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Nanotechnology will revolutionize the industrial world in 21st century. Almost 

every country has invested in research to unfold the mysteries of nanomaterials and for 

their applications. A major driving force of nanomaterial research is through the imitation 

of living system and materials, also known as biomimetics.  Polymeric biomaterials have 

a critical role in the advancement of medicine and sustainable green materials. In this dis-

sertation I demonstrate the roles that the polysaccharide biopolymer chitin has as the ma-

jor structural component of the arthropod cuticle and the potential that chitin has as a ver-

satile component to novel biomaterial applications. Chitin is a polysaccharide that is a 

polymer of N-acetylglucosamine, chitin is the second most abundant biopolymer on the 

planet and a primary component of insect, arthropod and fungal exoskeletons/cuticles. 

Various factors contribute to the mechanical properties of an insect cuticle including cuti-

cle thickness and composition.  In my dissertation research I have also shown that na-

noscale chitin polymer alignment may be another factor that contributes to the optical, 

surface, and mechanical properties of a cuticle. Purified chitin self-assembles into 20 nm 

chitin nanofibers that serve as the foundation for all higher order chitin structures in the 

cuticles of insects and other arthropods via interactions with structural cuticle proteins. In 

addition to this I have also demonstrated that purified chitin and its deacetylated form of 

chitosan have great potential as a substrate for many nanofabrication technique and thus 

provide a new and novel material in place of traditional synthetic polymers.   In my dis-

sertation is shown that the chitin and chitosan have great potential as the substrate for 



 
 

nanosphere lithography for the production of the generation of flexible antimicrobial and 

antifogging nanostructured surfaces. Metal nanoparticles are critical for many application 

and industrial processes, however the methods needed for their synthesis often are energy 

intensive and environmentally unfriendly. I demonstrate that chitin and chitosan are pow-

erful tools for the green synthesis of metal nanoparticles. While arthropod cuticles are 

traditional examples for bio-mineralization and bio-metalization, I have found that a pri-

mary component of these process is due in fact to chitin and I use chitin to develop a 

novel class of composite nanomaterial which has important implications for a broad 

range of applications including antimicrobial surfaces, bioremediation, and cell scaffolds 

for biomedical engineering and regenerative medicine. 
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CHAPTER I 

INTRODUCTION 

The goal of my research was to characterize the nanoscale chitin organization in 

arthropod cuticles and determine the mechanisms that control self-assembly of chitin 

nanofibers, and how nanoscale chitin organization impacts higher order self-assembly in 

both natural and synthetic materials, especially in nanosale chitin-based biometalization. 

Long-range goals of this project are to utilize these foundational mechanisms to control 

and determine chitin self-assembly. This knowledge will assist the design of novel bio-

materials that have nanoscale structures, which will have tailored mechanical, physical 

and chemical properties. These materials will have many applications especially in bio-

medical industry, biosensing, and tissue engineering, and because these materials are bio-

degradable and natural they will provide a new sustainable platform for the development 

of future advanced materials. 

 

1.1 Why Natural Polymers for Biomimetic  

 The term biomimetics was coined by Otto H Schmitt and involves the study and 

imitation of natural methods, mechanisms and processes. Biomimetics is also known as 

bionics, biognosis, or biomimicry, and implements concepts and principles from nature to 

create new materials, devices, and systems. Biomimetics and the adaptation of methods 

and systems found in nature to form synthetic constructs takes advantage of millions of 
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years of evolution that has driven natural systems to become highly optimized and effi-

cient in specific processes in conditions that are often less energetically costly as synthet-

ic process.  All biological system contains some form of a biopolymer. Natural polymers 

are abundant and have been used by mankind in various forms, such as paper and wood 

(i.e. cellulose) for generations.  Because biological polymers are so abundant and renew-

able, they are economically important and because they can be grown and harvested they 

are environmentally and economically sustainable; however, as complex and sophisticat-

ed as these polymers have been used by man in the past, the potentials as demonstrated 

by their use in nature systems has not been approached.. Natural polymers are a major 

component of biomimetic research and have important roles in either bottom up and top 

down strategies for the generation of new biomaterials especially in the area of tissue en-

gineering and regeneration (Fig 1-2).  

Tissue engineering and regeneration is an interdisciplinary and multidisciplinary 

research field that aims at the advancement of biological substitutes to repair, maintain, 

or improve tissue function [1].  All biological materials have a hierarchical structure that 

spans from the nanoscale to the macroscale and it is this hierarchical structure that con-

trols and determine the broad range of mechanical and physical properties of that biologi-

cal material, For instance, vertebrate bone and arthropod cuticles have an amazing range 

of mechanical properties, possess incredible mechanical strength per density, and can 

self-repair [2].  One goal of biomimetic research is use this type of information about bi-

omaterial structure to identify and develop alternatives to harvested tissues for transplan-

tation. To accomplish the diverse needs in tissue engineering, various synthetic materials 
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have been exploited as scaffolds for tissue regeneration. Though certain metals are excel-

lent choice for medical implants due to their mechanical properties, these synthetic con-

structs are disadvantageous for some scaffold applications because of their lack of degra-

dability in a biological environment [3].  Synthetic and natural inorganic, ceramic materi-

als such as hydroxyapatite or calcium phosphates have a good osteo-conductivity and are 

being used as a mineralized tissue engineering substrate, but still have problems due to 

the inability to generate these materials that into highly porous structures that also main-

tain mechanical integrity. The emergence of a biomimetic biopolymer technology has an 

enormous and immediate application in tissue regeneration.   As a scaffolds made of bio-

degradable biopolymer will control and define the microenvironment for the differentia-

tion of regenerative stem cells by supporting cell attachment, proliferation, and the me-

chanical environment of those cells.  

Polymeric nanomaterials that are used in tissue regeneration and regenerative 

medicines are will be used in one of two distinct approaches: a bottom-up approaches that 

uses nanotechnology as a strong tool for synthesis of novel materials that functions dif-

ferently in bulk compared with their nanoscale versions or, a top-down approach that in-

volve nanoscale modifications of existing polymers and materials to fabricate nano-

engineered systems, such as nano-patterned substrates to provide structures that influence 

cell behavior and subsequent tissue formation. In either approach polymeric biomaterials 

will play a vital role as scaffolds to stipulate three-dimensional templates and synthetic 

extracellular matrix (ECM) environments for tissue regeneration [4]. Further scaffolds 

formed by various polymers have the property that can mimic certain advantageous char-
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acteristics of the natural ECM and are often beneficial for various purposes. Thus, the 

chemical composition, physical structure, and biologically functional moieties are all im-

portant characteristics to include in the design of new and novel biomaterials that will be 

used in tissue engineering. Thus, in conclusion, the polymer nano-structured biomaterials 

are a very breathtaking and rapidly expanding research area, and will provide new ena-

bling technologies for various applications. 

 

 
 
Figure 1. Schematic of Biomimetics Based on Polymer and Nanoparticles 
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1.2 Bottom – Up and Top – Down Approach for Biomimetic 

 The nanoscale topography has a significant effect on cellular behavior and tissue 

regeneration. The synthesis of various materials from atomic or molecular species via 

chemical reactions, allowing for the precursor particles to grow in size is bottom-up ap-

proach. The assembling of monomeric forms of polymer to create desired structure and 

the addition of inorganic nanomaterial plays a significant role in biomimetic. Biomimetic 

polymeric matrices should be designed to have structural similarity to native material in a 

nanoscale range. Thus top-down approaches involve nanoscale modifications of existing 

polymers and materials to imitate nano-scaled patterns that may precisely direct for-

mation of appropriate functional material. Hence, it is required to fabricate polymeric bi-

omaterials using nano-engineered systems. Figure 2 and 3. Shows the illustration of vari-

ous bottom-up and top-down approaches used in nanotechnology [1]. 
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Figure 2. The Illustration Of Various Bottom-Up Nanotechnology Approaches.  
 
 

 
 
Figure 3. The Illustration of Various Top-Down Nanotechnology
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CHAPTER II 
 

LITERATURE REVIEW 
 
 
2.1 Overview of Polymer Nanofibers in Arthropod Cuticle 

Natural biological structural materials [5, 6] such as bone, tooth, wood, arthropod 

cuticle [7, 8], crustacean exoskeleton [9], and mollusk shell are inspiration for sustainable 

structural composites [10-12]. In these materials, the intimate assembly of biological ma-

terials creates a complex hierarchical structure that results in outstanding and sometime-

unexpected mechanical and chemical properties. Among many biodegradable polymers, 

chitin is a biomaterial that holds enormous potential in the field of nanoscience and tissue 

engineering, due to a number of characteristics, including its polyelectrolyte and cationic 

nature, the presence of reactive groups within the polymer, high adsorption capacities, 

and inherent bacteriostatic and fungistatic activity. Due to these properties chitin has been 

used in variety of biomedical applications including wound dressing and sutures [13, 14]. 

Insect and arthropod cuticles are remarkable materials that play multiple critical mechan-

ical roles in the life of an insect or crustacean and therefore, assume a variety of mor-

phologies and configurations [15-23].  Depending on the type and function, the insect 

cuticle displays an extraordinarily broad range of physical and mechanical properties 

with some of the strongest, toughest, and hardest natural materials in the 
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biological world; the cuticle of some appendages like stingers and mandibles are hard, 

while the cuticle in the joints of the appendages or in larvae the cuticle is flexible [15, 18, 

22, 24, 25]. Cuticle composed of two layers, a thin waxy water-resistant epicuticle, and 

an inner bilaminate procuticle which is composed of an outer exocuticle and an inner en-

docuticle [19-21, 24]. The exocuticle is hard and pigmented, while the endocuticle con-

tains higher water content and is more flexible [25].  The balance between the thickness, 

arrangement and specific composition of the cuticular layers determines the properties of 

a given cuticle.  Larval cuticles and other soft cuticles have a thinner, less sclerotized ex-

ocuticle, while in the cuticle of the mandibles and carapace (elytra) of beetles the exocu-

ticle is more developed and very hard [19, 20, 22, 24]. The cuticle is a natural composite 

material made of chitin nanofibers embedded in a proteinaceous matrix [19].  Purified 

chitin self-assembles into 20 nm chitin nanofibers that serve as the foundation for all 

higher order chitin structures in the cuticles of insects and other arthropods via interac-

tions with structural cuticle proteins [19]. Chitin nanofibers undergo several levels of 

higher reorganization and arrangement into fiber bundles and then into layers forming 

helicoidal stacks of material that resist stresses in all directions [19, 22, 24-26].  This or-

ganization is mediated through the activity of several chitin-binding proteins, although 

the exact role that each chitin binding protein plays in this organization remains unclear 

[27-29] and the extent of nanoscale organization of chitin in cuticular structures of insect 

and other arthropod exoskeletons remains unclear [27-29] and the extent of nanoscale 

organization of chitin in cuticular structures of insect and other arthropod exoskeletons 

remains unclear.   
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Insect and arthropod cuticles are remarkable materials that play multiple critical 

mechanical roles in the life of an insect or crustacean and therefore, assume a variety of 

morphologies and configurations [15-22].  Depending on the type and function, the insect 

cuticle displays an extraordinarily broad range of physical and mechanical properties 

with some of the strongest, toughest, and hardest natural materials in the biological 

world; the cuticle of some appendages like stingers and mandibles are hard, while the cu-

ticle in the joints of the appendages or in larvae the cuticle is flexible [15, 18, 22, 24, 25]. 

Cuticle composed of two layers, a thin waxy water-resistant epicuticle, and an inner 

bilaminate procuticle which is composed of an outer exocuticle and an inner 

endocuticle[19-21, 24]. The exocuticle is hard and pigmented, while the endocuticle con-

tains higher water content and is more flexible [25].  The balance between the thickness, 

arrangement and specific composition of the cuticular layers determines the properties of 

a given cuticle.  Larval cuticles and other soft cuticles have a thinner, less sclerotized ex-

ocuticle, while in the cuticle of the mandibles and carapace (elytra) of beetles the exocu-

ticle is more developed and very hard [19, 20, 22, 24].  The cuticle is a natural composite 

material made of chitin nanofibers embedded in a proteinaceous matrix [19].  Purified 

chitin self-assembles into 20 nm chitin nanofibers that serve as the foundation for all 

higher order chitin structures in the cuticles of insects and other arthropods via interac-

tions with structural cuticle proteins[19]. Chitin nanofibers undergo several levels of 

higher reorganization and arrangement into fiber bundles and then into layers forming 

helicoidal stacks of material that resist stresses in all directions [19, 22, 24, 25].  This or-

ganization is mediated through the activity of several chitin-binding proteins. 
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2.2 Chitin/Chitosan Based Polymer for Biomimetic 

Unlike many biopolymers, chitin is mechanically stable but biodegradable, non-

toxic, and physiologically inert [30].  Most of the chitin (N-acetylglucosamine) contain-

ing biological materials is found in complex structural interactions between the chitin 

polysaccharide polymer and specific chitin binding/cuticle proteins, that define the spe-

cific properties of a cuticle structure, for instance the high strength to mass ratio of insect 

cuticles, crustacean shells, and mollusk nacre [31].  Despite these desirable properties, 

artificial bioinspired mimetic composites based on chitin nanofibers have been difficult to 

produce due to chitin’s insolubility in most aqueous and organic solvents [32]. More 

work has been done with the more soluble but chemically distinct deacetylated chitin de-

rivative, chitosan [32].  chitosan which is β-(1-4)-linked D-glucosamine (deacetylated 

unit) and N-acetyl-D-glucosamine (acetylated unit) has been used for many applications 

[33] . Chitosan is approved by the U.S. Food and Drug Administration (FDA) for wound 

dressings[34]. biocompatible, biodegradable, and non-toxic, and are anti-microbial and 

hydrating agents [35], Other important application of chitin/chitosan are implemented in 

filtration [36], Biosensors [37], Tissue engineering [38], Drug delivery [39].   In addition 

to its chemical composition, a major difference between chitin and chitosan is that, chi-

tosan does not form nanofibers, because it lacks chitin’s acetylamide groups that contrib-

ute to hydrogen bonding between chitin polymer chains during the chitin nanofiber self-

assembly process [40].  Many researchers have strived to engineer bioinspired materials 

with synthetic components that reproduce the unique properties of natural structures [15], 

including insect cuticle [15] but it is difficult to work with chitin because of its low solu-
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bility. This major difference in form between the two biopolymer suggests that control of 

the nanoscale organization of chitin has more potential for the development of new mate-

rials that are distinct from chitosan-based materials. Below figure 4 shows the various 

applications and properties of chitin/chitosan.  

 

 
 
Figure 4. Various Properties And Application Of Chitin/Chitosan 
 
 
 2.2.1 Chemical Structure of Chitin / Chitosan  

The chitin structure is composed of repeating units of N-acetyl-D-glucosamine.  

However, free amino groups are also present in the natural chitin material obtained 

through isolation processes. Chitin is considered to be a co-polymer of N-acetyl-D-

glucosamine and glucosamine. When the percentage of N-acetyl-glucosamine unit in the 

whole polymer chain is above 50%, the material is termed chitin. Further, the structure of 
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chitin is similar to cellulose, except that the C2-hydroxyl group of celluloses is replaced 

by an acetamide group in chitin. Due to this similarity in structure, they also reflect simi-

lar roles in nature, both acting as structural materials. The presence of amino and acetam-

ide groups in the chitin structure could be the basis for many additional substitution reac-

tions that make chitin more promising than cellulose as a candidate for functionaling ma-

terials from nature. Figure 5. Shows the chemical structure of chitin/chitosan. 

 

 
 
Figure 5. Chemical Structure Of Chitin/Chitosan 
 
 
2.2.2 Degree of N-Acetylation (D.A.) 

 The Degree of Acetylation (D.A.) is defined as the percent of N-acetyl-D-

glucosamine unit in the chitin polymer chain. The D.A. of commercial chitin depends on 

the origin of the shells and the isolation method. Most commercial chitin has a D.A. rang-

ing between 85% and 95%. Many methods have been developed to determine the D.A. 

because of its great influence on the physical and chemical properties of the chitin mate-

rial. The most fundamental and widely used method is elemental analysis (E.A.). Alt-

hough the results are generally not precise due to the large molecular weight. 
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2.3 Polymer Nanofiberes Self-Assembly Mechanisms 

Self-assembly is a process in which a disordered system of pre-existing compo-

nents forms an organized structure as an effect of certain specific, local interactions 

among the components themselves, without any external directions [41]. When the con-

stitutive components are molecules, the process is termed molecular self-assembly [41]. 

It can be classified as either static or dynamic. In static self-assembly, the ordered state 

forms as a system approaches equilibrium, reducing its free energy whereas in dynam-

ic self-assembly, patterns of pre-existing components organized by specific local interac-

tions are not commonly described as self-assembled but are better described as self-

organized.  

Molecular self-assembly takes place without guidance or management from an 

outside source. There are two major types of molecular self-assembly, intramolecular 

self-assembly and intermolecular self-assembly. Intra-molecular self-assembling mole-

cules are often complex polymers with the ability to assemble from the random coil con-

formation into a well-defined stable structure (secondary and tertiary structure) [42]. 

Thus, molecular self-assembly is a key concept in supramolecular chemistry since as-

sembly of the molecules is directed through non-covalent interactions (e.g., hydrogen 

bonding, metal coordination, hydrophobic forces, van der Waals forces, π-π interactions, 

and/or electrostatic as well as electromagnetic interactions).Few common examples in-

clude the formation of micelles, vesicles, liquid crystal phases, and Langmuir monolay-

ers by surfactant molecules [41]. 
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A self-assembling system is identified by three parts: an order systems, the inter-

actions that control the assembly process and the components of the process. In all self-

assembling systems, the final product of the self-assembled process has a high-

er order than the isolated components; this is true whether the product is a the process or 

or a structured material [41]. There is a key role of weak intermolecular interactions in all 

self-assembling processes; especially in biological systems, for example weak interac-

tions control control processes like protein folding and self-assembly and structure of bio-

logical membranes. The components of a self-assemblying system span a wide range of 

nano and mesoscopic structures, with different chemical compositions, shapes and func-

tionalities. Researchers have used self-assembly mechanisms in a variety of capacities 

including biometallization [43], RNA nanotechnology [44] , proteins [45], enzymes [46] , 

and metal based mesoporous materials [47], microfluidic particle crystals [48]. Self-

assembled materials exist as zero, one, two and three dimensional materials. 2D self-

assembled materials  have been made via a range of different molecular systems that self-

assemble, forming ordered, monomolecular structures by the coordination of molecules 

to surfaces. Self-assembled monolayers (SAMs) [49] are have been used in various tech-

nologies and the mechanism are reasonably well understood. SAMs are a molecular self-

assembly that exists on the nanometer scale and are also the first of the self-assembled 

systems to move into technology transfer in Nanotechnology.  
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2.4 Layer-by-Layer Systems for Biomimetic 

Langmuir–Blodgett deposition and self-assembled monolayers (SAMs) have great 

potential for applications in the fields of biology and medicine [50]. These techniques 

exhibit capability for the immobilization of proteins and cells and subsequent application 

in biocatalysis, drug delivery, and tissue engineering [51, 52]. However, both methods 

have some disadvantages: Langmuir–Blodgett deposition requires expensive instrumenta-

tion and long fabrication periods for preparation of the biomolecule films and SAMs have 

limited capacity for loading of biological components into the thin films and this process 

is compatible with limited number of substrate [52].  

An alternative to Langmuir–Blodgett deposition and SAMs is layer-by-layer 

(LBL) assembly, which is a technique of depositing multilayers on materials surface.[53]. 

The preparation principles and procedures of LBL [54] assembly involves the immersion 

of a substrate into an oppositely charged polymer solution and alternating adsorption of 

complementary multivalent species onto the substrate via electrostatic interactions such 

as hydrogen bonding [55], covalent bond [56], charge transfer [57] or other secondary 

interactions. 

The LBL has some advantages over other surface modification technologies such 

as: ease of preparation, versatility, capability of incorporating high loadings of different 

types of biomolecules in the films, fine control over the materials structure, and robust-

ness of the products under ambient and physiological conditions [52]. Due to this, re-

searchers have extended LBL assembly to include the deposition of not only water-



 

 
 

16

soluble linear charged-polymers, but also viruses, proteins, silica colloids, metal nan-

oparticles, dyes, metal oxides, amphiphiles, clays and polystyrene nanospheres [58]. 

 The ability of LBL films to incorporate a broad range of drugs while retaining drug ac-

tivity is particularly enabling and may open the door to new therapeutic approaches in 

modified implants, wound healing and remediation, cardiovascular stents, and passive or 

actively triggered microscale release to localized regions [59]. Recently, some authors 

have focus in apply this method to tissue regeneration. He et al. showed applicability of 

LBL assembly on surface modification of a novel biodegradable polyurethane that was 

synthesized with aliphatic L-lysine ethyl ester diisocyanate (LDI), poly-caprolactone di-

ols (PCL-diol) and dianhydro-d-sorbitol (isosorbide), serving as a hard segment, soft 

segment and chain extender, respectively. Type I collagen and chondroitin sulfate were 

selected as building blocks to create a cellular microenvironment mimicking chondrogen-

ic environment [60].  Gadiere et al. reported a unique combined effect of substrate chem-

istry controlled by native, non-crosslinked chondroitin sulfate A - Polycationic – poly-

electrolyte multilayer films and substrate stiffness in the relevant range modelling poly-

meric biomaterials that are eligible for bone tissue engineering [61]. Catros et al. evaluat-

ed the influence of the three-dimensional organization of MG63 cells and PCL electro-

spun scaffolds on cell proliferation in vitro and in vivo, using a layer-by-layer sandwich 

model of assembly [62]. Figure 6. Shows the layer by layer assembly of poly cations and 

poly anions. 
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Figure 6. Layer By Layer Assembly Process of Polycations And Polyanions 
 
 
2.5 Bio-Nanometallization  

Polymerbased nanocomposite plays a major role in in the field of nanotechnology. 

Nanocomposites are hybrid materials can are defined as a two-phase system, where at 

least one dimension of the reinforcing filler is on the nanometre scale. Metallic nanopar-

ticles are often incorporated in polymeric matrices to make nanocomposites scaffolds to 

mimic the native structure. The use of nanoparticles in a nanocomposite,especially those 

used in biomedical application, raises the need of a comprehensive understanding of their 

secondary effects and cytotoxicity [63]. The large surface area of nanoparticles makes 

them very reactive in the polymer. Using metal nanoparticles as additional additives in 

polymer matrices generates a wide range of potential applications. The efficiency and 

potential of the polymer nanomaterial facing the intended applications depends both on 

the nature of metal nanoparticle and content and on the metal particles dispersion state on 

to the polymer surface [64, 65]. The presence of metal nanoparticles in a sufficient 
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amount at the material surface will theoretically alter and define changes in the material 

properties of the composite such as optics/reflectivity, bactericidal properties, or barrier 

properties. Surface metallization of various substrates has been then accomplished and 

chemical, physical or sputtering deposition techniques have been widely used.  Ceramic 

nanomaterials have been used as a major filler material to improve the characteristics of 

conventional polymers, such as increased modulus, strength, fracture toughness, and im-

pact resistance [66].         

The interaction between nanomaterial and polymer matrix is the basis for en-

hanced mechanical and functional properties of the polymers [67]. Recently, the nano-

composite approach has emerged as an efficient strategy to upgrade the structural and 

functional properties of synthetic polymers through the combination of polymers and or-

ganic/inorganic fillers [68]. In particular, the novel bio-nanocomposites allow both local 

and bulk modulation of the material mechanical properties [69, 70]. The use of nanocom-

posites has emerged as an efficient strategy to upgrade the structural and functional prop-

erties of natural and synthetic polymers. 

Polymers nanomaterial based on its nature could be god electrical and thermal in-

sulator or could be good conducting material, further they can be either hydrophobic or 

hydrophilic in nature, mechanically hard, plastic or rubbery. Depending on the nano-scale 

structure, metal nanoparticles have unique physical and chemical properties (optical, 

electronic, magnetic, catalytic and antimicrobial). Metal polymer nanocomposites not on-

ly combine the advantageous properties of metal nanoparticles and polymers but also ex-

hibit new multifunctional and high performance polymer characteristics. 
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The incorporation of metal nanoparticles into polymer matrices can be achieved 

either by in situ or ex situ method [71-76]. Nanoparticles are first produced by the reduc-

tion of metal ions following by the distribution of the preformed metal nanoparticles into 

a polymer solution or monomer solution to polymerize. The in-situ technique involves 

the production of nanoparticles inside the polymer matrix. Monomers are polymerized in 

solution containing metal salts, then metal nanoparticles are generated by reducing metal 

ions through a reduction process [77]. Further, in the recent days there is a growing need 

to develop eco-friendly processes, which do not use toxic chemicals in the synthesis pro-

tocols. Green synthesis approaches include mixed-valence polyoxometalates, polysaccha-

rides, tollens, biological, and irradiation method, which have advantages over conven-

tional methods involving chemical agents associated with environmental toxicity [78]. 

Selection of solvent medium and selection of eco-friendly nontoxic reducing and stabiliz-

ing agents are the most important issues, which must be considered in green synthesis of 

NPs [79]. 

 

2.6 Synthesis of Metal Nanoparticle and Nanowires 

2.6.1 Polyol  Synthesis  

The most common method of synthesis of metallic nanoparticles is the polyol 

method,which is an excellent method for the synthesis of submicrometer-sized metallic 

nanoparticles [80]. The polyol method mainly concerns the preparation of metallic pow-

ders by reduction of inorganic compounds in liquid polyols. It essentially applies to most 

of the metal precursors such has silver, god, cobalt, nickel, copper and precious metals. A 
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general reaction on model has been established with a reaction via the solution. Dissolu-

tion of the solid precursor, which leads to reduction in solution then homogeneous nucle-

ation and growth of the metallic phase from the solution. The polyol method has become 

widely used by many research groups for the synthesis of metal nanostructures like Xia et 

al. and other groups synthesized Ag nanowires with higher aspects ratios by injection of 

ethylene glycol solutions of AgNO3 and PVP, added drop-by-drop, at a constant solution 

temperature of 160 °C [81, 82]. In this polyol process, the introduction of an exotic rea-

gent is considered to be the key factor that leads to the formation of wire-like structures. 

In their experiments, Ag nanowires are generated using a self-seeding process and EG 

acts as both solvent and reducing agent. By controlling the injection rate, multiple-twined 

particles (MTPs) formed at the initial stage of the reduction process could serve as seeds 

for the subsequent growth of silver nanowires, which is the so-called self-seeding pro-

cess. At a lower precursor concentration, it is possible to reduce the chemical potential to 

a relatively low level so as to make MTPs thermodynamically stable because it is bound 

almost entirely by the lower energy {111} facets.  This is one of the most common meth-

ods followed by many researchers to synthesis metallic nanowires.  

 

2.6.2 Salt Mediated Polyol Method of Synthesis  

Based on the PVP (polyvinylpyrrolidone) assisted polyol method, Xia and co-

workers developed a salt-mediated polyol process to prepare silver nanowires [82].  In 

this method, salts (NaCl, Fe(NO)3, CuCl2 and CuCl) play a major role in seeding and in-

fluence the morphology of the final metal products[82] . This salt-mediated synthesis 
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strategy is a simple and effective method for the mass synthesis of silver nanowires and 

nanoparticls [83]. however, the conditions for this synthesis method are somewhat energy 

intensive, as the process for the  synthesis of silver nanowires in high yields through the 

reduction of AgNO3 with ethylene glycerol requires heating to 148 °C in the presence of 

PVP and a trace amount of NaCl.  Furthermore, oxygen must be removed from the reac-

tion solution in the presence of Cl- anions in order to obtain silver nanowires.  The con-

centration of NaCl strongly affects the final shapes of products; low concentration of 

NaCl (0.12 mM) favors of the formation of cubes and bipyramids, whereas a higher con-

centration of 0.3 mM is the best condition for the formation of NaCl nanowires [84]. 

These results demonstrate the role that solvent conditions and distribution of charged 

groups in the solvent have in the stabilization and growth of the metal nanomaterials. 

Stable silver nanoparticles were synthesized using chitosan function as both re-

ducing and stabilizing agent without using any toxic chemicals [85]. In this synthesis like 

other silver nanoparticle synthesis reactions, the reaction was carried out in an autoclave 

at a pressure of 15 psi and 120 0C temperature. The influence of different parameters such 

as time, change of concentration of silver nitrate, concentration of the salts and concen-

tration of chitosan controlled the type and crystallinity of the silver nanoparticles generat-

ed by this method [86]. Raspberry-shaped multi-hollow polymer microspheres were pre-

pared by seeded swelling polymerization and decorated with silver nanoparticles 

(AgNPs) in the presence of polyvinylpyrrolidone (PVP), which acted as both reducing 

and stabilizing agent. The formation mechanism of the raspberry-like multi-hollow mi-

crosphere involved water absorption of sulfonated groups in the seeded swelling 
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polymerization (REF).  Effects of weight ratio of sodium 4-vinylbenzenesulfonate to sty-

rene (NaSS/St) of the seed particles, the concentration of PVP and [76]+ ions on the prop-

erties of polymer/Ag nanocomposite [76].The shape and size controlled synthesis of sil-

ver nanoparticles using Aloevera plant extract and their antimicrobial activity is studied 

by Logaranjan K et.al. Biogenic synthesis of silver nanoparticles (AgNP) was performed 

at room temperature using Aloevera plant extract in the presence of ammoniacal silver 

nitrate as a metal salt precursor. and this method can be one of the easier ways to synthe-

sis anisotropic AgNP, in which the plant extract plays a vital role to regulate the size and 

shape of the nanoparticles [87]. 

The synthesis of gold nanoparticles through the polymer, which play a major role 

in size and shape control [88-90]. Responsive polymers and polymer-coated nanoparti-

cles have many potential bio-applications with the crucial parameter being the exact tem-

perature where the transition occurs. Chemical modification of hydrophobic/hydrophilic 

or ligand binding sites has been widely explored as a tool for controlling this transition, 

but requires the synthesis of many different components to achieve precise control. Co-

operative transitions of responsive-polymer coated gold nanoparticles and precision tun-

ing and direct evidence for co-operative aggregation is performed. One such study reports 

an extensive investigation into the use of blending as a powerful tool to modulate the 

transition temperature of poly (N-isopropylacrylamide) (PNIPAM) coated gold nanopar-

ticles. By simply mixing two nanoparticles of different compositions, precise control over 

the transition temperature can be imposed. This was shown to be flexible to all possible 



 

 
 

23

mixing parameters (different polymers on different particles, different polymers on same 

particles and different sized particles with identical/different polymers)[88].  

 

2.6.3 Seed-Mediated Growth Synthesis 

The seed mediated method of synthesis of silver nanoparticles and nanowires are 

also been followed by many researchers.The salt of sodium and calcium etc acts as seed 

to support the growth of specific nanoparticles like the reduction of gold proceeds via di-

rect reduction on the surface of seeds [91]. The large-scaled preparation of silver nan-

owires and nanoparticles with uniform diameter by seed-mediated growth approach in a 

rod-like micellar media. In principle, two steps were necessary in order to achieve the 

formation of nanowires. Ag nanoseeds with an average diameter of 4 nm were prepared 

by chemical reduction of AgNO3 by NaBH4 in the presence of trisodium citrate. Then 

AgNO3 was reduced by ascorbic acid in the presence of Ag seed obtained in the first step, 

the micellar template cetyltrimethylammoniun bromide (CTAB), and NaOH in order to 

synthesize nanorods and nanowires with various aspect seed. The seed-mediated growth 

approach is prone to form silver nanorods and nanowires of controllable aspect ratio [92]. 

It is well documented that Ag nanowires were one of the earliest twinned Ag nanostruc-

tures reported and now have become an active area of research in Ag nanoparti-

cles,although it is great challenge to achieve control over the length and width of Ag na-

norods and nanowires. Seed generated  silver nanorods and nanowires with pentagonal 

cross-section have been proposed to come from the evolvement of decahedra. Kitaev et 

al. has synthesized monodisperse size-controlled faceted pentagonal silver nanorods by 



 

 
 

24

thermal regrowth of decahedral silver nanoparticle in aqueous solution at 95 °C, and  

used these Ag nanoparticles to synthesis monodisperse size-controlled faceted pentagonal 

silver nanorods. The width of the silver nanorods was determined by the size of the start-

ing decahedral particle, while the length was varied from 50 nm to 2 mum by the amount 

of new silver added to the growth solution [93]. 

A facile method for the preparation of silver nanoparticles of various sizes and 

morphologies, including dodecahedra, nanorods, and nanoplates, has been developed 

[94]. This method involves using the absorbance properties of the spherical silver nano-

particles and irradiating a selected light emitting diode by which they controlled the mor-

phology and optical properties of silver nanoparticles. These thermal routes to anisotropic 

AgNPs give particles with high polydispersity, limiting their applications in single mole-

cule spectroscopy and surface plasmon resonance spectroscopy [94].  

Although silver nanoparticles are commonly made via tis method, other metallic 

nanoparticles have also been synthesized using a seed-mediated method.  Size-controlled 

synthesis and growth mechanism of monodisperse tellurium nanorods and size-controlled 

synthesis of uniform nanorods of trigonal tellurium (t-Te) by a surfactant-assisted method 

[95]. . Te-nanorods were grown from a colloidal dispersion of amorphous Te (a-Te) and 

t-Te nanoparticles at room temperature, which was first formed through the reduction of 

(NH4)2TeS4 by Na2SO3 in aqueous solution at 80 °C.  Te nanorods were also obtained 

in mixed surfactants, where the different surfactants were used to selectively control the 

growth rates of different crystal planes [95]. Researchers have also synthesized metal na-

noparticles having metal has a seed. Like, gold nanostars have been synthesized with a 
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silver seed mediated growth method. The physical, chemical and optical properties of 

nano-scale colloids depend on their material composition, size and shape. There is a great 

interest in using nano-colloids for photo-thermal ablation, drug delivery and many other 

biomedical applications. Gold is particularly used because of its low toxicity. The re-

searchers have synthesized star shaped colloidal gold, also known as star shaped nanopar-

ticles or nanostars. This method is based on a solution containing silver seeds that are 

used as the nucleating agent for anisotropic growth of gold colloids [96]. 

 

2.6.4 Seedless and Surfactant Assisted Synthesis  

Surfactant assisted synthesis is one of the important methods for soft-template 

processes. Chelating-template-assisted in situ encapsulation of zinc ferrite inside silica 

mesopores for enhanced gas-sensing characteristics. A facile in situ approach has been 

designed to synthesize zinc ferrite/mesoporous silica guest-host composites. Chelating 

surfactant, N-hexadecyl ethylenediamine triacetic acid, was employed as structure-

directing agent to fabricate mesoporous silica skeleton and simultaneously as complexing 

agent to incorporate stoichiometric amounts of zinc and iron ions into silica cavities [97]. 

A novel anionic surfactant-templated synthesis of ZnO/mesoporous silica nanocompo-

sites has been carried out by using N-hexadecylethylenediamine triacetate (HED3A), a 

triprotic surfactant, as the structure-directing agent. In this method fabrication and photo-

luminescent properties of ZnO/mesoporous silica composites is templated by a chelating 

surfactant. Here, the variation of the zinc ion concentration in the initial template solution 

induces an evolution of the silica mesophase, presumably due to the change in electro-
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negativity of the HED3A headgroup caused by the chelating effect [98]. Similarly, a nov-

el one-step method for synthesis of nickel oxide/silicon dioxide (NiO/SiO(2)) mesopo-

rous composites by using N-hexadecyl ethylenediamine triacetate (HED3A) as structure-

directing agent where it play a role in directing the mesophase formation, the anionic sur-

factant also functions as a chelating agent that binds nickel ions. Thus, template-induced 

encapsulation of NiO cluster in mesoporous silica via anionic surfactant-templated route 

is one such research experiment where surfactant plays a major role in synthesis and sta-

bilization [99].  

 

2.7 Biomimetic Polymer/Apatite Composite Nanomaterials 

The major inorganic component of bone mineral is a biological apatite with di-

mensions typically on the order of tens of nanometers in length and several nanometers 

wide which might be defined as non-stoichiometric and ion substituted calcium deficient 

HAp Ca10-x(HPO4)x(PO4)6-x(OH)2-x [100].One of the main characteristics of apatites is 

that many ionic substitutions can occur in the crystal lattice which mean the composition 

of apatite in bone is not fixed and the chemical variations may occur according to the 

number of available elements in the body. Among the substituting ions that are found in 

bone, include calcium, potassium, carbonate, magnesium, strontium, chloride or fluoride 

[101]. Ionic substitutions changes the crystal lattice and morphology of apatites as well as 

physical properties as solubility, dissolution rate, hardness, brittleness, strain, and surface 

energy, [100]. HAp [102], Ca10(PO4)6(OH)2,  has chemical similarity to the inorganic 

component of bone matrix and exhibits osteoconductivity, bioactivity, and  biocompati-



 

 
 

27

bility with soft tissues [103]. For this reason, HAp scaffolds have been advocated for use 

in bone tissue engineering. The interdependence of mineral’s composition, structure, and 

properties is particularly important in the improvement of the ceramic scaffolds. For ex-

ample, it have been observed that the behavior of osteoblastic cells at the surface of HAp 

and carbonated apatite is greatly influenced by the polar interaction energy emphasizing 

the important role of surface energy for the attachment of bone cells on biomaterial [104]. 

It has been postulated that dimension scale of the particles and their specific topography 

is of great importance for the interaction with cells. Various shapes and sizes of nano-

HAp have been obtained and their bioactivities are investigated. Scaffold coated with 

needle-shaped HAp nanoparticles showed the strongest osteoblast differentiation profile 

compared with rod and spherical shaped nanoparticles [105].  

The excellent bioactivity of nano-HAp makes them useful as bone substitutes and 

coatings that promote cell adhesion and bone in-growth. Nano-HAp exhibits improved 

sinterability and enhanced densification due to greater surface area, which may also im-

prove fracture toughness, as well as other mechanical properties [106]. Nano-

HAp/polymer composites have beendeveloped for bone fixation and bone repairing ap-

plications with some attractive properties (large specific surface area, improved biodeg-

radability and biological activity). Thus, the introduction of nano-HAp forming 

HAp/polymer greatly increased the mechanical properties of the polymer composite scaf-

fold and improved the protein adsorption capacity [107]. 

Nanocomposite biomaterials play a pivotal role as scaffolds to provide three-

dimensional templates and synthetic ECM environments for tissue regeneration. It is of-
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ten beneficial for the scaffolds to mimic certain advantageous characteristics of the natu-

ral ECM, or developmental or repair and regeneration processes. The current biomimet-

ic materials approach in tissue regeneration include synthesis to achieve certain composi-

tions or properties similar to those of the ECM, novel processing technologies to achieve 

structural features mimicking the ECM on various levels, approaches to emulate cell-

ECM interactions, and biologic delivery strategies to recapitulate a signaling cascade or 

developmental/wound healing program [108, 109]. The rapid restoration of tissue biome-

chanical function represents a great challenge, highlighting the need to mim-

ic tissue structure and mechanical behavior through scaffold designs. For this reason, 

several biodegradable and bioresorbable materials, as well as technologies and scaffold 

designs, have been widely investigated from an experimental and/or clinical point of 

view [110]. It is recognized that successful biomaterials and structures for tissue engi-

neering  are those that closely mimic the composition chemistry and hierarchical structure 

of the native tissues to be replaced and regenerated, including the possibility of adapta-

tion to the biological changes during the healing process, and which exhibit specific me-

chanical and biological functions to enable rapid new tissue regeneration. Nanocomposite 

3D scaffolds based on biodegradable polymers have been developed by using different 

nano-structures and processing methods. These techniques mainly include solvent casting 

and particulate leaching, gas foaming, emulsion freeze-drying, electrospinning, rapid pro-

totyping and thermally induced phase separation [111].  Below shows various ceramic 

nanomaterials and metal nanoparticles composites for various applications. 
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Table 1.  Ceramic Nanomaterials and Metal Nanoparticles Composites for Various Ap-
plications 
 

 

 
 

Nanomaterial Chemical Formula Composite material Ref 

 

Alumoxane 

 

[Al(O)x(OH)y(O2CR)z]n 

 

PPF/PPF-DA 

 

[112-115]  

 

Hydroxyapatite 

 

 

 

Ca10(OH)2(PO4) 

 

PLGA 

PLLA 

PVA 

PCL 

 

[107] 

[116] 

[117] 

[118] 

Calcium 

phosphates 

Cax(PO4)y 

 

PCL 

PLA 

PLLA/PLGA 

[119] 

[120] 

[121] 

Silica SiO2 PEG 

PCL 

PLLA 

[122] 

[123] 

[124] 

Silicates SiO4
4- PEO 

PEG 

PLLA 

[125] 

[126] 

[127] 
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DFA, dimmer fatty acid; PPF, poly (propylene fumarate); PPF-DA, propylene fumarate-

diacrylate; PLLA, poly(l-lactic acid); PET, poly(ethylene terephthalate); PDLLA, 

poly(D,L lactid acid); PVA, polyvinyl alcohol; PEO, poly(ethylene oxide); PEG, Poly-

ethylene glycol. 

 
The interaction between nanoparticles and polymer matrix represents the basis for 

enhanced mechanical and functional properties of the polymers. Recently, the nanocom-

posite approach has emerged as an efficient strategy to upgrade the structural and func-

tional properties of synthetic polymers, by the combination of polymers and organ-

ic/inorganic fillers. In particular, the novel bio-nanocomposites allow both local and bulk 

modulation of the material mechanical properties [69, 70]. The use of nanocomposites 

has emerged as an efficient strategy to upgrade the structural and functional properties of 

synthetic polymers, especially for bone tissue engineering applications. This is because 

bone itself is a nanocomposite with organic and inorganic phases, made up of bone-

forming cells, bone resorption cells, ECM and inorganic bone mineral [128]. Various fi-

brous and particulate nanocarriers have been tried as scaffolds or combined with other 

materials such as ceramics to form nanocomposites for fulfilling the requirements of an 

ideal tissue-replacement support [109]. Electrospun scaffolds hold promise for the regen-

eration of dense connective tissues, given their nanoscale topographies, provision of di-

rectional cues for infiltrating cells and versatile composition. Synthetic slow-degrading 

scaffolds provide long-term mechanical support and nanoscale instructional cues; howev-

er, these scaffolds suffer from a poor infiltration rate. Alternatively, nanofibrous con-
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structs formed from natural biomimetic materials (such as collagen) rapidly infiltrate but 

provide little mechanical support [109, 129]. Below are the few potential nanofabrication 

methods and its applications in tissue engineering and regeneration where polymer and 

metal nanoparticles play a major role.  

 
Table 2. Few Potential Nanofabrication Methods and Its Applications in Tissue Engineer-
ing and Regeneration. 
 
Nanofabrication 

process 

Polymer ma-

terial 

Organic/Inorganic or 

Natural/ Synthetic 

Potential appli-

cation 

Ref 

 Electro spin-

ning 

PLGA  

 

PLGA/ 

Chitosan 

 

 

 

PLGA/elastin

/ gelatin 

 

 

PCL 

 

Synthetic 

 

Synthetic/Natural 

 

 

 

Synthet-

ic/Natural/Natural 

 

Synthetic 

 

Synthetic/Natural 

 

Neural tissue  

 

Controlled re-

lease, Scaffolds 

 

 

Vascular tissue 

 

 

Cartilage tissue 

 

Neural tissue   

 

[130] 

 

[131, 

132] 

 

 

[133] 

 

 

[134] 

 

[135] 
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PCL/gelatin 

 

PLLCL/colla

gen 

Synthetic/Natural 

 

 

Skin tissue 

 

[136] 

Self-assembly Peptide 

 

 

 

 

Peptide Am-

phiphile 

 

 

Synthetic 

 

 

 

 

Synthetic 

 

 

  

Controlled re-

lease, neural tis-

sue, bone tissue, 

 

Bone-tissue, 

vascular tissue 

 

 

 

[137-

141]   

 

 

 

[142-

144] 

 

 

Phase separation 

 

PPC/chitosan 

 

PLLA 

 

Syntetic/Natural 

 

Synthetic 

 

Bone-tissue 

 

Neural and ten-

don tissue 

 

 

[145] 

 

[146] 
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 PLGA,poly(lactide-co-glycolide);PLLCL, poly(l-lactic acid)-co-poly(3-caprolactone); 

PPC, poly(propylene carbonate). 
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CHAPTER III 
 

SEM CHARACTERIZATION OF ANATOMICAL VARIATION IN CHITIN ORGAN-
IZATION IN INSECT AND ARTHROPOD CUTICLES 

 
 

The cuticles of insects and arthropods have some of the most diverse material 

properties observed in nature, so much so that it is difficult to imagine that all cutciles are 

primarily composed of the same two materials: a fibrous chitin network and a matrix 

composed of cuticle proteins. Various factors contribute to the mechanical and optical 

properties of an insect or arthropod cuticle including the thickness and composition. In 

this paper, we also identified another factor that may contribute to the optical, surface, 

and mechanical properties of a cuticle, i.e. the organization of chitin nanofibers and chitin 

fiber bundles. Self-assembled chitin nanofibers serve as the foundation for all higher or-

der chitin structures in the cuticles of insects and other arthropods via interactions with 

structural cuticle proteins. Using a technique that enables the characterization of chitin 

organization in the cuticle of intact insects and arthropod exoskeletons, we demonstrate a 

structure/function correlation of chitin organization with larger scale anatomical struc-

tures. The chitin scaffolds in cuticles display an extraordinarily diverse set of morpholo- 

gies that may reflect specific mechanical or physical properties. After removal of the pro-

teinaceous and mineral matrix of a cuticle, we observe using SEM diverse nanoscale and
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micro scale organization of in-situ chitin in the wing, head, eye, leg, and dorsal and ven-

tral thoracic regions of the periodical cicada Magicicada septendecim and in other insects 

and arthropods. The organization of chitin also appears to have a significant role in the 

organization of nanoscale surface structures. While microscale bristles and hairs have 

long been known to be, chitin based materials formed as cellular extensions, we have 

found a nanostructured layer of chitin in the cuticle of the wing of the dog day annual ci-

cada Tibicen tibicens, which may be the scaffold for the nanocone arrays found on the 

wing. We also use this process to examine the chitin organizations in the fruit fly, Dro-

sophila melanogaster, and the Atlantic brown shrimp, Farfantepenaeus aztecus. Interest-

ingly many of the homologous anatomical structures from diverse arthropods exhibit sim-

ilar patterns of chitin organization suggesting that a common set of parameters, govern 

chitin organization.  

 

3.1 Introduction 

Chitin is a polymer of N-acetylglucosamine, the second most abundant biopoly-

mer; and a primary component of insect, arthropod and fungal exoskeletons/cuticles. The 

insect cuticle is a natural composite material composted of a chitin network embedded in 

a matrix of proteins and lipids. Various factors contribute to the mechanical properties of 

a cuticle including the thickness and composition.  In this paper we also identified anoth-

er factor that may contribute to the optical, surface, and mechanical properties of a cuti-

cle, i.e. the nanoscale organization of chitin.  Purified chitin self-assembles into 20 nm 

chitin nanofibers that serve as the foundation for all higher order chitin structures in the 
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cuticles of insects and other arthropods via interactions with structural cuticle proteins.  

We have developed a technique that enables the characterization of chitin nanofibers or-

ganization in the cuticle of intact insects and arthropod exoskeleton that allows struc-

ture/function correlation of nanochitin organization with anatomy.  Using this technique 

we characterize the structural organization of cuticle chitin nanofibers using FE-SEM, 

FTIR, and XRD, and demonstrate that the nanoscale chitin scaffolds display extraordinar-

ily diverse morphologies that reflects a range of physical/chemical properties. After re-

moval of the cuticles’ waxy proteinaceous matrix, we observe nanoscale organization of 

in-situ chitin nanofibers in the wing, head, eye, leg, and dorsal and ventral thorasic re-

gions of the periodical cicada Magicicada septendecim. We also use this technique to ex-

amine chitin nanostructure in other insects and arthropods finding a new conical nano-

chitin layer in the wing of the dog day annual cicada Tibicen tibicen. We also examined 

chitin nano cuticles of the fruit fly, Drosophula melanogaster, and the Atlantic brown 

shrimp, Farfantepenaeus aztecus and show similar patterns of chitin nanofibers organiza-

tion.  Flies mutant for the CPR51A gene exhibit gross defects in thoracic chitin nano-

fibers organization and demonstrate the role that cuticle protein contributes to this organ-

ization.   

In this work I present a new technique for the in situ examination of nanoscale or-

ganization of cuticle chitin in the periodic Brood II seventeen year cicada Magicicada 

septendecim.  We observe a broad range of chitin nanofibers organization in different cu-

ticle structures in the periodic cicada that suggests ordering of chitin nanofibers is critical 

component to these structures.  Moreover, this technique also has facilitate the discovery 
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novel chitin based structures as components of epicuticle nanoscale structures such as the 

nanoknobs of the noise generating tymbal membrane and conical nanoscale arrays of the 

wings of the dog day cicada Tibicens tibicens. I also show that this technique can be used 

to examine smaller insect cuticles and non-insect arthropods.  Using this technique on the 

fruit fly Drosophila melanogaster we observe chitin nanofiber organization in the fruit 

fly Drosophila melanogaster and the Atlantic brown shrimp.  In the dorsal thorax of the 

fruit fly and the head of the brown shrimp we observe a woven nano-chitin pattern simi-

lar to those seen in the cicadae.  Moreover, the woven chitin nanofiber organization in 

dorsal thorax is disrupted in fruit flies mutant for the cuticle bind protein Cpr51A, which 

demonstrates the role that cuticle proteins play in chitin nano-fiber organization. 

 

3.2 Methods and Materials 

3.2.1 Insect and Arthropod Species Used in this Study 

Insect cuticles for these experiments were from the periodic 17 year cicada Brood 

II Magicicada septendecim collected locally in Greensboro, North Carolina during the 

June 2013 emergence, the annual dog day cicada Tibicens tibicens collected locally in 

Greensboro, North Carolina during the summer of 2013, the fruit fly Drosophila melano-

gaster, from the Bloomington stock center, wild type strain Oregon R (Bloomington 

Stock Number 5) and the Cpr51A mutant strain (Bloomington Stock Number 18821) and 

crustacean the Atlantic brown shrimp Farfantepenaeus aztecus purchased at a local sea 

food market. 
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3.3 Cuticle and Bulk Chitin Preparation  

Whole insects/arthropods were either left whole or dissected; wash three times in 

dH2O and then processed using the following method shown in (Figure 6). Dissected 

parts where subjected to an acid wash treatment in 1M HCL overnight at 650C in test 

tubes, followed by a basic wash treatment of 1M NaOH solution and place them into ov-

en at 65 0C, overnight. The samples were dehydrated in an ethanol series 20%, 50% 70% 

84%, 90%, 95% for 10-15 minutes and into 100% ethanol overnight and then allowed the 

solvent to evaporate.  For bulk chitin preparations used to control for purity of in situ chi-

tin preparations. Whole insects were powdered in a mortar and pestle in ethanol slurry. 

The crude powdered cuticle was dried overnight at 70º C.    The cuticle powder processed 

as described above for the in-situ chitin cuticle prep with centrifugation/ washes after ac-

id and basic treatments. After the final wash, the purified chitin cuticles and lyophilized 

chitin powder analyzed by FT-IR and X-Ray Diffraction and compared to commercially 

purchased chitin (Sigma, C9752) as a control.  

 

3.4 SEM/EDS Imaging SEM Sample Preparation 

Samples (either the prepared or native cuticles) were washed three times in dH2O. 

After drying, the samples had a 10 nm gold layer applied using a Leica EM ACE200 with 

real time thickness monitoring using a quartz crystal microbalance (QCM). Scanning 

electron micrographs were obtained using a Zeiss Auriga FIB/SEM. Scale bars were add-

ed using ImageJ software.  Scanning electron-microscopy (SEM) combined with energy 
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dispersive X-ray spectroscopy (EDS) analysis was used to morphologically and chemi-

cally characterize the cicada wings using an electron beam of 7.0 KV. 

 

3.5 Quantifying Alignment with Image J Oval Profile Plugin 

SEM micrographs, 1024 X 768 pixels, were sub-divided to five sections of 250 X 

250 pixels. A Fast Fourier Transform (FFT) was performed on each sub-division of the 

image to render a frequency domain image. An oval selection of radius 50 pixels was 

then used to select the central region of the FFT image. The oval profile was plotted us-

ing a division of n = 360 and “Radial Sums” plotting mode. The sums are taken about a 

180-degree section of the oval selection, since the fibers can be approximated at straight.  

 

3.6 Results 

3.6.1 In Situ Chitin Purification 

Chitin is a major structural component of insect and arthropod and observing its 

organization within the cuticle is challenged by the lack or reagents to directly label chi-

tin at the ultramicroscopic level.  Historically chitin has been observed in cuticles via 

TEM by negative permanent stain of the surrounding matrix, and some SEM imaging of 

chitinaceous structures has been performed in large crustaceans to characterize large 

scale chitin organization[147], however little work has been done to detect and character-

ize nanoscale chitin organization.  Industrial preparation of chitin involves acidic treat-

ments to demineralize and deproteinate followed basic treatments to remove more protein 

and lipid cuticle components [148-150].  We have modified this preparation to generate a 
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simple and fast technique that enables the preservation of nanoscale chitin structure in the 

context of gross anatomy (Figure 7).  The process results in a clear, structurally intact ex-

oskeleton exact that is devoid of pigments (compare Figure 7B with 7C). The chitin with-

in the cuticle displays a purity that is comparable to commercial available chitin samples 

and bulk preparations as determined by Fourier transform infrared spectroscopy). 

 

 
 
Figure 7. Schematic of in situ Cuticle Chitin Preparation. 
 

A) A flow chart outlining the steps in the process as used in this publication. B) Whole 
cuticle of the periodic cicada Magicicada septendecim prior to the procedure (note: wings 
have been removed).  C) The thoracic and abdominal section of the period cicada after in 
situ chitin preparation, note the preservation of the overall anatomy but the lack of pig-
ment and the cleared portions of the cuticle (arrow). 
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FTIR analysis of chitin samples show a similar set of characteristic peaks that are 

indicative of bond stretching within the chitin monomer.  In all sample we observed the 

characteristic transmission peaks that represent the amide bonds of chitin Amide I (C=O) at 

1660 and 1627, Amide II (C-N) at 1558 and amide III (C-N) at 1312; the amide absorbance 

at 1660/1627 demonstrate differences in hydrogen bonding within the chitin show that 

the chitin present is alpha [151].  The transmission peaks between 3102 to 3400 cm-1 also 

show a pattern similar to alpha chitin with strong transmission for hydroxyl groups (OH) 

at �3479 and � 3448 and amines (as
NH and sNH)  respectively (Figure 8)[151].   

 

 
 
Figure 8. FTIR Analysis of Chitin Samples. 
 
 

FT-IR data was collected to compare and contrast the quality of chitin obtained 

from different sources.  Similar transmission profiles from all samples demonstrating the 

presence of characteristic transmission peaks for vibrational information at hydroxyl 

bonds �3479 and �3426, amines �3290 and �3106 as well as hydrogen bonding in am-
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ides �1660, �1627 (Amide I), �1558 (Amide II) and �1312 Amide III.   Demonstrates 

that the in-situ chitin preparation results in an alpha type chitin with structure and purity 

to other bulk chitin preparation both in house and commercially available.   

XRD analysis of chitin samples also demonstrates that the predominance of puri-

fied alpha chitin all samples with 2� degrees peaks at 9.2° signifying the (020) crystal 

lattice, 12.7° signifying the (101) lattice, 19.1° signifying the (040) and (110) lattices, a 

minor bump at 23.2° denoting the (130) lattice, a 2� peak at 26.1 denoting the (013) lat-

tice (Figure 9) [151].   The EDX study of cicada wing was based on selecting characteris-

tic elements of interest such as (C, O and Ca). There was a reduction in the quantity of 

calcium content (Ca) after the chitin purification process. 

 

 
 
Figure 9. XRD Analysis of Different Chitin Samples. 
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XRD also shows a pattern of 2Q degrees and crystallinity similar to previously described 

alpha type chitins 2� degrees peaks at 9.2°, (020) crystal lattice, 12.7°, (101) lattice, 

19.1°, (040) and(110) lattices;, a minor bump at 23.2° for the (130) lattice, a 20 peak at 

26.1 denoting the (013) lattice. The chitin profile from the in-situ cicada wings which 

contains significantly less material but similar arrangement of peaks.   

 

3.6.2 Differential Chitin Nanofibers Organization in Cicada  

Using this technique, we examine the cuticle of the periodic cicada using SEM 

before and after cuticle extraction.  The results show striking diversity in the organization 

nanofibers chitin in the cuticle that is characteristic to specific anatomical structures with 

some structures, e.g. dorsal thorax and leg, having very organized chitin nanofibers  

while others displaying less, e.g. wing and eye (Table 3; Figure 10).  We observe highly 

organized chitin nanofibers in the dorsal thorax (Figure 10A), the head (Figure 10B) and 

the femur of the foreleg (Figure 10C) of the periodic cicada; while the nanochitin in the 

eye (Figure 10D) and wing blade are less organized.This organization is distinct in each 

of these areas and can be quantified as the deviation from the mean and the radial sums  

of the after a FFT analysis using the ImageJ Oval Profile Plugin (ref; Table 3). 

 
Table 3. Chitin Nanofibers Alignment in Different Anatomical Structures 
 
Structure # Images 

(n) 

Deviation 

from high 

mean angle 

Difference 

in Radial 

Sums 

Alignment Alignment 

relative to 

A/P body 
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direction axis* 

Wing 5 ±36.23 211.82 Low/no 

alignment* 

NA 

Dorsal head 5 ±6.12 685.12 Highly 

Aligned** 

orthogonal 

Dorsal 

Thorax 

5 ±6.66 850.26 Highly 

Aligned** 

orthogonal 

Eye 5 ±58.25 247.44 Low/non 

Aligned** 

NA 

Femur 5 ±12.12 459.02 Aligned* parallel 

 
*Proximal/distal axis for leg and wing     ** anterior/posterior 
 

 
  In general, the more organized the chitin nanofibers network, the lower the stand-

ard deviation from the mean high angle was determined for each image (n=5) and the 

smaller the difference in the radial sums after FTT. The magnitude of alignment can be 

determined by the difference between the maximum radial sum value and the minimum 

radial sum value.  

Beyond the general organization, there are qualitative differences in chitin nano-

fibers patterns.  The dorsal thorax of the periodic cicada is composed of a finely woven 

pattern of nanofibers that form braids of material (Figure 10A, thin arrows) that are 
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roughly parallel to the body anterior/posterior body axis (Figure 10A, double headed ar-

row).  

 

 
 
Figure 10. Anatomical Variation of 20nm Chitin Nanofiber Organization. 
 
 
The image of the cicada in the upper left hand portion depicts the location of each high 

imagination image.  

 
A) Dorsal thorax, the nanoscale fiber bundles are “woven’ into larger organization 

that is directly aligned with the body axis (small arrows) thick; double headed ar-

row showing the orientation of the image relative to the anterior/posterior body 

axis; scale bar 400nm. 

B) Dorsal Head region between the eyes, nanoscale fibers are also organized into 

higher order structures that are thicker than that seen in the dorsal thorax (thin ar-

rows), oval voids in this organized chitin are also present (thick short arrows), 
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however this organization is somewhat orthogonal to the main anterior/posterior 

body axis - double headed arrow showing anterior/posterior body axis; scale bar 

400nm. 

C) Foreleg femur segment, nanoscale order of the chitin is represented by thicker 

tightly organized bundles of chitin (50nm-100nm wide; thin arrows) that are 

cross-linked to one another (thick arrow) and that align along the length of the 

leg, double headed arrow showing proximal/distal axis of leg with the proximal 

towards the upper right; scale bar 400nm. 

D) Eye, the chitin underlying the eye of the periodic cicada is organized along any 

axid and exhibits a net-work of thin nanoscale chitin fibers (thin arrows), that are 

sometimes punctuated by thicker filaments (thick arrow); double headed arrow 

showing proximal/distal axis of leg with the proximal towards the upper right; 

scale bar 400nm. 

 
The region of the head of the periodic cicada between the eyes although com-

posed of the same 20nm chitin nanofibers has a thicker “braid (Figure 10B, thin arrows) 

that is orthogonal to the same anterior/posterior body axis (Figure 10B, double headed 

arrow) and which has a series of oval voids ranging in size from 100-150nm in width.  In 

the femur of the foreleg of the periodic cicada, exhibits an entirely different pattern of 

chitin nanofibers (Figure 10C) in which thicker band of chitin nanofibers (Figure 10C, 

thin arrows), which extend along the length of the leg (Figure 10C, double headed arrow) 

are connected by thinner fibers (Figure 10C, thick arrows).  However, some anatomical 
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structures exhibit little or no directionality to the chitin nanofiber organization.  The cuti-

cle in the eyes has a majority of the chitin nanofibers organized in an evenly distributed 

(Figure 10D, thin arrows) with an occasional thick fiber (Figure 10D, thick arrow).  

 

3.6.3 Epicuticle Organization and Nanoscale Chitin 

The nanochitin organization in the cuticle features does not necessarily reflect the 

distribution of epicuticle nanoscale structures as shown in figure 11.  The cicada eye has 

a defined nanostructured surface with hemispherical/conical structures that resemble oth-

er insect (Figure 11A) but do not show any relationship to the nanoscale chitin (Figure 

10D).  Moreover, the surface of the foreleg femur of the periodic cicada is decorated by 

nanoscale pits (Figure 11D) that do not follow the same distal to proximal alignment as 

the nanoscale chitin fiber (Figure 10B). 

 

 
 
Figure 11. Epicuticle Nanoscale Structures of the Eye and Leg from  
Periodic Cicada. 
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Magicicada septendecim.  A, B) compound eye; C, D) leg. A and B) low magnifi-

cation images, scale bar 40�m; C,D) high magnification images, scale bar 400nm. A) 

The compound eye of Magicicada septendecim is composed of hexagonal ommatidia 

(thin arrows) and a thin layer of electron desne material that obscure some of the omma-

tidia (thick arrow). B) high magnification of the surface of the ommatidia reveals a field 

of irregular low aspect ratio structures (thin arrows) that vary in shaped and size, scale 

bar 400nm; C) a low magnification image of the femur of the foreleg showing bristles 

(thin arrows) oriented and aligned along the distal/proximal axis (double headed arrow, 

distal toward lower left corner), the sockets of damaged bristles are also present (thick 

arrow), scale bar 40mm; D) high magnification of the area between bristles shows a field 

of fine 50-70nm pits (thin arrows), scale bar 400nm. 

However, some nanoscale epicuticle structures have a chitin nanofibers basis.  Ci-

cada wings have well characterized arrays of conical nanostructures that vary in size, 

shape and distribution from species to species and which control the optical and surface 

chemistry properties of the wing’s surface ([152-154]).  The surface of the periodic cica-

da wing is covered with low aspect round hemispherical cones (Figure 12C), while the 

wings of the dog day cicada (Tibicens tibicens) has a nanostructured surface that is com-

posed of higher aspect ratio nanocones (Figure 12B)[154].   
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Figure 12.  Comparison of Chitin Nanoscale Organization in Periodic  
and Annual Cicada Wing. 
 
 

A) Images of whole cicada wing before and after protein/lipid extraction.  On the 

left are the wings of the annual dog day cicada (Tibicen tibicen), top unprepared wing 

distinguished by a flat//nonglossy appearance and the brown/yellow pigmentation in the 

vein material; directly below is a prepared wing exhibiting a loss of pigmentation in the 

vein material and a bluish cast to the intervein space (arrow), not the fine areas without 

bluish cast (thin arrow). On the right are wing from the periodic cicada Magicicada sep-

tendecim, note the glossy/shiny appearance of the wing and yellow/orange pigmentation 



 

 
 

50

in the vein, directly below is a prepared wing exhibiting loss of pigment and clear/non-

shiny intervein material. B) high magnification micrograph of the unprepared dog day 

cicada wing which exhibits an array of nanocones, scale bar 400nm; C) high magnifica-

tion micrograph of the unprepared periodic wing showing irregular low aspect ratio hem-

ispherical nanoscale structures, scale bar 400nm; D) high magnification micrograph of a 

prepared dog day cicada wing from a region in which the bluish cast is broken. The area 

has two layers a top layer with conical chitin structures (thin arrows) and a base layer that 

exhibits a meshwork of chitin nanofibers (asterisk), scale bar 1�m; E) a highmagnifica-

tion micrograph of a periodic cicada wing has no nano-conical chitin layer, only the mesh 

work of chitin nanofibers; double headed arrow shows postion relative to proximal/distal 

axis of the wing, distal towards the upper right; scale bar 400nm. 

We have found that the underlying structure of the high aspect ratio nanocone ar-

ray is due to the presence of a thin layer which contains chitinous nanoscale cones (Fig-

ure 12D, thin arrows) that sits on top of an underlying cuticle nanochitin layer (Figure 

12D, asterisk), which is similar in organization and structure to that of the periodic cicada 

(Figure 12E).  This layer is tangible at the macroscopic level during the chitin prepara-

tion.  After the preparation, dog day cicada wing have a bluish/white layer in the inter-

vein regions of the wing (Figure 12A, arrow), this layer fractures and floats off the wing 

during the preparation.  
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3.6.4 Tymbal Membrane Contains Elaborate Nanoscale Structures 

We observe a similar connection between epicuticle nanoscale structures and chi-

tin nanoscale organization in the tymbal membrane. The tymbal membrane is the primary 

component of the sonic apparatus of the cicada and is located at the junction of the ab-

domen and the thorax (Figure 13A, arrow, 13B close-up). The tymbal membrane is a 

thin, ribbed structure.  Low power characterization of the surface of the tymbal mem-

brane reveals a netted pattern across the surface of the tymbal ribs (Figure 13C, arrow).  

More detailed inspection of this netter pattern reveals a distinct nanoscale arrangement of 

nano-knobs or pegs, one connected set that generates the network proper (Figure 13D, 

thin arrows) which than surrounds another independent set of non-connected knobs (Fig-

ure 13D, thick arrow).  Further inspect shows that the nanoscale knobs that compose the 

netted areas reside on a ridge (Figure 13E, thin arrows), while the nested nanoscale knobs 

are a clustered, non-connected ridge (Figure 13E, thick arrow).  The pegs themselves are 

400nm wide structures (Figure 13F, arrow).   
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Figure 13. Nanoscale Surface Structures on the Tymbal Membrane of the Periodic  
Cicada. 
 
 
Magicicada septendecim. A) photograph of an intact (minus wings) periodic cicada indi-

cating the location of the tymbal membrane (arrow). B) A more detailed image of the 

tymbal membrane in situ within the upper abdomen of the cicada. C) low magnification 

SEM micrograph of the tymbal membrane, showing the striated band structure of the tis-

sue and the netted/patterned structure of its surface (arrow), scale bar 25�m; inset, a low-

er magnification SEM of the entire tymbal membrane, scale bar 360�m; D) higher mag-

nification of the netted patterned surface which is composed of both connected lattices 

(thin arrows) that enclose unconnected punctate knob nanostructures (thick arrow, scale 
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bar 8�m; E) detail of an individual netted cell of this pattern showing a combination of 

nano pegs and knobs some incorporated into ridges that generate the closed cells (thin 

arrows) and other independent peg (thick arrows), scale bar 2�m; E) high magnification 

SEM micrograph of a cluster of 400nm  nanoknobs (thin arrow), scale bar 400nm.  

After, the chitin preparation/removal of the netted surface figure 14A, a underlying pat-

tern of nanochitin that shows some directional organization along the length of the tym-

bal ribs is apparent (Figure 14B, thin arrows), as well as larger thicker chitin fiber con-

nections between the highpoints of the ribs (Figure 13, asterisk) and the lower inter-rib 

areas (Figure 14B, thick arrow).  Chitin nano-balls appear as small flecks at low magnifi-

cation (Figure 14B) are revealed across the surface of the chitin network of the tymbal 

membrane (Figure 14C thin arrows); these structures are between 80-100nm in diameter 

and may be the basis for the nano-knob structures observed on the native tymbal surface.  
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Figure 14. Chitin Nanofiber Organization in Tymbal Membrane of the Periodic Cicada. 
Magicicada septendecim. 
 
  

A) low magnification SEM of the tymbal membrane surface after the extraction of 

protein and lipids.  A similar pattern of rib structures is clear preserved (arrows), scale 

bar 120�m; B) higher magnification SEM micrograph of a rib from a tymbal membrane 

chitin preparation, a disorganized matrix of nano-chitin is found both on the ribs (aster-

isks) and the inter-rib surfaces (thin arrows), occasionally thicker chitin fibers extend 

from the rib to the inter-rib surface (thick arrow), scale bar 2�m; C) At higher mag-

nifcations round  chitin balls litter the surface of the tymbal chitin surface (thin arrows), 

scale bar 500nm; D) detail of the 50-100nm chitin balls (thick arrows) on the surface of 

the tymbal membrane, scale bar 200nm. 
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3.6.5 Local Variation in Chitin Nano Fiber Organization 

Chitin nanofiber organized can be locally complex. Within the socket region of a 

dorsal thoracic bristle from the periodic cicada, we observed several distinct patterns of 

chitin nanofibers (Figure 15A).  The outer rim of the bristle socket as a cross-linked, even 

arrangement of chitin nanofibers (Figure 15B); we observed highly aligned fibers along 

the length of the bristle (Figure 15C); and within the bristle socket we observe a network 

of thicker chitin nanofibers (Figure 15D). 

 

 
 
Figure 15. Local Variation of Chitin Nanofiber Organization in Dorsal  
Thoracic Bristle. 
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A) An SEM micrograph of a dorsal thoracic bristle in socket after in situ cuticle chitin 

preparation; inset show different local organizations of surface chitin nanofibers; scale 

bar 1mm; B) a detail of the lip of the socket region exhibiting a matted meshwork of chi-

tin nanofibers, scale bar 400nm; C) chitin in the bristle proper showing alignment of the 

fibers along the length of the bristle, scale bare 400nm; D) inside the socket chitin nano-

fibers are thicker and have a more woven appearance, scale bar 400nm. 

 

3.6.6 Chitin Nanofibers Organization in Insects and Arthropods 

To determine whether this technique could be used to study smaller insects or 

other arthropods such as crustaceans, we used it to determine the in situ organization of 

chitin nanofibers in the fruit fly Drosophila melanogaster, a tiny insect several millime-

ters long, and the Atlantic brown shrimp, Farfantepenaeus aztecus. We found that the 

technique worked regardless of the size of the organism.  We found that the wing of Dro-

sophila melanogaster had a virtually identical pattern of nanoscale chitin as the wing of 

the period cicada and the sub-wing of the Dog day cicada (Figure 16A). 
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Figure 16. Nanoscale Chitin Organization in the Wing of the Fruit Fly  
 
 
Drosophila Melanogasterand the head of the atlanitic brown shrimp (Farfantepenaeus Az-

tecus).A) 20nm chitin nanofibers organization in the wing of the fruit fly Drosophila mel-

anogaster shows a similar network to that found in the wings of cicada, scale bar 400nm; 

B) Chitin nanofibers in the shrimp head has a similar woven pattern to that of the head 

and thorax of the cicada, large holes separate the woven chitin fibers (arrows); scale bar 

400nm. C) nanoscale Chitin organization from the dorsal thorax of the fruit sly exhibiting 

a tight weave or chitin nanofibers, scale bar 200nm; D) nanoscale chitin organization 

from the dorsal thorax of a fruit fly homozygous mutant for the chitin binding protein 

CPR51A show a thicker chitin fibers and reduced organization, scale bar 200nm. 

Moreover, the head of the shrimp Farfantepenaeus aztecus exhibited morphology 

similar to the head of the periodic cicada, showing thick braids of chitin nanofibers that 

are interspersed with oval voids, although the number of these voids is larger in the 

shrimp (Figure 16B, arrow).  We also used this opportunity to examine the several strains 



 

 
 

58

of Drosophila that were mutant for genes that encoded putative cuticle binding proteins.  

In this small candidate gene screen we found that one, Cpr51A, expressed a disrupted 

nano-chitin morphology in the dorsal thorax of the fly (Figure 16D).  Wild type fruit 

flies, express a chitin nanofibers organization in the dorsal thorax (Figure 16C) that is 

similar to that observed in the periodic cicada (Figure 10A).  In the dorsal thorax of the 

fruit fly, the chitin nanofibers are woven into a loose braid (Figure 16C), in flies homo-

zygous for Cpr51A, the fibers are thicker and are less organized (Figure 16D). 

 

3.7 Discussion 

Insect and arthropods cuticles exhibit a broad range of micro-and macro-scale 

morphologies, in this manuscript this morphological diversity extents into the nanoscale 

[152, 154-157].  In this paper, we have developed a simple technique that enables the 

characterization of nanoscale chitin fiber organization within the cuticle of insects and 

arthropods using SEM.  Specifically, we examined nanoscale chitin organization in the 

periodic cicada Magicicada septendecim has a wide range of morphology that is particu-

lar to the tissue where is it found.  We have shown that the chitin purified in this manner 

maintains its chemical integrity while preserving important spatial and positional infor-

mation regarding the nanoscale organization and structure of chitin nanofibers.  The 

20nm self-assembled chitin nanofibers also has a wide range of morphologies ranging 

from organized into loosely woven mats in insect wings and sensory organs, but is highly 

organized in other structures such as the leg, thorax and head.  Moreover, we have also 

examined nanoscale chitin organization in other insects and the crustacean Farfantepe-
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naeus aztecus and shown that there are in some cases similar ordering of chitin nano-

fibers which suggests a common role.  Our results suggest that the assembly of chitin 

nanofibers is controlled in a tissue dependent fashion and may reflect or indicate specific 

mechanical and/or physical properties required of these anatomical structures.  Although, 

nanoscale structure affect the mechanical properties of the cuticle remains to be tested but 

given the wide range of these properties in both cuticles and in purified chitin may be de-

fined in part due to nanoscale structure. 

 Using this technique, we are also able to identify two new chitin based structures 

in the epicuticle.  The surface of some wings of cicada like the dog day cicada, Tibicens 

tibicens have an arrays of high aspect ratio nanocones; while other cicadas like the peri-

odic cicada Magicicada septendecim wings with smaller less prominent nanoscale fea-

tures.  These nanoscale structures endow the surface of the wing with additional proper-

ties such as superhydrophobicity, self-cleaning, broad band antireflection and even anti-

microbial activity [152-154, 158-161].  While, the epicuticle of most insects is a waxy 

layer and we have shown that in addition to this wax is a separate layer that is distinct and 

separate of nanostructured chitin that serves as the scaffold for more superficial wax and 

lipid layers (Figure12A).  The connection between the highly randomly arranged deeper 

layer of procuticle chitin is weak and disrupted during the protein/lipid extraction process 

which suggests that this layer is generated and secreted in a separate step during the wing 

formation.  We also found a new nanostructured surface on the epicuticle of the noise 

making tymbal membrane (Figures 13 and 14).  The tymbal membrane is the noise gen-

erating organ of the cicada and the ribbed disc-shapped structure is composed of chitin 
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with bands of the elastic cuticle protien RESILIN[162].  We found a net-like pattern of 

material on the surface of the tymbal membrane that is punctuated with 400nm nanoscale 

knobs structure.  In a fashion, similar to the nanocones on the dog day cicada, these nano 

knobs have a core composed of 100nm chitin nano-balls.  Both the nanocones of certain 

cicada wings and nanoknob of the tymbal membrane may represent specialized epitcuti-

cle features that use chitin scaffolds to maintain and stability their structure. 

 Cuticular components are secreted from the underlying epithelial cell layer as a 

liquid crystal matrix and are deposited into an assembly zone where chitin nanofibers and 

specific proteins self-assemble into regularly arranged fibrils[163-165]. Within this as-

sembly zone, nanofibers of the chitin polysaccharide are arranged into crystalline bundles 

that are characterized by anti-paralleled hydrogen bonds between sugar chains [19, 166]. 

The interaction of specific chitin-binding proteins with chitin determines most the proper-

ties of a cuticle, e.g hardness, flexibility, elasticity [19, 20, 24, 167-170]. The rubber-like 

chitin-binding protein RESILIN is the cuticular component of the tendons of certain in-

sect’s legs responsible of storing mechanical energy needed for jumping and play roles in 

flexibility in dragon and damsel fly wings[169, 171-174].The hallmark of most cuticle 

proteins is the presence of a chitin binding domain, the most common being the Rebin 

and Reddiford (R&R) domain [20, 24, 174-176].  Several hundred putative chitin binding 

proteins that have been identified by genome analysis of insects and other arthropods 

[177], however, the manner in which this binding domain interacts with chitin nanofibers 

and/or chitin crystallites, the nature of protein-protein interactions within the cuticle, as 

well as the manner in which chitin nanofibers are organized to confer specific functions 
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remains unclear.  Some chitin binding proteins organize chitin into elaborate structures. 

In the peritrophic membrane of the insect midgut, chitin organizes a hexagonal lattice 

laced with ~10nm nanopores that appear to function as sizing filters for food particle [28, 

178]. 

The thorax is a critical component of the indirect flight physiology of the fly and 

its nanoscale chitin organization is especially well organized.  In the thorax of wild type 

adult fly, the 20nm chitin nanofibers are woven into a highly-organized structure (Figure 

10A) which is orthogonal to the long axis of the wing. We have found one mutant that 

changes this organization; thoraxes mutant for Cuticle Protein 51A (Cpr51A) expressed 

disorganized chitin nanofibers as well as an increase in the thickness of individual chitin 

based fibers (Figure 10B).  The implication of this result is that CPR51A is both prevent-

ing the bundling of thick chitin fibers, as well as being required for the organizing a wo-

ven chitin nanofibers material.  Furthermore, the affects that this disorganized chitin in 

Cpr51A mutants have on larger scale mechanics such as movement or flight remains un-

described as well.  We believe that there are other genes that encode other cuticle proteins 

will be involved in other aspects of weaving nanochitin and those altering the pattern of 

the woven nanochitin will change the mechanical properties of the thorax. 

 The insect cuticle is similar to modern composite materials such as res-

in/fiberglass, however, the major difference is that within the insect cuticle the resin, i.e. 

the proteins/lipid matrix, actively controls and organize the fibrous component and there-

by actively change and control the mechanical and physical properties of the materials.  

In essence, insect cuticles are a quintessential biological smart composite material. By 
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understanding the process of cuticle formation and the interaction between specific cuti-

cle proteins and chitin, we will be able to develop smart resins that can organize or reor-

ganize nanofiber matrixes in other systems, however this has been problematic due to the 

issues with the the characterization of nanoscale chitin organization within the cuticle.  
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CHAPTER IV 
 

FABRICATION OF BIOMIMETIC NANOCONES (BNC’S) ONTO CHITIN NANO 
FIBER SCAFFOLDS IN-SITU VIA SELF-ASSEMBLY 

 
 

4.1 Introduction 
 

In this study, I describe an eco-friendly method for extracting and purifying chitin 

in-situ from a whole cicada along with demonstrating a procedure by which we replicate 

the Biomimetic nanocones (BNC’s) structure of the cicada wing using our prepared chitin 

scaffolds. I analysed the structure of Dog-day (DD) and Brood II (BII) cicada, which pos-

sess cones and honey comb structure. I used BII prepared chitin scaffold as a substrate to 

mimic DD nanocones. Have characterized the structural morphology of these BNC’s us-

ing FE-SEM and structural confirmation of the polymer scaffold using FT-IR. Further 

studied the interaction of these BNC’s with mammalian cells which shows that these chi-

tin scaffolds display extraordinarily diverse morphologies for biomedical applications. 

This information provides insight into the mechanisms that are essential for in-vitro na-

noscale manipulation of chitin in hydrogels and other synthetic biomaterials.  

Biopolymers, chitin is mechanically stable but biodegradable, nontoxic, and phys-

iologically inert which makes then very unique compared to other polymers [30]. Despite 

these desirable properties, artificial bioinspired mimetic composites based on 
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chitin nanofibers have been difficult to produce due to chitin’s insolubility in most aque-

ous and organic solvents [32].  Here, we report the green process of fabricating chitin 

nanocones following the protocol of extracting chitin from insect based on authors previ-

ous work [179] and mimic the native structures found in insect cuticles that have a di-

verse array of material properties and a great deal of potential in various biomedical ap-

plications [1, 81, 180]. Despite these desirable properties, artificial bioinspired mimictic 

composites based on chitin nanofibers have been difficult to produce due to chitin’s in-

solubility in most organic solvents [32, 181]. But, following our previous method of ex-

tracting chitin nanofibers from both DD and BII cicada, we can overcome the problem of 

using harmful solvents to dissolve chitin and maintain the innate structure of the chitin 

assembly. The authors report the successful replication of self-assembled BNC’s of chitin 

for the first time to the best of our knowledge. We used BII chitin scaffold as a substrate 

to create BNC’s that replicate the DD cones by creating a self-assembled monolayer of 

PS nano-beads onto extracted chitin scaffold to form patterned, bio-mimicked nanocones 

that could be a potential material for various biomedical applications. 

  

4.2 Materials and Methods 

4.2.1 Cicada Species Used in this Study  

Insect cuticles for these experiments were from the periodic 17-year cicada BII - 

Magicicada septendecim and the annual DD - Tibicens tibicens cicada collected locally in 

Greensboro, North Carolina. 
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4.2.2 Cuticle Chitin Preparation 

The BII and DD species of cicada wings are dissected carefully and washed three 

times in dH2O and then followed the protocol based on the authors previous research 

work [179]. Further, following our previous method [179] the dissected wing samples, 

after the extracted chitin, are further dehydrated in an ethanol series 20%, 50% 70% 84%, 

90%, 95% for 10-15 minutes and into 100% ethanol overnight and then allowed the sol-

vent to evaporate.  

 

4.2.3 Fabrication of NNC’s of Chitin 

Polystyrene nano-spheres (Polybead carboxylate, 380 nm) were purchased from 

Polysciences, Inc. Beads arrived in 2.5% w/v aqueous suspension. The NNC’s were fab-

ricated onto BII prepared chitin scaffold to mimic the cone structure of DD cicada using 

380 nm beads. CL [59] technique is applied to form nano-patterned surfaces based on the 

colloid–colloid and colloid–substrate interactions. The PS nanobeads are selfassembled 

and monolayered onto the extracted chitin scaffold of BII wing. These beads are received 

on the chitin scaffold through air-water interface and etched using south bay technology 

model PC-2000 plasma cleaner. A schematic representation of the fabrication process is 

shown in figure 17. 
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Figure 17. Schematic of Generating Nano-Structured Surfaces (NSS) 
 
 
4.2.4 SEM (Scanning Electron-Microscopy)  

 Sample preparation and imaging for morphology study: The samples of the native 

cicada BII and DD wings, the chitin extracted prepared wing and the BNC’s surfaces 

were washed 3-4 times in dH2O. After drying, the samples had a 4-nm thickness of gold 

layer applied using a Leica EM ACE200 with a real-time thickness monitoring quartz 

crystal microbalance (QCM). The scanning electron micrographs were obtained using a 

Zeiss Auriga FIB/SEM. Scale bars were added using ImageJ software.  

 

4.2.5 Freeze Fracture Analyses 

The DD wing sample is cleaned properly in DI water and then submerged the 

sample in liquid nitrogen until equilibration occurs. Once the equilibrium is reached the 
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sample is smashed or hit quickly in order to cause fracture using a small hammer and 

then SEM analysis is done. 

 

4.2.6 FTIR Analysis 

FT-IR (Fourier transform infrared spectroscopy), model 670 IR Varian is used to 

confirm the presence of polystyrene nanobeads masked on to chitin scaffold of BII. Sepa-

rate spectrums were taken for prepared chitin, polystyrene nanobeads and chitin scaffolds 

with mololayers polystyrene nanobeads.  

 

4.2.7 Confocal Studies 

MDCK cells were grown on either plain wing or etched wing surfaces for seven 

days at 37C with 5% CO2. Following the culture period cells were washed twice with 

PBS, then fixed for 30 minutes in 4% paraformaldehyde. Fixed cells were washed and 

then permeablized in 1x PBT (PBS with 1% BSA, 0.1% Triton X) for one hour. Follow-

ing permeabilaztion, cells were incubated with a mouse anti-human E-Cadherin antibody 

at 1:500 dilutions in PBT overnight at 4C. Unbound primary antibody was removed by 

washing, followed by 2 hours of staining with goat anti-mouse Cy3 labeled secondary 

antibody. Finally, cells were stained with Phalloidin-AF488 and DAPI for four hours and 

thirty minutes, respectively. Stained cells were mounted in Permount and imaged using a 

Zeiss Spinning Disc Confocal Microscope. 
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4.3 Results  

The main objective of this study is to develop a simple and rapid method of mim-

icking native nano structures of cicada using its prepared wing as a substrate. We used 

insect wings for chitin extraction specifically the periodic 17 year cicada BII collected 

locally in Greensboro, North Carolina during the June 2013 emergence, the annual DD 

cicada collected locally in Greensboro, North Carolina during the summer of 2013, Ex-

traction and purification of chitin scaffold from native DD and BII wing is done based on 

authors previous work explaining the crystallinity and structural bond through XRD (X-

ray diffraction) and FT-IR (Fourier transformer infrared spectroscopy) [179]. Recent ex-

periments have demonstrated that chitin hydrogel formation can result in different chitin 

morphologies using HFIP as a solvent [182]. We have generated a simple and fast tech-

nique that enables the preservation of nanoscale chitin structure in the 

context of gross anatomy and preserve the innate assembled chitin. This results in a clear, 

structurally intact and preserved native assembly of chitin exoskeleton (compare Figure 

18A and 18B) and also, the SEM image of native DD wing and prepared wing structure 

(compare Figure 18C and 18D).  
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Figure 18.  The SEM Image of Native DD Wing and Prepared Wing Structure. 
The image of (A) Native DD cicada wing (B) Prepared chitin scaffold from native DD 
wing and SEM image of (C) Cone structure of native Dog-Day cicada wing and (D) Pre-
pared wing scaffold with very thin layer closely bound to chitin scaffold. 
 

The chitin within the cuticle displays a purity that is comparable to commercial 

available chitin samples. Similarly, BII native wing and prepared wing morphologies 

(compare Figure 19A and 19B) and also, the SEM image of native BII wing and prepared 

wing structure (compare Figure 19C and 19D). 
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Figure 19. The SEM Image of Native BII Wing and Prepared Wing Structure. 
The image of (A) Native brood II cicada wing (B) Prepared chitin scaffold from 
native brood II wing and SEM image of (C) Cone structure of native  
Brude II cicada wing and (D) Prepared chitin scaffold 
 
 

The DD wing has this unique cone like morphology which plays a great role in 

wettability and antimicrobial/fungal activity [180] but the prepared wing still possed a 

layer of tangible at the macroscopic level during the chitin preparation and the BII wing 

has a honey comb like structure [179] but the prepared wing does not possess any extra 

layer as DD wing, which makes it easy to use BII prepared wing as a substrate for mask-

ing PS beads to mimic the unique BNC like structure of DD cicada wing.   

To understand the internal structure of DD cicada wing for mimicking its cone 

structure, freeze fracture (FF), which is a unique process that provides the planar view of 

structural organization through electron microscope is performed. This method is been 

followed by researchers to analyze the internal structure [183]. Since, this technique helps 
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to produce cross-sections of DD wing samples. We took a complete DD wing cross-

sectioned and the structural morphology of the wing is shown in figure 20, which pro-

vides an approximation of PS size to replicate the BNC’s on to BII prepared wing.  

  

 
 
Figure 20. Cross-Section of DD Wing After FF of the Sample in SEM 
 
 
The FTIR analysis of chitin, polystyrene nanobeads and polystyrene nano beads masked 

onto chitin The characteristic transmission peaks that represent the amide bonds of chitin 

amide I (vC=O) at 1660 and 1627, Amide II (vC-N) at 1558 and amide III (vC-N) at 1312; 

the amide absorbance at 1660/ 627 demonstrate differences in hydrogen bonding within 

the chitin show that the chitin present is alpha and the transmission peaks between 3102 

to 3400 cm-1 also show a pattern similar to alpha chitin with strong transmission for hy-

droxyl groups (OH) at 3479 and 3448 and amines (as
NH and sNH) respectively [179] and fur-

ther the transmission peak for polystyrene beads are 1600 to 1400 cc bond stretching vi-

bration and 1250 to 900 shows the presence of aromatic CH deformation vibration and 
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the combined peak of both chitin with polystyrene nanobead transmission peak is ab-

sorbed to provide an insight of masked substrate as shown in figure 21. 

  

 
 
Figure 21. Shows The FT-IR Peaks of Purified Chitin Wing, Polystyrene Beads, Polysty-
rene Beads on Brude II Chitin Scaffold 
 
 
4.3.1 Fabrication of BNC’s onto BII Prepared Chitin Scaffold 

The chitin scaffold extracted from BII is used as a substrate to mask the polystyrene 

nanobeads and etched to form chitin nanocones that forms the native nanocones of DD 

cicada wings. Polystyrene nano-spheres with diameters 380 nm were centrifugedand re-

suspended in equal parts water and ethanol at 5% w/v. 22 mm2 cover glass substrates 

were cleaned and rendered hydrophilic via oxygen plasma cleaning using a South Bay 
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Technology Model PC-2000 plasma cleaner. Instrument and operating specifications are 

as follows: RF 13.56 MHz capacitively coupled plasma (CCP) operated at forward power 

75-100W with a chamber pressure 180-200mT for 30 sec exposure times. A small vol-

ume, 10-15 uL of bead suspension, was applied to a clean glass substrate and allowed to 

fully wet at which point it was then slowly immersed at a shallow angle (20-30o) relative 

to the water surface into a 100-mm diameter glass Petri dish three-quarters filled with de-

ionized water. The bead suspension diffuses across the water surface and forms a loosely 

ordered monolayer at the air/water interface. A small volume 4-6 uL of 2% w/v do-

decylsodiumsulfate (SDS) is gently applied to the surface away from the film, driving the 

beads into a stable hexagonally close-packed monolayer. The film can be removed from 

the water surface by essentially reversing the process of loading, i.e. slowly submerging, 

at a shallow angle (20-30o), a clean hydrophilic “receiving” BII substrate underneath the 

film and delicately scooping and withdrawing it from the surface. For this technique spe-

cifically, the wettability of the receiving substrate must be emphasized, as it is particular-

ly important for film removal and quality. 

Further, using the south bay technology model PC-2000 unit mentioned previously 

and oxygen as the process gas, isotropic etching of polymeric substrates was performed. 

For isotropic (PE), substrates were mounted on the grounded base of the plasma chamber 

and plasma treated at 100 W forward power and chamber pressure ~ 200 mT for definite 

exposure times. Mounting the masked substrates directly on the self-biased RF powered 

electrode allowed anisotropic etching through reactive ion etching (RIE). Process param-

eters of 100Wforward power ~ -700 V DC bias, and ~ 200 mT chamber pressures were 
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used for all RIE and 1:30m of exposure times is given for formation of cones structures. 

The mimicked cones are around 200 -300 nm in size which resembles the size of DD 

wings as shown below in figure 22. 

 

 
 
Figure 22. Shows (A) The Self-Assembled Polystyrene Nano Beads on  
Chitin Scaffold and (B) Biomimetic Chitin Nanocones.  
 
 
4.3.2 Confocal Studies 

Based on our previous work exploring the potential of cicada wings on its wetta-

bility and antimicrobial activity, in this work we explored the potential of these fabricated 

BNC’s in tissue engineering, we studied the cell proliferation of MDCK cells which were 

seven days cultured onto plastic surface as a control, on mimicked BNC’s.  

Cells grown on plain wings failed to develop the normal epithelial sheets characteristic of 

MDCK cells grown on tissue culture plastic. Instead, the epithelium formed was disor-

ganized and patchy (figure 23).  
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Figure 23. Mdck Cells were Grown for Seven Days on Unmodified Chitin Surfaces. Cells 
are Stained for E-Cadherin (Rhodamine), Actin (Fitc) and Dna (Dapi). Red Arrows Indi-
cate Tubule-Like Structures. 
 
 

Tubule-like structures were also observed; however, it is unclear whether these 

structures were the result of cell growth around protrusions from the wing surface or may 

be indicative of tubule formation. Cells grown on the etched wing showed highly unusual 

morphology. Cells appeared spindle shaped with long cytoplasmic projections not nor-

mally observed in MDCK cells grown on tissue culture plastic (figure 24).  
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Figure 24. MDCK Cells were Grown for Seven Days on Etched Chitin Surfaces. Cells 
are Stained for E-Cadherin (Rhodamine), Actin (FITC) and DNA (DAPI). 
 
 

Epithelium growth was not observed, with cells instead forming disorganized 

clumps of small numbers of cells. Actin and cadherin organization were both abnormal. 

Several instances of what appeared to be cell motive membrane extensions were ob-

served, possibly indicating an epithelial–to- mesenchymal transition (Figure 25). 
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Figure 25. Migratory Cell From Epithelial–To- Mesenchymal Transition.  
 
 
  The surface of the etched wing also appeared to cause cell membrane “deposi-

tion”, wherein portions of the cell membrane where found to be left behind a migrating 

cell (Figure 26).  
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Figure 26.  Deposited Cell Membrane Clearly Visible Following Culture on Etched Chi-
tin Surface. 
 
 
This may be a result of stronger adhesion forces between the ECM binding proteins and 

the surface than the ECM binding proteins and the cytoskeleton.  

 

4.4 Discussion 

The application of polymeric nanomaterial and its nanomimetic process through 

various nanotechnological approaches plays a vital role in the area of biomedical re-

search. This process of fabrication and growing owing to its capability for producing 

nanostructures that are able to mimic natural existing structural surfaces which has a 

great potential in various applications. Few aspects that should be focused in regenerative 

medicine are the formation of desired scaffold structure, identification and creation of 
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proper signaling systems or cues to generate self-healing potentiality of endogenous stem 

cells; developing efficient targeting systems for stem cell therapies, creating standard mi-

croenvironment. Finally, still many nanotechnological applications are currently at the 

concept stage and will require much more basic research before they can be commercial-

ized.  
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CHAPTER V 
 

CHITIN AND CHITOSAN BASED SYNTHESIS OF SILVER NANOPARTI-
CLES/NANOWIRES ITS MECHANISM AND POTENTIAL APPLICATIONS 

 
 
5.1 Introduction 
 

Many researchers are working on synthesis of nanosized inorganic/organic mate-

rials and their composites to explore new applications. There is an increasing interest in 

developing nanodevices, which could be used in numerous physical, biological and med-

ical applications [184-186]. Ag (Silver) nanoparticles play an important role in wide vari-

ety of applications. Ag nano filters are used in air conditioners to make the outgoing air 

free from bacteria. Ag based nanocompounds are used to purify water and to reduce the 

pollutants [187, 188]. Nanocomposites are temperature and corrosion resistant. Nano 

clothes, either Ag nanoparticles coated or mixed in the fibres, are under development. Ag 

nanoparticles are more prominent as compared to other metal nanoparticles like Au, Cu 

etc. because of their wide applications in catalysis [184], contrast agent [189], surface 

enhanced raman scattering [190, 191], and their antibacterial properties [192, 193]. These 

wide applications have attracted the attention of scientists to produce them by different 

methods. The most common mode of synthesis is the chemical route by reducing silver 

nitrate using sodium borohydride as follows [194, 195]:
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AgNO3 + NaBH4Ag + ½ H2 + ½ B2H6 + NaNO3 

 

 

Usually, through this method of synthesis of Ag nanoparticles, the size of Ag as small as 

122 nm. The plasmon absorbance is around 400 nm and the peak full width at half max-

imum (FWHM) is 50-70 nm. The absorption of borohydride plays an important role in 

stabilizing growing nanoparticles by providing particle surface charge. Later in the reac-

tion too much sodium hydroxide increases the overall ionic strength and the particles get 

aggregated. Therefore, other authors have used polyvinylpyrrolidone to control their size. 

Due to large positive retention of potential of Ag nanoparticle, oxidation due to stable 

aqueous and alcoholic suspension is thermodynamically unfavourable without the aid of 

capping agents. Aggregation can be inhibited by the thick electric double layer,that forms 

around the metal particles in low- ionic- strength suspension. For high ionic strength of 

organic phase suspension, capping agents such as self-assembled monolayers [196], sur-

factants [197, 198], polymer and dendrimers [199-202] are employed to protect the parti-

cles from aggregation. Nanoparticles produced by chemical reduction method are mostly 

non-uniform in size which add variability in their properties. Controlling the particle size 

has been a necessity to drive out the desired properties. Many authors have reported 

methods for selection of size and shape of nanoparticles for an efficient control over 

many physical and chemical properties [190, 203]. 

Most of them have used chemical methods for capping to control their size. For 

the last few years biological methods gained an edge over the above methods due to their 

being environment friendly, cheaper, fast and less time consuming. During the prepara-
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tion of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) stabilizers are one 

kind of major agent that should be present and they play an important role in controlling 

the formation of nanoparticles, as well as their dispersion stability. Polymers are often 

used as particle stabilizers due to the fact that they are effective in preventing agglomera-

tion and precipitation of the particles. This is important in synthesizing nanoparticles with 

nanocomposites, including photochemical [204], Chemical [205], microwave assisted 

[206, 207], sonochemical and radiochemical [208] assisted synthesis of Ag nanoparticles 

are been carried out.  

  I report the green synthesis of AgNPs and AgNWs using chitosan/chitin based 

polymer as both reducing and stabilizing agent and without using any toxic chemicals. 

Chitosan / chitin is a polysaccharide that occurs naturally. They are investigated as a nat-

ural cationic biopolymer because of its known excellent biocompatibility, biodegradabil-

ity, nontoxicity, bioactivity, and multifunctional groups from years of research. It is also 

extensively being studied for food packaging film, bone substitutes, artificial 

skin,biomedical applications and pH sensitive drug delivery among others due to a num-

ber of great properties it possesses [32, 179]. 

 

5.2 Materials and Methods 

5.2.1 Chitosan and Chitin Sample Preparation 

The chitosan polymer (molecular weight: 150,000, 1.5% w/v), acetic acid, sodium 

hydroxide (NaOH) and NaCl were purchased from Sigma-Aldrich (USA), and used as 

received without further purification. The BII and DD species of cicada wings are dis-
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sected carefully and washed three times in dH2O and then followed the protocol based on 

the authors previous research work [179]. Further, following our previous method [179] 

the dissected wing samples, after the extracted chitin, are further dehydrated in an ethanol 

series 20%, 50% 70% 84%, 90%, 95% for 10-15 minutes and into 100% ethanol over-

night and then allowed the solvent to evaporate.  

 

5.2.2 Synthesis of Silver Nanoparticle/Nanowires Through Chitosan Polymer  

AgNO3 (>99 %) was purchased from Sigma Aldrich chemicals and its solution of 

10-2M was prepared. Chitosan (0.5 g, dissolved in 10 mL of 1% v/v acetic acid solution) 

and 0.2M NaCl in 5mL solution is added drop by drop. Mixtures of chitosan and AgNO3 

solution were prepared with a ratio of 1:5 (by volume). The mixed sample solutions were 

kept for ultra-sonication for 3-4 h for formation of monodispersed nanoparticles. Further, 

the samples were drop casted to make films and analyzed for various analytical character-

izations.  

 

5.2.3 Synthesis of Silver Nanoparticle/Nanowires  

The chitin extracted from the DD species of cicada wings is used as a source of 

chitin and the AgNO3 (>99 %) solution of 10-2M is prepared. Chitosan (0.5 g, dissolved 

in 10 mL of 1% v/v acetic acid solution) and 0.2M NaCl in 5mL solution is added drop 

by drop on to the chitin wing sample and the sample were kept for ultra-sonication for 3-

4 h for formation of monodispersed nanoparticles. Further, the sample is analyzed for 

various analytical characterizations. 
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5.3 Characterization Techniques  

It is well known that a characteristic absorption peak for Ag nanoparticles appear 

around 400 -550 nm of the optical range due to surface plasmon resonance [209, 210]. 

This absorption identifies the formation of Ag nanoparticles in a colloidal solution of chi-

tosan. The optical absorptions of chitosan and mixtures of colloidal solution of AgNO3 

(sample solutions) were evaluated in 10 mm optical path length quartz cuvettes of the UV 

vis spectrophotometer.  

To get the size of the synthesized Ag nanoparticles transmission electron micro-

scope (TEM) is used. For getting the results, the copper grid was plasma treated and a 

drop of sample solution was kept on a copper grid and dried under a vacuum drier, before 

scanning the sample under TEM.  

Morphology including shape and size of nanoparticles, was viewed under Scan-

ning electron microscope (SEM). Sample preparation and imaging for morphology study: 

The samples are placed on SEM sample pug. After drying, the samples had a 4 nm thick-

ness of gold layer applied using a Leica EM ACE200 with a real time thickness monitor-

ing quartz crystal microbalance (QCM). The scanning electron micrographs were ob-

tained using a Zeiss Auriga FIB/SEM. Scale bars were added using ImageJ software.  

 

5.4 Results and Discussion  

The colloidal solutions of the mixture of AgNo3 and chitosan, and the schematic 

of the interaction of silver ions with NH3
+ group of the chitosan interacts as shown in fig-

ure 27. 
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Figure 27. Chitosan and Agno3 Mixture and Schematic of the Ionized  
Agno3 in Chitosan Matrix 
 
 
Further, the change in colour of the solution mixture of AgNo3 and chitosan forming 

pinkish colour as an indication of Ag nanoparticle synthesis and the schematic of how the 

amine group stabilizes the formation of Ag nanoparticle.  The change form opaque chi-

tosan to pinkish occurs by adding the AgNO3 solution into the solution, indicates the 

presence of Ag nanoparticles as shown in figure 28. This provides an insite on how the 

formation of the nanoparticles occurs during the series of reactions.  
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Figure 28. Ag Nanoparticle Formation and the Schematic of Stabilization  
of Ag Nanoparticles in Chitosan Matrix 
 
  
5.4.1 UV–Visible Spectroscopy Analysis 
 

The samples were analyzed by UV-vis spectrophotometer to confirm the presence 

of Ag nanoparticles. The absorption spectra recorded through UV–visible is quite sensi-

tive and provides the confirmation of the formation of silver nanoparticles because of the 

fact that silver nanoparticles exhibit an intense absorption peak due to surface plasmon 

resonance (SPR). Figure 29 shows the UV–vis spectra of silver nanoparticles prepared 

with chitosan and silver nitrate. The spectra exhibit an absorption band in the range of 

400–530 nm, a typical plasmon resonance band of silver nanoparticles. The efficiency of 

nanoparticle synthesis with chitosan and silver nitrate is due to an enhancement in the 

oxidation of hydroxyl groups of chitosan by silver ions. 
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Figure 29. UV–Visible Absorption Spectra of Silver Nanoparticles Stabilized 
 In Chitosan 
 
 

The graphs of absorbance vs wavelength (nm) are shown in Figure.26. It was not-

ed that the intensity increases with increase of time of reaction kinetics. Peak maxima, at 

410 nm and 510 nm, with broadening were observed for sample solutions respectively. 

The broadening and shifting of the peak maxima for sample solution over time may be 

due to inhomogeneous shape and size of the Ag nanoparticles at the initial stages of 

chemical reaction. 

 

5.4.2 DLS (Dynamic Light Scattering) Analysis 

Particle size, concentration and distribution are important factors to reflect the 

mechanism of particle formation. Particle size and distribution were determined by DLS 
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(Dynamic Light Scattering). figure 30. shows the graphs of volume (%) vs size (d.nm) 

and figure 31. Shows the graphs of intensity (%) vs size (d.nm). It is observed that the 

particles are monodisperesed as it is represented by having single peak and lesser PDI 

(polydisperesity index). The average particle size is around 50-100 nm, which is indicat-

ing a comparable population of Ag nanoparticles around this size.  

 

 
 
Figure 30. DLS Graphs of Size (D.Nm) Vs Volume (%) for Ag Nanoparticle  
in Chitosan Sample Solutions 
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Figure 31.  DLS Graphs of Size (D.Nm) Vs Intensity (%) for Ag Nanoparticle  
in Chitosan Sample Solutions 
 
 
5.4.3 Fourier Transform Infrared Spectroscopy Analysis (FTIR) 
 

The FTIR spectrum of chitin and chitosan with silver nanoparticles stabilized are 

studied to understand the structural bonding of Ag nanoparticle.  The spectra of α- chitin 

display a series of narrow absorption bands, typical of crystalline polysaccharide sam-

ples. The IR spectrum was collected to compare and contrast the quality of chitin ob-

tained. The presence of characteristic transmission peaks for vibrational information at 

hydroxyl bonds 3479 and 3426, amines 3290 and 3106 The C=O stretching region of the 

amide moiety, between 1700 and 1500 cm−1 yields the signature of α- chitin.  For α-

chitin, the amide I band is split into two components at 1660 and 1630 cm−1 (due to the 

influence of hydrogen bonding or the presence of an enol form of the amide moiety [211, 
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212]. whereas for β-chitin it is at 1630 cm−1. at 1,635 cm-1, representing chitin–CONH2 

and –NH2 groups, which indicated the attachment of silver to nitrogen atom.The amide II 

band is observed in both chitin allomorphs: at 1558 cm−1 for α-chitin and 1562 cm−1 for 

β-chitin [211].  Another characteristic marker is the CH deformation of the β-glycosidic 

bond. This band shifts from 895 cm−1 in α-chitin. These IR spectra demonstrate that the 

in situ chitin preparation results in an alpha type chitin as shown in figure 3. 

 

 
 
Figure 32. FTIR Analysis of Cicada Wing (CW), Purified CW and Ag Embedded 
 Chitin Wing  
 
 

The FTIR spectrum of chitosan and silver nanoparticles stabilized in Chitin.The 

presence of characteristic transmission peaks for vibrational information at hydroxyl 

bonds 3479 and 3426 cm−1, amines 3290 and 3106 cm−1. The C=O stretching region of 

the amide moiety, between 1700 and 1500 cm−1 yields the signature of α- chitin. At 1,635 
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cm-1, representing chitin–CONH2 and –NH2 groups, which indicated the attachment of 

silver to nitrogen atom causing increase in peak and at 895 cm-1 is the CH deformation of 

the β-glycosidic bond.   

The Fourier transform infrared spectrum of chitosan (Figure 33) shows vibration 

bands at 3447 and 3294 cm−1 due to overlapping of O–H and amine N–H stretching 

bands. 1657 and 1584 cm−1 for N–H bending; and 1,374 cm-1 of the C-H group of the 

primary alcoholic group in chitin. The amino group has a characteristic absorption band 

in the region of 3,400–3,500 cm-1,which is masked by the broad spectrum band from the 

–OH group. The absorption band at 1,657 cm-1 is attributed to the N–H bending group of 

chitosan. In the FTIR spectrum of silver nanoparticle stabilized in chitosan, the absorp-

tion bands at 1,657 cm-1 and 1584 cm-1 which representing chitosan –NH2 groups is dis-

appeared and a new band appeared at 1,600 cm-1 is formed which indicated the attach-

ment of silver to nitrogen atom [86] . The variation in the shape and peak positions of the 

–NH2  and –OH at 3,447 cm-1  occurred because of contribution toward the reduction and 

stabilization process. 
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Figure 33. FTIR Spectra of Silver Nanoparticles Stabilized in Chitosan and  
Pure Chitosan  
 
 
5.4.4 TEM (Transmission Electron Microscopy) Analysis of Silver Nanoparticles 

Stabilized in Chitosan  

TEM image of silver nanoparticles are shown in figure 34. The particles were cu-

bical in shape (dark) and distributed in smaller and bigger size zones. It was noted that 

the nanoparticles are having striations, which indicated the presence of crystallinity in the 

synthesized Ag nanoparticles. The size of the particles is around 30-60 nm.  
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Figure 34. TEM Image of Silver Nanoparticles Stabilized in Chitosan 
 
 
5.4.5 SEM (Scanning Electron Microscopy) Analysis  
 

In order to reveal the structure of the nanoparticles/nanowires and their surround-

ings, they were examined under SEM. Figure 35. shows the plain chitosan, AgNPs em-

bedded chitosan and AgNWs. It is found that the AgNWs are nucleated and grow through 

the chitosan film and also to verify the formation of AgNWs through the film, the chi-

tosan film is masked with monolayer polystyrene nanobeads (400nm), the AgNWs for-

mation through the chitosan film by forcing the beads out indicates the bottom-up for-
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mation of Ag nanowires. Further the EDAX (Energy Dispersive Spectroscopy) of the 

sample is taken to show the presence AgNWs. 

 

 
 
Figure 35. Shows the Optical and SEM Image of Chitosan and Ag Embedded  
Chitosan and Formation of Ag Nanowires  
 
 
(A) Chitosan plain film, (B) AgNP embedded Chitosan film, (C) SEM image of plain chi-

tosan film (D) SEM image of AgNP embedded chitosan film, (E) SEM image of polysty-

rene masked on AgNP embedded film and (F) AgNW emerging from the masked film 

and top left shows the EDAX of the AgNW.    

Similarly, the SEM analysis on chitin is performed. The optical image of the purifi-

cation of the cicada wing to chitin and the metallization of the Ag nanoparticle and the 

formation of the AgNWs through the purified chitin wing and the EDAX analysis is done 
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to prove the presence of metallic AgNWs and AgNps formation on the purified chitin 

sample as shown in figure 36.  

  

 
 
Figure 36. Chitin Synthesis of Silver Nanoparticles (Agnp) and Silver 
Nanowires (Agnw) 
 
 
5.4.6 SurPASS Surface Charge Density Analysis 
 

Characterization of the surface charge density of chitin with Ag nanoparti-

cle/nanowires conductimetric titration. The suspension samples were titrated with 0.05 M 

NaOH. and 4 ml of 0.05 M HCI which assures an excess of H+ in the suspension. The 

surface charge at solid/liquid interface determines the electrostatic interaction between 
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the solid surface and dissolved components in the liquid phase. It is therefore indicative 

for any changes relating to the solid surface and represents an important parameter for 

surface material characterization. Here the chitin wing sample with Ag nanoparticles 

were analyzed, the surface charge is related to the zeta potential at the solid/liquid inter-

face, which arises from the motion of the liquid phase relative to solid surface. It shows 

that the surface of the chitin/Ag shows more acidic with increase in zeta potential and the 

isoelectric point (IEP) is observed around ~ 6.7 which indicates that the overall sample 

surface is more or less inert or mild acidic and in the case of chitosan since the dissolving 

process requires acetic acid its surface charge is mild acidic too. Below, shows the table 

and the plot chitin /Ag surface to understand the IEP of the sample. 

  
Table 4. Surpass – Surface Charge Potential Analysis of Chitin/Ag 
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The graph of chitin /Ag surface is ploted based on the above result and the isoelectric 

point (IEP) is observed around ~ 6.7 which indicates that the overall sample surface is 

more or less inert or mild acidic which is shown in figure 37.  

 

 
 
Figure 37. Surpass Graph of Surface Charge Potential Analysis of Chitin/Ag 
 
 
5.5 Discussions 
 

It is well known that chemical reduction is a common method for preparing nano-

particles. For example, sodium borohydride solution is used for nucleation of Ag nano-

particles as follows: 

 
AgNO3  + NaBH4 → Ag + 1⁄2 H2+ 1⁄2 B2H6 + NaNO3 
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In the above reaction, it is the electrostatic force among the Ag nanoparticles, which keep 

them suspended in the colloidal solution. As the reaction proceeds, more borohydride 

layers are formed around them and particles grow in size. Some authors have used PVA 

(Polyvinyl alcohol) and other polymers for stabilization of nanoparticles. In the present 

investigation, Ag nanoparticles are reduced by chitosan and chitin biopolymer with its 

amine group and also the self-assembling polymer acts as a stabilizing agent, which pro-

vides the dual purpose for the formation of the Ag nanoparticles. 

 

5.5.1 Formation of Colloidal Particles 

The colloids in liquid are charged particles. These particles acquire charge through 

the composition of colloidal material. As soon as they are exposed to liquid, ions of op-

posite charges accumulate around them. The accumulation of ions leads to formation of 

electric double layer. The ions move under the phenomena of brownian motion and form 

a dynamic double layer around them which is loosely bound. Stability of colloids can be 

increased by increasing the stearic repulsion (hindrance), which occurs by adsorption of 

some layers of different materials on colloidal particle. Adsorption of organic molecules 

on inorganic colloidal particle e.g., Ag nanoparticle, is possible to reduce the attractive 

forces by addition of adsorbed layers. Consequently, the effective size of the particle 

changes, which helps them to stay at a larger distance due to reduction of the attractive 

interaction.  

In this process, the biosynthesis of the Ag nanoparticles is formed by self-

assembling of the chitosan/chitin biopolymer during the reduction process. Charge trans-
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fer takes place from the amine groups present in the biopolymer, resulting in the nuclea-

tion of Ag nanoparticles. Further,this is followed by condensation, surface reduction and 

electrostatic stabilization by oxalic acid molecule layer as shown in the schematic figure 

38. 

 

 
 
Figure 38. Schematic Representation of Nucleation, Condensation, Surface 
Reduction and Electrostatic Stabilization of Ag Nanoparticle 
 
 

Chitosan/chitin polymer have the amine and acetylamine functional group,where 

the acetamide of chitin makes it less soluble in water and more de-acetylated form of chi-

tin is chitosan is soluble in water under mild acidic condition. The structure of the alpha 

chitin orientation, which creates the socket for the Ag nanoparticles to get stabilized and 

also grow AgNWs. (shown below), which make them poorly soluble in water but the 

deacetylated form (chitosan) lacks the acetamide group. Below is the structure of alpha 

chitin. 
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Figure 39. Molecular Structure of Representation of Chitin/Chitosan 
 
 

On subsequent stages of reaction the above molecules structure of the polymer, get 

adsorbed to the Ag nanoparticle under influence of coulomb force (electrostatic double 

layer) resulting in formation of layers of the polymer side chain with the layer of reduc-

ing agent, i.e., amines as schematically shown in figure 40. 
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Figure 40. Schematic Representation of Formation of Electric Double Layer  
and Dynamic Electric Double Layers Around Ag Nanoparticle 
 
 
In the similar way of the formation of the AgNPs, the formation of the AgNWs arises 

through the surface of the polymer and the individual AgNPs assembles as a bottom-up 

proces to form the AgNWs and the structure of the polymer plays a major role in the 

AgNWs formation at the room temperature as shown in figure 41. The oriented attach-

ment and growth of the Ag NPs can lead to the formation of Ag NW. The structure of the 

α-chitin orientation and the de-acetylated form chitosan can creates the socket for the Ag 

NPs to get stabilized and Ag NWs formation could occur based on the crystal orientation.  
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Figure 41. SEM Image of Agnws and the Schematic of Chitosan Mediated 
Synthesis of Ag Nanowires (Agnws) 
 
 

The charge distribution of layers of polymer around the electric double layer, and 

dynamic electric double layers are schematically represented around the Ag nanoparticle 

(figure 42). There is coulombic force between the electric double layers. Outside this lay-

er there are multiple layers of polymer moieties, due to their adsorption around the elec-

tric double layers, forming diffuse layer. The stearic hindrance arose from the variability 

of molecule structures of the polymer, entangled around the Ag nanoparticles, which en-

hances their stability.  
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Figure 42. Schematic Representation of the Charges Formed Around Electric Double 
Layer and Dynamic Electric Double Layer (Diffuse Layer)  
 
 
5.6  Potential Application Of Chitosan/Ag Nanoparticles as A Biosensor 

5.6.1 Biosensor Overview 

A biosensor can be defined as a “compact analytical device or unit incorporating a 

biological or biologically derived sensitive recognition element integrated or associated 

with a physio-chemical transducer”[213]. There are three main parts of a biosensor: (i) 

the biological recognition elements that differentiate the target molecules in the presence 

of various chemicals, (ii) a transducer that converts the biorecognition event into a meas-

urable signal, and (iii) a signal processing system that converts the signal into a readable 

form [214-216]. The molecular recognition elements include receptors, enzymes, anti-

bodies, nucleic acids, microorganisms and lectins [217-219]. The five principal transduc-

er classes are electrochemical, optical, thermometric, piezoelectric, and magnetic [220, 
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221]. The majority of the current biosensors are of the electrochemical type, because of 

their better sensitivity, reproducibility, and easy maintenance as well as their low cost. 

Electrochemical sensors may be subdivided into potentiometric, amperometric, or con-

ductometric types [222]. One of the key issues in biosensor design is the establishment of 

a fast electron-transfer between the enzyme active site and the electrochemical transducer 

that is the communication between the biosensing element or biomolecule and the trans-

ducer. The active center of bio-recognition element, like those of most oxidoreductases, 

is electrically insulated by a protein shell. Because of this glycoprotein shell, the enzyme 

cannot be oxidized or reduced at an electrode easily or any potential. There are three 

'generations' of biosensors: First generation biosensors where the normal product of the 

reaction diffuses to the transducer and causes the response. Electronic coupling between 

redox enzymes and electrodes is achieved with the native enzyme co-factor. Second gen-

eration biosensors which involve specific 'mediators' between the reaction and the trans-

ducer in order to generate improved response. The third generation biosensors where the 

reaction itself causes the response and no product or mediator diffusion is directly in-

volved.  It aims at the direct electron transfer between the native enzyme co-factor and 

the electrode surface. 

 

5.6.2 Chemicals and Reagents  

Gold Electrode, chitosan and, chitosan/Ag and hydrogen peroxide. The supporting 

electrolyte is phosphate buffer at pH 6.5 were prepared by mixing stock standard solution 
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of K2HPO4 and KH2PO4 and adjust the pH with NaOH. All of the solutions were pre-

pared with deionized (DI) water. 

 

5.6.3 Apparatus 

The electrochemical measurements were performed using conventional three elec-

trode system consisting of a platinum wire counter electrode, Ag/AgCl (saturated KCl) 

reference electrode and a glassy carbon electrode (3 mm diameter) working electrode 

with electrochemical analyzer/workstation. A platinum wire counter electrode, Ag/AgCl 

(3 M KCl) reference electrode and gold electrode (GE, diameter 3mm) were inserted into 

a modified 5–10mL Glass cell as shown in figure 43.  
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Figure 43. Three Electrode Cell Setup for Electrochemical Workstation 
 
 

Electrochemical performance was performed on a bio-logic VMP3 electrochemi-

cal workstation using a three-electrode testing system with a gold electrode taped with a 

Ag-chitosan film (diameter of 6 mm) as working electrode, a platinum wire as counter-

electrode and Ag/AgCl as the reference electrode in 3 mL of 5 mM PBS (pH 7.0) as the 

electrolyte solution (an applied voltage of 0.8 V). Note that the CA measurements reach 

steady-state after 60 seconds. With the increase of H2O2 concentration, the current from 

the CA measurement (Figure 44) increases. 
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Figure 44. A. Chronoamperometry (CA) Measurements with an Applied Voltage of 0.8V 
with Addition of Different Concentration of H2O2 
 
 

Since there is no obvious change between chitosan associated with the addition of 

different concentration H2O2 (control experiment), it could be proposed that the enhanced 

current is due to the electron transfer between Ag NPs and H2O2. After averaging the cur-

rent over 240s for typical concentration of H2O2 as shown in Figure 45. 
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Figure 45. The Calibration Curve for the CA Measurements 
 
 

The linear relationship between Ag-chitosan film and H2O2 concentration from 0.53 

mM to 11.66 mM (R=0.9842) with a limit of detection of 94.3 uM estimated by a signal-

to-noise of 3 (3*standard error of 5 trials of blank sample/slope). This sensitive response 

is due to the high conductivity and good electrocatalytic activity of Ag-chitosan film, in-

dicating its potential application as the H2O2 sensor. 
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CHAPTER VI 
 

CONCLUSION 
 
 

Polymer nanomaterial’s in biomedical research has the potential to create a para-

digm shift in the healthcare systems of tomorrow by evolving efficient targeting systems 

for various therapies. This multidisciplinary approach will help to create a unique ‘smart 

polymeric’ biomaterial that can mimic the natural occurring materials. The nature itself 

have established a number of unique materials that combines many inspiring properties 

such as bio-metallization, miniaturization, hierarchical organization and unique mechani-

cal properties and show various functions from the micro to nanoscale level of organiza-

tion. In this work, I analyzed and understood the insect cuticle composition and align-

ment to modern composite polymeric materials, however, the major difference is that 

within the insect cuticle the resin, i.e. the proteins/lipid matrix, actively controls and or-

ganize the fibrous component and thereby actively change and control the mechanical 

and physical properties of the materials.  In essence, insect cuticles are a quintessential 

biological smart composite material. By understanding the process of cuticle formation 

and the interaction between specific cuticle proteins and chitin, I am able to develop 

smart resins that can organize or reorganize nanofiber matrixes in other systems, however 

this has been problematic due to the issues with the the characterization of nanoscale 
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chitin organization within the cuticle. To overcome the limitations, I have developed a 

simple technique to extract chitin form insect cuticles like cicada that enables the charac-

terization of nanoscale chitin fiber organization within the cuticle of insects and arthro-

pods using SEM. I have shown that the chitin purified in this manner maintains its chem-

ical integrity while preserving important spatial and positional information regarding the 

nanoscale organization and structure of chitin nanofibers. 

Moving into the technological aspects, I have successfully fabricated and replicated 

the bioinspired nanocones that DD cicadas possess. The chitin scaffold of BII wing is 

used as a substrate and without destroying its innate structure by following our previous 

insitu protocol as mention. The PS colloidal beads templates were assembled orderly onto 

prepared BII wings forming a monolayer. The chitin scaffold extracted from BII is used 

as a substrate to mask the polystyrene nanobeads and etched to form chitin biomemitic-

nanocones that is similar to DD cicada wings. The mimicked cones are around 200 -300 

nm in size which resembles the size of DD wings. The internal and structural morphology 

of mimicked BNC’s with the beads onto and etched wings are shown and cells studies 

were carried to know the biocompatibility of these BNC’s. 

Further, the bio-metallization process on the chitin/chitosan were performed and 

mimicked based on how the nature does. The chitin/chitosan polymers have this unique 

property of bio-metallizing various metal precursors and the investigation of formation of 

Ag nanoparticles onto this surface and synthesizing the Ag nanoparticles and Ag nan-

owires in-situ by understanding its mechanism of formation. The samples were character-

ized and investigated using various analytical techniques to understand the structural 
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functionality; morphology of the polymer material and synthesized AgNPs and AgNWs 

and further the bio-metallized chitin/chitosan polymer is being analyzed for potential bio-

sensing application.  
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