
Modernizing Password Usage in Computing

by

Adam Coffee

Honors Thesis

Appalachian State University

Submitted to the Department of Computer Science

in partial fulfillment of the requirements for the degree of

Bachelor of Science

May 2017

APPROVED BY:

Cindy Norris, Ph.D., Thesis Project Director

Larry Bridges, Second Reader

Dee Parks, Ph.D., Departmental Honors Director

James Wilkes, Ph.D., Chair, Computer Science

Copyright c© Adam Coffee 2017
All Rights Reserved

ii

ABSTRACT

Modernizing Password Usage in Computing.

(May 2017)

Adam Coffee, Appalachian State University

Appalachian State University

Thesis Chairperson: Cindy Norris, Ph.D.

Even as advances in cryptography have greatly improved users’ account security, the concept

of the password has endured as the primary means of authentication. Furthermore, users are

still largely responsible for choosing and managing their own ever-growing collection of account

credentials. Due to the nature of users (and the inherent difficulty in remembering a variety

of unique and strong passwords), there exists a propensity for weak passwords to be chosen,

for identical passwords to be used on more than one account, and for passwords to be stored

insecurely. This thesis explores password strength theory, the YubiKey authentication device,

modern cryptographic algorithms, and secure programming techniques that may be leveraged to

modernize password usage by abstracting the user away from the continual process of creating,

managing, and storing their passwords and other account information.

This work culminated in the development of PassMan, a two-factor encrypted password

manager program that offers a suite of tools to mitigate the aforementioned vulnerabilities:

A customizable high-entropy password generator, password strength calculator, and auto-type

function effectively free the user from the task of creating and remembering their account

information, including usernames, passwords, and associated notes.

iii

Contents

1 Introduction 1

2 Background 3
2.1 Advanced Encryption Standard . 5
2.2 Secure Hash Algorithms . 9
2.3 Hash-based Message Authentication Code . 12
2.4 Password-based Key Derivation Function . 13
2.5 Password Strength . 14
2.6 YubiKey . 15
2.7 Secure Programming . 17

3 Related Work 21
3.1 KeePass and KeePassX . 21
3.2 LastPass . 23

4 How To Use PassMan 24
4.1 Installation . 24
4.2 Security . 25
4.3 Entries File Creation . 27
4.4 Password Generation . 28
4.5 Account Management . 29
4.6 Diagnostics . 30

5 PassMan Implementation Details 31
5.1 Development Framework . 31
5.2 Software Architecture . 33
5.3 Database Management . 36
5.4 YubiKey Communication . 38
5.5 Authentication and Confidentiality . 40
5.6 Password Generation . 50
5.7 Auto-Type . 53

6 Conclusion 55

Bibliography 57

iv

List of Figures

2.1 PassMan security overview . 4
2.2 Substitution-permutation network example . 6
2.3 SHA-256 compression function . 10
2.4 SHA-1 avalanche effect . 11
2.5 Password possibilities with keyboard symbol sets 14
2.6 YubiKey USB device . 16

3.1 KeePassX main window . 22
3.2 LastPass main interface . 23

4.1 PassMan icon . 25
4.2 YubiKey slot personalization for challenge-response 26
4.3 PassMan database editing interface . 27
4.4 Authenticator interface . 28
4.5 PassMan password generation interface . 29
4.6 PassMan YubiKey testing interface . 30

5.1 Qt framework in Linux-based systems . 32
5.2 Qt Creator editing a user interface . 32
5.3 PassMan UML class diagram . 34
5.4 Slot selection in Qt Creator for an observable textbox 35
5.5 PassMan database file specification . 41
5.6 PassMan encryption process flowchart . 45
5.7 PassMan decryption process flowchart . 48

v

List of Listings

5.1 Slot function corresponding to the password textbox 35
5.2 PassMan class constructor textbox . 36
5.3 Database serialization functions . 37
5.4 Entry serialization functions . 38
5.5 YubiKey HMAC-SHA1 challenge function . 39
5.6 YubiKey detection function . 39
5.7 Authenticator clean function . 42
5.8 Authenticator key derivation function . 43
5.9 Authenticator save function . 46
5.10 Authenticator encryption function . 47
5.11 Authenticator open function . 49
5.12 Authenticator decryption function . 50
5.13 Password generation function . 51
5.14 Password strength calculation function . 53
5.15 Password auto-type function . 54

vi

Chapter 1

Introduction

Cryptography has become ubiquitous in the computing world, where it is often relied on to

secure the systems and online accounts of users by relating them to some cryptographic key.

Perhaps the most common use-case is analogous to the login procedure for many online services,

where users provide a username and associated password which is subsequently run through a

cryptographic hash function; if the result matches the password hash for that username in an

authentication database, access is granted.

While that is a simple example, the general notion of using a password for authenti-

cation has been expanded to many other use-cases in which it is required to derive a key for

cryptographic purposes. All modern operating systems support physical access control with

passwords, as well as full-disk encryption, which uses such a password-derived key along with

an encryption algorithm to provide confidentiality (and optionally, integrity assurance) of data

in storage.

Despite these advances in security and privacy, the concept of the password has never-

theless endured as the primary means of authentication in most systems and services. Because

users are typically in charge of choosing and managing their own passwords, there is potential

for several security issues to arise:

1

2

1. Password commonality: Users may use the same password across many accounts, or only

slightly alter them for each account (such as changing “BadPassword123” to

“BadPassw0rd456”).

2. Weak passwords: Because strong passwords are inherently difficult for users to remember,

they may self-generate passwords that are statistically weak (such as those containing their

birthdate or common English words and number sequences).

3. Insecure storage: Users may keep their passwords in plaintext where others could access

them (such as writing them on notes near their workspace).

One comprehensive solution to these problems is the concept of a password manager.

This thesis describes PassMan, a password manager program with a simplistic graphical inter-

face that remembers user account information (including account names, usernames, passwords,

and notes) and stores them confidentially for later retrieval. In order to further enhance the

security of the user’s data at-rest, PassMan encrypts it with two authentication factors: the

user’s master password (something they know), and a cryptographically-unique response from

a hardware authentication device known as a YubiKey (something they have). While these

features greatly minimize problem (3), problems (1) and (2) are resolved by removing the user

from the password selection process. PassMan includes a password strength calculator and

customizable password generator which, when used together, will ensure the usage of high-

strength passwords that are unique to every account. PassMan can also autotype usernames

and passwords into most other user applications, such as a web browser showing a login form.

Ultimately, PassMan modernizes password usage in computing by abstracting the user

away from the continual processes of password creation, management, and storage. This thesis

explores the background of techniques and algorithms used to create PassMan, describes similar

works, and explains its usage and implementation in detail.

Chapter 2

Background

PassMan uses several modern cryptographic tools and some specialized hardware to improve

the user’s password security. Ultimately, it should guarantee the following to be an effective

password manager:

1. Strong confidentiality of all data relating to stored accounts, requiring two authentication

factors for access

2. Assured integrity of all aforementioned data, regardless of threat (like storage medium

corruption or malicious manipulation)

3. Strong password generation, with unpredictable high-entropy output

Each of these goals requires application of one or more algorithms to ensure reliability of

these claims. Firstly, because the data does not need to be shareable, a symmetric encryption

algorithm fits well. The Advanced Encryption Standard (AES) was chosen to uphold (1),

with the cipher key being comprised of two factors: the user’s master password, and a unique

cryptographic response from additional hardware called the YubiKey. The latter depends on

another algorithm, known as Hash-based Message Authentication Codes (HMAC), which itself

relies on part of the Secure Hash Algorithms (SHA) family. These two factors are combined to

produce a key of the proper size for the cipher via yet another algorithm called Password-based

Key Derivation (PBKDF). Figure 2.1 shows the context in which each of these tools is utilized:

3

4

Figure 2.1: PassMan security overview

Guarantee (2) requires using AES in a “mode of operation” that offers extra information

about the integrity of the encrypted data; several modes are available, but Galois/Counter Mode

was chosen due to efficiency and availability. Strong password generation (3) requires knowledge

of password strength theory, and (as with many of these algorithms) a Cryptographically Secure

Pseudo-random Number Generator (CSPRNG). Finally, knowledge of secure programming rules

is essential to the reliability of these claims when the software is executing.

5

2.1 Advanced Encryption Standard

The algorithm used by PassMan to store account information confidentially is the Advanced

Encryption Standard (AES). Originally named “Rijndael” after its designers Vincent Rijmen

and Joan Daemen, AES is a symmetric-key encryption algorithm published by the National

Institute of Standards and Technology (NIST) in 2001. It was defined in Federal Information

Processing Standards (FIPS) Publication 197, after a selection process narrowed to ciphers

with 128-bit block sizes and 128, 192, or 256-bit key lengths [20]. AES has become available in

a variety of software cryptography packages, and has been approved by the National Security

Agency (NSA) to provide confidentiality of documents up to top-secret classification, provided

192 or 256-bit keys are used [25].

In addition to its broad approval, AES has been significantly accelerated in many mod-

ern Intel and AMD processors with the Advanced Encryption Standard New Instructions (AES-

NI) extension to the x86 instruction set architecture (ISA). Using these instructions on a Pen-

tium 4 processor, the Crypto++ security library executes AES in Galois/Counter mode at 3.5

cycles per byte of data, versus 28 cycles without [4].

Cipher Security

AES is designed around a common cryptographic primitive known as a “Substitution-permutation

network,” in which layers of substitution and permutation are repeated for some number of

rounds on cleartext data and a key, to produce a transformation to ciphertext. Within this

system, plaintext data and the encryption key are passed through substitution boxes (known

as S-boxes), and permutation boxes (P-boxes). Figure 2.2 shows an example of a three-round

network that operates on 16-bit blocks, where

• S1 . . . S4 are substitution boxes

• K0 . . .K3 make up the key

• P is the permutation box

• ⊕ denotes an exclusive-or (XOR) operation

6

Figure 2.2: Substitution-permutation network example

The S-boxes may be viewed as lookup tables that offer one-to-one substitutions of

data, and must be invertible for decryption to be possible. The network is defined to operate

on input sizes equal to the cipher’s block size. This means that for AES and its 128-bit

blocks, the network would be far larger than the one in Figure 2.2, which operates on 16-

bit blocks. In software, these tables are often hard-coded two-dimensional arrays; however, on

machines with the AES-NI extension, one entire round of AES can instead be executed with the

AESENC instruction. The goal of this process is to break up the relationship between plaintext,

ciphertext, and key, thereby limiting cryptanalysis or statistical inspection.

An abstracted description of the entire algorithm is shown below, where the substitution-

permutation network is represented by the four parts of the Rounds step. Depending on the

key size of 128, 192, or 256 bits, each block of cleartext is subjected to 10, 12, or 14 rounds,

respectively. The number of rounds scales with the key size in order to ensure that larger keys

fully influence all of the ciphertext [10]. Steps (2) and (4) are included in the round count, so

step (3) is effectively repeated 8, 10, or 12 times.

7

1. KeyExpansions — derive round keys from the key using the key schedule

2. InitialRound

(a) AddRoundKey — combine each byte of current state with block of round key via ⊕

3. Rounds

(a) SubBytes — substitute each byte of current state with another via lookup table

(b) ShiftRows — transpose rows of current state a certain number of steps

(c) MixColumns — transform columns of current state with a fixed matrix

(d) AddRoundKey

4. FinalRound

(a) SubBytes

(b) ShiftRows

(c) AddRoundKey

The KeyExpansions step is an initialization step that occurs prior to computing the

rounds. It exists to expand the cipher key into separate round keys. With AES, one key is

produced for each round according to its “key schedule.” While the details of this step are

outside the scope of this description, it suffices to say that this step is necessary to obfuscate

relationships between the ciphertext and cipher key. Without this step, cryptanalysis could

exploit such a relationship to recover the cleartext.

Galois/Counter Mode

While AES is a strong and efficient block cipher, as its classification denotes, it is only appro-

priate for encryption of single data blocks. To use it for sequences of data with arbitrary length

(such as PassMan’s entries file), AES is used in a “mode of operation” that makes it applica-

ble to any data sequence. This is done by splitting the sequence of data into blocks equal to

the cipher’s block size, and encrypting them iteratively. Unfortunately, problems remain with

regards to confidentiality and integrity of the data:

8

1. Encryption of the same plaintext with the same key will result in identical ciphertext.

2. Manipulation of the ciphertext will result in non-obvious corruption of the plaintext.

Ideally, identical plaintext would always result in different ciphertext, preventing an

attacker from relying on statistics to derive the cleartext. This is particularly important in

cases where the plaintext contains strings of text, as the probabilities of letters in languages

are well-known, aiding statistical analysis. In the case of PassMan, an attacker could also

manipulate the ciphertext such that, when decrypted, it produces incorrect account passwords

without the knowledge of the user.

PassMan uses AES in Galois/Counter Mode (GCM) to eliminate these issues (with very

high probability) by using an initialization vector (IV) to influence the initial state of encryption

or decryption of a stream of data blocks, and by calculating an authentication tag at the end

of the process [22]. In practice, the IV is an array of randomly-generated bytes chosen prior to

starting an encryption process, and stored for use in decryption later. It is then used in addition

to the cleartext and key to produce the ciphertext; since the IV was (ideally) randomly chosen,

and now has influence over the resulting ciphertext, problem (1) has been resolved. Note that

the IV may remain public information without compromising the ciphertext, as it is ultimately

useless without the key.

Cipher modes like GCM which resolve problem (2) provide “authenticated encryption,”

or the ability to detect any change in the ciphertext. For each block in the sequence of cleartext

data, AES is used to encrypt that block, and then the XOR of the resulting ciphertext and a

previously-generated authentication code is computed. Because the authentication code of any

particular block is now influenced by the content of each prior block, a change in the content

of any encrypted block will cause the authentication tag computed at the last block to differ,

ultimately indicating a loss of integrity. Software that implements GCM may then throw an

exception, allowing the programmer to handle the situation and notify the user.

9

2.2 Secure Hash Algorithms

The Secure Hash Algorithms (SHA) are a suite of cryptographic hash functions supplied by

NIST under FIPS 180-1 and 180-2. While PassMan does not make direct use of any SHA

functions, the HMAC and PBKDF2 algorithms used by PassMan do rely on them to accomplish

authentication and key derivation. Two groups are in common use today that differ based on

the size of their “message digests” or output:

• SHA-1 with 20-byte output, resembling the older, weak Message Digest 5 (MD5) hash

• SHA-2 including SHA-256, SHA-384, and SHA-512, with 32, 48, and 64-byte outputs,

respectively

Hash functions deterministically take an arbitrarily-sized data input and produce a

fixed-sized output, however cryptographic hash functions uphold additional requirements:

1. It is infeasible to produce a message from its digest (non-invertible, preimage attack

resistance).

2. A small change in a message dramatically changes its digest (avalanche effect).

3. It is infeasible to produce two differing messages with the same digest (collision resistance).

The function should ideally also be easy to compute for any message, as hash functions

are often used as primitive pieces in larger algorithms, such as those for key derivation, password

storage, and message authentication.

All members of the SHA family accomplish the above goals by running message data

through a compression function for a certain number of rounds. The compression function for

SHA-256 is shown in Figure 2.3, where

10

• A . . .H are single bits of the hash input (message)

• Wt is the tth word of the message

• Kt is a set of constants used to initialize the hash

• Ch(E,F,G) = (E ∧ F)⊕ (¬E ∧G)

• Ma(A,B,C) = (A ∧B)⊕ (A ∧ C)⊕ (B ∧ C)

• Σ0(A) = (A� 2)⊕ (A� 13)⊕ (A� 22)

• Σ1(E) = (E � 6)⊕ (E � 11)⊕ (E � 25)

• � is addition, modulo 232

Figure 2.3: SHA-256 compression function

Avalanche Effect

The Avalanche effect describes the desirable behavior of hash functions that are highly sensitive

to changes in input. Simply put, a small change in the message (even a single bit-flip) should

result in a very different hash. Hash functions that do not exhibit this have weak randomization,

and are unsuitable for use in larger cryptographic systems, as an attacker could then make

predictions about the input when given the output. Figure 2.4 exemplifies the effect inherent

to SHA-1 by flipping only single bits in a short message.

11

Figure 2.4: SHA-1 avalanche effect

Preimage and Collision Resistance

The preimage resistance quality of a hash shows that it is infeasible to find the function’s inverse.

Given a hash function with L bits in a given message digest, a brute-force attack would take 2L

computations of that function in the worst case to discover the message input corresponding to

that digest. This is part of the reason why SHA-1 (with L = 160) is being phased out in favor

of SHA-2 varietals; their larger digest lengths L ∈ {224, 256, 384, 512} exponentially raise the

amount of work needed. In practice, this means that it is so computationally intensive as to be

extremely improbable that (assuming digest d is known), the message m could be found where

H(m) = d.

By extension, a hash function with strong collision resistance will be highly resistant to

finding two messages m1 and m2 where H(m1) = H(m2). A hash function with L bits in the

message digest will require, on average, 2L/2 computations of that function to find messages

m1 and m2 with equivalent hashes. It is important to note that collision resistance cannot

be absolute; because hash functions inevitably compress their inputs, the pigeonhole principle

guarantees that some differing values will map to the same digest. A good hash function will

simply ensure that this is exceedingly rare.

12

2.3 Hash-based Message Authentication Code

Hash-based Message Authentication Codes (HMAC) use a cryptographic hash function and key

to provide integrity assurance and authenticity of some message. They are commonly used in

cipher modes to help provide authenticated encryption, and may also be used as authentication

factors (such as in the YubiKey), assuming the key is unique to the entity being authenticated.

PassMan consumes HMACs from the user’s YubiKey as the second encryption factor for their

entries files. Originally standardized in RFC 2104, HMAC-SHA1 and HMAC-MD5 are used

today in the Internet Protocol Security (IPsec) and Transport Layer Security (TLS) protocols

[11]. As it is defined there, Equation 2.1 shows the HMAC function.

HMAC(K,m) = H((K ′ ⊕ opad) ‖ H((K ′ ⊕ ipad ‖ m))) (2.1)

• K is the key

• m is the message for authentication

• H is a cryptographic hash function like SHA-1

• K ′ is the key after padding or hashing K to fit the input size of H

• ⊕ denotes XOR operation

• opad is an arbitrary outer padding used to create input with the size expected of H

• ‖ denotes concatenation

• ipad is an arbitrary inner padding used to create input with the size expected of H

The inner application of the hash function serves to cryptographically intertwine the

key and message such that it is computationally infeasible for an adversary to produce the same

digest without the key. Naturally, the degree of assurance is tied to the hash function used, but

is also reliant on the strength of the secret key.

The outer hash function prevents a length-extension attack, where the message corre-

sponding to a previously-used MAC is extended then re-hashed to produce another valid MAC.

Despite the weaknesses discovered in MD5 and SHA-1 regarding collisions, HMAC-MD5 and

13

HMAC-SHA1 are still reliable for authenticity assurance, as it has been shown that strong

collision-resistance characteristics are not strictly required [1].

2.4 Password-based Key Derivation Function

When using passwords as encryption keys, it is common to run them through a “key deriva-

tion” process with a hash function that normalizes the key length and ensures some minimal

level of security (in the case that a weak password is used). As described in RFC 2898, the

Password-based Key Derivation Function (PBKDF) family consists of two standards for pro-

ducing cryptographic keys from passwords [15]. The second version paired with the SHA-512

hash function (PBKDF2-SHA512) is used by PassMan to derive the key for encrypting the

entries file from the user’s two authentication factors. Key derivation functions are used to

solve two major problems:

1. The computation of cryptographic keys from passwords can be very fast on modern hard-

ware, enabling adversaries to brute-force search the key space for the correct password

2. Given the key derivation algorithm, adversaries can use tables of pre-computed hash

outputs (rainbow tables) to quickly search for the correct password

PBKDF2 solves these issues by applying a hash function to the input password along

with a “salt” value, then repeating this process some number of times, eventually resulting

in the derived key. The salt is a randomly-chosen sequence of bytes that is concatenated to

the input password prior to starting the derivation process. By appending this random value,

pre-computed tables like in (2) cannot be used, since they do not contain inputs including the

salt.

Because the password and salt combination is repeatedly hashed (a process called “key

stretching”), the attack in (1) is effectively hindered: the amount of computational work an

adversary must do to make a single password guess increases linearly with the specified cycle

count. Through this process, some minimal amount of key strength is maintained, as the

amount of work and time to discover even a weak password is significantly increased.

14

2.5 Password Strength

From a purely mathematical perspective, passwords are simple concatenations of symbols, where

each symbol has been selected from a predefined set. In the ideal (maximum security) scenario,

each symbol element will have been randomly chosen according to a uniform probability dis-

tribution, thus guaranteeing that each symbol has equal chance of selection. In this case, the

information entropy (measured in bits) contained in a randomly chosen password is given by

Equation 2.2 below:

H(L,N) = log2(N
L) = L ∗ log2(N) (2.2)

• N is the size of the set containing all possible symbols

• L is the length of the desired password

This equation is what PassMan uses to estimate password strength. Note how it relates

closely to the number of possible passwords given by NL, which is visualized on a logarithmic

scale in Figure 2.5 for each symbol set commonly found on keyboards:

Figure 2.5: Password possibilities with keyboard symbol sets

15

Unfortunately, this model does not correlate well with how people often select passwords.

For example, the password “PassWord” consists of symbols from the lowercase and uppercase

alphabet, meaning N = 26∗2 = 52. The length L = 8, so there are 528 ≈ 5.35∗1013 possibilities.

A brute-force search would require checking on average half of the passwords to find the correct

one, yet a dictionary attack crafted with knowledge of common password choices would discover

this one almost immediately.

This is the core issue in the relationship between people and their passwords: Statistical

knowledge of commonly-chosen passwords, and to an extent, knowledge of a specific person’s

attributes like their birth-date, may greatly increase an attacker’s chance of guessing that

person’s passwords. The inherent difficulty in remembering strong passwords no doubt further

aids attackers in this regard.

The solution to this issue is to remove the person from the equation, which is exactly

what PassMan accomplishes as a password manager. Generating passwords with the aforemen-

tioned uniform distribution (in the form of a built-in password generator driven by a random

number generator) ensures that the calculated entropy of a password actually extends to real-

world strength.

2.6 YubiKey

The YubiKey, shown in Figure 2.6, is a hardware authentication device designed by Yubico

that supports a variety of standardized authentication methods [30]. HMAC responses from

this device are used by PassMan as the second encryption factor. It operates over the Universal

Serial Bus (USB), and comes in a variety of models suited for differing use-cases, from generating

Universal Second Factor (U2F) tokens to managing OpenPGP private keys. The YubiKey may

be used as a second authentication factor with password managers like LastPass and KeePass

[14, 17]. Organizations including Facebook and Google use it to enhance employee security, and

also offer authentication compatibility with their services [27]. Several recent models are in the

process of being validated for compliance with the Federal Information Processing Standard

(FIPS) Publication 140-2 at the highest assurance level, and many earlier models have already

been validated [24].

16

Figure 2.6: YubiKey USB device

Features

As previously mentioned, YubiKeys come in a range of models with increasing capabilities. The

YubiKey 4 is Yubico’s full-featured model, while the YubiKey NEO also supports Near Field

Communication (NFC) to extend many capabilities to mobile computing devices. Regardless

of these differences, any YubiKey may be used with PassMan as a second encryption factor, as

every model supports the Challenge-Response mechanism.

YubiKeys have two “configuration slots” that may be programmed via Yubico’s YubiKey

Personalization Tool with the user’s choices. Several of the features produce some form of One-

Time Password (OTP); these ephemeral passwords are only valid for a single use or over a short

time window, thereby limiting an adversary’s ability to reuse a previously-obtained password

to gain access to some service. The Yubico OTP feature generates an encrypted password only

usable once, often to authenticate with an online service such as Dropbox or Google. While this

feature requires coordination with Yubico servers, the Initiative For Open Authentication Time-

based One-time Password (OATH-TOTP) option will generate a short one-time password for

any supporting service. Hash-based Message Authentication Code One-time Password (OATH-

HOTP) authentication is also offered, which relies on a secret key rather than time-period

validity.

The feature leveraged by PassMan as a second factor in entries file encryption is

Challenge-Response, which uses a Hash-based Message Authentication Code with Secure Hash

17

Algorithm 1 (HMAC-SHA1). As this method requires no Internet connectivity, it is ideal for

offline authentication. This method relies on a 20-byte secret key being used in the HMAC

computation, a value which is set by the user in the personalization software, and stored solely

inside the device’s secure memory in order to cryptographically identify the YubiKey as unique

to that user.

Security

Yubico has taken several steps to prevent attempts at retrieving sensitive data (such as the

HMAC key). The hardware and firmware is designed to disallow attempts to retrieve such

write-only data via communication with the device. Furthermore, the cryptographic routines

have been written to minimize physical information leakage, reducing the viability of side-

channel attacks like power and electromagnetic analysis. Finally, while YubiKeys were not

specifically designed to resist physical attack, it is improbable that data may be retrieved by

physical deconstruction of the hardware without also destroying the memory [28].

Software Interaction

Regardless of the feature used, client applications need not talk directly with the YubiKey for

authentication data. Yubico’s YubiKey Authenticator program is available on their website

(and in standard system repositories). Together with their YubiKey Personalization package,

any software can query YubiKeys for OTP, OATH, and HMAC Challenge-Response tokens by

executing the included ykchalresp binary. All of this software is available for the Windows,

Mac OS X, and Linux operating systems.

2.7 Secure Programming

Randomness

Many cryptographic operations require some amount of random input. Common variables like

keys, IVs, and salts should be unpredictable to an adversary; if they are not, then any security

guarantees for the algorithm in use are no longer valid. PassMan always randomly generates

such data prior to encrypting the user’s entries file to avoid this pitfall. A naive solution may be

18

to use a pseudo-random number generation algorithm that has been seeded with some dynamic

value, such as the current system time. This is far from ideal however, as an adversary could

potentially calculate the number generator’s state when it was used to produce sensitive data,

then recover that data. Even without knowledge of the generator’s state, many pseudo-random

algorithms are vulnerable to statistical prediction, meaning that keys generated with them are

also (to an extent) predictable.

The solution to these problems is a cryptographically secure pseudo-random number

generator (CSPRNG). These algorithms differ from other number generators in that they pos-

sess additional mathematical qualities, including

• The “next-bit” test: No polynomial-time algorithm should exist that, when given the first

k bits of a random sequence, can predict the k + 1 bit with probability p > 0.5.

• Withstanding “state compromise”: All of the generator’s state should be revealable with-

out it being possible to calculate the random numbers leading up to the compromise.

Many well-vetted CSPRNGs are available in cryptographic software packages, including

Crypto++. In practice, these generators consume entropy (highly-random data) provided by

the operating system. Under Linux, entropy is commonly sourced from the kernel via the special

files /dev/random (for blocking calls) or /dev/urandom (non-blocking calls); because the

OS is limited in the amount of high-quality entropy it can retrieve from the actual machine

hardware, many CSPRNGs “stretch” this entropy into longer bit sequences [5]. With this

process, it is considerably harder for an adversary to manipulate the number generator (or

deduce sensitive data sourced from it) because the entropy is sourced from a combination of

complex and ideally nondeterministic machine factors. In fact, the Linux kernel sources entropy

from inputs like keyboard key-press timings, time between hardware interrupts, and disk seek

times [18].

Sensitive Data

Within most operating systems, memory owned by any process may be reused later by another

process with the old data still resident in memory. In this scenario, the offending process has

19

likely allocated space on the heap with a call to malloc(), or instantiated objects there with

the new operator. If the process exits without cleansing (by setting each byte of allocated

memory to 0), then sensitive variables like keys or cleartext could be recovered by another

process [26]. Assuming an adversary had normal user-level privileges, a naive attack could

involve sending a well-timed kill signal to the target process, followed by memory allocation

calls to inspect memory for sensitive data. While signal handlers could be used to ensure

cleansing of memory following a SIGSTOP or SIGINT, SIGKILL cannot be prevented.

To mitigate this issue, all sensitive variables should be cleansed prior to going out of

scope. Before any call to free() or deconstruction with delete, loops may be used to zero-

out the memory range. Ultimately, sensitive variables should remain in memory only while

they are needed.

Crypto++ Library

The Crypto++ library (also known as libcryptopp or libcrypto++) is a free and open

source library containing common cryptographic tools and primitives, including the algorithms

mentioned before. It is written in C++, supports cross-platform usage, and is released under

the Boost Software License (although much of the code is in the public domain). Some of the

complete implementations offered include:

• Cryptographically secure pseudo-random number generators

• Symmetric ciphers like AES, Serpent, Twofish

• Block cipher modes of operations like ECB, CBC, GCM

• Message authentication codes like HMAC, CMAC

• Cryptographic hash functions like SHA, RIPEMD

• Key derivation functions like PBKDF2

• Asymmetric ciphers like RSA

• Elliptic-curve algorithms like ECDSA

20

Many algorithms in the library have been favorably benchmarked, although Crypto++

is far from the fastest library overall [4]. Crypto++ does offer accelerated AES with assembly

routines using AES-NI. The NIST has validated the library under FIPS 140-2; no security issues

were discovered [23].

Chapter 3

Related Work

3.1 KeePass and KeePassX

KeePass is an open-source GUI-based password manager written in C# (C++ for earlier ver-

sions) for the Windows operating system. It is released under the GNU General Public License

(GPL) 2+. Much like PassMan, KeePass stores user account names, usernames, passwords, and

notes in an encrypted file, albeit with different file extensions (.kdb or .kdbx). As opposed to

cloud-based services like LastPass, PassMan and KeePass simply store these files on the user’s

local storage, bringing increased security at the expense of portability.

A myriad of plugins have been written for KeePass, all of which expand on the manager’s

interoperability with browsers and other password manager files, among other things. As such,

KeePass can import and export account data from over 30 different password managers [19].

KeePass offers hierarchical organization of accounts, and tracks metadata such as password

creation and expiration dates. Auto-type functionality is included, using the standard Windows

clipboard. A password generator is built-in that can be further randomized by adding entropy

from keyboard and mouse inputs. Interestingly, this added-entropy feature is built into the

program, meaning that it manages the sourcing of additional entropy by itself, instead of

wholly relying on the operating system to provide it.

In terms of security, KeePass ensures confidentiality with the same AES-256 cipher that

PassMan relies on, although the Twofish and ChaCha20 ciphers are also available [13]. While

PassMan uses Galois/Counter Mode (GCM) to assure integrity with authenticated encryption

21

22

(AE) of the file, KeePass uses Cipher Block Chaining (CBC) mode, which by itself, does not

provide AE. To add this assurance, it uses an Encrypt-then-MAC scheme with HMAC-SHA256.

The YubiKey is supported for use as a second authentication factor as well, although

PassMan and KeePass accomplish this differently: Using the YubiKey’s Challenge-Response

feature, PassMan relies on the cryptographically unique HMAC-SHA1 response to a random

challenge as the second factor. LastPass supports the YubiKey’s OATH-HOTP feature to

produce the second factor [14]. PassMan uses PBKDF2-SHA512 for key derivation, while

KeePass uses Argon2; both solutions suitably increase the work required to brute-force a master

key and stifle rainbow-table attacks, although Argon2 is arguably better due to its enhanced

memory requirements.

KeePassX started as a Linux port of KeePass, offering many of the same features.

Modern versions are now cross-platform compatible with use of the Qt 4.8 libraries, making

KeePassX available on Linux, Mac OS X, and Windows. Functionally, KeePassX does not differ

much from KeePass, although the user interface has diverged significantly, which can be seen

in Figure 3.1. Another key exception is how YubiKeys are utilized as a second authentication

factor, where KeePassX uses the HMAC-SHA1 Challenge-Response feature instead of OATH-

HOTP.

Figure 3.1: KeePassX main window

23

3.2 LastPass

LastPass is a closed-source password management service owned by LogMeIn that extends

the functionality offered by password manager programs like KeePass and PassMan to the

cloud. It operates as a “freemium” service, meaning that entry-level users can use it for free,

but must pay for the full feature set. Instead of providing an executable program to users,

LastPass operates solely as a web application accessible from the user’s browser, shown in

Figure 3.2. Naturally, this requires Internet access, unlike more traditional password managers.

Account information is encrypted with AES-256, with the master key being derived through

PBKDF-SHA256; the derivation and encryption process is done on the user’s local machine (as

opposed to within LastPass’s servers) so that LastPass is not privy to user data [16]. As with

KeePass and PassMan, LastPass supports the YubiKey as a second authentication factor with

the YubiKey’s OATH-HOTP feature [17].

Figure 3.2: LastPass main interface

Chapter 4

How To Use PassMan

4.1 Installation

PassMan must be installed from source, which is available as a compressed archive at

https://github.com/adamcoffee1/PassMan/. The archive holds an installation script

along with the source code for compilation. PassMan is currently compatible with any 32 or

64-bit Linux machine for which Qt, a cross-platform application framework, can be installed. In-

stallation within a Linux environment involves executing the included install-passman.sh

shell script. All required dependencies will be automatically installed (the root password may

be required), after which the program will be compiled using qmake and make for the user’s

machine architecture. Dependencies include:

• xdotool for auto-type functionality

• libcrypto++ for cryptographic routines

• yubikey-personalization for YubiKey interaction

• build-essential and qt5-default for program compilation

24

25

The resulting binary is written to /usr/bin/, and an application configuration file

is read by desktop-file-install so that the application shows up in the user’s desktop

manager. Currently, PassMan is configured to compile with Qt 5 which is available on many

Linux distributions. After installation, PassMan can be executed from the terminal by typing

PassMan or selected in the list of applications from the desktop manager. It is identifiable by

the icon in Figure 4.1.

Figure 4.1: PassMan icon

4.2 Security

PassMan stores account information including usernames, passwords, and associated notes in

an encrypted entries file on local storage. It uses two authentication factors to encrypt the file:

• Master password (something the user knows)

• YubiKey HMAC response (something the user has)

Because the master password is now the only password that must be remembered to access all

accounts, users should make this password strong. For maximal security it should be very long

and consist of lowercase and uppercase letters, numbers, and other keyboard symbols [21].

26

YubiKey Configuration

The YubiKey comes with two configuration slots, where each may be set up to respond in a

certain manner. One of these slots needs to be set for Challenge-Response mode via Yubico’s Yu-

biKey Personalization Tool. This program is available in the yubikey-personalization-gui

package, found in most standard repositories. The secret key should be generated as in Figure

4.2 to uniquely identify the YubiKey [31].

Figure 4.2: YubiKey slot personalization for challenge-response

Once this configuration is written, the YubiKey is ready to be used as a second factor

unique to the user. Be sure to remember which configuration slot was programmed (1 or 2),

as this needs to be selected during authentication (when an entries file is being decrypted or

encrypted).

27

4.3 Entries File Creation

The first task at hand after installation is to import existing accounts into a PassMan entries

file. First, an empty entries file must be created by selecting File → New Database in the menu

bar. For each account to be entered into the file, selecting Entries → Add Entry causes a new

empty entry to be created. The username, password, and notes textboxes correspond with the

currently selected account in the entry list. In Figure 4.3, a new entry is being edited.

Figure 4.3: PassMan database editing interface

28

Saving

To save the entries file, select File → Save Database to initiate the encryption process. An

authentication window will show as in Figure 4.4, where the desired master password is entered.

Ensure that the YubiKey is connected to the machine (its status is shown in the lower-right

corner of many PassMan windows). After entering the password, pressing Return or the Initiate

Challenge button will kick off an HMAC-SHA1 challenge of the YubiKey to obtain the second

encryption factor. The file is then encrypted with the derived master key and committed to

storage.

Figure 4.4: Authenticator interface

4.4 Password Generation

As the responsibility for generating and remembering account passwords is now PassMan’s

alone, the user is free to utilize strong and unique passwords for each and every account. The

Generate Password button in the main window will bring up a dialog for password generation;

it is also accessible by selecting Tools → Password Generator.

The generator is customizable to improve conformity with the widely varying password

policies of various services. For example, many antiquated services disallow special symbols

to be used in passwords (thereby reducing password strength potential). In this case the user

would simply deselect the symbol character type, causing the generation of a fresh random

password without special symbols. Sliding the length bar as in Figure 4.5 to the right will

increase the number of randomly generated characters, and clicking the Generate button will

trigger the creation of a new password if the user is not satisfied with the current one.

29

Figure 4.5: PassMan password generation interface

4.5 Account Management

With an account entry selected, the associated username and password may be auto-typed into

a login form in another window (such as a web browser) by selecting Entries → Auto-Type

Entry. Window focus will automatically switch to the previously selected application, and the

information typed in. Finally, a Return keypress is simulated to finish the process.

Entry usernames and passwords can also be manually copied from the Entries menu

bar option. Many menu bar operations are also associated with keyboard shortcuts for user

convenience. For example, pressing Delete will cause the currently selected entry to be removed

from the database.

30

Password strength is always shown in the bottom right of the main window to identify

any accounts with weak passwords. Note that PassMan requires an account password to be

typed twice to avoid the saving of mistyped passwords. If the password and repeated-password

textboxes differ in content, the latter textbox will be highlighted in yellow until the mismatch

is corrected.

4.6 Diagnostics

There are a couple diagnostic windows included that are not encountered with normal usage of

the program. The first, shown in Figure 4.6, is the YubiKey Tester, available from Tools → Yu-

biKey Tester. This dialog is useful for testing the HMAC-SHA1 challenge-response mechanism.

After the configuration slot programmed for HMAC is selected, a challenge may be entered in

the textbox. By pressing Return or clicking Initiate Challenge, PassMan will communicate with

the YubiKey and ask for a response to the challenge. The response is shown in hexadecimal,

along with the serial number and version of the YubiKey. Any errors are shown in the lower

left corner of the dialog.

Figure 4.6: PassMan YubiKey testing interface

Additionally, a simple dialog to test password strength is available from Tools → Pass-

word Strength Calculator. There, the user can type in passwords that they come up with to

learn their strength.

Chapter 5

PassMan Implementation Details

5.1 Development Framework

Qt (pronounced “cute”) is an application framework for cross-platform development that uses

standard C++ or Python programming languages [2]. Currently developed by The Qt Com-

pany, it is available under both commercial and open-source GNU Lesser General Public License

(LGPL) 3.0 licenses. In the case of PassMan, the C++ version was used due to familiarity with

the language, efficiency, and interoperability with external libraries. Figure 5.1 shows where Qt

sits in a typical Linux ecosystem.

31

32

Figure 5.1: Qt framework in Linux-based systems

Some keys traits of Qt include its strong abstraction of the graphical user interface

(GUI) and straightforward development environment called Qt Creator, which can be seen in

Figure 5.2. It fully integrates debugging, project building, and GUI design. This significantly

accelerated the development process and led to an uncomplicated graphical design.

Figure 5.2: Qt Creator editing a user interface

33

5.2 Software Architecture

Object-oriented design was used to segregate program functionality into various classes. While

initial execution starts in a main() function as usual, there is actually very little code within

that function; the GUI and other peripheral objects are initialized in the PassMan class con-

structor, called in main(). This class responds to all user interaction and manages high-level

operations and objects.

In general, every class is instantiated once by PassMan, and exists on the heap for

the life of the program. The Database object serves to encapsulate the internal structure

of account entries, with some convenience functions for common operations. One exception

is Entry objects, which may be created and deleted often by the Database as the user

manipulates their account list.

In the case of user interface classes such as the password Generator that may be

opened or closed often, their show() function is called as needed instead of reinstantiating.

This saves memory while improving program performance.

The Authenticator class encapsulates all routines involving cryptographic opera-

tions, while the YubiKey class handles communication and diagnostics with the YubiKey

device.

The UML diagram in Figure 5.3 shows the relationships between classes used in Pass-

Man.

34

Figure 5.3: PassMan UML class diagram

35

Observer Pattern Design

Qt offers a language construct known as “Signals and Slots” to facilitate communication of

events and data between GUI elements and the core implementation [3]. This observer pattern

design is used ubiquitously in PassMan to handle asynchronous events, and avoids excessive

boilerplate code. Most commonly, an observable element such as a textbox (a QLineEdit object)

can trigger execution of the slot function of its corresponding class, as in Figure 5.4 and Listing

5.1. In this example, the textEdited() slot of the password textbox is being chosen in Qt

Creator. This textbox resides within the PassMan main window class, thus the code to be

executed when that textbox is edited is stored there as well.

Figure 5.4: Slot selection in Qt Creator for an observable textbox

Listing 5.1: Slot function corresponding to the password textbox

1 void PassMan::on_passwordLineEdit_textEdited(const QString &arg1) // Update entry
password if changed

2 {
3 int strength = StrengthCalculator::naiveEntropyBits(ui->passwordLineEdit->text

());
4 if (ui->passwordStrengthBar->maximum() < strength) ui->passwordStrengthBar->

setMaximum(strength);
5 ui->passwordStrengthBar->setValue(strength);
6 updatePasswords();
7 }

36

This approach is also used to connect custom classes with custom signals. For example,

line 6 of Listing 5.2 shows how the main PassMan class is configured in its constructor to receive

notice of the insertion or removal of YubiKeys through Qt’s connect() function. Here, the

first argument is a pointer to the object that offers the desired signal, in this case an object

of the YubiKey class. The second argument specifies which signal of that class to choose; the

yubiKeyChanged() signal is desired. The third and fourth arguments are a pointer to the

receiving object (the PassMan object itself), and the member function to be called when the

signal is emitted.

Listing 5.2: PassMan class constructor textbox

1 PassMan::PassMan(QWidget *parent) : QMainWindow(parent), ui(new Ui::PassMan)
2 {
3 db = new Database(VERSION);
4 yubikey = new YubiKey();
5 gen = new Generator();
6 connect(yubikey, SIGNAL(yubiKeyChanged()), this, SLOT(updateStatusInfo()));
7 connect(db, SIGNAL(readNewData()), this, SLOT(fileReadDone()));
8 connect(db, SIGNAL(writeNewData()), this, SLOT(fileWriteDone()));
9 connect(gen, SIGNAL(passwordGenerated()), this, SLOT(passGenDone()));

10 tester = new YubiKeyTester(yubikey);
11 auth = new Authenticator(yubikey);
12 about = new About(VERSION);
13 help = new Help();
14 strength = new StrengthCalculator();
15 passMismatch = false;
16 isSaved = true;
17 isOpen = false;
18 configGUI();
19 }

5.3 Database Management

The Database class holds a QList (Qt’s linked-list class) of Entry pointers in order to keep

track of each account; these entries each hold a QString (Qt’s native string class) for the

name, username, password, and potential notes corresponding to the account. To facilitate the

confidential storage of account data, the write() and read() functions are used to serialize

or deserialize, respectively, the Entry objects via JavaScript Object Notation (JSON). In the

case of writing during a save operation, the resulting JSON string would be passed through the

encryption process prior to being written out to storage. For reading during an open operation,

37

the file is decrypted and then interpreted into actual objects. Listing 5.3 and 5.4 show the read

and write functions for both.

Listing 5.3: Database serialization functions

1 void Database::read(const QJsonObject &json) // Extracts entry information from
JSON object

2 {
3 entries.clear();
4 QJsonArray entryArray = json.value(ENTRIES_KEY).toArray();
5 for (int i = 0; i < entryArray.size(); i++)
6 {
7 QJsonObject entryObj = entryArray.at(i).toObject();
8 entries.append(new Entry(entryObj.value(NAME_KEY).toString(), entryObj.

value(USERNAME_KEY).toString(),
9 entryObj.value(PASSWORD_KEY).toString(), entryObj.

value(NOTES_KEY).toString()));
10 }
11 version = json.value(VERSION_KEY).toString();
12 emit readNewData(); // Notify watchers that database is loaded
13 }
14
15 void Database::write(QJsonObject& json) // Serialize entry information to JSON

object
16 {
17 QJsonArray entryArray;
18 foreach (Entry* e, entries)
19 {
20 QJsonObject entryObj;
21 e->write(entryObj);
22 entryArray.append(entryObj);
23 }
24 json.insert(ENTRIES_KEY, entryArray);
25 json.insert(VERSION_KEY, version);
26 emit writeNewData(); // Notify watchers that database saved
27 }

The QJsonObject argument is a dictionary structure holding serialized objects; it

contains an array of all entries, and a version string. During a read operation, this object

will have been read from the entries file after decryption by the Authenticator class, then

passed off to the Database class. Each value in the entryArray is converted back into an

actual Entry object, and inserted into the account list for display. Other classes are then

notified of the change via a call to emit readNewData(). During a write operation, all

entries are handled in a similar but reversed manner. Authenticator will call the write()

function of Database with an object reference; each entry is serialized, then appended to the

QJsonObject.

38

Listing 5.4: Entry serialization functions

1 void Entry::read(const QJsonObject& json)
2 {
3 entryName = json.value("name").toString();
4 entryUsername = json.value("username").toString();
5 entryPassword = json.value("password").toString();
6 entryNotes = json.value("notes").toString();
7 }
8
9 void Entry::write(QJsonObject& json) const

10 {
11 json.insert("name", entryName);
12 json.insert("username", entryUsername);
13 json.insert("password", entryPassword);
14 json.insert("notes", entryNotes);
15
16 }

5.4 YubiKey Communication

As the second factor in the master key is an HMAC-SHA1 response from the user’s YubiKey,

this response must be acquired from the YubiKey prior to deriving the key. The YubiKey class

takes care of these lower-level operations such that the Authenticator and YubiKeyTester

classes can query it when needed.

Instead of directly talking with the YubiKey (a nontrivial, platform-dependent process),

binaries from the yubikey-personalization package (available in standard system repos-

itories) are used to initiate HMAC challenges and obtain diagnostic information. Specifically,

the ykchalresp and ykinfo programs are executed within separate processes, and com-

municated with via their standard input (STDIN), output (STDOUT), and error (STDERR)

streams.

Listing 5.5 shows how a QProcess is used to accomplish this programmatically. Start-

ing at line 4, pre-formed commands are selected based on the user’s slot choice. The HMAC

challenge is then written to the standard input of the newly formed process on line 5. A block-

ing call is made to wait while ykchalresp queries the YubiKey. This is important because

the YubiKey may be programmed to require a button-press prior to transmitting an HMAC

response, something that could take the user a few seconds to complete.

39

Listing 5.5: YubiKey HMAC-SHA1 challenge function

1 QByteArray YubiKey::hmacSHA1(const QByteArray& challenge, bool blocking) //
Complete an HMAC-SHA1 challenge-response

2 {
3 QProcess* proc = new QProcess(); // Will run Yubico software in separate

process
4 proc->start(slot == 1 ? HMAC_SLOT_1_COMMAND : HMAC_SLOT_2_COMMAND, QIODevice::

ReadWrite);
5 proc->write(challenge.toHex()); // Send challenge via standard input
6 proc->closeWriteChannel();
7 if (blocking) proc->waitForFinished(-1); // YubiKey may require button-press

, wait if caller desired
8 QString error(proc->readAllStandardError());
9 QString out(proc->readAllStandardOutput());

10 setState(error, out);
11 proc->close();
12 delete proc;
13 return out.left(out.length() - 1).toUtf8(); // Strip newline
14 }

Because the YubiKey is a USB device that may be removed or inserted at any time,

it is important for PassMan to be aware of these changing states. A QFileSystemWatcher

is used to signal changes to the /dev/usb/ directory, which lists certain connected Universal

Serial Bus (USB) devices. Upon any change, lsusb is executed in a separate process to search

for YubiKeys, shown in Listing 5.6. The output is checked to see if it contains the proper string

identifier for a YubiKey on line 7. If this is the case, the YubiKey is queried for diagnostic

information with poll(), to further confirm that it exists. A signal is emitted to notify other

classes of the change.

Listing 5.6: YubiKey detection function

1 void YubiKey::usbChange() // Check if USB change was a YubiKey change
2 {
3 QProcess* proc = new QProcess(); // Will run listing program in separate

process
4 proc->start(GET_USB_COMMAND, QIODevice::ReadWrite);
5 proc->waitForFinished(-1);
6 QString out(proc->readAllStandardOutput());
7 if (out.contains(USB_NAME)) this->poll();
8 else lastState = NOT_PRESENT;
9 proc->close();

10 delete proc;
11 emit yubiKeyChanged(); // Notify watchers that a change has occured
12 }

Ultimately, this brings increased convenience for the user, as they may be notified of the

YubiKey’s status in program windows. It should be noted that this is a Linux-specific solution

to detection, and would need to be generalized for cross-platform compatibility.

40

5.5 Authentication and Confidentiality

To ensure the secure storage of user account information, the entire serialized entries file is

passed through an encryption process prior to being committed to storage. All secure operations

take place within the Authenticator class, which only provides open(), save(), and

clean() functions for PassMan to call. All variables relevant to cryptographic operations are

held within this class, including

• 256-bit key for the block cipher (unsigned character array)

• 2048-bit initialization vector (IV) for the block cipher mode (unsigned character array)

• 128-bit salt for key derivation (unsigned character array)

• Iteration count for key derivation (signed integer)

• Challenge and response arrays for the YubiKey HMAC second authentication factor

(QByteArray)

• Cleartext and ciphertext strings (standard library string)

While all of these variables are treated as sensitive during the program’s execution,

in reality only the cipher key, YubiKey HMAC response, and cleartext string are critically

sensitive. The IV, salt, iteration count, YubiKey HMAC challenge, and ciphertext may be

treated as common knowledge, something an adversary could possess while still being unable

to reproduce the database cleartext. Thus, these values are stored in the database file for later

decryption as in Figure 5.5.

41

Figure 5.5: PassMan database file specification

All data is encoded in Base64, with each section colon-separated. While Base64 is less

space-efficient than storage in binary form, the user benefits from increased portability, as the

file is communicable as simple text.

42

The clean() function exists to zero-out these variables after a database file is closed,

or prior to program exit; they remain in memory while a file is open for the user’s convenience.

If at any point during encryption or decryption an exception occurs, these variables are always

cleaned to prevent the data from existing in memory after the program dies. Listing 5.7 shows

the simple zeroing function.

Listing 5.7: Authenticator clean function

1 void Authenticator::clean() // Reset authenticator and wipe any sensitive data
2 {
3 for (int i = 0; i < CryptoPP::AES::MAX_KEYLENGTH; i++) key[i] = 0;
4 for (int i = 0; i < IV_SIZE; i++) iv[i] = 0;
5 for (int i = 0; i < SALT_SIZE; i++) salt[i] = 0;
6 challenge.fill(0);
7 response.fill(0);
8 clear.assign(clear.length(), 0);
9 cipher.assign(cipher.length(), 0);

10 }

Cryptographic Tools

The specific block cipher chosen for confidentiality is the Advanced Encryption Standard (AES)

specified in FIPS 197, operating with a 256-bit key (the largest typically used). In addition to

large key options, AES was chosen because it is a well-researched cipher and is often accelerated

in modern processors via an extension to the x86 instruction set [6]. In the case of PassMan

however, confidentiality alone is not sufficient: an adversary could still manipulate the entries

file by changing portions of it; decryption of this file would likely succeed, but with incorrect

cleartext data [7]. To prevent this, AES is used in Galois/Counter Mode (GCM) to provide

Authenticated Encryption (GCM-AE). In the previous scenario, decryption would instead fail

with an authentication exception, allowing PassMan to then notify the user of corruption [8].

The master key is generated with Password-based Key Derivation Function 2 (PBKDF2),

using the SHA-512 hash function (PBKDF2-SHA512). This process is known as “key stretch-

ing,” and slows the process of password cracking [9]. The degree of stretching is governed by

the number of hash iterations. PassMan uses a non-fixed iteration count, instead aiming for

the derivation operation to take 0.5 seconds. Obviously the iteration count will vary depending

on many machine factors, but it is guaranteed to be large, effectively raising the amount of

43

work needed to guess a single password. Since key derivation only occasionally occurs over the

lifetime of the program, this delay is afforded in exchange for improved key strength.

Listing 5.8 shows the corresponding code. First, the presence of a YubiKey is confirmed

by checking the canChallenge boolean value. An attempt is made to retrieve an HMAC

response on line 5, then the user is notified of any errors. If none occurred, the response is

concatenated with the user’s master password on line 15.

From this point forward, key derivation differs depending on whether encryption or de-

cryption is desired. For encryption, a new key must always be used. Starting on line 24, the con-

catenated key factors, previously-generated salt, and desired derivation time MIN PBKDF TIME

are used to derive the key. Note that the iteration count is returned by the call; this value simply

represents the number of SHA-512 iterations that were needed to obtain the desired derivation

time. A call to encrypt() accomplishes the actual encryption, leaving the ciphertext in the

cipher member variable.

For decryption, remember that a key has been derived in the past and used to encrypt

the file, thus it is necessary to exactly recreate that key for decryption to succeed. On line

19, the two concatenated key factors in the response variable, recovered salt, and recovered

iteration count are used to derive the key. The call to decrypt() on line 20 completes the

actual decryption process, leaving the cleartext in the clear member variable.

Listing 5.8: Authenticator key derivation function

1 void Authenticator::formKey() // Create master key
2 {
3 if (canChallenge) {
4 setStatus(BUSY_YUBIKEY);
5 response = yubikey->hmacSHA1(challenge, true);
6 yubikeyState->setText(yubikey->stateText());
7 if (yubikey->state() == YubiKey::NOT_PRESENT) {
8 notify(QMessageBox::Warning, ERROR_TITLE, YUBIKEY_ERROR,

YUBIKEY_PRESENT_ERROR);
9 return;

10 }
11 else if (yubikey->state() == YubiKey::TIMEOUT) {
12 notify(QMessageBox::Warning, ERROR_TITLE, YUBIKEY_ERROR,

YUBIKEY_HMAC_ERROR);
13 return;
14 }
15 response.append(ui->masterPasswordLineEdit->text());
16 setStatus(BUSY_KEY);
17 CryptoPP::PKCS5_PBKDF2_HMAC<CryptoPP::SHA512> kdf; // Derive master key

from concatenation of user password and YubiKey response
18 if (operationMode == DECRYPT_MODE) {

44

19 kdf.DeriveKey(this->key, sizeof(key), 0, (byte*) response.data(),
response.length(), this->salt, sizeof(salt), iterations, 0); //
Use recovered iteration count to derive key

20 if (!decrypt()) return;
21 db->read(QJsonDocument::fromJson(QByteArray::fromStdString(clear)).

object());
22 }
23 else {
24 iterations = kdf.DeriveKey(this->key, sizeof(key), 0, (byte*) response

.data(), response.length(), this->salt, sizeof(salt), iterations,
MIN_PBKDF_TIME);

25 if (!encrypt()) return;
26 QFile file(fileName);
27 QByteArray iv;
28 for (int i = 0; i < IV_SIZE; i++) iv.append(this->iv[i]);
29 QByteArray salt;
30 for (int i = 0; i < SALT_SIZE; i++) salt.append(this->salt[i]);
31 file.open(QIODevice::WriteOnly);
32 file.write(challenge.toBase64());
33 file.write(":");
34 file.write(salt.toBase64());
35 file.write(":");
36 file.write(QByteArray::number(iterations).toBase64());
37 file.write(":");
38 file.write(iv.toBase64());
39 file.write(":");
40 file.write(QByteArray::fromStdString(cipher).toBase64());
41 file.close();
42 }
43 this->hide(); }
44 }

Encryption Process

In Figure 5.6 the complete encryption process can be seen. Note that the HMAC challenge, IV,

and salt are randomly generated for each encryption operation. This is critical to the security of

the entries file, as it ensures that the same entries cleartext always results in drastically different

ciphertext. Furthermore, using a new HMAC challenge each time prevents an adversary with

knowledge of a prior HMAC response from reusing it as one of the factors in key derivation.

45

Figure 5.6: PassMan encryption process flowchart

46

The code for these steps can be seen in Listing 5.9, where the save() function receives

as arguments the filename and entries list to encrypt. An AutoSeededRandomPool is used

to source random data offered from the operating system for each variable in lines 8 through

14. Then, the entries are serialized on line 25, and stored in the clear string for encryption.

After this step, the user is prompted via a dialog (on line 28) to present their master password,

which then triggers an HMAC challenge to the YubiKey.

Listing 5.9: Authenticator save function

1 void Authenticator::save(const QString& fileName, Database* db) // Encrypt a file
2 {
3 try
4 {
5 operationMode = ENCRYPT_MODE;
6 this->fileName = fileName;
7 this->db = db;
8 byte challenge[YubiKey::MAX_HMAC_CHALLENGE_SIZE];
9 CryptoPP::AutoSeededRandomPool prng;

10 prng.GenerateBlock(challenge, sizeof(challenge)); // Generate new random
HMAC challenge each time!

11 this->challenge.clear();
12 for (int i = 0; i < YubiKey::MAX_HMAC_CHALLENGE_SIZE; i++) this->challenge.

append(challenge[i]);
13 prng.GenerateBlock(iv, sizeof(iv)); // Generate new random IV each time!
14 prng.GenerateBlock(salt, sizeof(salt)); // Generate new random salt each

time!
15 }
16 catch (CryptoPP::Exception& ex) //Catch if challenge and iv generation fail
17 {
18 setStatus(FAILED);
19 notify(QMessageBox::Critical, ERROR_TITLE, ENCRYPT_ERROR, QString(ex.what()

));
20 this->clean();
21 this->hide();
22 return;
23 }
24 QJsonObject obj;
25 db->write(obj);
26 QJsonDocument doc(obj);
27 clear = doc.toJson().toStdString();
28 this->show(); // Continue process after user supplies password
29 }

47

Actual encryption does not occur until the user presents their password and initi-

ates a challenge, which triggers the execution of the aforementioned formKey() function,

which itself calls encrypt() (shown in Listing 5.10) after it has derived the key. GCM

mode is initialized on line 6 and 7, and actual encryption is attempted on line 8. Here, an

AuthenticatedEncryptionFilter is used to run the cipher in GCM mode. Upon suc-

cessful encryption, the execution returns to formKey(), where the file is written out to storage,

and variables cleaned.

Listing 5.10: Authenticator encryption function

1 int Authenticator::encrypt() // Perform authenticated AES-256 encryption in GCM-
AE mode

2 {
3 try
4 {
5 cipher.clear();
6 CryptoPP::GCM<CryptoPP::AES>::Encryption enc;
7 enc.SetKeyWithIV(key, sizeof(key), iv, sizeof(iv)); // Initialize cipher
8 CryptoPP::StringSource src(clear, true, new CryptoPP::

AuthenticatedEncryptionFilter(enc, new CryptoPP::StringSink(cipher),
false, TAG_SIZE)); // Run cleartext through

9 }
10 catch (CryptoPP::Exception& ex)
11 {
12 setStatus(FAILED);
13 notify(QMessageBox::Critical, ERROR_TITLE, ENCRYPT_ERROR, QString(ex.what()

));
14 this->clean();
15 this->hide();
16 return false;
17 }
18 setStatus(COMPLETE);
19 return true;
20 }

Decryption Process

Figure 5.7 shows how the decryption process is much the same, except that there are extra

checks to ensure that the entries file is valid prior to attempting decryption. This is done to

avoid errors during the deserialization process of entries file variables.

48

Figure 5.7: PassMan decryption process flowchart

49

In Listing 5.11, the open() function reads in the file, breaking it into pieces on line 15

via split(). This follows the colon-separated file specification, which is further confirmed in

the call on line 17. If there are no errors, the user is prompted via a dialog to present their

master password, then triggering the HMAC challenge.

Listing 5.11: Authenticator open function

1 void Authenticator::open(const QString& fileName, Database* db) // Decrypt a file
2 {
3 ui->masterPasswordLineEdit->clear();
4 operationMode = DECRYPT_MODE;
5 this->fileName = fileName;
6 this->db = db;
7 QFile file(fileName);
8 if (!file.open(QIODevice::ReadOnly)) // Failed to open file
9 {

10 notify(QMessageBox::Critical, ERROR_TITLE, DB_ERROR, FILE_ERROR);
11 this->clean();
12 this->hide();
13 return;
14 }
15 QByteArrayList parts = file.readAll().split(FILE_PORTION_SEPARATOR);
16 file.close();
17 if (!ensureParts(parts)) return;
18 this->show(); // Show interface to user
19 }

Actual decryption does not occur until the user presents their password and initiates

a challenge. Similar to encryption, this causes formKey() to be called, which itself calls

decrypt() (shown in Listing 5.12) after it has derived the key. GCM mode is initialized,

and the ciphertext fed through the AuthenticatedDecryptionFilter. In this stage, an

exception could indicate that the file has been corrupted. In this case, the user would be

notified, and the operation aborted.

50

Listing 5.12: Authenticator decryption function

1 int Authenticator::decrypt() // Perform authenticated AES-256 decryption in GCM-
AE mode

2 {
3 try
4 {
5 clear.clear();
6 CryptoPP::GCM<CryptoPP::AES>::Decryption dec;
7 dec.SetKeyWithIV(key, sizeof(key), iv, sizeof(iv)); // Initialize cipher
8 CryptoPP::AuthenticatedDecryptionFilter adf(dec, new CryptoPP::StringSink(

clear), CryptoPP::AuthenticatedDecryptionFilter::DEFAULT_FLAGS,
TAG_SIZE); // Initialize authentication filter

9 CryptoPP::StringSource src(cipher, true, new CryptoPP::Redirector(adf));
// Redirector feeds cipher into authenticator

10 }
11 catch (CryptoPP::Exception& ex) // Will catch if integrity check fails, or

other issue
12 {
13 setStatus(FAILED);
14 if (ex.GetErrorType() == CryptoPP::Exception::DATA_INTEGRITY_CHECK_FAILED)

notify(QMessageBox::Critical, ERROR_TITLE, DECRYPT_ERROR,
INTEGRITY_ERROR);

15 else // Some other odd exception
16 {
17 notify(QMessageBox::Warning, ERROR_TITLE, DECRYPT_ERROR, QString(ex.

what()));
18 this->clean();
19 this->hide();
20 }
21 return false;
22 }
23 setStatus(COMPLETE);
24 return true;
25 }

5.6 Password Generation

When using PassMan, the user need only remember their master password and their YubiKey

to access all account passwords. Therefore, they can use unique, high-strength passwords for

each account. The Generator class provides a customizable interface for creating passwords

with desired entropy levels. Listing 5.13 contains the simple generation function.

51

Listing 5.13: Password generation function

1 void Generator::generate() // Formulate a new password, given set constraints
2 {
3 QString pass;
4 CryptoPP::AutoSeededRandomPool prng; // Initialize CSPRNG
5 QList<int> selectedTypes;
6 bool containsAllTypes, containsLower, containsUpper, containsNumeral,

containsOther;
7 containsAllTypes = false;
8 if (useLower) selectedTypes.append(0);
9 if (useUpper) selectedTypes.append(1);

10 if (useNumeral) selectedTypes.append(2);
11 if (useOther) selectedTypes.append(3);
12 if (selectedTypes.length() < 1) return;
13 while (!containsAllTypes)
14 {
15 pass.clear();
16 containsAllTypes = containsLower = containsUpper = containsNumeral =

containsOther = false;
17 for (int i = 0; i < length; i++)
18 { // Select a random type, then a random value within that type
19 switch (selectedTypes.at(prng.GenerateByte() % selectedTypes.length()))
20 {
21 case 0:
22 pass.append(LOWER.at(prng.GenerateByte() % StrengthCalculator::

NUM_LOWER));
23 break;
24 case 1:
25 pass.append(UPPER.at(prng.GenerateByte() % StrengthCalculator::

NUM_UPPER));
26 break;
27 case 2:
28 pass.append(NUMERAL.at(prng.GenerateByte() % StrengthCalculator

::NUM_NUMERAL));
29 break;
30 case 3:
31 pass.append(OTHER.at(prng.GenerateByte() % StrengthCalculator::

NUM_OTHER));
32 break;
33 }
34 }
35 for (int i = 0; i < length; i++) // Ensure all chosen types are

somewhere in the password
36 {
37 if (LOWER.contains(pass.at(i))) containsLower = true;
38 if (UPPER.contains(pass.at(i))) containsUpper = true;
39 if (NUMERAL.contains(pass.at(i))) containsNumeral = true;
40 if (OTHER.contains(pass.at(i))) containsOther = true;
41 }
42 containsAllTypes = (containsLower == useLower) && (containsUpper ==

useUpper) && (containsNumeral == useNumeral) && (containsOther ==
useOther);

43 }
44 ui->passwordLineEdit->setText(pass);
45 }

52

Individual characters are randomly selected from each of the enabled symbol groups

available on a standard keyboard. Specifically, the generate() function checks to see which

symbol groups the user has enabled, then starts a loop to choose a random symbol for each

position in the password. An AutoSeededRandomPool from the Crypto++ library is used

to ensure the output is highly unpredictable. Within the loop, a random symbol group is

chosen, then a random symbol inside of the chosen group is appended to the password. Once

a candidate password is generated, a check is done to confirm that at least one symbol from

each enabled symbol group exists in the password; new passwords will be repeatedly generated

until this condition is satisfied.

Passwords generated here are automatically inserted into the password field of the cur-

rently selected account in the main program, but the generator can also be accessed via the

menu for convenience.

Strength Calculation

Password strength is determined using the naive calculation of entropy mentioned in Chapter 2.

Code for this is in the StrengthCalculator class, and is called by the main and Generator

classes to visualize strength via a QProgressBar. In Listing 5.14, a password string is passed

in, and looped through, checking for the presence of various character groups. Ultimately, the

length of the password, and the number of possible symbols must be known to estimate the

entropy.

53

Listing 5.14: Password strength calculation function

1 double StrengthCalculator::naiveEntropyBits(const QString &pw) // Calculate raw
bits of entropy (assuming password made with uniform probability distribution)

2 {
3 bool hasLower, hasUpper, hasNumeral, hasOther;
4 hasLower = hasUpper = hasNumeral = hasOther = false;
5 int len = pw.length();
6 for (int i = 0; i < len; i++)
7 {
8 QChar ch = pw.at(i);
9 if (ch.isLower()) hasLower = true;

10 if (ch.isUpper()) hasUpper = true;
11 if (ch.isDigit()) hasNumeral = true;
12 if (ch.isSymbol() || ch.isSpace()) hasOther = true;
13 }
14 int possibleSymbols = 0;
15 if (hasLower) possibleSymbols += NUM_LOWER;
16 if (hasUpper) possibleSymbols += NUM_UPPER;
17 if (hasNumeral) possibleSymbols += NUM_NUMERAL;
18 if (hasOther) possibleSymbols += NUM_OTHER;
19 return (possibleSymbols > 0) ? ((double) len) * log2((double) possibleSymbols)

: 0.0; // Avoid undefined log_2(0)
20 }

The naive formula is utilized on line 19, where L corresponds to len, and N corresponds

to possibleSymbols.

5.7 Auto-Type

PassMan is able to automatically simulate keyboard entry via running the external binary

xdotool (available in standard system repositories) in a separate process. The username

and password are written to the standard input of this process, after which xdotool will

simulate keypresses of the data into the desired login form. Typically, the user would select the

username field of the login form they wish to authenticate with, then select Auto-Type Entry

from the PassMan window after selecting the correct account. Listing 5.15 shows how this is

accomplished.

54

Listing 5.15: Password auto-type function

1 void PassMan::on_actionAuto_Type_Entry_triggered() // Perform auto-type
2 {
3 QString command("xdotool -");
4 QString tabCommand = "key Tab";
5 QString returnCommand = "key Return";
6
7 this->setWindowState(Qt::WindowMinimized);
8 QProcess* proc = new QProcess(); // Send username
9 proc->start(command, QIODevice::ReadWrite);

10 proc->write(ui->usernameLineEdit->text().prepend("type ").toUtf8());
11 proc->closeWriteChannel();
12 proc->waitForFinished(-1);
13 proc->close();
14
15 proc->start(command, QIODevice::ReadWrite);
16 proc->write(tabCommand.toUtf8()); // Send tab key
17 proc->closeWriteChannel();
18 proc->waitForFinished(-1);
19 proc->close();
20
21 proc->start(command, QIODevice::ReadWrite);
22 proc->write(ui->passwordLineEdit->text().prepend("type ").toUtf8()); // Send

password
23 proc->closeWriteChannel();
24 proc->waitForFinished(-1);
25 proc->close();
26
27 proc->start(command, QIODevice::ReadWrite);
28 proc->write(returnCommand.toUtf8()); // Send return key
29 proc->closeWriteChannel();
30 proc->waitForFinished(-1);
31 proc->close();
32 delete proc;
33 }

The process is opened as usual, except that it is started several times to simulate a

series of user interactions. First, the PassMan window is minimized on line 7 to return window

focus to the window previously selected by the user (like a web browser). The username is sent,

followed by a Tab, the password, and finally the Return key.

Chapter 6

Conclusion

PassMan is currently at version 1.3.4, a stable release that is viable for continual usage in a

Linux environment. It modernizes password usage by offering all common password manage-

ment features, including confidentiality and assured integrity of account information, auto-type

functionality, password strength calculation, and customizable password generation. Its sim-

plistic interface was designed to minimize the learning curve for first-time password manager

users. In some regards, it exceeds the default security level of other password managers, because

it requires a second authentication factor via the YubiKey hardware token.

However, PassMan’s security and usability could be improved further to make it a full-

fledged password manager like KeePassX. As it currently stands, the auto-type functionality is

only compatible with simplistic login forms (where the username and password field are on the

same page). Customizable auto-type, where the user can specify the order of field entry and

emulation of keypresses, would allow usage with more complex login sequences such as Google’s

two-page system.

Password strength calculation could also use improvement. Currently, a naive calcula-

tion of entropy is used, meaning that it is assumed each possible symbol has equal chance of

being chosen for a position in a password. While this is true when PassMan generates pass-

words, it is not for user-influenced passwords, where the frequency of alphabet letters is far

from uniform in the English language. In practice, this means that a password with words

in it may be misrepresented as holding more entropy than it actually does; consequentially, a

dictionary attack on that password could be more viable than the user expects. Calculation

55

56

could instead be done using Claude Shannon’s method, where the probability of each possible

symbol is taken into account. In this case, the common letter “e” would be worth less entropy

than the letter “z” in a password, and overall entropy is more accurately described.

Run-time security may be increased through the use of “secure memory” features avail-

able in most operating systems. CryptProtectMemory() in Windows, or

gcry malloc secure() in Linux will encrypt allocated memory regions that hold passwords

and other sensitive data. Doing so would shift responsibility for zeroing memory to the oper-

ating system, and further hinders other programs from reading PassMan’s memory.

At-rest security could be expanded to a third authentication factor such as a “keyfile”,

a sequence of data that is used as part of the master key for encryption. In this case, the user’s

master password, YubiKey, and the keyfile would be necessary to recover the user’s data.

Finally, PassMan could be refactored to be fully cross-platform compatible. Currently,

code that communicates with the YubiKey and code for auto-typing is specific to the Linux

environment. These sections could be generalized for Windows and Mac OS X, which would im-

prove its appeal to users, and keep their accounts secure across every machine they encounter.

Bibliography

[1] Mihir Bellare. New proofs for nmac and hmac: Security without collision-resistance. http:
//cseweb.ucsd.edu/˜mihir/papers/hmac-new.pdf, 2006.

[2] The Qt Company. About us. https://www.qt.io/about-us/, 2017.

[3] The Qt Company. Signals & slots. http://doc.qt.io/qt-4.8/signalsandslots.
html, 2017.

[4] Crypto++. Benchmarks. https://www.cryptopp.com/benchmarks-p4.html,
2009.

[5] Crypto++. Random number generation. https://www.cryptopp.com/wiki/
RandomNumberGenerator, 2016.

[6] Crypto++. Advanced encryption standard. https://www.cryptopp.com/wiki/
Advanced_Encryption_Standard, 2017.

[7] Crypto++. Authenticated encryption. https://www.cryptopp.com/wiki/
Authenticated_Encryption, 2017.

[8] Crypto++. Gcm mode. https://www.cryptopp.com/wiki/GCM_Mode, 2017.

[9] Crypto++. Key derivation function. https://www.cryptopp.com/wiki/Key_
Derivation_Function, 2017.

[10] Joan Daemen and Vincent Rijmen. The design of rijndael. https://
autonome-antifa.org/IMG/pdf/Rijndael.pdf, 2002.

[11] Inc. IBM. Hmac: Keyed-hashing for message authentication. https://tools.ietf.
org/html/rfc2104, 1997.

[12] Texas Instruments Inc. C implementation of cryptographic algorithms. http://www.
ti.com/lit/an/slaa547a/slaa547a.pdf, 2013.

[13] KeePass. Security. http://keepass.info/help/base/security.html, 2017.

[14] KeePass. Keepass & yubikey. http://keepass.info/help/kb/yubikey.html, 207.

[15] RSA Laboratories. Pkcs #5: Password-based cryptography specification version 2.0.
https://tools.ietf.org/html/rfc2898, 2000.

[16] LastPass. How it works. https://www.lastpass.com/how-it-works, 2017.

[17] LastPass. Lastpass and yubikey. https://lastpass.com/yubico, 2017.

57

58

[18] Matt Mackall. random.c – a strong random number generator. https:
//git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.
git/tree/drivers/char/random.c?id=refs/tags/v3.15.6#n52, 2005.

[19] PC Magazine. Keepass. http://www.pcmag.com/article2/0,2817,2408063,
00.asp, 2012.

[20] NIST. Announcing the advanced encryption standard (aes). http://nvlpubs.nist.
gov/nistpubs/FIPS/NIST.FIPS.197.pdf, 2001.

[21] NIST. Estimating password strength. http://csrc.nist.gov/archive/pki-twg/
y2003/presentations/twg-03-05.pdf, 2003.

[22] NIST. The galois/counter mode of operation (gcm). http://csrc.nist.gov/groups/
ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf, 2007.

[23] NIST. Security policy - crypto++ library. http://csrc.nist.gov/groups/STM/
cmvp/documents/140-1/140sp/140sp819.pdf, 2007.

[24] NIST. Validated fips 140-1 and fips 140-2 cryptographic modules. http://csrc.nist.
gov/groups/STM/cmvp/documents/140-1/140val-all.htm#2267, 2017.

[25] NSA. National policy on the use of the advanced encryption standard (aes) to protect
national security systems and national security information. http://csrc.nist.gov/
groups/ST/toolkit/documents/aes/CNSS15FS.pdf, 2003.

[26] Cryptography Coding Standard. Coding rules. https://cryptocoding.net/index.
php/Coding_rules, 2017.

[27] Wired. Facebook pushes passwords one step closer to death. https://www.wired.
com/2013/10/facebook-yubikey/, 2013.

[28] Yubico. Improving yubikey physical security. https://www.yubico.com/2014/04/
improvements-physical-yubikey-attacks/, 2014.

[29] Yubico. How it works. https://www.yubico.com/why-yubico/
how-yubikey-works/, 2016.

[30] Yubico. About the yubikey 4 series. https://www.yubico.com/products/
yubikey-hardware/yubikey4/, 2017.

[31] Yubico. Challenge response. https://www.yubico.com/products/
services-software/personalization-tools/challenge-response/, 2017.

