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	 The goal of this study was to further characterize the norspermidine and 

spermidine ABC-type transporter PotABCD1 in V. cholerae.  Determination of the role of this 

transporter in biofilm formation is relevant to two very diverse phases of the V. cholerae life 

cycle: survival in the aquatic environment, and colonization within the human host. Biofilms 

have been shown to provide a colonization advantage in the mouse model, and may provide 

protection from harsh stomach and bile acid conditions encountered in the host prior to reaching 

the small intestine.  This work identified PotA as an essential component of the 

norspermidine/spermidine ABC-type transporter PotABCD1 in V. cholerae, and determined that 

this transporter is strongly norspermidine-preferential.  In this study I have shown that the 

potABCD2D1 genes are arranged in an operon and that they are cotranscribed.  I have also 

shown that mutations in PotA, PotB, PotC or PotD1 results in an increase in biofilm formation 

compared to wild type, indicating that spermidine uptake from the tryptone media has negative 

effects on wild-type biofilm formation.  Finally, I have shown that biofilm forming ability may 

provide a colonization advantage in the zebrafish intestine, as biofilm-deficient mutants were 
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severely impaired in colonizing.  This work further characterizes the novel norspermidine and 

spermidine transporter PotABCD1 in V. cholerae polyamine uptake, and provides insight into 

the role of this system in physiological aspects including biofilm formation and association with 

aquatic organisms.  
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Introduction 

  Bacteria in the environment are thought to persist in sessile, multicellular and often 

multispecies communities known as biofilms (22).  Cells in a biofilm are encased within a self-

produced extracellular matrix (ECM) composed of polysaccharides, proteins, and extracellular 

DNA, and are physiologically distinct from the free-swimming form of the same organism (116).  

Bacterial biofilms may provide protection from a variety of environmental stressors, from UV 

irradiation and harsh pH to antimicrobials and immune responses (22, 27, 65).  As such, biofilms 

may enhance both the environmental persistence of bacteria and virulence and survival within 

the host, especially for pathogenic microbes.  Biofilm development occurs through specific and 

regulated steps, as shown in Figure 1.  Cells first make contact with a surface or group of other 

cells and may form a transient attachment, but EPS production is required for mature biofilm 

structure development.  Mature biofilms often exhibit a three-dimensional structure made up of 

pillars of cells and ECM interspersed with fluid-filled channels (21, 114, 116).   
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 A variety of signals and conditions may regulate the transition from the free-swimming 

state into the bacterial biofilm.  Polyamines, small hydrocarbon chains with multiple amine 

groups, are one such group of signals (106).  Polyamines are present in virtually all living cells.  

They have been indicated as regulators of a variety of physiological processes, and are essential 

for normal cell growth and function (106).  The most commonly found cellular polyamines are 

putrescine, spermidine, spermine, and cadaverine.  The structures of these polyamines, as well as 

norspermidine, a less common polyamine, are shown in Figure 2. 

 

 

Polyamines can regulate biofilm formation and many other physiological attributes 

through both extracellular and intracellular mechanisms.  Polyamines outside of the cell may be 

recognized and responded to by regulatory systems, resulting in modulation of a second 

messenger, which then directly affects biofilm formation (51).  One such molecule is cyclic-di-

guanylate monophosphate (c-di-GMP).  Levels of c-di-GMP are directly related to biofilm 

formation: increased c-di-GMP stimulates biofilm formation, while decreased levels of c-di-

GMP reduces biofilm formation (9, 87, 112).  Because they are positively charged at 
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physiological pH, intracellular polyamines are capable of binding to nucleic acids in order to 

modulate physiological effects.  As such, intracellular polyamines are often found in a complex 

with RNA and may act as translational regulators (44).  Spermidine in particular has been shown 

to bind to ribosomes and increase translational accuracy in wheat germ extract (47).  Binding of 

spermidine to regions of mRNA may also result in structural changes in Shine-Dalgarno 

sequences, facilitating the formation of a transcription initiation complex in E. coli (127).  A 

prokaryotic “polyamine modulon” has been proposed, encompassing genes that are 

transcriptionally regulated by polyamines.  This mechanism suggests that polyamines do not 

simply regulate genes in an “on/off” manner, but rather modulate the level of expression of these 

genes in order to maintain ideal intracellular conditions for cell growth (45).  However, 

excessively high levels of polyamines can become toxic to cells; for example, intracellular 

accumulation of spermidine has been shown to inhibit protein synthesis, which may reduce cell 

viability (29).  Therefore, polyamine concentrations within cells are maintained at an optimal 

level through processes including import, biosynthesis, degradation, and excretion.  Common 

polyamine biosynthesis pathways are shown in Figure 3, although these are not ubiquitous, and 

significant variation exists in polyamine biosynthetic pathways between and among species.   
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Polyamine transport 

To date, the majority of research on prokaryotic polyamine systems has been conducted 

using Escherichia coli.  Putrescine is the most abundant intracellular polyamine in E. coli, 

followed by spermidine and cadaverine (43, 101).  E. coli has two polyamine importers that are 

members of the ABC-type transporter superfamily.  These are known as PotABCD and 

PotFGHI.  ABC-type exporters are highly conserved and have been found in both eukaryotes and 

prokaryotes; however, ABC-type transporters that function in substrate uptake have only been 

identified in prokaryotes.  As shown in Figure 4, this type of importer consists of a pair of 

cytoplasmic ATPases, two channel-forming transmembrane proteins, and a periplasmic substrate 

binding protein (64).  The substrate is delivered to the inner membrane complex by the substrate 

binding protein, and deposited within the channel following interaction of the substrate binding 

protein with the transmembrane proteins.  Subsequent hydrolysis of ATP within the nucleotide 

binding domain of the cytoplasmic ATPase results in a conformational change of the 
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transmembrane proteins, from outward- to inward-facing, allowing delivery of the substrate into 

the cell cytoplasm (64).  This cycle typically requires the hydrolysis of two molecules of ATP 

(100). 

 

PotABCD is a spermidine-preferential ABC-type importer.  It is also capable of 

putrescine import, though with much lower affinity.  PotA is the cytoplasmic ATPase of this 

system, which hydrolyzes ATP to ADP, providing the energy essential to drive transport (30, 52, 

54).  PotB and PotC proteins each have six transmembrane-spanning segments, and form a 

channel through the inner membrane that substrates may pass through (30, 40).  PotD is the 

periplasmic substrate binding protein, which binds either spermidine or putrescine and then 

interacts with the transmembrane domains to deliver the attached ligand (30, 46, 54, 55).  PotD 

has a much higher affinity for spermidine than for putrescine; the Kd= 3.2 µM for spermidine, 

and Kd= 100 µM for putrescine.  Likewise, uptake activity by the system is much higher for 

spermidine (Km=0.1 µM) than for putrescine (Km= 1.5 µM) (30, 43, 55).  Uptake of polyamines 

by PotABCD is dependent on both ATP hydrolysis and membrane potential.  Spermidine uptake 

was decreased by about 60% in the presence of of carbonyl cyanide m-chlorophenylhydrazone, 
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which disrupts membrane potential, indicating that optimal importer function is not achieved by 

ATP hydrolysis alone (54).   

A number of regulatory roles have also been shown for the proteins of the PotABCD 

system.  PotA contains a spermidine-binding site within the COOH-terminal domain.  Excess 

spermidine within the cell may bind to this site, resulting in noncompetitive inhibition of ATPase 

activity, and subsequently, inhibition of transporter function (53).  In wildtype E.coli, PotD is 

found in the periplasm, but in PotD-overexpressing strains, the full PotD protein can be found in 

the cell cytoplasm. In this case, PotD has been shown to act as a negative regulator of the 

potABCD operon, and can bind to the upstream region and inhibit transcriptional activation.  

This inhibitory effect is increased in the presence of spermidine.  Other components of the 

system are incapable of eliciting this inhibitory effect (3).  Whether an amount of PotD protein 

sufficient to generate this feedback response exists in the cytoplasm under wildtype expression 

levels has yet to be determined. 

 

Effects of polyamines on biofilm formation 

The role of polyamines in biofilm formation is just starting to be investigated in many 

species.  Polyamines have been found to regulate biofilm formation in a variety of microbes, 

from human pathogens to non-pathogenic, environmentally found bacteria.  A role of polyamines 

in biofilm formation has been shown in species including E. coli, Yersinia pestis, Neisseria 

gonorrhoeae, and Vibrio cholerae. 

Spermidine and norspermidine, both triamines, have negative effects on biofilm 

formation in E. coli, while the diamine putrescine has a stimulatory effect (77, 94).  Putrescine 

may stimulate biofilm formation through translational regulation of the response regulators UvrY 
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and CpxR (94).  UvrY serves as a response regulator with a role of regulation of a variety of 

phenotypes including biofilm formation through modulation of small noncoding regulatory 

RNAs (62, 74, 84, 91, 118).  CpxR is the response regulator for the sensor kinase CpxA, and this 

pair is involved in regulation of gene expression under copper-induced stress.  They also repress 

biofilm formation in E. coli (78, 121, 122).  The upstream region of uvrY mRNA contains an 

inefficient initiation codon.  Replacement of the inefficient codon UUG with an efficient codon 

AUG resulted in decreased stimulation by polyamines.  Similarly, the Shine-Dalgarno sequence 

of cpxR is located 10 nucleotides upstream from the initiation codon.  Substitution of a S-D 

sequence at the ideal 7 nucleotides upstream decreased stimulation of gene transcription by 

putrescine.  This indicates that polyamine regulation of CpxR and UvrY occurs at the level of 

translation, and that the increased translation of CpxR and UvrY in response to polyamine 

stimulation then modulates biofilm formation in E. coli, rather than polyamines more directly 

modulating the biofilm phenotype (94).  It is worth noting, however, that wild-type E. coli cells 

grown in culture may contain 10-30 mM of putrescine, so whether these physiological effects 

can be solely attributed to the increased availability of putrescine at the relatively low 

concentration used in this study (0.6 mM) has yet to be determined (17, 101). 

Y. pestis, the causative agent of the bubonic and pneumonic plague, required putrescine 

for biofilm formation (83).  Y. pestis forms biofilms in the proventriculus of the flea host, and 

thus biofilms may be an important factor in plague transmission to humans (23, 49).  Evidence 

suggests that putrescine modulates expression of hms genes, which are essential to biofilm 

formation (119).  HmsT is located in the inner membrane and contains a conserved GGDEF 

domain, which indicates a function as a diguanylate cyclase, involved in production of c-di-

GMP.  Accordingly, HmsT acts as a positive regulator of Y. pestis biofilm formation (50, 56, 
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103).  HmsP is an inner membrane protein with both GGDEF and EAL domains, indicating the 

potential for both diguanylate cyclase activity (c-di-GMP synthesis) and phosphodiesterase 

activity (c-di-GMP degradation.)  At this point, only phosphodiesterase activity by HmsP has 

been confirmed, and HmsP negatively effects biofilm formation (8).  HmsR and HmsS are both 

predicted inner membrane proteins thought to to be involved in polysaccharide production due to 

homology to E. coli PgaC and PgaD, respectively, which are both involved in synthesis of the 

surface polysaccharide poly-N-acetylglucosamine (PNAG) (15, 48, 63, 85). 

Production of HmsR, HmsS and HmsT is dependent on polyamine accessibility, and 

protein levels decrease by 93%, 43%, and 90% respectively in the absence of polyamines (119).  

As depicted in Figure 5, both hmsT and hmsR lack an upstream consensus Shine-Dalgarno 

sequence, which is characteristic of genes that are modulated by polyamines (45, 126).  Insertion 

of a consensus Shine-Dalgarno sequence upstream of hmsT resulted in a reduction of putrescine 

stimulation of translation by ~18%, indicating that biofilm formation is modulated by 

polyamines through translational regulatory mechanisms.  Furthermore, Y. pestis mutants 

incapable of synthesizing putrescine were severely attenuated in the mouse model, suggesting a 

role for putrescine-dependent biofilm formation in Y. pestis virulence (119).    
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N. gonorrhoeae is a sexually transmitted obligate human pathogen that forms biofilms on 

human genital epithelial cells, indicating a role for biofilm formation in pathogenesis and 

survival in the human host (35).  Polyamines may be present at concentrations ranging from 1-15 

mM in the human urogenital tract, and therefore are likely encountered by the bacterium during 

infection (113).  Furthermore, polyamines including spermine and spermidine have been shown 

to bind to the surface of gonococcal cells and increase survival in response to some antimicrobial 

peptides, suggesting that the availability of polyamines in the host urogenital tract may affect N. 

gonorrhoeae pathogenesis and virulence (35).  Addition of spermine was shown to significantly 

reduce N. gonorrhoeae biofilm formation at a concentration as low as 0.5 µM, while a 

concentration of 4 µM of spermidine was required for a similar reduction (34).  Although the 

mechanism through which spermidine and spermine inhibit biofilm formation has not yet been 

elucidated, it has been proposed that decreased biofilm formation in response to polyamines may 

improve spreading along the lining of the human urogenital tract during N. gonorrhoeae 

infection. 
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V. cholerae, the causative agent of the deadly diarrheal disease cholera, is also an 

extremely successful colonizer of aquatic environments including brackish waters and estuaries 

(19).  It is nearly impossible to eradicate V. cholerae from aquatic environments following an 

outbreak, and the resulting endemicity poses a health hazard to human inhabitants, who may 

unintentionally ingest food or water contaminated with V. cholerae (18).  Growth in a biofilm 

has been implicated in survival of V. cholerae in the native aquatic environment as well as within 

the human host, as it may provide protection against harsh environmental conditions as well as 

stomach and bile acids and increase virulence (42, 110).  Polyamines including spermidine, 

spermine, putrescine, and cadaverine, are present in the human intestine, the exclusive location 

of V. cholerae colonization in the human host, suggesting a potential interaction between this 

bacterium and these molecules during infection (4).  Polyamines in the intestine may originate 

from the human diet, which is thought to contain hundreds of micromoles of polyamines such as 

spermidine, putrescine, and spermine.  Intestinal polyamines may also be contributed by gut 

microbiota, or by intestinal cells, which are capable of synthesizing and exporting polyamines 

(66, 73, 75).  Polyamines are present in the human intestinal lumen.  Spermidine, for example, is 

present at approximately 100 µM in bile and duodenal fluids (67, 81).  Because the biofilm 

phenotype may be an essential factor to survival in both the environment and within the host, V. 

cholerae serves as a useful model organism through which to study regulation of biofilm 

formation by polyamines. 

Polyamines have been demonstrated to effect V. cholerae biofilm formation through both 

extracellular and intracellular mechanisms.  The NspS-MbaA sensory system modulates biofilm 

formation in response to extracellular polyamines.  Deletion of nspS results in reduced biofilm 

formation, indicating that NspS stimulates biofilm formation.  In contrast, deletion of mbaA 
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enhances V. cholerae biofilm formation, indicating that mbaA represses biofilm formation (51, 

117).  Vibriopolysaccharide (VPS) is produced by V. cholerae cells within a biofilm, and is an 

essential extracellular matrix component.  VPS production is dependent on expression of vps 

genes, which are arranged in two operons, vpsA-K, and vpsL-Q, both of which are under the 

control of the response regulators VpsR and VpsT (11, 117, 125).  Development of robust 

biofilms in the ΔmbaA mutant was dependent on production of VPS, indicating that MbaA plays 

a role in biofilm maturation through a VPS-dependent mechanism (9).  Further investigation into 

the function of mbaA identified conserved GGDEF and EAL domains, indicating a potential role 

as a regulator of c-di-GMP (9).  As stated previously, GGDEF domains are highly conserved 

among enzymes with diguanylate cyclase activity, which generates c-di-GMP.  Conversely, EAL 

domains are found in enzymes with phosphodiesterase activity, which are involved in 

degradation of c-di-GMP (31).  Purified C-terminal MbaA demonstrates c-di-GMP 

phosphodiesterase activity, and is capable of degrading c-di-GMP into pGpG, suggesting that the 

action of MbaA in reducing intracellular levels of c-di-GMP is what controls the effects seen on 

biofilm formation (16).  

Originally annotated as the ligand-binding protein of a polyamine transporter, NspS was 

shown to enhance biofilm formation in the presence of norspermidine, but not spermidine.  

Furthermore, this effect was dependent on mbaA, and addition of norspermidine to ΔmbaA 

strains had no effect on biofilm formation (51).  The NspS-MbaA interaction appears to alter 

biofilm formation in a VPS-dependent manner, and vpsL transcription in ΔmbaA strains was 

twice the level observed in wildtype, as demonstrated through a β-galactosidase assay of V. 

cholerae strains harboring a chromosomal vpsLp-lacZ promoter fusion.  Transcription of vpsL 

was also increased by almost two-fold in the wild-type strain in the presence of norspermidine 
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(51).  The current model of the NspS-MbaA interaction and role on biofilm formation is 

illustrated in Figure 6.  Taken together, this information suggests that MbaA acts as a repressor 

of biofilm formation, and NspS acts to prevent this repression in the presence of norspermidine. 

 

 

Polyamines may also modulate V. cholerae biofilm formation through intracellular mechanisms.  

In addition to the common polyamines putrescine, spermidine, and cadaverine, species of Vibrio 

also have high levels of intracellular norspermidine, and rarely contain detectable levels of 

spermine.  Vibrio was the first mesophilic genera found to contain norspermidine, which was 

previously associated with thermophilic bacteria (117, 124).  Some polyamines, including 

norspermidine, may be synthesized de novo, or may be imported from the surrounding 

environment.  Predicted biosynthesis pathways are shown in Figure 3.   

Norspermidine synthesis is dependent on two enzymes: carboxynorspermidine 

dehydrogenase (CANSDH) which synthesizes the intermediate carboxynorspermidine from 

diaminopropane and aspartate β-semialdehyde, as well as carboxynorspermidine decarboxylase 

(CANSDC) which generates norspermidine through the decarboxylation of 
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carboxynorspermidine (76, 108, 123).  Both CANSDH and CANSDC are essential to V. 

cholerae biofilm formation, and defects in biofilm formation in response to disruption of either 

gene could be alleviated by addition of exogenous norspermidine to biofilm growth media, 

suggesting an essential requirement for norspermidine in V. cholerae biofilm formation (59).  

Overexpression of the V. cholerae CANSDC gene, nspC, led to increased growth rate and 

reduced lag time in shaking liquid culture.  Similarly, biofilm cell density was five-fold higher in 

strains overexpressing nspC compared to wildtype.  This was shown to be VPS-dependent using 

the previously described β-galactosidase assay and strains with a chromosomal vpsLp-lacZ 

fusion, suggesting that intracellular norspermidine influences biofilm formation through a VPS-

dependent, but yet unknown mechanism (82).  Interestingly, overexpression of CANSDC does 

not lead to an increase in levels of norspermidine within the cell or in spent medium, suggesting 

that optimal levels of norspermidine are maintained within the cell through a yet unidentified 

mechanism (82). 

The V. cholerae genome encodes an ABC-type polyamine transporter, potABCD2D1, 

which is homologous to the potABCD operon in E. coli, depicted in Figure 7.  As in the E. coli 

transporter, PotA is annotated as the ATPase, and PotB and PotC are annotated as the 

transmembrane permeases.  Interestingly, this system is annotated with two substrate-binding 

proteins, referred to as PotD2 and PotD1.  However, at this point, only PotD1 has been shown to 

have a role in polyamine uptake (16, 68).  The predicted proteins encoded by genes in this 

putative operon have 59-72% amino acid sequence identity to PotABCD in E. coli (68).  While 

the PotABCD system is responsible for uptake of spermidine and putrescine in E. coli, the V. 

cholerae PotD1 is involved in the uptake of both spermidine and norspermidine.  As such, 

PotABCD2D1 as the first norspermidine transporter discovered in any species (16, 68).  Previous 
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research has demonstrated an essential role for PotB and PotC, the transmembrane channel-

forming proteins, in uptake of both spermidine and norspermidine (96).  The role of PotA, the 

putative ATPase of this system, is still under investigation, and is the subject of the work 

presented here.  Confirmation of involvement of PotA is essential to determine if the entire 

system functioning as a whole is what elicits the effects seen on biofilm formation, rather than 

one or more of the involved genes having a more direct role. 

 

 

 

 

V. cholerae virulence 

A hyperinfectious phenotype is exhibited by V. cholerae grown in a biofilm, suggesting a 

role for biofilm-promoting genes in association of V. cholerae with other organisms (110).  

While over 200 serotypes of V. cholerae have been identified, only two are associated with the 
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disease cholera.  These are the O1 serotype of both El Tor and Classical biotype, and the O139 

serotype.  The pathogenic nature of these strains is dependent on several virulence factors, 

including cholera toxin, toxin coregulated pili (TCP), and the accessory colonization factors (39).   

Cholera toxin is the essential toxin for manifestation of the disease cholera.  Cell free, 

purified “cholerigenous factors” containing cholera toxin are sufficient to induce cholera 

symptoms in human volunteers (6).  The toxin is an 84-kD protein made up of a single A subunit 

and five B subunits arranged in a pentameric ring and encoded by the ctx genes (95, 128).  The B 

subunits are involved in host cell recognition and attachment, following which the entire toxin is 

endocytosed (61).  Following entry into the cell, the A subunit ADP-ribosylates Gs alpha subunit 

(Gαs) proteins on the host cell surface, preventing GTPase activity and resulting in constitutive 

activation of Gαs.  The activated G protein over-stimulates adenylate cyclase activity, leading to 

excess cAMP production (12, 33).  Presence of elevated cAMP leads to activation of PKA, 

which then phosphorylates serine residues in the regulatory region of cystic fibrosis 

transmembrane conductance regulator (CFTR) proteins, leading to disruption of transmembrane 

channel regulation and leading to excessive secretion of Cl- into the intestinal lumen, as well as 

reduced import of Na+ (13, 105).  This disruption of ion balance and subsequent water loss from 

the intestinal epithelial cells results in the severe dehydration and watery diarrhea, or “rice-water 

stool” characteristic of this disease.  The genes for cholera toxin are encoded on a CTX genetic 

element acquired from a filamentous bacteriophage and integrated in to the V. cholerae 

chromosome.  Disruption of the gene encoding the A subunit, ctxA, substantially attenuates 

cholera symptoms but does not significantly alter colonization ability in the human intestine, 

suggesting that cholera toxin is not involved in colonization but rather in producing the 

characteristic severe diarrheal response (39). 
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Toxin-coregulated pili (TCP) are required for attachment and colonization of intestinal 

epithelial cells in the intestine and are made up of a single subunit, TcpA (39, 111).  These type 

IV pili are necessary for cell-cell adhesion among bacteria, allowing development of 

microcolonies essential for colonization during the course of infection (14, 57, 109, 111).  TCP 

also serve as the receptor for the CTX bacteriophage carrying the necessary genes for cholera 

toxin, and TCP-deficient strains cause no symptoms of cholera and are incapable of colonizing 

the human intestine (115).  

Motility and chemotaxis are thought to be important processes in the progression of V. 

cholerae colonization and subsequent infection, primarily based on in vitro assays.  Mutations 

causing alterations in motility phenotypes may be linked to altered TCP expression.  Nonmotile 

mutants have demonstrated increased TCP and cholera toxin production, and increased motility 

may correlate inversely with production of TCP and cholera toxin (32).  Virulence factor 

expression is controlled by the master regulator ToxT (37, 98).  This suggests integral regulation 

between motility and virulence factor expression in order for colonization to progress.  It would 

be expected that chemotaxis, directional movement of a bacterium towards a favorable stimulus 

or away from an unfavorable stimulus, would be beneficial to motility and colonization in the 

host.  However, V. cholerae shed from the human intestine typically demonstrate reduced 

chemotaxis gene expression.  Furthermore, chemotaxis-deficient, motile strains of V. cholerae 

have increased infectivity compared to strains exhibiting chemotaxis capabilities, and a reduced 

inoculum is required in order to generate infection symptoms (10). 

Expression of virulence factors including cholera toxin, TCP, and other accessory factors 

by V. cholerae within the host is highly regulated and controlled by a cascade of effectors.  A 

brief outline is shown in Figure 8.   
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Animal models for cholera 

To date, mammalian models have primarily been used to study the association and 

pathogenesis of cholera-causing V. cholerae with other organisms.  At this point, humans are the 

only known adult mammalian host that can be naturally colonized by V. cholerae, so significant 

manipulations to the animal are often necessary in order to facilitate and maintain colonization in 

other adult mammals.  Suckling mammals may be colonized through intragastric or orogastric 

inoculation.  This increased susceptibility is potentially due to an underdeveloped immune 

system and/or commensal microbial population (89).  Mice and rabbits have been the most 

commonly used animal models for the study of V. cholerae.  Nonmammalian models have been 
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developed more recently.  Both arthropods and fish may associate with V. cholerae in the natural 

environment, which has led to the investigation of the capabilities of V. cholerae to colonize 

and/or infect the well-established model organisms Drosophila melanogaster and Danio rerio 

(zebrafish) (7, 92, 99, 102).  Colonization can be achieved in both D. melanogaster and zebrafish 

simply through ingestion of the bacterium, with no additional measures necessary to maintain 

colonization.  Each model provides a unique set of benefits and drawbacks in the study of the 

disease cholera.  

Successful colonization of adult mice resulting from oral inoculation is dependent on 

treatment with the anesthetic xylazine as well as sodium bicarbonate in order to neutralize 

stomach acid (79, 80).  V. cholerae colonizes the crypts of the distal small intestine in a TCP-

independent manner, and cholera toxin has only a small effect on disease progression in the adult 

mouse (80).  For the most part, the mechanism of V. cholerae infection of adult mice does not 

resemble infection in humans; however, adult mice have provided some insight into accessory 

colonization factors. 

The infant mouse is, to date, the most frequently used model organism in the study of V. 

cholerae infection.  Suckling infant mice are typically intragastrically inoculated at 3 to 5 days of 

age.  Many of the same virulence genes that are essential in human infection are highly 

expressed by V. cholerae in the mouse intestine (28, 111).  As in human infection, TCP are 

required for colonization of the mouse intestine, and the middle region of the small intestine is 

preferentially colonized (2, 111).  Whether this is in response to recognition of similar host cell 

receptors in both the mouse and human, or simply due to the amount of time required by the 

bacteria to adapt to environmental surroundings in order to colonize is not known.  Likewise, 

mice fed purified cholera toxin produce increased levels of intestinal fluid, similar to the human 
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response to cholera toxin (5).  TCP are essential for colonization of the small intestine, but 

colonization of the large intestine is TCP-independent (2, 111).  Whether a similar colonization 

of the large intestine occurs in humans has not been determined.  Cholera toxin-deficient strains 

demonstrate reduced lethality to mice, but colonization levels are not significantly affected, 

supporting the role of cholera toxin in pathogenesis but not colonization. However, infant mice 

are removed from their mothers in order to perform infection experiments, so survival time is 

relatively short, typically 2-3 days after isolation.  As such, it is difficult to monitor lethality of 

the disease in this model (58).   

Inconsistencies have arisen in the study of motility in the infant mouse intestine.  Under 

some conditions, aflagellate and flagellated motility-deficient mutants show little disadvantage in 

colonization of the infant mouse intestine compared to wildtype.  It has been hypothesized that 

the mucus layers of the infant mouse may differ from the adult rabbit, which may facilitate 

colonization by nonmotile strains (88).  However, other studies have reported severe attenuation 

of both aflagellated and flagellated nonmotile mutants (60).  Thus, the role of motility in 

colonization of the infant mouse intestine has yet to be determined.  Nonchemotactic, motile 

mutants demonstrated increased colonization and altered distribution in the infant mouse 

intestine.  While the distal small intestine is preferentially colonized by wild-type V. cholerae, 

non-chemotactic V. cholerae uniformly colonizes both the small intestine and stomach (60).  

Therefore, chemotaxis may inhibit V. cholerae colonization of the infant mouse intestine. 

Biofilm affords a colonization advantage to V. cholerae in the infant mouse intestine, as 

V. cholerae cells inoculated while biofilm-bound are capable of achieving levels of colonization 

5.8-fold higher than when inoculated in the planktonic cell form.  This colonization advantage is 

maintained even when biofilms are dispersed prior to inoculation of mice, indicating that the 
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physiological state of cells within the biofilm themselves imparts the colonization advantage, 

rather than mechanical protection provided by the biofilm structure (110).  This colonization 

advantage is apparent as little as 5 hours after inoculation, and may be maintained up to 24 

hours.  Thus, the infant mouse has provided much insight into V. cholerae colonization and 

virulence factors that can be applied to pathogenesis in humans. 

Adult rabbits have been utilized as models to study V. cholerae for over 60 years (24).  

Adult rabbits require surgical manipulations in order to achieve and maintain colonization and 

infection of the small intestine by mechanically preventing clearing of bacteria from the intestine 

(72).  Known human virulence factors tcpP, tcpH, and toxR are transcribed at high levels in the 

rabbit intestine, implying a role for these genes in rabbit colonization as well (120).   V. cholerae 

strains deficient in TCP and cholera toxin production do not cause diarrhea in adult rabbits, and 

strains lacking TCP were only shed from the rabbit intestine for two days, as opposed to 

shedding of wild-type throughout the entire week-long observation period, indicating deficient or 

nonexistent colonization by TCP-deficient strains (26).   Additionally, nonmotile mutants, 

whether aflagellated or flagellated, demonstrated a colonization defect in comparison to motile 

parent strains, indicating that motility is an important colonization factor in the adult rabbit 

intestine (88).  Thus, the adult rabbit model may be useful for studying some colonization factors 

that are essential in human infection. 

Trials using the infant rabbit as a model to study cholera began as early as 1894, but 

initial experiments involving oral inoculation of infant rabbits failed to generate consistent 

symptoms or results (25, 70).  It has since been determined that establishment of cholera disease 

through orogastric inoculation of infant rabbits is dependent on pretreatment with cimetidine, 

which reduces stomach acidity (90, 97). While rabbit models require manipulation through 
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surgical or pretreatment means, infection, if achieved, has many similar characteristics to human 

cholera.  Rabbits develop severe, watery diarrhea that is similar to the characteristic rice-water 

stool of human cholera infection, and this may lead to severe weight loss (90, 93, 104).  Similar 

to human illness, development of diarrhea and dehydration is also dependent on toxin production 

in the rabbit, and strains of V. cholerae that do not produce cholera toxin demonstrate reduced 

virulence in infant rabbits (90, 104).  Likewise, mutants that do not produce TCP do not cause 

significant disease in the infant rabbit; however, these mutants are capable of colonizing, which 

leads to development of increased cecal fluid accumulation (90).  Thus, many virulence factors 

and symptoms of V. cholerae in infant rabbits parallel V. cholerae infection in humans (39, 107). 

As an aquatic organism, V. cholerae is often found associated with aquatic arthropods in 

the natural environment, presumably through insect consumption of water contaminated with V. 

cholerae (102).  Thus, use of an arthropod model for V. cholerae study is a logical choice.  V. 

cholerae is capable of survival and proliferation within D. melanogaster following ingestion of 

the bacterium delivered through the fly food.  As in humans, the intestine is the specific site of V. 

cholerae colonization within D. melanogaster.  As the disease develops in the fly, significant and 

weight loss may occur, leading to death.  This parallels the symptoms of human patients with 

severe cases of cholera.  Weight loss and death are dependent on production of cholera toxin; 

however, unlike in human cases, cholera toxin alone is not lethal to the flies.  Inoculation of 

purified cholera toxin and a V. cholerae strain deficient in cholera toxin production restores 

lethality.  Therefore, some additional factor produced by V. cholerae is required for cholera toxin 

activity in D. melanogaster that has not been identified in other models.  Manifestation of 

symptoms depends on Gsα and adenylyl cyclase activity, indicating a similar mechanism of 

disease in D. melanogaster and humans (7).   
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Several studies have demonstrated a role for biofilm formation in colonization of the D. 

melanogaster intestine by V. cholerae.  vps gene transcription is highly upregulated in V. 

cholerae in the fly intestine, and mutants unable to synthesize VPS demonstrate a colonization 

defect compared to wild-type.  V. cholerae strains that are unable to produce VPS are incapable 

of colonizing the rectum of D. melanogaster, while wild-type strains typically coat the epithelial 

surface of this region.  As V. cholerae is retained in the rectal pouch following clearing of the 

small intestine in surviving D. melanogaster, adhesion in this region may be crucial for dispersal 

and transmission following infection (86).  Proteins Bap1 and RbmC are essential for attachment 

and stabilization of V. cholerae biofilms, and Δbap1ΔrbmC strains are also significantly 

impaired in colonization of the D. melanogaster intestine (1).  Taken together, this data suggests 

a potential role for V. cholerae biofilm formation in D. melanogaster colonization. 

V. cholerae can also be found associated with aquatic organisms including fish, so a well-

studied model organism such as the zebrafish presents a logical model through which to study V. 

cholerae colonization and infection ability.  Fish may provide a means of transmission and 

dispersal for V. cholerae in the aquatic environment (99).  Recent studies have demonstrated that 

pathogenic strains of V. cholerae O1 are capable of specifically colonizing the intestine of both 

the adult and larval zebrafish following addition of bacterial cultures to the fish tank water, and 

that this colonization can be achieved in as little as two hours after exposure.  Colonization is not 

lethal to the fish, and V. cholerae can be transmitted from uninfected fish to naïve fish.  A toxT 

mutant, which does not produce TCP, cholera toxin, or other accessory factors shown to be 

essential for colonization and infection in humans and other animal models, colonized as well as 

wild-type V. cholerae, indicating that the essential virulence factors in human infection are not 
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required for colonization of the fish (92).  As the zebrafish is a relatively new model for V. 

cholerae study, essential colonization factors have not yet been determined. 

 

Purpose of this study 

The goals of the current study were twofold.  First, I aimed to determine the role of PotA 

in uptake of norspermidine and spermidine through the novel ABC-type transporter PotABCD1, 

and subsequently observe effects on biofilm formation.  The second aim was to investigate the 

role of genes that act as biofilm regulators in response to polyamine levels in fish colonization in 

order to elucidate essential factors to this association.  This study provided more information on 

ABC-type transporters, an extremely well conserved protein family.  Additionally, the results 

generated from this study provided further insight into polyamine regulation of biofilm 

formation.   This provided further evidence of the importance of polyamines and biofilm 

formation in V. cholerae environmental and host survival, as well as information about a 

potential novel environmental reservoir of V. cholerae. 
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Materials and Methods 

Bacterial strains and growth conditions 

 Bacterial strains are listed in Table 1, plasmids are listed in Table 2, and primers are 

listed in Table 3.  Primer synthesis and sequencing was performed by Eurofins, MWG 

(Huntsville, AL.)  All strains were grown in Luria-Bertani (LB) or tryptone broth.  LB broth is 

composed of 1% Tryptone, 0.5% Yeast Extract, and 85mM NaCl.  Tryptone broth is composed 

of 1% Tryptone and 85mM NaCl.  When required, antibiotics were added to growth media at the 

following concentrations: ampicillin, 100 µg/mL; streptomycin, 100 µg/mL; tetracycline, 2.5 

µg/mL.  Plasmids were extracted and purified using Promega Wizard Plus SV Minipreps DNA 

Purification System (Madison, WI.)  Polyamines including putrescine dihydrochloride 

(putrescine), 1,3-diaminopropane dihydrochloride (diaminopropane), cadaverine dihydrochloride 

(cadaverine), bis(3-aminopropyl)amine (norspermidine), and spermidine trihydrochloride 

(spermidine) were obtained from Sigma (St. Louis, MO).  Restriction enzymes, Calf intestinal 

alkaline phosphatase (CIP), and Phusion and OneTaq polymerases were obtained from New 

England Biolabs (Beverly, MA).   

 

Deletion of V. cholerae potA gene 

Primers were generated to amplify regions of approximately 400 bp upstream and 

downstream from the potA gene.  PA242 was designed to anneal to the nucleotide 301 base pairs 

upstream from the potA start codon, and PA243 was designed to anneal to the nucleotide 144 

base pairs downstream from the potA start codon.  PA244 was designed to anneal to the 

nucleotide 71 base pairs upstream from the potA stop codon, and PA246 was designed to anneal 

to the nucleotide 234 base pairs downstream from the potA stop codon.  These regions were 
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amplified through PCR with Phusion polymerase from New England Biolabs and purified using 

a GE Healthcare IllustraTM GFXTM PCR DNA and Gel Band Purification Kit (Buckinghamshire, 

UK).  Upstream and downstream fragments were then added to a single reaction in order to 

allow complementary regions on internal primers PA243 and PA244 to re-anneal following 

denaturation, resulting in gene splicing by overlap extension (SOE) and generating an in-frame 

deletion of 918 base pairs (bp) of the total 1,133 bp in the potA gene (41).  External primers 

PA242 and PA246 were added to this reaction in order to amplify the ΔpotA fragment with 

Phusion polymerase.  Presence of the 918 bp deletion fragment was verified by gel 

electrophoresis and the fragment was purified.  The purified fragment was adenylated on the 3’ 

ends, cloned into TOPO Vector pCR2.1 from Invitrogen (Carlsbad, CA) and electroporated into 

E. coli DH5α using a BIO-RAD MicroPulser (Hercules, CA) at 1.8 kv.  Cells were recovered for 

1 hour following electroporation in SO media (20 g/L tryptone, 5 g/L yeast extract, 0.548 g/L 

NaCl, 0.186 g/L KCl, 1 mM MgCl2, 1 mM MgSO4, and 2 mM glucose) at 37°C with shaking at 

200 rpm, and then plated on LB agar containing 100 µg/mL ampicillin (Gold Biotechnology, 

Saint Louis, MO) and 20 µg/mL X-gal (20 mg 5-bromo-4-chloro-3-indolyl-β-d-

galactopyranoside [Gold Biotechnology] in 1 mL dimethyl sulfoxide [ThermoFisher Scientific 

TM, PierceTM, Waltham, MA.]) 

Presence of the insert and correct fragment size was verified by PCR and gel 

electrophoresis, and then plasmids from positive colonies were selected for plasmid miniprep 

using Promega Promega Wizard Plus SV MiniPreps DNA Purification System (Madison, WI.)  

Plasmids sequenced for construct confirmation by Eurofins, MWG.  The fragment was then 

excised from pCR2.1 using EcoR1 (New England Biolabs), purified, and ligated into pWM91 

plasmid linearized with the same enzyme.  The 5’ ends of the pWM91 plasmid were 
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dephosphorylated using CIP in order to prevent recircularization of the plasmid prior to ligation 

of the insert.  A schematic of this process is depicted in Figure 9.   

The ligation was then electroporated into E. coli DH5α λ-pir.  Plasmid uptake was 

verified by colony PCR.  Colonies containing the correct-size insert were purified and 

electroporated into the conjugative strain E. coli SM10 λ-pir.  Cells were recovered for 1 hour 

following electroporation in SOC medium as previously described, then plated on LB plates 

containing ampicillin and X-gal at 100 µg/mL and 20 µg/mL, respectively. 

Following verification of plasmid uptake through colony PCR, the E. coli strain was 

conjugated with V. cholerae strain PW357 through SacB counter selectable mutagenesis in order 

to generate a chromosomal mutation in potA (69).  PW357 contains a chromosomal vpsLp-lacZ 

promoter fusion inserted into the V. cholerae lacZ gene locus which allows measurement of β-

galactosidase activity to quantify vps gene expression.  (69).  SacB counter selectable 

mutagenesis utilizes double homologous recombination with sucrose selection.  Recipient and 

donor strains were mated by streaking on LB agar and incubated at 37°C overnight.  One half of 

growth was streaked on each of two LB agar plates containing streptomycin at 100 µg/mL 

(Amresco, Solon, OH) and ampicillin at 50 µg/mL and incubated at 37 °C overnight.  Four 

colonies were selected and purified by again streaking on selective agar containing streptomycin 

and ampicillin at 100 µg/mL and 50 µg/mL, respectively.  The next day, four single colony 

isolates were streaked on LB with no antibiotic selection and incubated overnight at 37°C to 

allow a second recombination or “crossing out” event, resulting in removal of the ampicillin 

resistance encoded on the pWM91 plasmid and sacB gene. Isolated colonies were then streaked 

on 10% sucrose plates made by adding 5 g tryptone, 2.5 g yeast extract, and 7.5g agar to 333.5 

mL diH2O, autoclaving, than adding of 166.5 mL of filter-sterilized 30% sucrose solution 
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(Amresco).  Finally, isolated colonies were patched on plates containing ampicillin (100 µg/mL) 

or streptomycin (100 µg/mL).  Colonies resistant to streptomycin but sensitive to ampicillin were 

selected for colony PCR verification of potA deletion. 

A similar protocol was followed in order to generate a ΔpotA in the nspC::kan 

background with a few modifications.  The V. cholerae genome contains nspC, which encodes 

carboxynorspermidine decarboxylase, the enzyme responsible for catalyzing the final step of 

norspermidine synthesis.  In order to quantify only imported norspermidine, nspC was disrupted 

through insertion of a kanamycin resistance cassette in strain AK314A; therefore, AK314A was 

used as the recipient strain to generate the double mutant (16).  Donor and recipient strains 

(AK420 and AK314A, respectively) were mated by streaking on LB agar and incubating at 37°C 

overnight.  One half of the growth was streaked on one of two LB agar plates containing 

streptomycin at 100 µg/mL, ampicillin at 50 µg/mL, and kanamycin at 30 µg/mL (Amresco) and 

incubated at 37°C overnight.  Four colonies were selected and purified by again streaking on 

selective agar containing the same concentrations of streptomycin, ampicillin and kanamycin.  

The next day, four single colony isolates were streaked on LB agar and with no antibiotic 

selection and incubated at 37°C overnight to allow a second recombination, “crossing out” event.  

Isolated colonies were streaked on 10% sucrose/kanamycin (30 µg/mL) plates and incubated at 

room temperature for two days.  Isolated colonies were then patched on plates containing 

ampicillin (100 µg/mL) alone or streptomycin (100 µg/mL) and kanamycin (30 µg/mL).  

Colonies resistant to streptomycin and kanamycin but sensitive to ampicillin were selected for 

colony PCR to verify presence of ΔpotA.  
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Complementation of V. cholerae ΔpotA strain 

In order to validate the requirement for PotA in spermidine and norspermidine uptake, 

ΔpotA was complemented with potA on a plasmid.  The entire potA gene was amplified from V. 

cholerae chromosomal DNA using primers PA251 and PA252, specific to the region 15 bp 

upstream of the predicted potA ribosome binding site and directly upstream from the potA stop 

codon.  The forward primer contained an NcoI site directly upstream to the potA annealing 

region, while the reverse primer also encoded a V5 epitope tag, stop codon, and NcoI restriction 

site.  These fragments were amplified with PA251 and PA252 using Phusion polymerase, cloned 

into TOPO Vector pCR2.1, and electroporated into E. coli DH5α.  Cells were recovered and 
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plated as previously described.  Correct insert fragment size was verified by colony PCR and gel 

electrophoresis in order to detect a fragment at the predicted 1,240 bp.  Plasmids were extracted, 

purified, and sequenced for verification.  Mutation of the NcoI site in the reverse primer was 

detected during sequencing. This was corrected by amplifying the 1240 bp fragment with PA251 

and PA258, containing a corrected NcoI site, and then repeating the cloning, PCR, and 

sequencing procedure to verify correction of the NcoI site sequence. 

The potA-V5 fragment was then excised from pCR2.1 using NcoI restriction enzyme, 

ligated into pACYC184 linearized with the same enzyme and dephosphorylated as previously 

described, then electroporated into Escherichia coli DH5α.  Plasmid uptake was verified by 

colony PCR, and plasmids were extracted and purified.  Plasmids were then electroporated into 

V. cholerae mutant strains, and verified through colony PCR and gel electrophoresis.  A 

schematic of this process is depicted in Figure 10. 
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Deletion of V. cholerae potD3 gene 

 Observation of spermidine uptake in the ΔpotD1 mutant, but not ΔpotA, ΔpotB, or 

ΔpotC, when grown in the presence of high concentrations of spermidine, supporting previous 

identification of VCA1113 as a possible potD3 and low-affinity spermidine transporter (20).  

This led me to construct an in-frame deletion in this gene as previously described.  Primers were 

constructed specific to regions upstream and downstream of the potD3 gene. PA293 was 

designed to anneal 179 bp upstream from the potD3 start codon, and PA294 was designed to 

anneal 207 bp downstream from the potD3 start codon.  PA295 was designed to anneal 149 bp 
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upstream from the potD3 stop codon, and PA296 were designed to anneal 193 bp downstream 

from the potD3 stop codon. Presence of PCR products at approximately 400 bp were verified by 

gel electrophoresis and gel purified.  Fragments were combined in one reaction to allow re-

annealing of complementary regions on PA294 and PA295 following denaturing, resulting in an 

in-frame deletion of 675 bp of the total 1,031 bp gene.  PA293 and PA296 were added to this 

reaction along with Phusion polymerase in order to amplify the fused fragment.  Fusion was 

verified by the presence of a product at approximately 778 bp visualized through gel 

electrophoresis.  The PCR fragment, adenylated on the 3’ ends, cloned into TOPO Vector 

pCR2.1, and electroporated into E. coli DH5α.  Cells were recovered for 1 hour following 

electroporation in SOC media at 37°C with shaking at 200 rpm, and then plated on LB agar 

containing 100 µg/mL ampicillin and 20 µg/mL X-gal.  Plasmid uptake was verified through 

colony PCR.  Positive colonies were selected for plasmid isolation and sent to Eurofins for 

sequencing. 
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Table 1. Bacterial Strains 

Strain/Plasmid Genotype Reference/Source 

E. coli   
DH5α F- Φ80lacZΔM15 Δ(lacZYA-argF) U169 

recA1 endA1 hsdR17 (rk-, mk+) phoA 
supE44 λ-thi-1 gyrA96 relA1 

Invitrogen 

DH5α λ-pir supE44, ΔlacU169 hsdR17, recA1 endA1 
gyrA96 thi-1 relA1, λpir 

(36) 

SM10 λ-pir thi thr leu tonA lacY supE recA::RP4-2-
Tc::MuλpirR6K;  KmR 

(71) 

AK411 DH5α with pEV1 
 

This study 

AK415A DH5α λ-pir with pEV2  
 

This study 

AK419 DH5α with pEV3  
 
 

This study 

AK420 SM10 λ-pir with pEV2  
 

This study 

AK423 DH5α with pEV3  
 

 

This study 

AK431 DH5α with pEV4  
 

This study 

AK511 
 

DH5α with pEV5 This study 

V. cholerae   
PW357 MO10 lacZ::vpsLp à lacZ, SMR 

 
(38) 

AK160 PW357 ∆potD1 
 

(16) 

AK314A PW357 nspC::kan 

 
(16) 

AK429 PW357 ΔpotA This study 
 

AK440 AK429ΔpotA with pEV4 This study 
 

AK449 AK314A ΔpotA This study 
 

AK454 AK449 with pEV4  
 

This study 

AK499 
 

AK429 with pACYC184 This study 

AK501 
 

AK449 with pACYC184 This study 
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Table 2. Plasmids 

Plasmid Genotype Reference/Source 
pCR2.1-TOPO  plasmid for TOPO cloning, ApR Invitrogen 

pWM91 oriR6k, lacAα, sacB, homologous 
recombination plasmid, ApR 

Metcalf et al., 1996 

pACYC184 cloning plasmid, low copy, TetR New England Biolabs 

pEV1 
 

pCR2.1:: ∆potA This study 

pEV2 
 

pWM91::∆potA This study 

pEV3  
 

pCR2.1::potA-V5 This study 

pEV4 
 

pACYC184::potA-V5 This study 

pEV5 
  

pCR2.1:: ∆potD3 This study 
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Table 3. Primers 

Primer Description Sequence 
PA242 Forward primer of 

upstream fragment of 
potA for deletion 

5’-GCGCGGATAACGTCACGC-3’ 
 

PA243 Reverse primer of 
upstream fragment of 
potA + SOE for deletion 

5’-TTACGAGCGGCCGCAACCACAGCCCGATGGACCTAG-3’ 

PA244 Forward primer of 
downstream fragment of 
potA + SOE for deletion 

5’-TGCGGCCGCTCGTAAATCGGACAGAAAGTTGCCGTC-3’ 

PA246 Reverse primer of 
downstream fragment of 
potA for deletion 

5’-GGTGCGGATGAGTGAGTTGG-3’ 

PA251 Forward primer of potA 
for complement 

5’-CCATGGCTACAGGTCCAACAAGTAGG-3’ 

PA252 Reverse primer of potA + 
V5 for complement 

5’-CCATGGCTACGTAGAATCGAGACCGAGGAGAGGGTTA 
GGGATAGGCTTACCGCCGCTGCCGCTGCCAGCTTTTTGCT
CATCATTGAGG-3’ 

PA258 Reverse primer of potA + 
V5 for complement with 
corrected NCOI site 

5’-CCATGGCTACGTAGAATCGAGACCG-3’ 

PA271 Forward primer of potA-
potB intergenic region 

5’-CCGGTATGTGTGTGATGGTTAG-3’ 
 

PA272 Reverse primer of potA-
potB intergenic region 

5’-CATCAGGTTGGGGATCAGTAC-3’ 
 

PA273 Forward primer of potB-
potC intergenic region 

5’-GGTGCCGCAACCAGTATTG-3’ 
 

PA274 Reverse primer of potB-
potC intergenic region 

5’-CCGCCCCATTTGATACC-3’ 
 

PA287 Forward primer of potC-
potD2 intergenic region 

5’- CTGAAGTAAACGCACTGGCG-3’ 
 

PA288 Reverse primer of potC-
potD2 intergenic region 

5’- GCTCCAAACTAAACGTTGCCC-3’ 
 

PA289 Forward primer of 
potD2-potD1 intergenic 
region 

5’- CCGTTGGCGATAAGACAGTG-3’ 
 

PA290 
 
 

Reverse primer of potD2-
potD1 intergenic region 

5’- GCTGCGCACAGAGCACTC-3’ 
 

PA293 
 
 

Forward primer of 
upstream fragment of 
potD3 for deletion 

CCCAACCGATCGCTGTAACGCC 

PA294 
 
 

Reverse primer of 
upstream fragment of 
potD3 +SOE for deletion 

5’-TTACGAGCGGCCGCACACGACATCGTAACCAGTGCC-3’ 

PA295 
 
 

Forward primer of 
downstream fragment of 
potD3 +SOE for deletion 

5’-TGCGGCCGCTCGTAAGGTCGAGCGCTGCTACCG-3’ 

PA296 
 
 

Reverse primer of 
downstream fragment of 
potD3 for deletion 

5’-CACCGAAGGTGGAGCTCATC-3’ 
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Western Blotting 

Cells were grown overnight in 3mL of LB broth at 37°C and with shaking at 200 rpm.  

Cells were then pelleted at 16,100 rpm for 2 minutes, resuspended in 300µL 1X PBS, sonicated 

on ice three times for 10-15 seconds each, and centrifuged for 2 minutes at 16,500 rpm.  The 

supernatant was removed and diluted 1:1 with Laemlli Buffer containing 2-Mercaptoethanol, 

then incubated at 65°C for 15 minutes.  Fifteen microliters were then loaded to a SDS-

polyacrylamide gel consisting of a 12% resolving gel and a 5% stacking gel and run at 150V for 

1 hour and 15 minutes.  Subsequently, proteins were transferred onto a PVDF membrane by 

briefly immersing a PVDF membrane in methanol, then placing both gel and membrane in 1X 

Transfer Buffer and equilibrating for 15 minutes.  Gel and membrane were then run at 100V for 

1 hours in a BIO-RAD Mini Trans-Blot (Hercules, CA).  The PVDF membrane was blocked 

overnight by immersing in a mixture of 5% skim milk and 1X PBS and incubating at 4°C with 

shaking.  The following day, the membrane was washed with PBS with 0.05% Tween 20 

(PBST), then incubated on a rotator in 10 mL of 3% skim milk/PBS with monoclonal anti-V5 

antibody conjugated to horseradish peroxidase diluted 1:20,000 for one hour at room 

temperature.  The membrane was then washed in PBS with 0.05% Tween 20 for fifteen minutes.  

Two more PBST washes were performed, each for 5 minutes.  Once washed, the membrane was 

incubated with 2 mL of SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific, 

Rockford, IL) for 5 minutes.  Imaging was performed using a BIO-RAD Molecular Imager® Gel 

DocTM XR System (Hercules, CA). 
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Confirmation of cotranscription of pot genes 

Planktonic cells were grown in a 2 mL LB culture overnight at 27°C with shaking as 

previously described.  Cells were then diluted 1:50 in 10 mL and grown to mid-log phase (OD600 

of 0.4.) Cells were then washed three times in 10 mL 1X PBS and suspended in Stock Buffer 

(2.5 mM sodium azide, 50 mM Tris base, 25 mM MgCl2 at pH 7.2).  Cells were pelleted, 

supernatant removed, and pellets were air-dried.  Once dried, the pellet was flash frozen in a dry 

ice-EtOH bath.  Frozen cells were lysed by addition of 1 mL TRIzol reagent and rapid pipetting 

for 30 seconds.  Cells were then incubated at room temperature for 5 minutes.  Following 

incubation, 1 mL chloroform was added and samples were mixed well.  Samples were then 

incubated at room temperature for 3 minutes, then centrifuged at 12,000 x g for 20 minutes at 

4°C in order to separate and remove the aqueous phase containing RNA.  Isopropanol was added 

and samples were incubated at -20°C overnight in order to precipitate RNA.  The following day, 

RNA was extracted by pelleting at 12,000 x g for 20 minutes at 4°C.  RNA was then washed 

twice in 100% EtOH and resuspended in nuclease-free water.  Following resuspension RNA was 

purified with Qiagen RNeasy Mini Kit (Hilden, Germany) following manufacturer’s instructions.  

cDNA was synthesized by reverse transcribing 2.5 µg of RNA using the Superscript VILO Kit 

(Invitrogen, Carlsbad, CA) following manufacturer’s instructions.  Junction primers were 

generated to anneal ~100 bp upstream of the stop codon of potA and ~100 bp downstream of the 

start codon of potB to amplify 203 bp of the potA-B junction; ~100 bp upstream of the stop 

codon of potB and ~100 bp downstream of the start codon of potC to amplify 219 bp of the potB-

C junction; ~40 bp upstream of the potC stop codon and ~130 bp downstream of the potD2 start 

codon to amplify 221 bp of the potC-potD2 junction; and ~10 bp downstream of the potD2 stop 

codon and ~125 bp downstream of the potD1 start codon to amplify 251 bp of the potD2-potD1 
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junction.  PCR was performed with junction primers and OneTaq polymerase.  PCR products 

were run on an agarose gel in order to visualize junction fragments. 

 

Polyamine extraction, benzoylation, and HPLC analysis 

 Overnight cultures in 3 mL tryptone media were incubated at 27°C with shaking as 

previously described.  Cells were diluted 1:50 into either 20 mL or 50 mL tryptone.  Cultures 

were grown to mid log phase and pelleted at 5000 rpm for 7 minutes at room temperature.  

Supernatant was removed and cells were washed with 1X Phosphate Buffered Saline (PBS), and 

resuspended in deionized water at 10 µL/mg of wet weight.  Following resuspension, cells were 

lysed by sonication using a Heat Systems Ultrasonics Inc (Newtown, CT).  W-380 Sonicator set 

to 40% duty cycle and output control of 5 for 6 seconds.  Lysates were centrifuged at 16,100 rpm 

for 10 minutes to pellet cell debris, and the supernatant containing polyamines was removed.  

Proteins and other macromolecules were precipitated by adding 5% trichloracetic acid and 

centrifuged at 16,100 rpm for one minute.  Supernatant containing polyamines was removed. 

 Polyamines were then benzoylated to allow detection through HPLC.  Cellular extracts 

containing polyamines were diluted 1:1 with water for a total volume of 500 µL. 2 mL of 2 M 

NaOH was added to each sample and mixed.  Benzoyl chloride (Sigma) was diluted in HPLC 

grade methanol (EMD Millipore Corporation, Darmstadt, Germany) to 25%, and 20 µL of this 

solution was then added to each sample.  Samples were mixed by vortex for one minute, then 

incubated at room temperature with shaking at 150 rpm for one hour.  Following incubation, 1 

mL chloroform was added to each sample tube, mixed well, and centrifuged at 3,320 rpm.  The 

chloroform layer was removed, and this step was repeated.  The combined chloroform fraction 

was then washed with 1 mL of deionized water and centrifuged at 3,320 rpm for one minute.  
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Chloroform layer was then removed, and chloroform was evaporated to dryness.  Dry 

polyamines were then resuspended in 100 µL of 60% methanol, 40% water. 

 HPLC analysis was performed utilizing a Waters 1525 Binary Pump.  Polyamines were 

detected with a Waters 2487 Dual Wavelength Absorbance Detector set at 254 nm.  Samples 

were run through a Phenomenex 4.0 x 30 mm guard cartridge and Spherclone 5micro ODS 

column.  For each sample, 40 µL was injected and run through the column using a gradient of 

45-60% methanol in water for 45 minutes, with a 10 minute isocratic equilibration of 45% 

methanol in water. 

 

Biofilm assay 

An isolated colony was used to inoculate a 2 mL tryptone culture, and incubated 

overnight at 27°C with shaking at 200 rpm.  This culture was diluted 1:50 in 2 mL the following 

morning, grown to an OD595 of 0.3-0.4, then normalized to an OD595 of 0.04 in 300 µL of 

tryptone media.  Cultures were incubated at 27°C for 24 hours without shaking.  Following 

incubation, 150 µL of planktonic cells was removed with a micropipette added to a microtiter 

plate.  The remaining planktonic cells were discarded.  The biofilm was washed with PBS and 

dispersed by vortexing with glass beads.  Using a micropipette, 150 µL of dispersed biofilm was 

added to a microtiter plate, and cell densities were measured at OD595 using a BIO-RAD 

Microplate Reader model 680. 

 

Zebrafish infection 

Bacterial cultures were grown overnight for 16-18 hours at 27°C with shaking at 200.  A 

ΔpotA mutant strain carrying a vpsLp-lacZ fusion allowed differentiation between mutant and 
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wild-type strains by plating on LB with X-gal, because wildtype V. cholerae lacks β-

galactosidase activity.  Following overnight incubation, cultures were diluted 1:20 and grown to 

an O.D. of 0.4.  Cultures were then washed three times in PBS to remove antibiotics, and 100µL 

of the washed cultures was resuspended in 1 mL of PBS, and then added to the respective tanks.  

At this time, 1 mL water samples were taken from each tank to determine the total number of 

bacterial cells in the initial inoculum.  For each strain tested, a control tank containing no fish 

was also inoculated.  Experimental tanks contained four fish in 500 mL of water.  In addition, a 

control tank containing four fish in 500 mL of water was set up with no bacterial cultures added.  

Fish were incubated with the added V. cholerae for approximately 20 hours, after which they 

were sacrificed by addition of Tricaine to the tank water at a concentration of 300 mg/L.  Water 

samples were taken at the time of euthanasia to determine bacterial load of tank water.   

Following euthanasia, fish were rinsed in 70% EtOH and blotted dry.  Intestines were 

aseptically removed using a dissecting microscope and homogenized in sterile PBS solution.  

Using sterile PBS solution, 3 serial dilutions were performed on each fish and water sample 

taken.  These dilutions were plated on LB agar containing streptomycin at 100 µg/mL, to which 

the strains of V. cholerae used for infection are resistant.  Plates were incubated overnight at 

27°C as previously described to allow for significant bacterial growth, after which colonies were 

patched on thiosulfate-citrate-bile salts-sucrose (TCBS) agar in order to differentiate V. cholerae 

from background growth of endogenous fish intestinal bacteria also resistant to streptomycin.  

Colonies were then plated on LB with 100 µg/mL streptomycin and 40 µM X-gal in order to 

determine wildtype and ΔpotA colony forming units (CFUs) using a blue-white screen.  

Following these counts, CFUs were calculated based on the known dilution factors, and colony-

forming unit counts of mutants were compared to wildtype in order to determine the proficiency 



	

	

40	
	

of the mutants to colonize.  Experiments were performed in accordance with IACUC protocol 

#12-10. 
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Results 

Construction of a V. cholerae ΔpotA mutant 

In order to characterize the role of the PotA protein in polyamine uptake through the 

PotABCD1 ABC-type transport system, I first constructed a deletion in the potA gene.  A region 

of approximately 400 base pairs upstream of the potA gene was amplified using primers PA242 

and PA243, shown in Figure 11 lanes 2 and 3.  PA242 and PA243 were designed to anneal to the 

regions 301 bp upstream from the start codon of potA and 144 bp downstream from the start 

codon of potA, respectively.  Separately, a region downstream of the potA gene of approximately 

400 bp was amplified using primers PA244 and PA246, designed to anneal 71 bp upstream from 

the stop codon, and 234 bp downstream from the stop codon, respectively.  The downstream 

region is shown in Figure 11, lanes 4 and 5. 

 

PA243 and PA244 were constructed with complimentary overhangs to each other in 

order to facilitate removal of 918 bp of the total 1,133 bp of the potA gene.  The upstream and 
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downstream fragments were added to a reaction together with PA242 and PA246, denatured, and 

re-annealed in order to allow this splicing by overlap extension (SOE) deletion to take place.  

Generation of this recombinant molecule at 831 bp was verified by gel electrophoresis as shown 

in lane 3 in Figure 12.   

 

This fragment was purified, adenylated at the 3’ ends, and cloned into pCR2.1 TOPO 

plasmid.  This constructed plasmid was then electroporated into E. coli DH5α.  A colony PCR 

was performed in order to verify uptake of the pEV1 plasmid, shown in Figure 13 lanes 3-7. 
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Two of these colonies were selected for plasmid extraction and the plasmids were 

sequenced for verification.  The ΔpotA fragment was digested out of pCR2.1 using XhoI and 

SpeI enzymes, and ligated into pWM91 linearized with the same enzymes.  This pEV2 plasmid 

was electroporated into E. coli DH5α-λpir.  Uptake of pEV2 was verified by colony PCR, shown 

in Figure 14.  
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pEV2 was then electroporated into E. coli SM10-λpir.  Colony PCR and gel 

electrophoresis to were used to verify a fragment at approximately 800 bp to generate strain 

AK420.  Positive colonies are shown in Figure 15, lanes 4-10. 

 

AK420 was used for conjugation with V. cholerae PW357 through SacB counter-

selectable mutagenesis, resulting in recombination of the ΔpotA construct onto the V. cholerae 
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chromosome.  Streptomycin resistant but ampicillin sensitive colonies were screened for ΔpotA 

integration through colony PCR and gel electrophoresis.  Amplification of DNA from one colony 

positive for plasmid uptake is shown in Figure 16, lane 20.  The approximately 1700 bp fragment 

in fragments 2-19 represents the full-length potA gene with 535 bp of the flanking regions on 

either side. 

 

 

Construction of a nspC::kan ΔpotA double mutant 

 Because V. cholerae is capable of synthesizing norspermidine de novo, construction of a 

double mutant was necessary in order to quantify intracellular norspermidine as a measure of 

only uptake.  This was generated by using strain AK314A (V. cholerae PW357 nspC::kan) as the 

recipient strain in the same SacB counter-selectable mutagenesis procedure with the donor strain 

AK420 carrying pEV2.  Kanamycin and streptomycin resistant but ampicillin sensitive colonies 
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were screened for deletion of the potA gene through colony PCR and gel electrophoresis, shown 

in Figure 17, lanes 5, 7, 8, 10, and 12. 

 

 

Complementation of ΔpotA strains with potA-V5 

In order to verify the role of PotA in uptake of norspermidine and spermidine, the ΔpotA 

mutant was completmented with a plasmid containing the potA gene.  Primers were constructed 

to amplify the full potA gene, as well as add a V5 tag for detection via western blot.  This 

fragment was generated by amplifying chromosomal V. cholerae MO10 DNA with primers 

PA252 and PA258.  Generation of a product at 1,240 bp was verified by colony PCR and gel 

electrophoresis, shown in Figure 18 Lane 3. 
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The fragment was purified, adenylated at the 3’ ends, and cloned into pCR2.1 TOPO 

plasmid.  The pEV3 plasmid was then electroporated into E. coli DH5α.  Uptake of the plasmid 

was checked through colony PCR and gel electrophoresis.  Positive colonies are shown in Figure 

19, lanes 4, 6, 8 and 9. 
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Positive colonies were selected for plasmid isolation and purification. Plasmids were then 

sent to Eurofins for sequence verification.  Following sequencing, the fragment was removed 

from pCR2.1 by digesting with NcoI and ligated into pACYC184 linearized with the same 

enzyme and dephosphorylated with calf intestinal alkaline phosphatase on the 5’ ends in order to 

prevent recircularization of the plasmid during ligation.  pEV4 was then electroporated into E. 

coli DH5α and verified by colony PCR, shown in Figure 20 lanes 2-8.  
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A positive colony was selected for pEV4 plasmid isolation.  pEV4 was then 

electroporated into V. cholerae AK429 (ΔpotA) and AK449 (nspC::kan ΔpotA) to generate 

complemented strains.  Plasmid uptake in both the single and double mutant was verified by 

colony PCR.  Figure 21 depicts two ΔpotA colonies positive for pEV4 uptake in lanes 3 and 4. 
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 Figure 22 depicts double mutant nspC::kan ΔpotA colonies positive for uptake of pEV4 

in lanes 2-10. 

 

 

Confirmation of PotA expression 

A Western blot was performed to confirm that complementation with pEV4 carrying 

potA-V5 was successful, and that PotA was being expressed under the experimental conditions 

used.  Following extraction from nspC::kan ΔpotA with pACYC184::potA-V5, proteins were 

separated through SDS-PAGE gel electrophoresis and transferred onto a PVDF membrane.  

Proteins were detected with an antibody to the V5 epitope linked to horseradish peroxidase, and 

visualized using horseradish peroxidase chemiluminescent substrate.  As shown in Figure 4, the 

V5-tagged PotA protein has a molecular weight of about 47 kDa, and is present in lanes 1, 2, and 

3. 
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PotA is required for import of norspermidine 

Because PotB, PotC, and PotD1 have demonstrated a role in norspermidine import, the 

role of PotA in norspermidine uptake was analyzed in order to determine that each component of 

the system is essential to facilitate import, and to further characterize this novel norspermidine 

importer.  V. cholerae is capable of synthesizing norspermidine from diaminopropane through 

the enzymes CANSDH and CANSDC.  The latter is encoded by nspC.  In order to quantify 

norspermidine acquisition solely through uptake, strain AK449 was used for norspermidine 

uptake analysis.  This strain contains a kanamycin acetyltransferase cassette disruption of the 

nspC gene, functionally preventing norspermidine synthesis, and thus allowing quantification of 

intracellular norspermidine acquired only through uptake.  As shown in Figure 24 panel B, the 
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nspC::kan control strain contains putrescine, diaminopropane, cadaverine, and norspermidine 

when media is supplemented with 100 µM norspermidine.  This strain contains no norspermidine 

when grown in the absence of added norspermidine.  Although norspermidine synthesis has been 

disrupted in this strain, it may still be acquired through import by the PotABCD1 system.  The 

abundance of exogenous norspermidine also prevents spermidine import, most likely by 

outcompeting spermidine for binding sites.  As shown in Figure 24 panel C, the nspC::kan 

ΔpotA mutant, shown in gray, contained no intracellular norspermidine when culture media was 

supplemented with 100 µM norspermidine, demonstrating impaired uptake of norspermidine.  

When complemented with pEV4, strains regained the ability to import norspermidine, 

demonstrating that PotA has an essential role in uptake of norspermidine uptake through 

PotABCD1. 
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PotA is involved in import of spermidine 

Because previous work in our lab has demonstrated a role for PotB, PotC and PotD1in 

spermidine uptake as well as norspermidine, I sought to determine whether the PotA protein is 

involved in this import as well.  As shown in Figure 25 panel C, deletion of the potA gene 

resulted in a substantial reduction in intracellular spermidine compared to wildtype, indicating 

deficient spermidine uptake due to the disruption of PotA.  However, a small peak did still 

appear at about 26 minutes retention time.  This peak could result from two sources: a low 
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affinity spermidine transporter may import spermidine when it is available at high concentrations 

outside of the cell, or another molecule extracted from the cell may interact with the HPLC 

column in a similar manner to spermidine, leading to indistinguishable retention times. To 

further confirm the role of potA in spermidine uptake, AK429 was complemented with pEV4, 

containing the full potA gene in order to restore gene function.  As shown in Figure 25, panel C, 

the potA deletion strain complemented with a plasmid carrying potA was capable of importing 

spermidine to much higher levels than the mutant strain.  Restoration of spermidine import in the 

presence of potA on a plasmid provides further supporting evidence that PotA is an essential 

component of the PotABCD1 system, and is involved in spermidine import through this ABC-

type transport system. 
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PotABCD1 is norspermidine-preferential 

 In order to determine the uptake preference of PotABCD1 for norspermidine or 

spermidine, polyamines were added to cultures at varying concentrations.  A nspC::kan ΔnspS 

double mutant was used in order to allow quantification of intracellular norspermidine as only a 

measure of uptake, as well as removing any preferential binding of norspermidine or spermidine 

by NspS, which could disrupt the pool of free polyamines within the culture.  Polyamines were 

added to cultures at concentrations of 10:1 (100 µM: 10 µM), 4:1 (100 µM: 25 µM), 2:1 (100 
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µM: 50 µM) and 1:1 (100 µM:100 µM).  As shown in Figure 26, PotABCD1 demonstrates a 

strong preference for norspermidine over spermidine, and significant uptake of spermidine was 

not observed until it was added in 10-fold excess of norspermidine.  Even in the presence of 

excess levels of exogenous spermidine, more norspermidine than spermidine was imported, 

indicating a strong preference for norspermidine over spermidine. 

 

 

Confirmation of cotranscription of potABCD2D1 genes 

 Bacterial genes that are involved in a common function are often arranged under the 

control of a single promoter.  This organization is known as an operon.  In order to fully 

characterize potABCD2D1, I sought to determine if these genes are cotranscribed.  V. cholerae 

RNA was extracted and reverse-transcribed to generate cDNA.  This was amplified with primers 

generated to amplify intergenic regions between the pot genes.  Presence of these intergenic 

regions indicates cotranscription, as a single promoter will drive transcription of the entire 

operon.  As shown in Figure 27, gene junction fragments were present between potA and potB, 
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potB and potC, potC and potD2, and potD2 and potD1, indicating that these genes are organized 

in an operon and cotranscribed from a single promoter. 

 

 

Identification of a low-affinity spermidine transporter in V. cholerae 

 Previous research in our lab has revealed that the ΔpotD1 mutant is capable of importing 

spermidine relatively high (1 mM) concentrations (20).  I observed that the ΔpotD1 mutant is 

capable of importing spermidine at even 100 µM concentration (data not shown).  This uptake 

appears to be dependent on the other components of the transport system, PotA, PotB, and PotC, 

because deletions in the transmembrane or cytoplasmic components inhibits the high level of 

uptake.  This supports the previous hypothesis of a low-affinity transporter in V. cholerae that is 

capable of interacting with the PotABC transmembrane and cytoplasmic components in order to 

facilitate spermidine uptake in the absence of PotD1. We have identified VCA1113 as a potential 

low-affinity spermidine transporter with 43% identity to PotD1, and refer to this gene as potD3 

(20). 
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Construction of a ΔpotD3 mutant 

 In order to determine the ability of potD3 to act as a low-affinity spermidine transporter, I 

constructed an in-frame deletion in the potD3 gene.  Upstream primer PA293 was designed to 

anneal 179 bp upstream of the potD3 start codon, and PA294 was designed to anneal 207 bp 

downstream from the potD3 start codon.  Likewise, a downstream primer pair, PA295 and 

PA296, was constructed to anneal to the downstream region of potD3. PA295 was designed to 

anneal 149 bp upstream from the potD3 start codon, and PA296 were designed to anneal 193 bp 

downstream of the potD3 stop codon.  PCR products of approximately 400 bp were verified by 

gel electrophoresis and are shown in Figure 28.  Fragments from the PA293-PA294 reaction are 

shown in lanes 3 and 4, and fragments from PA295-PA296 are in lanes 5 and 6. 
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Fragments were combined in one PCR reaction to allow re-annealing of complementary 

regions on PA294 and PA295 following denaturing and resulting in an in-frame deletion of 675 

bp of the total 1,031 bp gene.  External primers PA293 and PA296 were added to the reaction in 

order to further amplify the fragment.  Following PCR, fragment size was verified using gel 

electrophoresis, shown in Figure 29 lane 2, and PCR product was purified. 

 

This purified fragment was then adenylated at the 3’ ends, and cloned into pCR2.1 TOPO 

plasmid.  This pEV5 plasmid was then electroporated into E. coli DH5α.  A colony PCR was 

performed in order to verify uptake of the pEV5 plasmid, shown in Figure 30 lanes 3 and 4.  

Positive colonies were selected for miniprep, and plasmids were sent to Eurofins for sequence 

verification.  Work is ongoing in order to construct the V. cholerae ΔpotD3 mutant strain. 
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PotA is involved in biofilm formation 

Previous work in our lab has shown that ΔpotB, ΔpotC, or ΔpotD1 mutant strains exhibit 

significantly higher biofilm formation compared to wildtype, supporting the role of the 

functional polyamine importer in modulation of the biofilm phenotype.  In order to confirm the 

necessity of each component for transporter function, biofilm formation in the ΔpotA strain was 

also analyzed.  As previously observed, ΔpotB, ΔpotC, and ΔpotD1 strains all exhibited 

significantly increased biofilm formation (68, 96).  Likewise, ΔpotA strains exhibit increased 

biofilm formation compared to wildtype, as shown in Figure 31.  A reduction in planktonic cells 

was also observed in all mutant strains, as is characteristic of strains that form a high amount of 

biofilm.  Because spermidine is present in the tryptone media used for biofilm cultures at about 

3-4 µM, these results indicate that polyamine transport, specifically uptake of spermidine, by the 
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ABC-type transporter PotABCD1 is responsible for mediation of the biofilm phenotype, rather 

than one of the components more directly regulating biofilm formation (16).   

 

PotA is involved in zebrafish colonization 

Because we hypothesize that biofilm formation may be involved in V. cholerae 

association with other organisms, the colonization ability of the biofilm-overproducing ΔpotA 

strain was assessed and compared to wildtype.  Through serial dilution and plating of intestines, I 

observed that the ΔpotA mutant was capable of colonizing the fish intestine at slightly but not 

significantly higher levels than wildtype V. cholerae (Figure 32). 
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Next, I performed the same experiment using a low biofilm forming strain, ΔnspS in 

order to determine if biofilm formation has a role in the ability of V. cholerae to colonize the 

zebrafish intestine.  As stated previously, NspS acts to inhibit the phosphodiesterase activity of 

MbaA, thus increasing the intracellular pool of c-di-GMP.  As such, it is a positive regulator of 

biofilm formation.  Therefore, the ΔnspS mutant forms very low biofilm compared to wild-type 

V. cholerae, making it a good candidate to test the importance of biofilm formation in fish 

colonization.  As shown in Figure 33, the ΔnspS mutant was incapable of colonizing the 

zebrafish intestine.  This was determined to be statistically significant by performing a t-test and 

obtained a P-value less than 0.0001.  Thus, although formation of biofilm at levels above 

wildtype may not afford a colonization advantage to V. cholerae in the fish intestine, biofilm 

formation at least to wildtype levels may be required for colonization. 
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Discussion 

In this study, I have characterized the role of the putative ATPase PotA in uptake of the 

polyamines norspermidine and spermidine in V. cholerae.  Previous work in the Karatan lab has 

shown that PotB, PotC and PotD1 are all required to facilitate transport of the triamines 

norspermidine and spermidine, which then modulate effects on V. cholerae biofilm formation 

through an unknown mechanism (16, 96).  The current study confirms the role of PotA in uptake 

of both polyamines, and supports previous results that spermidine uptake through PotABCD1 

inhibits biofilm formation in V. cholerae.  These results suggest that the entire system functions 

as a whole in order to facilitate polyamine uptake.  Furthermore, this study provides evidence 

that uptake through PotABCD1 is strongly norspermidine preferential, and provides 

confirmation that potABCD2D1 genes are encoded in an operon, and are cotranscribed as a 

single polycistronic RNA.  Altogether, this study provides new information about a novel 

polyamine transporter in V. cholerae.  

In order to quantify intracellular norspermidine acquired by the cell only through uptake, 

the potA gene was deleted in the nspC::kan mutant background, which is incapable of 

synthesizing norspermidine de novo due to the insertion of a kanamycin resistance cassette in the 

nspC gene.  Thus, all intracellular norspermidine in these strains must be imported from the 

extracellular environment.  Through cellular polyamine extraction, benzyolation and HPLC 

analysis, I observed that deletion of potA in the nspC::kan background prevented accumulation 

of intracellular norspermidine when cultures were supplied with 100 µM exogenous 

norspermidine.  This deficiency in norspermidine accumulation could be rescued by 

complementing the mutant strains with the potA gene on a plasmid.  Likewise, a deficiency in 

spermidine import was observed in ΔpotA single mutant strains, although a small peak was still 
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present at the retention time seen for spermidine.  This could indicate two things; either another 

low affinity transporter is taking up small amounts of spermidine, or another molecule extracted 

from the cell has the same retention time as spermidine, and it is removed from the column and 

read by the HPLC detector at the same time as spermidine.  This import-deficient phenotype 

could be rescued through complementation with the potA gene on a plasmid.  Recovery of the 

norspermidine/spermidine peaks in the complemented strains supports the involvement of the 

PotA protein in uptake of both polyamines.   

I also observed an interesting phenomenon in the uptake of spermidine by the ΔpotD1 

mutant.  Spermidine uptake was greatly diminished, but still present, in the ΔpotA, ΔpotB, ΔpotC 

strains when supplied with 100 µM spermidine.  Previous results in our lab showed that the 

ΔpotD1 mutant was still capable of taking up spermidine when it was supplied exogenously at 1 

mM (20).  Consistent with these results, sepermidine uptake in the ΔpotD1 remained uninhibited 

when cells were supplied with 100 µM of spermidine.  Thus, the ΔpotD1 mutant was capable of 

importing high levels of spermidine in the presence of relatively high, but still physiologically 

relevant, levels of spermidine, as spermidine can be found in the human intestinal lumen at 

concentrations of hundreds of micromolar.  This implicated the presence of a potential low 

affinity spermidine transporter, which appears to be capable of binding spermidine when present 

at high extracellular concentrations and facilitating uptake through the intact PotABC 

transmembrane and cytoplasmic components.  We identified VCA1113, which we refer to as 

potD3, as a likely low affinity transporter due to the 43% identity between potD1 and potD3 

(20).  Work is ongoing to generate an in-frame deletion in potD3 in order to determine if this 

gene may also have a role in uptake of spermidine through the Pot system under experimental 

conditions. 
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Diaminopropane levels also increased consistently in wild-type strains supplied with 100 

µM spermidine, ΔpotA supplemented with 100 µM spermidine, and  nspC::kan ΔpotA mutants 

supplemented with 100 µM norspermidine.  The level of diaminopropane was diminished in 

complemented strains and in wild-type or nspC::kan strains supplied with norspermidine.  

Because diaminopropane is a precursor to carboxynorspermidine, which is itself a precursor to 

norspermidine, accumulation of diaminopropane in the double mutant strains could be explained 

by a bottleneck in the norspermidine biosynthesis pathway, resulting in unusually high levels of 

norspermidine precursors.  However, the ΔpotA single mutant has an intact nspC gene, and thus 

diaminopropane is used for generation of norspermidine, which is verified by a peak at around 

24 minutes, the retention time of norspermidine, on the chromatogram of cell extract from the 

ΔpotA strain.  Therefore, the increase in diaminopropane in this strain is not explained by a 

biosynthetic bottleneck.  It is possible that increased diaminopropane is a result of increased 

norspermidine synthesis in order to compensate for loss of spermidine.  Recently, Kim et al. 

showed that the essential requirement for spermidine in Agrobacterium tumefaciens could be 

replaced by any polyamine that contains a diaminopropane moiety.  As such, both 

diaminopropane and norspermidine were capable of compensating for spermidine.  It is unknown 

if the NspC protein is capable of generating sufficient norspermidine to compensate for a loss of 

spermidine import through PotABCD.  Therefore, it is possible that additional diaminopropane is 

made in the absence or decrease of spermidine uptake in order to fulfill the usual role of 

spermidine within the cell. 

Because PotABCD1 is capable of importing both norspermidine and spermidine, a 

substrate preference was investigated.  Norspermidine appeared to be the strongly preferred 

polyamine for import.  Even in a 10:1 excess of spermidine, more intracellular norspermidine 
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than spermidine was detected.  Thus, uptake of polyamines through the PotABCD1 system 

appears to be norspermidine-preferential under the conditions of this experiment. 

Because prokaryotic genes with related functions are often under the control of a single 

promoter, I was also interested in investigating whether the potABCD2D1 genes are encoded in 

an operon and are cotranscribed in order to gain more insight into the organization and regulation 

of this system.  RNA was extracted from wild-type V. cholerae and reverse-transcribed into 

cDNA.  This cDNA was amplified with primers specific to the intergenic regions, or junctions, 

between each gene.  I observed that the each pair of primers to each gene junction generated a 

product, indicating that the intergenic regions between each gene in the putative potABCD2D1 

operon are transcribed.  This suggests that these five pot genes are under the control of a single 

promoter, and are cotranscribed in one polycistronic RNA.   

ABC-transport systems are highly conserved, and have been found to have widespread 

impact on physiology in prokaryotes.  Previous work in our lab has shown that PotB, PotC and 

PotD1 components effect biofilm formation in V. cholerae.  In this work, I have shown that PotA 

is also involved in regulation of V. cholerae biofilm formation.  Mutations in potA, potB, potC or 

potD1 result in significantly increased biofilm phenotype compared to wildtype.  Because 

biofilm assays for this study were performed in tryptone media, which contains 3-4µM of 

spermidine, and because we see a similar increase in biofilm phenotype in each pot single 

mutant, we hypothesize that the disruption of any pot gene prevents or diminishes uptake of 

spermidine into the cell through the PotABCD1 system.  This decrease in intracellular 

spermidine levels is responsible for modulation of biofilm formation, rather than one of the 

components of the system having a more direct role in biofilm regulation (16).  Spermidine has 

been shown to act as a negative regulator of biofilm formation through the NspS-MbaA sensory 
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system, through modulation of the second messenger c-di-GMP.  Conversely, norspermidine 

enhances NspS repression of MbaA, which blocks phosphodiesterase activity and leads to an 

accumulation of c-di-GMP within the cell, leading to increased biofilm formation (16, 51, 68).  

Thus, spermidine may repress biofilm formation both as an extracellular signal through NspS-

MbaA and when accumulated within the cell through the Pot system, indicating that the 

triamines spermidine and norspermidine may have a profound effect on V. cholerae physiology, 

specifically biofilm formation, through multiple mechanisms.   

Finally, because biofilms have been indicated as important in V. cholerae environmental 

survival, and fish have been suggested to serve as an environmental reservoir for V. cholerae, I 

wanted to investigate if polyamine-dependent biofilm formation may be involved in association 

with other organisms using the zebrafish as a model.  Previous work has demonstrated that both 

adult and larval zebrafish can be naturally colonized by V. cholerae following addition of the 

bacteria to tank water, and are capable of transmitting V. cholerae to naive fish.  Furthermore, 

the essential factors required for colonization and infection in humans had no apparent role in the 

fish colonization (92).  I tested the ability of wild-type and the ΔpotA mutant strains of V. 

cholerae to colonize, and found that ΔpotA mutants colonized to slightly but not significantly 

higher levels than wildtype.  Conversely, low-biofilm forming ΔnspS mutants were extremely 

deficient in colonization.  This may indicate that although high biofilm formation may not 

necessarily impart a colonization advantage in the fish intestine, biofilm formation may be 

required to some level in order to colonize.  The zebrafish genome encodes a putative spermidine 

synthase gene, suggesting that cells within the fish may produce spermidine.  However, the 

ΔpotA mutant was uninhibited in colonization, indicating that spermidine uptake through 

PotABCD1 may not be essential to survival within the zebrafish.  Further investigation of 
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additional mutants is necessary in order to determine the role of polyamine acquisition and 

biofilm in fish colonization.  

In this study, we have provided further evidence that PotABCD1 is a novel ABC-type 

transporter, capable of importing both norspermidine and spermidine.  Furthermore, we have 

shown that this system influences V. cholerae physiology, modulating biofilm formation through 

an unknown mechanism.   Biofilms formed by prokaryotic bacteria have been shown to protect 

the cells within from various environmental stressors, from harsh pH and UV irradiation to 

antimicrobials and even immune system response (22, 27, 65).  Bacterial cells within a biofilm 

are encased within a self-produced matrix and are sessile, making them physiologically distinct 

from free-swimming cells of the same organism (116).  Biofilms have also been shown to 

provide a colonization advantage in the mouse model, and may provide protection from harsh 

stomach and bile acid conditions encountered prior to reaching the small intestine (110).  Thus, 

this system may be essential to V. cholerae physiology both in the environment and within the 

human host.   
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The current model of V. cholerae infection is shown in Figure 34.  This model suggests 

that bacterial cells are typically ingested from environmental sources such as contaminated food 

or water within a biofilm, and that this structure provides protection from the harsh pH of 

stomach and bile acids.  Therefore, it is thought that V. cholerae cells remain in the biofilm until 

they reach the small intestine, at which point one or more yet unknown signals are encountered, 

causing bacteria to revert to a planktonic state.  The observation that the biofilm-deficient ΔnspS 

mutant was incapable of colonizing the zebrafish provides additional support of the requirement 

for biofilm in V. cholerae association with other organisms.  The zebrafish genome also encodes 

a spermidine synthase gene, indicating the possible presence of spermidine in the fish intestine, 

although intestinal levels of polyamines in zebrafish are not known.  Once out of the biofilm, V. 

cholerae cells begin colonizing the intestinal epithelial cells and producing cholera toxin.  



	

	

71	
	

Therefore, consistent with this model, spermidine may serve as an inhibitory signal to biofilm 

formation and promote a planktonic lifestyle through PotABCD1 and other mechanisms, and 

contribute to the physiological changes necessary for V. cholerae to begin colonizing the 

intestine and causing the characteristic symptoms of cholera.  

 

  

  

  



	

	

72	
	

References 

 
1. Absalon, C., K. Van Dellen, and P. I. Watnick. 2011. A communal bacterial adhesin 

anchors biofilm and bystander cells to surfaces. PLoS Pathogens 7:e1002210-e1002210. 
 
2. Angelichio, M. J., J. Spector, M. K. Waldor, and A. Camilli. 1999. Vibrio cholerae 

intestinal population dynamics in the suckling mouse model of infection. Infection and 
Immunity 67:3733-3739. 

 
3. Antognoni, F., S. Del Duca, A. Kuraishi, E. Kawabe, T. Fukuchi-Shimogori, K. 

Kashiwagi, and K. Igarashi. 1999. Transcriptional inhibition of the operon for the 
spermidine uptake system by the substrate-binding protein PotD. J Biol Chem 274:1942-
1948. 

 
4. Bardocz, S., and A. White. 1999. Polyamines in health and nutrition. Springer Science 

& Business Media. 
 
5. Baselski, V., R. Briggs, and C. Parker. 1977. Intestinal fluid accumulation induced by 

oral challenge with Vibrio cholerae or cholera toxin in infant mice. Infection and 
Immunity 15:704-712. 

 
6. Benyajati, C. 1966. Experimental cholera in humans. BMJ 1:140-142. 
7. Blow, N. S., R. N. Salomon, K. Garrity, I. Reveillaud, A. Kopin, F. R. Jackson, and 

P. I. Watnick. 2005. Vibrio cholerae infection of Drosophila melanogaster mimics the 
human disease cholera. PLoS Pathogens 1:e8. 

 
8. Bobrov, A. G., O. Kirillina, and R. D. Perry. 2005. The phosphodiesterase activity of 

the HmsP EAL domain is required for negative regulation of biofilm formation in 
Yersinia pestis. FEMS Microbiol Lett 247:123-130. 

 
9. Bomchil, N., P. Watnick, and R. Kolter. 2003. Identification and characterization of a 

Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. J Bacteriol 
185:1384-1390. 

 
10. Butler, S. M., E. J. Nelson, N. Chowdhury, S. M. Faruque, S. B. Calderwood, and A. 

Camilli. 2006. Cholera stool bacteria repress chemotaxis to increase infectivity. Mol 
Microbiol 60:417-426. 

 
11. Casper-Lindley, C., and F. H. Yildiz. 2004. VpsT is a transcriptional regulator required 

for expression of vps biosynthesis genes and the development of rugose colonial 
morphology in Vibrio cholerae O1 El Tor. J Bacteriol 186:1574-1578. 

 
12. Cassel, D., and Z. Selinger. 1977. Mechanism of adenylate cyclase activation by cholera 

toxin: inhibition of GTP hydrolysis at the regulatory site. Proceedings of the National 
Academy of Sciences 74:3307-3311. 



	

	

73	
	

 
13. Cheng, S. H., D. P. Rich, J. Marshall, R. J. Gregory, M. J. Welsh, and A. E. Smith. 

1991. Phosphorylation of the R-Domain by cAMP-dependent protein kinase regulates the 
CFTR chloride channel. Cell 66:1027-1036 

. 
14. Chiang, S. L., R. K. Taylor, M. Koomey, and J. J. Mekalanos. 1995. Single amino-

acid substitutions in the N-terminus of Vibrio cholerae TcpA affect colonization, 
autoagglutination, and serum resistance. Mol Microbiol 17:1133-1142. 

 
15. Choi, A. H., L. Slamti, F. Y. Avci, G. B. Pier, and T. Maira-Litrán. 2009. The 

pgaABCD locus of Acinetobacter baumannii encodes the production of poly-β-1-6-N-
acetylglucosamine, which is critical for biofilm formation. J Bacteriol 191:5953-5963. 

 
16. Cockerell, S. R., A. C. Rutkovsky, J. P. Zayner, R. E. Cooper, L. R. Porter, S. S. 

Pendergraft, Z. M. Parker, M. W. McGinnis, and E. Karatan. 2014. Vibrio cholerae 
NspS, a homologue of ABC-type periplasmic solute binding proteins, facilitates 
transduction of polyamine signals independent of their transport. Microbiol-Sgm 
160:832-843. 

 
17. Cohen, S. S. 1998. Guide to the polyamines. Oxford University Press. 
 
18. Colwell, R., and A. Huq. 2001. Marine ecosystems and cholera. Hydrobiologia 460:141-

145. 
 
19. Colwell, R. R., and A. Huq. 1994. Environmental reservoir of Vibrio cholerae, the 

causative agent of cholera. Ann Ny Acad Sci 740:44-54. 
 
20. Cooper, R. E. 2010. NspS, a PotD1 homolog, acts as a spermidine signal sensor,  not a 

transporter, in Vibrio cholerae. Appalachian State University . 
 
21. Costerton, J., Z. Lewandowski, D. DeBeer, D. Caldwell, D. Korber, and G. James. 

1994. Biofilms, the customized microniche. J Bacteriol 176:2137. 
 
22. Costerton, J. W., Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-

Scott. 1995. Microbial biofilms. Annual Reviews in Microbiology 49:711-745. 
 
23. Darby, C., J. W. Hsu, N. Ghori, and S. Falkow. 2002. Caenorhabditis elegans: plague 

bacteria biofilm blocks food intake. Nature 417:243-244. 
 
24. De, S. N., and D. N. Chatterje. 1953. An experimental study of the mechanism of action 

of Vibrio cholerae on the intestinal mucous membrane. J Pathol Bacteriol 66:559-562. 
25. Dutta, N., and M. Habbu. 1955. Experimental cholera in infant rabbits: a method for 

chemotherapeutic investigation. British Journal of Pharmacology and Chemotherapy 
10:153. 

 



	

	

74	
	

26. Dziejman, M., D. Serruto, V. C. Tam, D. Sturtevant, P. Diraphat, S. M. Faruque, M. 
H. Rahman, J. F. Heidelberg, J. Decker, and L. Li. 2005. Genomic characterization of 
non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. 
Proceedings of the National Academy of Sciences of the United States of America 
102:3465-3470. 

 
27. Elasri, M. O., and R. V. Miller. 1999. Study of the response of a biofilm bacterial 

community to UV radiation. Appl Environ Microb 65:2025-2031. 
 
28. Freter, R., and P. O'Brien. 1981. Role of chemotaxis in the association of motile 

bacteria with intestinal mucosa: fitness and virulence of nonchemotactic Vibrio cholerae 
mutants in infant mice. Infection and Immunity 34:222-233. 

 
29. Fukuchi, J. I., K. Kashiwagi, M. Yamagishi, A. Ishihama, and K. Igarashi. 1995. 

Decrease in cell viability due to the accumulation of spermidine in spermidine 
acetyltransferase-deficient mutant of Escherichia coli. J Biol Chem 270:18831-18835. 

 
30. Furuchi, T., K. Kashiwagi, H. Kobayashi, and K. Igarashi. 1991. Characteristics of 

the gene for a spermidine and putrescine transport system that maps at 15-min on the 
Escherichia coli chromosome. J Biol Chem 266:20928-20933. 

 
31. Galperin, M. Y., A. N. Nikolskaya, and E. V. Koonin. 2001. Novel domains of the 

prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203:11-
21. 

 
32. Gardel, C. L., and J. J. Mekalanos. 1996. Alterations in Vibrio cholerae motility 

phenotypes correlate with changes in virulence factor expression. Infection and Immunity 
64:2246-2255. 

 
33. Gill, D. M., and R. Meren. 1978. ADP-ribosylation of membrane proteins catalyzed by 

cholera toxin - basis of activation of adenylate cyclase. Proceedings of the National 
Academy of Sciences of the United States of America 75:3050-3054. 

 
34. Goytia, M., V. L. Dhulipala, and W. M. Shafer. 2013. Spermine impairs biofilm 

formation by Neisseria gonorrhoeae. FEMS Microbiol Lett 343:64-69. 
 
35. Greiner, L., J. Edwards, J. Shao, C. Rabinak, D. Entz, and M. Apicella. 2005. 

Biofilm formation by Neisseria gonorrhoeae. Infection and Immunity 73:1964-1970. 
 
36. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J Mol 

Biol 166:557-580. 
37. Häse, C. C. 2001. Analysis of the role of flagellar activity in virulence gene expression 

in Vibrio cholerae. Microbiology 147:831-837. 
 
38. Haugo, A. J., and P. I. Watnick. 2002. Vibrio cholerae CytR is a repressor of biofilm 

development. Mol Microbiol 45:471-483. 



	

	

75	
	

 
39. Herrington, D. A., R. H. Hall, G. Losonsky, J. J. Mekalanos, R. K. Taylor, and M. 

M. Levine. 1988. Toxin, toxin-coregulated pili, and the ToxR regulon are essential for 
Vibrio cholerae pathogenesis in humans. J Exp Med 168:1487-1492. 

 
40. Higashi, K., Y. Sakamaki, E. Herai, R. Demizu, T. Uemura, S. D. Saroj, R. Zenda, 

Y. Terui, K. Nishimura, T. Toida, K. Kashiwagi, and K. Igarashi. 2010. Identification 
and functions of amino acid residues in PotB and PotC involved in spermidine uptake 
activity. J Biol Chem 285:39061-39069. 

 
41. Horton, R. M., Z. Cai, S. N. Ho, and L. R. Pease. 1990. Gene splicing by overlap 

extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8:528-
535. 

 
42. Huq, A., C. A. Whitehouse, C. J. Grim, M. Alam, and R. R. Colwell. 2008. Biofilms 

in water, its role and impact in human disease transmission. Current Opinion in 
Biotechnology 19:244-247. 

 
43. Igarashi, K., and K. Kashiwagi. 2010. Characteristics of cellular polyamine transport in 

prokaryotes and eukaryotes. Plant Physiol Bioch 48:506-512. 
 
44. Igarashi, K., and K. Kashiwagi. 2010. Modulation of cellular function by polyamines. 

The International Journal of Biochemistry & Cell Biology 42:39-51. 
 
45. Igarashi, K., and K. Kashiwagi. 2006. Polyamine modulon in Escherichia coli: Genes 

involved in the stimulation of cell growth by polyamines. J Biochem 139:11-16. 
 
46. Igarashi, K., K. Kashiwagi, H. Hamasaki, A. Miura, T. Kakegawa, S. Hirose, and S. 

Matsuzaki. 1986. Formation of a compensatory polyamine by Escherichia coli 
polyamine-requiring mutants during growth in the absence of polyamines. J Bacteriol 
166:128-134. 

 
47. Ito, K., and K. Igarashi. 1986. The increase by spermidine of fidelity of protamine 

synthesis in a wheat-germ cell-free system. Eur J Biochem 156:505-510. 
 
48. Itoh, Y., J. D. Rice, C. Goller, A. Pannuri, J. Taylor, J. Meisner, T. J. Beveridge, J. 

F. Preston, and T. Romeo. 2008. Roles of pgaABCD genes in synthesis, modification, 
and export of the Escherichia coli biofilm adhesin poly-β-1, 6-N-acetyl-D-glucosamine. J 
Bacteriol 190:3670-3680. 

49. Jarrett, C. O., E. Deak, K. E. Isherwood, P. C. Oyston, E. R. Fischer, A. R. Whitney, 
S. D. Kobayashi, F. R. DeLeo, and B. J. Hinnebusch. 2004. Transmission of Yersinia 
pestis from an infectious biofilm in the flea vector. J Infect Dis 190:782-792. 

 
50. Jones, H. A., J. W. Lillard Jr, and R. D. Perry. 1999. HmsT, a protein essential for 

expression of the haemin storage (Hms+) phenotype of Yersinia pestis. Microbiology 
145:2117-2128. 



	

	

76	
	

 
51. Karatan, E., T. R. Duncan, and P. I. Watnick. 2005. NspS, a predicted polyamine 

sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J 
Bacteriol 187:7434-7443. 

 
52. Kashiwagi, K., H. Endo, H. Kobayashi, K. Takio, and K. Igarashi. 1995. Spermidine-

preferential uptake system in Escherichia coli - ATP hydrolysis by PotA protein and its 
association with membranes. J Biol Chem 270:25377-25382. 

 
53. Kashiwagi, K., A. Innami, R. Zenda, H. Tomitori, and K. Igarashi. 2002. The 

ATPase activity and the functional domain of PotA, a component of the spermidine-
preferential uptake system in Escherichia coli. J Biol Chem 277:24212-24219. 

 
54. Kashiwagi, K., S. Miyamoto, E. Nukui, H. Kobayashi, and K. Igarashi. 1993. 

Functions of PotA and PotD proteins in spermidine-preferential uptake system in 
Escherichia coli. J Biol Chem 268:19358-19363. 

 
55. Kashiwagi, K., R. Pistocchi, S. Shibuya, S. Sugiyama, K. Morikawa, and K. 

Igarashi. 1996. Spermidine-preferential uptake system in Escherichia coli - 
Identification of amino acids involved in polyamine binding in PotD protein. J Biol Chem 
271:12205-12208. 

 
56. Kirillina, O., J. D. Fetherston, A. G. Bobrov, J. Abney, and R. D. Perry. 2004. HmsP, 

a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-
dependent biofilm formation in Yersinia pestis. Mol Microbiol 54:75-88. 

 
57. Kirn, T. J., M. J. Lafferty, C. M. P. Sandoe, and R. K. Taylor. 2000. Delineation of 

pilin domains required for bacterial association into microcolonies and intestinal 
colonization by Vibrio cholerae. Mol Microbiol 35:896-910. 

 
58. Klose, K. E. 2000. The suckling mouse model of cholera. Trends in Microbiology 8:189-

191. 
 
59. Lee, J., V. Sperandio, D. E. Frantz, J. Longgood, A. Camilli, M. A. Phillips, and A. 

J. Michael. 2009. An alternative polyamine biosynthetic pathway is widespread in 
bacteria and essential for biofilm formation in Vibrio cholerae. J Biol Chem 284:9899-
9907. 

 
60. Lee, S. H., S. M. Butler, and A. Camilli. 2001. Selection for in vivo regulators of 

bacterial virulence. Proceedings of the National Academy of Sciences of the United 
States of America 98:6889-6894. 

 
61. Lencer, W. I. 2004. Retrograde transport of cholera toxin into the ER of host cells. 

International Journal of Medical Microbiology 293:491-494. 
 



	

	

77	
	

62. Lenz, D. H., M. B. Miller, J. Zhu, R. V. Kulkarni, and B. L. Bassler. 2005. CsrA and 
three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol Microbiol 
58:1186-1202. 

 
63. Lillard, J. W., J. D. Fetherston, L. Pedersen, M. L. Pendrak, and R. D. Perry. 1997. 

Sequence and genetic analysis of the hemin storage (hms) system of Yersinia pestis. Gene 
193:13-21. 

 
64. Locher, K. P. 2009. Structure and mechanism of ATP-binding cassette transporters. 

Philos T R Soc B 364:239-245. 
 
65. Mah, T.-F. C., and G. A. O'Toole. 2001. Mechanisms of biofilm resistance to 

antimicrobial agents. Trends in Microbiology 9:34-39. 
 
66. Matsumoto, M., and Y. Benno. 2007. The relationship between microbiota and 

polyamine concentration in the human intestine: a pilot study. Microbiology and 
Immunology 51:25-35. 

 
67. McEvoy, F., and C. Hartley. 1975. Polyamines in cystic fibrosis. Pediatric Research 

9:721-724. 
 
68. McGinnis, M. W., Z. M. Parker, N. E. Walter, A. C. Rutkovsky, C. Cartaya-Marin, 

and E. Karatan. 2009. Spermidine regulates Vibrio cholerae biofilm formation via 
transport and signaling pathways. FEMS Microbiol Lett 299:166-174. 

 
69. Metcalf, W. W., W. H. Jiang, L. L. Daniels, S. K. Kim, A. Haldimann, and B. L. 

Wanner. 1996. Conditionally replicative and conjugative plasmids carrying lacZ alpha 
for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35:1-13. 

 
70. Metchnikoff, E. 1894. Recherches sur le cholera et les vibrions. Receptivite des jeunes 

lapins pour le cholera intestinal. Ann. Inst. Pasteur (Paris) 8:557. 
 
71. Miller, V. L., and J. J. Mekalanos. 1988. A novel suicide vector and its use in 

construction of insertion mutations - osmoregulation of outer-membrane proteins and 
virulence determinants in Vibrio cholerae requires ToxR. J Bacteriol 170:2575-2583. 

 
72. Miller, V. L., and J. J. Mekalanos. 1984. Synthesis of cholera toxin is positively 

regulated at the transcriptional level by toxR. Proceedings of the National Academy of 
Sciences 81:3471-3475. 

 
73. Milovic, V. 2001. Polyamines in the gut lumen: bioavailability and biodistribution. Eur J 

Gastroen Hepat 13:1021-1025. 
 
74. Mondragón, V., B. Franco, K. Jonas, K. Suzuki, T. Romeo, Ö. Melefors, and D. 

Georgellis. 2006. pH-dependent activation of the BarA-UvrY two-component system in 
Escherichia coli. J Bacteriol 188:8303-8306. 



	

	

78	
	

 
75. Murphy, G. M. 2001. Polyamines in the human gut. Eur J Gastroen Hepat 13:1011-

1014. 
 
76. Nakao, H., S. Shinoda, and S. Yamamoto. 1991. Purification and some properties of 

carboxynorspermidine synthase participating in a novel biosynthetic pathway for 
norspermidine in Vibrio alginolyticus. Microbiology 137:1737-1742. 

 
77. Nesse, L. L., K. Berg, and L. K. Vestby. 2015. Effects of norspermidine and spermidine 

on biofilm formation by potentially pathogenic Escherichia coli and Salmonella enterica 
wild-type strains. Appl Environ Microb 81:2226-2232. 

 
78. Ogasawara, H., K. Yamada, A. Kori, K. Yamamoto, and A. Ishihama. 2010. 

Regulation of the Escherichia coli csgD promoter: interplay between five transcription 
factors. Microbiology 156:2470-2483. 

 
79. Olivier, V., J. Queen, and K. Satchell. 2009. Successful small intestine colonization of 

adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins. PloS 
one 4:e7352. 

 
80. Olivier, V., N. H. Salzman, and K. J. F. Satchell. 2007. Prolonged colonization of mice 

by Vibrio cholerae El Tor O1 depends on accessory toxins. Infection and Immunity 
75:5043-5051. 

 
81. Osborne, D. L., and E. R. Seidel. 1990. Gastrointestinal luminal polyamines: cellular 

accumulation and enterohepatic circulation. Am J Physiol-Gastr L 258:G576-G584. 
 
82. Parker, Z. M., S. S. Pendergraft, J. Sobieraj, M. M. McGinnis, and E. Karatan. 

2012. Elevated levels of the norspermidine synthesis enzyme NspC enhance Vibrio 
cholerae biofilm formation without affecting intracellular norspermidine concentrations. 
FEMS Microbiol Lett 329:18-27. 

 
83. Patel, C. N., B. W. Wortham, J. L. Lines, J. D. Fetherston, R. D. Perry, and M. A. 

Oliveira. 2006. Polyamines are essential for the formation of plague biofilm. J Bacteriol 
188:2355-2363. 

 
84. Pernestig, A.-K., Ö. Melefors, and D. Georgellis. 2001. Identification of UvrY as the 

cognate response regulator for the BarA sensor kinase in Escherichia coli. J Biol Chem 
276:225-231. 

 
85. Perry, R. D., A. G. Bobrov, O. Kirillina, H. A. Jones, L. Pedersen, J. Abney, and J. 

D. Fetherston. 2004. Temperature regulation of the hemin storage (Hms+) phenotype of 
Yersinia pestis is posttranscriptional. J Bacteriol 186:1638-1647. 

 



	

	

79	
	

86. Purdy, A. E., and P. I. Watnick. 2011. Spatially selective colonization of the arthropod 
intestine through activation of Vibrio cholerae biofilm formation. Proceedings of the 
National Academy of Sciences of the United States of America 108:19737-19742. 

 
87. Rashid, M. H., C. Rajanna, A. Ali, and D. K. Karaolis. 2003. Identification of genes 

involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. 
FEMS Microbiol Lett 227:113-119. 

 
88. Richardson, K. 1991. Roles of motility and flagellar structure in pathogenicity of Vibrio 

cholerae: analysis of motility mutants in three animal models. Infection and Immunity 
59:2727-2736. 

 
89. Richardson, S. H. 1994. Animal models in cholera research. Vibrio cholerae and 

cholera: molecular to global perspectives. ASM Press, Washington, DC:203-226. 
 
90. Ritchie, J. M., H. Rui, R. T. Bronson, and M. K. Waldor. 2010. Back to the future: 

studying cholera pathogenesis using infant rabbits. mBio 1:e00047-00010. 
 
91. Romeo, T. 1998. Global regulation by the small RNA-binding protein CsrA and the non-

coding RNA molecule CsrB. Mol Microbiol 29:1321-1330. 
 
92. Runft, D. L., K. C. Mitchell, B. H. Abuaita, J. P. Allen, S. Bajer, K. Ginsburg, M. N. 

Neely, and J. H. Withey. 2014. Zebrafish as a natural host model for Vibrio cholerae 
colonization and transmission. Appl Environ Microb 80:1710-1717. 

 
93. Sack, D. A., R. B. Sack, G. B. Nair, and A. K. Siddique. 2004. Cholera. Lancet 

363:223-233. 
 
94. Sakamoto, A., Y. Terui, T. Yamamoto, T. Kasahara, M. Nakamura, H. Tomitori, K. 

Yamamoto, A. Ishihama, A. J. Michael, and K. Igarashi. 2012. Enhanced biofilm 
formation and/or cell viability by polyamines through stimulation of response regulators 
UvrY and CpxR in the two-component signal transducing systems, and ribosome 
recycling factor. The International Journal of Biochemistry & Cell Biology 44:1877-
1886. 

 
95. Sanchez, J., and J. Holmgren. 2008. Cholera toxin structure, gene regulation and 

pathophysiological and immunological aspects. Cell Mol Life Sci 65:1347-1360. 
 
96. Sanders, B. E. 2015. Characterization of the norspermidine/spermidine ABC-type 

transporter, PotABCD1, in Vibrio cholerae. Appalachian State University. 
 
97. Schlech, W. F., D. P. Chase, and A. Badley. 1993. A model of food-borne Listeria 

monocytogenes infection in the Sprague-Dawley rat using gastric inoculation: 
development and effect of gastric acidity on infective dose. International Journal of Food 
Microbiology 18:15-24. 

 



	

	

80	
	

98. Schuhmacher, D. A., and K. E. Klose. 1999. Environmental signals modulate ToxT-
dependent virulence factor expression in Vibrio cholerae. J Bacteriol 181:1508-1514. 

 
99. Senderovich, Y., I. Izhaki, and M. Halpern. 2010. Fish as reservoirs and vectors of 

Vibrio cholerae. PloS one 5:e8607. 
 
100. Senior, A. E., and S. Bhagat. 1998. P-glycoprotein shows strong catalytic cooperativity 

between the two nucleotide sites. Biochemistry-Us 37:831-836. 
 
101. Shah, P., and E. Swlatlo. 2008. A multifaceted role for polyamines in bacterial 

pathogens. Mol Microbiol 68:4-16. 
 
102. Shukla, B., D. Singh, and S. Sanyal. 1995. Attachment of non-culturable toxigenic 

Vibrio cholerae O1 and non-O1 and Aeromonas spp. to the aquatic arthropod Gerris 
spinolae and plants in the River Ganga, Varanasi. FEMS Immunology and Medical 
Microbiology 12:113-120. 

 
103. Simm, R., J. D. Fetherston, A. Kader, U. Römling, and R. D. Perry. 2005. Phenotypic 

convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187:6816-
6823. 

 
104. Spira, W., R. Sack, and J. Froehlich. 1981. Simple adult rabbit model for Vibrio 

cholerae and enterotoxigenic Escherichia coli diarrhea. Infection and Immunity 32:739-
747. 

 
105. Subramanya, S. B., V. M. Rajendran, P. Srinivasan, N. S. N. Kumar, B. S. 

Ramakrishna, and H. J. Binder. 2007. Differential regulation of cholera toxin-inhibited 
Na-H exchange isoforms by butyrate in rat ileum. Am J Physiol-Gastr L 293:G857-G863. 

 
106. Tabor, C. W., and H. Tabor. 1984. Polyamines. Annu Rev Biochem 53:749-790. 
 
107. Tacket, C. O., R. K. Taylor, G. Losonsky, Y. Lim, J. P. Nataro, J. B. Kaper, and M. 

M. Levine. 1998. Investigation of the roles of toxin-coregulated pili and mannose-
sensitive hemagglutinin pili in the pathogenesis of Vibrio cholerae O139 infection. 
Infection and Immunity 66:692-695. 

 
108. Tait, G. H. 1976. A new pathway for the biosynthesis of spermidine. Biochemical 

Society Transactions 4:610-612. 
 
109. Tamamoto, T., K. Nakashima, N. Nakasone, Y. Honma, N. Higa, and T. Yamashiro. 

1998. Adhesive property of toxin-coregulated pilus of Vibrio cholerae O1. Microbiology 
and Immunology 42:41-45. 

 
110. Tamayo, R., B. Patimalla, and A. Camilli. 2010. Growth in a biofilm induces a 

hyperinfectious phenotype in Vibrio cholerae. Infection and Immunity 78:3560-3569. 
 



	

	

81	
	

111. Taylor, R. K., V. L. Miller, D. B. Furlong, and J. J. Mekalanos. 1987. Use of phoA 
gene fusions to identify a pilus colonization factor coordinately regulated with cholera 
toxin. Proceedings of the National Academy of Sciences of the United States of America 
84:2833-2837. 

 
112. Tischler, A. D., and A. Camilli. 2004. Cyclic diguanylate (c-di-GMP) regulates Vibrio 

cholerae biofilm formation. Mol Microbiol 53:857-869. 
 
113. Tyms, A. 1989. Polyamines and the growth of bacteria and viruses. The Physiology of 

Polyamines 2:368. 
 
114. Vlamakis, H., Y. Chai, P. Beauregard, R. Losick, and R. Kolter. 2013. Sticking 

together: building a biofilm the Bacillus subtilis way. Nature Reviews Microbiology 
11:157-168. 

 
115. Waldor, M. K., and J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous 

phage encoding cholera toxin. Science 272:1910-1914. 
 
116. Watnick, P., and R. Kolter. 2000. Biofilm, city of microbes. J Bacteriol 182:2675-2679. 
 
117. Watnick, P. I., and R. Kolter. 1999. Steps in the development of a Vibrio cholerae El 

Tor biofilm. Mol Microbiol 34:586-595. 
 
118. Weilbacher, T., K. Suzuki, A. K. Dubey, X. Wang, S. Gudapaty, I. Morozov, C. S. 

Baker, D. Georgellis, P. Babitzke, and T. Romeo. 2003. A novel sRNA component of 
the carbon storage regulatory system of Escherichia coli. Mol Microbiol 48:657-670. 

 
119. Wortham, B. W., M. A. Oliveira, J. D. Fetherston, and R. D. Perry. 2010. Polyamines 

are required for the expression of key Hms proteins important for Yersinia pestis biofilm 
formation. Environ Microbiol 12:2034-2047. 

 
120. Xu, Q., M. Dziejman, and J. J. Mekalanos. 2003. Determination of the transcriptome 

of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. 
Proceedings of the National Academy of Sciences 100:1286-1291. 

 
121. Yamamoto, K., and A. Ishihama. 2006. Characterization of copper-inducible promoters 

regulated by CpxA/CpxR in Escherichia coli. Bioscience, biotechnology, and 
biochemistry 70:1688-1695. 

 
122. Yamamoto, K., and A. Ishihama. 2005. Transcriptional response of Escherichia coli to 

external copper. Mol Microbiol 56:215-227. 
 
123. Yamamoto, S., K. Hamanaka, Y. Suemoto, B.-i. Ono, and S. Shinoda. 1986. Evidence 

for the presence of a novel biosynthetic pathway for norspermidine in Vibrio. Can J 
Microbiol 32:99-103. 

 



	

	

82	
	

124. Yamamoto, S., S. Shinoda, M. Kawaguchi, K. Wakamatsu, and M. Makita. 1983. 
Polyamine distribution in vibrionaceae - norspermidine as a general constituent of Vibrio 
Species. Can J Microbiol 29:724-728. 

 
125. Yildiz, F. H., N. A. Dolganov, and G. K. Schoolnik. 2001. VpsR, a member of the 

response regulators of the two-component regulatory systems, is required for expression 
of vps biosynthesis genes and EPSETr-associated phenotypes in Vibrio cholerae O1 El 
Tor. J Bacteriol 183:1716-1726. 

 
126. Yoshida, M., K. Kashiwagi, A. Shigemasa, S. Taniguchi, K. Yamamoto, H. 

Makinoshima, A. Ishihama, and K. Igarashi. 2004. A unifying model for the role of 
polyamines in bacterial cell growth, the polyamine modulon. J Biol Chem 279:46008-
46013. 

 
127. Yoshida, M., D. Meksuriyen, K. Kashiwagi, G. Kawai, and K. Igarashi. 1999. 

Polyamine stimulation of the synthesis of oligopeptide-binding protein (OppA) - 
Involvement of a structural change of the Shine-Dalgarno sequence and the initiation 
codon AUG in OppA mRNA. J Biol Chem 274:22723-22728. 

 
128. Zhang, R. G., D. L. Scott, M. L. Westbrook, S. Nance, B. D. Spangler, G. G. Shipley, 

and E. M. Westbrook. 1995. The 3-dimensional crystal structure of cholera toxin. J Mol 
Biol 251:563-573. 

 
 

  



	

	

83	
	

  
 
 
 
 
 
 

Vita 
 

 Elizabeth Anne Villa was born in Fairfax, Virginia.  After graduating from Briar Woods 

High School in Ashburn, Virginia, she attended Virginia Polytechnic Institute and State 

University, earning a Bachelor of Science in Biological Sciences.  She began pursuit of a Master 

of Science in Biology with a concentration in Cell and Molecular Biology at Appalachian State 

University, as well as working in Dr. Ece Karatan’s laboratory in the fall of 2014.  Upon 

completion of her Master of Science, she will pursue a doctoral degree in Microbiology at the 

University of Georgia. 


