THE PHLYOGENETICS AND BIOGEOGRAPHY OF THE FRESHWATER PEARLY MUSSEL GENUS ELLIPTIO (BIVALVIA:UNIONIDAE)

A Thesis by RAQUEL ANNE FAGUNDO

Submitted to the Graduate School at Appalachian State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

> August 2016 Department of Biology

THE PHLYOGENETICS AND BIOGEOGRAPHY OF THE FRESHWATER PEARLY MUSSEL GENUS ELLIPTIO (BIVALVIA:UNIONIDAE)

A Thesis by RAQUEL ANNE FAGUNDO August 2016

APPROVED BY:

Michael M. Gangloff, Ph.D. Chairperson, Thesis Committee

Lynn M. Siefferman, Ph.D. Member, Thesis Committee

Matt C. Estep, Ph.D. Member, Thesis Committee

Dr. Zach E. Murrell Chairperson, Department of Biology

Max C. Poole, Ph.D. Dean, Cratis D. Williams School of Graduate Studies Copyright by Raquel Anne Fagundo 2016 All Rights Reserved

Abstract

THE PHLYOGENETICS AND BIOGEOGRAPHY OF THE FRESHWATER PEARLY MUSSEL GENUS ELLIPTIO (BIVALVIA:UNIONIDAE)

Raquel Anne Fagundo B.S., West Liberty University M.S., Appalachian State University

Chairperson: Dr. Michael Gangloff

The taxonomy of North American freshwater pearly mussels (Unionidae) has been problematic since the earliest species descriptions. Based upon morphology alone, taxonomists have long disputed what constitutes a species and there is still a debate as to how to classify all the potential morphotypes of a given taxon. *Elliptio* is thought to be the most speciose genus of Unionids. Early taxonomists described hundreds of taxa and despite once being synonymized to 13 species, there currently are upwards of 38 recognized species. With the advent of molecular techniques, there have been many attempts to resolve this troubled nomenclature and to better understand the evolutionary relationships of both *Elliptio* and Unionid taxa as a whole. Although many higher order discrepancies have been resolved, *Elliptio* still remains unresolved. A total of 79 new sequences representing 13 species were generated for the mitochondrial gene regions of COI and ND1. Three of these species (including federally listed *Elliptio chipolaensis*) had no previous genetic data available and one (*E. congaraea*) had no previous topotypic material available. In combination with previously available data from both published and unpublished work a total of 311 sequences representing 27 currently recognized species of 25 river basins were obtained for this study. Both Bayesian inference and maximum likelihood analyses indicate polyphyly on a genus and species level. *Elliptio sensu stricto* group has been determined as the type, *Elliptio crassidens* and 18 closely related species. Haplotype reconstructions of currently recognized species of the *Elliptio sensu stricto* failed to uphold the current nomenclature in this group. Haplotypes were shared between numerous species and basins across vast distances. A closer investigation of fish host use in this group is recommended to better understand this trend. Although a conclusion cannot be reached as to how nomenclature can be improved based upon this study, it reveals new avenues of investigation in order to do so. In conjunction with a better life history understanding, the use of more recent molecular techniques, namely RADseq, may help elucidate the evolutionary relationships of this group.

Acknowledgments

This project was partially funded by the North Carolina Wildlife Resource Commission and Appalachian State University. Thank you for making this project a possibility. I would like to thank Dr. Bronwyn Williams and the North Carolina Museum of Natural Sciences for their support during the final months of this project. I would also like to thank ACRL lab members and NCWRC, who helped with field collecting when I was not able.

To my advisor, Dr. Mike Gangloff, and committee members, Dr. Matt Estep and Dr. Lynn Siefferman, this project would not have been possible without your insight. Thank you all for your advice, always being there to toss ideas around, and encouraging me to think both outside the box and very deep inside it! Also, thank you for not giving up on me, despite my non-traditional ways and stubborn, if not insane, goals. To Mike and Lynn, thank you for all your support during my time at Appalachian State. You made it possible to make it through!

Also, a special gratitude to Dr. Zachary Loughman: Thank you for inspiring my career choice and encouraging me to pursue my dreams, obstacles and all, and for being my "clarity" hotline even after I've left the nest. I would like to send out a big 'thank you' to Susan Geda, Alexandria Albers, Daniel Mason, Tommy Franklin, and Michael Perkins. Thank you all for commiserating, philosophical conversations, laughs and good times. I'm glad I got to meet you and get to know you during this time in our lives. You are all going on to wonderful things!

vi

Finally, I would expressly like to thank my family. To my mother and father, Louann and Ramon Fagundo, thank you for coming up to Boone, NC on a moment's notice and sleeping on an air mattress just so I could get some work done. I would not be able to complete this degree without your support. To my husband, Justin Fischer, thank you for putting up with me. That is no easy task. Thank you for supporting me no matter what and always encouraging me to see the light at the end of the tunnel. Lastly, to my daughter, Veronica "Nica" Fagundo Fischer, thank you for being the best curve-ball in this degree! You have made me smile on the worst of days and have given me unspeakable inspiration.

Dedication

I would like to dedicate this work to my husband,

Justin Fischer,

and my daughter,

Veronica "Nica" Fagundo Fischer.

Thank you for all your love, support, patience, smiles, hugs, and inspiration.

Table of Contents

Abstract	iv
Acknowledgments	vi
Dedication	viii
List of Tables	x
List of Figures	xi
Foreword	xii
Introduction	1
Materials and Methods	5
Results	9
Discussion	14
Conclusions	21
References	23
Vita	67

List of Tables

Table 1. Currently recognized <i>Elliptio</i> species 27
Table 2. Sequences obtained from previous Gangloff lab projects 29
Table 3. Sequences obtained from Genbank
Table 4. Sequences obtained for this study40
Table 5. Intra-specific pairwise genetic distances of all three datasets 43
Table 6. Inter-specific pairwise genetic distances of COI and ND1 datasets
Table 7. Inter-specific pairwise genetic distances of concatenated dataset 45
Table 8. Intra-group pairwise genetic distances of all three datasets 46
Table 9. Inter-group pairwise genetic distances of COI dataset
Table 10. Inter-group pairwise genetic distances of ND1 dataset
Table 11. Inter-group pairwise genetic distances of concatenated dataset

List of Figures

Figure 1. Maximum likelihood analysis of COI dataset	.50
Figure 2. Maximum likelihood analysis of ND1 dataset	.51
Figure 3. Maximum likelihood analysis of concatenated dataset	.52
Figure 4. Bayesian inference of COI dataset	.53
Figure 5. Bayesian inference of ND1 dataset	.54
Figure 6. Bayesian inference of COI dataset	.55
Figure 7. TCS species haplotype network of COI dataset	.56
Figure 8. TCS basin haplotype network of COI dataset	.57
Figure 9. TCS geographic region haplotype network of COI dataset	.58
Figure 10. Map of COI dataset haplotypes shared across basins	.59
Figure 11. TCS species haplotype network of ND1 dataset	.60
Figure 12. TCS basin haplotype network of ND1 dataset	.61
Figure 13. TCS geographic region haplotype network of ND1 dataset	.62
Figure 14. Map of ND1 dataset haplotypes shared across basins	.63
Figure 15. TCS species haplotype network of concatenated dataset	.64
Figure 16. TCS basin haplotype network of concatenated dataset	.65
Figure 17. TCS geographic region haplotype network of concatenated dataset	.66

Foreword

This research will be submitted to the peer-reviewed journal, *Journal of Biogeography*. It has been formatted to fit the requirements for that journal.

INTRODUCTION

The taxonomy of the freshwater pearly mussels and the genus *Elliptio* have both been long disputed. Early North American taxonomists described well over 1000 species of unionids and many descriptions were based only a few specimens or relied primarily upon shell morphology in the days before soft parts were commonly vouchered by collectors. Many of these taxa are now regarded as synonyms (Simpson, 1914; Ortmann, 1921). In 1970, Johnson while acknowledging the wide array of morphologies observed in *Elliptio*, only recognized 13 species along the Southern Atlantic Slope (Johnson, 1970). However, Johnson's conservative taxonomy was not well-received by field biologists and, as a result, *Elliptio* is thought to be the most diverse and widespread freshwater pearly mussel genus in North America. As with most freshwater mussel genera, *Elliptio* species richness is greatest (36 to 38 species are currently recognized) in streams draining the Southern Atlantic Slope of North America (Table 1, Turgeon *et al.*, 1998; Williams *et al.*, 2014).

Arnold Ortmann was among the more conservative unionid taxonomists of the early 20th century and was keenly interested in how environmental conditions influenced the morphology of freshwater mussel shells (i.e., ecophenotypic plasticity). Ortmann demonstrated that numerous widely-accepted species of the Pleurobemini tribe were ecophenotypes of more widely-distributed species (Ortmann, 1920). Ortmann hypothesized that a gradual shift in shell morphology occurred along stream continuums. According to 'Ortmann's Rule', freshwater bivalve populations in upstream reaches were generally more elongated and laterally-compressed compared to downstream populations. Ortmann speculated that this was due to

predictable changes in environmental factors within stream networks (Ortmann, 1920). For example, the concentrations of dissolved ions that mollusks use to construct their shells typically increase as one moves from the headwaters to the lower mainstem reaches of large rivers.

Elliptio was first recognized as a subgenus in 1819 by Rafinesque who approximated that there were 12 species (Rafinesque, 1819). However, due to the language barriers and taxonomic competition at the time (see Frierson, 1927), colleagues largely ignored this nomenclature for nearly a century until Ortmann elevated *Elliptio* to the genus level and included 8 recognized species (Ortmann, 1912).

Early genetic studies using allozymes were the first to show that lanceolate Elliptios were distinct from the *E. complanata* group and *Elliptio* spp. that are conchologically more similar (more ovate) to the type species, *E. crassidens* (Davis *et al.*, 1981). Attempts to further resolve the lanceolate taxonomy were never published (see Davis, 1984). One clear implication of these early molecular studies was the realization that many *Elliptio* species are very closely related, despite their seemingly divergent morphologies. Davis *et al.* (1981) and Davis (1984) also hypothesized that *Elliptio* evolved relatively recently and speculated that the genus included 16-18 species.

Subsequent to Davis (1984), numerous synonyms were recognized based largely on morphological data (Williams *et al.*, 1993; Turgeon *et al.*, 1998). Although targeted sequencing of mitochondrial and nuclear genes have been widely used in subsequent studies of freshwater mussel evolution (Lydeard *et al.*, 1996, 2000; Roe &

Lydeard, 1998; King *et al.*, 1999; Bogan & Hoeh, 2000; Buhay *et al.*, 2002; Serb *et al.*, 2003), most of these studies included only a single *Elliptio* taxon, *E. dilatata*. Campbell *et al.* (2005) was the first genetic study since Davis (1984) to include more than one *Elliptio* taxon in phylogenetic analyses. These analyses revealed that *Elliptio* is likely a polyphyletic taxon and called attention to the need to revisit *Elliptio* phylogenetic relationships yet again (Campbell *et al.*, 2005).

Studies that have sequenced mitochondrial genes from large numbers of individuals from across multiple taxa have suggest that many *Elliptio* species are indeed closely related and call to question the currently accepted taxonomy. Sommer (2007) tested the hypothesis that E. waccamawensis is a distinct taxon endemic to Lake Waccamaw and the Waccamaw River in southeastern North Carolina (Lea, 1863) and compared sequences from that system to congeners from the Pee Dee drainage. Her results found that E. waccamawensis shared haplotypes with a range of *Elliptio* species from adjacent drainages including *E. congaraea* and that most taxa examined did not form well-supported monophyletic groups (Sommer, 2007). A study by Campbell and Lydeard (2012) included data from a relatively small number of individuals but across a somewhat broader taxonomic scale (9 species) and showed that *Elliptio* was likely polyphyletic. Because *E. dilatata* appeared distantly related to *E. crassidens* and other *Elliptio* taxa, Campbell and Lydeard (2012) assigned *E.* dilatata to the monotypic subgenus, Eurynia. Most recently, research by Perkins (2014) revealed that two additional species do not belong in the genus *Elliptio*. The

Tar River spinymussel *E. steinstansana* and the Altamaha spinymussel *E. spinosa* belong in two distinct monophyletic clades distinct from *Elliptio* sensu stricto (Perkins, 2014).

Based on these results, species currently classified as *Elliptio* comprise at least five paraphyletic clades within the unionid tribe Pleurobemini (*Elliptio sensu stricto-E. crassidens, E. complanata*, Lanceolate *Elliptio* taxa, two distinct groups of spiny mussels and *Eurynaia dilatata*. However, it is likely that other important divisions occur within *Elliptio* that need to be elucidated. Additionally, there is limited support for basal nodes linking these genera to one another and to other closely related taxa (*Pleurobema, Fusconaia*) in all published phylogenies (e.g. Campbell *et al.*, 2005; Campbell & Lydeard, 2012; Perkins, 2014).

Here, I examine genetic differences within large sample sizes of *Elliptio* taxa from several rivers across the southern Atlantic Slope to get a better idea of molecular diversity within and among taxa in this widespread group of freshwater mussels. This study represents the most comprehensive examination of *Elliptio* to date in terms of taxonomic inclusion and geographic breadth. Furthermore, this study represents the first to test currently recognized species boundaries within *Elliptio sensu stricto* using multiple mitochondrial DNA markers in an effort to resolve the taxonomic ambiguities found within the group. A more parsimonious understanding of the relationships within and among putative species groups will also improve conservation and management of rare species and allow agencies to more effectively direct precious resources.

MATERIALS AND METHODS

Collection and sequences

Taxonomy follows Turgeon *et al.* (1998), Williams *et al.* (2008) and Williams *et al.* (2014) but I also recognized several species recognized by state agencies (e.g., *E. buckleyi, E. mediocris,* and *E. nasutilus*) although several are synonymized by other taxonomic authorities (See Turgeon *et al.,* 1998; Williams *et al.,* 2014).

For sensitive taxa (e.g., federally-listed *E. chipolaensis*), tissue cells were collected via non-lethal buccal swabs (Isohelix SK-1 swabs, Boca Scientific Inc., Boca Raton, FL). Non-listed specimens were collected by hand and vouchered soon afterwards. Adductor tissue was clipped and placed in 95% EtOH and the animals were immediately vouchered in the Appalachian State University Zoological Collections in Boone, North Carolina (Table 1). MOBIO UltraClean Tissue & Cells DNA Isolation Kit (MOBIO Laboratories, Carlsbad, CA) kits were used to isolate DNA following the recommended protocol with the optional Proteinase K step. DNA extraction for pre-2014 collections followed the same protocol with the exception of a modified Proteinase K step: 20 ul of Proteinase K was added to each museum tissue sample, vortexed on max speed for 15 minutes, and then incubated at 60°C for 1 hour.

DNA concentration and purity was evaluated using a NanoDrop 2000 nanospectrophotometer (Thermo Scientific, Waltham, MA). Polymerase chain reactions (PCR) used 10 μ l of GoTaq® Green Master Mix 2X (Promega Corporation, Madison, WI), 50 ng of template DNA, 0.04 μ L (10 μ M) of both upstream and downstream primers and nuclease-free water for a final volume of 20 μ L per reaction. Folmer universal primers (forward 5'- GGTCAACAAATCATAAAGATATTGG -3'; reverse 5' – TAAACTTCAGGGTGACCAAAAAATCA-3') were used to amplify a fragment of the mitochondrial cytochrome oxidase subunit I (COI) gene. Primers adapted from Serb et al. 2003 (forward 5' - TGGCAGAAAAGTGCATCAGATTAAAC -3'; reverse 5' - GATTTTCAAGCTATTGCTAT -3') were used to amplify a fragment of the mitochondrial NADH subunit I (ND1) gene. Thermocycler conditions were as follows for COI amplification: 95°C for 2:00, followed by 34 cycles of 95°C for 0:40, 50°C for 1:00, 72°C for 1:30, followed by 72°C for 7:00 and then held at $10^{\circ}C \infty$. For amplification of ND1, PCR conditions were as follows: 95°C for 2:00, followed by 34 cycles of 95°C for 0:40, 48°C for 1:00, 72°C for 1:30, followed by 72°C for 7:00 and held at 10°C ∞ . All PCR reactions were performed on an Eppendorf Mastercycler. PCR product was visually inspected on 1% agarose gel stained with ethidium bromide and successful reactions were sent off site for sequencing by Retrogen, Inc. (San Diego, CA).

Taxonomic coverage

One hundred and thirty-seven sequences were also used from previous unpublished Gangloff Lab projects that were obtained prior to the start of my thesis work. (Table 2). Spiny mussel (e.g., *E. spinosa* and *E. steinstansana*) sequences were obtained from Perkins (2014). Ninety-five GenBank *Elliptio* species sequences were used to supplement and add robustness to the dataset (Table 3). *Elliptio* sequences were only used if geographic information was available. One hundred GenBank sequences from more distantly-related taxa from tribe Pleurobemini were used as outgroups and all trees were rooted with *Strophitus subvexus* (Table 3). Outgroup sequences were only used if a given individual, with a unique identifier, had both COI and ND1 gene fragments available.

Sequence analysis

Sequences were compiled, aligned, edited and concatenated in Geneious R7 (Biomatters Ltd., Aukland, New Zealand). Sequences were aligned using the Muscle algorithm and visually inspected for stop codons, numts, and male mitotypes (Curole & Kocher, 2002; Hoeh *et al.*, 2002; Buhay, 2009). COI sequences were trimmed to 438 base pairs (bps) and ND1 sequences were trimmed to 567 bps and concatenated for a total concatenated alignment length of 1005 bps. Genetic distances were estimated using maximum composite likelihood using MEGA version 6 (Tamura *et al.*, 2013). The number of haplotypes and conserved regions were determined using DNAsP (Librado & Rozas, 2009).

Phylogenetic analysis

jModelTest version 2 was utilized to calculate the best-fit nucleotide substitution model within a 95% confidence interval, HKY+I+G (Darriba *et al.*, 2012). To observe the implied evolutionary relationships of my dataset, a maximum likelihood tree was reconstructed using 1000 iterations in MEGA version 6 (Tamura *et al.*, 2013). To test the hypothesis that *Elliptio* forms a monophyletic clade, a Bayesian inference analysis with Metropolis-coupled Markov Chain Monte Carlo (MCMC) was implemented using MrBayes 3.1.2 (Ronquist & Huelsenbeck, 2003). 1,000,000 iterations were performed with sampling every 1000 generations. The first 100,000 iterations were discarded as burn-in and the remaining were combined to a 50% majority consensus tree.

Elliptio sensu stricto phylogeography

Using pairwise distances and phylogenetic reconstructions the *Elliptio sensu stricto* group was determined. I define the *Elliptio sensu stricto* group as the taxa that are closely related to *Elliptio crassidens*, the type species of the genus *Elliptio*. Taxa that were separated by a pairwise distance substantially greater than an intra-specific level and did not group with the *Elliptio sensu stricto* were considered separate. The intra-specific and inter-specific distances greatly overlapped, taxa were grouped according to previous work (lanceolate *Elliptios, E. (Eurynia) dilatata, E. spinosa, and E. steinstansana*), in order to better determine members of *Elliptio sensu stricto*. Taxa that were not part of the *Elliptio sensu stricto* group were excluded from this part of the analysis.

Haplotype networks were utilized to further examine the genetic relationships of the *Elliptio sensu stricto* group (Hart & Sunday, 2007). TCS haplotype networks were constructed using PopART (Clement *et al.*, 2002; Leigh & Bryant, 2015). Haplotypes were examined by defining sequences based upon their current nomenclature, river basin, and geographic region (defined as Northern, Mid-Atlantic, Southern, Gulf, Mississippi and Suwannee). Haplotypes that were shared between basins were further examined by plotting the coordinates of the individuals that shared the haplotypes.

RESULTS

A total of 79 new sequences were generated for 65 individuals and 13 species. Fiftyseven sequences of 12 species were generated for ND1, and 22 sequences of 7 species were generated for COI, with a total of 15 sequences for 5 species available for concatenation (Table 4). This study represents the first presented genetic data for three species (*E. ahenea*, *E. chipolaensis*, and *E. roanokensis*), ND1 data for one species (*E. mediocris*), and topotypic material for one species (*E. congaraea*).

The COI dataset contained 122 sequences of 21 currently recognized *Elliptio* taxa; the ND1 dataset contained 184 sequences of 26 taxa; and the concatenated dataset contained 106 sequences of 18 taxa. Among the three datasets, COI was the most conserved (108 informative sites, C=0.753), and ND1 the least conserved (206 informative sites, C=0.637). The concatenated dataset, although containing the highest number of taxonomically-informative sites (280) was more conservative than ND1 (C=0.721).

COI intra-specific pairwise distances ranged from 0 (*E. producta*) and 0.016 (*E. congaraea*) and inter-specific pairwise distances ranged from 0.004 (*E. pullata:E. waccamawensis, E. pullata:E. mcmichaeli, E. waccamawensis:E. mcmichaeli*) and 0.084 (*E. nasutilus:E. steinstansana*) (Tables 5 and 6). ND1 intra-specific pairwise distances ranged from 0.0005 (*E. steinstansana*) and 0.06 (*E. fisheriana*) and inter-

specific pairwise distances ranged from 0.004 (*E. hopetonensis:E. roanokensis*) and 0.143 (*E. spinosa:E. steinstansana*) (Table 5 and 6). Intra-specific pairwise distances for the concatenated dataset ranged from 0.001 (*E. steinstansana*) and 0.017 (*E. congaraea*) and inter-specific pairwise distances ranged from 0.008 (*E. crassidens:E. crassidens:E. pullata*) and 0.122 (*E. spinosa:E. steinstansana*) (Tables 5 and 7).

When treating the taxa as groups following previous work (lanceolate Elliptios, *E. (Eurynia) dilatata, E. spinosa, and E. steinstansana*), the COI marker intra-group distances ranged from 0.001 (*E. spinosa*) and 0.026 (lanceolate Elliptios) and inter-group pairwise distances ranged from 0.044 (*Elliptio sensu stricto*:lanceolate Elliptios) and 0.082 (*E. spinosa:E. steinstansana*) (Tables 8 and 9). ND1 intra-group pairwise distances ranged from 0.0005 (*E. steinstansana*) and 0.058 (lanceolate Elliptios) and inter-group pairwise distances ranged from 0.076 (*Elliptio sensu stricto*:lanceolate Elliptios) and 0.143 (*E. spinosa:E. steinstansana*) (Tables 8 and 10). Concatenated dataset intra-group pairwise distances ranged from 0.001 (*E. steinstansana*) and 0.064 (lanceolate Elliptios) and inter-group pairwise distances ranged from 0.059 (*Elliptio sensu stricto*:lanceolate Elliptios) and 0.122 (*E. spinosa:E. steinstansana*) (Tables 8 and 11).

All maximum likelihood and Bayesian inference phylogenies had strong support for a polyphyletic *Elliptio* (Figs. 1-6). *Elliptio (Eurynaia) dilatata* consistently grouped outside the *Elliptio sensu strictos*. *Elliptio steinstansana* and *E. spinosa* each formed their distinct monophyletic clades, respectively. The lanceolate Elliptios (*E. angustata, E. fisheriana, E. nasutilus, E. product, E. shepardiana*)

consistently claded outside the *Elliptio sensu stricto* but did not always comprise a monophyletic group. Additionally, in the ND1 trees indicate that *E. ahene*a is sister to *E. jayensis* and *E. occulta*, rather than the predicted lanceolate group and *E. chipolaensis* does not strongly group with the *Elliptio sensu strictos* (Figs. 2 and 5). Aside from the aforementioned outliers, the remaining species are either polyphyletic, lack nodal support, or a combination of the two (Figs. 1-6).

Following the discovery of the placement of *E. chipolaensis*, additional analysis was performed regarding pairwise distances to better determine its inclusion to the *Elliptio sensu stricto* group for downstream analysis. When treated as its own separate group, the pairwise distances of *E. chipolaensis* to other respective groups ranged from 0.102 - 0.139 (Table 10). Due to the high amount of divergence from the *Elliptio sensu stricto* group, it was not included in the haplotype analysis.

Haplotype analyses of the COI *Elliptio sensu stricto* dataset included 85 individuals representing 14 species, 14 river basins, and all geographic regions (Figs. 7-9). There were 54 haplotypes represented, 9 of which were shared among multiple individuals. Of these 9 shared haplotypes, 5 were shared by the same species occurring in the same basin, two were shared by different species occurring in the same basin, and two were shared by different species occurring in different basins (Figs. 7-10). The 2 haplotypes shared by the different species in the same basin were both comprised of *E. jayensis* and *E. occulta* in the Suwannee Basin, Florida. One of the haplotypes shared by different species in different basins was comprised of one *E. congaraea* from the Neuse Basin, North Carolina and *E. complanata* from the Apalachicola basin, Florida. The other was comprised of one *E. pullata* from the Mobile basin, Alabama, one *E. arctata* from the Choctawhatchee Basin, Alabama, and one *E. mcmichaeli* and two *E. pullata* from the Apalachicola Drainage, Florida.

Haplotype analyses of the ND1 *Elliptio sensu stricto* dataset included 146 individuals representing 16 species, 25 river basins, and all geographic regions (Figs. 11-13). There were 100 haplotypes represented, 21 of which were shared among multiple individuals. Of these 21 shared haplotypes, 6 were shared by the same species occurring in the same basin, 4 were shared by the same species occurring in different basins, 4 were shared by different species occurring in the same basin and 7 were shared by different species occurring in different basins (Figs. 11-14). Of the 6 haplotypes shared by the same basin, two were E. occulta of the Suwannee basin, Florida; one was E. roanokensis of the Pee Dee Basin, North Carolina; one was E. *pullata* of the Apalachicola basin, Florida; one was *E. complanata* of the Catawba Basin, North Carolina; one was of *E. icterina* of the Pee Dee. Of the haplotypes shared by the same species in different basins one was shared by *E. complanata* of the Penobscot Basin, Maine and the York Basin, Virginia; one was shared by E. *complanata* of the Cape Fear and Pee Dee basins; one was shared by *E. complanata* of the Pee Dee Basin and of the York Basin; and one was shared by E. complanata of the St. Croix Basin, Maine and of the James Basin, Virginia. Of the haplotypes shared by multiple species occurring in the same basin 3 were shared by *E. jayensis* and *E.* occulta in the Suwannee Basin and one was shared by E. waccawensis and E. icterina in the Pee Dee Basin. Of the 7 haplotypes shared by multiple individuals and basins, one was shared by E. pullata and E. icterina from the Apalachicola Basin, Florida and *E. pullata* from the Ecofina Basin, Florida; one was shared by *E. pullata* of the

Lumber basin, North Carolina and *E. complanata* from the Penobscot Basin, Maine; one was shared by *E. pullata* of the Lumber Basin, North Carolina and *E. complanata* from the James Basin, *E. complanata* from the York Basin and one *E. complanata* from the Penobscot Basin; one was shared by *E. complanata* of the Apalachicola Basin, *E. icterina* of the Neuse Basin, *E. complanata* of the Tar Basin and *E. complanata* of the James Basin; one was shared by *E. icterina* of the Cape Fear Basin and *E. complanata* of the Tar Basin; one was shared by *E. congaraea* of the Pee Dee Basin and *E. complanata* form the Cape Fear and Roanoke Basins; and one was shared by *E. complanata* of the Neuse Basin and *E. complanata* from the York Basin.

Haplotype analyses of concatenated dataset included 74 individuals representing 11 species from 13 river basins and all geographic regions (Figs. 15-17). There were 58 haplotypes represented, 7 of which were shared among multiple individuals. Of these 7 shared haplotypes, 5 were shared by the same species occurring in the same basins, respectively, and two were shared by different individuals from the same basin (Figs. 15-17). Of the 5 haplotypes shared by the same species in the same basin, 3 haplotypes were shared by *E. occulta* in the Suwannee Basin and two haplotypes were shared by *E. complanata* in the Catawba Basin. The two haplotypes shared by different species in the same basin were *E. jayensis* and *E. occulta* in the Suwannee Basin.

DISCUSSION

Overall, these data support the previous findings of polyphyly of *Elliptio*. Many taxa currently recognized under the genus *Elliptio* represent separate lineages apart from *Elliptio sensu stricto*. Moreover, the current nomenclature of *Elliptio sensu stricto* is unsupported. There is lack of genetic structure and mitochondrial haplotype sharing is extensive across a large geographic range and between many putative species. It is evident from these data that the current taxonomy of this group needs to be revised to more effectively manage these taxa.

New species and localities

This study is the first to examine genetic data from the federally-threatened species *E*. *chipolaensis* (USFWS 1998) as well as data from several candidate or state listed species (e.g., *E. ahenea*, *E. roanokensis;* Bogan, 2002; USFWS 2011). The relationship of *E. chipolaensis* to the rest of the currently recognized *Elliptio* taxa is of particular interest. The placement of *E. chipolaensis* within *Elliptio* has not previously been seen as a taxonomic issue and there are surprisingly no taxonomic synomyms (Williams *et al.*, 2008; Williams *et al.*, 2014). My data suggest that it is not closely related to any of the other five *Elliptio* lineages.

Although thought to be considered part of the lanceolate *Elliptio* clade based upon morphology (Williams *et al.*, 2014), my data suggest that *E. ahenea* is more closely related to the *Elliptio sensu stricto* group. In fact, *E. ahenea* appears to be closely related to *E. jayensis* of the Suwannee basin, a sympatric species which has numerous synonyms (Johnson, 1972; Williams *et al.*, 2014). *Elliptio ahenea* was historically recognized by Frierson (1927), synonymized with *E. jayensis* by Johnson (1972) but recognized by Williams *et al.* (1993) and subsequent authors (Turgeon *et al.*, 1998, Williams *et al.* 2014). Although I had only one specimen of *E. ahenea* in my alignment and did not have material from the type locality (Black Creek, St. John's River Basin, Florida), my results support the conservative taxonomy of Johnson (1972).

Elliptio roanokensis grouped closely with syntopic *E. complanata*, *E. icterina* and *E. hopetonensis* from the Altamaha river basin (Figs. 11-13). Although *E. roanokensis* does not share a haplotype with any of the individuals, it does not display the traditional genetic variation used to barcode species (pairwise distance ranges from 0.02 and 0.07). However, within the *Elliptio sensu stricto* group, this does not necessarily mean that *E. roanokensis* is not a valid taxon. To draw any substantial conclusions on the taxonomic standing of this taxon, both topotypic material and additional markers are needed.

The topotypic material for *E. congaraea* revealed interesting relationships between the newly presented sequences and those used in previous studies. Topotypic specimens did not cluster or clade closely with putative *E. congaraea* from other localities (Figs. 7, 11 and 15). When revisiting the pairwise distances between the type locality specimens and specimens from other localities, genetic distances approach that of intra-specific rather than inter-specific (ND1 dataset range (0.018 – 0.022); COI dataset range (0.006 - 0.02); concatenated dataset range (0.016 – 0.021)). Future studies should take this into consideration when selecting material to include in the analysis as certain localities may result in varying results.

Elliptio Phylogenetics

Previous studies have widely reported polyphyly in the genus *Elliptio* (Campbell et al., 2005; Sommer, 2007; Campbell & Lydeard, 2012; Abernethy et al., 2013; Perkins, 2014). Results of my study were largely congruent with published work but show that the taxonomic issues within *Elliptio* have deep, if largely unresolved, roots. My study clearly shows that *Elliptio dilatata* and both spinymussel lineages identified by Perkins (2014) clade separately from the *Elliptio sensu stricto* group and both lineages displayed greater inter-specific distances compared to members of *Elliptio* sensu stricto, similar to previous findings (Campbell et al., 2005; Campbell & Lydeard, 2012; Perkins, 2014). Members of the lanceolate group represent a clade, albeit possibly not monophyletic, separate from the *Elliptio sensu stricto* group, similar to previous work and in support of earlier hypotheses (Davis *et al.*, 1981; Davis, 1984; Sommer, 2007). Moreover, E. chipolaensis may belong to a unique lineage as it did not clade with any sampled *Elliptio* or Pleurobemini groups. However, more than one specimen and more markers will be needed to confirm this finding.

Elliptio sensu stricto Phylogeography

Unlike previous studies, my results clearly show that many currently-recognized *Elliptio* species do not comprise monophyletic groups. There were numerous polytomys within *Elliptio sensu stricto*. Haplotype networks utilizing current nomenclature fail to find any structure with regards to any currently recognized

species (Figs. 7, 11 and 15). Interestingly, halplotype networks show that geographic range better explained much of the clustering of haplotypes and putative taxa. The best structure is visible when haplotypes were sampled from across a broad geographic range demonstrating that mtDNA haplotypes are shared across both morphologically dissimilar species (*E. complanata* and *E. icterina*) as well as across basins (Figs. 9, 12 and 17).

One of the most interesting findings is that mtDNA haplotypes are shared across broad geographic regions. Haplotype sharing appears to be greatest further downstream and presumably closer to the sites of former linkages between adjoining coastal stream drainages (Figs. 10, 14). It is possible that reliance on catadromous or anadromous host fishes may explain this genetic structure. Although the host fish for most *Elliptio* species are unknown, they are generally thought of as generalists (Williams *et al.*, 2014). Further study of potential catadromous and anadromous fish hosts may reveal suitable hosts that are more likely to move laterally between coastal estuaries and rivers. Additionally, a more geographically robust dataset covering the area between Virginia and Maine may reveal this haplotype along the Northeastern Atlantic Slope between the locations represented in this study.

Congruence of datasets

Although the three datasets differed in gene conservation, sample size, and robustness, each portrayed similar relationships in the resulting phylogenetic trees. Additionally, the three datasets yielded similar results with respect to the pairwise distance groupings. The most distinguishable differences in the dataset were seen in the haplotype analyses. Although the COI dataset contained more species and individuals, it consistently underestimated haplotype diversity compared to the concatenated and ND1 datasets. The concatenated dataset contained the fewest shared haplotypes. However, this is likely due to the sampling limitations of this dataset (Table 15). The ND1 dataset displayed the greatest haplotype diversity. This may either be due to a greater number of individuals and species available, or that it is the least conserved marker used in this study. It may also be that ND1 is a more quickly evolving gene. Given the apparently recent radiation of *Elliptio* and the repeated result of polyphyly in this group (Campbell *et al.*, 2005; Sommer, 2007; Campbell & Lydeard, 2012; Perkins, 2014), ND1 may represent a much less conservative marker (especially compared to the more widely used bar-coding gene COI) that may be of more use in ascertaining biogeographic trends in these taxa.

Taxonomic implications

This study confirms earlier hypotheses that the lanceolate *Elliptios* are distinct from *Elliptio sensu strictos* (Davis *et al.*, 1981; Davis, 1984). As well as being genetically distinct from the *Elliptio sensu stricto* group, members of this group are morphologically distinct as well. Members of the *Elliptio sensu stricto* group exhibit a more ovate shell morphology whereas lanceolate taxa are distinguished by their long slender shells. Lanceolate taxa frequently co-occur with *Elliptio sensu stricto* taxa and show no signs of hybridization. It is believed that this group is on its own

evolutionary trajectory and may warrant recognition as a distinct genus. However, more rigorous study should be conducted as this group also appears to be paraphyletic (Figs 1-6).

This study supports the findings of Campbell and Lydeard (2012). With the addition of new *Elliptio* taxa, *E. (Eurynia) dilatata* remains separate from the *Elliptio sensu stricto* lineage. This makes sense, considering this is the only *Elliptio* species that is restricted to interior river drainages. There is substantial evidence of range restrictions and molecular evidence that this species is on its own evolutionary trajectory. Therefore, in consideration of future taxonomic revisions of *Elliptio* and other Pleurobemini taxa, it is recommended that this species be recognized as the sole member of the genus *Eurynia*, rather than of the subgenus *Eurynia*.

Analysis of datasets with a large number of taxa from *Elliptio sensu stricto* and lanceolate *Elliptio* groups continued to support Perkins (2014) hypothesis that both *E. spinosa* and *E. steinstansana* comprise unique lineages that are distinct from the *Elliptio sensu stricto* lineage. Perkins (2014) recommended that the genus *Canthyria* be resurrected for *E. spinosa* and that a new genus (*Parvaspina*) be created comprising *E. steinstansana* and *Pleurobema collina*.

Based upon one marker of one individual, it appears that *E. chipolaensis* is distinct from the *Elliptio sensu stricto* group. Although more data are needed to further analyze this relationship, it would not be surprising if this taxon is, indeed, separate from the *Elliptio sensu stricto* group. Most species of *Elliptio* are wide-ranging, occur in multiple river systems and are common and generally abundant. *Elliptio chipolaensis* is a federally-threatened species endemic to the Apalachicola-

Chipola-Flint Basin. Moreover, unlike most (save for *E. crassidens*) members of *Elliptio sensu stricto*, *E. chipolaensis* releases juveniles via conglutinates (Preister, 2008). Other *Elliptio* taxa that do not clade with *Elliptio sensu stricto* (e.g., *E. (Eurynia) dilatata*. *E. spinosa*, and *E. steinstansana*) also package glochidia in conglutinates and provide further support for the conclusion that *E. chipolaensis* may not belong in *Elliptio* (Perkins, 2014; Williams *et al.*, 2014).

At this stage of understanding the genetic relationships among the members of *Elliptio sensu stricto*, it is inadvisable to recommend taxonomic revisions or recognize additional species. Although *Elliptio* likely contains many synonyms, further analysis will be needed to identify names that have taxonomic priority. This study demonstrates that morphological differences are not particularly useful in identifying these animals. Geographic region and river basin provided the only apparent levels of organization observed for all of the mtDNA datasets. It is therefore recommended that biologists and managers consider implementing conservation efforts that are appropriate for sub-populations but that efforts to manage these taxa across their biological ranges are likely to lead to frustration.

To better decipher the relationships within taxa in the *Elliptio sensu stricto* group, further studies should include alternative means of evaluating genetic relationships. For example, RADseq has successfully been used to resolve relationships between post-glacial taxa (Emerson *et al.*, 2010) and may be of use with this group. Suggested revisions will not be made here, however, it is strongly recommended to cease species descriptions based upon morphological characteristics.

CONCLUSIONS

Freshwater mussels within the nominal genus *Elliptio* exhibit pronounced polyphyly at both the genus and species level. Results of this study are in line with previous research that identified several unique lineages within *Elliptio* (Campbell & Lydeard, 2012; Perkins, 2014). Additionally, by including multiple previously un-sequenced taxa in my analyses, I provided more support for the hypothesis that *Eurynia dilatata*, both spiny mussel clades and the lanceolate clade are all distinct from the *Elliptio sensu stricto* group (Davis *et al.*, 1981). However, further analyses will likely be needed to better understand relationships within the lanceolate *Elliptio* and *Elliptio sensu stricto* groups. Finally, I found that *E. chipolaensis* may comprise a unique lineage that does not appear to be closely related to other *Elliptio* lineages.

Moreover, the current taxonomy of much of the *Elliptio sensu stricto* group was not well-supported by my molecular data. There was a lack of structure at the population level and evidence for widespread hybridization among species. The only pronounced structuring in the data was observed across broad geographic (i.e., drainage or regional) scales. I hypothesize that a more complete understanding of host fish use within this group may help explain this phenomenon. However, the patterns observed may also reflect past biogeographic processes including orographic uplift, changes in sea level and drainage capture events (April *et al.*, 2013).

Future work should focus on implementing new molecular approaches that may better interpret the genetic relationships and possibly lead to a finer scale resolution in which a better nomenclature can be determined. While this study does not bring resolution to this issue, it does identify a means of broad organization

according to geographic region rather than taxonomy. It is on this basis that it is recommended to consider conservation measures on a basin or region wide basis, rather than species level.

REFERENCES

- Abernethy, E., McCombs, E., Siefferman, L.M., & Gangloff, M.M. (2013) Short-term effects of small dam removal on a freshwater mussel assemblage. *Walkerana*, **16**, 21–28.
- April, J., Hanner, R.H., Dion-Cote, A.M., & Bernatchez, L. (2013) Glacial cycles as an allopatric speciation pump in north-eastern American freshwater fishes. *Molecular Ecology*, 22, 409–422.
- Bogan, A.E. (2002) *Workbook and Key to the freshwater bivalves of North Carolina*. North Carolina Mussel Conservation Partnership, Raleigh, NC.
- Bogan, A. E. & Hoeh, W.R. (2000) On becoming cemented: evolutionary relationships among the genera in the freshwater bivalve family Etheriidae (Bivalvia: Unionoida). *Geological Society, London, Special Publications*, **177**, 159–168.
- Buhay, J.E. (2009) "COI-like" Sequences Are Becoming Problematic in Molecular Systematic and DNA Barcoding Studies. *Journal of Crustacean Biology*, 29, 96–110.
- Buhay, J.E., Serb, J.M., Dean, C.R., Parham, Q., & Lydeard, C. (2002) Conservation Genetics of Two Endangered Unionid Bivalve Species, Epioblasma Florentina Walkeri and E. Capsaeformis (Unionidae : Lampsilini). *Journal of Molluscan Studies*, 68, 385– 391.
- Campbell, D.C. & Lydeard, C. (2012) The Genera of Pleurobemini (Bivalvia: Unionidae: Ambleminae). *American Malacological Bulletin*, **30**, 19–38.
- Campbell, D.C., Serb, J.M., Buhay, J.E., Roe, K.J., Minton, R.L., & Lydeard, C. (2005) Phylogeny of North American amblemines (Bivalvia, Unionoida): Prodigious polyphyly proves pervasive across genera. *Invertebrate Biology*, **124**, 131–164.
- Clement, M., Snell, Q., Walke, P., Posada, D., & Crandall, K. (2002) TCS: estimating gene genealogies. *Proceedings 16th International Parallel and Distributed Processing Symposium*, .
- Curole, J.P. & Kocher, T.D. (2002) Ancient sex-specific extension of the cytochrome c oxidase II gene in bivalves and the fidelity of doubly-uniparental inheritance. *Molecular biology and evolution*, **19**, 1323–1328.
- Darriba, D., Taboada, G.L., Doallo, R., & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. *Nature Methods*, **9**, 772–772.
- Davis, G.M. (1984) Genetic relationships among some North American Unionidae (Bivalvia): sibling species, convergence, and cladistic relationships. *Malacologia*, 25, 629–648.
- Davis, G.M., Heard, W.H., Fuller, S.L.H., & Hesterman, C. (1981) Molecular genetics and speciation in Elliptio and its relationships to other taxa of North American Unionidae (Bivalvia). *Biological Journal of the Linnean Society*, **15**, 131–150.

- Department of the Interior U.S. Fish and Wildlife Service. (1998). Endangered and threatened wildlife and plants; Determination of endangered status for five freshwater mussels and threatened status for two freshwater mussels from the Eastern Gulf Slope Drainages of Alabama, Florida, and Georgia; Final Rule. *Federal Register*, **63**, 12664-12687.
- Department of the Interior U.S. Fish and Wildlife Service (2011). Endangered and threatened wildlife and plants;Partial 90 day finding on a petition to list 404 species in the Southeastern United States as endangered or threatened with critical habitat; Proposed Rule. *Federal Register*, **76**, 59836-59862.
- Emerson, K.J., Merz, C.R., Catchen, J.M., Hohenlohe, P. A., Cresko, W. A., Bradshaw, W.E., & Holzapfel, C.M. (2010) Resolving postglacial phylogeography using highthroughput sequencing. *Proceedings of the National Academy of Sciences of the United States of America*, **107**, 16196–16200.
- Frierson, L.S. (1927) A Classified and Annotated Check List of the North American Naiades. Baylor University Press, Waco, TX.
- Hart, M.W. & Sunday, J. (2007) Things fall apart: biological species form unconnected parsimony networks. *Biology letters*, **3**, 509–512.
- Hoeh, W.R., Stewart, D.T., & Guttman, S.I. (2002) High fidelity of mitochondrial genome transmission under the doubly uniparental mode of inheritance in freshwater mussels (Bivalvia:Unionoidea) Author (s): W.R. Hoeh, D.T. Stewart and S.I. Guttman Published by : *Society for the Study of Ev.* 56, 2252–2261.
- Johnson, R.I. (1970) The systematics and zoogeography of the unionidae (Mollusca: Bivalvia) of the Southern Atlantic Slope Region. *Bulletin of the Museum of Comparative Zoology*, 140, 263–450.
- Johnson, R.I. (1972) The Unionidae (Mollusca: Bivalvia) of peninsular Florida. *Bulletin of the Florida State Museum, Biological Sciences*, **16**, 181–249.
- King, T.L., Eackles, M.S., Gjetvaj, B., & Hoeh, W.R. (1999) Intraspecific phylogeography of Lasmigona subviridis (Bivalvia: Unionidae): conservation implications of range discontinuity. *Molecular ecology*, 8, S65–78.
- Lea, I. (1863) Descriptions of twenty-four new species of Unionidae of the United States. *Proceedings of the Academy of Natural Sciences of Philadelphia*, **15**, 191–194.
- Leigh, J.W. & Bryant, D. (2015) Popart: Full-Feature Software for Haplotype Network Construction. *Methods in Ecology and Evolution*, **6**, 1110–1116.
- Librado, P. & Rozas, J. (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. *Bioinformatics*, **25**, 1451–1452.
- Lydeard, C., Minton, R.L., & Williams, J.D. (2000) Prodigious polyphyly in imperilled freshwater pearly-mussels (Bivalvia: Unionidae): a phylogenetic test of species and generic designations. *The Evolutionary Biology of the Bivalvia* (ed. by E.M. Harper,
J.D. Taylor, and J.A. Crame), pp. 145–158. The Geological Society, London.

- Lydeard, C., Mulvey, M., & Davis, G.M. (1996) Molecular systematics and evolution of reproductive traits of North American freshwater unionacean mussels (Mollusca: Bivalvia) as inferred from 16S rRNA gene sequences. *Philosophical Transactions of the Royal Society of London B Biological Sciences*, **351**, 1593–1603.
- Ortmann, A.E. (1912) Notes upon the families and genera of the najades. *Annals of the Carnegie Museum.*, **8**, 222–365.
- Ortmann, A.E. (1920) Correlation of Shape and Station in Fresh-Water Mussels (Naiades). *Proceedings of the American Philosophical Society*, **59**, 268–312.
- Ortmann, A.E. (1921) Some Central American species of naides, belonging or allied to the genus Elliptio. *The Nautilus*, **35**, 24–27.
- Perkins, M.A. (2014) Population genetics of the critically endangered spinymussels (Unionidae: Elliptio and Pleurobema) in Eastern North America. Appalachian State University,
- Preister, L. (2008) Life History Observations and Determination of Potential Host Fish Species for Chipola Slabshell, Elliptio chipolaensis.
- Rafinesque, C.S. (1819) Prodrome de 70 nouveaux genres d'animaux découverts dans l'intérieur des Etats-Unis d'Amérique, durant l'année 1818. *Journal de Physique, de Chimie, d'Histoire Naturelle et des Arts.*, 417–429.
- Roe, K.J. & Lydeard, C. (1998) Molecular systematics of the freshwater mussel genus Potamilus (Bivalvia, Unionidae). *Malacologia*, **B39**, .
- Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics*, **19**, 1572–1574.
- Serb, J.M., Buhay, J.E., & Lydeard, C. (2003) Molecular systematics of the North American freshwater bivalve genus Quadrula (Unionidae: Ambleminae) based on mitochondrial ND1 sequences. *Molecular Phylogenetics and Evolution*, 28, 1–11.
- Simpson, C.T. (1914) A descriptive catalogue of the naiades or pearly fresh-water mussels Parts I-III. Bryant Walker, Detroit, MI.
- Sommer, K. (2007) Genetic Identification and Phylogenetics of Lake Waccamaw endemic freshwater mussel species. University of North Carolina Wilmington,
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. *Molecular Biology and Evolution*, **30**, 2725– 2729.
- Turgeon, D.D., Quinn, Jr J.F., Bogan, A.E., Coan, E. V, Hochberg, F.G., Lyons, W.G., Mikkelsen, P.M., Neves, R.J., Roper, C.F.E., & Rosenberg, G. (1998) Common and scientific names of aquatic invertebrates from the United States and Canada: mollusks,

2n d edition. American Fisheries Society Special Publication, 26.

- Williams, J.D., Butler, R.S., Warren, G.L., & Johnson, N.A. (2014) *Freshwater Mussels of Florida*. University of Alabama Press,
- Williams, J.D., Warren, Jr. M.L., Cummings, K.S., Harris, J.L., & Neves, R.J. (1993) Conservation Status of Freshwater Mussels of the United States and Canada. *Fisheries*, 18, 6–22.

Table 1. Currently recognized *Elliptio* species. Numbers indicate representation in this study

and are used as identifiers in consequent tables.

	Species	Common Name	Authority	Type locality	Type basin
					St. Johns River
1	E.ahenea	Southern Lance	Lea 1845	Black Creek, FL	basin
2	E.angustata	Carolina Lance	Lea 1831	Cooper River, SC	Santee-Cooper
3	E.arca	Alabama Spike	Conrad 1834	Alabama River, AL	Mobile
4	E.arctata	Delicate Spike	Conrad 1834	Alabama River, AL	Mobile
5	E.buckleyi	Florida Shiny Spike	Lea 1843	Lake George and Lake N	lonroe, FL
6	E.chipolaensis	Chipola Slabshell	Walker 1905	Chipola River, FL	Chipola
	E.cistellaeformis	Box Spike	Lea 1863	Neuse River, NC Potomac River,	Neuse
7	E.complanata	Eastern Elliptio	Lightfoot 1786	Washington DC	Potomac
8	E.congaraea	Carolina Slabshell	Lea 1831	Congaree River, SC	Saluda
9	E.crassidens	Elephantear	Lamarck 1819	Ohio River,OH	Ohio
	E.cylindracea	Sad Elliptio Georgia	Frierson 1927	Savannah River, GA	Savannah
	E.dariensis	Elephantear	Lea 1842	Altamaha River, GA	Altamaha
10	E.dilatata	Spike	Rafinesque 1820	Kentucky River, KY	Mississippi
	E.downiei	Satilla Elephantear	Lea 1858	Buck Lake, GA	Satilla
	E.errans	Oval Elliptio	Lea 1856	Savannah River, GA	Savannah
11	E.fisheriana	Northern Lance	Lea 1838	Chester River, MY	Chesapeake Bay
12	E.folliculata	Pod Lance	Lea 1838	Savannah River, SC Chattahoochee River,	Savannah
	E.fraterna	Brother Spike	Lea 1852	GA Chattahoochee River,	Chattahoochee
	E.fumata	Gulf Slabshell	Lea 1857	GA	Chattahoochee
	E.hepatica	Brown Elliptio	Lea 1859	Salkehatchie River, SC	Salkehatchie
13	E.hopetonensis	Altamaha Slabshell	Lea 1838	Altamaha River, GA	Altamaha
14	E.icterina	Variable Spike	Conrad 1834	Savannah River, GA	Savannah
15	E.jayensis	Flat Spike	Lea 1838	Florida	
	E.judithae	Plicate Spike	Clarke 1986	Neuse River, NC	Neuse
	E.lanceolata	Yellow Lance	Lea 1828	Tar River, NC	Tar
	E.lugubris	Sad Elliptio	Lea 1834	Hopeton, NC	Altamaha
	E.marsupiobesa	Cape Fear Spike	Fuller 1972 Clench & Turner	Caper Fear River, NC Choctawhatchee River,	Cape Fear
16	E.mcmichaeli	Fluted Elephantear	1956	FL	Choctawhatchee
17	E.mediocris	N/A St. John's	Lea 1863	Neuse River, NC	Neuse
	E.monroensis	Elephantear	Lea 1843	Lake Monroe, FL	Cape Fear
18	E.nasutilus	N/A	Lea 1863	Livingston's Creek, NC	Cape Fear

Table 1. Continued

	Species	Common Name	Authority	Type locality	Type basin
				Chattahoochee River,	
	E.nigella	Winged Spike	Lea 1952	GA	Chattahoochee
					St. Johns River
19	E.occulta	Hidden Spike	Lea 1843	Black Creek, FL	basin
20	E.producta	Atlantic Spike	Conrad 1836	Savannah River, GA	Savannah
				creeks near Columbus,	
21	E.pullata	Gulf Spike	Lea 1856	GA	Chattahoochee
22	E.purpurella	Inflated Spike	Lea 1857	Flint River, GA	Flint
	E.raveneli	Carolina Spike	Conrad 1834	Wateree Canal, SC	Santee-Cooper
23	E.roanokensis	Roanoke Slabshell	Lea 1838	Roanoke River, NC	Roanoke
24	E.shepardiana	Altamaha Lance	Lea 1834	Altamaha River, GA	Altamaha
		Altamaha			
25	E.spinosa	Spinymussel	Lea 1836	Altamaha River, GA	Altamaha
		Tar River	Johnson & Clark		
26	E.steinstansana	Spinymussel	1983	Tar River, NC	Tar
27	E.waccamawensis	Waccamaw Spike	Lea 1863	Lake Waccamaw	Waccamaw

Table 2. Sequences obtained from previous Gangloff lab projects. Geographic information is provided. I.D. indicates individual identifier. GPS coordinates and additional metadata are available for non-listed species upon request.

	-		.			
Marker	Genus	Species	State	Waterbody	Basin	I.D.
COL	Elliptio	dilatata	NC	South Fork of the New	Now	TE16
COI	стрио	unututu	NC	South Fork of the New	INCW	11 10
COI	Elliptio	dilatata	NC	River	New	TF18
ND1	Elliptio	fisheriana	NC	Chowan River	Chowan	EF160426-1trb2
COI	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR34
ND1	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR34
COI	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR35
ND1	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR35
COI	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR37
ND1	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR37
COI	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR41
ND1	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR41
COI	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR44
ND1	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR44
COI	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR45
ND1	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR45
COI	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR46
ND1	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR46
COI	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR47
ND1	Elliptio	jayensis	FL	Santa Fe River	Suwannee	SFR47
COI	Elliptio	occulta	FL	Santa Fe River	Suwannee	SFR1
ND1	Elliptio	occulta	FL	Santa Fe River	Suwannee	SFR1
COI	Elliptio	occulta	FL	Santa Fe River	Suwannee	SFR11
ND1	Elliptio	occulta	FL	Santa Fe River	Suwannee	SFR11
COI	Elliptio	occulta	FL	Santa Fe River	Suwannee	SFR12
ND1	Elliptio	occulta	FL	Santa Fe River	Suwannee	SFR12
COI	Elliptio	occulta	FL	Santa Fe River	Suwannee	SFR15
ND1	Elliptio	occulta	FL	Santa Fe River	Suwannee	SFR15
COI	Elliptio	occulta	FL	Santa Fe River	Suwannee	SFR16
ND1	Elliptio	occulta	FL	Santa Fe River	Suwannee	SFR16
COI	Elliptio	occulta	FL	Santa Fe River	Suwannee	SFR17
ND1	Elliptio	occulta	FL	Santa Fe River	Suwannee	SFR17
COI	Elliptio	occulta	FL	Santa Fe River	Suwannee	SFR18
ND1	Elliptio	occulta	FL	Santa Fe River	Suwannee	SFR18
COI	Elliptio	occulta	FL	Santa Fe River	Suwannee	SFR19

Marker Genus Species State Waterbody Basin I.D. ND1 Elliptio occulta FL Santa Fe River Suwannee SFR19 COI Elliptio FL Santa Fe River Suwannee SFR20 occulta ND1 Elliptio occulta FL Santa Fe River Suwannee SFR20 COI Elliptio occulta FL Santa Fe River Suwannee SFR21 ND1 FL Santa Fe River SFR21 Elliptio occulta Suwannee COI Elliptio FL Santa Fe River Suwannee SFR22 occulta ND1 Elliptio FL Santa Fe River Suwannee SFR22 occulta COI Santa Fe River SFR23 Elliptio occulta FL Suwannee ND1 Santa Fe River Suwannee SFR23 Elliptio occulta FL COI FL Santa Fe River Elliptio occulta Suwannee SFR25 ND1 Elliptio FL Santa Fe River Suwannee SFR25 occulta Santa Fe River SFR26 COI Elliptio occulta FL Suwannee ND1 Elliptio occulta FL Santa Fe River Suwannee SFR26 COI FL Santa Fe River Suwannee SFR27 Elliptio occulta ND1 Elliptio occulta FL Santa Fe River Suwannee SFR27 COI Elliptio occulta FL Santa Fe River Suwannee SFR28 ND1 FL Santa Fe River Elliptio occulta Suwannee SFR28 COI Elliptio occulta FL Santa Fe River Suwannee SFR3 ND1 Elliptio occulta FL Santa Fe River Suwannee SFR3 COI Elliptio occulta FL Santa Fe River Suwannee SFR30 ND1 Elliptio FL Santa Fe River Suwannee SFR30 occulta COI Elliptio occulta FL Santa Fe River Suwannee SFR33 ND1 Elliptio FL Santa Fe River Suwannee SFR33 occulta COI FL Santa Fe River Suwannee SFR4 Elliptio occulta ND1 Elliptio FL Santa Fe River Suwannee SFR4 occulta COI Elliptio occulta FL Santa Fe River Suwannee SFR40 ND1 Santa Fe River Suwannee SFR40 Elliptio occulta FL COI Elliptio FL Santa Fe River Suwannee SFR42 occulta ND1 FL Santa Fe River Elliptio occulta Suwannee SFR42 COI FL Santa Fe River Elliptio Suwannee SFR43 occulta ND1 FL Santa Fe River Suwannee SFR43 Elliptio occulta COI Santa Fe River Elliptio occulta FL Suwannee SFR48 ND1 Elliptio FL Santa Fe River Suwannee SFR48 occulta COI Santa Fe River Suwannee Elliptio occulta FL SFR5 ND1 Elliptio occulta FL Santa Fe River Suwannee SFR5 COI FL Santa Fe River Elliptio occulta Suwannee SFR7 ND1 Elliptio occulta FL Santa Fe River Suwannee SFR7 COI Elliptio occulta FL Santa Fe River Suwannee SFR8 ND1 Santa Fe River Elliptio occulta FL Suwannee SFR8 COI Elliptio occulta FL Santa Fe River Suwannee SFR9 ND1 Elliptio occulta FL Santa Fe River Suwannee SFR9

Table 2. Continued

Marker	Genus	Species	State	Waterbody	Basin	I.D.
COI	Elliptio	pullata	FL	Chipola River	Apalachicola	MG12
ND1	Elliptio	pullata	FL	Chipola River	Apalachicola	MG12
COI	Elliptio	pullata	FL	Chipola River	Apalachicola	MG14
ND1	Elliptio	pullata	FL	Chipola River	Apalachicola	MG14
COI	Elliptio	pullata	FL	Chipola River	Apalachicola	MG15
ND1	Elliptio	pullata	FL	Chipola River	Apalachicola	MG15
COI	Elliptio	pullata	FL	Chipola River	Apalachicola	MG8
ND1	Elliptio	pullata	FL	Chipola River	Apalachicola	MG8
COI	Elliptio	pullata	FL	Chipola River	Apalachicola	MG9
ND1	Elliptio	pullata	FL	Chipola River	Apalachicola	MG9
COI	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_001
ND1	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_001
COI	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_002
ND1	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_002
COI	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_003
ND1	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_003
COI	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_004
ND1	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_004
COI	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_005
ND1	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_005
COI	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_006
ND1	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_006
COI	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_007
ND1	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_007
COI	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_008
ND1	Elliptio	spinosa	GA	Altamaha River	Altamaha	Altamaha_008
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	B297
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	B297
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	B300
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	B300
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	B301
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	B301
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	B624
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	B624
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	B626
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	B626
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	B628
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	B628
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	B629
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	B629

Table 2. Continued

Marker	Genus	Species	State	Waterbody	Basin	I.D.
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	B631
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	B631
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	B638
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	B638
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	B640
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	B640
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	F392
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	F392
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	F896
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	F896
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	F898
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	F898
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	NOTCH
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	NOTCH
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	TRSM6-2A
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	TRSM6-2A
COI	Elliptio	steinstansana	NC	Neuse River	Tar	TRSM7-16
ND1	Elliptio	steinstansana	NC	Neuse River	Tar	TRSM7-16
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	TRSM7-3A
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	TRSM7-3A
COI	Elliptio	steinstansana	NC	Fishing Creek	Tar	TRSM7-3B
ND1	Elliptio	steinstansana	NC	Fishing Creek	Tar	TRSM7-3B

Table 2. Continued

Table 3. Sequences obtained from Genbank. Author of publication in which sequence was used is provided. I.D.'s (individual identifiers) and geographic information were obtained from the literature. Geographic information is only provided for the *Elliptio sensu stricto* group.

Marker	Genus	Species	Basin	Genbank	I.D.	Author
						Gangloff et al.
COI	Elliptio	angustata	Santee-Cooper	EU448167	AUM9725	unpublished
						Gangloff et al.
COI	Elliptio	angustata	Pee Dee	EU448166	AUM9741A	unpublished
COI	Elliptio	arca	Mobile	AY654995	UAUC498	Campbell et al 2005
						Gangloff et al.
COI	Elliptio	arctata	Mobile	EU448168	AUM9400	unpublished
<u> </u>	Elliptio	arctata	Applachicala	EU1449170	ALIN40662	Gangioff et al.
COI	ΕΠΙΡΕΙΟ	urciulu	Арагаспісога	E0448170	AUM9662	Gangloff et al
COL	Fllintio	arctata	Cane Fear	FU448169	AUM9719	unnuhlished
001	Emptio	ultitu	cupercu	20440105	A0101715	Gangloff et al
COI	Elliptio	complanata	Apalachicola	EU448172	AUM9682	unpublished
	1					Gangloff et al.
COI	Elliptio	complanata	York	EU448183	AUM9706A	unpublished
						Gangloff et al.
COI	Elliptio	complanata	James	EU448173	AUM9711	unpublished
						Gangloff et al.
COI	Elliptio	complanata	James	EU448174	AUM9712B	unpublished
						Gangloff et al.
COI	Elliptio	complanata	James	EU448175	AUM9713A	unpublished
<u> </u>	Elliptia	complanata	lamas	FU1449176		Gangioff et al.
COI	ΕΠΙΡΕΙΟ	complanata	James	EU448176	A01019713B	Gangloff et al
COL	Ellintio	complanata	lames	FU/4/8177	AUM9713C	unnuhlished
001	Emptio	complanata	Junes	204401//	A0107/15C	Gangloff et al.
COI	Elliptio	complanata	Santee-Cooper	EU448180	AUM9729	unpublished
	,	1	•			Gangloff et al.
COI	Elliptio	complanata	Santee-Cooper	EU448181	AUM9730	unpublished
						Gangloff et al.
COI	Elliptio	complanata	Neuse	EU448179	AUM9757C	unpublished
						Gangloff et al.
COI	Elliptio	congaraea	Pee Dee	EU448187	AUM9740	unpublished
601			Nevee	511440406	41140700	Gangloff et al.
COI	ΕΠΙΡΤΙΟ	congaraea	Neuse	EU448186	AUM9763	Unpublished
COL	Elliptio	conggrapa	Neuse	FU1/18186	ALIM0862	Gangion et al.
COI	LIIIptio	congulaeu	INCUSE	L0440100	AU1913002	Gangloff et al
COI	Elliptio	crassidens	Mississinni	EU377567	UAM3527	unpublished
					e	Gangloff et al.
COI	Elliptio	crassidens	Mississippi	AY613820	UAUC1493	unpublished
	•		••			-

Table 3. Continued

Marker	Genus	Species	Basin	Genbank	I.D.	Author
						Gangloff et al.
COI	Elliptio	crassidens	Mobile	DQ383428	UAUC3150	unpublished
COI	Elliptio	dilatata		KF035280	Ed 01	Inoue et al. 2013
						Gangloff et al.
COI	Elliptio	folliculata	Pee Dee	EU448189	AUM9749	unpublished
						Gangloff et al.
COI	Elliptio	folliculata	Pee Dee	EU448189	AUM9749	unpublished
						Gangloff et al.
COI	Elliptio	icterina	York	EU448198	AUM9708	unpublished
				511440400		Gangloff et al.
COI	Elliptio	icterina	Pee Dee	EU448193	AUM9744B	unpublished
<u></u>	Filiatia	interio e	Neuro	FU440101	AUX 400C1 A	Gangloff et al.
COI	Επιρτιο	icterina	Neuse	EU448191	AUM9861A	Cangleff at al
COL	Elliptio	mcmichaeli	Choctawhatchee	FU1/18100	AUM0467	Galigion et al.
0	Linptio	memenden	Chociawhatchee	20448199	A01019407	Gangloff et al
COL	Fllintio	mcmichaeli	Choctawhatchee	FU377572	UAM3516	unnuhlished
001	Emptio	memeriden	choctawhatehee	20377372	0/10/05/10	Campbell and
COL	Flliptio	mcmichaeli	Choctawhatchee	FU377573	UAUC3088	Lydeard 2012
	p :::0			20077070		Gangloff et al.
COI	Elliptio	nasutilus	Pee Dee	EU448201	AUM9745B	unpublished
	·					Gangloff et al.
COI	Elliptio	pullata	Mobile	EU377571	A56	unpublished
						Gangloff et al.
COI	Elliptio	purpurella	Mobile	EU377574	UAUC3569	unpublished
						Gangloff et al.
COI	Elliptio	waccamawensis	Pee Dee	EU448202	AUM9746A	unpublished
						Gangloff et al.
ND1	Elliptio	angustata	Santee-Cooper	EU448204	AUM9725	unpublished
	Filiatia			FU1440202		Gangloff et al.
NDI	Етрио	angustata	Pee Dee	EU448203	AUM9741A	Cangloff at al
	Elliptio	arctata	Mohile	EU148205	AU 1 M A A A A A	Gangion et al.
NDI	Linptio	urctutu	WIDDITE	20448205	A01019400	Gangloff et al
ND1	Fllintio	arctata	Analachicola	FU448206	AUM9662	unnuhlished
	p :::0		, para en cora	20110200		Campbell and
ND1	Elliptio	arctata	Mobile	JF326440	UAUC3496	Lydeard 2012
	,					, Gangloff et al.
ND1	Elliptio	buckleyi	Withlacoochee	EU448207	AUM14923	unpublished
						Gangloff et al.
ND1	Elliptio	complanata	Apalachicola	EU448208	AUM9401	unpublished
						Gangloff et al.
ND1	Elliptio	complanata	Apalachicola	EU448209	AUM9682	unpublished
						Gangloff et al.
ND1	Elliptio	complanata	York	EU448222	AUM9706A	unpublished
	Elliptic	oomalansta	Vork	FU1440222		Gangiott et al.
NUT	ΕΠΙΡΤΙΟ	complanata	TOLK	EU448223	A01VI9706B	unpublished Cangloff at al
	Elliptic	complanata	Vork	EU448224	ΔΙΙΛΛΟΖΟΖΛ	Gangion et al.
INDT	Emptio	complanata	IUIK		AUNISIOIA	unpublished

Table 3. Continued

Marker	Genus	Species	Basin	Genbank	I.D.	Author
				FU448225		Gangloff et al.
ND1	Elliptio	complanata	York	20440225	AUM9707B	unpublished
						Gangloff et al.
ND1	Elliptio	complanata	York	EU448244	AUM9709	unpublished
				511440040		Gangloff et al.
ND1	Elliptio	complanata	James	EU448210	AUM9/11	unpublished
	Filiatia	a a va a la va artar		FU1440244	ALIN 4071 2 A	Gangioff et al.
NDI	Етрио	compianata	James	EU448211	AUIVI9712A	Cangleff at al
	Elliptio	complanata	lames	FU1/18212	ALIN/0717B	unnublished
NDI	Linptio	complanata	James	20448212	A01019712B	Gangloff et al
ND1	Fllintio	complanata	lames	FU448213	AUM9713A	unnuhlished
NDI	Linptio	complanata	Junes	20440213	/(01013713/(Gangloff et al
ND1	Elliptio	complanata	James	EU448214	AUM9713B	unpublished
						Gangloff et al.
ND1	Elliptio	complanata	James	EU448215	AUM9713C	unpublished
	,	,				Gangloff et al.
ND1	Elliptio	complanata	Santee-Cooper	EU448219	AUM9729	unpublished
						Gangloff et al.
ND1	Elliptio	complanata	Santee-Cooper	EU448220	AUM9730	unpublished
						Gangloff et al.
ND1	Elliptio	complanata	Neuse	EU448218	AUM9757C	unpublished
				FU448216		Gangloff et al.
ND1	Elliptio	complanata	Neuse	20440210	AUM9761A	unpublished
						Gangloff et al.
ND1	Elliptio	complanata	Tar	EU448217	AUM9761B	unpublished
ND4	<i>-u</i>	, ,	-	5114400004	A	Gangloff et al.
ND1	Elliptio	complanata	lar	EU448221	AUM9868	unpublished
	Elliptio	conggraag		E11//0220	ALIN40740	Gangloff et al.
NDI	Етрио	conguraea	Pee Dee	EU446226	AU1019740	Cangloff at al
ND1	Ellintio	conaaraea	Νουςο	FU448226	AUM9763	unnuhlished
NDI	Linptio	congulaca	Neuse	20440220		Gangloff et al
ND1	Elliptio	conaaraea	Ogeechee	EU448227	AUM9790A	unpublished
	1	j				Gangloff et al.
ND1	Elliptio	crassidens	Escambia	EU448229	AUM8200	unpublished
						Gangloff et al.
ND1	Elliptio	crassidens	Altamaha	EU448230	AUM9403	unpublished
ND1	Elliptio	crassidens	Mississippi	JN180972	UAM3527	Burlakova et al. 2012
						Gangloff et al.
ND1	Elliptio	crassidens	Mobile	EU380665	UAM747	unpublished
						Gangloff et al.
ND1	Elliptio	crassidens	Mississippi	EU380668	UAUC 1493	unpublished
						Gangloff et al.
ND1	Elliptio	crassidens	Mobile	AY613788	UAUC3150	unpublished
ND1	Elliptio	dilatata		KF035420	Ed 01	Inoue et al. 2013
						Gangloff et al.
ND1	Elliptio	folliculata	Pee Dee	EU448231	AUM9749	unpublished
						Gangloff et al.
ND1	Elliptio	hopetonensis	Altamaha	EU448232	AUM9404	unpublished

Table 3. Continued

Marker	Genus	Species	Basin	Genbank	I.D.	Author
						Gangloff et al.
ND1	Elliptio	icterina	Ochlockonee	EU448238	AUM4564	unpublished
						Gangloff et al.
ND1	Elliptio	icterina	Ecofina	EU448235	AUM4567	unpublished
						Gangloff et al.
ND1	Elliptio	icterina	Escambia	EU448234	AUM7166	unpublished
						Gangloff et al.
ND1	Elliptio	icterina	York	EU448243	AUM9708	unpublished
				511440040		Gangloff et al.
ND1	Elliptio	icterina	Santee-Cooper	EU448242	AUM9728B	unpublished
	F 11:	i stanin s		511440220		Gangloff et al.
ND1	Elliptio	icterina	Pee Dee	EU448239	AUM9741B	unpublished
	Filiatia	interior		511440240	ALIN 40744A	Gangloff et al.
NDI	Emptio	icterina	Pee Dee	EU448240	AUIVI9744A	unpublished
	Fllintia	istoring		FU1440241		Gangion et al.
NDI	Етрио	icterina	Pee Dee	EU448241	AUIVI9744B	Cangleff at al
	Elliptio	istoring	Nouso	FU140226		Gangion et al.
NDI	Етрио	icterina	Neuse	EU448230	AU1019861A	Cangleff at al
	Elliptio	ictoring	Nouso	E11440227		Gangion et al.
NDI	Етрио	ιτιετιπά	neuse	EU446257	AUNI9601D	Cangloff at al
ND1	Elliptio	mcmichaeli	Choctawhatchee	E11448248	ALIN/8205	unnublished
NDI	Emptio	memenaen	Choclawhatchee	EU440240	A01018203	Gangloff et al
	Ellintio	mcmichaeli	Choctawhatchee	E11448247	AUM0467	unnublished
NDI	Linptio	memenuen	Chociawhatchee	L0448247	A01019407	Campbell and
ND1	Ellintio	mcmichaeli	Choctawhatchee	IF326441		Lydeard 2012
NDI	Linptio	memenaen	choctawhatehee	31 320441	04063000	Gangloff et al
ND1	Fllintio	nasutilus	Pee Dee	FU448249	AUM9745A	unnublished
ND1	Emptio	nasatnas		20110213		Gangloff et al
ND1	Elliptio	nasutilus	Pee Dee	EU448250	AUM9745B	unpublished
						Gangloff et al.
ND1	Elliptio	nasutilus	Tar	EU448251	AUM9866	unpublished
	,					Campbell and
ND1	Elliptio	purpurella	Mobile	JF326442	UAUC3569	Lydeard 2012
						Gangloff et al.
ND1	Elliptio	shepardiana	Altamaha	EU44852	AUM9405	unpublished
						Gangloff et al.
ND1	Elliptio	waccamawensis	Pee Dee	EU448253	AUM9746A	unpublished
						Gangloff et al.
ND1	Elliptio	icterina	Apalachicola	EU448233	AUM14713	unpublished
						Gangloff et al.
ND1	Elliptio	jayensis	St. John's Bay	EU448246	AUM149151	unpublished
						Gangloff et al.
ND1	Elliptio	pullata	Mobile	EU380666	A56	unpublished
						Gangloff et al.
ND1	Elliptio	pullata	Apalachicola	EU380667	A57	unpublished
COI	Fusconaia	askewi		JN180994	Sab1	Burlakova et al 2012
COI	Fusconaia	askewi		JN180995	Sab2	Burlakova et al 2012
COI	Fusconaia	askewi		IN180998	Sah5	Burlakova et al 2012
201	, asconala	SONC WI			3483	

Table 3. Continued

Marker	Genus	Species	Basin	Genbank	I.D.	Author
						Campbell and
COI	Fusconaia	askewi		HM230367	UAM3392	Lydeard 2012b
COL	Fusconaia	harnesiana	AY613822	UAUC1553	al 2005	
001	rasconara	barnesiana	/1013022	0//001333	012003	Roe and Lydeard
COI	Fusconaia	cerina		AF049522	UAUC3234	1998
COI	Fusconaia	cor		AY654997	UAUC2606	Campbell et al 2005
COI	Fusconaia	cuneolus		AY654998	UAUC1552	Campbell et al 2005
COI	Fusconaia	lananensis		JN180987	TS129	Burlakova et al 2012
COI	Fusconaia	lananensis		JN180984	TS179	Burlakova et al 2012
COI	Fusconaia	lananensis		JN180985	TS203	Burlakova et al 2012
СОІ	Fusconaia	masoni		HM230371	NCSMH	Campbell and Lydeard 2012b Campbell and
COI	Fusconaia	ozarkensis		HM230373	UAM3501	Lydeard 2012b
COI	Fusconaia	subrotunda		JN181001	PA1	Burlakova et al 2012
COI	Fusconaia	subrotunda		JN181002	Pas	Burlakova et al 2012
COI	Fusconaia	subrotunda		AY613824	UAUC1554	Campbell et al 2005
ND1	Fusconaia	askewi		JN180975	Sab1	Burlakova et al 2012
ND1	Fusconaia	askewi		JN180976	Sab2	Burlakova et al 2012
ND1	Fusconaia	askewi		JN180977	Sab5	Burlakova et al 2012
ND1	Fusconaia	askewi		HM230411	UAM3392	Campbell et al 2008
ND1	Fusconaia	barnesiana		AY613791	UAUC1553	Campbell et al 2005
ND1	Fusconaia	cerina		AY613792	UAUC3234	Campbell et al. 2005
ND1	Fusconaia	cor		AY655096	UAUC2606	Campbell et al 2005
ND1	Fusconaia	cuneolus		AY655097	UAUC1552	Campbell et al 2005
ND1	Fusconaia	lananensis		JN180980	TS129	Burlakova et al 2012
ND1	Fusconaia	lananensis		JN180981	TS179	Burlakova et al 2012
ND1	Fusconaia	lananensis		JN180982	TS203	Burlakova et al 2012
ND1	Fusconaia	masoni		HM230415	NCSMH	Campbell et al 2008
ND1	Fusconaia	ozarkensis		HM230416	UAM3501	Campbell et al 2008
ND1	Fusconaia	subrotunda		JN180978	Pal	Burlakova et al 2012
ND1	Fusconaia	subrotunda		JN180979	PAs	Burlakova et al 2012
ND1	Fusconaia	subrotunda		AY613794	UAUC1554	Campbell et al 2005
COI	Lampsilis	virescens		JF326433	clip	Campbell and Lydeard 2012a
ND1	Lampsilis	virescens		JF326443	clip	Lydeard 2012a
COI	Obovaria	jacksoniana		KF035135	Oj01	Inoue et al 2013
COI	Obovaria	jacksoniana		KF035138	Oj04	Inoue et al 2013
ND1	Obovaria	jacksoniana		KF035283	Oj01	Inoue et al 2013
ND1	Obovaria	jacksoniana		KF035286	Oj04	Inoue et al 2013
COI	Pleurobema	athearni		AY655015	UAUC3084	Campbell et al 2005

Table 3. Continued

Marker	Genus	Species	Basin	Genbank	I.D.	Author
COI	Pleurobema	beadlianum		DQ383429	Pbead1	Campbell et al 2008
COI	Pleurobema	chattanoogaense		AY655012	UAUC1621	Campbell et al 2005
COI	Pleurobema	chattanoogaense		AY613829	UAUC3194	Campbell et al 2005
COI	Pleurobema	clava		AY655013	UAUC1477	Campbell et al 2005
COI	Pleurobema	collina		AY613830	UAUC1074	Campbell et al 2005
COI	Pleurobema	cordatum		AY613831	UAUC2572	Campbell et al 2005
COI	Pleurobema	decisum		AY613832	UAUC3196	Campbell et al 2005
COI	Pleurobema	furvum		AY613833	UAUC678	Campbell et al 2005
COI	Pleurobema	georgianum		AY613834	UAUC3193	Campbell et al 2005
COI	Pleurobema	gibberum		AY613835	UAUC3319	Campbell et al 2005
COI	Pleurobema	hanleyianum		AY613836	UAUC1622	Campbell et al 2005
COI	Pleurobema	hanleyianum		AY655016	UAUC273	Campbell et al 2005
COI	Pleurobema	oviforme		AY613837	UAUC1642	Campbell et al 2005
COI	Pleurobema	perovatum		AY613838	UAUC1640	Campbell et al 2005
COI	Pleurobema	pyriforme		AY613839	A29	Campbell et al 2005
COI	Pleurobema	rubellum		AY613840	UAUC679	Campbell et al 2005
COI	Pleurobema	rubrum		AY655018	UAUC2719	Campbell et al 2005
COI	Pleurobema	rubrum		AY613841	UAUC3229	Campbell et al 2005
COI	Pleurobema	sintoxia		AY655019	UAUC1714	Campbell et al 2005
COI	Pleurobema	stabile		AY613842	Pstab1	Campbell et al 2008
COI	Pleurobema	strodeanum		AY613843	UAUC1110	Campbell et al 2005
COI	Pleurobema	taitianum		AY613844	UAUC885	Campbell et al 2005
COI	Pleurobema	troschelianum		AY613845	UAUC516	Campbell et al 2005
ND1	Pleurobema	athearni		AY655114	UAUC3084	Campbell et al 2005
ND1	Pleurobema	beadlianum		DQ385873	Pbead1	Campbell et al 2008
ND1	Pleurobema	chattanoogaense		AY655111	UAUC1621	Campbell et al 2005
ND1	Pleurobema	chattanoogaense		AY613801	UAUC3194	Campbell et al 2005
ND1	Pleurobema	clava		AY613802	UAUC1477	Campbell et al 2005
ND1	Pleurobema	collina		AY613803	UAUC1074	Campbell et al 2005
ND1	Pleurobema	cordatum		AY613804	UAUC2572	Campbell et al 2005
ND1	Pleurobema	decisum		AY613805	UAUC3196	Campbell et al 2005
ND1	Pleurobema	furvum		AY613806	UAUC678	Campbell et al 2005
ND1	Pleurobema	georgianum		AY613807	UAUC3193	Campbell et al 2005
ND1	Pleurobema	gibberum		DQ385874	UAUC3319	Campbell et al 2008
ND1	Pleurobema	hanleyianum		AY613809	UAUC1622	Campbell et al 2005
ND1	Pleurobema	hanleyianum		AY655115	UAUC273	Campbell et al 2005
ND1	Pleurobema	oviforme		AY655116	UAUC1642	Campbell et al 2005
ND1	Pleurobema	perovatum		AY613811	UAUC1640	Campbell et al 2005
ND1	Pleurobema	pyriforme		AY613812	A29	Campbell et al 2005
ND1	Pleurobema	rubellum		AY613813	UAUC679	Campbell et al 2005
ND1	Pleurobema	rubrum		AY655117	UAUC2719	Campbell et al 2005

Table 3. Continued

Marker	Genus	Species	Basin	Genbank	I.D.	Marker
ND1	Pleurobema	rubrum		AY613814	UAUC3229	Campbell et al 2005
ND1	Pleurobema	sintoxia		AY613815	UAUC1714	Campbell et al 2005
ND1	Pleurobema	stabile		AY613816	Pstab1	Campbell et al 2008
ND1	Pleurobema	strodeanum		AY613817	UAUC1110	Campbell et al 2005
ND1	Pleurobema	taitianum		AY613818	UAUC885	Campbell et al 2005
ND1	Pleurobema	troschelianum		AY613819	UAUC516	Campbell et al 2005
COI	Reginaia	ebena		KF035133	Fe01 White	Inoue et al 2013
COI	Reginaia	ebena		AY654999	UAUC71	Campbell et al 2005
ND1	Reginaia	ebena		KF035281	Fe01 White	Inoue et al 2013
ND1	Reginaia	ebena		AY655098	UAUC71	Campbell et al 2005
COI	Strophitus	subvexus		AY655021	UAUC2715	Campbell et al 2005
ND1	Strophitus	subvexus		AY655122	UAUC2716	Campbell et al 2005
COI	Toxolasma	parvus		AY655022	UAUC3331	Campbell et al. 2005
ND1	Toxolasma	parvus		AY655123	UAUC3331	Campbell et al. 2005
COI	Villosa	arkansasensis		KF035228	Va21 Mfork	Inoue et al 2013 Zannatta and Murphy
COI	Villosa	fabalis		DQ220726	Vfab1	2006
COI	Villosa	villosa		AF385109	UAUC652	Roe et al. 2001
ND1	Villosa	arkansasensis		KF035372	Va21 Mfork	Inoue et al 2013 Zannatta and Murphy
ND1	Villosa	fabalis		DQ220723	Vfab1	2006
ND1	Villosa	villosa		AY094387	UAUC652	Buhay et al. 2002

Table 4. Sequences obtained for this study. Geographic information is provided. GPS coordinates and additional metadata is available upon request. I.D.s indicate individual identifiers.

Marker	Genus	Species	State	Waterbody	Basin	I.D.
COI	Elliptio	complanata	NC	Catawba River	Catawba	12
COI	Elliptio	complanata	NC	John's River	Catawba	55
COI	Elliptio	complanata	NC	John's River	Catawba	56
COI	Elliptio	complanata	NC	Catawba River	Catawba	010b
COI	Elliptio	complanata	NC	Catawba River	Catawba	011b
COI	Elliptio	complanata	NC	John's River	Catawba	18VIII20152-1
COI	Elliptio	complanata	NC	John's River	Catawba	18VIII20152-2
COI	Elliptio	complanata	NC	Rocky Swamp	Tar	20VIII20151-2
COI	Elliptio	complanata	NC	Rocky Swamp	Tar	20VIII20151-3
COI	Elliptio	congaraea	SC	Congaree River	Congaree	M6160419-1
COI	Elliptio	congaraea	SC	Congaree River	Congaree	M6160419-3
COI	Elliptio	congaraea	SC	Congaree River	Congaree	M6160419-4
COI	Elliptio	crassidens	FL	Yellow River	Apalachicola	12VIII20152-3
COI	Elliptio	dilatata	NC	South Fork of the New River	New	TF16
COI	Elliptio	dilatata	NC	South Fork of the New River	New	TF18
COI	Elliptio	fisheriana	NC	Little Fishing Creek	Tar	19VIII20151-1
COI	Elliptio	mediocris	NC	Little Fishing Creek	Tar	19VIII20151-21
COI	Elliptio	mediocris	NC	Little Fishing Creek	Tar	19VIII20151-22
COI	Elliptio	producta	NC	Waccamaw	Lumber	12VII20151-56
COI	Elliptio	producta	NC	Waccamaw	Lumber	12VII20151-66
COI	Elliptio	producta	NC	Waccamaw	Lumber	12VII20151-67
COI	Elliptio	producta	NC	Waccamaw	Lumber	12VIII20151-57
ND1	Elliptio	ahenea	FL	Suwannee River	Suwannee	MG5VI161-30
ND1	Elliptio	chipoalensis	FL	Chipola River	Apalachicola	MG25X2015-10
ND1	Elliptio	complanata	NC	Catawba River	Catawba	12
ND1	Elliptio	complanata	NC	John's River	Catawba	55
ND1	Elliptio	complanata	NC	John's River	Catawba	56
ND1	Elliptio	complanata	NC	Catawba River	Catawba	010b
ND1	Elliptio	complanata	NC	Catawba River	Catawba	011b
ND1	Elliptio	complanata	NC	John's River	Catawba	18VIII20152-1
ND1	Elliptio	complanata	NC	John's River	Catawba	18VIII20152-2
ND1	Elliptio	complanata	NC	John's River	Catawba –	18VIII20152-3
ND1	Elliptio	complanata	NC	Rocky Swamp	Tar -	20VIII20151-1
ND1	Elliptio	complanata	NC	Rocky Swamp	Tar	20VIII20151-2

Marker Genus Species State Waterbody Basin I.D. ND1 NC Tar 20VIII20151-3 Elliptio complanata Rocky Swamp ND1 Elliptio complanata NC George's Mill Roanoke 2IX20151-2 ND1 Elliptio complanata NC George's Mill Roanoke 2IX20151-3 ND1 Elliptio complanata ME **Royal River** Casco Bay 4IX20151-2 ND1 Elliptio ME Penobscot River Penobscot 5IX20151-1 complanata ND1 Elliptio complanata ME Penobscot River Penobscot 5IX20151-2 ND1 Elliptio complanata ME Penobscot River Penobscot 5IX20151-3 ND1 Elliptio ME Penobscot River Penobscot 6IX20151-1 complanata ND1 Elliptio complanata ME East Musquash Lake St. Croix 6IX20152-1 ND1 NC PeeDee River PeeDee 7VII20154-2 Elliptio complanata ND1 Elliptio complanata NC PeeDee River PeeDee 7VII20154-3 ND1 NC PeeDee River PeeDee 8VII20152-1 Elliptio complanata ND1 NC PeeDee River PeeDee 8VII20152-3 Elliptio complanata ND1 Elliptio complanata NC **Deep River** Cape Fear MG8VII20157-1 ND1 NC Elliptio complanata Deep River Cape Fear MG8VII20157-2 ND1 NC Elliptio congaraea PeeDee River PeeDee 7VII20153-2 ND1 SC **Congaree River** M6160419-1 Elliptio congaraea Congaree ND1 Elliptio congaraea NC PeeDee River PeeDee MG6VII20153-1 ND1 FL Elliptio crassidens Yellow River Apalachicola 12VIII20152-3 ND1 Elliptio fisheriana NC Little Fishing Creek Tar 19VIII20151-1 ND1 Elliptio fisheriana NC Little Fishing Creek Tar 19VIII20151-3 ND1 NC Elliptio **Chowan River** Chowan EF160426-1trb2 fisheriana ND1 Elliptio icterina NC Waccamaw Lumber 12VIII20151-117 ND1 Elliptio icterina NC Waccamaw Lumber 12VIII20151-118 ND1 Elliptio icterina NC Waccamaw Lumber 12VIII20151-119 ND1 Elliptio icterina NC PeeDee River PeeDee 7VII20152-1 ND1 Elliptio icterina NC PeeDee River PeeDee 7VII20152-2 ND1 Elliptio NC PeeDee River PeeDee 7VII20152-3 icterina ND1 NC PeeDee River PeeDee 8VII20154-1 Elliptio icterina ND1 Elliptio icterina NC PeeDee River PeeDee 8VII20154-2 ND1 NC PeeDee River PeeDee 8VII20154-3 Elliptio icterina ND1 Elliptio icterina NC **Deep River** Cape Fear MG8VII20157-3 ND1 mediocris NC Little Fishing Creek 19VIII20151-21 Elliptio Tar ND1 NC Little Fishing Creek Elliptio mediocris Tar 19VIII20151-22 NC ND1 Elliptio producta PeeDee River PeeDee 8VII20151-11 ND1 NC Lumber Elliptio pullata Waccamaw 10VIII2015-1 ND1 Elliptio pullata NC Waccamaw Lumber 10VIII2015-2 ND1 Elliptio roanokensis NC PeeDee River PeeDee 7VII20151-2 ND1 roanokensis NC PeeDee River PeeDee Elliptio 7VII20151-3 ND1 NC PeeDee River PeeDee Elliptio roanokensis 7VII20151-5

Table 4. Continued

Marker	Genus	Species	State	Waterbody	Basin	I.D.
ND1	Elliptio	spp	NC	Waccamaw	Lumber	12VII20151-35
ND1	Elliptio	spp	NC	Waccamaw	Lumber	12VII20151-36
ND1	Elliptio	spp	NC	Waccamaw	Lumber	12VII20151-37
ND1	Elliptio	waccamawensis	NC	Waccamaw	Lumber	12VIII20151-103
ND1	Elliptio	waccamawensis	NC	Waccamaw	Lumber	12VIII20151-104

Table 5. Intra-specific pairwise genetic distances of all three datasets. Pairwise genetic distances calculated using maximum composite likelihood method. "--" indicates no representative of a taxa in a given dataset. "N/A" indicates only one representative of a species in a given dataset.

	COI	ND1	Concatenated
E.ahenea		N/A	
E.arca	N/A		
E.arctata	0.014	0.013	N/A
E.angustata	N/A	0.011	N/A
E.buckleyi		N/A	
E.chipolaensis		N/A	
E.complanata	0.01	0.015	0.013
E.congaraea	0.015	0.017	0.017
E.crassidens	0.007	0.008	0.007
E.dilatata	0.004	N/A	N/A
E.fisheriana	N/A	0.063	N/A
E.folliculata	N/A	N/A	N/A
E.hopetonensis		N/A	
E.icterina	0.01	0.021	0.013
E.jayensis	0.006	0.02	0.012
E.mcmichaeli	0.004	0.008	N/A
E.mediocris	0.012	0.016	0.016
E.nasutilus	N/A	0.004	N/A
E.occulta	0.007	0.011	0.01
E.producta	0	N/A	
E.pullata	0.003	0.016	0.008
E.purpurella	N/A	N/A	
E.roanokensis		0.001	
E.shepardiana		N/A	
E.spinosa	0.001	0.003	0.002
E.steinstansana	0.002	0.001	0.001
E.waccamawensis	N/A	0.019	

	1	~	m	4	۰.	6	-	∞	6	9	11	11	13	14	15	16	17	18	19	ຊ	51	22	53	24	۶	26	12
_	1	N/A	N/A	N/A I	V/A I	N/A	1/A	N/A	N/A	N/A	N/A I	V/A I	٩/A														
7	0.083		0.046	0.039	N/A	N/A	0.038	0.039 (0.031 (0.065 (0.043 0	0.039 (.034	N/A (0.041 (.034 0	.041 0	.046 0	.043 0	.046 0	.033 0	.035	N/A	N/A (0.054 0	.066 0	.035
æ	N/A	N/A	ī	0.021	N/A	N/A	0.023	0.027 (0.022	0.071	0.048 (0.024 0	.022	N/A (0:030	019 0	.026 C	056 0	.032 0	.051 0	.017 0	026	N/A	N/A (0.066 0	075 0	.019
4	0.062	0.095	N/A	ī	N/A	N/A	0.014	0.017 (0.013 (0.068	0.068 0	0.047 (013	N/A 0	0.023 (.011 0	.017 0	054 0	.024 0	.049 0	.010 0	017	N/A	N/A (0.057 0	.071 0	.011
5	0.033	0.075	N/A	0.046	,	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A I	V/A	N/A	N/A	N/A	N/A	N/A	N/A I	V/A 1	٩/A
9	0.097	0.116	N/A	0.115	0.103	,	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A I	V/A I	N/A	N/A	N/A	N/A	N/A	N/A I	V/A I	٩/A
7	0.036	0.074	N/A	0.045	0.016	0.099		0.014 (0.011 (0.071	0.048 0	0.013 (.011	N/A (0.023 (0 600'	.014 0	054 0	.024 0	.050 0	.008 0	019	N/A	N/A (0.057 0	.072 0	600
8	0.035	0.075	N/A	0.048	0.019	0.107	0.020	'	0.012 (0.073	0.045 0	0.018 (.014	N/A (0.025 (.011 0	.015 0	.056 0	.026 0	.049 0	.011 0	.023	N/A	N/A (0.061 0	070 0	.011
6	0.037	0.080	N/A	0.053	0.008	0.105	0.023	0.027	,	0.069 (0.044 0	0.015 (600'	N/A (0.021 0	007 0	.012 0	.053 0	.022 0	.048 0	.006 0	019	N/A	N/A (0.053 0	.068 0	.007
5	0.125	0.123	N/A	0.140	0.130	0.136	0.128	0.127 (0.130	,	0.068 (0.074 0	.065	N/A (0.074 0	0 690.0	.074 0	073 0	075 0	.072 0	.066 0	020	N/A	N/A (0.082 0	.083 0	.068
11	0.086	0.074	N/A	0.104	0.084	0.122	0.082	0.080 (0.081	0.108	,	.044 0	.045	N/A (0.038 (.044 0	.049 0	.023 0	.040 0	.015 0	.042 0	051	N/A	N/A (0.057 0	.071 0	.044
12	0.045	0.088	N/A	0.056	0.037	0.114	0.038	0.041 (0.044	0.129 (0.092	,	0.016	N/A (0.020	.013 (019 0	056 0	.021 0	.051 0	.011 0	019	N/A	N/A (0.054 0	070 0	.013
13	0.041	0.077	N/A	0.054	0.026	0.118	0.026	0.017 (0.034 (0.134 (0.084 0	.045		N/A	N/A	N/A	N/A	N/A I	V/A I	N/A	N/A	N/A	N/A	N/A	N/A I	V/A I	٩/A
14	0.036	0.073	N/A	0.047	0.017	0.103	0.019	0.021 (0.023 (0.126 (0.081 0	0.039 (0.025	,	0.022 (007 0	.012 0	.050 0	.024 0	.045 0	.007 0	020	N/A	N/A (0.053 0	070 0	.007
15	0.019	0.080	N/A	0.057	0.033	0.102	0.036	0.037 (0.037	0.122 (0.082 0	0.044 (040 0	036	,	019 0	.024 0	054 0	.049 0	.017 0	.017 0	.025	N/A	N/A (0.046 0	077 0	.019
16	0.040	0.080	N/A	0.056	0.010	0.108	0.025	0.028 (0.008	0.132 (0.081 0	0.046 (0.035 0	0.025 (040	,	.011 0	.051 0	.020 0	.046 0	.004 0	019	N/A	N/A (0.054 0	.071 0	.004
17	0.034	0.073	N/A	0.048	0.015	0.099	0.016	0.020 (0.023 (D.126 (0.076 0	0.036 (0.025 0	0.018 (0.034 (.024	,	.058 0	.025 0	.054 0	.010 0	.021	N/A	N/A (0.061 0	077 0	.011
18	0.088	0.077	N/A	0.105	0.084	0.125	0.083	0.080 (0.084 (D.118 (0.029 (0 200.0	080.0	0.081 0	0.085 (.086 (770.	-	.055 0	.008 0	049 0	058	N/A	N/A (0.066 0	.084 0	.051
19	0.012	0.079	N/A	0.057	0.029	0.099	0.033	0.034 (0.033 (0.125 (0.081 0	0.042 (0.037 0	0.032 (0.018 (036 0	.030	.084	-	.050 0	.018 0	.027	N/A	N/A (0.049 0	078 0	.020
20	0.086	0.011	N/A	0.093	0.075	0.118	0.074	0.075 (0.079	0.123 (0.076 0	0.088 (0.073 0	0.073 (0.082 (080 0	.073 0	080 0	.081	- 0	044 0	058	N/A	N/A (0.061 0	074 0	.046
21	0.037	0.077	N/A	0.051	0.012	0.104	0.022	0.026 (0.013 (0.127 (0.079	0.043 (.032 C	0.023 (0.036 (.013 (.021 0	.083 0	.032 0	.077	•	.017	N/A	N/A (0.051 0	0 690.	.004
22	0.039	0.075	N/A	0.040	0.024	0.108	0.028	0.030 (0.028 (0.130 (0.088 0	0.043 (0.035 0	0.028 (0.039 (030 0	.029 0	.082 0	.035 0	.077 0	.029	,	N/A	N/A (0.060 0	0 670.	.019
23	0.038	0.078	N/A	0.049	0.023	0.113	0.023	0.014 (0:030	0.130 (0.081 0	0.041 (0.075 0	0.022 (0.037 (.031 0	.022 0	.081 0	.034 0	.074 0	029 0	.031	,	N/A	N/A I	V/A 1	٩/٨
24	0.079	0.009	N/A	0.095	0.073	0.116	0.072	0.073 (0.078	0.125 (0.074 0	0.087 0	0.098 0	0.071 0	0.077 0	077 0	.071 0	.081 0	075 0	.016 0	075 0	071 0	0.076		N/A I	N/A 1	٩/A
25	0.095	0.101	N/A	0.105	0.091	0.122	0.097	0.097	0.095 (0.122 (0.103 0	.115 0	0.029 0) 960.0	0.095 () 660'	.092 0	.100 0	.093 0	.108 0	.095 0	.085 0	0.094 0	0.106	- 0	.082 0	.054
26	0.125	0.125	N/A	0.126	0.129	0.139	0.126	0.131 (0.132 (0.132 (0.132 0	.131 (0.075 0	0.071 0	0.122 (.136 (.124 0	.122 0	.123 0	.130 0	.132 0	.118 0	0.133 0	.127 (0.143	- 0	.071
27	0.040	0.074	N/A	0.047	0.016	0.099	0.017	0.024 (0.023 (0.127 (0.086 0	0.042 (0.032 0	0.022 (039 (.025 (.022 0	.084 0	.036 0	.075 0	.025 0	031 0	0.029 0	073 (0.097 0	.126	

were calculated using maximum composite likelihood method. COI dataset distances are presented at the top. ND1 dataset distances are presented on the bottom. Numbers on the top row and first Table 6. Inter-specific pairwise genetic distances of COI and ND1 datasets. Pairwise distances column represent taxa as listed in Table 1. Table 7. Inter-specific pairwise genetic distances of concatenated dataset. Pairwise distances were calculated using maximum composite likelihood method. Numbers on the top row and first column represent taxa as listed in Table 1.

	2	4	7	8	9	10	11	12	14	15	16	17	18	19	21	25	26
2																	
4	0.077																
7	0.059	0.036															
8	0.061	0.040	0.018														
9	0.059	0.041	0.018	0.020													
10	0.102	0.114	0.107	0.105	0.106												
11	0.062	0.086	0.071	0.067	0.068	0.095											
12	0.068	0.043	0.028	0.031	0.033	0.109	0.073										
14	0.055	0.038	0.014	0.017	0.014	0.102	0.067	0.029									
15	0.067	0.047	0.032	0.032	0.032	0.103	0.066	0.035	0.031								
16	0.061	0.043	0.019	0.020	0.008	0.109	0.068	0.034	0.015	0.033							
17	0.061	0.042	0.016	0.017	0.019	0.106	0.068	0.030	0.012	0.031	0.019						
18	0.068	0.089	0.075	0.072	0.075	0.104	0.029	0.083	0.070	0.076	0.074	0.074					
19	0.066	0.047	0.030	0.030	0.030	0.105	0.066	0.034	0.029	0.012	0.031	0.029	0.076				
21	0.059	0.039	0.017	0.019	0.008	0.103	0.066	0.030	0.014	0.029	0.009	0.018	0.073	0.027			
25	0.085	0.089	0.083	0.083	0.081	0.111	0.085	0.092	0.082	0.077	0.083	0.082	0.087	0.077	0.078		
26	0.102	0.109	0.106	0.107	0.109	0.117	0.111	0.109	0.105	0.107	0.110	0.108	0.114	0.108	0.108	0.122	

Table 8. Intra-group pairwise genetic distances of all three datasets. Pairwise genetic distances calculated using maximum composite likelihood method. "--" indicates no representative of a taxa in a given dataset. "N/A" indicates only one representative of a species in a given dataset.

	ND1	COI	Concatenated
Core	0.026	0.016	0.022
Lance	0.058	0.026	0.064
E.spinosa	0.003	0.001	0.002
E.steinstansana	0.001	0.002	0.001
E.dilatata	N/A	0.004	N/A
E.chipolaensis	N/A		

 Table 9. Inter-group pairwise genetic distances of COI dataset. Pairwise genetic distances

 calculated using maximum composite likelihood method.

	Core	Lance	E.spinosa	E.steinstansana	E.dilatata
Core					
Lance	0.044				
E.spinosa	0.053	0.059			
E.steinstansana	0.074	0.073	0.082		
E.dilatata	0.072	0.071	0.082	0.083	

	Core	Lance	E.spinosa	E.steinstansana	E.dilatata	E.chipolaensis
Core						
Lance	0.076					
E.spinosa	0.143	0.104				
E.steinstansana	0.126	0.127	0.143			
E.dilatata	0.076	0.12	0.122	0.132		
E.chipolaensis	0.102	0.12	0.122	0.139	0.136	

Table 10. Inter-group pairwise genetic distances of ND1 dataset. Pairwise genetic distances calculated using maximum composite likelihood method.

	Core	Lance	E.spinosa	E.steinstansana	E.dilatata
Core					
Lance	0.059				
E.spinosa	0.08	0.087			
E.steinstansana	0.107	0.109	0.122		
E.dilatata	0.105	0.103	0.111	0.117	

 Table 11. Inter-group pairwise genetic distances of concatenated dataset. Pairwise genetic

 distances calculated using maximum composite likelihood method.

Figure 1. Maximum likelihood analysis of COI dataset. An * indicates bootstrap support >75. Scale bar indicates nucleotide substitutions per site. Dark blue represents *E. steinstansana*. Purple represents *E. dilatata*. Pink represents *E. spinosa*. Orange represents Lanceolate Elliptios. Green represents *Elliptio sensu stricto*.

Figure 2. Maximum likelihood analysis of ND1 dataset. An * indicates bootstrap support >75. Scale bar indicates nucleotide substitutions per site. Dark blue represents *E. steinstansana*. Purple represents *E. dilatata*. Pink represents *E. spinosa*. Orange represents Lanceolate Elliptios. Green represents *Elliptio sensu stricto*. Light blue represents *E. chipolaensis*.

Figure 3. Maximum likelihood analysis of concatenated dataset. An * indicates bootstrap support >75. Scale bar indicates nucleotide substitutions per site. Dark blue represents *E. steinstansana*. Purple represents *E. dilatata*. Pink represents *E. spinosa*. Orange represents Lanceolate Elliptios. Green represents *Elliptio sensu stricto*.

Figure 4. Bayesian inference of COI dataset. An * indicates posterior probability >0.75. Scale bar indicates nucleotide substitutions per site. Dark blue represents *E. steinstansana*. Purple represents *E. dilatata*. Pink represents *E. spinosa*. Orange represents Lanceolate Elliptios. Green represents *Elliptio sensu stricto*.

Figure 5. Bayesian inference of ND1 dataset. An * indicates posterior probability >0.75. Scale bar indicates nucleotide substitutions per site. Dark blue represents *E. steinstansana*. Purple represents *E. dilatata*. Pink represents *E. spinosa*. Orange represents Lanceolate Elliptios. Green represents *Elliptio sensu stricto*. Light blue represents *E. chipolaensis*.

Figure 6. Bayesian inference of COI dataset. An * indicates posterior probability >0.75. Scale bar indicates nucleotide substitutions per site. Dark blue represents *E. steinstansana*. Purple represents *E. dilatata*. Pink represents *E. spinosa*. Orange represents Lanceolate Elliptios. Green represents *Elliptio sensu stricto*.

Figure 7. TCS species haplotype network of COI dataset. Circles represent haplotypes. Colors represent species. Size of circle represents number of individuals sharing a given haplotype. Filled in circles represent implied or unsampled haplotypes. Dashes haplotypes represent one nucleotide difference. Shared haplotypes referred to in text are labeled.

Figure 8. TCS basin haplotype network of COI dataset. Circles represent haplotypes. Colors represent basins. Size of circle represents number of individuals sharing a given haplotype. Filled in circles represent implied or unsampled haplotypes. Dashes haplotypes represent one nucleotide difference. Shared haplotypes referred to in text are labeled.

Figure 9. TCS geographic region haplotype network of COI dataset. Circles represent haplotypes. Colors represent broad geographic region. Size of circle represents number of individuals sharing a given haplotype. Filled in circles represent implied or unsampled haplotypes. Dashes haplotypes represent one nucleotide difference. Shared haplotypes referred to in text are labeled.

Figure 10. Map of COI dataset haplotypes shared across basins. Circles represent geographic

clusters. Colors represent haplotype present in a given geographic cluster.

Figure 11. TCS species haplotype network of ND1 dataset. Circles represent haplotypes. Colors represent species. Size of circle represents number of individuals sharing a given haplotype. Filled in circles represent implied or unsampled haplotypes. Dashes haplotypes represent one nucleotide difference. Shared haplotypes referred to in text are labeled.

Figure 12. TCS basin haplotype network of ND1 dataset. Circles represent haplotypes. Colors represent basins. Size of circle represents number of individuals sharing a given haplotype. Filled in circles represent implied or unsampled haplotypes. Dashes haplotypes represent one nucleotide difference. Shared haplotypes referred to in text are labeled.

Figure 13. TCS geographic region haplotype network of ND1 dataset. Circles represent haplotypes. Colors represent broad geographic region. Size of circle represents number of individuals sharing a given haplotype. Filled in circles represent implied or unsampled haplotypes. Dashes haplotypes represent one nucleotide difference. Shared haplotypes referred to in text are labeled.

Figure 14. Map of ND1 dataset haplotypes shared across basins. Circles represent geographic clusters. Colors represent haplotype present in a given geographic cluster.

Figure 15. TCS species haplotype network of concatenated dataset. Circles represent haplotypes. Colors represent species. Size of circle represents number of individuals sharing a given haplotype. Filled in circles represent implied or unsampled haplotypes. Dashes haplotypes represent one nucleotide difference. Shared haplotypes referred to in text are labeled.

Figure 16. TCS basin haplotype network of concatenated dataset. Circles represent haplotypes. Colors represent basins. Size of circle represents number of individuals sharing a given haplotype. Filled in circles represent implied or unsampled haplotypes. Dashes haplotypes represent one nucleotide difference. Shared haplotypes referred to in text are labeled.

Figure 17. TCS geographic region haplotype network of concatenated dataset. Circles represent haplotypes. Colors represent broad geographic region. Size of circle represents number of individuals sharing a given haplotype. Filled in circles represent implied or unsampled haplotypes. Dashes haplotypes represent one nucleotide difference. Shared haplotypes referred to in text are labeled.

Vita

Raquel Anne Fagundo was born in Wheeling, WV, to Louann and Ramon Fagundo in 1990. She received her Bachelor of Science degree from West Liberty University in 2014 under the guidance of Dr. Zachary Loughman. She is currently employed by the North Carolina Museum of Natural Sciences as the Non-molluscan Invertebrate Collections Manager in Raleigh, NC. She currently resides near Raleigh, NC with her husband and daughter.