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 Social media usage has become mainstream. According to a recent study done 

by Edison Research in 2016, 78% of the U.S. population has a social media profile 

[8]. The number of active Facebook users is over one billion. In addition, 71% of 

adults use Facebook, which is the target of this thesis.  Because Facebook is so 

widely used, it is also a popular medium for those wanting to promote their products 

and ideas, including presidential candidates. Many researchers have extracted data 

from social media sites, including Facebook, to predict the outcome of elections, to 

predict election turnout by political party, and to determine voter opinions. This thesis 

will discuss the development and use of a suite of tools for gathering and analyzing 

data collected from the social media site, Facebook. Although the suite of tools can be 

used to collect data from any public Facebook site, this thesis will specifically focus 

on using the tools to extract data from the pages of presidential candidates. In 

addition to extracting Facebook data and storing the data in a database, tools in the 

suite can be used to analyze and visualize the collected data.  
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Chapter 1 - Introduction 
 

 

        Social media sites are now widely used by politicians, companies, private 

organizations, and individuals to advertise events, products, and ideas. In the 2008 election, 

President Obama demonstrated the power of social media and how it could be used to 

“change the political landscape” [5]. Particularly, during that election social media platforms 

became the leading mechanism for engaging voters of younger ages and reaching minorities. 

The powerful use of social media allowed Obama an overall advantage over McCain on 

attracting voters and rallying turnout. In contrast, McCain’s inefficient management of social 

media resulted in small outreach. Facebook continues to be a popular medium for political 

candidates to spread their influence. For example, the Maryland Presidential Primary 

Election State Candidate List of 2016, lists 22 candidates. Of the 22 candidates, 17 have 

listed Facebook pages [15].  

This thesis discusses the extraction and visualization of data from the Facebook 

pages of presidential candidates. We describe a Facebook Extraction and Analysis 

Toolkit (FEAT) that uses the Facebook API to gather data and provides tools to analyze 

and visualize the collected data. Listed below are the candidates and the Facebook URLs 

that are used in this thesis: 

 Hillary Clinton - https://www.facebook.com/hillaryclinton/ 

 Donald Trump - https://www.facebook.com/DonaldTrump/ 

The data extracted was obtained for about a period of ten months from January 2016 to 

November 2016. The following tools are included in the project: 

 FEAT Extractor that collects data from Facebook and stores the data into a database 
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 FEAT Analysis Tools that  

o count word frequencies 

o calculate Readability scores  

o determine the sentiment of comments and posts 

 FEAT Visualizer that displays graphs of the analyses that were performed 

The data collection tools use the Facebook API to gather data such as the numbers of 

followers, posts, comments, and shares from Facebook pages and then store the data into a 

MySQL database for later analysis.  

Many systems today provide an Application Program Interface (API) that specifies 

how new software can request services from an existing system. APIs abstract the underlying 

implementation and only expose entities that the developers may need, making it easier for 

developers to use the program to create applications. APIs describe the fields and functions 

that allow the developer to interact with the underlying software. For example, the Graph 

API provided by Facebook allows developers to obtain, insert, and delete information on 

Facebook. Some of these operations are restricted to developers with specific permissions. 

The data obtained via the Facebook API is stored into a MySQL database. MySQL is 

an open-source Relational Database Management System (RDBMS). Data in a relational 

database is organized into tables; each of the tables has a well-defined relationship with the 

other tables. MySQL software interacts with the user to perform insertion, deletion, and 

modification of data in the database.  

Visualization tools extract the data from the database and create graphs using 

Chart.js. Chart.js is a JavaScript charting library that uses the HTML5 canvas to render the 

graphs. There are numerous charting libraries available such as D3.js, FusionCharts, and 
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Highcharts, however Chart.js is perfect for supplying simple and elegant charts. In addition, 

Chart.js is open source and is easy to use.   

The remainder of this thesis is organized as follows. Chapter 2 examines other works 

that are related to the use and analysis of social media. Chapter 3 provides background 

information about text analysis. Chapter 4 discusses the methodology that was used to extract 

data from Facebook and the tools use to analyze the data. In addition, Chapter 4 also 

discusses how the website was implemented and used. Chapter 5 presents the analysis of the 

data obtained from the presidential candidates’ Facebook pages. Chapter 6 provides the 

summary and conclusion for the research.  
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Chapter 2 – Related Work 
 

 

Numerous social media organizations, such as Facebook, Twitter, Instagram, 

LinkedIn, and Pinterest, provide an API that allows a software developer access to some of 

the social media data. For instance, the Facebook API is structured like a graph with nodes 

and edges. A node represents content on the page such as a post or image. An edge provides 

a link between related nodes such as a post and a comment on that post. However, an API 

may not provide all the data a developer may wish to obtain. For example, the Facebook API 

allows the extraction of a comment but not the commenter information such as gender and 

age that may be public information on the commenter’s page. The Facebook API will not 

allow access to personal pages. Also, an API may place a restriction on how many 

consecutive queries are allowed per day. In these cases, web scraping can be used to crawl 

through web pages to look for desired information. Since a web scrapper does not restrict 

access in the way an API does, a developer will have more freedom in obtaining data from 

web pages.  

Web scraping is a technique employed to automatically extract data that can be 

viewed on a website. Web scraping is similar to web indexing in that it uses bots or web 

crawlers to traverse websites looking for specific HTML tags or specific labels. For example, 

Facebook displays a birthdate after the label Birthday that can be obtained by scraping the 

page, searching specifically for that label. The structure of HTML makes it possible to 

retrieve and organize data that is viewable on a web page. Web scraping is commonly used in 

online price comparison, weather data monitoring, website change detection, and social 

media research. 
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 This chapter discusses tools that use APIs and/or web scraping to obtain social media 

data. In addition, the chapter describes the results obtained by analyzing the data. These 

works are divided into two sections. Section 2.1 describes tools and research unrelated to the 

use of social media for political gain and insight. Section 2.2 describes research into the use 

of social media for political purposes. 

2.1 Analysis of Social Media Data 

 According to Edison Research, in 2016, 78% of the U.S. population has a social 

media profile [8]. The number of active Facebook users is over one billion. Instagram has 

over 400 million users, and Twitter has over 320 million. For these reasons, social media has 

become popular for business and political outreach. In addition, organizations are using 

social media in increasingly more sophisticated ways. For example, businesses can provide 

very targeted advertising that is based upon social media use, and emergency management 

organizations can use social media to track crises and render aid. This section describes some 

recent uses and analysis of social media. 

The TweetTracker project uses the Twitter Stream API to assist Humanitarian Aid 

and Disaster Relief respondents [13]. Twitter data is stored in a database that is processed to 

pinpoint the location of tweets. The software produces a map on a webpage; markers on the 

map identify the locations from which the tweets originated. In addition, an application runs 

in the background that monitors the Twitter streaming feed for specific keywords and 

hashtags. The TweetTracker tool was used during the Haiti cholera outbreak. The tweets 

were filtered for “#cholera” and visualized on a map with colored tags. Green tags were used 

for geo-located tweets (tweets that contain location information) and blue tags were set for 
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non-geo-located tweets. The TweetTracker tool can provide emergency responders with site 

information immediately after a crisis. 

He et al. performed text mining to analyze the use of social media by three large pizza 

chains: Domino’s, Papa John’s, and Pizza Hut [10]. Text mining is a technique to create 

meaningful information from unstructured text, in this case, Twitter and Facebook. The 

process to obtain the results was separated into three steps. The first step was to extract and 

prepare the data from Facebook and Twitter. The data compiled included the number of 

fans/followers and post/tweets in the month of October 2012. The next step performed the 

actual text mining of the data collected. Since there was no prior knowledge of categories, all 

tweets were combined to create one set and all posts were combined to create a second. 

Common themes were uncovered in each set. After the themes were defined, the posts and 

tweets were reexamined to separate them into groups based on the themes. Lastly, the 

researchers analyzed the data to determine how pizza companies could make better use of 

social media. For example, one recommendation was to constantly monitor their own and 

their competitors’ social media. Monitoring social media helps the company judge how well 

its product is received by their customers and leads to a greater knowledge of the 

competitors’ products. He suggested the use of free and commercial Internet tools to monitor 

certain websites. Some examples listed were Google Alerts, Social Mention, Quora, and 

HootSuite. These tools analyze webpages and provide graphical reports based on keywords, 

hashtags, sentiment, and influencers. 

Asur et al. demonstrated how to use chatter from Twitter to forecast box-office 

revenues for movies [1]. The researchers used keywords associated with particular movies to 

search for related tweets. In total, they extracted 2.89 million tweets referring to 24 movies.  
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The data was then used to calculate the tweet-rate of each movie, which is the number of 

tweets divided by the number of hours the tweets were collected: 

𝑇𝑤𝑒𝑒𝑡𝑅𝑎𝑡𝑒 =
|𝑇𝑤𝑒𝑒𝑡𝑠 𝑜𝑓 𝑀𝑜𝑣𝑖𝑒|

|𝐻𝑜𝑢𝑟𝑠|
    2.1 

The authors used the tweet-rate to predict first-weekend box office revenues and found a 

strong positive correlation (with a correlation coefficient of 0.90) between average tweet rate 

and box-office gross. The predictions were evaluated using box-office information extracted 

from the Box Office Mojo website. For example, the movie Transylmania, had a low tweet-

rate and was recorded to have the lowest-grossing opening for a movie playing at over 1000 

sites. In comparison, the movie Twilight: New Moon made 142 million dollars and averaged 

1365.8 tweets per hour.  

Sentiment Analysis is commonly used to measure the attitude of reviews such as 

those of products and movies. Sentiment analysis on movie reviews can be readily performed 

given the extensive collections of reviews such as IMDb that can be found on the Internet. 

Also, reviewers often summarize their reviews by machine-extractable indicators such as the 

number of stars [19]. Asur and Huberman also performed sentiment analysis on their set of 

Twitter data to predict if a movie will be successful [1]. The ratio of positive tweets over 

negative tweets was used to improve their prediction strategy: 

𝑃𝑁𝑟𝑎𝑡𝑖𝑜 =
|𝑇𝑤𝑒𝑒𝑡𝑠 𝑤𝑖𝑡ℎ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡|

|𝑇𝑤𝑒𝑒𝑡𝑠 𝑤𝑖𝑡ℎ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡|
   2.2 

They predicted that if a movie has many more positive tweets than negative tweets then the 

movie to be popular.  The PNratio and the tweet-rate were used together to predict box-office 

revenue for the second weekend. They found that the use of the PNratio did not improve the 

prediction.  However, the tweet-rate alone was just as effective predicting box office 

revenues for the second weekend as it was for the first.  
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Pak and Paroubek investigated the performance of sentiment analysis on micro-blogs, 

specifically, tweets from Twitter [18]. The researchers used the Twitter API to collect 

300,000 posts evenly split into three datasets: texts containing positive emotions, texts 

containing negative emotions, and texts expressing a fact. Texts categorized as positive 

contained emoticons such as :) or :-). Texts categorized as negative contained emoticons 

such as :-( or =(. Texts expressing a fact were retrieved from the Twitter accounts of 

newspapers and magazines such as the New York Times or the Washington Post. After 

categorizing the tweets, the researchers performed a linguistic analysis of the datasets. The 

analysis found that objective texts tend to contain more common and proper nouns, and the 

subjective texts contain personal pronouns and simple past tense. In addition, positive texts 

more frequently use superlative adverbs such as “most” and “best” while negative texts tend 

to use past tense verbs such as “missed,” “bored,” and “gone.” Next, the researchers 

extracted features from the datasets to train a sentiment classifier. In particular, the 

researchers trained the classifier using n-grams that were obtained from the datasets. These n-

grams were formed by filtering each Twitter post to eliminate Twitter usernames, URLs, and 

emoticons; tokenizing the remaining post; removing stop words such as “a,” “an,” and “the”; 

and finally, concatenating consecutive words to create n-grams. In experiments with several 

classifiers, they found that the Naïve Bayes classifiers yielded the best results. The Naïve 

Bayes classifier that used n-grams and part-of-speech (POS) tags as features could classify 

positive, negative, and neutral tweets with a high accuracy. 

2.2 Politics and Social Media 

Social media has provided opportunities for politicians and social science researchers. 

Politicians are interested in using social media to connect with and influence voters.  
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Researchers are interested in determining the impact of social media on political opinion, and 

evaluating how users receive and share election information. This section discusses some of 

the research into these issues. 

In the 2004, 2008, and 2012 elections, Facebook allowed users to tell their friends 

who they are voting for by writing a message that appeared at the top of their news feeds [2]. 

After the 2012 election, the Facebook Data Science team used the voting data entered by 

over 9 million users along with information about users to explore the relationships between 

voting and user attributes such as gender and party affiliation. The Facebook data indicated 

that women were far more likely to share who they voted for. This agrees with Facebook 

findings that, in general, women are far more likely than men to share information on 

Facebook. In addition, the researchers found that users who viewed themselves as liberals or 

democrats, were more likely to indicate who they voted for on Facebook. 

Research performed by the Pew Research Center compared candidates’ use of social 

media in the election of 2016 and the previous elections [21]. In one study, the research 

determined which social media sites were used by the candidates. In 2008, both Obama and 

McCain used Facebook, YouTube, Flickr, and Myspace. In 2012, Obama used ten social 

media sites while Romney only used three. In the 2016 election, Bernie Sanders, Hillary 

Clinton, and Donald Trump used at least four social media sites. In addition, the researchers 

collected and analyzed posts and tweets from Trump, Clinton, and Sanders Facebook pages 

and Twitter profiles from May 11 to May 31, 2016. The researchers found that all three 

candidates post at a similar rate but Trump receives the most response in terms of comments, 

shares, reactions, and retweets. Research also showed that Trump and Clinton focused on 
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each other on Facebook. Trump refers to Clinton in 38 posts and Clinton refers to Trump in 

45 of her posts. 

Scientists from Queen Mary University of London analyzed tweets by 10,000 users 

on Twitter [23,25].  The researchers separated users into political parties based on which 

American politicians’ Twitter feeds the user followed. This allowed tweets made by the users 

to be categorized by political party. Two sets of tweets were analyzed for word frequency. 

Words that they found to be affiliated with the Democratic party included words such as “I,” 

“me,” “mine,” curse words, and words that express positive sentiments. Republicans more 

frequently use the words “we,” “our,” “us,” “God,” and words that express negative 

sentiment. 

Choy et al. developed two models using Twitter data to predict the outcome of the 

2012 Presidential election [5]. The researchers collected 7,541,470 tweets between August 

12, 2012 and October 31, 2012. The AFINN corpus was used to extract the sentiments from 

the tweets. Socio-demographic data and census information were used to correct for bias. 

The first model assumed that the Twitter information reflects the opinion of anyone active on 

the Internet. The second model assumes that the Twitter influence is limited to the Twitter 

population and that the rest of the electorate are better modeled by their prior political 

affiliation. The first model predicted a very tight race. The second model included party 

affiliation and predicted a comfortable win for Obama. Both models validated the possibility 

of using Twitter to predict elections. 

In April, 2016, Conlen and Fischer-Baum created a website that displayed a map of 

followers of presidential candidates per location [6]. If the number of likes actually translated 

into votes, Bernie Sanders would have beaten Hillary Clinton by a nearly 3 to 1 margin. 
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According to Pew Research Center, 58% of American adults use Facebook [21]. However, 

Facebook users are not representative of the country, as most users tend to be young, low-

income, and female. In addition, not all users that vote follow a candidate on Facebook. 

Although likes do not translate into votes, the map does indicate where candidates are likely 

to receive support. As can be expected, Sanders had large pockets of supporters in the 

northeastern states and Ted Cruz had pockets of supporters in Texas. 

 Unlike the research discussed in this chapter that targets specific politicians, 

elections, or analyses, this thesis discusses the design and implementation of a toolkit that 

can be used to extract and analyze data from any public Facebook page. Since 2016 is an 

election year, the tools are applied to the Facebook pages of presidential candidates, but these 

tools could be used to extract and analyze data from the pages of businesses, organizations or 

celebrities. The next chapter provides the background material needed to understand the 

analyses that are performed by the FEAT toolkit. 
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Chapter 3 – Text Analysis 
 

 

Text analysis, or mining, techniques obtain information from text by looking for 

certain items such as the frequency of use of certain types of words. These techniques begin 

with processes to parse the text to extract important pieces of the text and discard others. This 

parsed text is then usually stored in a database. Next, the text is analyzed to detect certain 

patterns and trends. Finally, the output is evaluated. Text analysis techniques range from 

simple tasks such as counting the frequency of words to the more difficult tasks of 

determining the writer's attitude toward a particular topic. 

Section 3.1 provides information about a type of text analysis known as sentiment 

analysis. Sentiment analysis is the process of determining whether a piece of writing is 

positive, negative, or neutral, thereby offering a method to determine a writer's opinion on a 

specific topic. For example, sentiment analysis can provide an automated approach for 

categorizing reviews of movies. Techniques for performing sentiment analysis are discussed 

in Section 3.1. Particularly, the section focuses on the Naïve Bayes model used in the FEAT 

toolkit. 

Section 3.2 and 3.3 provides background information on word frequency, word cloud, 

and readability analysis. Word frequency graphs display the N significant words that appear 

most frequently in a document or set of documents. This analysis can provide an indication 

about what topics a writer or group of writers deem most important. A word cloud is a 

graphical technique for illustrating the frequency of the words. Readability analysis 

determines the ease at which text can be read and understood. It is widely used to choose 
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books for school age readers, but also can be used to provide insight into the literacy level of 

the writer. 

3.1 Sentiment Analysis 

Sentiment Analysis is the computational study of people's attitudes toward a topic by 

uncovering and categorizing a sentiment found in text. Specifically, sentiment analysis finds 

opinions in text, extracts the words or phrases that indicate an opinion, and classifies the text 

per sentiment expressed. The sentiment of each text is classified into categories of positive, 

negative, or neutral.  

Sentiment analysis has become important to businesses as customers increasingly use 

the Internet to express their thoughts about different products [10]. Businesses can analyze 

product reviews on sites such as Amazon and make business decisions based upon these 

reviews. Sentiment analysis could also be applied to stock markets, news articles, and 

political debates. Social media is considered a good source of data for sentiment analysis 

because its environment allows people to freely share and discuss their opinions on a variety 

of topics. For example, micro-blogs such as tweets on Twitter, can be analyzed to extract 

opinions about certain candidates or political topics. This analysis can then be used to build a 

prediction for election results. 

Sentiment analysis applications can be categorized into three levels: document-level, 

sentence-level, and aspect-level. Document-level sentiment analysis classifies the sentiment 

of an opinion document such as a movie or book review. Sentence-level sentiment analysis 

classifies the sentiment of the text by sentence. Fundamentally, techniques that perform 

document level sentiment analysis and sentence level sentiment analysis are the same since 

sentences are simply short documents. Aspect level analysis identifies both the sentiment and 
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the entity to which the sentiment applies. For example, aspect level analysis on the sentence 

“Michael Fassbender is handsome” would identify “Michael Fassbender” as the entity and 

“positive” as the sentiment. This chapter focuses on sentiment analysis in documents, since 

this is the analysis applied by FEAT. 

The first step in performing sentiment analysis is determining features that are then 

represented in a structure known as a feature vector. Features of text include term presence or 

term frequency, parts of speech (POS), opinion words and phrases, and negations [16,20]. 

Terms are specific words or n-grams. An n-gram is a sequence of n words that appear 

consecutively in the document. Term presence may be represented in binary (present or not 

present), while frequency includes a count of the number of times the term appears in the 

text. Typically, POS features are adjectives since these provide a strong indicator of the 

author’s opinion but may also include verbs, adverbs, and nouns. Opinions words and 

phrases are features that are commonly used to express positive or negative sentiment. For 

example, words such as “beautiful,” “happy,” and “good” provide a positive sentiment while 

words such as “ugly,” “sad,” and “bad” provide a negative sentiment. The appearance of a 

negation is also important to note since it changes the opinion of the text into the opposite 

sentiment. For example, a phrase such as “not good” is equivalent to “bad.” 

Feature selection methods reduce the original feature set by removing irrelevant 

features for text sentiment classification. These methods are either lexicon-based requiring 

human assistance, or statistical methods that are fully automatic. Lexicon-based approaches 

use sentiment lexicons to detect words that indicate an opinion. Statistical methods compute 

a score for each individual feature and then select the top ranked features using those scores. 
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These techniques can treat the document as a Bag of Words (BOW) or as a string that retains 

the original sequence of words. Because of ease, the document is typically treated as a BOW. 

After features are selected, Sentiment Classification techniques are used to identify 

the sentiment expressed in the feature. These techniques can be categorized into two general 

approaches, Machine Learning or Lexicon-based. The Machine Learning Approach relies on 

traditional Machine Language algorithms that classify text by using syntactic and/or 

linguistic features. Supervised ML algorithms are provided a large set of training records 

where each record is given a specific label. The algorithm then infers information about the 

records that allows it to label new data. For example, a collection of movie reviews that have 

already been labeled as positive, negative, or neutral can then be used to train a classifier for 

classifying unlabeled movie reviews.  

Another approach is to automatically label text per emoticons present in the text 

[9,18].  An emoticon such as :) indicates the text contains positive sentiment; an emoticon 

such as :( indicates negative sentiment. This technique is particularly useful for labeled text 

on social media sites such as Twitter where the use of emoticons is ubiquitous. The labeled 

text can then be used to train the classifier. 

Unsupervised ML methods are used when training records are not available. These 

methods seek to derive training data in an unsupervised manner.  For example, He et al. [10] 

used an unsupervised ML method to derive common categories from posts and tweets on 

Domino’s, Papa John’s, and Pizza Hut’s Facebook and Twitter pages. Some common themes 

for the Facebook posts are pictures, questions, contest and games information, company 

activities, thank you, and promotions.  
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The Lexicon-based Approach relies on a sentiment lexicon, which is a collection of 

sentiment terms. There are two methods for building the sentiment lexicon: dictionary-based 

and corpus-based. The dictionary-based method starts with a seed list of opinion words that 

are collected manually. Next, the lexicon grows by using a dictionary or thesaurus to add 

synonyms and antonyms. After this process is complete, the lexicon is scanned manually to 

remove errors.  

The problem with the dictionary-based approach is that the derived lexicon will not 

necessarily contain domain specific terms. The corpus-based approach solves this problem by 

finding opinion words that are specific to the domain. The approach uses a seed list of 

opinion words along with syntactic constraints to grow the list by processing a large body of 

text from the domain (a corpus). For example, the constraints could involve connectives like 

“and,” “or,” and “but.” “And” would cause an adjective on one side of the “and” to be added 

if the adjective on the other side is already present in the list of opinion words. For example, 

if the corpus contains the phrase “insightful and beautiful,” the opinion word “insightful” 

would be added with a positive orientation if the word “beautiful” was already present in the 

lexicon and labeled positive. This idea is called sentiment consistency. Similarly, a phrase 

such as “beautiful, but hateful” would cause “hateful” to be added with a negative 

orientation.  

Hybrid methods for sentiment classification, combining both machine learning and 

lexicon-based approaches, are very common. In combining them, the sentiment lexicon built 

from the lexicon-classifier is used to label the training data that are subsequently used in the 

machine learning approach. Go et al. [9] found the hybrid approach performs better than a 

lexicon-based approach when executed on a set of IMDb movie reviews. The hybrid 
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approach performed only slightly worse than the machine learning approach and was much 

more convenient to use given that training data was not needed. 

The sentiment classification approach used in FEAT is based upon the Naïve Bayes 

model, which is a supervised machine learning approach known for its simplicity and 

surprisingly good performance. The Naïve Bayes algorithm is based on two ideas: Bayes 

Theorem, and the naive assumption that the presence of a specific feature is independent of 

other features. The Naïve Bayes algorithm treats the text as a Bag of Words; in other words, 

grammar is discarded and word order is not considered. 

Bayes’ Theorem describes the probability of an event as based on conditions related 

to the event. Bayes' theorem is expressed in the following equation [16]: 

𝑃(𝑙𝑎𝑏𝑒𝑙|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) =
𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠|𝑙𝑎𝑏𝑒𝑙)𝑃(𝑙𝑎𝑏𝑒𝑙)

𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
   3.1 

where P(label|features) is the probability of having the label given that set of features. 

P(label) is the probability that any feature set is given that label. P(features) is the probability 

that a given feature set has occurred.  P(features|label) is the probability that a given feature 

set is being classified with that label. For example, to calculate the probability that a review 

that contains the word “dislike” should be labeled negative, we would use the known 

negative reviews to calculate P(dislike|negative), which is the probability that “dislike” 

appears among the negative reviews. This would be divided by P(dislike) which is the 

number of times the feature “dislike” appears among all extracted features from all labeled 

reviews. Finally, that result would be multiplied by P(negative) which is the number of 

negative reviews among all labeled reviews. The same calculations would be performed for 

the feature “dislike” and the label “positive” and the review would be labeled according to 

the probability that is greater.  
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 Given the naive assumption that all features are independent, the equation can be 

rewritten as follows: 

𝑃(𝑙𝑎𝑏𝑒𝑙|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)  =  
𝑃(𝑙𝑎𝑏𝑒𝑙) ∗ 𝑃(𝑓1|𝑙𝑎𝑏𝑒𝑙) ∗ ...∗ 𝑃(𝑓𝑛|𝑙𝑎𝑏𝑒𝑙)

𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
  3.2 

 Naive Bayes tends to overestimate the probability of a selected label; however, its 

classification decisions are quite good [24]. Thus, when used only to make the decision and 

not to accurately predict the actual probabilities, the model is accurate. In addition, the 

efficiency of the technique is useful when large amounts of data need to be categorized such 

as the data available on a social media site. 

3.2 Word Frequency and Word Cloud 

 Word frequency analysis tools provide a list and the frequency of all the words in a 

text.  Additional analysis can be performed to determine if some words are used significantly 

more in some parts of a document than in others. Further, words can be categorized, for 

example, “guns,” “violence,” “deaths,” “2nd amendment,” and these categories can be used 

to identify the topic of a document [14].  

 Word frequency analysis is one of the most common analyses performed on text and 

there are several tools available on the Internet for finding word or phrase frequencies. Some 

packages make use of synonym lists that allow the words to be categorized. For example, the 

Linguistic Inquiry and Word Count (LIWC) dictionary maps the word set {ashes, burial*, 

buried, bury, casket*, cemet*, coffin*, cremat*, dead death*, decay*, decease*, deteriorat*, 

die, died, dies, drown*, dying fatal, funeral*, grave*, grief, griev*, kill*, mortal*, mourn*, 

murder*, suicid*, terminat*} to the category death. The * in the set represents a wildcard; 

words that begin with the prefix will match the category.  For example, graveyard matches 

grave.  
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Some tools lemmatize before the analysis. Lemmatization removes the grammatical 

structure leaving only the stem so that words are then counted as identical when they share a 

stem. For example, a tool that performs lemmatization would count “dying” and “die”as the 

same word. Additional preprocessing of text includes lowercasing words and possibly 

removing stop words. Stops words are common words such as “a,” “an,” “the,” “are,” etc. 

that do not contribute to the meaning of the document. There is no single list of stop words 

that is used by all text processing toolkits but multiple lists can be found on the Internet in 

various languages.  

Word frequency analysis is useful in finding plagiarism, categorizing documents, and 

automated text summarizations. In addition, word frequency analysis can be used to establish 

the author’s writing “signature” that includes the use of words, phrases, slang, and jargon. 

Signatures can then be compared to identify an author.  For example, this type of analysis 

was performed by computer scientists to identify J.K. Rowling as the author of “The 

Cuckoo's Calling” [12]. 

 Word clouds display words with top frequencies in an amorphous image (cloud) or in 

an image with some meaning such as an elephant or donkey. Typically, words with larger 

frequencies are displayed using larger text sizes than words with lower frequencies. Word 

clouds allow us to quickly see the most significant topics in a document. For example, the 

word clouds from Obama's 2012 and 2014 State of the Union addresses both prominently 

display “America” and “American,” but the words “work” and “help” are much more 

prominent in the 2014 word cloud and thus, were more significant in that address [4]. Word 

clouds can also be useful for businesses.  For example, a word cloud can be used to display 
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customer feedback, which can enable a business to quickly see what customers like and what 

they don't like.   

3.3 Readability Analysis  

 Readability refers to the ease at which written text can be read and understood. Since 

the early twentieth century, hundreds of formulas have been designed to estimate the 

difficulty of text for readers. In recent years, due to technological innovations, there has been 

renewed interest in readability research. Computer Scientists, Linguists, Cognitive Scientists, 

and Educators have made strides in developing new methods for measuring readability of 

texts for various populations. 

 Although hundreds of formulas exist for computing readability, they all incorporate 

the same components including sentence length, word length, word frequency, and the length 

of paragraphs [4]. A passage with shorter sentences, smaller words, frequently used words, 

and short paragraphs is considered more readable than one that has long sentences, complex 

words, rarely used words, and long paragraphs. Beyond these easily measured components, 

passage cohesiveness can play a role in readability. A paragraph that consists of sentences 

that seamlessly move from one point to another is more readable than one that contains gaps 

which need to be filled in by the reader. Measuring reader comprehension of a text and 

comparing that measurement to what was predicted by the formula is the standard method for 

determining the validity of the formula. Critics would argue that there is no single method for 

calculating readability of a text and factors like style, grammar, and background knowledge 

are also critical but not measured. 

Despite these shortcomings, readability scoring is widely performed. It is frequently 

used to determine grade appropriate texts for students. In addition, authors use readability 
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scoring to ensure their writing is accessible by the target audience. For example, the authors 

of medical pamphlets are interested in producing writing that is accessible to 7th and 8th 

graders, which is the average reading level of American adults.    

The three readability formulas used in this thesis are Flesch-Kincaid, Gunning Fog 

Index, and Coleman Liau. Each of these produce output that approximates the U.S. grade 

level thought necessary to comprehend the input text.  

Flesch-Kincaid Readability Formula uses the following equation to find the grade 

level of the text: 

FK =  0.39 (
𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
) +  11.8 (

𝑡𝑜𝑡𝑎𝑙 𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑𝑠
) –  15.59  3.3 

This formula emphasizes sentence length over word length. In fact, large scores can be 

obtained with long sentences containing one-letter words. 

 

 The Gunning Fog Index (FOG) calculates readability as follows: 

 

𝐹𝑂𝐺 𝑖𝑛𝑑𝑒𝑥 = 0.4 [(
𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
) + 100 (

ℎ𝑎𝑟𝑑 𝑤𝑜𝑟𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
)]  3.4 

 

The FOG index deems “hard” words to be those with three or more syllables that are not 

proper nouns, jargon, or compound words.  The FOG index is generally recognized as a 

useful measure of hard to read text, but it is limited in that it assumes that multi-syllable 

words are “hard” words, which is not necessarily the case. 

 The Coleman-Liau index is calculated using this formula: 

𝐶𝐿 𝑖𝑛𝑑𝑒𝑥 =  0.0588 
𝑙𝑒𝑡𝑡𝑒𝑟𝑠

100𝑤𝑜𝑟𝑑𝑠 
 −  0.296 

𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠

100𝑤𝑜𝑟𝑑𝑠
 − 15.8  3.5 

Unlike syllable-based readability formulas, such as the FOG and SMOG index, the Coleman-

Liau index does not require the character content of words to be analyzed.  Only word and 
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sentence boundaries need to be detected, which means the index can be calculated in 

conjunction with text scanning. 

 In this thesis, we use readability assessment to score a text author's writing ability and 

indirectly, their US grade level. Studies indicate that reading and writing skills are 

complementary. Thus, applying a readability score to an author's writing provides an indirect 

measure of their level of literacy. One of the challenges of applying these formulas is the 

need to have a sufficiently large amount of text. If the amount of text is too small, the 

formula can produce results that are not within the standard grade-level range (1-13).  
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Chapter 4 - Methodology 
 

 

The FEAT toolkit provides software that extracts data from a Facebook page, stores the data 

in a MySQL database, and allows the data to be viewed via a web front end. Figure 4.1 

shows the complete process from data extraction to data visualization. This chapter discusses 

the components of the toolkit in detail. Section 4.1 discusses the FEAT Extractor that uses 

the Facebook API to extract data from a Facebook page and store data in a MySQL database. 

Section 4.2 describes the tools available in the FEAT Analyzer toolkit and their 

implementation. Finally, the FEAT Visualizer, which is used to display graphs on the 

website, is described in Section 4.3.  

 

 

Figure 4.1: Overview of the FEAT toolkit  
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4.1 FEAT Extractor and Database Storage 

 Facebook provides three APIs: Atlas, Graph, and Marketing. The Graph API, which 

is the API used by FEAT, is a low-level HTTP-based API that is used to perform a variety of 

tasks such as querying data and posting new content. The Graph API represents Facebook 

data with nodes, edges, and fields. Each node represents a page or a page component such as 

a user, photo, post, or comment. Each edge represents a connection between nodes such as 

the connections between a photo and the photo’s comments. Fields contain information 

associated with a node; for example, some of the fields associated with a photo are the photo 

id, the album containing the photo, and the time the photo was published to Facebook.   

 Using the Graph API requires registering with the Facebook developer website to 

receive an access token that will provide temporary access to Facebook APIs. The access 

token is a string of letters and numbers that can be used by an application to make API calls. 

There are three types of access tokens. A user token is needed to read, modify, or write a 

specific person's Facebook data on their behalf. An app access token is needed to modify 

and read the app settings. A page access tokens provides permission to APIs that read, 

write, or modify the data belonging to a Facebook Page. The type of token used by FEAT 

is the page access token. 

Most Facebook objects can be accessed using the Graph API via the object's id. For 

example, a Facebook page object can be accessed using a page id. An alternative way to 

obtain a page object is by a URL such as https://facebook.com/hillaryclinton. The URL 

lookup will return the object, its associated fields, including the page id. Other objects, such 

as posts, can be found via the edges connected to the page object. 

https://facebook.com/hillaryclinton
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The FEAT Extractor is made up of two programs, extractor.py and pfExtractor.py. 

extractor.py is the main program of the FEAT Extractor. The extractor.py program takes a 

Facebook username, such as “HillaryClinton” and builds a Facebook URL, such as 

https://facebook.com/hillaryclinton. Next, the program makes a GET request to obtain the 

object associated with that user’s page. The program then gains access to the public 

information available on the page via the page object such as the number of shares, number 

of followers, and ids of posts. The post id can then be used to obtain each post node. The post 

node contains a post id, creation date, message, number of comments attached to the post, 

number of likes, and number of shares. These fields are stored in the database. The FEAT 

Extractor also uses the post node to find the list of associated comment ids. Each id is then 

used to obtain the comment node, the comment id, message, author id, comment creation 

date, and the number of likes is stored in the database. 

 The pfExtractor.py script is automatically executed at the end of each day to retrieve 

the number of followers of a page and store that value into the database. The script is 

provided a list of usernames of pages from which the number of followers is extracted. The 

toolkit is currently being used to extract information from the public Facebook pages of 

Donald Trump, Hillary Clinton, Bernie Sanders, Ted Cruz, and John Kasich. Daily counts of 

the number of followers of each page are then stored in the database. Data extracted from 

Facebook through the Graph API is stored in a MySQL database. Figure 4.2 illustrates the 

database schema for the FEAT MySQL database. 

https://facebook.com/hillaryclinton
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Figure 4.2: FEAT database schema 

 The fb_page table contains the page id, name, number of followers, and the URL of 

each candidate’s Facebook page. The page_id is the primary key for the fb_page table. A 

primary key ensures that there are no two rows in the same table with the same page_id. The 

page_id is a foreign key in the other tables to provide a connection between a page and the 

content on the page. For example, the page_id in the posts and page_fans tables are the 

foreign keys that refer to the page_id in the fb_page table. The post_id is the primary key for 

the posts table. The comment_id is the primary key for the comments table. These keys can 

be seen in the table.   

The sentiment and readability (colemanLiau, fKincaid, and gunningFog) score fields 

are initially left as null. These fields are set by running the appropriate python program. The 

readability score fields are set to a decimal number. Any score below 0 is set to 0, meaning 

that the text is considered kindergarten level. Scores 13 or above are considered college level. 
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The sentiment analyzer finds the sentiment polarity of posts and comments. The analyzer 

returns a label of either positive, negative, or neutral that is stored in the post or comment 

table. 

Posts and comments may be queried from the database to find the top twenty-five 

words with the highest frequency. These are visualized in a word cloud or in a word 

frequency graph.  

4.2 FEAT Analysis Tools 

 This section discusses information about the Analysis tools within the FEAT toolkit. 

These include tools to perform word frequency, generate word clouds, analyze the sentiment 

of the text, and calculate readability. The tools are based upon the Natural Language Toolkit 

(NLTK) platform (http://www.nltk.org/). NLTK is a leading platform for building Python 

programs to analyze language. NLTK provides a suite of text processing libraries for 

classification, tokenization, stemming, tagging, parsing, and semantic reasoning.  

4.2.1 Word Frequency and Word Cloud 

 The word frequency toolkit can be applied to a set of comments or a set of posts 

within a specified time frame. The process of determining word frequencies is as follows: 

1. The text is tokenized using the function word_tokenization() provided by NLTK, 

producing a list of all words that appear in the text. 

2. All words in the list are lowercased. 

3. Words that appear in the stop word list are removed. Punctuation is also removed. 

 The nltk.corpus package defines a collection of corpus reader classes that can be used 

to access various sets of corpora. Among those sets are lists of stop words that were used in 

step 3 above. In this analysis, the stop words used were gathered from xpo6.com and 

http://www.nltk.org/
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MAXQDA. The NLTK FreqDist class is used to calculate the total number of word tokens 

distributed across the text. The FreqDist class encodes frequency distributions, which count 

the number of times that each outcome of an experiment occurs. For example, the frequency 

could be the number of times a word appears in a document. The FEAT code creates a 

FreqDist object, passing to the constructor the tokenized words. The constructor returns a 

FreqDist object that allows access to the frequencies via a dictionary; the words can be 

accessed as keys and the counts as the values. The FreqDict most_common method is used to 

return the 50 most frequently used words along with their counts. This word frequency 

functionality was implemented in view.py, which is later explained in Section 4.3. 

 Word clouds are a good way to summarize text and to visualize the top words with 

the highest frequencies in the text. The FEAT word cloud tool can be used to visualize either 

the comments or the posts on a page. The word cloud generator used by FEAT is open source 

and available on Github at https://github.com/amueller/word_cloud. This software has been 

used by other significant projects including for Reddit Cloud, which is a Reddit bot that 

generates word clouds for comments and user histories. This software is also used in a 

Twitter Word Cloud Bot that is automatically invoked by Twitter users via the hashtag 

#wordcloud; the #wordcloud hashtag will cause the bot to create a word cloud from the user's 

tweets.  

  The FEAT word cloud tool, runWordCloud.py, connects to the database and queries 

it for either posts or comments within a specified data range. The tool then creates a file that 

contains words separated by commas (a csv file), which is the required input for the word 

cloud generator. The word cloud generator performs word frequency analysis to find and 

https://github.com/amueller/word_cloud
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display the most frequently used words. The word cloud generator can also be passed an 

image that is used to display the word cloud in the shape of the image as shown in Figure 4.3. 

 

 

Figure 4.3: Donkey shape image and an example word cloud image  

4.2.2 Readability Analysis 

 The FEAT readability tool performs readability analysis on either posts or comments. 

The program calculates a readability score on individual posts or comments using the Python 

Readability API. Three formulas are used: Flesch-Kincaid Grade Level, Gunning Fog Index, 

and Coleman Liau Index. The readability score fields in the database are named 
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colemanLiau, fKincaid, and gunningFog. These are set by using the Coleman Liau Index, 

Flesch Kincaid Grade Level, and Gunning Fog Index formulas, respectively. The result of 

each formula is a grade level that corresponds to the text readability. The view.py script 

explained in Section 4.3 uses the three fields to produce an average grade level.  

4.2.3 Sentiment Analysis 

The FEAT sentiment analyzer tools uses the sentiment analysis API provided by text-

processing.com, which in turns uses tools from the NLTK to analyze text. The analyzer can 

be applied to either posts or comments.  The http://text-processing.com API is an HTTP web 

service for text mining and natural language processing; the service returns a JSON object 

with the attributes label and probability. The label attribute represents the result of the 

sentiment analysis of the text by listing the sentiment as “pos” for positive, “neutral,” or 

“neg” for negative sentiment. The probability attribute shows the probability of the text 

having positive, neutral, or negative sentiment values. The probabilities of the text having a 

positive or negative sentiment are between 0 and 1 and will add up to equal 1. The text is 

considered neutral if the probability of it being neutral is greater than 0.5. Otherwise, the 

result will be either “pos” or “neg.”  

The http://text-processing.com sentiment analyzer API uses the Naïve Bayes model 

provided by NLTK to perform text classification. Details of the Naïve Bayes model can be 

found in Chapter 3.1. Movie reviews and Twitter sentiment from the dataset provided by Bo 

Pang and Lillian Lee were used to train the classifier. The NLTK-Trainer is used to train 

NLTK based models, evaluate models against a corpus, and analyze a corpus. With the 

NLTK-Trainer, one may also use a pre-trained classifier to analyze the text. The drawback to 

using this sentiment analysis API is that there is a limit of 80,000 characters per text and each 
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method is throttled to 1000 calls per day per IP address. However, a subscription allows 

45,000 calls per month and $0.01 per extra call. 

 After the text is analyzed, the label is stored in the database under the sentiment 

attribute of the respective row in either the posts or comments table. The view.py software 

can then be used to provide a visualization of the sentiments. 

4.3 The Website 

 The visualization component uses the Django framework and is hosted on 

PythonAnywhere (https://www.pythonanywhere.com/). PythonAnywhere is an online 

Integrated Development Environment (IDE) that provides web-hosting services. In addition 

to hosting the website, PythonAnywhere offers a bash command-line interface along with a 

code editor. PythonAnywhere allows for the creation of an app with the use of various 

popular frameworks such as Django and Flask. In addition, PythonAnywhere permits usage 

of MySQL, SQLite, and Postgres databases. 

 The Django framework is designed to make common web-development tasks fast and 

easy. Django comes with an object-relation mapper in which the database layout is described 

in Python code that maps to the database. In addition, data-model syntax is used to represent 

each table in the database. In the data-model syntax, all attributes of the table are represented 

as fields in a model. The model specifies the primary and foreign keys along with the data 

type for each field. Django also allows for the configuration of URLs for the website, 

permitting the removal of endings such as “.php” and “.asp.” All links pertaining to the 

website such as the front page and the administrator page are mapped in urls.py.  

The two main components of the website are view.py and chartController.js. The 

view is responsible for returning an HttpResponse object that contains the content for the 
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requested page. The view retrieves the data for the page content along with any arguments, 

loads the specified template, and renders the template with the content data. The 

responsibilities of view.py includes: 

 Set control data for the homepage 

 Query for the post/comments from the database that needs to compute the 

word frequency 

 Execute the word cloud program if the needed word cloud image does not 

exist 

 Query the database for the readability score and get the average grade level 

 Query the database for the sentiment polarity and find the percentage for each 

grade level 

 Build the context data that is returned to the home page and passed to 

ChartController.js 

The view.py script handles querying the database for the sentiment values, readability scores, 

and constructs the context data that is returned to the home page. The home page then passes 

the context data as arguments to the chartController.js script that handles the visualization of 

the graphs. The view.py script passes to a chartController.js script the graph type, candidates, 

title, descriptions, data such as counts for the total of positive, neutral, and negative 

messages, and labels for each data value. 

The chartController.js script builds the sentiment, readability, or frequencies graph 

when the respective button is clicked. It uses the context data that was passed in as the 

arguments to create the data object that Chart.js uses to create the graph. If the graph type is 

specified as “word,” chartController.js first locates the word cloud image that was produced 



 

33 

by the word cloud script by forming the URL of the image location. Finally, it replaces the 

chart object with the word cloud image. The description is then placed beneath the chart. For 

the other graphs like the bar graph and pie chart, chartController.js creates a data object with 

the specified graph type, respective dataset and labels that were passed in the arguments. This 

data object is use by Chart.js to produce the specified graph. 

One of the most powerful parts of the Django framework is the automatic admin 

interface which reads metadata from the database to allow administrators to modify the 

content of the website. The admin interface is customizable and can be activated or 

deactivated depending on the administrator. Figure 4.4 shows the administrator front page. 

The administrator may modify groups, users’ information, and change the graphs that are 

viewed on the website’s front page. By clicking the add button, the administrator is shown 

the Add Graph Form in Figure 4.5. This form allows an administrator to specify the graph 

title, candidate, graph type, description, and date range. This form is created by importing the 

my_app.Graph model from the database. The candidate and graph type are provided with a 

drop-down list with choices that are defined in the model. As soon as the new/modified graph 

is saved, a graph label is added to the side bar where it can be clicked to display the 

respective graph. Chapter 5 displays screenshots of the graphs that can be built using the 

FEAT toolkit and compares these results to similar work. 
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Figure 4.4:  FEAT administrator main page 

 

 

Figure 4.5: FEAT administrator add graph page 
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Chapter 5 - Results 
 

 Respected election forecasting sites, including The New York Times UpShot, Nate 

Silver’s FiveThirtyEight, Princeton’s Election Consortium and the Cook Political Report, 

incorrectly predicted that Hillary Clinton would win the 2016 US election. In the days that 

followed the election, many data scientists tried to figure out the reason why their prediction 

models failed. Some suggested reasons for the bad polling results range from voters hesitant 

to admit their support of Trump to pollsters under sampling the non college-educated crowd 

that voted for Trump. However, analysts of social media claim that social media sites 

predicted a win for Trump months ago [21]. This chapter discusses the results of using FEAT 

to extract and analyze data from Hillary Clinton’s and Donald Trump’s Facebook pages. 

Although the tool was not used to predict a Trump win, there are indications in the data 

collected that make a Trump win less surprising. 

Section 5.1 discusses line graphs that show the counts of followers throughout the 

year. Section 5.2 discusses word frequency graphs and word clouds. The word frequency 

program was used to calculate the top 50 words used by commenters on Election Day, 

November 8, 2016. The word cloud software was used to display the top fifty most 

commonly used words in candidate posts. Section 5.3 discusses graphs displaying the 

sentiment polarity of candidate posts. This information is displayed in a bar graph that shows 

the percentage of positive, neutral, and negative posts per week within the specified date 

range. Section 5.4 discusses the readability of the posts and comments written on the 

Facebook page. 
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5.1 Followers 

 Social media analysts recognized that Trump received more reactions to his social 

media presence than his competitor did even though Clinton posted on her social media sites 

at the same rate [22]. The graphs of followers also indicate that Trump was more effective in 

engaging voters online. Figure 5.1 and 5.2 show the number of followers of the Clinton or 

Trump Facebook pages in the time range between September 8 and November 8. Even 

though the number of followers for both candidates increased at a steady rate, the number of 

Trump followers was significantly larger. On September 9th, Trump’s Facebook page had 

twice the number of followers as Clinton’s page (10 million versus 5 million). This gap 

narrowed somewhat as Election Day approached, but still on Election Day, Trump had 

almost 50% more followers than Clinton (12,000,000 versus 8,000,000). 

  

 Figure 5.1: Clinton followers in 2016 election (September – November) 
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Figure 5.2: Trump followers in 2016 election (September – November) 

 

5.2 Word Frequency and Word Cloud 

 Word clouds have become quite popular for expressing popular topics in a document 

or collection of documents. Word cloud software creates an image out of the 50 most 

commonly used words in a document where more frequently used words are displayed in a 

larger font than words less frequently used. Figures 5.3, 5.4, and 5.5 display the word clouds 

formed from posts on Clinton’s Facebook page in the month of February, the month of May, 

and November 1-8, 2016. Figures 5.6, 5.7, and 5.8 contain word clouds from Trump posts 

during those same dates. The FEAT word cloud software was used to build the word clouds 

for November. The word clouds for February and May were created before the FEAT word 

cloud software was added to the toolkit. Thus, these word clouds were generated by 

extracting the data from the database, creating a csv file, and copying the csv file contents 

into the online word cloud generating tool known as Wordle (http://www.wordle.com). 

http://www.wordle.com/
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 As noted by Benjamin [3], democratic candidate pages tend to frequently use the 

name of the candidate and this is apparent in the February and May word clouds where 

“Hillary” is displayed in very large font. In addition, the clouds identify topics that were 

important to the Clinton campaign that are not noted in the word clouds of Trump.  These 

topics include “families,” “women,” and “need.” Some words were used more often as the 

election approached, for instance, the words “president” and “America.”  The word “vote” is 

displayed prominently in the word cloud built from November posts. 

 

Figure 5.3:Word cloud of Clinton’s posts (February 2016) 
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Figure 5.4: Word cloud of Clinton’s posts (May 2016) 

 

Figure 5.5: Word cloud of Clinton’s posts (November 2016) 
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 The word clouds built from Trump posts reflect his personality and his campaign 

slogans. “Great” and “MakeAmericaGreatAgain” appear prominently. In addition, words 

related to Trump's life outside politics also appear in the earlier clouds, such as “apprentice,” 

“tower,” “golf,” and “celebrity,” but disappear altogether in the November word cloud. 

Similar to the Clinton results, the word “vote” is displayed in large font in the November 

cloud; however, the words “great,” “American,” “live,” and “make” are in larger font.  

 

Figure 5.6: Word cloud of Trump’s posts (February 2016) 
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Figure 5.7: Word cloud of Trump’s posts (February 2016) 

 

 

Figure 5.8: Word cloud of Trump’s posts (November 2016) 
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 Other researchers have also gained insight into candidate’s views by creating word 

clouds. For example, Kumar et al. [13] created word clouds from the pages of Ted Cruz, 

Chris Christie, Ben Carson, Jeb Bush, Bernie Sanders, Martin O’Malley, Hillary Clinton, 

Marco Rubio, Rand Paul, Mike Huckabee, Lindsey Graham, Donald Trump, and Rick 

Santorum. A simple analysis of these word clouds reveals the issues of importance to the 

candidates. The democratic candidates are concerned about social issues thus “health,” 

“care,” “women,” and “families” are prominently displayed. The GOP images prominently 

display “tax,” “security,” and “government.” 

Figures 5.9 and 5.10 display the word frequency distributions taken from Clinton’s 

Facebook page and Trump’s Facebook page, respectively. These graphs display the top 50 

words extracted from comments made on those pages on Election Day, November 8, 2016. 

For both pages, the top words were “hillary” and “clinton,” thus followers were commenting 

about Clinton on both Trump’s Facebook page and Clinton’s Facebook page. The name 

“donald” also appeared frequently on both pages. Since the word frequency graphs were built 

from data collected on Election Day, the words “voting,” “election,” and “tomorrow” appear 

frequently on both pages. It is likely that not all commenters on Hillary Clinton’s page were 

supporters since “corruption” and “corrupt” also appeared in the frequency graph and Trump 

frequently referred to Clinton as corrupt. 
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Figure 5.9: Word frequency graph for comments on Clinton’s page (November 8, 2016) 

 

 

Figure 5.10: Word frequency graph for comments on Trump’s page (November 8, 2016) 
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5.3 Sentiment Analysis 

 Sentiment analysis was performed on posts made by each candidate during the time 

range between September 9, 2016 and November 9, 2016. Each post was individually scored 

to determine the sentiment (positive, negative, or neutral) and these scores were grouped into 

weeks. Figure 5.11 displays the percentage of positive, negative, and neutral posts of Hillary 

Clinton during each week of the time range. Figure 5.12 displays the same type of graph 

based upon Trump’s posts. Both graphs indicate that most of the posts were neutral and there 

were more positive posts than negative ones. Although both candidates’ posts were more 

frequently positive than negative, the graphs indicate that a larger percentage of Trump’s 

posts were positive, especially during the last week of the election.  

 

Figure 5.11: Sentiment analysis of Clinton’s posts (September – November, 2016) 
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Figure 5.12: Sentiment analysis of Trump’s posts (September – November, 2016) 

 

5.4 Readability 

The readability score was calculated by using the formulas for Flesch-Kincaid 

Reading Level, Gunning Fog Index, and Coleman Liau Index and averaging those scores. 

Figures 5.13 and 5.14 display the reading grade level of the posts on Clinton’s and Trump’s 

Facebook pages, respectively. These posts were made by the candidates during the time 

range from August 1, 2016 to November 8, 2016. As can be seen in the pie charts, a much 

larger percentage of Clinton's posts scored at the college level compared to the posts of 

Trump.  In addition, 75% of Trump's posts score at or below the 8th grade level compared to 

about 50% of Clinton's. What is unknown is whether the candidates were deliberately 

attempting to create posts targeting a specific grade level or whether these reflect the actual 

level of literacy of the candidates. 



 

46 

 
Figure 5.13: Readability scores on Clinton’s posts (August – November, 2016) 

 
 

 
Figure 5.14: Readability scores on Trump’s posts (August – November, 2016) 
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The author in Kumar et. al [13] also performed a readability analysis on the Issue 

pages of presidential candidates using only the Flesch-Kincaid Reading Level formula.  

Similar to the results presented in Figures 5.13 and 5.14, the Clinton readability score is 

higher. 
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Chapter 6 - Conclusion and Future Work 

The FEAT toolkit can be used to extract and analyze any public Facebook page. This 

thesis explained the design and implementation of FEAT and applied the toolkit to the pages 

of the presidential candidates, Hillary Clinton and Donald Trump. At present, the toolkit can 

be used to build graphs to display four different analyses: Sentiment, Word Frequency, 

Readability, and Word Cloud. The FEAT interface allows the user to select the candidate 

page, select the date range, and select the analysis to be performed. The software was 

designed so that additional analyses can be added to the toolkit without significant 

modifications. 

Sections 6.1, 6.2, and 6.3 discuss limitations to the analysis components of the FEAT 

toolkit. Section 6.4 discusses future work that would improve the toolkit. 

6.1 Word Frequency and Word Cloud 

The Word Frequency and Word Cloud analyses depend upon software that removes 

“stop words.” The Natural Language Toolkit provided a list of stop words that includes about 

200 common English words, some Spanish words, and some punctuation. The list of stop 

words could be made larger. In addition to increasing the list of stop words, removing URLs 

and stemming could provide better results. For example, stemming would have eliminated 

the appearance of both words “corruption” and “corrupt” in Figure 5.9 since both of these 

words have the same root (corrupt).   

6.2 Sentiment Analysis 

The sentiment analysis API used the Naive Bayes algorithm to successfully classify 

the text into positive, neutral, and negative categories. There was, however, a large amount of 

neutral results. A variety of algorithms are available for performing sentiment analysis and it 
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is possible that other techniques may be more appropriate for performing sentiment analysis 

on the typically small amount of text available in a post.   

6.3 Readability 

Readability scores are limited in that they do not indicate whether the content of the 

measured document is understandable. In fact, it is possible to obtain artificially high 

readability scores by exploiting knowledge about the formulas used in the scoring. A 

common component in readability scoring is length of sentence where longer sentences lead 

to higher scores. Marco Rubio's page achieved the highest readability score among the 13 

pages analyzed by [3] because of his frequent, but not always understandable, long sentences.  

A related analysis that may provide more reliable results is Lexile analysis 

(http://www.lexile.com). Lexile analysis scores text based upon syntactic complexity 

(sentence length) and semantic difficulty (vocabulary). Words in the text are matched to 

those in a 650 million-word corpus to obtain values for computing the semantic difficulty.  

6.4 Future Work 

Recently, Facebook has enabled users to share reactions to posts that include love, 

haha, wow, sad, and angry in addition to the original “like” reaction. These reactions can 

permit posts and comments to be categorized according to the reactions, in addition to being 

categorized by the content. An interesting study would be to investigate a relationship 

between the reactions to a comment or post and the sentiment expressed by the post.  

In addition, posts on social media not only include text but also images and videos. At 

present, FEAT is unable to analyze posts that contain only an image or a link to a video. 

When the FEAT analyzer performs sentiment analysis, a post without text is categorized as 

neutral. In addition, a readability score of these types of posts is 0.  Although this readability 
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score is appropriate, sentiment analysis of video or the text within images could provide 

useful information. The main issue is how to interpret the image or generate text from the 

audio component of the video. Speech recognition software may be useful for this effort.  
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Appendix 
 

 All programs developed for this thesis are included on the enclosed CD. The 

following is a list of files stored on the CD:  

1) FEATpy: Python package containing software for the FEAT Extractor and FEAT 

Analyzer. 

a) extractor.py – Python script that extracts page information such as the person’s id, 

name, and news feed, and stores the information into the MySQL database. 

b) pfExtractor.py – Script that extracts the number of followers each day and stores the 

information into the page_fans table in the MySQL database. 

c) sentiment.py – Script that contacts the sentiment analysis API that analyzes the 

provided text for its sentiment value. 

d) read.py – Script that determines the grade levels of provided text using each of the 

readability formulas and stores those levels into the database. 

2) nltk_data: Contains NLTK data such as the corpus and stop words files. 

3) Readability: Library that contains the Python script necessary for calculating the 

readability score. 

4) FEATvisualizer:  Source code for the website portion of the thesis. This includes many 

important aspects of the Django framework. 

a) home1.html – The HTML file for the homepage of the website 

b) view.py – File that contains the views for the website. 

c) models.py – Script that contains the models that reflect the data stored in the 

database. Each model maps to a single database table. 
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d) settings.py – Settings file for the Django Framework 

e) urls.py – File that maps URLs to views 

f) sandbox.py – Script that runs the Word Cloud generator to produce word cloud 

images. 

5) static: JavaScript and CSS files for the website 

a) chartController.js – JavaScript file that contains the makeDynamicChart2 function 

that makes the graphs on the website by interacting with Chart.js. 

b) wordcloud.js – JavaScript file that creates word cloud images. 

6) Images: Contains the images produced from the word cloud generator and includes the 

donkey and elephant images used to supply the shapes for the word clouds. 

  



 

56 

 

 

 

 

 

 

Vita 
 

Haihoua Yang was born in 1991 in Oroville, California. After five years of living in 

California, she moved to Albemarle, North Carolina where she lived for the next three years. 

From there, she moved to Kannapolis, North Carolina where she finished middle school and 

high school. After high school, Haihoua entered Appalachian State University where she 

spent about one year considering other majors such as Anthropology and graphic arts. She 

then became interested in Computer Science and decided to pursue a Bachelor of Science 

degree. After obtaining her bachelor’s degree in December 2014, she continued for two more 

years to pursue her Master of Science degree in Computer Science. During this time, she 

worked as a teaching assistant in several courses: Introduction to Computer Applications, 

Computer Science I, Computer Science II, and Database. In addition, for four years, she 

participated in the NSF S-STEM program, which introduced her to numerous ideas and 

advancements in Computer Science and allowed her to work on interesting research projects 

with her peers. 

 

 


