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Human immunodeficiency virus (HIV) establishes a latent infection in cells to 

ensure a persistent infection throughout an infected individual’s life. HIV can establish 

this latent infection in a variety of cells. Highly Active Anti-Retroviral Treatment 

(HAART) is a selection of drugs used to inhibit the production of new HIV and new 

infections and can effectively diminish virus population in blood. However, due to the 

pathological mechanism of the virus, it is not possible yet to completely eradicate virus as 

it remains immunologically invisible in latent cellular reservoirs. The cellular reservoirs 

where HIV evades the immune system are not known completely. Current research 

efforts are focused on identifying the cellular populations where HIV remains latent and 

determine how those latent reservoirs are established. By identifying latent cellular 

reservoirs where HIV resides strategies can be developed to target and kill infected cells 

or prevent emergence of virus. We hypothesized that primary, skin, human mast cells 

may represent a previously unknown latent reservoir for HIV. Because mast cells can be 

activated through IgE-and non-IgE-dependent stimulation, we further hypothesized 

activated mast cells may be more vulnerable to infection. Our experimentations suggest 

that skin-derived mast cells are not susceptible to HIV infection and are not an inducible 

reservoir for HIV. 

One strategy for inhibiting viral replication has been with fullerenes. Fullerenes 

are carbon spheres that can be functionalized for use in various biological systems. 

Fullerenes functionalized with large dendrimeric moieties have been shown previously to 
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inhibit viral replication in vitro, but the majority of investigations that have explored 

fullerenes as an inhibitor of HIV were assessed computationally. Based on these previous 

studies we hypothesized that certain functionalized fullerenes will suppress HIV 

infectivity and/or replication. We hypothesized that these fullerenes may interact with 

HIV protease and performed molecular modeled docking studies to investigate this idea. 

We also performed in vitro dose response assays on certain fullerene derivatives and our 

findings suggest they were effective at suppressing the virus. 
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CHAPTER I 

INTRODUCTION 

 

Since its discovery in 1983, HIV has infected over 70 million people and killed 35 

million people [1]. The virus targets the immune system of infected individuals and if left 

untreated leads to a condition known as Acquired Immune Deficiency Syndrome (AIDS). 

An individual is classified as having AIDS when their CD4+ cell count drops below 200 

cells per mm
3
 of blood [2]. At this point, opportunistic infections have much larger 

effects, including death in some cases. Many methods have been discovered and 

employed to help infected people survive the infection, but there still is no cure or 

effective vaccine to stop the virus. Of those methods available to effectively decrease the 

probability of progression to AIDS for infected individuals, Highly Active Antiretroviral 

Therapy (HAART) has been used with great success and is the most often used option for 

infected individuals. HAART works by inhibiting viral functions and/or by bolstering the 

host’s immune system [3]. 

I.1 Human Immunodeficiency Virus as a Medical Problem 

 HIV primarily infects CD4+ cells in vivo and a select population of all cells 

infected becomes long-lived latent reservoirs from which new virions can be produced 

long after levels of viral markers are no longer detectable in blood samples [4,5]. Latent 

reservoirs are effectively invisible to the immune system and nearly all treatments [6]. 



 

2 

 

Latency is maintained through a variety of mechanisms and those mechanisms are often 

reinforced through HAART medications [7]. After the suspension of HAART 

medication, patients experience explosions of virus production [8]. Consequently, CD4+ 

cell counts drop and AIDS can be developed. 

Current research efforts have focused on identifying the latent reservoirs in vivo 

and one possible latent reservoir may be established in the mast cell. Several studies have 

examined the possibility of mast cells from various tissue sites for the susceptibility to 

HIV with varied results [9-20]. Their examination is due to the fact that they are 

ubiquitously expressed and are often one of the first immune cells to come into contact 

with the virus. As demonstrated below, mast cells derived from human, excised skin are 

assessed for their susceptibility to HIV both with and without degranulating activation. 

The HAART therapy is often comprised of several components that target many 

viral processes and interrupt them. One enzyme process that is often targeted for 

interruption is the HIV protease. Disruption of the proteases activity disables the newly-

budded, immature virus from effectively infecting new cells by stopping the cleaving 

process necessary for matrix proteins to assemble [21,22]. Because HIV protease is a 

desirable target for drug therapies, protease inhibitors were developed as a class of anti-

retroviral drugs that are effective at limiting the virus’ potential to infect new cells 

[23,24]. Fullerenes and their derivatives were identified as potential analogs to these 

protease inhibitors by Friedman et al because of the hydrophobicity of both the fullerene 

cage and the active site of HIV protease [25].  Following that initial realization and 

computational calculation, researchers have identified several fullerene derivatives that 
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likely or experimentally have inhibitory effects on the HIV protease or suppressive 

effects on the virus’ proliferation [26-28]. This thesis included both preliminary 

computational evaluations of a panel of previously untested fullerene derivatives and 

their potential interaction to HIV protease as well as a dose response assay assessing their 

effectiveness as a viral suppressor.
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CHAPTER II  

REVIEW OF THE LITERATURE 

 

II.1 HIV Infection 

 HIV is well known for infecting human helper T-cells. There are several different 

variations of T-cells, some being classified as being a part of the adaptive immune system 

and others being classified as being part of the innate immune system [29,30].  Helper T-

cells are susceptible to infection because HIV primarily targets the surface receptor CD4 

[31]. When HIV infects a cell, it follows a multi-step process. The first step is the 

attachment of CD4 to viral gp120. This binding event causes conformational changes in 

gp120 and CD4 allowing for a second binding event with between gp120 and either 

CCR5 or CXCR4, depending on the tropism of the virus [32-34]. After this binding 

event, viral gp41 is able to pierce the cell’s membrane. Then, conformational changes in 

gp41 allow the membrane of the virus to fuse with the membrane of the cell and the viral 

capsid is injected into the cell. The viral capsid dissociates and reverse transcriptase binds 

to and transports the viral RNA toward the nucleus [21,35]. On the way, viral RNA is 

reverse transcribed into DNA by viral reverse transcriptase.  The viral DNA is then 

transported into the nuclease by viral integrase [36]. There, viral integrase inserts the 

viral DNA into the host cell’s DNA. From here, the virus can continue to spread the 

infection by entering into an active replication phase or can enter into a latency phase and 
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is termed the “point of no return” because of the irreversibility of the integration process 

[37]. 

In the former, the virus uses nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) and other host transcription factors and later viral transcription 

factors to transcribe various viral transcripts [38]. These transcripts are then translated 

into the viral proteins necessary for new virion production. As new viral material is 

produced it gathers at the cell membrane and is packaged into budding, immature virions 

[21]. After budding away from the cell, these immature virions require the proteolytic 

activity of HIV protease to allow for the construction of the viral capsid and therefore 

mature. Without maturation, the virions have high failure rates trying to infect new cells 

[22]. 

II.2 HIV Latency 

The other phase that the cell may enter is latency. The latently infected cell 

harbors viral DNA and is effectively protected from immunogenicity. Latently infected 

cells can remain dormant indefinitely and may be activated at any time allowing the virus 

to begin producing new virions and infecting new cells [8]. Therefore, continued 

administration of HAART drugs is necessary to disallow progression to AIDS. Several 

latent reservoirs have been identified in memory T-cells, tissue macrophages, as well as 

possibly hematopoietic stem cells, though this is disputed [5,9,39-43]. Mechanisms that 

cause latency vary from cell to cell [7]. Also, there may be more than one mechanism that 

is working in the cell that maintains the latency. Several mechanisms may inhibit viral 

gene expression, including non-functional mutations in the viral DNA, transcriptional 
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interference, epigenetic silencing, changes in chromatin structure, negative transcription 

factor interference, absence of positive transcription factors, and problems with RNA 

transport and translation [44-59]. An important factor in the integration process of 

infection is that the virus preferentially inserts its DNA into genes that are actively being 

expressed [60]. This means that for cells that are latently infected, they can be activated 

to produce native proteins while at the same time upregulating the genes necessary for 

viral replication [43]. While not all CD4+ cells are prone to activation, many are and their 

activation may have an effect on the pathology of the virus. 

II.3 Medical Response to HIV Infection 

HAART is a treatment regimen composed of drugs that either boost the infected 

individual’s immune system or target viral processes to stop them from progressing. Viral 

inhibitors used range in specific viral process targeting, but generally work in one of six 

ways. CCR5 antagonists, also known as entry inhibitors, bind to the active site of the 

CCR5 surface receptor on host cells [61]. By binding to CCR5, these drugs disallow the 

secondary binding event of HIV to the cell, thereby stopping the virus from entering the 

cell. A second drug class used in the inhibition of HIV processes is fusion inhibitors. 

Fusion inhibitors bind to envelope proteins on the virus and stop the conformational 

changes necessary to actually allow fusion of the viral and host cell membranes [62,63]. 

There are two types of reverse transcriptase inhibitors used in HIV medication. The first 

are termed non-nucleoside reverse transcriptase inhibitors and they work by directly 

binding to the reverse transcriptase enzyme and stop it from working [64-66]. The second 

type is nucleoside reverse transcriptase inhibitors. These were the first drugs available to 
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treat HIV infected individuals and work by terminating newly reverse transcribed DNA 

[67]. It does this by mimicking naturally available deoxyribonucleotides that are used to 

synthesize new DNA. These mimics lack a necessary 3’-hydroxyl group and cannot bind 

additional nucleotides effectively terminating the reverse transcription. This process is 

called chain termination and can cause adverse side effects. Integrase inhibitors are 

another class of drugs used in anti-retroviral therapy. As their name suggests, they stop 

integrase from functioning properly and stop the virus from infecting the cell [68,69]. 

The final type of drug used in HAART therapies are protease inhibitors. HIV protease 

(HIVP) is used by the virus to mature newly formed virions [22,70]. After budding away 

from the host cell, HIVP chops proteins packaged in the virion and allows for their 

organization into the viral capsid leading to a mature, infectious virion. Protease 

inhibitors block this process and make these new virions forever immature and unable to 

infect new cells [71]. There are specific guidelines from the FDA for the correct and 

effective combination of these drugs to treat infected individuals. Research continues in 

this field to develop more drugs that may interact less with the host biology and less with 

other drugs allowing for more effective and comprehensive treatment. Without continued 

administration of HAART medication, HIV can restart viral replication and poses a risk 

to develop AIDS [8]. 

II.4 Mast Cell Biology 

In order to fully eradicate HIV from an infected individual, latent reservoirs need 

to be identified. One focus of research today is identifying latent reservoirs present in the 

body and many have been identified [5,9,39-43].  Because of their similarity to T-cells 
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and their ubiquitousness in the body, mast cells have been studied for their susceptibility 

to HIV infection. Mast cells are important immune effector cells that are most often 

characterized for their role in allergic response [72-74]. Hematopoietic progenitor cells 

called myeloid progenitors differentiate into immature mast cells [72-76]. These 

immature mast cells migrate to fibroblast-rich regions in tissue where they then undergo 

limited replication producing daughter mast cells that are fully differentiated [72]. 

Depending on the eventual resting place that the immature cells find, mast cells can 

differentiate into one of two phenotypes in humans. These separate phenotypes are 

identified by their neutral protease composition: either having tryptase, chymase, 

carboxypeptidase A3, and cathepsin G-like enzyme or only tryptase (designated MCTC or 

MCT respectively) [77]. MCTC generally are localized to connective tissue but also have 

populations in some mucosal regions. MCT are more localized to mucosal regions and are 

generally not seen in connective tissue [72]. 

II.5 Mast Cell Activation and Degranulation 

Mast cells are granulocytes having pre-stored inflammatory compounds that are 

rapidly released after introduction to activators [78]. FcεRI is a high-affinity 

immunoglobulin E (IgE) receptor that is typically involved in the allergic response and is 

present on mast cell membrane surfaces [79]. IgE is produced by B-cells as a part of the 

immune system response to allergens [80,81]. FcεRI binds to the heavy chain on the Fc 

region of IgE. IgE molecules are antibodies that are integral parts of the adaptive immune 

system and typically cover the surface of mast cells having bound to FcεRI. When the 

Fab regions of IgE bind to an antigen and the Fc regions bind to FcεRI receptors, a cross-
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linking event occurs that causes a downstream pathway to activate leading to mast cell 

degranulation [82-84]. The first event in this downstream pathway can be the cross-

linking of two or more FcεRI receptors. Following a complex downstream activation, 

mast cells will release their granules filled with various bioactive compounds. Alternative 

methods for activation can circumvent the FcεRI receptor. Toll-like receptors (TLR) are 

pattern recognizing receptors that can recognize various bacterial compounds that are 

structurally conserved [85]. Upon activation, TLR begin a downstream pathway that 

activates mitogen-activated protein kinase (MAPK) leading to degranulation [85]. 

Another method for activating mast cells is by causing release of calcium stores and 

translocating calcium from outside of the cell to the interior [86]. This method can 

circumvent both TLR and FcεRI receptors by interacting with the downstream 

components of the activation pathway like Protein Kinase C (PKC).  
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Figure 2.1 The Binding of an Antigen to the FcεRI-IgE Complex 

 

Mast cells are known to have altered gene expression in the hours following either 

their sensitization or their activation [87,88]. As its terminology suggests, sensitizing a 

mast cell primes the cell to release granules, but little to no granules are actually released 

[89]. After following the activation pathway and releasing granules, mast cells undergo 

many gene upregulations and downregulations. These upregulations help the mast cell to 

continue to help in the immune response even after releasing granules that can recruit 

other immune cells to the site of the antigen [87].  

II.6 Mast Cell Sources 

There are a few ways to procure mast cells. Firstly, there are immortalized mast 

cell lines that have been isolated. HMC-1 was derived from a patient with mast cell 

leukemia [90]. It is noted as being similar to normal mast cells but lacks surface FcεRI 
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receptors which are vital for degranulation. LAD2 cells have minor differences in their 

FcεRI receptors and can effectively degranulate, but there are major differences 

discovered in both LAD2 tryptase and chymase [90]. In an effort to circumvent these 

differences, methods have been developed to procure primary and primary-derived mast 

cells from human donors and have been described previously [91-93]. Mast cells can be 

procured from various tissues including skin, umbilical cords, lung, and most recently fat 

tissue, each with subtle changes in protocol from procurement. Skin mast cells are 

investigated in this dissertation for their susceptibility to HIV infection following 

activation and degranulation. Briefly, their isolation involves the mechanical separation 

of tissue coupled with enzymatic digestion of tissue and followed by separation 

techniques. Culture of mast cells is accomplished generally by the addition of specialized 

X-Vivo media supplemented with human stem-cell factor to encourage multiplication. 

II.7 Fullerenes 

Fullerenes have been the subject of investigations in biological applications for 

some time. Their use has been included in demonstrations as antioxidants, drug delivery 

vehicles, therapeutics, diagnostic tools, photo-sensitizers, anti-cancer, and as anti-viral 

treatments [94-106]. The native fullerene is not soluble in water and can be derivatized 

for various functional moieties. This ability to bind moieties to the carbon cage can lead 

to various functionalizations. Fullerenes are unique because of their electrochemical 

characteristics and are capable of undergoing various chemical reactions that can alter 

their reactivity, permeability, solubility, or targeting ability. The fullerene derivative (FD) 

has new physical and chemical properties. 
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Many fullerenes are known to be effective antioxidants. They act as “free radical 

sponges,” and can readily accept electrons from reactive oxygen species (ROS) found 

commonly in cellular systems [107]. ROS many times have unpaired electrons that 

readily react with native molecules inside the cell causing oxidative stress. This oxidative 

stress can lead to problems including cellular malfunction or dysfunction and can lead to 

cell death. Accordingly, oxidative stress has been implicated as a primary method for 

aging [108]. The cell has systems in place to either use these free radicals as signaling 

molecules or as cellular defense mechanisms, but more often uses proteins like 

Superoxide Dismutase (SOD) to convert them into either harmless compounds or into 

more manageable compounds [109]. There are several known ROS known to cause cell 

damage. They include hydroxyl radicals (HO•), superoxide anions (O2
-
), and 

peroxynitrites (ONOO
-
). 

Because of the commonality of these damaging compounds, much research has 

pointed to the benefits of antioxidants against more systemic diseases. It has become 

widely accepted that antioxidants provide benefits to general health. Following the 

discovery of fullerene’s ability to counteract ROS, various FD have been developed and 

used in experiments with promising results. N. Gharbi et al showed that micro-dispersed 

C60 fullerenes had no adverse effects on liver toxicity and worked to stem the effects of 

an oxidant challenge (CCl4) in rats [94]. This group went on to show that lifespans of rats 

is almost doubled with the administration of oral olive oil dosed with C60 fullerene 

[110]. Another study showed their comparative effectiveness of a FD to the native SOD-1 

enzyme and found it to mimic its activity [111]. The researchers did this by dosing SOD2 
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(-/-) mice with a Tris-malonic acid C60 fullerene (C3) and increased their lifespan by 

300%. Another study by some of these authors showed that FD had neuroprotective 

capabilities in neuronal cell cultures [112]. Fullerenes and their derivatives show 

potential as antioxidants in treatments for diseases caused by ROS. 

Many researchers today are investigating alternative methods for drug therapy 

[96]. Fullerenes have been investigated as drug delivery vehicles because of their 

potential for derivation and their small size. Water soluble FD can easily cross cell 

membranes or, depending on the functionalization of the carbon cage, can bind 

specifically to a target biomolecules [113]. Beyond water solubility and biomolecular 

targeting, fullerenes can also be functionalized to become carriers of drugs or genes. 

Some examples of this possible use are their use as allergic response mediation, their 

ability to suppress the asthma reaction, their ability to dampen inflammation caused by 

arthritis, their potential as a therapy for multiple sclerosis, and their ability to inhibit viral 

process, including in HIV infections [26,98-102,104,114]. 

Fullerenes may also be shown to be effective diagnostic tools. Researchers at 

Virginia Tech were able to successfully produce fullerenes that encapsulated 3 

gadolinium atoms bound by a central nitrogen atom contained inside the carbon cage. 

These “Trimetaspheres” (TMS) were demonstrated to be strong MRI contrast agents 

[98,115]. Researchers hope to overcome limitations caused by more conventional MRI 

contrast agents like Magnevist
TM

 that can release its toxic, chelated gadolinium ion upon 

host degradation of the bound carrier. TMSs may also outperform Magnevist
TM

 as far as 

body retention over time and body targeting ability because of the functionalization of the 
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carbon cage. This leaves a possibility for fullerenes to be used as both a therapeutic and 

diagnostic tool simultaneously. By selectively functionalizing moieties to the surface of a 

fullerene cage, while all the while leaving the gadolinium triad unchanged within the 

cage, a FD can be made to perform targeting, therapy, and diagnostics. The term 

“theranostic” has been used for this functionality and very well could be the future of 

medical practices [100]. Nanoparticles of various compositions are being investigated as 

diagnostic tools already and some fullerene platforms are attractive targets for the 

theranostic technology. One particular investigation by Dellinger et al used 

functionalized TMSs in liposomes to target atherosclerotic plaque lesions in ApoE knock 

out mice [98]. These TMSs were further functionalized with CD36 ligands which were 

instrumental in the cellular uptake of the fullerenes into the cells in the atherosclerotic 

plaque. Mice were then imaged using MRI showing the gadolinium present in the 

atherosclerotic plaques. This technology can be adapted to be used in various other 

treatments by changing the functionalization of the TMS.  

There are also variations of fullerenes. The classic and most well-known fullerene 

is the C60 “buckyball”, comprising of 60 carbons arranged in a “soccer ball” 

configuration. Other fullerene configurations include C20, C26, C70, C72, C76, C80, 

C84, and C100, each being empty carbon cages with varying amounts of 5 and 6 

membered rings. As mentioned above, fullerenes have been designed that carry a triad of 

metal ions, usually gadolinium, and can be used as an effective MRI contrast agent. 
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II.8 Toxicity of Fullerenes 

The basis for determining toxicity and consequently determining the possibility 

for use in humans is regulated by the FDA. Any new chemical compound or treatment is 

required to be evaluated separately, despite the similarity to other chemicals in the same 

class. Beyond the purely chemical variations between fullerene derivatives, there are 

variations between different fullerenes. Differences in isomeric configurations and 

differences in cage size allow for even more variations making the toxicologist’s job even 

more intricate. According to FDA guidelines, each isomer and each cage can have 

different interactions with biological molecules and should be investigated accordingly. 

One of the common and primary functionalizations of fullerenes is water 

solubilization, but not all water soluble fullerenes act similarly. Investigating each 

fullerene separately should be a priority of each toxicity study. It is clearly evident that 

certain FDs behave differently than others in biological systems and that fundamental 

understanding helps to ensure limited negative effects caused by small changes from one 

to another fullerene derivative.  
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Figure 2.2 Representative C60 Fullerene Derivatives. 

 

Because of the wellspring of opportunity presented in fullerenes and their 

derivatives, much attention has been given to their potential toxicity. Many of these 

studies have conflicted with each other and have led to a debate over the nature of their 

toxicity. The most notable and notorious study concerning the toxicity of fullerenes was 

performed by Oberdorster [116]. In this study, fullerenes were given to juvenile 

largemouth bass following an incomplete characterization and lacked a proper control 

which led to conclusions that could not determine if the toxicity was due to the size of the 

aggregates, the composition or chemical nature of the aggregates, or the tetrahydrofuran 

contamination. Unfortunately, media outlets discovered this study and publicized its 

unfounded conclusions, which led to an atmosphere of wariness of the fullerene’s future 

in the field of biology or medicine. Because of backlash over the failures of the original 

study, researchers followed with a more expansive examination that concluded that the 

impurities in the sample were the cause for any toxicity seen in the first study [117]. 
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Other investigations into the subject of fullerene toxicity have demonstrated increases in 

the lifespan of mice [118] and rats [110]. Intending to explore the over dosing of 

fullerenes to organisms, other researchers treated mice with excessive dosages but still 

showed no overt toxicity [94,119]. More recently fullerenes suspended in olive oil were 

fed to rats and led to a 90% longer lifespan compared to control mice [110]. 

Conflicts, especially between highly publicized studies, make it difficult for 

researchers to effectively develop novel treatments based on a fullerene platform because 

of the perceived potential harm that they could cause. It is therefore necessary to ensure 

that further investigations into the toxicity of fullerenes (and any nanomaterial for that 

matter) are carefully constructed to account for the many variables that could contribute 

to the perceived toxicity. 

II.9 Mast Cells and HIV 

Mast cells are often found in mucosa and other host-environment interfaces. 

Because of their positioning and because they are important immune effector cells that 

help in pathogen defense, MC’s role in HIV infection is unclear [11]. The genital 

mucosae of HIV infected women showed increased MC density. Other examples of noted 

mast cell population increases were found in men with AIDS associated diarrhea [12]. 

These increased MC populations suggest that MCs are involved in the body’s response to 

the infection. 

II.10 Mast Cells’ Susceptibility to HIV Infection 

Previous investigations into the hypothesis that mast cells are susceptible to HIV 

infection have shown varying results. It has been shown that progenitor mast cells are 
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susceptible to infection by HIV, suggesting that the low levels of CD4 that were detected 

on these cells were enough to establish an infection [9,10,13-16]. Importantly, these 

progenitor mast cells appear to lose their susceptibility to HIV after a certain point in 

their ontogeny. These infected progenitor cells then produce daughter cells that 

terminally differentiated into mast cells that then reside in tissue and may establish a 

latent reservoir [13,14]. This evidence that mast cell progenitors and other hematopoietic 

progenitors can be infected allows for possible HIV reservoirs even after maturation.  

Other primary mast cells have been examined. Fetal liver blood-derived mast cells 

were examined for their susceptibility to X4 tropic HIV and were productively infected 

[17]. It was unclear in this study if the primary cells in the experiments were progenitors 

or terminally differentiated. Another study demonstrated that p24 does not co-localize to 

skin mast cells obtained from various tissue sites [18]. Multiple tissue sites were 

examined including the lymph nodes, cervix, GI tract, and parotid glands but no mast 

cells were found to be actively producing p24, a HIV specific protein by 

immunohistochemistry. 

Most recently, mast cells taken from gastrointestinal mucosa of healthy patients 

undergoing surgery and were introduced to HIV. The researchers found that mast cells 

are able to present virus to other CD4+ cells. This is facilitated by some HIV-1 

attachment factor; some of these factors include DC-SIGN, HSPG, and α4 β7 integrin 

[19]. This means that mast cells can support HIV infections by capturing HIV and 

presenting it to susceptible cells. The researchers also investigated the susceptibility of 

these mast cells to infection and found that they could be infected. 
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Further studies have examined the immortalized mast cell line, HMC-1, and 

found that infection was possible [17,20]. The cell line was infected in both cases. It 

should be noted that HMC-1 is a poor substitute for primary human mast cells because it 

lacks the expression of FcεRI [120,121]. 

To our knowledge, primary, skin, human mast cells have not been studied for 

their susceptibility to HIV in vitro. Further, no studies have examined the effect of 

activators on primary mast cells and their potentially altered susceptibility to HIV as a 

result of activation. Mast cells are one of the first immune cells that HIV encounters in 

vivo and may become a target for HIV under certain inflammatory conditions. We 

hypothesized that terminally differentiated human mast cells (possibly through IgE-

dependent and/or independent activation) can be infected by HIV and represent a new 

viral reservoir. We therefore tested this hypothesis and the results are discussed in later 

portions of this dissertation. By identifying various cellular reservoirs of HIV, a greater 

understanding of the life cycle of the virus is revealed and this understanding may present 

new opportunities for medical professionals to more efficiently treat individuals infected 

with the virus. 

II.11 Fullerenes and HIV 

There have been many studies investigating the possibility of use of fullerene 

derivatives as HIV inhibitors. The first study following this hypothesis was done by 

Friedman et al who identified the similarity in size and hydrophobicity of the carbon cage 

of fullerenes and the viral enzyme protease (HIVP) [25]. They suggested that FDs may 

act as powerful HIVP inhibitors by acting as antagonists to the HIVP active site. They 
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identified two compounds using molecular modeling that seem to affect the enzyme’s 

ability to work effectively and tested both computationally and experimentally. 

Researchers from this original work then continued their work and generated 6 new FD 

as possible HIVP inhibitors [26]. The next study investigated a highly water-soluble 

dendro[60]fullerene originally synthesized by Brettreich and Hirsch [122]. This 

investigation showed this fullerene to be highly effective at inhibiting HIV [27]. More 

studies have looked at the inhibitory effects of fullerene derivatives on HIVP because of 

the fullerene derivatives’ interaction with the active site of HIVP [28,123-130]. From all 

of these, many different FDs have been identified as HIVP inhibitors. Most recently, 

fullerene derivatives that used the carbon cage as the platform for an amino acid inhibitor 

were shown to be effective HIVP inhibitors [130]. Modeling studies performed in this 

study indicated that the amino acid chain was more likely to interact with the active site 

of the protease and overestimated their inhibitory effect. Subsequent experiments utilized 

a FRET-based assay that revealed strong inhibitory effects on the protease. 

However, HIVP may not be the only target for fullerene derivatives. Some 

fullerene derivatives may target other essential components of the viral reproduction 

cycle. Fullerenes have been shown to interact with NF-κB functionality [131], G-protein 

coupled receptors (GPCR) [132], amyloids [133], coagulation [134], and, most 

interestingly for this discussion, HIV Reverse Transcriptase [135]. Amyloids are 

important transmission vehicles for HIV [136]. HIV uses amyloids as attachment and 

fusion facilitators and fullerenes can be used as anti-amyloid compounds [133]. The 

relationship between HIV and coagulation is still unclear. It has been shown that 
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thrombocytopenia is a common symptom of infected individuals [137] and the addition 

of certain fullerene derivatives may help with that condition. HIV hijacks the NF-κB 

transcription factor to produce transcripts of viral genes initially and the interruption of 

this process can decrease virion production [38,138]. CCR5 and CXCR4 are GPCRs that 

are used during the attachment and fusion steps of HIV infection. It has been shown that 

certain fullerene derivatives can interact with certain GPCRs and this interaction may 

also be produced with either CCR5 or CXCR4 [132]. This may lead to the fullerene 

acting as an attachment or fusion inhibitor disallowing infection. 

 

 

Figure 2.3 Fullerene Derivative Docked into the Active Site of HIV Protease. 
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Though most studies involving HIV and fullerenes have focused on the HIVP-

fullerene interaction and the resulting proliferation inhibition, Mashino et al investigated 

the role of eight different FDs as HIV Reverse transcriptase inhibitors [135]. Each 

described had an inhibitory effect on reverse transcriptase’s activity. Using a radiometric 

method, IC50 values were obtained and the fullerene derivatives scored moderately well 

compared to a Nevirapine control. Nevirapine is a commonly used non-nucleoside 

reverse transcriptase inhibitor in HAART. Interestingly, these same fullerene derivatives 

were examined as hepatitis C virus RNA polymerase as well in this study. 

Comparatively, the fullerene derivatives were better inhibitors of the HCV polymerase 

than the HIVP. 

Fullerene derivatives are an exciting new platform for the design of novel anti-

HIV compounds. The primary mechanism for HIV inhibition seems to be through HIVP, 

but there are other relevant mechanisms through which a fullerene derivative can 

interrupt or retard the processes of HIV. Alternatively, by binding a previously known 

inhibitor to the carbon cage, fullerene derivatives may be able to serve as effective 

carriers of inhibitory compounds and their use can be expanded beyond HIVP or reverse 

transcriptase inhibition. Various fullerene derivatives previously not investigated for their 

role in HIV inhibitions are investigated in this dissertation as potential anti-HIV 

compounds and their likelihood for acting as protease inhibitors is explored through 

computational docking studies.
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CHAPTER III  

PRIMARY HUMAN SKIN-DERIVED MAST CELLS 

1 ARE NOT A RESERVOIR FOR HIV 

 

III.1 Introduction 

Human immunodeficiency virus (HIV) is the virus that causes acquired immune 

deficiency syndrome (AIDS). While Highly Active Anti-Retroviral Treatment (HAART) 

medications have been efficacious in suppressing viral replication, once it is 

discontinued, virus emerges from cellular reservoirs [39,43]. However, it is not clear 

what cell types the virus uses as latent cellular reservoirs. Mast cells are ubiquitously 

expressed immune effector cells residing in tissue and mast cell progenitors can be 

infected with HIV, which can lead to a latent reservoir in tissue in humans [9,10,13,17]. 

Other studies using mast cell-like cell lines or mast cells derived from progenitor cells in 

the blood can be infected [17]. Most recently, mast cells from gastrointestinal mucosa 

were shown to be susceptible to HIV infection [19] while other studies found no evidence 

of active replication in mast cells [18]. Given that mast cells are one of the first immune 

cells that HIV encounters in vivo, we hypothesized that primary human mast cells would 

be susceptible to infection by HIV. We also recognized that mast cells have altered gene 

expression following a degranulation event and the method of that degranulation may 

affect the altered gene expression as described previously [87,88]. We therefore further 

hypothesized that mast cells could be infected by HIV following FcεRI or non-FcεRI 
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receptor dependent challenge with various secretagogues and serve as a latent reservoir 

for HIV. 

III.2 Methods 

III.2.1 Mast cell culture and degranulation 

 To test this hypothesis human, skin-derived, mast cells, which proliferate from a 

yet to be defined stem cell population, were challenged with live HIV [139]. Mast cells 

were cultured in X-VIVO media (Lonza Inc., Allendale, NJ) supplemented with human 

Stem Cell Factor (SCF) for 12 to 20 weeks. At this point, cells were collected, counted, 

and examined for viability with Trypan-Blue exclusion. Mast cells, at <90% viability, 

were plated in duplicate in a 24 well plate (5 x 10
5
 cells/well) and were activated with 

FcεRI-dependent (anti-FcεRI-alpha receptor antibody 3B4) or non-FcεRI-dependent 

stimuli Calcium Ionophore (A23187, 0.1 μg/mL) or Lipopolysaccharide (LPS; 1.5 μg/ml) 

overnight. 

III.2.2 Viral introduction to mast cells 

The following day, media was removed and replaced by fresh X-VIVO 

supplemented with SCF, and then live HIVLAI (NIH AIDS Reagent Program, 

Germantown, MD) was added to each well at a multiplicity of infection between 0.1 and 

0.5 and incubated for 5 days. After 5 days cells were washed three times and left to 

incubate overnight in new, virus-free media to allow for any non-internalized virus to 

either infect or be released from non-specific adhesion to cellular plasma membranes. 

After a final wash, cells were suspended in water for subsequent PCR preparation.  
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III.2.3 Viral DNA detection by PCR  

Mast cell cultures were suspended in water and sonicated in heated water baths 

(70
o
C) to lyse cells and disrupt membranes as well as kill any remaining virus present for 

ease of handling. A phenol extraction was then used to isolate DNA and purity was 

assessed by a NanoDrop 2000 Spectrophotometer. For detection of viral DNA by PCR, 

the primers used were: Alu FWD: 5’ – GCC TCA ATA AAG CTT GCC TTG A – 3’ and 

gag REV: 5’ – CAT CTC TCT CCT TCT AGC CTC – 3‘ (Integrated DNA Technologies 

Coraville, Iowa). 

 

 

Figure 3.1 HIV Does Not Infect Human Skin Mast Cells 

 

III.3 Results 

III.3.1 Human, skin-derived mast cells are not susceptible to HIV 

As shown in Figure 1, mast cells did not become infected with HIV under resting 

or stimulated conditions as assessed by PCR of the HIV-specific marker DNA (Figure 1). 
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Previous to introduction of HIV to mast cells, mast cells were activated with 3B4, 

Calcium Ionophore A23187, or LPS and the percent release compared to total and 

spontaneous release controls. As a control, a t-lymphoblast cell line with a green 

fluorescent reporter gene called CEM-gfp were actively infected as assessed by p24 

expression and gfp upregulation (Figure 1B,C). As expected no viral proteins were 

detected in the mast cell lysates using Western blotting (not shown). 

 III.4 Conclusions 

Though other mast cell sources have produced mast cells that are susceptible to 

HIV infection, this study suggests HIV does not infect human skin mast cells or the 

progenitors that give rise to them and therefore do not serve as a reservoir for HIV. There 

are some possible explanations for this. There are at least two different phenotypes of 

mast cells in the body and they are distinguished by the neutral protease composition 

found in their granules and are designated with the notation MCT and MCTC (representing 

Tryptase (T) and Chymase (C)) [72,74,140,141]. Skin mast cells are generally considered 

as being comprised of primarily MCTC and their composition of these tissues can be a 

contributing factor to the susceptibility of these skin-derived mast cells. Another 

possibility is that contrary to previous investigations, our cell populations, which do 

undergo some limited replication, are devoid of the CD4+ progenitor mast cell 

populations. This hypothesis could be examined by a more complete characterization of 

this mast cell population that would separate the fully differentiated mast cells and the 

progenitors and examine the presence of CD4 on both populations. This characterization 

would be greatly improved with multiple samplings throughout the culture of the mast 
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cells from tissue as it could show if and when the CD4 surface receptor as well as any 

other important or interesting biomolecules.
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CHAPTER IV 

FULLERENE DERIVATIVES SHOW POTENTIAL ANTI-HIV ACTIVITY 

 

IV.1 Introduction 

IV.1.1 HIV 

Human immunodeficiency virus (HIV) causes acquired immune deficiency 

syndrome (AIDS). Current treatments for HIV+ individuals include Highly Active Anti-

Retroviral Therapy (HAART) designed to inhibit retroviral proliferation and survival and 

is commonly used in the treatment of retroviruses [142]. This therapy is responsible for 

increased longevity for HIV+ individuals by decreasing the probability of progression to 

AIDS. This treatment, however, is not able to fully eradicate the virus from an infected 

individual as HIV establishes long term latent reservoirs in cells that harbor the virus 

indefinitely and protect it from immunogenicity. An individual who is HIV+ and 

suspends their HAART treatments quickly progresses to AIDS because of these latent 

reservoirs. One of the focuses of HIV research today is the discovery of new treatments 

that inhibit viral processes. Researchers have identified many fullerene derivatives (FD) 

that may serve as a new platform for new anti-viral compounds and this study adds to that 

body of knowledge. 

IV.1.2 Fullerene derivatives viral inhibition 

Fullerenes are an allotrope of carbon that features a closed cage of carbon that is 

hollow inside and this class of compounds has been used extensively for a variety of 
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biological applications [112,132,143]. Several studies have looked at the modeled 

dynamics of the interaction between various functionalized fullerenes and the viral 

protein protease or used fullerene derivatives (FDs) as viral inhibitors in vitro [25-

28,123-130,144,145]. HIV protease is an especially desirable therapeutic target as it is 

responsible for cleaving immature viral proteins in the life cycle of HIV [146]. Without 

protease, newly budded HIV virions do not mature and are less likely to be infectious 

[22]. Because these FD have some sort of a competitive mode of action by binding to the 

active site, HIV protease generally is the studied protein in docking simulations. 

Fullerenes were originally identified as promising protease antagonists because of the 

hydrophobicity of the active site of protease [25]. Thus, some functionalized fullerenes 

that are water soluble but still have large portions of their hydrophobic cages accessible 

can fit directly into the active site of the protease effectively acting as an antagonist. 

Some fullerenes have been tested in this capacity and were shown to be effective at 

limiting the virus’s proliferation [25,27,126,127,130,135]. 

Our lab has been interested in fullerene interaction with biological processes and 

we have previously used fullerenes in other studies as both therapeutics and diagnostics 

[98,99,101,102,114,147]. We wanted to see if these fullerenes that had many beneficial 

effects on other systems could be employed in an antiviral capacity following the 

precedent set by other researchers using FDs as anti-retroviral compounds. We therefore 

set to test a panel of seven FDs as potential HIV inhibitors with the hypothesis that, 

similarly to other fullerene-HIV studies, these FDs would also be effective at inhibiting 

HIV. 
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IV.2 Methods 

IV.2.1 Modeling methods 

A panel of FDs (Figure 1) were modeled and minimized in Sybyl modeling 

package using the Tripos molecular mechanic force field. Another fullerene (named 

Trans-3)(structure not shown) was also modeled and examined as a positive control in 

modeling experiments because it had been described previously as being effective at 

inhibiting HIV [127]. Another positive control used in modeling experiments was 

Ritnoavir, a commonly used drug in HAART medication for the inhibition of HIV 

protease [148].  Since the HIV protease structure has not been determined experimentally 

with a fullerene bound in the active site, the initial structure for HIV protease used in 

these modeling experiments was derived from a databased structure complexed with a 

Fluoro-substituted diol based C2-symmetric inhibitor (pdb code 1W5X). Water 

molecules and the bound inhibitor were removed and analyzed using the Surflex Docking 

Module within the Sybyl modeling package. Residues present in the protease were 

amended to be neutrally charged based on previous investigations that suggested that 

there appears to be no significant differences in docking of FD into HIV protease 

between charged and neutral protease residues [128]. FDs were then docked into HIV 

protease using the Surflex Docking module within the Sybyl modeling package for 

preliminary indications of FD ligand docking. Hydrogens and heavy atoms were allowed 

to move and minimized before and after ligand fitting. Results were derived from Total 

Score values produced from the docking program. 
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IV.2.2 In Vitro methods 

IV.2.2.1 CEM-gfp cell line 

In vitro experiments were performed in CEM-gfp cells. CEM-gfp cells are an 

immortalized T-cell line that has been stably transfected with a gene that codes for green 

fluorescent protein with a promotor region of the gene that is bound by the HIV 

transcription factor tat (trans-activator of transcription). Therefore, gpf is produced in 

response to the presence of viral protein tat, indicating a particular cell is infected by 

HIV. 

IV.2.2.2 Experimental design 

CEM-gfp cells were plated at 100,000 cells per well in a 24-well plate. FDs were 

then added and cells were allowed to incubate overnight. Seven different fullerenes were 

surveyed and are shown in Figure 1. HIV populations were expanded in separate CEM-

gfp cultures from an original HIVLAI stock (NIH AIDS Reagent Program, Germantown, 

MD). Expanded viral supernatant was then added the next day equally in appropriate 

wells at a multiplicity of infection between 0.1 and 0.5. Measurements of gfp 

fluorescence were taken each day using a BioTek SynergyMx Microplate Photometer. 

Cells were incubated in the presence of FDs and virus for at least five days. Media was 

not changed during the duration of the test to allow HIV population growth to be 

unhindered. Mean fluorescence intensity values were used to determine the proliferation 

of the virus in comparison to a control population that received no FDs. For the survey, 

the concentration of each FD was 5μg/mL. 
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Figure 4.1 Graphical Representations of the FDs Used in this Study. 

IV.2.2.3 Fullerene dose response experiments

Following results of the initial survey of seven fullerenes, dose response 

experiments were performed following a similar protocol used for the initial survey. Cells 

were plated at 100,000 cells per well in 24 well plates. Varying concentrations (0.01, 0.1, 

1, 5, and 20 μg/mL) of three FDs that appeared to work well in the original survey were 

used. Readings of gfp fluorescence were taken each day and compared to negative and 

positive samples present in each plate. Dose response experiments using the three 

selected FD were repeated three times in duplicate. 
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IV.3 Results

IV.3.1 Modeling results suggest complementarianism 

To test the hypothesis that any of these FD had any effect on the activity of HIV 

Protease, FD (Figure 1) were submitted as ligands to the Surflex docking module in the 

Sybyl modeling package. The module produced Total Scores that ranked ligands as 

candidates for fitting into the active site. Total score values are listed in Table 1. Scores 

are ranked by their positive magnitude meaning that the highest scoring ligands were 

those that received larger positive values and those that scored low are those close to or 

below zero. Additionally, these score values suggest the relative likelihood that an 

interaction was possible in that conformation between the ligand and the viral protease. 

Table 1 also lists the various residues which participated in hydrogen bonding with the 

ligand docked in the most highly scored ligand orientation. Interestingly, there appeared 

to be no correlation between the multiplicity of hydrogen bonding instances and Total 

Scores. Certain FDs were scored very highly in possible interactions with HIV protease 

including C3, NEPO, ALM, and C60OH. For both ALM and TTA, the highest scoring 

conformation did not include the integration of the fullerene cage within the active site of 

the viral protease. Instead, the moieties decorating the surface of the fullerene cage were 

occupied the active site more exclusively. 

IV.3.2 In Vitro experiments show some inhibitory effect of FD 

Mean Fluorescence Intensity was measured over the course of five days. The raw 

values were then normalized and compared to a positive control that had no FDs but did 

receive virus. This Percent Inhibition of gfp is displayed in Figure 3. After an initial 
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survey of the seven FDs, three FDs (NEPO, TTA, and C3) with stronger suppressive 

effects at the surveyed concentration of 5 μg/mL were selected for dose response 

experiments. Dose response experiments used concentrations of the three FD of 0.01, 0.1, 

1, 5, and 20 μg/mL. Raw values were compared to positive controls that were introduced 

to virus but not FDs to give a percent inhibition compared to control. Values were then 

averaged together from three dose response experiments and are presented in Figure 4. 

Dose response experiments were repeated three times in duplicate. 
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Table 4.1. FDs and Their Total Scores Assigned to Them by the Docking Module. Certain 

residues are also listed that had hydrogen bonding with the ligand. Positive controls of 

Ritonavir and a FD that had been shown previously to be a suppressor of HIV Protease 

are also present [128]. Ligands marked with a (*) had their strongest interaction with 

HIV protease only with the fullerene cage outside of the active site. These ligands 

generally interacted with the active site with their bound moieties. Residues marked with 

a (**) participated in multiple instances of hydrogen bonding; multiple atoms of the 

residue was able to participate in hydrogen bonding. 

Ligand (FD) Total Scores Protease Residues involved in H-Bonding 

C3 4.8628 ASP30, ASP25, ASP29, LYS45, ARG8 

NEPO 12.6611 ASP25, GLY27, GLY48, ILE50, THR80 

C60OH 5.2109 
ARG8, ASP29, ILE47, GLY48, GLY49, ILE50, 

THR80, VAL82 

ALM* 10.5172 ARG8, ILE50 

C70OH 0.2040 
ASP25, GLY27, ALA28, ASP29, ILE47, 

GLY48**, ILE50 

TGA -2.0682 ARG8, ASP29, ASP30, LYS45, GLY48 

TTA* -1.9429 ARG8, ASP29, ASP30 

Ritonavir 1.9402 ASP25** 

Trans-3 4.7939 none 
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Figure 4.2 Representative Picture of a FD (C3) Docked Into HIV Protease Active Site. 
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Figure 4.3 Percent Inhibition of gfp Fluorescence in HIV+ CEM-gfp Compared to 

Positive Control. 



38 

Figure 4.4 Average Percentage of MFI Inhibition. 
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IV.4 Discussion 

Fullerenes and their derivatives represent a promising platform for the design of 

targeted therapies because of their predisposition to chemical attachment. Chemical 

moieties decorating the surface of fullerenes allow for the compound to be customized to 

various applications. This study explored the possibility of various C60 and C70 FDs to 

be used as HIV inhibitors. Previous investigations have explored FD interactions with 

both HIV protease [25-28,124,126-128,130] and HIV reverse transcriptase [135] and this 

study aims to add to that knowledge. 

While FDs C3, NEPO, C60OH, and ALM scored well in the docking simulations, 

not all of these were effective in vitro. The reasoning for this is unclear, but there likely 

are multiple interactions in which these FDs are involved. Further studies are required to 

more concretely elucidate the possible interactions these FDs have in vitro. C3 and NEPO 

were originally effective in the survey and had some apparent interaction at other 

concentrations as demonstrated with the dose response experiments. This may mean that 

these two FDs have some interaction with protease, but the data is unexpected. Generally, 

dose response assays show a characteristic increase in efficacy over the dosage range 

until a threshold concentration where toxicity is apparent is reached. Instead, the dose 

response results suggest that these FDs are likely involved in other interactions. 

Alternatively, like other FDs that appeared to have no effect, these FDs are not 

interacting with the viral protease at all, but are instead interacting with other 

mechanisms that result in inhibition. To examine these possibilities, further experiments 

are needed. Examinations of the FD’s interaction with various viral proteins through 
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reporter kits would be invaluable for the determination of the method of action. 

Alternatively, reporter substrates generated from transfected genes for the possible 

mechanisms of action could be used as a screening tool for the presence of inhibition at 

various steps of the viral infection pathway. For example, a gene that codes for both the 

natural substrate for HIVP as well as for a reporter that fluoresces after the natural 

substrate has been cleaved would help identify interactions of the protease with a FD. 

Importantly, this example would only be able suggest an interaction and would not show 

exclusivity of the interaction and would not show other characteristics of the interaction 

like the length of the interaction. 

Interestingly, though TTA did not score well in simulations, it was effective at 

limiting viral proliferation in vitro. There are some possible explanations for this result. 

While HIVP is the most common target for HIV inhibition using FDs, it is not the only 

one that has been reported [135]. TTA very likely is having some effect on some other 

viral process and stopping the virus from replicating. Similar studies suggested earlier 

could also be translated to determine TTA’s mechanism of action by including analytical 

tests for other viral specific proteins like reverse transcriptase or integrase. Alternatively, 

TTA may be intimately involved with some host mechanism that HIV requires for 

replication. TTA may have interactions with the surface chemistry necessary for HIV 

internalization and disable the virus from entering the cell entirely. To test for these 

interactions, reporter viral strains that have been engineered to report upon internalization 

could be employed. Fullerenes have also been shown to interact with various cellular 

processes; this includes the NF- κB pathway [131]. Because the activation of NF- κB is 
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regulated by a large downstream pathway consisting of many proteins and protein 

complexes, the most comprehensive test to examine all interactions would be a 

phosphoproteomic study of the NF- κB pathway. This examination would allow us to 

determine the phosphorylation state of each of the proteins in the pathway and look for 

any blocking caused by a FD dose. While we could examine individual bonding instances 

with FDs and certain parts of the pathway, this proposed examination would be able to 

screen multiple FD treatments as well as screen multiple possible instances of 

interactions.  

In the instance of ALM, this FD is known to have interactions with other 

biological molecules including lipid bilayers. Accordingly, ALM may be present only in 

areas of the cell that are not involved with viral processes. As such, even though ALM 

scored highly on the docking simulations, it likely was not effective as a protease 

inhibitor (or as any other inhibitor for that matter) because it was sequestered away in 

membranes. In HIV protease interaction experiments examining other FDs, ALM should 

still be included. ALM itself may not have any in vitro effect, but its moieties could still 

be of use as an inhibitor, just bound to another platform. This study is helpful as 

screening method development for detecting inhibition of HIV proliferation, but 

admittedly does only suggest an interaction. Additional computational studies may 

illuminate interactions between FDs and other viral proteins like reverse transcriptase, 

but, like the computational studies performed here, they will only be able to suggest 

interactions. Further experimentation that analyzes specific FD interactions with host and 
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viral proteins is needed to fully determine the mechanisms of action through which these 

(and other) FD disrupt the natural viral processes. 
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1 CHAPTER V  

FUTURE PROSPECTIVES 

 

HIV has been studied extensively. Continued research efforts are likely to focus 

on identifying new latent reservoirs and drug classes intended to further inhibit the 

virus’s pathology. The hope is that at some point a way to fully eradicate the latent 

reservoir will be discovered. However, this solution will likely include some measure of 

either permanently disabling the integrated viral DNA or killing the latently infected cells 

altogether. Some options for the latter have been explored by firstly activating the latently 

infected cell population to produce virus and then targeting the virus expressing cell for 

extermination [6]. There are complications that make this approach difficult and 

researchers are actively exploring other opportunities. 

Another method for the eradication of HIV and the latent reservoir is through 

bone marrow transplantation. To date, one individual has been functionally cured of HIV 

infection. The highly publicized study described the case of Timothy Brown, commonly 

referred to as the “Berlin Patient”, as his medical problems were solved [149]. Briefly, 

Brown was diagnosed with HIV in 1995. He was prescribed anti-retroviral treatment and 

remained on the treatment until 2007 when he was diagnosed with Acute Myeloid 

Leukemia. Brown was living in Germany at the time and his doctors decided to give him 

a stem cell transplant from a donor who expressed a homozygous CCR5 ∆32 mutation 

and, after enduring many complications, recovered from both his leukemia and HIV 
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infection. This mutation is present in a small percentage of the population and it causes 

the CCR5 receptor to no longer have an extracellular region. This then means that the 

virus struggles to infect cells because it cannot perform the secondary binding event with 

CCR5. For the “Berlin Patient,” this transplantation resulted in a newly acquired natural 

resistance to the virus. Brown reports that he has since discontinued his HAART 

medication and remains free of detectable virus to this day. This same method for 

treatment was lauded as a possible blueprint for the eradication of HIV in infected 

individuals and thus is being explored to solve complications caused by the treatment and 

in turn make it more robust. 

The option to more fully eradicate the presence of detectable virus in HIV+ 

individuals has further spurred the creation of more diverse treatment options. Because 

HAART medication only reduces the probability of progression to AIDS and because the 

virus easily mutates to circumvent treatment and immune responses, more robust 

treatment options are necessary for more indefinite control of the virus [150,151]. 

Furthermore, many of the currently available HAART treatments are accompanied by 

unwanted side-effects. These are some of the main reasons that fullerene derivatives and 

other more unconventional drug development strategies have been employed in research 

studies to find replacements and alternatives [130]. This trend will likely continue until a 

reliable, functional cure for HIV is produced. 

There are complications, however, with the development of FD based treatments. 

Though fullerenes and their derivatives are generally regarded as non-toxic and have 

notable beneficial effects [110,112,152-155], the FDA is understandably strict with the 
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composition and predictability of drug interactions [156]. Accordingly, many FD drug 

candidates are expected to be comprised of the C70 fullerene cage over the C60 cage 

because of the increased predictability of moiety binding positions. C70 cages are 

arranged in a more ellipsoidal shape and that ellipsoidal shape prefers binding on the 

opposite ends of the major axis [147,157,158]. This characteristic allows for more 

predictable attachment of surface moieties and is likely to be preferred by the FDA.  
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