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Approximately 13% of the American population between the ages of 20-69 

have signs of noise-induced hearing loss. Noise exposure at least partially 

causes hearing loss by generating free radicals in the ear, which damage cells. 

Eumelanin is an antioxidant that scavenges the free radicals and may protect the 

ear from noise-induced damage. Eumelanin is also a polymer that depicts hair 

and eye color and sensitivity to sunlight. Production of eumelanin is partially 

regulated by the gene, melanocortin-one receptor; individuals with single-

nucleotide polymorphisms in this gene have reduced eumelanin expression. The 

purpose of this study was to measure the extent to which pigmentation, e.g. hair 

and eye color and sunlight sensitivity, is associated with noise-induced hearing 

loss, and measure the extent to which single nucleotide polymorphisms in the 

melanocortin-one receptor gene are associated with noise-induced hearing loss. 

To accomplish this goal, we used a phased approach design and first evaluated 

hearing loss and pigmentation in 155 student musicians. This data was used to 

measure the association of pigmentation and noise-induced hearing loss. Then, 

buccal cells were collected in 111 student musicians with low to moderate levels 

of sunlight sensitivity so that we could measure single nucleotide polymorphisms 



	 	

in the melanocortin-one receptor gene. According to two multifactor analyses of 

variance, no association was found between noise-induced hearing loss and 

pigmentation (F(82,72) = 0.707, p = 0.936), nor melanocortin-one receptor 

genotype (F(79,39) = 0.488, p = 0.996). Despite our statistically insignificant results, 

we were able to detect a trend of increased thresholds in individuals with 

pigmentation indicating decreased levels of eumelanin. Also, one single 

nucleotide polymorphism, rs2228479, did show enough of an association with 

noise-induced hearing loss to warrant further investigation. Our inability to detect 

significant effects may have been due to an unexpected decrease in audiometric 

thresholds compared to previous measurements in this population. In this study, 

we used ER-3A inserts to evaluate hearing, which are more reliable for 

measuring thresholds between 4000 and 8000 Hz compare to TDH-39’s, which 

were used in previous analyses. It is also possible that we would have detected a 

stronger association of melanocortin-one receptor genotype and noise-induced 

hearing loss if we had sequenced the entire gene. Therefore, further research is 

required to evaluate the effects of noise exposure on student musicians using 

more sensitive audiometric criteria. Also, the association of melanocortin-one 

receptor genotype and noise-induced hearing loss should be evaluated with the 

entire melanocortin-one receptor sequence.
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CHAPTER I  
 

INTRODUCTION 
 

	
Approximately 13% of the American population between the ages of 20-69 

have a hearing loss with a notched audiometric profile in at least one ear, 

indicating a possible noise-induced threshold shift (Mahboubi et al., 2013). 

Prolonged exposure to noise can increase these threshold shifts until they lead to 

noise-induced hearing loss. Major factors associated with noise-induced hearing 

loss include, occupation, age, genetics, and veteran status. Minor factors include 

gender, education level, marital status, smoking history, and diabetes.	

Individuals who suffer from hearing loss struggle to communicate, which 

puts a strain on relationships and can lead to depression and anxiety. Hearing 

loss can increase the risk of injury (Cantley et al., 2015), and recent research has 

also shown that hearing loss may reduce cognitive function in the elderly 

(Taljaard, Olaithe, Brennan-Jones, Eikelboom, & Bucks, 2016). Modern hearing 

aids alleviate some of the communication difficulties caused by hearing loss, but 

they still have limitations. For instance, Kuk, Lau, Korhonen, & Crose et al., 

(2015) have recently shown that individuals with moderate to severe 

sensorineural hearing loss wearing modern hearing aids perform worse on an 

auditory perception task than normal hearing individuals.
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The effect that noise has on hearing can be predicted from the volume of 

the noise and the length of exposure, but this prediction only explains a small 

percent of the variability in hearing loss within noise-exposed individuals 

(American National Standards Institute, 1996). This variability may at least 

partially be explained by the characteristics of the noise and the genetics of 

exposed individuals (Phillips et al., 2015; Tufts, Weathersby, & Marshall, 2009).	

In an attempt to measure the role of genetics in susceptibility to noise 

exposure, (Demeester et al., 2010) measured bulge depths, another indicator of 

noise-induced hearing loss, in a Flemish sibling study and found that 23-30% of 

the variance of noise-induced hearing loss is regulated by genetics. More work is 

needed to confirm these results by repeating the study in another population and 

using a measurement of noise-induced hearing loss that has been validated.	

Research into noise-induced hearing loss has been hindered by the 

inconsistency in techniques for measuring the effect of noise on hearing across 

studies. Clinicians typically use audiometric notches and case history to diagnose 

noise-induced hearing loss. It is difficult to combine these factors; therefore, the 

diagnosis is typically based on judgment (Rabinowitz et al., 2006). But, despite 

the likely low type I error rate of notches, they are not useful population studies 

because they correlate poorly with reports of noise exposure. According to 

unpublished results in our laboratory, the mean bilateral pure-tone average at 

4000 and 6000 Hertz has a stronger correlation with reports of noise exposure 

than notch definitions. This may explain why many studies focusing on the 
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genetics of noise-induced hearing loss use threshold measures as a diagnostic 

measurement (Sliwinska-Kowalska & Pawelczyk, 2013).	

Music students are susceptible to noise-induced hearing loss. In a study 

by Phillips, Henrich, & Mace, (2010), 45% of student musicians had an 

audiometric notch of at least 15 dB in at least one ear, which is an indicator of 

noise-induced hearing loss. These students are at a high risk for NIHL because 

they are exposed to loud levels of sound and are reluctant to wear hearing 

protection (McIlvaine, 2012). Students often report that they do not wear these 

devices because they believe that the devices disrupt the quality of music (Killion 

& Stewart, 1988). 	

Noise at least partially damages the cochlea by generating reactive 

oxygen species, a set of immunoregulatory free radicals that at high 

concentrations, can lead to DNA damage and can cause lipid peroxidation 

(Henderson, Bielefeld, Harris, & Hu, 2006). The extent to which reactive oxygen 

species leads to noise-induced hearing loss is still not fully understood.  

Antioxidants are any type of chemical that inhibit oxidation. These 

chemicals can also scavenge free radicals, such as reactive oxygen species. 

There are many endogenous antioxidants in the ear that may protect the ear 

from noise-induced reactive oxygen species. Eumelanin, a type of melanin, is 

one antioxidant that may protect the ear from noise-induced reactive oxygen 

species.  
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Population studies have supported the role of eumelanin in hearing loss. 

Individuals with indicators of high melanin levels, including hair, race, and sun-

sensitive skin type, are more resistant to hearing loss than those with indicators 

of low levels of eumelanin (Da Costa, Castro, & Macedo, 2008; Ghazizadeh, 

Bakhshaee, Mahdavi, & Movahhed, 2012; Ishii & Talbot, 1998; F. R. Lin et al., 

2012).  Post-mortem studies have found an association between race and 

eumelanin levels in the cochlea, but more work is needed to evaluate the extent 

to which pigmentation indicators predict cochlear eumelanin levels (Sun et al., 

2014). 

Along with pigmentation, genotype can be also used to estimate cochlear 

eumelanin levels. Melanocortin-one receptor is the gene with the strongest 

association with eumelanin production (Sturm et al., 2003). Some single DNA 

sites that are on this gene and vary throughout the human population, which are 

called single-nucleotide polymorphisms, have a strong association with 

eumelanin production. These sites are labeled as ‘R’ alleles. Single-nucleotide 

polymorphisms with a weak association with eumelanin production are labeled as 

‘r’ alleles. To date, no studies have measured the association of noise-induced 

hearing loss with single-nucleotide polymorphisms on the melanocortin-one 

receptor gene.	

The purposes of this study are to 1) measure the extent to which 

pigmentation characteristics are associated with susceptibility to noise-induced 

hearing loss within college aged student musicians, and 2) measure the extent to 
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which single-nucleotide polymorphisms on the melanocortin-one receptor gene 

are associated with susceptibility to noise-induced hearing loss in college aged 

student musicians with moderate to low levels of eumelanin. 	

As seen in Figure 1., noise generates a particular reactive oxygen species 

called super oxide. The fate of this chemical depends on the concentration of 

antioxidants, such as eumelanin, in the surrounding area. If the antioxidant levels 

are low, it is more likely to be metabolized to the hydroxyl radical, which can 

cause cell damage and noise-induced hearing loss. Alternatively, if the 

antioxidant levels are high, it becomes more likely that super oxide will be 

converted back to oxygen.  

The ability to produce eumelanin depends partly on the genotype of 

melanocortin-one receptor. The wild type version of this gene produces 

eumelanin at standard rates; individuals with particular single-nucleotide 

polymorphisms in this gene have reduced rates of eumelanin production. 

Therefore, individuals with the single-nucleotide polymorphisms may struggle to 

produce enough eumelanin to prevent the production of the hazardous hydroxyl 

radical, leading to susceptibility to noise exposure. 	
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Figure 1. Theoretical Model Demonstrating the Effects of Melanocortin-one 
Receptor on Noise-induced Hearing Loss. SNP, Single-nucleotide 

Polymorphism; MC1R, Melanocortin-one Receptor 
	

Pigment characteristics, such as hair and eye color, sunlight sensitivity, 

and ethnicity, are markers for eumelanin production. Consequently, these 

characteristics may be associated with super oxide metabolism rates, and 

therefore, susceptibility to noise-induced hearing loss. 

This has led me to two hypotheses. 

❖ Music students with pigment characteristics indicating low levels of 

eumelanin production will have higher noise-exposure adjusted 

audiometric thresholds than music students with pigment characteristics 

indicating high levels of eumelanin 	
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❖ Music students with moderate to high sun-sensitive skin types and specific 

single-nucleotide polymorphisms in the melanocortin-one receptor gene 

will have higher noise-exposure adjusted audiometric thresholds than 

music students with moderate to high sun-sensitive skin types and a wild-

type melanocortin-one receptor gene.	

This project will improve upon the status quo by examining the extent to 

which individual pigmentation groups are associated with noise-induced hearing 

loss. To the best of our knowledge, all studies measuring the association of 

pigmentation and hearing loss in noise-exposed populations have used binary 

pigmentation groups (Da Costa et al., 2008; Ghazizadeh et al., 2012; Ishii & 

Talbot, 1998). In one study of the general population, Lin et al., (2012) measured 

the association of hearing loss with multiple ethnicities and skin type group. The 

authors were only able to detect an association of skin-type and hearing loss 

within those of Hispanic descent. This project may improve upon Lin et al., 

(2012) by including interaction effects with other pigment indicators and 

melanocortin-one receptor genotype.	

This project will improve upon the status quo by providing the first 

association study of melanocortin-one receptor genotype and susceptibility to 

noise-induced hearing loss. Although previous studies have examined the 

relationship between noise-induced hearing loss and genotypes of other genes 

related to reactive oxygen species metabolism, to the best of our knowledge, no  
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study has measured the association of noise-induced hearing loss with this 

particular gene.  

This project will also improve upon the status quo by providing the first 

association study of eumelanin indictors and susceptibility to noise-induced 

hearing loss in young adults. Previous studies in this area have examined 

hearing loss in older adults because they have more years of noise exposure (Da 

Costa et al., 2008; Ghazizadeh et al., 2012; Ishii & Talbot, 1998). It may be 

easier to detect predictors of noise-induced hearing loss in younger populations 

because this population has lower incidences of other factors associated with 

noise-induced hearing loss, such as diabetes, cardiovascular issues, and 

exposures to ototoxins. Student musicians are an ideal population because 

previous studies have shown that these individuals have noise-induced hearing 

loss (Phillips et al., 2010; Phillips & Mace, 2008). 

Detecting an association of pigmentation characteristics and single-

nucleotide polymorphism within the melanocortin-one receptor gene with 

susceptibility to noise-induced hearing loss within college aged student 

musicians will provide evidence to support the role of eumelanin in the reduction 

of noise-induced reactive oxygen species damage to the cochlea.	

This work may have three primary benefits to society. 

 

! This project may lay the groundwork for future research comparing the 

protective effects of endogenous antioxidants found in the ear, including 
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melanin agonists, which can assist in the development of pharmaceuticals 

to prevent and treat noise-induced hearing loss. 

! This project may lead to clinical studies on the effectiveness of genetic 

screenings for individuals either participating in noisy activities or showing 

early signs of noise-induced hearing loss.  

! This project may also help improve the field of pharmacogenetics, where 

genotypes are used to evaluate which individuals are likely to benefit from 

pharmaceutical therapy. 	
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CHAPTER II  

REVIEW OF THE LITERATURE 
 
	

Cellular and Molecular Biology of Noise-induced Hearing Loss	

Reactive Oxygen Species	

Noise-induced cochlear injury can be mechanical or metabolic. In 

mechanical injury, high volumes break apart stereocilia and disrupt the 

membranes that separate cochlear fluids, where metabolic injuries pull the cells 

away from homeostasis, leading to cell death if the cell cannot restore 

equilibrium. Oxidative equilibrium is one homeostatic state affected by noise. In 

oxidative equilibrium, reactive oxygen species are balanced with antioxidants. 

When exposed to noise, the ear increases adenosine triphosphate production 

(Ohlemiller, Wright, & Dugan, 1999). When cells generate too much adenosine 

triphosphate, reactive oxygen species are generated as a by-product. Noise has 

been shown to increase reactive oxygen species levels four fold in the perilymph. 

These chemicals have also been found in mice 2.2 hours after noise exposure 

and have been shown to persist for up to 10 days (Daisuke Yamashita, Jiang, 

Schacht, & Miller, 2004).	

Free radicals are any chemicals with an unpaired electron. Reactive 

oxygen species are free radicals that specifically have an unpaired electron 

attached to an oxygen atom that readily destroys important biological chemicals, 
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including lipids and DNA. Reactive oxygen species are primarily generated in the 

mitochondria. Here, superoxide ions are formed as a result of an incomplete 

reduction of oxygen in the electron transfer chain. Other reactive oxygen species 

producers include NADPH and arachidonic acid. 

High levels of reactive oxygen species can lead to cell death. Although it is 

difficult to measure reactive oxygen species during cell death, chemical markers 

have helped to identify the effects of these chemicals on cells. For example, it 

has been shown that noise increases levels of Isoprostane, an indicator of 

oxidative damage, in outer hair cells (Ohinata, Miller, Altshuler, & Schacht, 2000). 

Therefore, it is likely that reactive oxygen species caused the noise-induced 

death of these hair cells. 

Reactive oxygen species agonists and antagonists have also helped to 

support the role of these chemicals in noise-induced hearing loss. For instance, 

Bielefeld, Hu, Harris, & Henderson, (2005) showed that placing paraquat, a 

chemical that generates reactive oxygen species, near the round window 

membrane of chinchillas produces more hearing loss than saline controls. Also, 

iron, a reactive oxygen species agonist and acidifying agents have been shown 

to exacerbate hearing loss when the ear is stimulated with reactive oxygen 

species activating drugs (Song, Sha, & Schacht, 1998; Tanaka, Whitworth, & 

Rybak, 2004). 	

Reactive oxygen species can kill cells through multiple mechanisms. For 

instance, these chemicals can lead to lipid peroxidation, which breaks down 
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cellular membranes. Unfortunately, as the membranes break down, more 

reactive oxygen species leak out and damage other cells, causing a negative 

feedback loop (Ohinata et al., 2000). Cell membrane deterioration leads to cell 

death through a process called necrosis. Ohinata, Miller, & Schacht, (2003) 

supported the role of lipid peroxidation in noise-induced hearing loss by showing 

that chemicals that that preserve cell membranes reduce noise-induced damage.	

Reactive oxygen species can also kill cells through a process of cell-

mediated suicide known as apoptosis. Several studies have demonstrated the 

activation of different apoptotic pathways in animals exposed to noise. For 

instance, noise exposure leads outer hair cells to activate c-Jun N-terminal 

kinase-signaling pathway, which is known to mediate apoptosis with reactive 

oxygen species (Kamogashira, Fujimoto, & Yamasoba, 2015). The role of 

reactive oxygen species in apoptosis was also supported when Huang et al., 

(2000) demonstrated that in cisplatin-induced ototoxicity, reactive oxygen species 

activates the apoptotic mediator 4-hydroxynonenal. Furthermore, Baker & 

Staecker (2012) showed that applying hydrogen peroxide, a pro-oxidant, to ex-

vivo cochlear cells leads an upregulation of the pro-apoptotic gene, caspase, and 

eventually, cell death. In combination, these studies support the effect noise-

induced reactive oxygen species may have on apoptosis in the cochlea.	

Antioxidants	

Antioxidants are chemicals that prevent the damaging effects of reactive 

oxygen species. As seen in Figure 2., super oxide, a reactive oxygen species, 
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may either cause cell damage or become metabolized into an inert chemical like 

oxygen or water. Antioxidants are the metabolizers that convert super oxide into 

these inert chemicals. Therefore, the fate of super oxide depends on the 

concentration of antioxidants. Due to the high metabolic activity in the cochlea, 

both the organ of Corti and the stria vascularis have high concentrations of 

various types of antioxidants, including superoxide dismutase, catalase, and 

glutathione peroxidase. 

	

	

Figure 2. Reactive Oxygen Species metabolism	
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The use of pharmaceutically administered antioxidants has supported the 

role of reactive oxygen species in noise-induced hearing loss. For instance, 

Yamashita, Jiang, Le Prell, Schacht, & Miller, (2005) have demonstrated that 

antioxidants can reduce noise-induced hearing loss for up to three days after 

noise exposure. Specific antioxidants shown to decrease NIHL include the 

glutathione precursors, glutathione modoethyl, N-acetylcysteine, and ascorbic 

acid (Hight, McFadden, Henderson, Burkard, & Nicotera, 2003; Lorito, Giordano, 

Petruccelli, Martini, & Hatzopoulos, 2008). N-acetyl-cysteine also has some 

effect in preventing NIHL when administered shortly after noise exposure.  

Although antioxidants have been shown to protect against NIHL in 

animals, there is currently little evidence that these drugs are effective in human 

clinical trials. Recently, a randomized clinical trial in military personnel measured 

the protective effects of N-acetylcysteine (Kopke et al., 2015). Although no 

statistically significant effects were found, the difference in NIHL between treated 

and untreated groups approached significance. The authors attributed their lack 

of significant findings to suboptimal dosing.	

Endogenous antioxidants may also play an important role in regulating 

susceptibility to NIHL. A recent mouse genome wide association study found an 

association between NIHL and the antioxidant, NADPH oxidase-3 (Lavinsky et 

al., 2015). Knocking out production of the antioxidant, superoxide dismutase 

increases susceptibility to noise (Ohlemiller, Rybak, Rice, Lett, & Gagnon, 2009). 

In humans, measuring polymorphisms in genes that code for antioxidants has 
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supported the role of these proteins, and reactive oxygen species, in noise-

induced hearing loss. For instance, Konings et al. (2007) demonstrated that 

polymorphisms in the antioxidant catalase may be associated with noise-induced 

hearing loss. The association of polymorphisms in other antioxidants have been 

measured in noise-induced hearing loss, but these results are less convincing 

(Sliwinska-Kowalska & Pawelczyk, 2013).	

Eumelanin 	

Melanin depicts pigmentation characteristics, particularly in hair, eyes, and 

skin tone. There are two types of melanin, eumelanin and pheomelanin. 

Eumelanin is brown, yellow, or black where pheomelanin, is red or orange. 	

Eumelanin is a specific antioxidant called a free radical scavenger. As 

depicted in Figure 2., free radical scavengers remove extra electrons, converting 

radical chemicals, such as super oxide, back to their original inert structure. 

Eumelanin is able to scavenge free radicals because it has a high ionizing 

radiation, which gives it strong electron accepting and donating properties 

(Meredith & Sarna, 2006). Although it is commonly accepted that eumelanin can 

neutralize reactive oxygen species, the extent to which it protects the cochlea 

from noise-induced hearing loss is still not understood.	

Individuals with low eumelanin levels tend to have higher pheomelanin 

levels, which is why those with fair skin and low pigmentation also tend to have 

red hair. Pheomelanin is not as beneficial as eumelanin because it does not 

scavenge reactive oxygen species as it has an aromatic ring that lowers the 
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ionizing potential (Morgan, Lo, & Fisher, 2013). Production of pheomelanin 

produces more reactive oxygen species byproducts than eumelanin, and  

requires the metabolism of a number of reactive oxygen species scavengers, 

including glutathione. 	

Melanin is made in melanosomes, which are organelles found inside a 

specific cell called a melanocyte. Each melanosome commits to either eumelanin 

or pheomelanin production, but one melanocyte can contain both eumelanin and 

pheomelanin producing melanosomes (Slominski, 2004). Eumelanin production 

is initiated when alpha-melanocortin stimulating hormone binds to the membrane 

bound melanocortin-one receptor.  The binding of these two proteins produces 

cyclic-AMP, which initiates the production of eumelanin synthesizing enzymes 

such as tyrosinase, the main enzyme linked with dictating the 

eumelanin/pheomelanin ratio. Eumelanin production requires more of this 

enzyme than pheomelanin production; therefore, a higher concentration of 

tyrosinase favors eumelanin synthesis.	

Melanocortin-one Receptor	

The melanocortin-one receptor gene has several single-nucleotide 

polymorphisms associated with reduced eumelanin production and pigmentation 

characteristics that indicate lower level eumelanin levels such as red or brown 

hair or blue eyes (Sulem et al., 2007). Single-nucleotide polymorphisms in 

melanocortin-one receptor genotype account for 67% of the variability of 

eumelanin levels in hair (Naysmith et al., 2004). These variants are more 
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prevalent in populations that live where there is little direct sunlight, likely  

because this skin type favors the penetration of UV into the skin to increase 

vitamin D synthesis.	

As seen in Figure 3., melanocortin-one receptor variants fall into two 

phenotypic groups. The group with a strong association with pigmentation are 

called ‘R’ alleles; the group with a weak association with pigmentation are called 

‘r’ alleles (Sturm et al., 2003). Kanetsky et al., (2010) measured the prevalence of 

nine non-synonymous melanocortin-one receptor single-nucleotide 

polymorphisms in a population of 325 Caucasians individuals from the northeast 

region of The United States. In control subjects from this study, ‘R’ variants had 

an overall frequency of about 11% and ‘r’ variants had an overall frequency of 

about 35%, Figure 3.  

 

 
Figure 3. Prevalence of ‘R’ and ‘r’ Non-synonomous Single-nucleotide 

Polymorphims in a Population of 325 Caucasian Individuals (Kantesky, 2010) 



 18	

Support for Eumelanin as an Otoprotectant in Noise-induced Hearing Loss	

Individuals with pigmentation indicating low eumelanin levels are more 

susceptible to noise-induced hearing loss. As seen in Table 1., population 

studies have measured audiometric thresholds in noise exposed individuals and 

found decreased thresholds in individuals with pigment indicators that indicate 

low eumelanin levels (Da Costa et al., 2008; Ghazizadeh et al., 2012; Ishii & 

Talbot, 1998). Specifically, those with low eumelanin indicators have audiometric 

thresholds that are about 8 - 15 dB higher in the high frequency region compared 

to those with high eumelanin indicators. The pigment indicators used in these 

studies include hair and eye color, and ethnicity.  

 
Table 1. Association Studies Supporting a Decrease in Audiometric Thresholds 
for Those with low Eumelanin Levels. 

	
Eumelanin 
Indicator	 Population	

High Eumelanin 
Hearing (SD)	

Low Eumelanin 
Hearing (SD)	 P Value	 Reference	

Hair Color 
(Light/Dark)	 Military	 14.7  (13.6)	 29.5 (17.3)	 0.008	 Ghazizadeh, 

2012	
Race (White/	
Non-White)	

Metal 
Workers	 17.7 (12.1)	 26.0 (13.6)	 <0.001	 Ishii, 1998	

Race (White/	
Non-White)	

General	
Population	 14	 22	 <0.001	 Lin, 2012	

Iris Color 
(Light/Dark)	

Metal 
Workers	 17.2 (13.1)	 26.0 (15.0)	 <0.01	 Da Costa, 

2008	
	

 Lin et al. (2012) also measured audiometric thresholds in individuals 

without noise exposure to determine the association of skin type and ethnicity 

with high frequency hearing loss. The authors found that among Caucasians, 
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Hispanics, and African Americans, skin type is only associated with hearing loss 

within Hispanics, likely because this race has a larger range of skin types 

compared to Caucasians and African Americans.  

The role of eumelanin as an otoprotectant from noise exposure has been 

demonstrated in guinea pigs. Xiong, He, Lai, & Wang, (2011) have shown that 

noise exposure leads to more reactive oxygen species in the ear and hearing 

loss in animals with light coats compared to animals with dark coats. Animals 

with dark coats likely have more eumelanin in the cochlea, which reduces 

reactive oxygen species concentrations, thereby protecting the animal form 

noise-induced hearing loss. Also, pigmented mouse strains have a thicker stria 

vascularis than genetically similar albino strains (Ohlemiller et al., 2009). This 

thicker stria vascularis may permit the transmission of nutrient supplements and 

inflammatory mediators to the organ of Corti.	

To date, no study has demonstrated an association between 

melanocortin-one receptor single-nucleotide polymorphisms and noise-induced 

hearing loss; however, our group has found preliminary evidence to support this 

association. In a recent study, we used a case control analysis to measure the 

association of 205 variants and notched audiograms, an indicator of noise-

induced hearing loss, in students musicians (Phillips et al., 2015). To do this, we 

selected students from a population of 640 to create three case control groups of 

81: group one had no audiometric notches, group two had a unilateral notch, and 

group three had bilateral notches. Of the individuals with melanocortin-one 
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receptor single-nucleotide polymorphisms, more students had bilateral notches 

compared to those with no notches, indicating that melanocortin-one receptor 

may be associated with noise-induced hearing loss (Table 2.). 

 
Table 2. Distribution of Music Students with no Notches (NN), Unilateral Notches 

(UN), and Bilateral Notches (BN), for five Melanocortin-one Receptor Single-
nucleotide Polymorphisms (Phillips, 2015). SNP, Single-nucleotide 

Polymorphism; AA, amino acid; synonymous indicates that the nucleotide 
substitution does not affect the protein secondary structure	

	
 	  Students	

SNP	
DNA 

Substitution	
AA 

Substitution	 NN	 UN	 BN	
rs1110400	 C/T	 I155T	 0	 2	 3	

rs117952079	 C/T	 A57V	 0	 2	 4	
rs2228478	 A/G	 synonymous	 0	 0	 2	
rs2229617	 G/A	 G104S	 1	 3	 4	

rs34090186	 G/A	 R67Q	 0	 0	 4	
 
	

Monogenetic disorders with pigment phenotypes also indicate that 

eumelanin may play a role in NIHL. Genetic disorders such as Waardenberg 

syndrome and Vitiligo lead to hearing loss and affect melanin production 

(Angrisani, de Azevedo, Pereira, Lopes, & Garcia, 2009). The combination of 

hearing loss and changes in pigmentation from a single mutation demonstrate 

that sensitivity to noise exposure can be caused by a gene that causes changes 

in pigmentation.	
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Potential Pathophysiology of Eumelanin Protection in Noise-induced 

Hearing Loss	

Protection of Spiral Ganglion Neurons	

Noise leads to the formation of reactive oxygen species in spiral ganglion 

neurons (Xiong et al., 2011). These cells are housed in Rosenthal’s canals, 

which, as indicated by recent studies have supported, also has eumelanin (Sun 

et al., 2014). It is currently unknown if the melanin in Rosenthal’s canals protect 

spiral ganglion neurons; however, African Americans, who are more resistant to 

noise-induced hearing loss, do have more eumelanin in their Rosenthal’s canals 

than Caucasians. This physiological difference in eumelanin levels between 

races may explain their differences in sensitivity to noise, but more research is 

needed to support this claim.	

Protection of the Organ of Corti	

Hair cells in the organ of Corti are more sensitive to noise exposure than 

any other cell in the cochlea (Liberman & Dodds, 1984). Although there is no 

eumelanin in the organ of Corti, eumelanin may protect these cells indirectly by 

protecting the stria vascularis, which houses melanin-synthesizing melanocytes. 

Extra-cochlear chemicals enter the cochlea through the capillaries in the stria 

vascularis. These chemicals permeate to the endolymph and then to the rest of 

the cochlea. It stands to reason that if these chemicals are unable to exit the stria 

vascularis, then they may not reach the organ of Corti and provide protection  
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from noise-induced damage. Although this mechanism has not been validated, 

many studies have provided evidence to support this pathway.	

Noise may disrupt stria vascular permeability through many different 

methods. For instance, noise may disrupt permeability by interfering with the 

blood-labyrinth barrier. This barrier is formed by endothelial cells that form tight 

junctions around capillaries. These junctions increase and decrease permeability 

in response to regulatory agents (Zhang et al., 2012). When noise damages the 

stria vascularis, it first swells up and then shrinks to a width below the starting 

width (Wang, Hirose, & Liberman, 2002). This swelling and shrinking may disrupt 

the tight junction regulation of capillary permeability. Another mechanism that 

noise may use to disrupt stria vascular permeability is to reduce cochlear blood 

flow (Scheibe, Haupt, & Ludwig, 1993). Any decrease in blood flow may reduce 

the transmission of supplements to the organ of Corti. Noise may also disrupt 

permeability by depleting the supply of the ubiquitous active transport secondary 

messenger, ATP (Yang et al., 2011). As cells lose their ATP, they also lose their 

ability to actively transport secondary messengers across membranes. 

Collectively, noise-induced reactive oxygen species may decrease permeability 

in the stria vascularis by interrupting tight-junction regulation, disrupting blood 

flow, and depleting ATP. Increases in eumelanin may protect the stria vascularis, 

allowing it to continue to provide supplements through the endolymph to the 

organ of Corti. 	
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It is difficult to determine which chemicals are transmitted through the stria 

vascularis, and of these, which are necessary supplements for the organ of Corti 

to repair itself from noise-induced damage. However, recent developments have 

allowed researchers to predict the chemicals in the cochlea by examining 

proteins that actively transport chemicals across the membranes involved in the 

blood-labyrinth barrier. Uetsuka et al., (2015) has helped to identify 25 novel ion 

channels and 79 novel transporter channels in this region that can transport a 

host of secondary messengers, many of which are important in the immune 

response, including phospholipids, myo-inositol, thyroid hormones, fatty acids, 

and riboflavin. 	

Secondary messengers can help the organ of Corti repair itself from noise 

induced damage by either providing nutrients to support repair or providing 

inflammatory mediators to induce a series of pathways that lead to cell mediated 

suicide, which is known as apoptosis. The role of nutrient support is poorly 

understood; however, extrinsic inflammatory mediators that regulate apoptosis 

have been well characterized (Furness, 2015). Mediators known to bind to hair 

cells include FAS, FADD, caspase-8, TNF-alpha, and TRAIL. Once bound, these 

messengers induce apoptosis, which is important for health of the organ of Corti.	

Apoptosis is important to the cochlea because it prevents cells from killing 

neighboring cells when they die. This is because when these pathways are 

initiated, the cell membrane collapses in and traps hazardous chemicals into 

small compartments that are ingested by immune cells (Furness, 2015). Once 



 24	

trapped, the hazardous chemicals are neutralized and destroyed so that the dead 

cell can be absorbed by immune cells and do not cause any harm to cell in the 

surrounding environment. If extrinsic apoptotic messengers are cut off, then the 

cell will become increasingly unhealthy until it dies from necrosis. Unlike 

apoptosis, necrosis is dangerous to surrounding cells because it leads to the 

release of hazardous contents into the environment (Szondy, Garabuczi, Joos, 

Tsay, & Sarang, 2014). This is especially dangerous in the organ of Corti 

because it is an enclosed space with poor fluid movement, and many of these 

cells form tight membranes that maintain ionic balance. Specifically, the lateral 

membrane of outer hair cells make up the reticular lamina, and unlike apoptosis, 

necrosis is more likely to leave a hole in this membrane. This would lead to a 

strong influx and efflux of endolymph and perilymph, thereby disrupting the 

electrochemical potential of outer hair cells. This disruption may lead to the ‘3rd 

death pathway,’ where the basilar end of outer hair cells are ruptured, possibly 

due to a rapid exposure to high levels of potassium that enter through a hole in 

the reticular lamina (Bohne, Harding, & Lee, 2007).	

Eumelanin may protect the organ of Corti by preventing noise-induced 

damage to the stria vascularis, thereby maintaining transmission of extracochlear 

signals for cellular repair or apoptosis. However, more research is needed to 

validate these pathways.	

 

 



 25	

Justification of Technical Aspects 

Measuring Noise-induced Hearing Loss	

There are no universal standards for assessing the effect of noise on 

hearing. This leads to inconsistencies across research studies on this topic. 

Although there are many different ways to assess noise-induced hearing loss, 

the measurements fall into two main groups, binary and continuous.  

In clinical research, authors will often compare the results obtained among 

different audiometric notches, which are binary criteria that assess the relative 

decrease in hearing somewhere between 3000 to 6000 Hz (Nondahl et al., 

2009). The specific criteria for each of these notches varies based on the 

thresholds used and the relative threshold differences required to constitute a 

noise-induce hearing loss. Currently, no single definition is universally accepted. 

Despite the strong clinical support for audiometric notches, many 

researchers use high frequency thresholds to evaluate the effect of noise on 

hearing. As seen in Table 1., all four studies that have measured the association 

of noise-induced hearing loss and eumelanin markers used high frequency 

thresholds to diagnose noise-induced hearing loss. This practice extends to 

genetic research where in a recent review article of nine genetic association 

studies of noise-induced hearing loss, all nine studies used similar high-

frequency threshold measurements (Sliwinska-Kowalska & Pawelczyk, 2013). 

Researchers likely use these measurements because continuous measurements 

can increase power and accuracy of a study by accounting for magnitude, 
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especially when the continuous indicator is normally distributed within a 

population. For example, Kizilkaya, Fernando, & Garrick, (2014) showed that in a 

genetic association study, a categorical variables needs to increase the sample 

size by 2.25 fold to have the same power as a continuous variable.  

Despite the benefits of high threshold measurements for assessing noise-

induced hearing loss, the main drawback to this technique is that these 

unadjusted thresholds are more strongly affected by age-related hearing loss 

than notch definitions (Ali, Morgan, & Ali, 2015). Because of this, the association 

between age and high frequency thresholds may mask the association between 

noise and thresholds, making it difficult to detect the effect of noise on hearing.  

In order to determine which method was best for evaluating noise-induced 

hearing loss, I measured the Pearson’s correlations of reported noise exposure 

and hearing loss by using several different indicators of noise-induced hearing 

loss. However, because it is difficult to compare binary indicators, such as notch 

definitions, with continuous indicators, we first developed a continuous indicator 

that measures the likelihood of a notch called the slope adjusted notch depth. 

As seen in Figure 4., the slope-adjusted notch depth is calculated as 

follows: First, the low and high frequency anchors for the slope adjustment line 

are located. Pure-tone threshold average at 500, 1000 and 2000 Hertz serves as 

the low frequency anchor (point A in Figure 4.) and is placed at 1000 Hz. Pure-

tone threshold average at 6000 and 8000 Hertz serves as the high frequency 

anchor (point B in Figure 4.), and is marked at 8000 Hz. With both anchors 
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identified, the linear slope adjustment line is then drawn to connect the two 

anchors. After the slope adjustment line is calculated, the highest threshold from 

3000 to 6000 Hz is marked as the upper intensity limit (point C in Figure 4.). If the 

highest threshold is the same at multiple frequencies then the lowest frequency is 

used to calculate the slope-adjusted notch depth. Next, the lower intensity limit 

(point D in Figure 4.) is marked. This limit is the point where the slope adjustment 

line crosses the frequency line of the upper intensity limit. Finally, the slope-

adjusted notch depth is calculated by subtracting the lower intensity limit from the 

upper intensity limit. 
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Figure 4. Diagram Showing the key Points used to Calculate the Slope-adjusted 
Notch Depth in a Sample Audiogram. A) Lower anchor for slope adjustment. B) 

Upper anchor for slope adjustment. C) High intensity threshold for Slope-
adjusted Notch Depth. D) Low intensity threshold for Slope-adjusted Notch 

Depth. SAND, Slope-adjusted Notch Depth. 
 

With a continuous notch measurement, we were able to compare the association 

of noise exposure and hearing loss using different measurements of noise-

induced hearing loss, including high frequency thresholds, the slope-adjusted 

notch depth, and two other algorithms designed to measure noise induced 
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hearing loss, the notch index and bulge depth (Demeester et al., 2010; 

Rabinowitz et al., 2006). First we measured Pearson’s correlations between 

hearing loss and reports of high levels of noise exposure, in months. This data 

was collected from the National Health and Nutrition Examination Survey 

database where 304 individuals reported at least one month of loud occupational 

noise exposure and met the inclusion criteria of the study (National Center for 

Health Statistics (U.S.), 2013). As seen in Figure 5., both high frequency 

threshold measurements were significantly (p<0.05) correlated with reports of 

noise exposure. Hearing loss measured with the slope adjusted notch depth, 

notch index, and bulge index did not significantly correlate with noise exposure. 
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Figure 5. Pearson’s Correlation of Noise Exposure and Hearing Loss with five 
Different Indicators of Noise Exposure. SAND, Slope Adjusted Notch Depth; NI, 
notch index; BI, bulge index; PTA4,6, pure-tone threshold average at 4000 and 
6000 Hertz. 
 

To further evaluate the association of noise exposure and hearing loss, the 

effects of hearing protection and age were measured in a multiple linear 

regression model for each indicator. Noise was measured in months exposed to 

very loud levels, age was measured in years, and hearing protection was 

measured in reported percent of time it is used when exposed to loud sounds. All 

values were mean centered to evaluate their average affects. This model also 

included the interaction effects of hearing protection and noise exposure, and 

-0.05 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

SAND NI BI PTA4,6 3000 Hz 

Pe
ar

so
n'

s 
C

or
re

la
tio

n 



 31	

age and noise exposure. The multiple linear regression models were run for all 

five diagnostic indicators, but the overall model was only significant (p<0.05) for 

the slope-adjusted notch depth, the pure-tone threshold average for 4000 and 

6000 Hertz, and the 3000 Hertz threshold. 

The unstandardized coefficient (B) for the factors of the three significant 

linear regression models are listed in Table 3. All three noise-induced hearing 

loss measurements were significantly associated with age, after accounting for 

effects of the other four factors. However, none of the indicators were 

significantly associated with noise, after accounting for effects of the other four 

factors. The pure-tone threshold average at 4000 and 6000 Hertz was also 

significantly associated with the interaction between noise exposure and hearing 

protection, and noise exposure and age. These interaction effects indicate that 

hearing protection affects the association of noise and pure-tone threshold 

average at 4000 and 6000 Hertz, and that the relationship between noise and 

this threshold average is inconsistent across age groups.  
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Table 3. Unstandardized Coefficients of mean Centered Factors for Three 
Multiple Regression Analysis with Different Dependent Variables. Significant 

factors are indicated with an asterisk. SAND, slope adjusted notch depth; 
PTA4,6, pure-tone threshold averages at 4000 and 6000 Hertz; 3000 Hz, pure-

tone threshold at 3000 Hertz. 
 

  Indicator 
  SAND PTA4,6 3000 Hz 

Age 0.107* 0.686* 0.548* 
Noise 0.003 0.009 0.015 

HP -0.658 -2.32 -3.000 
Noise*HP -0.020 -0.048* -0.043 
Age*Noise 0.000 0.002* 0.001 

 

In this study, we will use the pure-tone average at 4000 and 6000 Hertz to 

measure noise-induced hearing loss because it has the strongest Pearson’s 

correlation with noise exposure. The interaction between age and noise found 

with measurement will not affect this study because our population will have a 

very narrow range of ages. 

Pigmentation Groups 

In this study, we measured the association of noise-induced hearing loss 

and pigmentation for four different indicators of pigmentation, each containing 

four to six groups. This is in contrast to previous studies measuring the 

association of noise-induced hearing loss and pigmentation groups, which only 

used two groups for each indicator (Da Costa et al., 2008; Ghazizadeh et al., 

2012; Ishii & Talbot, 1998).  

Measuring the association of noise-induced hearing loss and pigmentation 

with only two groups does not produce conclusive results because it is difficult to 
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determine if the hearing loss is associated with pigmentation, or genetic 

differences across races between the groups. As stated in the innovation section, 

this study improved upon previous research by measuring hearing loss within 

four to six pigmentation groups. This type of an analysis may have allowed us to 

evaluate the association of pigmentation and noise-induced hearing loss, 

independent of genetic differences across groups. 

Genetic Selection	

 In this study, we analyzed the association of noise-induced hearing loss 

with seven single nucleotide polymorphisms on the melanocortin-one receptor 

gene. We analyzed the melanocortin-one receptor gene because it has a 

biological relevance to NIHL, there is phenotypic evidence for this association 

with pigment studies, and we have preliminary data supporting this association 

(Phillips et al., 2015). Including more genes into this study would have reduced 

our ability to detect an association between noise-induced hearing loss and 

melanocortin-one receptor.	

When analyzing the melanocortin-one receptor genotype, we specifically 

measured the association of noise-induced hearing loss with seven of the nine 

single-nucleotide polymorphisms listed in Figure 3. (Two single-nucleotide 

polymorphism, I155T, and R160W, were not commercially available). These 

single-nucleotide polymorphism were studied in Kanetsky et al., (2010), who 

genotyped 60 melanocortin-one receptor single-nucleotide polymorphism in 396 

control subjects from the Mid-Atlantic region of the US, and only found these 
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nine. In addition, (Latreille et al., 2009) sequenced codons 60 to 265 and 294 of 

MC1R in 488 Caucasian women from Paris and only found 6 individuals (1.2%) 

that had heterozygous substitutions that we would have missed with this 9 

variant panel. From these studies, we concluded that it would be more cost 

effective to measure these single-nucleotide polymorphisms before expanding 

this project to analyze the entire gene.	

Population Age	

In this study, we only measured the association of noise-induced hearing 

loss with pigmentation characteristics and melanocortin-one receptor single-

nucleotide polymorphisms in college age student musicians. This is because it is 

difficult to separating out the effects of age and noise, (see the section entitled 

“Measuring noise induced hearing loss”. Therefore, the most accurate way to 

evaluate the effects of noise exposure is to use a group of individuals with similar 

ages. Furthermore, a younger population is less exposed to many secondary 

factors associated with noise-induced hearing loss, such as smoking, diabetes, 

exposure to organic solvents, are associated with noise-induced hearing loss 

(Mahboubi et al., 2013). This technique is rare in noise-induced hearing loss 

association studies because older populations are much larger and have more 

noise exposure; however, we believe that this method is more effective because 

it increases our ability to detect those susceptible to noise-induced hearing loss.  
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And despite their age, college-aged music students are still exposed to enough  

noise to cause noise-induced hearing (Phillips, Shoemaker, Mace, & Hodges, 

2008).
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CHAPTER III 

OUTLINE OF PROCEDURES	

	
Research Design	

The purpose of this study was to determine the extent to which 

pigmentation and melanocortin-1 receptor genotype are associated with 

susceptibility to noise-induced hearing loss in college-aged music students. To 

achieve this goal, we measured the association of hair and eye color, sunlight 

sensitivity, ethnicity, and MC1R genotype groups with mean bilateral pure-tone 

threshold averages at 4000 and 6000 Hz. We hypothesized that individuals with 

pigment and genotypes indicating lower cochlear eumelanin levels would have 

more noise-induced hearing loss than those with pigment and genotypes 

indicating higher eumelanin levels.	

For subjects, we recruited music students from the College of Visual and 

Performing Arts at the University of North Carolina at Greensboro. Specifically, 

we recruited students in the fall semester of 2016, when all first and fourth year 

instrumentalists had their hearing tested as a part of a school-based Hearing 

Conservation Program. Recruiting students while they participated in this 

program increased the likelihood that they would participate in this study because 

we could use data that was already being collected.
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Pigment and genotype association measurements were collected in two 

phases. For the first phase, which included the pigment association 

measurement, we estimated that we would collect data from 200 participants, 

Figure 6. This estimate came from data collected in previous years where about 

250 students have received hearing tests within this time frame. We anticipated 

that about 10% would decline to participate, bringing our estimated sample size 

to 225. In addition, we anticipated excluding another 10% of the students based 

on these criteria, bringing our estimated sample size to 200. Exclusion criteria for 

the first phase included a hearing loss with a specific etiology, ototoxic 

medications, or an outer or middle ear pathology as determined by otoscopy or 

tympanometry. All students within the age range of 18 to 25 years were allowed 

to participate. 	
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Figure 6. Anticipated Consort Diagram of this Phased Approach Study. This 
diagram gives the estimated number of participants or samples at each step of 
the study. The first three steps indicate how many samples we estimated to lose 
at each step of phase one, the Pigmentation association study. The next two 
steps indicate the estimated number of samples lost at each step of phase two, 
the Genotype association.	
	
 

For the second phase, which included the genotype association 

measurement, we anticipated collecting data from 146 individuals. The second 
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phase included an additional exclusion criterion where DNA samples were only 

collected from individuals with skin that reacts to sunlight exposure, as indicated 

by the Fitzpatrick Skin Test, because the prevalence of melanocortin-one 

receptor single nucleotide polymorphism is too low in sunlight-resistant 

individuals to be cost effective. We estimated that we would collect DNA samples 

from 154 individuals because nearly all Caucasians react to sunlight exposure 

(Eilers et al., 2013); and, in data from previous studies of this population, 77% of 

these subjects were Caucasian (Phillips et al., 2015). Also, based on data from 

the same study, we anticipated that about 5% of the DNA samples would be lost 

in genotyping analyses, yielding an expected 146 DNA samples for the genomic 

analyses.	

Before measuring associations, we assessed the need for adjusting the 

dependent variable, hearing loss. To do this, we measured the effect of 

demographics (e.g. age, and gender), hearing health (e.g. a family history of 

hearing loss), and noise exposure groups, (e.g. instrumentation and ensemble 

participation) on hearing loss. All factors from this analysis of variance with a 

medium or large effect size (η2
p ≥ 0.06) were included in another multifactor 

analysis of variance to obtain an adjusted mean bilateral pure-tone threshold 

average at 4000 and 6000 Hertz based on residuals. 

After the dependent variable was calculated, two additional multifactor 

analyses of variance were used to measure the association of pigment, such as 

hair and eye color, and genotype with hearing loss. Bonferroni corrections were 
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applied to account for the two omnibus tests. A post-hoc power analysis was also 

included to determine if our sample size was large enough to detect significant 

differences among groups (Ranganathan, Buyse, & Pramesh, 2015).  

For the first analysis, the association of hair and eye color, skin type, and 

ethnicity with the adjusted mean bilateral pure-tone threshold average at 4000 

and 6000 Hertz was measured in all students meeting the inclusion criteria. All 

two, three, and four way interaction components were also assessed, and 

Tukey’s post-hoc measurements were also used to assess the relationship within 

groups of any significant interactions.  

For the second multifactor analysis of variance, we measured the 

association of melanocortin-one receptor genotype groups with the adjusted 

mean bilateral pure-tone threshold average at 4000 and 6000 Hertz of all 

participants with sunlight reactive skin types (skin-types I-IV). Again, two, three, 

and four-way interactions with pigmentation factors were included and Tukey’s 

post-hoc measurements were used to assess the groups within any significant 

interactions. 

Power Analysis 

A power analysis was conducted with data from a similar study to 

determine the number of subjects needed to detect a significant difference in 

noise-induced hearing loss between two groups with different pigmentation 

characteristics. To date, no study has examined the association of these 

melanocortin-one receptor single-nucleotide polymorphisms and noise-induced 
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hearing loss; therefore, the power of both omnibus tests were estimated with this 

analysis. The data for the power analyses came from Da Costa et al. (2008), 

which found that workers with dark eyes had 9.1 dB lower hearing thresholds 

compared to workers with light eyes. With a pooled standard deviation of 15.2 

and an α level of 0.05, a one-sided power analysis indicated that 26 individuals 

per a group were needed to reach a power of 0.8. This power analysis was 

conducted with an online calculator (Rosner, 2010). In this study of music 

students, five pigment and genotype factors had groups ranging from three to six 

groups per a factor. With an anticipated 200 individuals for the pigmentation 

analysis and 146 individuals for the genotype analysis, we expected a range of 

33 to 51 individuals per group, which would be enough to obtain a power of 0.8 

for all factors.	

Procedures	

Subjects	

We recruited first and fourth year music students between the ages of 18 

and 25 when they have their hearing tested for the hearing conservation 

program. Recruitment and testing occurred within the Music Building at the 

University of North Carolina at Greensboro. This recruitment was authorized by 

the manager of the Hearing Protection Program, Appendix A; and, all procedures 

were approved by the Institutional Review Board at the University of North 

Carolina at Greensboro, Appendix B. 	
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Participation in the hearing conservation program was required for all 

instrumentalists participating ensembles in College of Visual and Performing Arts 

at the UNCG. Recruiting students as they participated in the conservation 

program increased the likelihood that students would be willing to participate 

because we were asking for data that was already being collected. We only 

recruited from first and fourth year students because these are the only students 

participating in the hearing conservation program in the fall; however, all students 

who participated in the Hearing Conservation Program during the fall semester of 

2016 were included in the study. 	

All recruiting and testing was performed in the morning to reduce the 

possibility of a temporary noise-induced hearing loss. Any students reporting 

noise exposure less than 12 hours before testing were asked to return for testing 

on another day. All students were informed to avoid noise exposure on the night 

before testing through the Hearing Conservation Program.	

Students agreeing to participate in the study were asked to read and sign 

a consent form. Then, a sticker was place on the form to identify each participant 

with a four-digit code. This code was used to label all samples and data 

collected. The consent form was stored in a locked cabinet, separate from the 

data.	

Survey	

Once each student consented to the study, they filled out a survey that 

was used to collect data on demographics (such as age and gender), hearing 
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health (such as smoking status), noise exposure history (such as 

instrumentation), and pigmentation (such as hair color), Appendix C. This survey 

was also used to determine which students met the inclusion criteria for the first 

phase of the study, as indicated in the Research Design section, and determine 

which students were able to participate in the second phase of the study, the 

genotyping analysis. The inclusion questions asked students if they had a 

congenital hearing loss, a hearing loss with a specific etiology, a history of ear 

surgery, or were taking ototoxic medications. Individuals who answer yes to any 

of these questions were excluded from the study. The demographic questions 

asked about age, gender, and year in the program. The hearing health questions 

asked about family history of hearing loss and history of smoking. The sound 

exposure questions were open ended and ask students to list their primary 

instrument, major, and have them list their history of ensemble participation. 

These open-ended questions were grouped once all of the data is collected. The 

pigment questions ask students to list their natural hair color, eye color, ethnicity, 

and skin-type. Skin-type will was assessed with the Fitzpatrick Skin Test, as 

described in the Literature Review.	

The survey was coded and stored in a locked cabinet separate from the 

consent forms. All data from the survey was entered into an SPSS file with the 

codes listed in Appendix D. This file was be stored on the UNCG Box server, 

which is encrypted and password protected.	
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Outer and Middle Ear Screening	

After completing the survey, all participants received otoscopy (visual 

inspection of the outer ear canal) and a middle ear screening. For otoscopy, an 

audiologist will verified that the ear canal was at least 25% clear of earwax. 

Participants with unexplained abnormalities were excluded from the study and 

referred to a physician. Participants with wax occlusion were rescheduled for an 

appointment after the wax was removed.	

Next, a middle ear screener, called a tympanometer (Maico MI 24; See 

Appendix E for calibration), was used to assess the health of the middle ear 

cavity. This instrument applied positive and negative pressure into the ear canal 

and measured the reflection of a 226 Hz tone to evaluate the movement of the 

eardrum; the tone would reflect abnormally for participants with unhealthy middle 

ears.  Participants who failed the middle ear screener were rescheduled for at 

least two weeks after the appointment so that any infection inside the middle ear 

could clear up. If a student’s middle ear problems persisted, then they were 

excluded from the study and referred to a physician.	

Hearing Test	

For students who met the inclusion criteria, we measured thresholds at 

500, 1000, 2000, 3000, 4000, 6000 and 8000 Hz in both ears by performing 

pure-tone audiometry with a calibrated audiometer (Interacoustics AC-40; Eden 

Prairie, MN; see Appendix F for calibration). The test will be conducted in an 

MDL 4242 sound booth (Whisper Room, Inc; Knoxville, TN) that met ANSI 
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standards using the ER-3A insert headphones (Etymotic Research; Elk Grove 

Village, IL). The hearing tests were conducted by certified audiologists with 

clinical experience. The audiologists used the modified Hughson Westlake 

(Carhart and Jerger, 1959) technique where they presented pure-tones to the 

participants and asked them to raise their hand when they heard the sound. The 

recorded thresholds were the quietest presentation levels that produced a 

reliable response.	

All thresholds were recorded on the same hard copy form as the survey. 

Again, this form was stored in a locked cabinet, separate from the consent form, 

and then transferred to the same SPSS file as the survey data.	

Genetic Tests	

We used the Fitzpatrick Skin Test, a single question on the survey, to 

determine which participants were included in the genotyping analysis. For this 

question, participants reported their sensitivity to sunlight exposure on a scale 

ranging from I, highly sensitive, to VI, no reaction. We only genotyped individuals 

with skin types I – IV because the prevalence of MC1R variants are too low in 

individuals with skin types V and VI for the test to be cost effective. 	

To perform the genotyping analysis, we first collected DNA from all 

included participants by rubbing a buccal swab (Isohelix; Harrietsham, UK) 

against the inside of each cheek 30 times before placing it into a sealed 

Eppendorf tube. This tube was labeled with the participant’s code and stored in a 

standard 4°C mini-refrigerator in the testing room.	
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After all buccal samples were collected, we moved them to the UNCG 

Core Molecular Biological Laboratory where they were stored inside of a -20°C 

freezer, processed and genotyped. This facility was located in a locked room 

within the Biology Building. To process the samples, we first isolated the DNA 

using the DNeasy Blood & Tissue Kit (QIAGEN; Germantown, MD). This kit 

provided the solutions to break down cell membranes and protein, while 

preserving the DNA. It also provided buffers and filters to clean and collect the 

DNA using centrifugation at room temperature so that it could be eluted into an 

eppendorf tube with water. All procedures followed manufacturer specifications. 

Briefly, cells were broken down with lysis buffer at 56°C for 10 minutes. Then the 

lysate was collected in micro-filters spun at 8000xg designed to collect DNA 

while eluting cell debris. This lysate was washed with a series of buffers at room 

temperature until it was eluted with water into separate tube.	After isolation, we 

measured sample concentrations and purity of DNA samples with Nanodrop 

spectrophotometry (Thermo Fisher, Waltham, MA). These samples were then 

stored in the same -20°C freezer until DNA was isolated from all of the samples.	

Genotyping was performed with the Applied Biosystems SNP Genotyping 

TaqMan Assays, the TaqMan Gene Expression Master Mix, the Quantitative 

Real-Time PCR and the TaqMan Genotyper Software (Thermo Fisher; Waltham, 

MA). The samples, genotyping assays, and master mix were added into 96 well 

plates. These plates were arranged to genotype seven non-synonymous SNPs 

(see table 2.) in all estimated samples. Most sample/SNP combinations were run 
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once; however, we re-ran questionable samples and a minimum of 25% of all 

samples to ensure repeatability. Each plate also had four negative controls of 

each SNP genotyping assay on that plate to ensure that the solutions were not 

contaminated. Once all samples were genotyped, the data was transferred to the 

same SPSS file that had the survey and audiometric data.	

	
Table 4. Single-nucleotide Polymorphism Number, Amino acid Change, Allele, 

and Minimum Allele Frequency. ‘r’ indicates alleles with a weak effect on 
phenotype; ‘R’ indicates alleles with a strong effect on phenotype. The minimum 

allele frequency comes from Kantesky, et al., 2010, which measured the 
frequencies in a population of American Caucasians. 

	
SNP Number	 AA Change	 Allele	 MAF (%)	

rs1805005	 V60L	 r	 14.6	
rs1805006	 D84E	 R	 0.9	
rs2228479	 V92M	 r	 9.5	

rs11547464	 R142H	 r	 1.4	
rs1805007	 R151C	 R	 5.4	
rs885479	 R163Q	 r	 3.5	

rs1805009	 D294H	 R	 1.5	
	

Statistical Analyses	

Noise-induced hearing loss was estimated by calculating the average 

pure-tone thresholds at 4000 and 6000 Hz in both ears. As stated in the Review 

of the Literature, this technique was similar to the methods used in previous 

studies (Konings et al., 2007; Van Eyken et al., 2007). The distribution of pure-

tone thresholds at 4000 and 6000 Hz collected in our data set were compared to 

thresholds collected in a previous data set of student musicians at The University 

of North Carolina at Greensboro in paneled histograms (Phillips et al., 2015). All  
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measurements were run with the Statistical Package for the Social Sciences 

software (IBM SPSS Statistics, 2016). 

Once the mean bilateral pure-tone thresholds at 4000 and 6000 Hz were 

calculated and compared with previous measurements, we assessed the effects 

of demographic, noise exposure, and experimental (tester) factors on hearing 

loss. To accomplish this, we first counted the number of individuals in each noise 

exposure group. These groups are listed in Appendix B and described in the 

Survey subsection. Only factors with at least two groups with greater than 10 

individuals were included in the analysis; any factor that did not meet this criteria 

were assumed to not have the statistical power to make any claims regarding an 

effect on hearing loss. Next, we used a multifactorial analysis of variance to 

measure the effect, partial-eta squared (η2
p), that each factor had on hearing 

loss. Any factors that had a medium or greater effect size, (η2
p ≥ 0.06), on 

hearing loss, were used on another multifactorial analysis of variance to calculate 

the residuals, thereby obtaining an adjusted mean bilateral pure-tone thresholds 

at 4000 and 6000 Hz. The means of factors with medium or large effects were 

also tabulated to analyze group differences. 

To assess the effect of pigmentation on the adjusted mean bilateral 

thresholds, we used a single direction multifactorial analysis of variance with hair 

and eye color, ethnicity, and skin type. Again, the codes for these factors are 

listed in appendix B. This analysis included all participants meeting the inclusion 

criteria along with all three and four way interactions among the factors. The 
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omnibus test was adjusted with a Bonferroni correction factor to account for the 

two multifactorial analyses of variance that were run in this study. 	

Next, we grouped the genotype data based on each allele’s effect on 

eumelanin production. As described in the Literature Review section, we grouped 

all participants into one of three genotyping groups. Individuals with at least ‘R’ 

alleles or at least two ‘r’ or ‘R’ alleles were placed into the strong effect group; 

individuals with no ‘R’ alleles and only one ‘r’ allele were placed into the weak 

effect group; individuals with no ‘R’ or ‘r’ alleles were placed into the wild type 

group. The effect of each individual SNP is listed in table 2. Estimates from 

previous reports indicated that individuals with skin-types I-IV will be relatively 

evenly distributed among these three groups (Kanetsky et al., 2010). Specifically, 

from the 146 participants that we anticipate to recruit for this study, we believe 

that the genotyping analysis will yield 31 individuals for group 1, 47 for group 2, 

and 68 for group 3. The number of individuals in each group was compared to 

these group numbers.	

Once the genotype groups were established, we assessed the association 

of these groups with the adjusted mean bilateral pure-tone threshold averages, 

with a single direction multifactorial analysis of variance. This model included a 

bivariate interaction with genotype group, and three-way interactions with 

genotype group and each pigment indicator. Again, the omnibus test was 

adjusted with a Bonferroni correction factor to account for the two tests. 
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CHAPTER IV 

RESULTS	

	
Population and Demographics	

We collected sound exposure, pigmentation, and hearing data from 168 

music students, which was only 75% of the number of students that we expected 

to recruit Figure 7. Of these students, 155 were included for the first phase of the 

study, the pigmentation analysis, yielding 77% of our expected number of 

participants. After completing the Fitzpatrick Skin Test, we collected buccal 

samples from 119 students. Only one DNA sample was lost during genetic 

processing, leading to an analysis of 118, or 82% of the estimated number of 

DNA samples for the analysis of melanocortin-one receptor single nucleotide 

polymorphisms.
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Figure 7. Consort Diagram with the Number of Individuals or Samples in each 
step. The percent of individuals or samples relative to the expected amount is 

listed in parentheses.	
	

There were slightly more females than males in the population, Table 5. 

The average age was 19.4 (SD 2.0). The students were unevenly distributed 

among years in the program because the Hearing Conservation Program was 

designed to test first and fourth year students in the semester that we collected 

data; however, some students from other classes were included in this study. 

Very few participants indicated a history of smoking; therefore, this variable was 
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not included in the noise exposure analysis. About a third of the students 

reported a family history of hearing loss. Of these students, most of them 

reported that their family member did not lose their hearing until well after 

retirement ages; however, a small percent of students did report young family 

members with hearing loss.	

	
Table 5. The Number of Individuals for each Demographics Group is Listed 
Below. The Ct Total is the count for all subjects, and the Ct GA is the count for 
participants in the genetic analyses. 
	

Demographics	
Variable	 Ct (%) Total	 Ct (%) GA	

Gender	 	 	
Male	 69 (44.5)	 51 (42.9)	

Female	 81 (52.3)	 63 (52.9)	
Other	 5 (3.2)	 5 (4.2)	

Year	 	 	
1st	 97 (62.6)	 71 (59.7)	
2nd	 6 (3.9)	 5 (4.2)	
3rd	 3 (1.9)	 3 (2.5)	
4th	 41 (26.5)	 34 (28.6)	
5th	 7 (4.5)	 5 (4.2)	
6th	 6 (0.6)	 1 (0.8)	

Nicotine	 	 	
No	 146 (94.2)	 111 (93.3)	
Yes	 9 (5.8)	 8 (6.7)	

Family HX	 	 	
None	 106 (68.4)	 80 (67.2)	

Elderly	 44 (28.4)	 35 (29.4)	
Young	 5 (3.2)	 4 (3.4)	

	

Noise-induced Hearing Loss	

The mean bilateral pure-tone thresholds at 4000 and 6000 Hertz in the 

155 students included in this study had an overall mean value of 1.49 with a 
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standard deviation of 5.09. As seen in Figure 8., the values were within normal 

limits (<20 dB HL) for all but two participants, who were extreme (>3 IQR) 

outliers. These data points were not normally distributed, (t = 0.939, p < 0.001) 

according to the Shaipro-Wilk test, likely because the distribution reaches the 

lower limits of the audiometer is -10 dB HL.	
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Figure 8. Histogram of mean Bilateral Pure-tone Threshold Averages at 4000 
and 6000 Hertz (PTA4,6) for all Participants. The total number of individual in 
each bin are given for data collected in this study (above) and data collected in 
Phillips, (2015) (Below). (Two outliers from Phillips, (2015), one at 66 dBHL and 
one at 85 dbHL, were deleted to improve clarity of the figure. These outliers are 
included in mean and median calculations.)	
	

A histogram displaying the distribution of mean bilateral pure-tone 

thresholds at 4000 and 6000 Hertz among 636 college aged music students at 

The University of Greensboro School of Music is shown below the histogram of 

thresholds collected for this study. As seen in the histogram, the median 

thresholds were higher for the students in the previous study compared to the 

students in this study. 
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Sound Exposure Factors and Noise-induced Hearing Loss	

The total number of individuals in each sound exposure group are listed in 

Table 6. All factors have a fairly even distribution of individuals among the 

groups, except for participation in a rock band, which was not included in the 

noise exposure analyses.	

	
Table 6. Distribution of Students in Music Groups, Instrumentation, and Major. 
Ct, count; GA, genomic analysis   
	

Music Exposure	
Variable	 Ct (%) Total	 Ct (%) GA	 	 Variable	 Ct (%) Total	 Ct (%) GA	

Symphonic	 	 	 	 Inst. Group	 	 	
No	 71 (45.8)	 54 (45.4)	 	 Saxophone	 13 (8.4)	 11 (9.2)	
Yes	 84 (54.2)	 65 (54.6)	 	 Tuba/Euphonium	 4 (2.6)	 3 (2.5)	

Orchestra	 	 	 	 Double Bass	 5 (3.2)	 4 (3.4)	
No	 119 (76.8)	 88 (73.9)	 	 Viola	 8 (5.2)	 4 (3.4)	
Yes	 36 (23.3)	 31 (26.1)	 	 Cello	 5 (3.2)	 4 (3.4)	

Small Ens	 	 	 	 Horn	 6 (3.9)	 5 (4.2)	
No	 67 (43.2)	 47 (39.5)	 	 Guitar/Harp	 4 (2.6)	 4 (3.4)	
Yes	 88 (56.8)	 72 (60.5)	 	 Trumpet	 10 (6.5)	 8 (6.7)	

Choir	 	 	 	 Trombone	 10 (6.5)	 8 (6.7)	
No	 120 (77.4)	 92 (77.3)	 	 Voice	 35 (22.6)	 23 (19.3)	
Yes	 35 (22.6)	 27 (22.7)	 	 Cla/Oboe/Bassoon	 13 (8.4)	 9 (7.6)	

Marching	 	 	 	 Flute/Piccolo	 11 (7.1)	 9 (7.6)	
No	 116 (74.8)	 88 (73.9)	 	 Percussion	 10 (6.5)	 8 (6.7)	
Yes	 39 (25.2)	 31 (26.1)	 	 Piano/Organ	 14 (9.0	 12 (10.1)	

Rock Band	 	 	 	 Violin	 8 (5.2)	 7 (5.9)	
No	 151 (97.4)	 115 (96.6)	 	 	 	 	
Yes	 4 (2.6)	 4 (3.4)	 	 Major	 	 	

Jazz Band	 	 	 	 Performance	 36 (23.3)	 26 (21.8)	
No	 122 (78.7)	 93 (78.2)	 	 Education	 62 (40.0)	 47 (39.5)	
Yes	 33 (21.3)	 26 (21.8)	 	 Other	 57 (36.8)	 46 (38.7)	

	

A multifactorial analysis of variance was used to determine the effect, as 

measured by partial-eta squared (η2
p), of each sound exposure factor on the 
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mean bilateral pure-tone average threshold at 4000 and 6000 Hertz. Also, a 

tester effect was included in this analysis to determine if the differences in 

threshold obtained by different audiologists affected the results. As seen in Table 

7., 12 of the 13 factors explaining sound exposure had less than a medium effect 

(η2
p ≥ 0.06) on NIHL. Instrumentation group, on the other hand, had a medium 

effect of (η2
p = 0.087). Therefore, the thresholds were adjusted based on 

instrumentation for each individual. 

 
Table 7. The Partial-eta Squared Values are Listed for each Sound Exposure 

Factor. *Instrumentation is the only factor with a medium effect on mean bilateral 
pure-tone threshold averages at 4000 and 6000 Hertz. +Tester is not a sound 
exposure factor, but it was included in this analysis to demonstrate that there 

were no effects from differences in thresholds obtained among the audiologists.	
	

Variable	 η2
p	

Year	 0.005	
Age	 0.006	

Gender	 0.003	
Family Hx	 0.013	

Major	 0.006	
Instrumentation	 0.087*	

Tester+	 0.004	
	 	
Ensemble Participation	 	

Symphonic	 0.057	
Orchestra	 <0.001	

Small Ensemble	 0.002	
Choir	 <0.001	
March	 0.027	
Jazz	 0.002	

 

 



 57	

As seen in Table 8., group mean pure-tone threshold averages for 6000 

and 8000 Hz ranged from -0.63 db HL in the violin group to 4.33 dB HL in the 

Alto/Tenor Saxophone group. There was no clear trend relating broader 

instrument groups, such as brass or woodwinds, with noise-induced hearing loss.	

	
Table 8. Mean PTA46 and Standard Deviation for each Instrument Group	

 	 Mean PTA46	 St Dev	
Saxophone	 4.33	 8.05	

Tuba/Euphonium	 4.06	 6.40	
Double Bass	 4.00	 11.30	

Viola	 2.86	 3.04	
Cello	 2.75	 4.09	
Horn	 2.29	 2.90	

Guitar/Harp	 1.88	 8.26	
Trumpet	 1.88	 3.64	

Trombone	 1.63	 3.12	
Voice	 1.42	 4.74	

Clarinet/Oboe/Bassoon	 0.29	 4.95	
Flute/Piccolo	 0.11	 4.20	
Percussion	 0.00	 2.50	

Piano/Organ	 -0.09	 4.69	
Violin	 -0.63	 3.78	

	

Pigmentation and Noise-induced Hearing Loss	

Pigmentation characteristics, such as hair and eye color, were collected 

from all subjects using the survey. As see in Table 9., there was a fairly even 

distribution of individuals in all four indicators. The over and under representation 

of groups were similar to what was expected considering previous ethnicity  
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distributions of this population and pigmentation distributions within each 

ethnicity.	

	
Table 9. Total Number of Individuals for each Pigmentation Group. The Ct total 
lists the number of total students in each group (Phase 1); the Ct GA lists the 
number of students in the genotyping analyses for each group (Phase 2). 
	

Eumelanin Indicators	
Variable	 Ct (%) Total	 Ct (%) GA	

Hair Color	 	 	
Red	 7 (4.5)	 7 (5.9)	

Blonde	 21 (13.5)	 21 (17.6)	
Light Brown	 13 (8.4)	 12 (10.1)	

Brown	 78 (50.3)	 65 (54.6)	
Dark Brown	 7 (4.5)	 6 (5.0)	

Black	 29 (18.7)	 8 (6.7)	
Eye Color	 	 	

Blue	 37 (23.9)	 35 (29.4)	
Green	 16 (10.3)	 15 (12.6)	
Hazel	 29 (18.7)	 27 (22.7)	
Brown	 66 (42.6)	 39 (32.8)	

Dark Brown/Black	 7 (4.5)	 3 (2.5)	
Skin Type	 	 	

I	 11 (7.1)	 11 (9.2)	
II	 28 (18.1)	 28 (23.5)	
III	 45 (29.0)	 45 (37.5)	
IV	 35 (22.6)	 35 (29.4)	
V	 22 (14.2)	 0	
VI	 14 (9.0)	 0	

Ethnicity	 	 	
Caucasian - Main	 91 (58.7)	 85 (71.4)	
Caucasian - North	 26 (16.8)	 23 (19.3)	

African	 24 (15.5)	 3 (2.5)	
North Asian	 5 (3.2)	 3 (2.5)	
South Asian	 1 (0.6)	 0	

Hispanic	 4 (2.6)	 2 (1.7)	
Other	 4 (2.6)	 3 (2.5)	
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A multifactorial analysis of variance was run to measure the association of 

all four pigmentation groups and all two, three, and four-way interactions with the 

adjusted mean bilateral pure-tone thresholds averages at 4000 and 6000 Hertz. 

The overall model was not significant, (F(82,72) = 0.707, p = 0.936). All bivariate 

and interaction effects were also not significant (p < 0.05). The post-hoc power 

was 0.763.   

Despite the lack of significance, all pigmentation indicators followed a 

trend of decreased thresholds with increased eumelanin production (Figure 9.). 

For hair color, those with blonde hair, which is the hair color with the second least 

amount of eumelanin, had the largest adjusted mean bilateral pure-tone 

threshold averages at 3000 and 4000 hertz (Figure 9A.). Also, those with dark 

brown hair, which is the hair color with the second most amount of eumelanin, 

had the lowest thresholds. For eye color, the thresholds were highest in 

individuals with blue eyes, who have the least eumelanin in their eyes, and 

continued to decrease for each color category indicating increases in eumelanin 

(Figure 9B.). With skin-type, the negative relationship between adjusted mean 

bilateral pure-tone threshold averages and increases in predicted eumelanin 

levels was not as apparent as other pigmentation indicators, but the overall 

relationship is still observed (Figure 9C.). As for ethnicity, there was no 

consistent relationship between estimated melanin levels and PTA4,6. 
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Figure 9. Adjusted mean Bilateral Pure-tone Threshold Averages at 3000 and 
4000 Hertz of all Student Musician Groups by A) six hair Colors, B) five eye 
Colors, C) six skin Types, and D) five Ethnicity Groups. All Eumelanin indicators 
are listed from lowest levels of estimated Eumelanin to the left (e.g. red hair, blue 
eyes, Skin-Type 1, and Northern Europeans) and highest levels of estimated 
eumelanin (e.g. Black hair, Black eyes, Skin-Type 6, and African) to the right. 
Error bars indicate one standard error.	
	

Genotype Groups and Noise-induced Hearing Loss	

Buccal cells were collected from 119 music students, but genomic 

analyses were only run on 118 DNA samples because one sample could not be 
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genotyped. The number of participants in each group that were included in this 

phase of the study are listed in Table 5. for demographics, Table 6. for noise 

exposure, and Table 9. for pigmentation. As expected, the percent of individuals 

in demographic and noise exposure groups were similar between the cohort of 

155 students who participated in the first phase of the study and the cohort of 

118 students who participated in the second phase of the study. The percent of 

individuals in pigmentation groups were different between phases because the 

individuals in the second phase were selected based off of skin-type, an indicator 

of eumelanin levels.	

The seven single-nucleotide polymorphisms from melanocortin-one 

receptor listed in Table 4. were genotyped in 118 students. The individual allele 

frequencies measured in this study were similar to the frequencies obtained in 

Kanetsky et al., (2010). As for genotype groups, 29 individuals had either one ‘R’ 

allele or two or more ‘r’ alleles, indicating a strong association with reduced 

eumelanin production, 15 individual had 1 ‘r’ allele and no ‘R’ alleles, indicating a 

weak association of reduced eumelanin production, and 75 individuals had no ‘R’ 

or ‘r’ alleles, indicating no association with eumelanin production.	

The association between genotype group and all four pigment indicators 

was measured to evaluate the effects of the single nucleotide polymorphisms on 

eumelanin production. As seen in Figure 10A., individuals with hair color 

indicating less eumelanin production were more likely to be in genotype groups 

associated with reduced eumalain production (R or r/r genotype); and individuals 
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with hair color indicating more eumelanin production were more likely to be in 

wild type groups. However, this relationship was not as apparent for eye color, 

skin type, or ethnicity; the relative prevalence of genotype groups was consistent 

across all pigmentation groups within each of these three indicators (Figure 10B.-

D.).	
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Figure 10. Distribution of Individuals in Genotype Groups Across Pigment 
Groups. Total number of individuals in each of the three Genotype Groups 
compared across A) hair color, B) eye color, C) skin-type, and D) Ethnicity. 
Groups associated with low Eumelanin levels are listed to the left and groups 
associated with high Eumelanin levels are listed to the right. 	
	
	

A multifactorial analysis of variance was run to evaluate the association of 

genotype groups and mean adjusted pure-tone threshold averages at 4000 and 

6000 Hertz. Interaction affects between genotype group and pigmentation 
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indicators were included in this model. The overall omnibus test was not 

significant (F(79,39) = 0.488, p = 0.996). No significant effects for interaction 

components were detected. The post-hoc observed power was 0.368. As 

expected, the group of individuals with genotypes indicating a weak reduction in 

eumelain production, (one ‘r’ allele and no ‘R’ alleles) had a greater mean 

threshold than the group of individuals with the wild type alleles; however, 

individuals in genotype groups indicating a strong association with reduced 

eumelanin production (‘R’ or r/r alleles) had mean thresholds than were nearly 

equal to the wild-type group (Figure 11.). 	
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Figure 11. Adjusted mean Bilateral Pure-tone Threshold Averages at 4000 and 

6000 Hertz Across the Three Genotype Groups. The Genotype Group associated 
with strong reduction in Eumelanin is listed to the left; the Genotype Group 

associated with no reduction in Eumelanin is listed to the right. 
 

The mean adjusted pure-tone threshold average at 4000 and 6000 Hertz 

was also examined for each individual SNP (Table 10.). Individuals with single-

nucleotide polymorphisms rs1805006, an ‘R’ allele, and rs2228479, an ‘r’ allele, 

had higher mean thresholds compared to those with wild type, or homozygous 

major, alleles, which supports our hypothesis. However, individuals with single-

nucleotide polymorphisms rs1805007 and rs1805009, ‘R’ alleles, and 

rs11547464, an ‘r’ allele, had lower mean thresholds compared to those with wild 

type, or homozygous major, alleles.	



 66	

Table 10. Mean Adjusted Pure-tone Threshold Average at 4000 and 6000 Hertz 
for each Single-nucleotide Polymorphism Group. The standard error  

is listed in parentheses. 
Homozygous Minor (Hmi), Heterozygous (Het), and Homozygous Major (Hma) 

 
 	 Mean Adj PTA4,6 (SE)	

SNP	 Hmi	 Het	 Hma	
R	 	 	 	
rs1805006	 -	 1.68 (5.11)	 -0.743 (1.19)	
rs1805007	 -2.19 (3.61)	 -1.46 (2.62)	  0.026 (1.43)	
rs1805009	 -	 -0.443 (2.55)	 -0.513 (1.29)	

	 	 	 	
r	 	 	 	
rs11547464	 -	 -2.68 (5.11)	 -0.249 (1.19)	
rs2228479	 -1.86 (3.61)	 2.29 (2.64)	 -1.09 (1.43)	
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CHAPTER V 

DISCUSSION 

 
The purpose of this study was to evaluate the extent to which 

pigmentation and melanocortin-one receptor genotype are associated with 

sensitivity to noise-induced hearing loss in college-aged music students. The 

ominibus multifactor analysis of variance was not significant for pigmentation 

(F(82,72) = 0.707, p = 0.936, η2
 = 0.763); however, the groups of pigmentation did 

follow the expected trends, i.e. those with low levels of pigmentation had higher 

hearing thresholds than those with lower levels of pigmentation. Furthermore, the 

second omnibus multifactor analysis of variance significant for melanocortin-one 

receptor genotype groups was also not significant (F(79,39) = 0.488, p = 0.996, η2
 = 

0.368). However, one single-nucleotide polymorphism, rs2228479, did trend 

towards an association with susceptibility to noise-induced hearing loss. 

Unfortunately, the hearing thresholds of student musicians were lower than 

expected. This finding limited our ability to detect significant effects of 

pigmentation and genotype.  

Correspondence of Findings with Previous Literature 

Participant Recruitment 

In this study, we used a phased approached design where we recruited 

student musicians from the UNCG school of Music for the pigmentation study,
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then selected those with possible single-nucleotide polymorphisms in the 

melanocortin-one receptor gene for the genotype analysis. Unfortunately, we 

only were able to recruit 77% of the estimated number of subject for pigmentation 

analysis. This was likely because our estimates were based on the total number 

of music students, and we did not take into account the large number of 

Freshman that were younger than 18 years old at the time of testing. We were, 

however, able to test 82% of the expected number of samples for the genotype 

analysis because we did not lose as many samples as expected in the 

genotyping analyses. 

Hearing Loss 

The mean pure-tone average threshold at 4000 and 6000 hertz was 1.477 

dB HL (SD 5.1), which was less than the same measurement taken in this 

population from a previous study, 7.67 dB HL (SD 6.69) (Phillips et al., 2015). 

Lüders, Gonçalves, de Moreira Lacerda, Ribas, & de Conto, (2014) also 

measured hearing in student musicians and found a mean pure-tone average 

threshold at 4000 and 6000 Hertz of 6.8 dB HL. Interestingly, the authors of this 

study were comparing student musicians with non-musicians and found that non-

musicians had higher mean thresholds. The decrease in thresholds from this 

study compared to Phillips et al., (2015) and may be explained by the difference 

in sample size because thresholds have right tailed distribution from bottoming 

out effects of the audiometer; the larger sample size likely shifted the mean 

thresholds upward. However, the median thresholds in this study were also less 
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than the median thresholds in Phillips et al., (2015) and Lüders et al., (2014); this 

difference cannot be explained by sample size. It is also important to note that 

Phillips et al., (2015) reported that 14.8% of the student musicians had 

audiometric notches, but when the same criteria were applied to the current 

population, only 1 of 155 students had an audiometric notch. 

The thresholds measured in this study may have been lower than the 

thresholds measured in  Phillips et al., (2015) and Lüders et al., (2014) because 

ER-3A inserts were used in this study, where the previous studies used TDH-39 

headsets. Previous reports have indicated that supra-aural headsets, such as the 

TDH-39, are unreliable for detecting small degrees of high-frequency hearing 

loss. For instance, Serpanos, Senzer, Renne, Langer, & Hoffman, (2015) found 

that after testing hearing with supra-aural headsets, retesting with inserts 

reduced referral rates by 13 to 16%. False positives of noise-induced hearing 

loss were also found by Schlauch & Carney, (2011) in a study of the hearing 

tests, which were conducted with TDH-39’s, from the 2003 cohort of the National 

Health and Nutrition Examination Survey. In this study, the authors found an 

increase in thresholds at 6000 Hz in young adults, as previously described in 

Niskar et al., (2001), and in younger children ages 12 to 19, and 6 to 11 years 

old. Niskar et al., (2001) claimed that the hearing loss in the young adults was 

likely caused by noise. However, in Schlauch & Carney, (2011), the authors 

argued that the hearing loss was more likely due to measurement errors from the 

supra-aural headphones because the children ages 6 to 11 were too young to 



 70	

experience significant noise exposure. It is not currently understood why supra-

aural transducers may have increased thresholds in high frequencies, but some 

authors have speculated that it is because these frequencies form standing 

waves in the ear canal. Lutman & Qasem, (1998) have provided evidence for 

variations of up to 5 decibels among different couplers that are used to calibrate 

audiometers. If the couplers are inconsistent, then it is reasonable to assume that 

this inconsistency would transfer into audiometric testing, especially when 

averaged across populations. 

Noise Exposure 

Differences in mean bilateral pure-tone threshold average at 4000 and 

6000 hertz were evaluated across demographic and noise exposure groups with 

a multifactorial analysis of variance to determine if these thresholds needed to be 

adjusted for co-variants. Instrumentation was the only factor to affect thresholds 

enough to meet the cut off for effect size (η2
p ≥ 0.06); therefore, adjusted 

thresholds were used for this study that accounted for differences across 

instrumentation group. It should also be noted that those who participated in the 

symphonic ensemble did have lower thresholds and those who had participated 

in a marching band did have higher thresholds. Both of these factors warrant 

further investigation in future studies. 

As for instrumentation, we did compare the mean thresholds among 

instrument groups to see if any trends among broader instrument groups, e.g. 

brass, woodwinds, could explain differences among smaller groups. 
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 Unfortunately, we were not able to find any of these trends (Table 8.). 

However, the high thresholds for saxophone players may be explained by high 

levels of noise exposure found in a previous study (Washnik, Phillips, & Teglas, 

2016). It should also be noted that these differences in groups may be caused by 

their associations in ensemble participation. Although we did measure ensemble 

participation, we did not measure interaction effects among instruments and 

ensembles. Further research into these interactions may explain the effect of 

instrument group on audiometric thresholds. 

Pigmentation and Hearing Loss 

Due to the low variability of thresholds, we were unable to detect a 

significant association between hearing loss and pigmentation. Furthermore, we 

collected data from enough individuals to achieve a post-hoc power of 0.763. 

Therefore, with our high p-value of 0.936, it is unlikely that increasing the sample 

size would lead to significant differences among groups. 

Despite these negative findings, the statistical effects (eta squared, η2
p) of 

hearing loss within pigmentation groups, which is unaffected by variation in the 

dependent variable, was similar to the effects found in the literature. For 

instance, with hair color, Ghazizadeh et al., (2012) found a 15.1 decibel 

difference in hearing thresholds between noise-exposed workers with dark and 

light hair. With a standard deviation of 16.3, this led to an effect of 0.92. In our 

results, the largest group differences were between those with blond hair and 

those with dark brown hair, with a difference of 4.18 decibels. With an average 
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standard deviation of only 4.25, the statistical effect in our study was 0.98. This 

same phenomenon occurred with eye color. For instance, Da Costa et al. (2008) 

found an 8.8 decibel difference between those with dark colored eyes and those 

with light colored eyes in a noise exposed population. With a mean standard 

deviation of 14.05, this lead to an effect of 0.63. In this study, our largest group 

difference was only 3.03 decibels, which was between those with blue eye and 

those with brown/black eyes. With a mean standard deviation of 4.69, our results 

yielded a statistical effect of 0.65. 

This study was the first to measure the association of hearing loss and 

skin-type in a noise-exposed population. (Lin et al., 2012) used multiple linear 

regression to measure the association of high frequency pure tone threshold 

average (3000 to 8000 Hertz) and skin-type within adults with Hispanic decent, 

but this was not in a noise-exposed population. In this study, the authors found 

that those in lower skin-type groups (i.e. low eumelanin levels) had thresholds 

that were 3.0 decibels lower than those in high skin-type groups. Unfortunately, 

the standard deviations of their data set were not reported. Therefore, we cannot 

compare effect sizes. However, these results were similar to the results that we 

obtained where the largest group differences were between skin-type groups I 

and V and those in skin-type group III had mean pure tone threshold average at 

4000 and 6000 Hertz that were 2.46 decibels higher than those in skin-type 

group five. However, unlike the hair and eye color data, the skin-type data did not 

follow the expected trends; we did not measure a consistent decrease in 
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thresholds from high skin-type groups to low skin-type groups. I believe that this 

is because the Fitzpatrick Skin Test is designed to be administered in as an 

interview, where in this study, we used a questionnaire (Eilers et al., 2013). It is 

possible that students were confused about the wording of the question, 

particularly those who do not have a history of high levels of sun exposure, or are 

resistant to the effects of this exposure. It is also possible that some students 

were hesitant to indicate that their reaction to sunlight was on the extreme ends 

of the scale. Repeating this measure by administering the questions for the 

Fitzpatrick Skin Test in a questionnaire may yield different results. 

For ethnicity, we only collected enough individuals to compare those of 

Northern European, Mainland European, and African descent. The difference 

between those of Mainland European and African descent were as expected; 

those of Mainland European decent had thresholds that were 2.53 dB higher 

than those of African descent. In comparison, Ishii & Talbot (1998) found that 

white workers had hearing loss that was 8.28 decibels higher than non-white 

workers. Unfortunately, again, the standard deviations of their data set were not 

reported. Therefore, we cannot compare effect sizes. 

One consistent anomaly in these results is the lower than expected 

thresholds in the lowest eumelanin group, eg red hair, skin-type I, and 

Caucasians of Northern European decent. It is possible that many students fall 

into all three of these groups, and we simply do not have the statistical power to 

make any claims. However, it is also interesting to note that individuals with the 



 74	

more common genetic disorders that suppress eumelanin production (i.e. 

albinism) often do not show any susceptibility to noise exposure (Montoliu et al., 

2014). The most likely explanation for this phenomenon is a compensatory 

mechanism where cells use other pathways to produce antioxidants at an 

accelerated rate to make up for the lack of eumelanin. Therefore, it is also 

possible that even within the general population, individuals who produce very 

low levels of eumelanin may also rely on the same compensatory mechanism to 

maintain homeostasis among free radicals. Of course, more research is required 

to validate this theory. 

Pigmentation and Melanocortin-one Receptor Single-nucleotide Polymorphisms 

The distribution of individuals based on pigmentation among melanocortin 

receptor genotype groups were as expected; individuals with pigmentation 

indicating low eumelanin levels were more likely to have an R or r/r melanocortin-

one receptor genotype than individuals with hair or eye color indicating high 

eumelanin levels (Figure 10.). These results correspond with previous studies 

that have demonstrated a relationship between pigmentation and melanocortin-

one receptor genotype (Branicki, Brudnik, & Wojas-Pelc, 2009; Lin et al., 2015; 

Sulem et al., 2007). 

Melanocortin-one Receptor Genotype Groups and Susceptibility to Noise- 

induced Hearing Loss 

Melanocortin-one receptor genotype groups were not significantly 

associated with mean adjusted pure-tone thresholds at 4000 and 6000 Hertz 
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(F(79,39) = 0.488, p = 0.996). We only collected data from enough individuals to 

achieve a post-hoc power of 0.368, indicating that increasing the sample size 

may increase our ability to detect differences among groups. 

As seen in Figure 11., the thresholds follow the similar trend seen in the 

pigmentation study where individuals with some indications of reduced melanin 

production have higher thresholds that those with high levels of melanin, but for 

those with indicators of very low levels of eumelanin, the thresholds are actually 

reduced. Again, this may be due to a compensatory mechanism for those with 

very low levels of melanin; however, it is also possible that there are other genes 

on the melanin pathway that explain the relationship between pigmentation 

indicators and susceptibility to noise-induced hearing loss. 

One single nucleotide polymorphism, rs2228479, did show a trend 

towards association with noise-induced hearing loss. Although this effect was 

insignificant, it does warrant further investigation. 

Limitations of the Study 

The low number of DNA sites analyzed was a limitation in this study. As 

seen in Table 2., many of the single nucleotide polymorphisms identified in 

Phillips et al., (2015) were not included in this study because they have very low 

minor allele frequencies. In this analysis, we measured the association of hearing 

loss with single nucleotide polymorphisms that are more prevalent in the 

population. This may explain our lack of significant findings because, as 

discussed in the genetics selection section of the literature review, the role of 
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rare variants is increasingly being accepted as a major factor explaining 

phenotypes. 

The technique used to assess noise-induced hearing loss was another 

limitation in this study. We used thresholds because previous studies have 

indicated that college-aged student musicians have audiometric thresholds that 

are worse than non-musicians (Barlow, 2011). Unfortunately, we did not include 

a control population of non-music student musicians in our data set; therefore, 

we cannot draw any conclusions about music and non-music student. But, as 

seen in Figure 8., nearly all of the thresholds measured in this study were within 

normal limits, and over 80% were below 10 dB HL. 

Future Directions 

Despite the negative findings of this study, the results have supported 

future research in both hearing loss in student musicians and the genetics of 

sensitivity to noise exposure. For hearing loss in student musicians, it would be 

useful to measure audiometric thresholds in students who participate in university 

marching bands because our multifactorial analysis of music groups indicated 

that students who participated in marching bands were more likely to have noise-

induced hearing loss. The students in this cohort only participated in marching 

band at the high school level.  

It is also important to assess other indicators of hearing loss in student 

musicians, such as high frequency audiometry, otoacoustic emissions, and 

electrophysiology. There is some evidence that music students have higher 
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thresholds within the high frequency range and reduced otoacoustic emissions, 

but more work is needed to determine the best method for evaluating 

susceptibility to noise in this population (da Silva, de Oliveira, Tauil, de Castro 

Silva, & Sampaio, 2017; Lüders et al., 2014). Also, the slope-adjusted notch 

depth, as describe in the Justification of Technical Aspects section, may help to 

identify those with susceptibility to noise-induced hearing loss. This 

measurement was not used in this study because it has a lower correlation with 

noise exposure compared to pure-tone thresholds. However, the slope-adjusted 

notch depth may have a lower type one error rate than threshold measurements, 

making it useful when used in combination with other measurements. 

Other future directions include investigating more variants within the 

melanocortin-one receptor gene. In this study, we examined the association of 

noise-induced hearing loss with several single nucleotide polymorphisms. The 

melanocortin-one receptor is a small single exon gene; therefore, it is possible to 

repeat this test with sequencing the entire gene. This will help to measure the 

effect of rare variants within the gene. 

To date, no study has measured the association of the melanocortin-one 

receptor and susceptibility to noise-induced hearing loss; furthermore, only one 

study has measured the association genes and hearing loss in college-aged 

music students. It is possible that this study introduced too many techniques, 

making it difficult to interpret the findings. In the future, after further characterizing 

the study population, I would like to measure the association of noise-induced 
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hearing loss with genes that have been previously measured in this area, such 

as Catalase (Konings et al., 2007). Retesting this gene in college-aged music 

students has the potential to further support these findings while justifying the 

use of this population for genetic association studies. Once this is complete, it will 

be possible to expand into other genes with evidence to support an association 

with susceptibility to noise-induced hearing loss, such as melanocortin-one 

receptor, especially rs2228479, and NADPH Oxidase 3 (Lavinsky et al., 2015; 

Phillips et al., 2015). 

Conclusions 

Noise-induced hearing loss was not significantly associated with 

pigmentation or melanocortin-one receptor genotype; however, those with 

pigmentation indicating low levels of eumelanin were more likely to have higher 

mean pure-tone threshold averages at 4000 and 6000 Hertz than those with 

pigmentation indicating high eumelanin levels. Also, one single-nucleotide 

polymorphism, rs2228479, did show a trend toward an association with 

susceptibility to noise-induced hearing loss. We may have failed to detect 

significant group differences because the audiometric thresholds were lower than 

we expected based on previous studies (Phillips et al., 2015). Further work is 

needed to evaluate hearing loss among college-aged student musicians. 
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Coding used for each variable 
 
Question      Code 
Year in school 
 Freshman     1 
 Sophomore     2 
 Junior      3 
 Senior      4 
 5th Year Senior/1st Year Masters  5 
 2nd Year Masters    6 
Gender 
 Male      0 
 Female     1 
 Other      2 
Nicotine Use 
 No      0 
 Yes      1 
Family Hx of Hearing loss 
 No      0 
 Elderly     1 
 Younger     2 
Primary Instrument 
 Voice      0 
 Piano/Organ     1 
 Cello      2 
 Viola      3 
 Violin      4 
 Tuba/Euphonium    5 
 Horn      6 
 Trumpet     7 
 Trombone     8 
 Alto/Tenor Sax    9 
 Guitar/Harp     10 
 Clainet/Oboe/Bassoon   11 
 Flute/Piccolo     12 
 Percussion     13 
Major 
 Performance     1 
 Education     2 
 Other      3 
Participation in Symphonic Band 
 No      0 
 Yes      1 
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Participation in Orchestra 
 No      0 
 Yes      1 
Participation in a Small Ensemble 
 No      0 
 Yes      1 
Participation in a Choir 
 No      0 
 Yes      1 
Participation in Marching/Pep Band 
 No      0 
 Yes      1 
Participation in Jazz Ensemble 
 No      0 
 Yes      1 
Participation in Rock Band 
 No      0 
 Yes      1 
Hair Color 
 Brown      0 
 Light Brown     1 
 Dark Brown     2 
 Blonde     3 
 Black      4 
Eye Color  
 Brown      0 
 Blue      1 
 Green      2 
 Hazel      3 
 Dark Brown/Black    4 
Primary Ethnicity 
 Caucasian-Mainland Europe  1 
 Caucasian-Northern Europe  2 
 African     3 
 Northern Asian    4 
 Southern Asian    5 
 Hispanic     6 
 Native American    7 
 Middle Eastern    8 
 Other      9 
Fitzpatrick Skin Test 
 Always burn, never tan   1 
 Burn easily, then slight tan   2 
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 Burn moderately, then light tan  3 
 Burn minimally, then moderate tan 4 
 No burn, then dark tan   5 
 No burn, no change    6 
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