099952 0.099975 0.099766
Empirical V ar(π̂) 0.000314 0.000356 0.000112 0.000866 0.000330
Theoretical V ar(π̂) 0.000311 0.000352 0.000116 0.000853 0.000324
Empirical Mean(ω̂) 0.089509 0.096518 0.099871 0.099927 0.099512
Empirical V ar(ω̂) 0.035684 0.003789 0.000205 0.000412 0.000530
Theoretical V ar(ω̂) 0.034356 0.003723 0.000199 0.000411 0.000534
Optimal n1 769 755 663
Optimal n2 231 245 337

T = 0.2 T = 0.2

Empirical Mean(π̂) 0.099924 0.099996 0.099952 0.099975 0.100065
Empirical V ar(π̂) 0.000314 0.000341 0.000112 0.000866 0.000249
Theoretical V ar(π̂) 0.000311 0.000341 0.000116 0.000853 0.000253
Empirical Mean(ω̂) 0.089509 0.097169 0.099871 0.099927 0.099233
Empirical V ar(ω̂) 0.035684 0.005695 0.000205 0.000412 0.000537
Theoretical V ar(ω̂) 0.034356 0.005717 0.000199 0.000411 0.000534
Optimal n1 769 759 663
Optimal n2 231 241 337

T = 0.4 T = 0.4

Empirical Mean(π̂) 0.099924 0.100218 0.099952 0.099975 0.099740
Empirical V ar(π̂) 0.000314 0.000330 0.000112 0.000866 0.000192
Theoretical V ar(π̂) 0.000311 0.000329 0.000116 0.000853 0.000194
Empirical Mean(ω̂) 0.089509 0.095074 0.099871 0.099927 0.100354
Empirical V ar(ω̂) 0.035684 0.010186 0.000205 0.000412 0.000544
Theoretical V ar(ω̂) 0.034356 0.009940 0.000199 0.000411 0.000534
Optimal n1 769 763 663
Optimal n2 231 237 337

T = 0.8 T = 0.8

Empirical Mean(π̂) 0.099924 0.100200 0.099952 0.099975 0.100191
Empirical V ar(π̂) 0.000314 0.000311 0.000112 0.000866 0.000110
Theoretical V ar(π̂) 0.000311 0.000304 0.000116 0.000853 0.000111
Empirical Mean(ω̂) 0.089509 0.087559 0.099871 0.099927 0.099703
Empirical V ar(ω̂) 0.035684 0.085368 0.000205 0.000412 0.000528
Theoretical V ar(ω̂) 0.034356 0.084350 0.000199 0.000411 0.000534
Optimal n1 769 772 663
Optimal n2 231 228 337

∗ More realistic model than Sihm, Chhabra, and Gupta (2016) with unknown innocuous characteristic πa and πb.
pa1

= 0.8, pa2
= 0.2, pb1 = 0.7, pb2 = 0.4, pa = 0.8, pb = 0.3, n = 1, 000, πa = 0.35, and πb = 0.25
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Table 2. Comparison of Different Two-Stage Model Estimators (π = 0.1 & ω = 0.3)

Gupta, Tuck, Spears Gill, Sihm and Gupta Sihm, Chhabra, Revised Sihm, Chhabra, Proposed
π = 0.1, ω = 0.3 and Crowe (2013) (2015) and Gupta (2016) and Gupta (2016)∗ § 4.4

T = 0.0 T = 0.0

Empirical Mean(π̂) 0.099802 0.100093 0.100050 0.100133 0.098768
Empirical V ar(π̂) 0.000347 0.000455 0.000183 0.000939 0.000788
Theoretical V ar(π̂) 0.000349 0.000455 0.000189 0.000936 0.000698
Empirical Mean(ω̂) 0.290644 0.297225 0.300188 0.300393 0.299833
Empirical V ar(ω̂) 0.036033 0.004003 0.000340 0.000653 0.000639
Theoretical V ar(ω̂) 0.035331 0.00397 0.000334 0.000652 0.000654
Optimal n1 756 737 656
Optimal n2 244 263 344

T = 0.2 T = 0.2

Empirical Mean(π̂) 0.099802 0.099852 0.100050 0.100133 0.099314
Empirical V ar(π̂) 0.000347 0.000431 0.000183 0.000939 0.000522
Theoretical V ar(π̂) 0.000349 0.000426 0.000189 0.000936 0.000494
Empirical Mean(ω̂) 0.290644 0.297712 0.300188 0.300393 0.299836
Empirical V ar(ω̂) 0.036033 0.006482 0.000340 0.000653 0.000652
Theoretical V ar(ω̂) 0.035331 0.006202 0.000334 0.000652 0.000654
Optimal n1 756 740 656
Optimal n2 244 260 344

T = 0.4 T = 0.4

Empirical Mean(π̂) 0.099802 0.100438 0.100050 0.100133 0.100176
Empirical V ar(π̂) 0.000347 0.000400 0.000183 0.000939 0.000339
Theoretical V ar(π̂) 0.000349 0.000396 0.000189 0.000936 0.000343
Empirical Mean(ω̂) 0.290644 0.293717 0.300188 0.300393 0.299564
Empirical V ar(ω̂) 0.036033 0.011197 0.000340 0.000653 0.000648
Theoretical V ar(ω̂) 0.035331 0.010872 0.000334 0.000652 0.000654
Optimal n1 756 745 656
Optimal n2 244 255 344

T = 0.8 T = 0.8

Empirical Mean(π̂) 0.099802 0.100388 0.100050 0.100133 0.100036
Empirical V ar(π̂) 0.000347 0.000330 0.000183 0.000939 0.000142
Theoretical V ar(π̂) 0.000349 0.000329 0.000189 0.000936 0.000146
Empirical Mean(ω̂) 0.290644 0.285063 0.300188 0.300393 0.299861
Empirical V ar(ω̂) 0.036033 0.090200 0.000340 0.000653 0.000650
Theoretical V ar(ω̂) 0.035331 0.089462 0.000334 0.000652 0.000654
Optimal n1 756 763 656
Optimal n2 244 237 344

∗ More realistic model than Sihm, Chhabra, and Gupta (2016) with unknown innocuous characteristic πa and πb.
pa1

= 0.8, pa2
= 0.2, pb1 = 0.7, pb2 = 0.4, pa = 0.8, pb = 0.3, n = 1, 000, πa = 0.35, and πb = 0.25
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Table 3. Comparison of Different Two-Stage Model Estimators (π = 0.1 & ω = 0.7)

Gupta, Tuck, Spears Gill, Sihm and Gupta Sihm, Chhabra, Revised Sihm, Chhabra, Proposed
π = 0.1, ω = 0.7 and Crowe (2013) (2015) and Gupta (2016) and Gupta (2016)∗ § 4.4

T = 0.0 T = 0.0

Empirical Mean(π̂) 0.100109 0.099857 0.099671 0.099879 0.313794
Empirical V ar(π̂) 0.000419 0.000584 0.000553 0.001071 9.769110
Theoretical V ar(π̂) 0.000416 0.000596 0.000567 0.001093 0.624840
Empirical Mean(ω̂) 0.687067 0.698045 0.700115 0.699954 0.700080
Empirical V ar(ω̂) 0.036029 0.003136 0.000371 0.000702 0.000663
Theoretical V ar(ω̂) 0.034358 0.003127 0.000364 0.000717 0.000654
Optimal n1 742 741 647
Optimal n2 258 259 353

T = 0.2 T = 0.2

Empirical Mean(π̂) 0.100109 0.099873 0.099671 0.099879 0.094070
Empirical V ar(π̂) 0.000419 0.000547 0.000553 0.001071 0.006663
Theoretical V ar(π̂) 0.000416 0.000556 0.000567 0.001093 0.005215
Empirical Mean(ω̂) 0.687067 0.698150 0.700115 0.699954 0.700461
Empirical V ar(ω̂) 0.036029 0.005501 0.000371 0.000702 0.000654
Theoretical V ar(ω̂) 0.034358 0.005498 0.000364 0.000717 0.000654
Optimal n1 742 736 647
Optimal n2 258 264 353

T = 0.4 T = 0.4

Empirical Mean(π̂) 0.100109 0.099997 0.099671 0.099879 0.098861
Empirical V ar(π̂) 0.000419 0.000515 0.000553 0.001071 0.001460
Theoretical V ar(π̂) 0.000416 0.000506 0.000567 0.001093 0.001339
Empirical Mean(ω̂) 0.687067 0.695394 0.700115 0.699954 0.700257
Empirical V ar(ω̂) 0.036029 0.010923 0.000371 0.000702 0.000652
Theoretical V ar(ω̂) 0.034358 0.010664 0.000364 0.000717 0.000654
Optimal n1 742 735 647
Optimal n2 258 265 353

T = 0.8 T = 0.8

Empirical Mean(π̂) 0.100109 0.100060 0.099671 0.099879 0.099859
Empirical V ar(π̂) 0.000419 0.000369 0.000553 0.001071 0.000238
Theoretical V ar(π̂) 0.000416 0.000375 0.000567 0.001093 0.000233
Empirical Mean(ω̂) 0.687067 0.687874 0.700115 0.699954 0.699923
Empirical V ar(ω̂) 0.036029 0.096462 0.000371 0.000702 0.000655
Theoretical V ar(ω̂) 0.034358 0.096102 0.000364 0.000717 0.000654
Optimal n1 742 750 647
Optimal n2 258 250 353

∗ More realistic model than Sihm, Chhabra, and Gupta (2016) with unknown innocuous characteristic πa and πb.
pa1

= 0.8, pa2
= 0.2, pb1 = 0.7, pb2 = 0.4, pa = 0.8, pb = 0.3, n = 1, 000, πa = 0.35, and πb = 0.25
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Table 4. Comparison of Different Two-Stage Model Estimators (π = 0.1 & ω = 0.9)

Gupta, Tuck, Spears Gill, Sihm and Gupta Sihm, Chhabra, Revised Sihm, Chhabra, Proposed
π = 0.1, ω = 0.9 and Crowe (2013) (2015) and Gupta (2016) and Gupta (2016)∗ § 4.4

T = 0.0 T = 0.0

Empirical Mean(π̂) 0.100208 0.100438 0.100451 0.100365 0.094515
Empirical V ar(π̂) 0.000438 0.000629 0.001153 0.001136 0.005656
Theoretical V ar(π̂) 0.000446 0.000635 0.001165 0.001166 0.003606
Empirical Mean(ω̂) 0.887436 0.898947 0.899713 0.899507 0.900061
Empirical V ar(ω̂) 0.033923 0.002691 0.000261 0.000526 0.000534
Theoretical V ar(ω̂) 0.032875 0.002602 0.000259 0.000535 0.000534
Optimal n1 738 755 644
Optimal n2 262 245 356

T = 0.2 T = 0.2

Empirical Mean(π̂) 0.100208 0.100383 0.100451 0.100365 0.488790
Empirical V ar(π̂) 0.000438 0.000598 0.001153 0.001136 34.2695
Theoretical V ar(π̂) 0.000446 0.000601 0.001165 0.001166 3.906090
Empirical Mean(ω̂) 0.887436 0.897482 0.899713 0.899507 0.899625
Empirical V ar(ω̂) 0.033923 0.004855 0.000261 0.000526 0.000520
Theoretical V ar(ω̂) 0.032875 0.004797 0.000259 0.000535 0.000534
Optimal n1 738 742 644
Optimal n2 262 258 356

T = 0.4 T = 0.4

Empirical Mean(π̂) 0.100208 0.099773 0.100451 0.100365 0.098965
Empirical V ar(π̂) 0.000438 0.000543 0.001153 0.001136 0.004735
Theoretical V ar(π̂) 0.000446 0.000550 0.001165 0.001166 0.004049
Empirical Mean(ω̂) 0.887436 0.897263 0.899713 0.899507 0.899769
Empirical V ar(ω̂) 0.033923 0.009807 0.000261 0.000526 0.000538
Theoretical V ar(ω̂) 0.032875 0.009897 0.000259 0.000535 0.000534
Optimal n1 738 735 644
Optimal n2 262 265 356

T = 0.8 T = 0.8

Empirical Mean(π̂) 0.100208 0.100039 0.100451 0.100365 0.099798
Empirical V ar(π̂) 0.000438 0.000398 0.001153 0.001136 0.000290
Theoretical V ar(π̂) 0.000446 0.000396 0.001165 0.001166 0.000292
Empirical Mean(ω̂) 0.887436 0.887998 0.899713 0.899507 0.899787
Empirical V ar(ω̂) 0.033923 0.098139 0.000261 0.000526 0.000539
Theoretical V ar(ω̂) 0.032875 0.097850 0.000259 0.000535 0.000534
Optimal n1 738 745 644
Optimal n2 262 255 356

∗ More realistic model than Sihm, Chhabra, and Gupta (2016) with unknown innocuous characteristic πa and πb.
pa1

= 0.8, pa2
= 0.2, pb1 = 0.7, pb2 = 0.4, pa = 0.8, pb = 0.3, n = 1, 000, πa = 0.35, and πb = 0.25
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Table 5. Comparison of Different Two-Stage Model Estimators (π = 0.3 & ω = 0.1)

Gupta, Tuck, Spears Gill, Sihm and Gupta Sihm, Chhabra, Revised Sihm, Chhabra, Proposed
π = 0.3, ω = 0.1 and Crowe (2013) (2015) and Gupta (2016) and Gupta (2016)∗ § 4.4

T = 0.0 T = 0.0

Empirical Mean(π̂) 0.300084 0.299671 0.300164 0.299607 0.299420
Empirical V ar(π̂) 0.000682 0.000699 0.000243 0.001849 0.000339
Theoretical V ar(π̂) 0.000682 0.000696 0.000241 0.001883 0.000335
Empirical Mean(ω̂) 7.950570 0.083196 0.100042 0.100060 0.100258
Empirical V ar(ω̂) 676426 0.031060 0.000193 0.000404 0.000532
Theoretical V ar(ω̂) 1.831340 0.027656 0.000199 0.000410 0.000534
Optimal n1 777 775 667
Optimal n2 223 225 333

T = 0.2 T = 0.2

Empirical Mean(π̂) 0.300084 0.300523 0.300164 0.299607 0.299949
Empirical V ar(π̂) 0.000682 0.000694 0.000243 0.001849 0.000301
Theoretical V ar(π̂) 0.000682 0.000693 0.000241 0.001883 0.000301
Empirical Mean(ω̂) 7.950570 0.072380 0.100042 0.100060 0.099802
Empirical V ar(ω̂) 676426 0.050442 0.000193 0.000404 0.000520
Theoretical V ar(ω̂) 1.831340 0.043985 0.000199 0.000410 0.000534
Optimal n1 777 775 667
Optimal n2 223 225 333

T = 0.4 T = 0.4

Empirical Mean(π̂) 0.300084 0.300057 0.300164 0.299607 0.299879
Empirical V ar(π̂) 0.000682 0.000690 0.000243 0.001849 0.000261
Theoretical V ar(π̂) 0.000682 0.000690 0.000241 0.001883 0.000272
Empirical Mean(ω̂) 7.950570 0.067591 0.100042 0.100060 0.099740
Empirical V ar(ω̂) 676426 0.089037 0.000193 0.000404 0.000533
Theoretical V ar(ω̂) 1.831340 0.079829 0.000199 0.000410 0.000534
Optimal n1 777 776 667
Optimal n2 223 224 333

T = 0.8 T = 0.8

Empirical Mean(π̂) 0.300084 0.299935 0.300164 0.299607 0.299810
Empirical V ar(π̂) 0.000682 0.000696 0.000243 0.001849 0.000230
Theoretical V ar(π̂) 0.000682 0.000684 0.000241 0.001883 0.000226
Empirical Mean(ω̂) 7.950570 0.004726 0.100042 0.100060 0.099990
Empirical V ar(ω̂) 676426 0.850841 0.000193 0.000404 0.000538
Theoretical V ar(ω̂) 1.831340 0.745353 0.000199 0.000410 0.000534
Optimal n1 777 777 667
Optimal n2 223 223 333

∗ More realistic model than Sihm, Chhabra, and Gupta (2016) with unknown innocuous characteristic πa and πb.
pa1

= 0.8, pa2
= 0.2, pb1 = 0.7, pb2 = 0.4, pa = 0.8, pb = 0.3, n = 1, 000, πa = 0.35, and πb = 0.25
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Table 6. Comparison of Different Two-Stage Model Estimators (π = 0.3 & ω = 0.3)

Gupta, Tuck, Spears Gill, Sihm and Gupta Sihm, Chhabra, Revised Sihm, Chhabra, Proposed
π = 0.3, ω = 0.3 and Crowe (2013) (2015) and Gupta (2016) and Gupta (2016)∗ § 4.4

T = 0.0 T = 0.0

Empirical Mean(π̂) 0.300065 0.299781 0.299980 0.300410 0.299133
Empirical V ar(π̂) 0.000688 0.000730 0.000325 0.001874 0.000772
Theoretical V ar(π̂) 0.000686 0.000722 0.000330 0.001868 0.000732
Empirical Mean(ω̂) 21.6122 0.285857 0.300242 0.300316 0.300022
Empirical V ar(ω̂) 1036560 0.024821 0.000327 0.000648 0.000663
Theoretical V ar(ω̂) 1.628680 0.022387 0.000334 0.000644 0.000654
Optimal n1 777 771 668
Optimal n2 223 229 332

T = 0.2 T = 0.2

Empirical Mean(π̂) 0.300065 0.299722 0.299980 0.300410 0.299495
Empirical V ar(π̂) 0.000688 0.000720 0.000325 0.001874 0.000554
Theoretical V ar(π̂) 0.000686 0.000715 0.000330 0.001868 0.000549
Empirical Mean(ω̂) 21.6122 0.281282 0.300242 0.300316 0.300136
Empirical V ar(ω̂) 1036560 0.041955 0.000327 0.000648 0.000627
Theoretical V ar(ω̂) 1.628680 0.037382 0.000334 0.000644 0.000654
Optimal n1 777 772 668
Optimal n2 223 228 332

T = 0.4 T = 0.4

Empirical Mean(π̂) 0.300065 0.299467 0.299980 0.300410 0.299404
Empirical V ar(π̂) 0.000688 0.000699 0.000325 0.001874 0.000414
Theoretical V ar(π̂) 0.000686 0.000707 0.000330 0.001868 0.000421
Empirical Mean(ω̂) 21.6122 0.279218 0.300242 0.300316 0.300740
Empirical V ar(ω̂) 1036560 0.078808 0.000327 0.000648 0.000648
Theoretical V ar(ω̂) 1.628680 0.070802 0.000334 0.000644 0.000654
Optimal n1 777 773 668
Optimal n2 223 227 332

T = 0.8 T = 0.8

Empirical Mean(π̂) 0.300065 0.299814 0.299980 0.300410 0.299984
Empirical V ar(π̂) 0.000688 0.000694 0.000325 0.001874 0.000258
Theoretical V ar(π̂) 0.000686 0.000690 0.000330 0.001868 0.000260
Empirical Mean(ω̂) 21.6122 0.207572 0.300242 0.300316 0.299946
Empirical V ar(ω̂) 1036560 0.805448 0.000327 0.000648 0.000652
Theoretical V ar(ω̂) 1.628680 0.718458 0.000334 0.000644 0.000654
Optimal n1 777 776 668
Optimal n2 223 224 332

∗ More realistic model than Sihm, Chhabra, and Gupta (2016) with unknown innocuous characteristic πa and πb.
pa1

= 0.8, pa2
= 0.2, pb1 = 0.7, pb2 = 0.4, pa = 0.8, pb = 0.3, n = 1, 000, πa = 0.35, and πb = 0.25
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Table 7. Comparison of Different Two-Stage Model Estimators (π = 0.3 & ω = 0.7)

Gupta, Tuck, Spears Gill, Sihm and Gupta Sihm, Chhabra, Revised Sihm, Chhabra, Proposed
π = 0.3, ω = 0.7 and Crowe (2013) (2015) and Gupta (2016) and Gupta (2016)∗ § 4.4

T = 0.0 T = 0.0

Empirical Mean(π̂) 0.299816 0.300042 0.300132 0.300144 0.450579
Empirical V ar(π̂) 0.000691 0.000768 0.000756 0.001854 10.724
Theoretical V ar(π̂) 0.000694 0.000757 0.000769 0.001838 0.624960
Empirical Mean(ω̂) 0.773357 0.692130 0.699766 0.700176 0.699565
Empirical V ar(ω̂) 259.314 0.015686 0.000368 0.000721 0.000660
Theoretical V ar(ω̂) 1.2671 0.014089 0.000364 0.000701 0.000654
Optimal n1 775 770 669
Optimal n2 225 230 331

T = 0.2 T = 0.2

Empirical Mean(π̂) 0.299816 0.299547 0.300132 0.300144 0.297795
Empirical V ar(π̂) 0.000691 0.000743 0.000756 0.001854 0.005868
Theoretical V ar(π̂) 0.000694 0.000748 0.000769 0.001838 0.005323
Empirical Mean(ω̂) 0.773357 0.686035 0.699766 0.700176 0.700143
Empirical V ar(ω̂) 259.314 0.028331 0.000368 0.000721 0.000660
Theoretical V ar(ω̂) 1.2671 0.025912 0.000364 0.000701 0.000654
Optimal n1 775 770 669
Optimal n2 225 230 331

T = 0.4 T = 0.4

Empirical Mean(π̂) 0.299816 0.300178 0.300132 0.300144 0.299264
Empirical V ar(π̂) 0.000691 0.000709 0.000756 0.001854 0.001471
Theoretical V ar(π̂) 0.000694 0.000735 0.000769 0.001838 0.001439
Empirical Mean(ω̂) 0.773357 0.673376 0.699766 0.700176 0.700072
Empirical V ar(ω̂) 259.314 0.060151 0.000368 0.000721 0.000650
Theoretical V ar(ω̂) 1.2671 0.054235 0.000364 0.000701 0.000654
Optimal n1 775 770 669
Optimal n2 225 230 331

T = 0.8 T = 0.8

Empirical Mean(π̂) 0.299816 0.300006 0.300132 0.300144 0.299604
Empirical V ar(π̂) 0.000691 0.000712 0.000756 0.001854 0.000352
Theoretical V ar(π̂) 0.000694 0.000701 0.000769 0.001838 0.000348
Empirical Mean(ω̂) 0.773357 0.606874 0.699766 0.700176 0.700101
Empirical V ar(ω̂) 259.314 0.762194 0.000368 0.000721 0.000652
Theoretical V ar(ω̂) 1.2671 0.664273 0.000364 0.000701 0.000654
Optimal n1 775 774 669
Optimal n2 225 226 331

∗ More realistic model than Sihm, Chhabra, and Gupta (2016) with unknown innocuous characteristic πa and πb.
pa1

= 0.8, pa2
= 0.2, pb1 = 0.7, pb2 = 0.4, pa = 0.8, pb = 0.3, n = 1, 000, πa = 0.35, and πb = 0.25
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Table 8. Comparison of Different Two-Stage Model Estimators (π = 0.3 & ω = 0.9)

Gupta, Tuck, Spears Gill, Sihm and Gupta Sihm, Chhabra, Revised Sihm, Chhabra, Proposed
π = 0.3, ω = 0.9 and Crowe (2013) (2015) and Gupta (2016) and Gupta (2016)∗ § 4.4

T = 0.0 T = 0.0

Empirical Mean(π̂) 0.300066 0.300121 0.300199 0.300339 0.297836
Empirical V ar(π̂) 0.000680 0.000779 0.001449 0.001813 0.004313
Theoretical V ar(π̂) 0.000698 0.000767 0.001437 0.001822 0.003675
Empirical Mean(ω̂) 0.869297 0.896474 0.89995 0.899966 0.900186
Empirical V ar(ω̂) 183.953 0.012476 0.000262 0.000517 0.000532
Theoretical V ar(ω̂) 1.11997 0.011666 0.000259 0.000524 0.000534
Optimal n1 775 773 670
Optimal n2 225 227 330

T = 0.2 T = 0.2

Empirical Mean(π̂) 0.300066 0.299509 0.300199 0.300339 0.434294
Empirical V ar(π̂) 0.000680 0.000746 0.001449 0.001813 29.2759
Theoretical V ar(π̂) 0.000698 0.000759 0.001437 0.001822 3.90621
Empirical Mean(ω̂) 0.869297 0.889245 0.899950 0.899966 0.899741
Empirical V ar(ω̂) 183.953 0.023423 0.000262 0.000517 0.000533
Theoretical V ar(ω̂) 1.11997 0.021525 0.000259 0.000524 0.000534
Optimal n1 775 770 670
Optimal n2 225 230 330

T = 0.4 T = 0.4

Empirical Mean(π̂) 0.300066 0.300539 0.300199 0.300339 0.298900
Empirical V ar(π̂) 0.000680 0.000740 0.001449 0.001813 0.004425
Theoretical V ar(π̂) 0.000698 0.000746 0.001437 0.001822 0.004162
Empirical Mean(ω̂) 0.869297 0.875158 0.899950 0.899966 0.900026
Empirical V ar(ω̂) 183.953 0.052949 0.000262 0.000517 0.000536
Theoretical V ar(ω̂) 1.11997 0.047165 0.000259 0.000524 0.000534
Optimal n1 775 770 670
Optimal n2 225 230 330

T = 0.8 T = 0.8

Empirical Mean(π̂) 0.300066 0.300362 0.300199 0.300339 0.299860
Empirical V ar(π̂) 0.000680 0.000723 0.001449 0.001813 0.000407
Theoretical V ar(π̂) 0.000698 0.000707 0.001437 0.001822 0.000408
Empirical Mean(ω̂) 0.869297 0.799196 0.899950 0.899966 0.899706
Empirical V ar(ω̂) 183.953 0.737917 0.000262 0.000517 0.000548
Theoretical V ar(ω̂) 1.11997 0.637221 0.000259 0.000524 0.000534
Optimal n1 775 773 670
Optimal n2 225 227 330

∗ More realistic model than Sihm, Chhabra, and Gupta (2016) with unknown innocuous characteristic πa and πb.
pa1

= 0.8, pa2
= 0.2, pb1 = 0.7, pb2 = 0.4, pa = 0.8, pb = 0.3, n = 1, 000, πa = 0.35, and πb = 0.25
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Table 9. Comparison of Different Two-Stage Model Estimators (π = 0.6 & ω = 0.1)

Gupta, Tuck, Spears Gill, Sihm and Gupta Sihm, Chhabra, Revised Sihm, Chhabra, Proposed
π = 0.6, ω = 0.1 and Crowe (2013) (2015) and Gupta (2016) and Gupta (2016)∗ § 4.4

T = 0.0 T = 0.0

Empirical Mean(π̂) 0.599931 0.600114 0.600047 0.600064 0.599969
Empirical V ar(π̂) 0.000782 0.000796 0.000291 0.002192 0.000346
Theoretical V ar(π̂) 0.000782 0.000781 0.000296 0.002183 0.000337
Empirical Mean(ω̂) 0.073193 -0.011230 0.099866 0.100070 0.099984
Empirical V ar(ω̂) 0.090768 0.835511 0.000203 0.000409 0.000524
Theoretical V ar(ω̂) 0.084199 0.123181 0.000199 0.000410 0.000534
Optimal n1 777 777 666
Optimal n2 223 223 334

T = 0.2 T = 0.2

Empirical Mean(π̂) 0.599931 0.600557 0.600047 0.600064 0.599706
Empirical V ar(π̂) 0.000782 0.000790 0.000291 0.002192 0.000321
Theoretical V ar(π̂) 0.000782 0.000781 0.000296 0.002183 0.000313
Empirical Mean(ω̂) 0.073193 -0.036102 0.099866 0.100070 0.099784
Empirical V ar(ω̂) 0.090768 1.90469 0.000203 0.000409 0.000542
Theoretical V ar(ω̂) 0.084199 0.197117 0.000199 0.000410 0.000534
Optimal n1 777 777 666
Optimal n2 223 223 334

T = 0.4 T = 0.4

Empirical Mean(π̂) 0.599931 0.600140 0.600047 0.600064 0.600099
Empirical V ar(π̂) 0.000782 0.000769 0.000291 0.002192 0.000292
Theoretical V ar(π̂) 0.000782 0.000780 0.000296 0.002183 0.000291
Empirical Mean(ω̂) 0.073193 -0.093077 0.099866 0.100070 0.099774
Empirical V ar(ω̂) 0.090768 1.12045 0.000203 0.000409 0.000537
Theoretical V ar(ω̂) 0.084199 0.358819 0.000199 0.000410 0.000534
Optimal n1 777 777 666
Optimal n2 223 223 334

T = 0.8 T = 0.8

Empirical Mean(π̂) 0.599931 0.599834 0.600047 0.600064 0.599954
Empirical V ar(π̂) 0.000782 0.000777 0.000291 0.002192 0.000258
Theoretical V ar(π̂) 0.000782 0.000778 0.000296 0.002183 0.000255
Empirical Mean(ω̂) 0.073193 -0.523518 0.099866 0.100070 0.099937
Empirical V ar(ω̂) 0.090768 9.93607 0.000203 0.000409 0.000541
Theoretical V ar(ω̂) 0.084199 3.39486 0.000199 0.000410 0.000534
Optimal n1 777 778 666
Optimal n2 223 222 334

∗ More realistic model than Sihm, Chhabra, and Gupta (2016) with unknown innocuous characteristic πa and πb.
pa1

= 0.8, pa2
= 0.2, pb1 = 0.7, pb2 = 0.4, pa = 0.8, pb = 0.3, n = 1, 000, πa = 0.35, and πb = 0.25
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Table 10. Comparison of Different Two-Stage Model Estimators (π = 0.6 & ω = 0.3)

Gupta, Tuck, Spears Gill, Sihm and Gupta Sihm, Chhabra, Revised Sihm, Chhabra, Proposed
π = 0.6, ω = 0.3 and Crowe (2013) (2015) and Gupta (2016) and Gupta (2016)∗ § 4.4

T = 0.0 T = 0.0

Empirical Mean(π̂) 0.599892 0.599860 0.600313 0.600606 0.599877
Empirical V ar(π̂) 0.000793 0.000779 0.000389 0.002174 0.000750
Theoretical V ar(π̂) 0.000790 0.000788 0.000432 0.002218 0.000740
Empirical Mean(ω̂) 0.273981 0.184471 0.300046 0.300003 0.300398
Empirical V ar(ω̂) 0.083689 3.46138 0.000335 0.000658 0.000648
Theoretical V ar(ω̂) 0.075041 0.095768 0.000334 0.000646 0.000654
Optimal n1 776 776 665
Optimal n2 224 224 335

T = 0.2 T = 0.2

Empirical Mean(π̂) 0.599892 0.599457 0.600313 0.600606 0.599990
Empirical V ar(π̂) 0.000793 0.000810 0.000389 0.002174 0.000568
Theoretical V ar(π̂) 0.000790 0.000786 0.000432 0.002218 0.000562
Empirical Mean(ω̂) 0.273981 0.143794 0.300046 0.300003 0.299786
Empirical V ar(ω̂) 0.083689 1.27267 0.000335 0.000658 0.000644
Theoretical V ar(ω̂) 0.075041 0.161466 0.000334 0.000646 0.000654
Optimal n1 776 776 665
Optimal n2 224 224 335

T = 0.4 T = 0.4

Empirical Mean(π̂) 0.599892 0.599191 0.600313 0.600606 0.600314
Empirical V ar(π̂) 0.000793 0.000797 0.000389 0.002174 0.000451
Theoretical V ar(π̂) 0.000790 0.000784 0.000432 0.002218 0.000440
Empirical Mean(ω̂) 0.273981 0.037344 0.300046 0.300003 0.300156
Empirical V ar(ω̂) 0.083689 45.7886 0.000335 0.000658 0.000652
Theoretical V ar(ω̂) 0.075041 0.310463 0.000334 0.000646 0.000654
Optimal n1 776 777 665
Optimal n2 224 223 335

T = 0.8 T = 0.8

Empirical Mean(π̂) 0.599892 0.600618 0.600313 0.600606 0.599917
Empirical V ar(π̂) 0.000793 0.000775 0.000389 0.002174 0.000290
Theoretical V ar(π̂) 0.000790 0.000780 0.000432 0.002218 0.000288
Empirical Mean(ω̂) 0.273981 -0.170965 0.300046 0.300003 0.300031
Empirical V ar(ω̂) 0.083689 35.6447 0.000335 0.000658 0.000665
Theoretical V ar(ω̂) 0.075041 3.22937 0.000334 0.000646 0.000654
Optimal n1 776 777 665
Optimal n2 224 223 335

∗ More realistic model than Sihm, Chhabra, and Gupta (2016) with unknown innocuous characteristic πa and πb.
pa1

= 0.8, pa2
= 0.2, pb1 = 0.7, pb2 = 0.4, pa = 0.8, pb = 0.3, n = 1, 000, πa = 0.35, and πb = 0.25
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Table 11. Comparison of Different Two-Stage Model Estimators (π = 0.6 & ω = 0.7)

Gupta, Tuck, Spears Gill, Sihm and Gupta Sihm, Chhabra, Revised Sihm, Chhabra, Proposed
π = 0.6, ω = 0.7 and Crowe (2013) (2015) and Gupta (2016) and Gupta (2016)∗ § 4.4

T = 0.0 T = 0.0

Empirical Mean(π̂) 0.599905 0.600216 0.599866 0.599672 0.512808
Empirical V ar(π̂) 0.000782 0.000809 0.000922 0.002242 11.3447
Theoretical V ar(π̂) 0.000799 0.000797 0.001026 0.002239 0.624990
Empirical Mean(ω̂) 0.676777 0.651850 0.699945 0.699750 0.699687
Empirical V ar(ω̂) 0.062474 0.194263 0.000363 0.000706 0.000662
Theoretical V ar(ω̂) 0.057994 0.057869 0.000364 0.000703 0.000654
Optimal n1 776 776 667
Optimal n2 224 224 333

T = 0.2 T = 0.2

Empirical Mean(π̂) 0.599905 0.600202 0.599866 0.599672 0.602554
Empirical V ar(π̂) 0.000782 0.000784 0.000922 0.002242 0.005694
Theoretical V ar(π̂) 0.000799 0.000794 0.001026 0.002239 0.005349
Empirical Mean(ω̂) 0.676777 0.626695 0.699945 0.699750 0.699946
Empirical V ar(ω̂) 0.062474 0.245408 0.000363 0.000706 0.000657
Theoretical V ar(ω̂) 0.057994 0.107107 0.000364 0.000703 0.000654
Optimal n1 776 776 667
Optimal n2 224 224 333

T = 0.4 T = 0.4

Empirical Mean(π̂) 0.599905 0.600428 0.599866 0.599672 0.599984
Empirical V ar(π̂) 0.000782 0.000780 0.000922 0.002242 0.001490
Theoretical V ar(π̂) 0.000799 0.000791 0.001026 0.002239 0.001464
Empirical Mean(ω̂) 0.676777 0.548970 0.699945 0.699750 0.699953
Empirical V ar(ω̂) 0.062474 8.959240 0.000363 0.000706 0.000656
Theoretical V ar(ω̂) 0.057994 0.227916 0.000364 0.000703 0.000654
Optimal n1 776 776 667
Optimal n2 224 224 333

T = 0.8 T = 0.8

Empirical Mean(π̂) 0.599905 0.600202 0.599866 0.599672 0.600105
Empirical V ar(π̂) 0.000782 0.000777 0.000922 0.002242 0.000380
Theoretical V ar(π̂) 0.000799 0.000783 0.001026 0.002239 0.000377
Empirical Mean(ω̂) 0.676777 0.189206 0.699945 0.699750 0.699544
Empirical V ar(ω̂) 0.062474 14.7166 0.000363 0.000706 0.000664
Theoretical V ar(ω̂) 0.057994 2.93443 0.000364 0.000703 0.000654
Optimal n1 776 777 667
Optimal n2 224 223 333

∗ More realistic model than Sihm, Chhabra, and Gupta (2016) with unknown innocuous characteristic πa and πb.
pa1

= 0.8, pa2
= 0.2, pb1 = 0.7, pb2 = 0.4, pa = 0.8, pb = 0.3, n = 1, 000, πa = 0.35, and πb = 0.25
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Table 12. Comparison of Different Two-Stage Model Estimators (π = 0.6 & ω = 0.9)

Gupta, Tuck, Spears Gill, Sihm and Gupta Sihm, Chhabra, Revised Sihm, Chhabra, Proposed
π = 0.6, ω = 0.9 and Crowe (2013) (2015) and Gupta (2016) and Gupta (2016)∗ § 4.4

T = 0.0 T = 0.0

Empirical Mean(π̂) 0.599913 0.599612 0.599729 0.600570 0.601235
Empirical V ar(π̂) 0.000797 0.000796 0.001743 0.002205 0.004068
Theoretical V ar(π̂) 0.000800 0.000799 0.001834 0.002226 0.003692
Empirical Mean(ω̂) 0.882876 0.873725 0.899855 0.899930 0.899635
Empirical V ar(ω̂) 0.054863 0.110643 0.000261 0.000528 0.000527
Theoretical V ar(ω̂) 0.050602 0.047935 0.000259 0.000524 0.000534
Optimal n1 778 777 670
Optimal n2 222 223 330

T = 0.2 T = 0.2

Empirical Mean(π̂) 0.599913 0.599793 0.599729 0.600570 0.559286
Empirical V ar(π̂) 0.000797 0.000790 0.001743 0.002205 36.194100
Theoretical V ar(π̂) 0.000800 0.000797 0.001834 0.002226 3.906240
Empirical Mean(ω̂) 0.882876 0.840707 0.899855 0.899930 0.900271
Empirical V ar(ω̂) 0.054863 0.209650 0.000261 0.000528 0.000535
Theoretical V ar(ω̂) 0.050602 0.088407 0.000259 0.000524 0.000534
Optimal n1 778 776 670
Optimal n2 222 224 330

T = 0.4 T = 0.4

Empirical Mean(π̂) 0.599913 0.600034 0.599729 0.600570 0.601268
Empirical V ar(π̂) 0.000797 0.000799 0.001743 0.002205 0.004304
Theoretical V ar(π̂) 0.000800 0.000794 0.001834 0.002226 0.004190
Empirical Mean(ω̂) 0.882876 0.784888 0.899855 0.899930 0.899882
Empirical V ar(ω̂) 0.054863 0.927739 0.000261 0.000528 0.000528
Theoretical V ar(ω̂) 0.050602 0.195299 0.000259 0.000524 0.000534
Optimal n1 778 776 670
Optimal n2 222 224 330

T = 0.8 T = 0.8

Empirical Mean(π̂) 0.599913 0.599697 0.599729 0.600570 0.599836
Empirical V ar(π̂) 0.000797 0.000787 0.001743 0.002205 0.000439
Theoretical V ar(π̂) 0.000800 0.000784 0.001834 0.002226 0.000437
Empirical Mean(ω̂) 0.882876 0.369508 0.899855 0.899930 0.900260
Empirical V ar(ω̂) 0.054863 9.55863 0.000261 0.000528 0.000524
Theoretical V ar(ω̂) 0.050602 2.79416 0.000259 0.000524 0.000534
Optimal n1 778 777 670
Optimal n2 222 223 330

∗ More realistic model than Sihm, Chhabra, and Gupta (2016) with unknown innocuous characteristic πa and πb.
pa1

= 0.8, pa2
= 0.2, pb1 = 0.7, pb2 = 0.4, pa = 0.8, pb = 0.3, n = 1, 000, πa = 0.35, and πb = 0.25
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5.3 Simulation to Verify Suitable T versus pa

Solving the quartic inequality of V ar (π̂p) < V ar(π̂r) algebraically with respect

to T would be complex and time consuming. But if our purpose is simply to make sure

we get improved efficiency by adopting a new model, then verifying it and determining

suitable intervals of our parameters wouldn’t be hard.

In this simulation study, we show that by choosing suitable values of T and pa,

we are able to achieve improved efficiency over the revised model of Sihm, Chhabra,

and Gupta (2016) in Section 4.3. In Figures 1 - 12, the red colored area is where

V ar (π̂p) < V ar(π̂r) holds true while the black is the opposite. As we set pa = 0.8 in

our simulation study in Section 5.1, the horizontal line of pa = 0.8 is added to every

figure to indicate the interval of T where V ar (π̂p) < V ar(π̂r) holds true.

In Figures 1 and 2, we can tell that any value of T will make V ar (π̂p) smaller

than V ar(π̂r) when pa = 0.8. And this observation nicely matches with the simulation

study carried out in Tables 1 and 2. In Figure 3, T greater than 0.5 will lead us to

smaller value of V ar (π̂p) than V ar(π̂r) when pa = 0.8. This agrees with the simulation

study done in Tables 3. From Figure 4, we can tell that T greater than 0.6 will lead to

a smaller value of V ar (π̂p) than that of V ar(π̂r) when pa = 0.8. This is in accordance

with the simulation study in Table 4.

In Figures 5 and 6, we can tell that any value of T will make V ar (π̂p) smaller

than V ar(π̂r) when pa = 0.8. And this observation nicely matches with the simulation

study carried out in Tables 5 and 6. In Figure 7, T greater than 0.4 will make V ar (π̂p)

smaller than V ar(π̂r) when pa = 0.8. This matches with the simulation study done

in Table 7. From Figure 8, we can tell that T greater than 0.6 will lead to a smaller
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value of V ar (π̂p) than that of V ar(π̂r) when pa = 0.8. This is in accordance with the

simulation study in Table 8.

In Figures 9 and 10, we can tell that any value of T will make V ar (π̂p) smaller

than V ar(π̂r) when pa = 0.8. And this observation nicely matches with the simulation

study carried out in Tables 9 and 10. In Figure 11, T greater than 0.4 will make

V ar (π̂p) smaller than V ar(π̂r) when pa = 0.8. This matches with the simulation

study done in Table 11. In Figure 12, T greater than 0.5 will surely make V ar (π̂p)

smaller than V ar(π̂r) when pa = 0.8. This also matches with the simulation study

done in Table 12.

In sum, by setting the value of T greater than 0.6, we will get smaller V ar (π̂p)

value than V ar(π̂r), provided that the true level of sensitivity is no greater than 0.9

and the prevalence of the sensitive characteristic in the population is between 0.1 and

0.6.

In this section, we showed that we can select a suitable value of T to achieve

better efficiency for our proposed model than the revised model of Sihm, Chhabra,

and Gupta (2016) in Section 4.3. By choosing the value of T in the red colored area

from Figures 1 - 12, one can always make V ar (π̂p) smaller than V ar(π̂r). Notice

that when different values are assigned to the parameters, one needs to carry out

this part of simulation again to get new Figures and choose suitable intervals of T

subsequently.
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Figure 1. Suitable T Interval for Table 1 (π = 0.1, ω = 0.1)
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Figure 2. Suitable T Interval for Table 2 (π = 0.1, ω = 0.3)
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Figure 3. Suitable T Interval for Table 3 (π = 0.1, ω = 0.7)
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Figure 4. Suitable T Interval for Table 4 (π = 0.1, ω = 0.9)
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Figure 5. Suitable T Interval for Table 5 (π = 0.3, ω = 0.1)
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Figure 6. Suitable T Interval for Table 6 (π = 0.3, ω = 0.3)
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Figure 7. Suitable T Interval for Table 7 (π = 0.3, ω = 0.7)
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Figure 8. Suitable T Interval for Table 8 (π = 0.3, ω = 0.9)
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Figure 9. Suitable T Interval for Table 9 (π = 0.6, ω = 0.1)
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Figure 10. Suitable T Interval for Table 10 (π = 0.6, ω = 0.3)
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Figure 11. Suitable T Interval for Table 11 (π = 0.6, ω = 0.7)
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Figure 12. Suitable T Interval for Table 12 (π = 0.6, ω = 0.9)
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

We propose a new binary optional RRT model to overcome shortcomings of

existing models. Namely, we want to have a smaller sample size while estimating

multiple parameters in surveying sensitive questions. Also, we want to avoid the

unrealistic assumption of knowing the prevalence of innocuous characteristics in the

two- question approach. The new model constitutes notable improvement in these

matters.

We first presented the model of Sihm, Chhabra, and Gupta (2016) in Section

4.2 to show how much improvement in efficiency we could achieve by switching from

the split-sample approach to the two-question approach. However, the model of Sihm,

Chhabra, and Gupta (2016) has a very strong requirement for us to utilize it without

difficulties. We must know the prevalence of the innocuous characters (πa and πb)

among the population in order to apply the method.

Assuming πa and πb are unknown, we revised the model of Sihm, Chhabra,

and Gupta (2016) and came up with a more realistic version of it. But as we have

to estimate four parameters instead of two, the efficiency suffered. In the end, we

adopted the Warner’s model into the basic framework to achieve our objectives.

The simulation study verifies that the proposed model allows us to choose a

suitable value of T to minimize the variance of the estimator in comparison with

competing models.
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The main contribution of this work is to offer a better insight in the utility

of two-stage RRT models. We have discussed how the two-stage parameter T (also

known as the truth parameter) should be selected. Another key contribution is the

introduction of the two-question approach as opposed to the traditional split-sample

approach, thereby reducing the sampling cost significantly. Of course, this requires

greater degree of cooperation from the respondents.

6.2 Future Work

We have observed that the Randomized Response Technique has been imple-

mented mostly in surveying sensitive and private questions so far. Recently, new

opportunities and applications are emerging in the field of statistical disclosure con-

trol. I would like to study more about possibilities which the RRT may open up in

the context of statistical disclosure control. This is a major paradigm shift in RRT

methodology where we worry about offering privacy not just to the respondent but

also to data that have already been collected and are ready for public release.

Another area I would like explore will be connecting dots between model val-

idation and actual implementation of the models. In this study, all the parameter

values were freely chosen to examine how the model behaves. But in reality, the field

worker wouldn’t be able to know what parameter values (π and ω) he or she should

take in the end.

I would also like to study the important concept of utilizing auxiliary infor-

mation to improve parameter estimates.
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APPENDIX A

R CODE FOR VARIOUS BINARY RRT COMPARISONS

rrt2013 <- function() {

#####################################################################

############################## 2013 ############################

#####################################################################

# HAT variables to store many trials for Empirical Values

ppai_ <- ww_ <- numeric(gv_trials)

# Variables for Theoretical Variances

var_ppai_ <- var_ww_ <- 0 # 10-14-2015 Unknown pi_a --> Split Sample --> var_pi_a_21 Added

# 10-26-2015 Unknown pi_b & pi_a --> Split Sample --> var_pi_a_23 Added

# Py1 & Py2 for 2* series

Py1 <- (1-gv_w_)*gv_pai_ + gv_w_*( gv_pea_a*gv_pai_ + (1-gv_pea_a)*gv_pai_a )

Py2 <- (1-gv_w_)*gv_pai_ + gv_w_*( gv_pea_b*gv_pai_ + (1-gv_pea_b)*gv_pai_a )

# Split Sample into n1 and n2

gv_n2 <- round( gv_sample_size/( 1+(1/gv_lambda)*sqrt(Py1*(1-Py1)/(Py2*(1-Py2) ) ) ), 0 )

gv_n1 <- (gv_sample_size - gv_n2) # 10-26-2015 Unknown pi_b --> Split Sample

tmp <- numeric(2) #### pai_ & w_ ####

One_Trial <- function( )

{

pea_a <- rbinom(gv_n1 , 1, gv_pea_a) #

w1 <- rbinom(gv_n1 , 1, gv_w_) #

pai1_a <- rbinom(gv_n1 , 1, gv_pai_a) # 10-26-2015 Unknown pi_a --> Split Sample

pai1 <- rbinom(gv_n1 , 1, gv_pai_)

pea_b <- rbinom(gv_n2 , 1, gv_pea_b) #

w2 <- rbinom(gv_n2 , 1, gv_w_) #

pai2_a <- rbinom(gv_n2 , 1, gv_pai_a) # 10-26-2015 Unknown pi_a --> Split Sample

pai2 <- rbinom(gv_n2 , 1, gv_pai_)

py1 <- (1-w1)*pai1 + w1*( pea_a*pai1 + (1-pea_a)*pai1_a )

py2 <- (1-w2)*pai2 + w2*( pea_b*pai2 + (1-pea_b)*pai2_a )

py1_hat <- mean(py1)

py2_hat <- mean(py2)

pai_hat <- (gv_lambda*py2_hat-py1_hat)/(gv_lambda-1)

w_hat <- ( py1_hat - py2_hat )/
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( (gv_pea_b - gv_pea_a)*gv_pai_a + (1-gv_pea_b)*py1_hat - (1-gv_pea_a)*py2_hat )

return( c(

pai_hat , w_hat

) )

}

for( i in 1:gv_trials )

{

tmp <- One_Trial( )

ppai_[i] <- tmp[1]

ww_[i] <- tmp[2]

}

var_ppai_ <- (1/(gv_lambda-1)^2)*(gv_lambda^2*Py2*(1-Py2)/gv_n2 + Py1*(1-Py1)/gv_n1 )

var_ww_ <- (gv_pea_b - gv_pea_a)^2*( (gv_pai_a - Py2)^2*Py1*(1-Py1)/gv_n1 +

(gv_pai_a - Py1)^2*Py2*(1-Py2)/gv_n2 )/

( (gv_pea_b - gv_pea_a)*gv_pai_a + (1-gv_pea_b)*Py1 - (1-gv_pea_a)*Py2 )^4

result <- list(mean_pi_hat=mean(ppai_), var_pi_hat=var(ppai_), theoretic_var_pi_hat=var_ppai_,

mean_w_hat=mean(ww_), var_w_hat=var(ww_), theoretic_var_w_hat=var_ww_, n1=gv_n1, n2=gv_n2 )

return(result)

}

rrt2015 <- function() {

#####################################################################

############################## 2015 #################################

#####################################################################

# HAT variables to store many trials for Empirical Values

ppai_ <- ww_ <- numeric(gv_trials)

# Variables for Theoretical Variances

var_ppai_ <- var_ww_ <- 0 # 10-14-2015 Unknown pi_a --> Split Sample --> var_pi_a_21 Added

# 10-26-2015 Unknown pi_b & pi_a --> Split Sample --> var_pi_a_23 Added

Py1 <- gv_T*gv_pai_ + (1-gv_T)*( (1-gv_w_)*gv_pai_ + gv_w_*( gv_pea_a*gv_pai_ + (1-gv_pea_a)*(1-gv_pai_) ) )

Py2 <- gv_T*gv_pai_ + (1-gv_T)*( (1-gv_w_)*gv_pai_ + gv_w_*( gv_pea_b*gv_pai_ + (1-gv_pea_b)*(1-gv_pai_) ) )
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# Split Sample into n1 and n2

gv_n2 <- round( gv_sample_size/( 1+(1/gv_lambda)*sqrt(Py1*(1-Py1)/(Py2*(1-Py2) ) ) ), 0 )

gv_n1 <- (gv_sample_size - gv_n2) # 10-26-2015 Unknown pi_b --> Split Sample

tmp <- numeric(2) #### pai_ & w_ ####

One_Trial <- function( )

{

# Define random variables for one trial

pai1 <- rbinom(gv_n1, 1, gv_pai_)

w1 <- rbinom(gv_n1, 1, gv_w_)

pai2 <- rbinom(gv_n2, 1, gv_pai_)

w2 <- rbinom(gv_n2, 1, gv_w_)

if ( (gv_T -1)*(gv_T) == 0 ) {

T1 <- rep(gv_T, gv_n1)

T2 <- rep(gv_T, gv_n2)

} else {

T1 <- rbinom(gv_n1, 1, gv_T)

T2 <- rbinom(gv_n2, 1, gv_T)

}

pea_a <- rbinom(gv_n1, 1, gv_pea_a) # 10-14-2015 Unknown pi_a --> Split Sample

# For (pee_a_1, pee_a_2) see below

pea_b <- rbinom(gv_n2, 1, gv_pea_b)

py1 <- T1*pai1 + (1-T1)*( (1-w1)*pai1 + w1*( pea_a*pai1 + (1-pea_a)*(1-pai1) ) )

py1_hat <- mean(py1)

py2 <- T2*pai2 + (1-T2)*( (1-w2)*pai2 + w2*( pea_b*pai2 + (1-pea_b)*(1-pai2) ) )

py2_hat <- mean(py2)

pai_hat <- (gv_lambda*py2_hat-py1_hat)/(gv_lambda-1)

w_hat <- (py1_hat-py2_hat)/( (1-gv_T)*( (1-gv_pea_b)*(2*py1_hat-1) -

(1- gv_pea_a)*(2*py2_hat-1)) )

return( c(

pai_hat , w_hat

) )

}
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for( i in 1:gv_trials )

{

tmp <- One_Trial( )

ppai_[i] <- tmp[1]

ww_[i] <- tmp[2]

}

var_ppai_ <- (1/(gv_lambda-1)^2)*(gv_lambda^2*Py2*(1-Py2)/gv_n2 + Py1*(1-Py1)/gv_n1 )

var_ww_ <- ( (gv_pea_a - gv_pea_b)^2*( (2*Py2-1)^2*Py1*(1-Py1)/gv_n1 +

(2*Py1-1)^2*Py2*(1-Py2)/gv_n2 ) )/( (1-gv_T)^2*( (1-gv_pea_b)*(2*Py1-1) - (1-gv_pea_a)*(2*Py2-1) )^4 )

result <- list(mean_pi_hat=mean(ppai_), var_pi_hat=var(ppai_),

theoretic_var_pi_hat=var_ppai_, mean_w_hat=mean(ww_), var_w_hat=var(ww_),

theoretic_var_w_hat=var_ww_, n1=gv_n1, n2=gv_n2 )

return(result)

}

rrt2016 <- function(){

#####################################################################

############################## 2016 #################################

#####################################################################

# HAT variables to store many trials for Empirical Values

ppai_ <- ww_ <- numeric(gv_trials)

# Variables for Theoretical Variances

var_ppai_ <- var_ww_ <- 0 # 10-14-2015 Unknown pi_a --> Split Sample --> var_pi_a_21 Added

# 10-26-2015 Unknown pi_b & pi_a --> Split Sample --> var_pi_a_23 Added

Py1 <- gv_pea_a*gv_w_ + (1-gv_pea_a)*gv_pai_a # 10-26-2015 Unknown pi_b --> Split Sample

Py2 <- (1-gv_w_)*gv_pai_ + gv_w_*( gv_pea_b*gv_pai_ + (1-gv_pea_b)*gv_pai_b )

tmp <- numeric(2) #### pai_ & w_ ####

One_Trial <- function( )

{

# Define random variables for one trial

pai_ <- rbinom(gv_sample_size, 1, gv_pai_)

w_ <- rbinom(gv_sample_size, 1, gv_w_)

pea_a <- rbinom(gv_sample_size, 1, gv_pea_a)
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pea_b <- rbinom(gv_sample_size, 1, gv_pea_b)

pai_a <- rbinom(gv_sample_size , 1, gv_pai_a) #

pai_b <- rbinom(gv_sample_size , 1, gv_pai_b) #

py1 <- pea_a*w_ + (1-pea_a)*pai_a

py1_hat <- mean(py1)

py2 <- (1-w_)*pai_ + w_*( pea_b*pai_ + (1-pea_b)*pai_b )

py2_hat <- mean(py2)

w_hat <- (py1_hat-(1-gv_pea_a)*gv_pai_a)/gv_pea_a

pai_hat <- (py2_hat-(1-gv_pea_b)*w_hat*gv_pai_b) /(1-(1-gv_pea_b)*w_hat)

return( c(

pai_hat , w_hat

) )

}

for( i in 1:gv_trials )

{

tmp <- One_Trial( )

ppai_[i] <- tmp[1]

ww_[i] <- tmp[2]

}

var_ppai_ <- (1/(1-(1-gv_pea_b)*gv_w_)^2)*(Py2*(1-Py2)/gv_sample_size) +

((1-gv_pea_b)^2*(Py2-gv_pai_b)^2/(1-(1-gv_pea_b)*gv_w_)^4)*(Py1*(1-Py1)/(gv_sample_size*gv_pea_a^2))

var_ww_ <- Py1*(1-Py1)/(gv_sample_size*gv_pea_a^2)

result <- list(mean_pi_hat=mean(ppai_), var_pi_hat=var(ppai_),

theoretic_var_pi_hat=var_ppai_, mean_w_hat=mean(ww_), var_w_hat=var(ww_), theoretic_var_w_hat=var_ww_)

return(result)

}

rrt2016star <- function() {

#####################################################################

############################## 2016 Star ############################
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#####################################################################

# HAT variables to store many trials for Empirical Values

ppai_ <- ww_ <- numeric(gv_trials)

# Variables for Theoretical Variances

var_ppai_ <- var_ww_ <- 0 # 10-14-2015 Unknown pi_a --> Split Sample --> var_pi_a_21 Added

# 10-26-2015 Unknown pi_b & pi_a --> Split Sample --> var_pi_a_23 Added

# Py1 & Py2 for 2* series

Py11 <- gv_pea_a_1*gv_w_ + (1-gv_pea_a_1)*gv_pai_a # 10-26-2015 Unknown pi_b --> Split Sample

Py12 <- gv_pea_a_2*gv_w_ + (1-gv_pea_a_2)*gv_pai_a # 10-26-2015 Unknown pi_b --> Split Sample

Py21 <- (1-gv_w_)*gv_pai_ + gv_w_*( gv_pea_b_1*gv_pai_ + (1-gv_pea_b_1)*gv_pai_b )

Py22 <- (1-gv_w_)*gv_pai_ + gv_w_*( gv_pea_b_2*gv_pai_ + (1-gv_pea_b_2)*gv_pai_b )

# Split Sample into n1 and n2

gv_n2 <- round( gv_sample_size/( 1+(1/gv_lambda_23star_b)*

sqrt(Py21*(1-Py21)/(Py22*(1-Py22) ) ) ), 0 ) # 10-26-2015 Unknown pi_b --> Split Sample

gv_n1 <- (gv_sample_size - gv_n2) # 10-26-2015 Unknown pi_b --> Split Sample

tmp <- numeric(2) #### pai_ & w_ ####

One_Trial <- function( )

{

pea_b_1 <- rbinom(gv_n1 , 1, gv_pea_b_1)

pea_a_1 <- rbinom(gv_n1 , 1, gv_pea_a_1)

w1_ <- rbinom(gv_n1 , 1, gv_w_) #

pai1_a <- rbinom(gv_n1 , 1, gv_pai_a) #

pai1_b <- rbinom(gv_n1 , 1, gv_pai_b) #

pai1 <- rbinom(gv_n1 , 1, gv_pai_)

pea_b_2 <- rbinom(gv_n2 , 1, gv_pea_b_2) #

pea_a_2 <- rbinom(gv_n2 , 1, gv_pea_a_2) #

w2_ <- rbinom(gv_n2 , 1, gv_w_) #

pai2_a <- rbinom(gv_n2 , 1, gv_pai_a)

pai2_b <- rbinom(gv_n2 , 1, gv_pai_b)

pai2 <- rbinom(gv_n2 , 1, gv_pai_)

# 2.3

py21 <- (1-w1_)*pai1 + w1_*( pea_b_1*pai1 + (1-pea_b_1)*pai1_b )

py22 <- (1-w2_)*pai2 + w2_*( pea_b_2*pai2 + (1-pea_b_2)*pai2_b )

py21_hat <- mean(py21)

py22_hat <- mean(py22)

py11 <- pea_a_1*w1_ + (1-pea_a_1)*pai1_a

py12 <- pea_a_2*w2_ + (1-pea_a_2)*pai2_a

py11_hat <- mean(py11)
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py12_hat <- mean(py12)

pai_hat <- (gv_lambda_23star_b*py22_hat-py21_hat)/

(gv_lambda_23star_b-1)

w_hat <- (gv_lambda_23star_a*py12_hat-py11_hat)/

(gv_lambda_23star_a*gv_pea_a_2-gv_pea_a_1)

return( c(

pai_hat , w_hat

) )

}

for( i in 1:gv_trials )

{

tmp <- One_Trial( )

ppai_[i] <- tmp[1]

ww_[i] <- tmp[2]

}

var_ppai_ <- (1/(gv_lambda_23star_b-1)^2)*(gv_lambda_23star_b^2*

Py22*(1-Py22)/gv_n2 + Py21*(1-Py21)/gv_n1 )

var_ww_ <- (1/(gv_lambda_23star_a*gv_pea_a_2-gv_pea_a_1)^2)*

(gv_lambda_23star_a^2*Py12*(1-Py12)/gv_n2 + Py11*(1-Py11)/gv_n1 )

result <- list(mean_pi_hat=mean(ppai_), var_pi_hat=var(ppai_),

theoretic_var_pi_hat=var_ppai_, mean_w_hat=mean(ww_), var_w_hat=var(ww_),

theoretic_var_w_hat=var_ww_, n1=gv_n1, n2=gv_n2 )

return(result)

}

rrt2017 <- function() {

#####################################################################

############################## 2017 #################################

#####################################################################

# HAT variables to store many trials for Empirical Values

ppai_ <- ww_ <- numeric(gv_trials)

# Variables for Theoretical Variances

var_ppai_ <- var_ww_ <- 0 # 10-14-2015 Unknown pi_a --> Split Sample --> var_pi_a_21 Added
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Py1 <- gv_pea_a*gv_w_ + (1-gv_pea_a)*(1-gv_w_)

Py2 <- gv_T*gv_pai_ + (1-gv_T)*( (1-gv_w_)*gv_pai_ +

gv_w_*( gv_pea_b*gv_pai_ + (1-gv_pea_b)*(1-gv_pai_) ) )

tmp <- numeric(2) #### pai_ & w_ ####

One_Trial <- function( )

{

# Define random variables for one trial

pai_ <- rbinom(gv_sample_size, 1, gv_pai_)

w_ <- rbinom(gv_sample_size, 1, gv_w_)

if ( (gv_T -1)*(gv_T) == 0 ) {

T_ <- rep(gv_T, gv_sample_size)

} else {

T_ <- rbinom(gv_sample_size, 1, gv_T)

}

pea_a <- rbinom(gv_sample_size, 1, gv_pea_a)

pea_b <- rbinom(gv_sample_size, 1, gv_pea_b)

# 3.3

py1 <- pea_a*w_ + (1-pea_a)*(1-w_)

py1_hat <- mean(py1)

py2 <- T_*pai_ + (1-T_)*( (1-w_)*pai_ + w_*

( pea_b*pai_ + (1-pea_b)*(1-pai_) ) )

py2_hat <- mean(py2)

w_hat <- (py1_hat - (1-gv_pea_a))/(2*gv_pea_a-1)

pai_hat <- (py2_hat-(1-gv_T)*(1-gv_pea_b)*w_hat)/

(1-2*(1-gv_T)*(1-gv_pea_b)*w_hat)

return( c(

pai_hat , w_hat

) )

}

for( i in 1:gv_trials )

{

tmp <- One_Trial( )

ppai_[i] <- tmp[1]

ww_[i] <- tmp[2]

}

var_ww_ <- Py1*(1-Py1)/(gv_sample_size*(2*gv_pea_a-1)^2)
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var_ppai_ <- Py2*(1-Py2)/(gv_sample_size*(1-2*(1-gv_T)*(1-gv_pea_b)*gv_w_)^2) +

(((1-gv_T)*(1-gv_pea_b)*(2*Py2-1))^2)*Py1*(1-Py1)/

(gv_sample_size*(1-2*(1-gv_T)*(1-gv_pea_a)*gv_w_)^4*(2*gv_pea_a-1)^2)

result <- list(mean_pi_hat=mean(ppai_), var_pi_hat=var(ppai_),

theoretic_var_pi_hat=var_ppai_, mean_w_hat=mean(ww_), var_w_hat=var(ww_),

theoretic_var_w_hat=var_ww_ )

return(result)

}

setwd("C:/Users/SIHM/Dropbox/Research/From USB Memory/2017 Defense/R Code")

rm(list=ls())

# Setting Seed

set.seed(11)

options(scipen = 999) ### OFF options(scipen = 999)

### ON options(scipen = 0)

gv_sample_size <<- 1000

gv_trials <<- 10000

gv_n1 <<-

gv_n2 <<- gv_sample_size/2 # 10-14-2015 Unknown pi_a

# 10-26-2015 Unknown pi_a and pi_b for (2.3)

gv_pea_a <<- 0.8

gv_pea_b <<- 0.3

gv_pea_a_1 <<- 0.8 # 10-14-2015 Unknown pi_a --> Split Sample

gv_pea_a_2 <<- 0.2 # 10-14-2015 Unknown pi_a --> Split Sample

gv_pea_b_1 <<- 0.7 # 10-26-2015 Unknown pi_b --> Split Sample

gv_pea_b_2 <<- 0.4 # 10-26-2015 Unknown pi_b --> Split Sample

gv_pai_a <<- 0.35

gv_pai_b <<- 0.25 # 10-26-2015 (2.3a)

gv_lambda <<- (1-gv_pea_a)/(1-gv_pea_b) # 10-26-2015 Unknown pi_b --> Split Sample

gv_lambda_23star_a <<- (1-gv_pea_a_1)/(1-gv_pea_a_2) # 10-14-2015 Unknown pi_a --> Split Sample

gv_lambda_23star_b <<- (1-gv_pea_b_1)/(1-gv_pea_b_2) # 10-26-2015 Unknown pi_b --> Split Sample

################################################ matrix 32 by 5

################################################ run each function

gv_pai_ <<- 0.1 # 2-28-2017: 0.1, 0.2, 0.3, 0.4, 0.6, 0.7

gv_w_ <<- 0.1 # 2-28-2017: 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8

gv_T <<- 0.0 # 2-28-2017: 0.0, 0.2, 0.4, 0.8

mdata <- matrix( rep(NA, 32*5), nrow=32, ncol=5)
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output <- rrt2013()

mdata[1,1] <- mdata[9,1] <- mdata[17,1] <- mdata[25,1] <- round(output$mean_pi_hat,6)

mdata[2,1] <- mdata[10,1] <- mdata[18,1] <- mdata[26,1] <- round(output$var_pi_hat,6)

mdata[3,1] <- mdata[11,1] <- mdata[19,1] <- mdata[27,1] <- round(output$theoretic_var_pi_hat,6)

mdata[4,1] <- mdata[12,1] <- mdata[20,1] <- mdata[28,1] <- round(output$mean_w_hat,6)

mdata[5,1] <- mdata[13,1] <- mdata[21,1] <- mdata[29,1] <- round(output$var_w_hat,6)

mdata[6,1] <- mdata[14,1] <- mdata[22,1] <- mdata[30,1] <- round(output$theoretic_var_w_hat,6)

mdata[7,1] <- mdata[15,1] <- mdata[23,1] <- mdata[31,1] <- round(output$n1,0)

mdata[8,1] <- mdata[16,1] <- mdata[24,1] <- mdata[32,1] <- round(output$n2,0)

output <- rrt2016()

mdata[1,3] <- mdata[9,3] <- mdata[17,3] <- mdata[25,3] <- round(output$mean_pi_hat,6)

mdata[2,3] <- mdata[10,3] <- mdata[18,3] <- mdata[26,3] <- round(output$var_pi_hat,6)

mdata[3,3] <- mdata[11,3] <- mdata[19,3] <- mdata[27,3] <- round(output$theoretic_var_pi_hat,6)

mdata[4,3] <- mdata[12,3] <- mdata[20,3] <- mdata[28,3] <- round(output$mean_w_hat,6)

mdata[5,3] <- mdata[13,3] <- mdata[21,3] <- mdata[29,3] <- round(output$var_w_hat,6)

mdata[6,3] <- mdata[14,3] <- mdata[22,3] <- mdata[30,3] <- round(output$theoretic_var_w_hat,6)

output <- rrt2016star()

mdata[1,4] <- mdata[9,4] <- mdata[17,4] <- mdata[25,4] <- round(output$mean_pi_hat,6)

mdata[2,4] <- mdata[10,4] <- mdata[18,4] <- mdata[26,4] <- round(output$var_pi_hat,6)

mdata[3,4] <- mdata[11,4] <- mdata[19,4] <- mdata[27,4] <- round(output$theoretic_var_pi_hat,6)

mdata[4,4] <- mdata[12,4] <- mdata[20,4] <- mdata[28,4] <- round(output$mean_w_hat,6)

mdata[5,4] <- mdata[13,4] <- mdata[21,4] <- mdata[29,4] <- round(output$var_w_hat,6)

mdata[6,4] <- mdata[14,4] <- mdata[22,4] <- mdata[30,4] <- round(output$theoretic_var_w_hat,6)

mdata[7,4] <- mdata[15,4] <- mdata[23,4] <- mdata[31,4] <- round(output$n1,0)

mdata[8,4] <- mdata[16,4] <- mdata[24,4] <- mdata[32,4] <- round(output$n2,0)

gv_T <<- 0.0 # 2-28-2017: 0.0, 0.2, 0.4, 0.8

output <- rrt2015()

mdata[1,2] <- round(output$mean_pi_hat,6)

mdata[2,2] <- round(output$var_pi_hat,6)

mdata[3,2] <- round(output$theoretic_var_pi_hat,6)

mdata[4,2] <- round(output$mean_w_hat,6)

mdata[5,2] <- round(output$var_w_hat,6)

mdata[6,2] <- round(output$theoretic_var_w_hat,6)

mdata[7,2] <- round(output$n1,0)

mdata[8,2] <- round(output$n2,0)

output <- rrt2017()

mdata[1,5] <- round(output$mean_pi_hat,6)

mdata[2,5] <- round(output$var_pi_hat,6)

mdata[3,5] <- round(output$theoretic_var_pi_hat,6)

mdata[4,5] <- round(output$mean_w_hat,6)

mdata[5,5] <- round(output$var_w_hat,6)

mdata[6,5] <- round(output$theoretic_var_w_hat,6)

gv_T <<- 0.2 # 2-28-2017: 0.0, 0.2, 0.4, 0.8

output <- rrt2015()

mdata[9,2] <- round(output$mean_pi_hat,6)

mdata[10,2] <- round(output$var_pi_hat,6)
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mdata[11,2] <- round(output$theoretic_var_pi_hat,6)

mdata[12,2] <- round(output$mean_w_hat,6)

mdata[13,2] <- round(output$var_w_hat,6)

mdata[14,2] <- round(output$theoretic_var_w_hat,6)

mdata[15,2] <- round(output$n1,0)

mdata[16,2] <- round(output$n2,0)

output <- rrt2017()

mdata[9,5] <- round(output$mean_pi_hat,6)

mdata[10,5] <- round(output$var_pi_hat,6)

mdata[11,5] <- round(output$theoretic_var_pi_hat,6)

mdata[12,5] <- round(output$mean_w_hat,6)

mdata[13,5] <- round(output$var_w_hat,6)

mdata[14,5] <- round(output$theoretic_var_w_hat,6)

gv_T <<- 0.4 # 2-28-2017: 0.0, 0.2, 0.4, 0.8

output <- rrt2015()

mdata[17,2] <- round(output$mean_pi_hat,6)

mdata[18,2] <- round(output$var_pi_hat,6)

mdata[19,2] <- round(output$theoretic_var_pi_hat,6)

mdata[20,2] <- round(output$mean_w_hat,6)

mdata[21,2] <- round(output$var_w_hat,6)

mdata[22,2] <- round(output$theoretic_var_w_hat,6)

mdata[23,2] <- round(output$n1,0)

mdata[24,2] <- round(output$n2,0)

output <- rrt2017()

mdata[17,5] <- round(output$mean_pi_hat,6)

mdata[18,5] <- round(output$var_pi_hat,6)

mdata[19,5] <- round(output$theoretic_var_pi_hat,6)

mdata[20,5] <- round(output$mean_w_hat,6)

mdata[21,5] <- round(output$var_w_hat,6)

mdata[22,5] <- round(output$theoretic_var_w_hat,6)

gv_T <<- 0.8 # 2-28-2017: 0.0, 0.2, 0.4, 0.8

output <- rrt2015()

mdata[25,2] <- round(output$mean_pi_hat,6)

mdata[26,2] <- round(output$var_pi_hat,6)

mdata[27,2] <- round(output$theoretic_var_pi_hat,6)

mdata[28,2] <- round(output$mean_w_hat,6)

mdata[29,2] <- round(output$var_w_hat,6)

mdata[30,2] <- round(output$theoretic_var_w_hat,6)

mdata[31,2] <- round(output$n1,0)

mdata[32,2] <- round(output$n2,0)

output <- rrt2017()

mdata[25,5] <- round(output$mean_pi_hat,6)
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mdata[26,5] <- round(output$var_pi_hat,6)

mdata[27,5] <- round(output$theoretic_var_pi_hat,6)

mdata[28,5] <- round(output$mean_w_hat,6)

mdata[29,5] <- round(output$var_w_hat,6)

mdata[30,5] <- round(output$theoretic_var_w_hat,6)

latextable(mdata, scientific=0, digits=6)
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APPENDIX B

R CODE FOR VARIANCE COMPARISON AND FINDING SUITABLE TRUTH

PARAMETER FOR THE TWO-STAGE RRT

setwd("C:/Users/SIHM/Dropbox/Research/From USB Memory/2017 Defense/R Code")

rm(list=ls())

# Setting Seed

set.seed(11)

options(scipen = 999) ### OFF options(scipen = 999)

### ON options(scipen = 0)

gv_sample_size <<- 1000

gv_trials <<- 10000

gv_n1 <<-

gv_n2 <<- gv_sample_size/2 # 10-14-2015 Unknown pi_a

# 10-26-2015 Unknown pi_a and pi_b for (2.3)

### gv_pea_a <<- 0.8 # Selected For Simulation 03-08-2017

gv_pea_a <- runif(gv_trials, 0, 1)

gv_pea_b <<- 0.3

gv_pea_a_1 <<- 0.8 # 10-14-2015 Unknown pi_a --> Split Sample

gv_pea_a_2 <<- 0.2 # 10-14-2015 Unknown pi_a --> Split Sample

gv_pea_b_1 <<- 0.7 # 10-26-2015 Unknown pi_b --> Split Sample

gv_pea_b_2 <<- 0.4 # 10-26-2015 Unknown pi_b --> Split Sample

gv_pai_a <<- 0.35

gv_pai_b <<- 0.25 # 10-26-2015 (2.3a)

gv_lambda <<- (1-gv_pea_a)/(1-gv_pea_b) # 10-26-2015 Unknown pi_b --> Split Sample

gv_lambda_23star_a <<- (1-gv_pea_a_1)/(1-gv_pea_a_2) # 10-14-2015 Unknown pi_a --> Split Sample

gv_lambda_23star_b <<- (1-gv_pea_b_1)/(1-gv_pea_b_2) # 10-26-2015 Unknown pi_b --> Split Sample

gv_pai_ <<- 0.1 # 2-28-2017: 0.1, 0.2, 0.3, 0.4, 0.6, 0.7

gv_w_ <<- 0.1 # 2-28-2017: 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8

# gv_T <<- 0.0 # 2-28-2017: 0.0, 0.2, 0.4, 0.8 # Selected For Simulation 03-08-2017

gv_T <- runif(gv_trials, 0, 1)

################################## 2016 Star ##################################

# Py1 & Py2 for 2* series

Py11 <- gv_pea_a_1*gv_w_ + (1-gv_pea_a_1)*gv_pai_a # 10-26-2015 Unknown pi_b --> Split Sample
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Py12 <- gv_pea_a_2*gv_w_ + (1-gv_pea_a_2)*gv_pai_a # 10-26-2015 Unknown pi_b --> Split Sample

Py21 <- (1-gv_w_)*gv_pai_ + gv_w_*( gv_pea_b_1*gv_pai_ + (1-gv_pea_b_1)*gv_pai_b )

Py22 <- (1-gv_w_)*gv_pai_ + gv_w_*( gv_pea_b_2*gv_pai_ + (1-gv_pea_b_2)*gv_pai_b )

# Split Sample into n1 and n2

gv_n2 <- round( gv_sample_size/( 1+(1/gv_lambda_23star_b)*sqrt(Py21*(1-Py21)/(Py22*(1-Py22) ) ) ), 0 )

# 10-26-2015 Unknown pi_b --> Split Sample

gv_n1 <- (gv_sample_size - gv_n2) # 10-26-2015 Unknown pi_b --> Split Sample

var_ppai_2016_star <- (1/(gv_lambda_23star_b-1)^2)*(gv_lambda_23star_b^2*Py22*(1-Py22)/gv_n2 + Py21*(1-Py21)/gv_n1 )

#################################### 2017 #####################################

Py1 <- gv_pea_a*gv_w_ + (1-gv_pea_a)*(1-gv_w_)

Py2 <- gv_T*gv_pai_ + (1-gv_T)*( (1-gv_w_)*gv_pai_ + gv_w_*( gv_pea_b*gv_pai_ + (1-gv_pea_b)*(1-gv_pai_) ) )

var_ppai_2017 <- Py2*(1-Py2)/(gv_sample_size*(1-2*(1-gv_T)*(1-gv_pea_b)*gv_w_)^2) +

(((1-gv_T)*(1-gv_pea_b)*(2*Py2-1))^2)*Py1*(1-Py1)/(gv_sample_size*(1-2*(1-gv_T)*(1-gv_pea_a)*gv_w_)^4*

(2*gv_pea_a-1)^2)

################################# Print Out ###################################

var_ppai_2016_star; min(var_ppai_2017); max(var_ppai_2017); min(var_ppai_2016_star/var_ppai_2017);

max(var_ppai_2016_star/var_ppai_2017)

################################# Graph ###################################

plot(gv_T, gv_pea_a, col=( (var_ppai_2016_star >= var_ppai_2017) + 1) )
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