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Diagnostic classification Diagnostic Classification Models (DCMs) are 

multidimensional confirmatory latent class models that can classify individuals into 

different classes based on their attribute mastery profiles. While DCMs represent the 

more prevalent parametric approach to diagnostic classification analysis, the Hamming 

distance method, a newly developed nonparametric diagnostic classification method, is 

quite promising in that it does not require fitting a statistical model and is less demanding 

on sample size. However, both parametric and nonparametric approach have assumptions 

of local item independency, which is often violated by testlet based tests. This study 

proposed a conditional-correlation based nonparametric approach to assess testlet effect 

and a set of testlet Hamming distance methods to account for the testlet effects in 

classification analyses. Simulation studies were conducted to evaluate the proposed 

methods. 

In the conditional-correlation approach, the testlet effects were computed as the 

average item-pair correlations within the same testlet by conditioning on attribute 

profiles. The inverse of the testlet effect was then used in testlet Hamming distance 

method to weight the Hamming distances for that particular testlet. 

Simulation studies were conducted to evaluate the proposed methods in 

conditions with varying sample size, testlet effect size, testlet size, balance of testlet size, 

and balance of testlet effect size. Although the conditional-correlation based approach 

often underestimated true testlet effect sizes, it was still able to detect the relative size of 
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different testlet effects. The developed testlet Hamming distance methods seem to be an 

improvement over the estimation methods that ignore testlet effects because they 

provided slightly higher classification accuracy where large testlet effects were present. 

In addition, Hamming distance method and maximum likelihood estimation are robust to 

local item dependency caused by low to moderate testlet effects. Recommendations for 

practitioners and study limitations were provided. 
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CHAPTER I 

 INTRODUCTION 

Most current large scale assessments provide a single score regarding an 

examinee’s unidimensional ability. However, there is an increasing demand for 

diagnostic information about the examinee’s specific skills and attributes. The test takers 

and stakeholders need such information to inform their learning and classroom 

instruction.  Classical test theory and item response theory generally order people on a 

latent trait. These approaches are typically not useful in identifying skills and attributes 

that are mastered or not mastered by examinees.  Diagnostic classification models 

(DCMs) have been developed to measure specific skills and knowledge, and thus provide 

information about the examinee’s strengths and weaknesses in a related cognitive domain 

(Dibello et al, 1995; Junker & Sijtsma, 2001; Hartz, 2002; de la Torre & Douglas, 2004; 

Henson & Templin, 2007; Von Davier, 2008; Rupp,Templin & Henson, 2010). 

A large number of diagnostic classification models have been developed in order 

to describe the correspondence between individuals’ responses and the underlying 

attributes or skills that are required to correctly answer the items in a test. Most 

diagnostic models are constrained latent class models, in which the individuals’ 

proficiency is described in terms of discrete attributes. Individuals are evaluated as either 

having mastered or not mastered each set of skills. Based on his/her mastery profile of the 

skills, the examinee is classified into a specific category. For example, a Number 
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Subtraction test measures four attributes: convert a whole number to a fraction, separate a 

whole number from a fraction, find a common denominator, borrow from whole number 

part, the individual will be classified into one of the 24 =16 categories based on the set of 

skills that have been mastered.  

 Different diagnostic classification models make different assumptions about how 

attributes are used to construct item responses. Conjunctive models assume that all 

measured attributes are required to correctly answer an item, whereas disjunctive models 

assume that only one attribute needs to be mastered in order to have a high probability of 

giving a correct answer to the item.  

Although diagnostic classification models are gathering increased research 

interest and have been applied in a large number of studies such as  mathematical skill 

diagnosis ( Tatsuoka, 1983; Hartz, 2002; de la Torre & Douglas, 2004; Henson, Templin 

& Willse, 2009), language skill diagnosis test (Jang, 2008, 2009; Von Davier, 2008), and 

pathological diagnosis (Templin & Henson, 2006), they have some disadvantages. For 

example, diagnostic classification models heavily rely on maximum likelihood estimation 

(MLE) procedure with expectation maximization (EM) or Markov Chain Monte Carlo 

(MCMC) for model estimation. A large sample size is typically required for these 

estimation methods to obtain accurate parameter estimation, examinee classification and 

model fit testing. The necessity of a large sample size limits the application of DCM. In 

addition, there are always concerns that the models that are applied in diagnosis 

classification analysis are either incorrect or do not fit. In response to those obstacles 

caused by sample-size limitation and model selection in traditional diagnostic modeling, 
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nonparametric diagnostic classification methods were developed as approximation 

methods to classify examinees into different attribute mastery profiles (Willse, Henson, 

& Templin, 2007; Ayers, Nugent, & Dean, 2008; Chiu, 2008; Chiu, Douglas, & Li, 2009; 

Park & Lee, 2011; Chiu & Douglas, 2013;Wang,& Douglas, 2015).  Compared to the 

parametric methods, nonparametric methods have no requirement for large sample sizes 

because no parameters are estimated and they make no assumptions about population 

distribution. 

Though parametric and nonparametric classification methods are different, the 

classification accuracy of both are challenged by local dependencies that exist among 

items because both assume or treat the items in a test as being independent from each 

other. Local item dependencies (LID) can come from multiple sources. In this study, the 

specific focus is on the LID caused by testlets or item grouping.  

A testlet is a section of the test that is comprised of a group of items based on the 

same stimuli or shared passage (Wainer, 1977). Because it requires the examinee to have 

a fair amount of time and requires the mental process to read and comprehend a passage 

or paragraph, it will save time and cost if multiple items are created around one passage. 

Examples of testlets include tests in verbal proficiency, listening comprehension, 

analytical reading, and mathematics. 

It is well known that items sharing a common stimuli yield dependence among 

responses of an examinee. Thus, the response of an examinee to one item could be 

influenced by the answer to other items in the same testlet. However, this 

interdependence among items is often ignored by test models that are used to score 
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examinees. For example, both classical test theory and item response theory are based on 

the assumption of local item independence (LII). LII means that the examinees’ scores on 

different items should not be related when conditioned on examinees’ ability level.  

Nested items within the same testlet are expected to have more interdependency than the 

items from a different testlet. 

It was shown that ignoring this dependency by using a traditional IRT model with 

the LII assumption will result in overestimation of measurement precision and bias in 

item difficulty and discrimination parameter estimates (Yen, 1993; Wainer & Lukhele, 

1997; Bradlow, Wainer &Wang, 1999; Wainer, & Wang, 2000). However, the influence 

of testlet effects on diagnostic classification analysis is less explored. Although methods 

do exist in IRT and DCMs to measure local dependency ( e.g., Yen’s Q3, LD-X2, 

conditional covariance), there is little research in measuring local dependency caused by 

testlets in  nonparametric diagnostic classification analysis. Also, there are few existing 

solutions to account for local dependency in nonparametric classification analysis.  

In response to the above stated obstacles in nonparametric diagnostic 

classification analysis, this study seeks to extend the nonparametric Hamming Distance 

method (NP) proposed by Chiu and Douglas (2013) to testlet-based tests with the 

following goals:  

1) Present a nonparametric method to measure local item dependency 

caused by testlets in diagnostic classification analysis; 
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2) Present a new nonparametric method for testlet based diagnostic 

classification, that is, the testlet nonparametric Hamming distance 

(testlet NP) method;   

3) Investigate the performance of nonparametric methods of local item 

dependency detection in different test conditions; 

4) Investigate the performance of the proposed testlet NP methods in 

comparison to NP method and the traditional DCM methods in 

situations where different levels of local item dependency are present. 

Findings of this study will provide some insights into the impact of testlet effect 

on diagnostic classification analysis and the solution to account for testlet effects. 

Specifically, if the proposed conditional covariance estimation method provides a 

heuristic approximation of the testlet effect, it can be used to refine the items and test 

design and increase the precision of diagnostic classification. Second, the proposed testlet 

NP method is an initial effort to solve the LID issue in nonparametric classification 

analysis. If the method is efficient, it can be applied in practical settings where only small 

sample sizes are available. Third, the comparison of NP methods and traditional 

parametric diagnostic analysis in a variety of testlet conditions will facilitate the 

practitioners’ choice of estimation methods in specific test conditions. 
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CHAPTER II  

LITERATURE REVIEW 

The primary purpose of diagnostic classification analysis is to assign individuals 

to classes according to the skills or attributes they have mastered. Two major approaches 

exist in diagnostic classification analysis. One is the parametric method involving 

mathematical modeling and parameter estimation, the other is the nonparametric 

approach, which does not involve parameter estimation. Both approaches have the 

assumption of local independence. This section begins with a description of parametric 

and nonparametric diagnostic classification methods, then introduces an issue of local 

dependency in diagnostic classification analysis, followed by the attempts in solving local 

dependency issue in traditional diagnostic classification models.  

2.1 Diagnostic Classification Modeling 

Diagnostic classification models (DCMs) or cognitive diagnostic models (CDMs) 

are confirmatory multidimensional latent classification models (Lazarsfeld & Henry, 

1968; Rupp, Templin & Henson, 2010) in that the number of classes and latent categories 

in DCMs are explicit. They are mathematical models that define the probability that an 

examinee correctly answers an item as a function of the examinee’s attribute profile, i.e., 

the presence and absence of a set of attributes, which is typically represented by a vector  

αi = 1 2 k(α ,α ,...,α ) .  
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1  if person i mastered  attribute ;

 

0  otherwise.
ik

k

α

= 


 (1) 

An attribute profile is assumed to provide insights into the examinee’s strengths and 

weaknesses in specific attributes. According to his/her mastery of each attribute, the 

examinee is classified into one of the finite number of latent classes.  

Specifying the attribute mastery status of an examinee by a test requires a Q- 

matrix for any approach and method.  The Q matrix represents the knowledge structures 

of the test and can be viewed as a loading indicator in a confirmatory factor analysis 

(Rupp & Templin, 2008a).  The Q matrix is defined as a J × K matrix where J items are 

represented by rows and K attributes are represented by columns, the entry qjk indicates 

whether or not attribute k is measured by item j.  

 

1  if item  requires attribute ;

 

0  else.
jk

j k

q

= 


 (2) 

Thus, a test with 20 items measuring 4 attributes will also have a 20 x 4 Q matrix.  

In recent decades, a large number of DCMs have been proposed (DiBello, 

Roussos, & Stout, 2007; Rupp &Templin, 2008a) based on the condensation rule, that is, 

the interaction between attributes and items. Those models in the recent literature can be 

categorized into the following categories:  compensatory models and noncompensatory 

models. Under the noncompensatory models, there are conjunctive models and 

disjunctive models. Under the assumption of noncompensatory conjunctive models, the 

examinee must master all attributes required by the item in order to get the item right. 
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Under the disjunctive noncompensatory models, mastering a subset of required skills by 

the item is sufficient for having a high probability of answering the item right. Mastery of 

more attributes does not dramatically increase the probability.  Common conjunctive 

models include Deterministic Input, Noisy “And” gate model (DINA; Junker & Sijtsma, 

2001), Noisy Input, Deterministic “And” gate model (NIDA, Junker & Sijtsma, 2001), 

and the Reparametrized Unified Model (RUM; Hartz, 2002), whereas the most famous 

example of a disjunctive model is the Deterministic Input Noisy “Or” gate model (DINO; 

Templin & Henson, 2006). In contrast to noncompensatory models, compensatory 

models allow the probability of giving a correct answer to increase with the mastery of 

additional attributes. The general diagnostic model (GDM; Von Davier, 2005, 2008) and 

compensatory RUM (a special case of GDM; Hartz, 2002) are the two most commonly 

used compensatory models.  

Although there are a plethora of DCM models, generalized models or frameworks 

have been developed to subsume many traditional DCM models, such as GDM ( Von 

Davier, 2005, 2008 ), the log-linear cognitive diagnostic model ( LCDM;  Henson, 

Templin & Willse, 2009), and Generalized DINA(G-DINA; de la Torre, 2011). This 

study uses the LCDM as its modeling framework because it is easy to develop new 

models by adding or changing parameters within this framework. In the next sections, 

more detailed discussion of some major noncompensatory models and compensatory 

models, as well as the LCDM, are provided. 
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2.1.1 Noncompensatory Models 

Henson et al. (2009) defined noncompensatory models as models where the 

relationship between any attribute and the item response depends on the examinee’s 

mastery status on the remaining attributes measured by that item. Based on the 

dependency between item response and attribute mastery, noncompensatory models can 

be further divided into conjunctive and disjunctive models. 

The DINA model is probably the most commonly used conjunctive model. In the 

DINA model, items divide the examinees into two classes, examinees who have mastered 

all attributes required by the item and those who have not.  Let ξij indicate whether person 

i mastered all skills required by item j, 

 
1

jk

K
q

ij ik

k

ξ α
=

= ∏  (3) 

where s is the slipping parameter and represents the probability that an examinee misses 

item j when  possessing all attributes required by item j, whereas g, the guessing 

parameter, represents the probability of an examinee giving a correct answer even if 

he/she hasn’t mastered all attributes required by item j.  The parameters js  and jg are 

defined as  

 ( 0 | 1)j ij ijs P X ξ= = =  (4) 

 ( 0 | 0)j ij ijg P X ξ= = =  (5) 



 10

Thus in the DINA model, each item has one slipping parameter and one guessing 

parameter. The probability of a person giving a correct response is defined as  

 
(1 )

( 1| , , ) (1 ) ij ij

ij ij j j j jP X s g s g
ξ ξξ −= = −  (6) 

Although the DINA model has been widely used because of its simplicity and less 

demands on sample size, one concern is that the DINA model is too restrictive because it 

partitions examinees into only two classes per item: the examinees who have mastered all 

attributes required by item j and examinees who have not mastered all attributes. That is, 

the examinees lacking one attribute will have the same probability of answering the item 

correctly as examinees lacking more attributes. However, there are situations where the 

examinee has a higher probability of answering the item right when he/she only lacks one 

required attribute as opposed to lacking more required attributes. 

Additional conjunctive models have been developed to account for this concern. 

One such model is the Noncompensatory Reparametrized Unified Model (NC-RUM, 

Dibello et al., 1995; Hartz, 2002; Dibello et al., 2007). The model has two variants, one 

of which is called the full NC-RUM, the other is called the reduced NC-RUM. In this 

section, the reduced NC-RUM is discussed.  

The reduced NC-RUM accounts for different contributions of each attribute and 

each item.  This model is based on the unified model of Dibello et al.(1995). Given an 

examinee’s attribute profile αi, the reduced RUM defines the probability that examinee i 

correctly answers item j as  
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* (1 )*

1

( 1| ) jk ik

K
q

ij i j jk

k

P X r
αα π −

=
= = ∏  (7) 

Where *
jπ  is defined as the baseline probability of a correct answer when all the skills 

required by item j are mastered and correctly applied. When compared to the DINA 

model, *
jπ is equal to not slipping (i.e., 1-sik). Parameter *

jkr  represents the penalty to the 

probability of correct response to item j when attribute k is not mastered. For an examinee 

who has not mastered one skill, the item probability is reduced by a factor equal to *
jkr  for 

each nonmastered skill.  The larger *
jkr  is, the smaller the penalty. The parameter *

jkr  is 

constrained to be 0 ≤ *
jkr  ≤1. 

Both the DINA model and the reduced NC-RUM assume that the examinee 

should master all attributes required by the item in order to have the highest probability 

of giving a correct answer. However, in some situations, mastery of one attribute is 

enough to answer the item correctly. 

Disjunctive models assume that mastery of an additional attribute does not 

increase the probability of a correct answer or it just increases the probability relatively 

little. Based on the DINA model, Templin and Henson (2006) proposed the DINO model 

to address this situation. Similar to the DINA model, there is only a slipping parameter 

js  and a guessing parameter jg  in the DINO model.  Instead of using ijξ , they used ijω  to 

represent the latent variable and it is defined differently 
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1

1 (1 )
q jk

K

ij ik

k

ω α
=

= − −∏  (8) 

The value ijω  indicates whether person i has mastered at least one skill required by item j, 

ijω =1 when the examinee mastered at least one attribute required by the item and ijω = 0 

only when the examinee has not mastered any required attributes. Hence, in the DINO 

model, the probability that an examinee correctly answers an item is defined as  

 ,( 1| , ) (1 ) ij ij

ij ij j j j jP X s g s g
ω ωω= = −  (9) 

The DINO model has similarity to the DINA model in that examinees only have 

two probabilities of a correct response. The class of examinees that mastered one skill 

have the same probability of giving a correct answer as the examinees that master all 

measured skills.  

2.1.2 Compensatory Models 

In compensatory models, the conditional association between one item and one 

required attribute is independent of the examinee’s mastery status of other attributes 

(Henson et al., 2009). Examples of compensatory DCMs include the additive GDM 

models (Von Davier & Yamamoto, 2004) and the compensatory version of RUM model 

(C- RUM; Hartz, 2002). C- RUM is a special case of GDM (Von Davier, 2005). GDM 

generalizes to dichotomous and polytomous responses as well dichotomous and 

polytomous Q matrix entry (attributes). In addition, with an interaction term added, it 
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becomes a conjunctive model. C-RUM only considers the additive portion and 

dichotomous responses and its item response function is  

 

*
*

1

*
*

1

exp( )
( 1| )

1 exp( )

k

ik jk jk jk

ij i
k

ik jk jk jk

r q
P X

r q

α π
α

α π

=

=

−
= =

+ −

∑

∑
 (10) 

 In the C-RUM, the probability is at the lowest when no required attributes are 

mastered and the kernel = - *
jπ  (similar to a guessing parameter).  The probability of a 

correct answer is increased as a function of each measured attribute that is mastered. The 

increase rate is defined by *
jkr  ( *

jkr  > 0).  This is different from the reduced RUM model, 

where the probability of a correct response decreases as a function of each required 

attribute not being mastered at the rate of *
jkr . 

2.1.3 The LCDM Framework 

Henson et al. (2009) developed the LCDM by adding interaction terms to the 

GDM that account for the interaction between skills, and restricting the application to 

dichotomous item response and attribute. Therefore, as Henson et al. (2009) suggested, 

LCDM can also be understood a simple extension of the binary special case of the GDM.  

Under LCDM, the probability that an individual with attribute profile ai giving a 

correct response to item j is defined as   

 
,0

,0

exp[ ( , )]
( 1 | )

1 exp[ ( , )]

j

j

T
j jk ik

ij i T
j jk ik

h q
P X

h q

λ λ α
α

λ λ α
+

= =
+ +

 (11) 
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Where the meanings of αik and qjk are the same as previously described, ,0jλ  is the 

intercept and represents the log-odds when an examinee does not possess any required 

attributes, λj represents the weight for the jth item, and ( , )
j

T
jk ikh qλ α is the sum of linear 

combinations of the interaction effect and all main effects of the required attributes. h ( ) 

is the mapping function which relates slope (weight), attributes, and Q matrix to the 

response function. The function ( , )
j

T
jk ikh qλ α  is unfolded as 

 
1

, ,1 ,( , '),2 ' '

1 1 '

( , ) ...
j

k k k
T

jk ik j k k jk j k k k k jk jk

k k k k

h q q q qλ α λ α λ α α
−

= = >
= +∑ ∑∑  (12) 

Here , ,1j kλ  is the weight for the main effect of attribute k in item j, and ,( , '),2j k kλ is the 

weight for the interaction effect of attribute k and k’ for item j. There are as many main 

effects as the required attributes by item j. 

 By constraining slope parameters, the item response functions for many well-

known DCMs such as DINA, DINO, and C-RUM can be formed. For example, when the 

main effects in Equation 11 are constrained to zero, and only the highest interaction 

remains, the probability of a correct response for the DINA model is expressed as 

 
,0 ,C

1

,0 ,C

1

exp( )

( 1| )

1 exp( )

jk

jk

k
q

j j k

k
j k

q

j j k

k

P X

λ λ α
α

λ λ α

=

=

+
= =

+ +

∏

∏
 (13) 

Where C represents the highest interaction. If any attribute is not mastered, the whole 

interaction effect will be zero.  
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For a test that measures two attributes, when constraining ' 'jk jk jkkλ λ λ= = − , 

Equation 11 becomes the item response function of the DINO model 
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The sign in front of jλ can be generally determined by 1( 1)c−− , where c indicates the type 

of effect. For example, c is equal to 1 for main effects, and equal to 2 for two-way 

interaction effects, and so on.  

When the slope parameters for interactions are fixed at 0 and only the main 

effects are kept, Equation 11 becomes the item response function of the C-RUM model,  
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Several software packages have the capacity of estimating the LCDM, such as Mplus 

(Muthen & Muthen, 1998; Rupp, Templin, & Henson, 2010; Templin, 2013), R “CDM” 

package, and the flexMIRT computer software (Cai, 2012). In addition, the LCDM has 

been used in a few studies to develop new diagnostic models (Choi, 2010; Hout & Cai, 

2012; Hansen, 2013). 

2.2 Nonparametric Diagnostic Classification 

All DCMs discussed previously have been estimated with the EM algorithm or by 

Markov Chain Monte Carlo (MCMC). Those estimation algorithms usually require large 
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sample sizes and involve heavy computing procedures with special software, which limits 

the breadth of DCM application (Choi & Douglas, 2013; Wang & Douglas, 2015). 

Nonparametric classification analyses are alternatives to parametric DCMs in this aspect. 

Compared to DCMs, nonparametric methods do not involve any probability computation 

or parameter estimation, and thus typically do not require large samples size and heavy 

computing procedures. A few nonparametric classification methods have been proposed 

in recent years. In the following paragraphs, one hybrid method that includes both 

nonparametric computation and parametric information and two nonparametric methods 

are discussed. 

2.2.1 Hamming Distance Method 

Chiu and Douglas (2013) used the Hamming distance to determine the cognitive 

profile that generates the closest ideal response pattern to the observed response pattern.  

To distinguish it from other nonparametric methods, we call it Nonparametric Hamming 

Distance Method (NP). NP does not use any item parameters of any diagnostic models 

and thus can be applied with any sample size.  In their simulation study, Chiu and 

Douglas (2013) found that NP performed perfectly when the slipping and guessing 

parameters are 0, and has an accurate classification rate higher than .67 when the model 

is the DINA or NIDA with the maximum slipping and guessing parameters no greater 

than .3. NP showed superiority to DINA-EM when the Q matrix had misspecified entries. 

Specifically, it deteriorated less than DINA-EM when the percentage of Q matrix 

specifications increased. However, its performance severely deteriorated when the model 

is misspecified. 
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In information theory, the Hamming distance between two equal-length strings is 

the number of paired symbols at the same location that are different from each other. It 

measures the minimum number of substitutions needed to change one string to the other 

string. For example, in string A = (1, 1, 0, 1), and string B = (1, 0, 1, 1), we can observe 

two pairs of numbers that are different. Therefore, the Hamming distance of string A and 

B is 2.  Hamming distance is often expressed as  
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= −∑  (16) 

                                    yj is jth symbol in vector y 

                                   jη is the jth symbol in vector � 

Because the Hamming distance represents the number of paired symbols at the 

same location that are different from each other, it can only be applied to dichotomous 

DCMs, where the attribute and Q matrix entry are both dichotomous. In a test that 

follows the DINA rule, the combination of αc vector and Q matrix creates an ideal 

response (i.e., expected response)
1
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= ∏ , which is the jth component of the ideal 

response pattern ��. Only if the examinee has mastered all attributes that have been 

measured, ���  =1, otherwise  ���= 0. In a test that follows the DINO condensation rule, 

the combination αi vector and Q matrix will create an ideal response
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item, it will create a value of  ���=1, if the examinee has not mastered any attribute 

requested by the item,  ���= 1. Thus �� is a vector filled with binary values 1’s and 0’s. 

The value of  ��� relies on the Q matrix and is a function of the underlying attribute 

pattern αi. For each one of the 2K attribute patterns, an ideal response patterns  ��, 

�	,  �
, �	� can be constructed. Because  ��� is determined by αi, the distance between the 

observed response pattern and the ideal response pattern under attribute αm is defined as 

D (yi, αm) for m = 1, 2,…, 2k
. 

Classification is achieved through minimizing the distance between the observed 

response pattern and ideal response patterns under all attribute profiles, which will 

produce the estimator  

 ˆ arg min D( , ) (1,2, , 2 )k
i i my mα α= ∈ K  (17) 

The ideal response pattern that has the minimum Hamming distance from the 

observed response pattern is considered the estimated response pattern, and its 

corresponding am vector will be the examinee’s estimated attribute profile. Wang and 

Douglas (2015) mathematically proved that the consistency of the NP method does not 

depend on sample size. 

Chiu and Douglas (2013) also proposed the weighted NP method. In this method, 

the distance between each pair of ideal item response and observed item response is 

weighted by the inverse of the observed item variance. Therefore, items with smaller 

variance will have larger weights. 
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Chiu and Douglas’s (2013) simulation study found that weighted NP resulted in 

fewer ties, that is, there were less ideal response patterns that have the same distance with 

the observed response pattern. However, this weighting scheme contradicts our 

knowledge in both classical test theory and item response theory, which agrees that an 

item with larger variance typically provides more information about the ability 

estimation, whereas smaller variance may indicate that this item has low discriminality.  

McCoy and Willse (2014) compared the performance of NP and another 

diagnostic classification analysis, neural network approach (Shu, Henson, & Willse, 

2013) with MLE as the baseline estimation method. Data were generated from the DINA 

model while manipulating several factors including item numbers, sample size, number 

of attributes, and correlation among attributes.  Findings suggested that NP moderately 

outperformed neural network approach (NN) and was comparable to MLE in classifying 

examinees in complicated structure, and slightly outperformed MLE and NN in simple 

structure conditions. NN was comparable when test was short, the number of attributes 

was larger, had simple structure, and low correlation among each other. 

2.2.2 Cluster Analysis Approach 

Some researchers attempted to use cluster analysis to classify examinees (Willse, 

Henson, & Templin, 2007; Ayers, Nugent, & Dean, 2008; Chiu, Douglas, & Li, 2009; 

Park,& Lee, 2011). Take Chiu, Douglas and Li’s (2009) cluster analysis approach to 
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diagnostic classification for instance. In this method, the ith examinee’s kth attribute 

scores 1 2( , ,..., )i i i iKW W W W=  are first estimated by a sum-score for attribute k using only 

the items measuring each attribute 
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The vector W was then taken as the entry for a user-selected cluster analysis (e.g., 

K-mean method and hierarchical agglomerative cluster analysis) with a pre-defined 

number of clusters as 2K.  Chiu et al. (2009) showed that the K-means cluster analysis 

and hierarchical agglomerative cluster analysis (HACA) were quite comparable to DINA-

EM classification when the number of test items is over 4.  Although the classification 

results were better for DINA-MMLE and K-means when the sample size N=500 than 

when N=100, this trend was not true for HACA because it does not involve fitting either 

item parameters or cluster centers. This result suggests that the cluster analysis approach 

is influenced by test size but not by sample size. 

2.2.3 Sum-Score Approach to Attribute Classification  

In addition to the nonparametric and parametric methods, Henson, Templin and 

Douglas (2007) proposed a hybrid approach which combines attribute sum-score and 

mastery/nonmastery cutoffs to estimate attribute mastery. The cutoffs were estimated 

through the DCM model. Three different methods of computing sum-score were 

proposed, and they are the simple sum-score (SSS), the complex sum-score (CSS), and 

the weighted complex sum-score (WCSS). SSC and CSC are computed in the same way 
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as in the cluster analysis approach (Equation 19), except that SSC is based on simple 

structure items, whereas CSC is based on complex structure items. The limitation of SSC 

and CSC is that both assume all items contribute equally in measuring the attributes. As 

an alternative, WSC weighs each score by terms formed by the RUM calibrated item 

parameters, *π and *r . 

 * *
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ik j j ij jk

j

W r Y qπ
=

= −∑  (20) 

Simulation studies (Henson et al.,2007) with 10,000 examinees found that the 

performance of the three methods are comparable to RUM classification, and WCSS is 

always more accurate than the other two sum-score methods in different test lengths-, 

attribute number- and correlation- conditions. This result suggests that the use of sum-

scores combined with model-based cutoffs can be applied in settings where simple 

diagnostic classification is desirable. However, one limitation of WCSS is that it requires 

the pre-calibrated item parameters in order to find the weights, another limitation is that 

the cutoff scores are set by finding the cutoffs of attribute mastery in the population 

through model calibration, which weakens its benefit in diagnostic classification over the 

parametric approach. 

2.3 Local Item Dependence 

Conditional independence of item scores or local item independence has been 

assumed in classical true score theory, item response theory, latent class analysis, factor 

analysis, and diagnostic classification modeling (Lord & Novick, 1968; Yen, 1984, 1993; 
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Rupp & Templin, 2008; Rupp, Templin & Henson, 2009). Local item independence (LI) 

is defined such that an examinee’s responses to all items are independent of each other 

while conditioning on his/her latent ability (or latent abilities combinations).   

Because of the assumption of LI, item response theory states that given an 

examinee’s ability θ, the probability that the examinee correctly answers K- independent 

dichotomous items is the product of probability of answering each item correctly.  

 1 2 1 2( 1, 1,..., 1| ) ( 1| ) ( 1| ) ... ( 1| )j kP x x x P x P x P xθ θ θ θ= = = = = × = × × =  (21) 

For DCM, “conditional independence…means that the response on any given 

item is only a function of the set of measured attributes” (Rupp, Templin & Henson, 

2009, p.159).  Mathematically, conditional independence in DCM is expressed as 

 
1

( | ) ( | )
J

i i

j

P X P xα α
=

= ∏  (22) 

Conditional independence is also an assumption for nonparametric NP methods. 

Wang & Douglas (2015) explicitly specified two assumptions of NP methods: 1) for 

examinee i, his/her item responses to all J items are statistically independent conditional 

on attribute vector αi ; 2) for all examinees, their responses to a specific item are 

statistically independent. Local item independency assumption is necessary for the 

consistency of nonparametric classification.  

Macdonald (1981, 1994) and Stout (2002) argued that the LID assumption can be 

weakened in a way that the item responses are mutually independent. When the weak 

LID holds, it is more likely that the strong LID is met (McDonald & Mok, 1995). 
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2.3.1 Source of Local Dependency 

When there is shared variance between items conditional on the measured ability 

or attribute profiles, the LI assumption is violated, and the source of local item 

dependency (LID) should be investigated. LID can be categorized into two major 

categories: those caused by dimension of measurement (i.e., construct 

underrepresentation) and those caused by nuisance variations (i.e., construct irrelevant 

variance). The former should be accounted for in the modeling process. For example, a 

test contains items that are designed to assess distinct components belonging to a general 

common latent trait (Steinberg et al., 2000), or a multidimensional test that is modeled 

with unidimensional IRT models (Ackerman, 1992). The other causes are really 

considered nuisance dimensions and are hard to be accounted for by an extra dimension 

in the model. For example, Yen (1993) identified several potential causes of local 

dependencies:  1) external assistance or interference, such as instruction assistance may 

help students perform better on some items or disruption may influence the students’ 

score on some items negatively; 2) item chaining, when items are organized in steps, the 

answer to previous items will help the answer to later items; 3) content, when items that 

measure the same content are often locally dependent; and 4) passage dependence, in that 

several items share a passage or have the same setting, LID can occur. Those items are 

often called testlet items. LID among testlet items could arise from the student’s 

differential level of special interest or background knowledge about the passage or the 

information used to answer the items is interrelated in the passage, or the item-chaining 

effect.  
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Other sources of LID could come from speediness, fatigue, item format (construct 

response), and raters. Those nuisance dimensions are generally due to test design.  Even 

though the fitted models are appropriate and number of ability dimension specified are 

sufficient, those nuisance dimension could still cause shared variance among items.  

In diagnostic classification analysis, LID is often interpreted as the result of under 

-specification of Q matrix (Tatsuoka, 1983), where the omitted attributes might cause a 

dependency among items. With an incomplete Q matrix, examinees with certain attribute 

profiles could not be estimated (Henson, 2004).  If those examinees happen to have 

different distribution for those unspecified attributes, differential item functioning (DIF) 

might occur, where examinees with the same attribute profile have different probabilities 

of answering an item right are from different groups (Zhang, 2006; Hou, de la Torre & 

Nandakumar, 2014). Similarly, when polytomous attribute spaces are modeled with 

dichotomous models, LID could occur because there are still unexplained variances 

among examinees.  

In addition to the incompleteness of the Q matrix and differential item 

functioning, the previously listed sources in Yen (1993) such as item chaining and 

passage dependence could also cause LID in DCM. For example, many diagnostic 

assessments regarding English language proficiency are based on reading comprehension 

passages (Buck, Tatsuoka, & Kostin, 1997; Jang, 2008, 2009; Sawaki, Kim & Gentile, 

2009)  Though the under-specification of Q matrix and  DIF  has been widely studied in 

DCM literature (e.g., Zhang, 2006; Rupp & Templin, 2008b; DeCarlo, 2011; Hou, de la 
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Torre & Nandakumar, 2014; Macdonald, 2014),  LID caused by within testlet 

dependency has not been frequently discussed.  

Locally dependent items contribute less information about the person’s assessed 

ability than locally independent items because the more that a pair of items are related, 

the more they are redundant to each other. Ignoring LID might result in biased estimation 

of item and person parameters, overestimation of reliability and possibly the 

misinterpretation of measured latent space (Yen, 1984, 1993; Sireci, Thissen, & Wainer, 

1991; Wainer & Thissen, 1996; Chen & Thissen, 1997; Embretson & Reise, 2000).  

Ackerman (1987) reported that when LID exists, the item discrimination parameters of 

locally dependent items are over-estimated, difficulty estimates tend to homogeneous. 

Yen (1993) found information function is inflated when LID items were treated as 

independent items. When fitting a 3PL model to testlet item data, Wainer & Wang (2000) 

found that the estimates for the item discrimination and guessing parameters were 

substantially overestimated, although the item difficulties were well estimated. DeMars 

(2006) found that the fitted 3PL model inflated the reliability for ability estimates when 

the LID exists.  

How examinee parameters are influenced by testlet effects or LID were not as 

thoroughly addressed by studies of LID. Baghaei & Aryadoust (2015) compared the 

multidimensional Rasch model and unidimensional model when testlet effects were 

present, and found that the ability estimations by the two models are close to each other. 

Specifically, the overall theta variance is 1.73 by the four-dimensional model and 1.70 by 

the unidimensional model.  The study by Jiao, Kamata, Wang and Jin (2012) has similar 
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findings where the calibration models (Testlet model, Rasch model, and Multilevel 

Model) do not have significant impact on person ability calibration bias. Another study 

by Jiao & Zhang (2014) found that ignoring item clustering effects produced higher 

errors on item parameter estimates but not on the accuracy of ability parameter estimates, 

while ignoring person clustering effects yielded higher total errors in ability parameter 

estimates but not in item parameter estimates. 

 McCoy (2015) investigated the effect of increasing systematic within-skill profile 

variation using DCMs caused continuous abilities variation on skill mastery 

classification. It was found when there was LID, the difference between nonmastery and 

mastery of attribute profile on a continuous ability, the classification accuracy notably 

dropped. 

In summary, studies of LID in item response theory generally found that LID 

could cause inaccurate parameter estimation and overestimation of test precision but had 

less impact on person ability estimation. Though, the study on the influence of LID 

caused by testlet effects on parametric and nonparametric diagnostic classification 

analyses is rather scarce. While testlet effects do not have a significant impact on 

classification accuracy in IRT study, how testlet effects impact classification accuracy in 

diagnostic classification modeling is not well understood. 

2.3.2 Detection of Local Item Dependency 

As previously mentioned, the usefulness of latent ability estimation and the 

precision of item parameter estimation depends on specifying the correct form of the item 

response function and the assumptions of LI, monotonicity, and unidimensionality. LID 
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and unidimensionality are usually discussed together.  Because of the importance of LID, 

a variety of LID checking procedures have been developed, some are parametric 

approaches like Yen’s Q3 (Yen, 1984), Chen & Thissen’s (2000) G2 and LD-X2, the 

others are nonparametric procedures such as Mantel-Haenszel test and conditional 

covariance based approach. In parametric procedures, a unidimensional model is fit to the 

data, then LID is tested between each item pairs. If the LI assumption fails, a 

multidimensional model or a unidimensional model that allows for LID is needed. In 

contrast with parametric LID detection, nonparametric LID assessments do not require 

model specification. In the following, a few parametric LID measurement indices and a 

nonparametric LID detection method are discussed. 

2.3.2.1 Parametric Measurement of LID 

Yen’s Q3 (Yen, 1984), Chen and Thissen’s G2 and LD-X2 (Chen & Thissen, 

2000) are all indices to assess item-pair LID.  Among them, Yen’s Q3 is most commonly 

used in IRT (Yen, 1984, 1993; Zenisky, Hambleton, & Sireci, 2006; Pommerich & 

Segall, 2008). It is defined as the correlation between a test taker’s residuals on a pair of 

items after fitting a 3PL to the data. The computation is given by 

 ( )ij ij ij id x P θ= −  (23) 

 
'3 ' j jjj d dQ r=  (24) 

Where ijd is the examinee’s residual of the jth item, ijx  is the observed score of the ith 

examine on the jth item, ( )ij iP θ  is the probability that the ith examinee gives correct 
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response to the jth item, or expected raw score for a dichotomous item. The correlation of 

these scores taken over examinees is 3ijQ . Q3 can be transformed to a Z score which has a 

normal distribution. It has a mean of 0 and a variance of 1/ (N-3).  

 LD-X2 reflects the discrepancy between observed and expected counts after the 

data is fit to a model. It is computed from the observed and expected bivariate response 

frequencies for a given item pair. Chen and Thissen (1997) proposed to use Pearson 2χ  

and likelihood ratio 2G  to measure the discrepancy. The two statistics are computed in 

the following manners (Liu, 2011), 
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Where 
p qx xO and 

p qx xE respectively are the observed and expected bivariate response 

frequencies for a given item pair.  The observed cell counts can simply be computed by 

crosstabulating all the examinees’ dichotomous responses, the expected (marginal) 

frequencies are obtained by taking the product of correct response probabilities and 

incorrect response probabilities of the given item pair and then integrating the products 

over the latent space (θ )   

 1 1( ) ( ) [1 ( )] [1 ( )] ( )
p q

p q p q
x x i j i jE N P P P P f dθ θ θ θ θ θ− −= − −∫  (27) 
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It was found that Yen’s Q3 often results in negative bias because the residuals are 

calculated by estimated θ that relies on all item responses (Yen, 1984). Most of all, if the 

fitted model is wrong, the resulting index might fail (Hattie, 1984). On the other hand, 

sufficient sample size is required for computing Chen and Thissen’s (1997) LD-X2 and 

2G  that use the estimated marginal frequencies from a fitted 2PLM or 3PLM.  

2.3.2.2 Item Pair Conditional Covariance 

The nonparametric measurement of LID is based on the conditional covariance 

structure of the item scores. The conditional-covariance (CC) based approaches are 

widely used in nonparametric IRT (Birnbaum, 1968; Rasch, 1960) based research and 

application (Stout, 2001). For example, a few CC based approaches have been proposed 

to detect multidimensionality, such as DIMTEST (Stout, 1987; Nandakumar & Stout, 

1993; Stout, 1987; Stout, Froelich & Gao, 2000), HCA/CCPROX (Roussos, Stout, & 

Marden, 1998), and DETECT (Kim, 1994; Zhang & Stout, 1999). In contrast with 

parametric methods, nonparametric procedures do not depend on any parametric form for 

item response functions. In addition, the previously mentioned procedures are all based 

on conditional covariance of the item pairs. The assumption of using item pair 

conditional covariance to estimate multidimensionality is that the covariance of two item 

response scores conditional on the target θ or θs should be zero or a small negative value. 

Let Ui and Uj denote all the examinees’ responses to item i and j, when weak local 

independency holds, 

 cov( , | ) 0i jU U θ =  (28) 
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The number correct score 
( )ijS −  is often used to represent theta when computer item-pair 

conditional covariance.  

 ( )
ˆcov( , | ) 0i j ijU U S − =  (29) 

( )ijS −  is the sumscore with scores on items i and j excluded.  Douglas, Kim, Habing and 

Gao (1998) further expanded the ideal of conditional covariance to detecting LID in 

testlet items, that is, conditional on an unidimensional θ and λ. ( 1| , )i iP U θ λ= and 

( 1 | , )j jP U θ λ=  are increasing in each of the latent variables. The parameters θ and λ, 

respectively, are the target ability or the ability that a given test is assumed to measure, 

and the nuisance ability which is not the construct of interest but influences the 

examinee’s response to the item. To include multidimensionality into the assumption, 

Douglas et al (1998) also pointed out that LID can only hold on complete space ( ,Θ Λ) 

where  

 1( ,..., )nλ λΛ =  (30) 

 ( , | , , ) [ | , ] [ | , ]i i j j i j i i i j j jP U u U u P U u P U uθ λ λ θ λ θ λ= = = = =  (31) 

for i j≠ ; iλ  and 
jλ  represents the nuisance dimension measured by item i and item j 

respectively. This situation can be found where a test consists of stand-alone items that 

measure a distinct nuisance dimension in addition to the target ability (Douglas et al., 

1998). 
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In diagnostic classification modeling, unidimensionality is not assumed. Instead, 

the attribute profile is considered as the complete latent space. Extending CC-approach to 

diagnostic classification modeling, if the test meet the LI assumption, it must satisfy  

 ( , | ) [ | ] [ | ]i i j j i i j jP U u U u P U u P U uα α α= = = = =  (32) 

If LID exists among items within the same passage, the average cov( , | ) 0i jU U α >  over 

all item pairs within the same testlet, and large average cov( , | )i jU U α  suggests large 

LID. Approximating testlet effect with LID, larger cov( , | )i jU U α  suggests larger testlet 

effect size.   

2.4 Strategies for Dealing with Local Item Dependency 

Various approaches in IRT modeling have been proposed to account for the 

construct relevant and irrelevant LID. For example, the Mixture Rasch model was 

proposed to address LID caused by un-modeled dimensions that occurred because latent 

classes had been combined (Rost, 1990). 

There are two existing approaches that address the issue of LID in testlet-based 

tests. The first approach is to fit the data with a unidimensional polytomous model where 

all items associated with a common stimulus are combined to create one polytomous item 

(Lee & Kolen, 2001; Cao, Lu &Tao, 2014). This approach is relatively easy but may lose 

the item response pattern information due to combining items (Sireci, Thissen & Wainer, 

1991; Zenisky, Hambleton, & Sireci, 2002). The second approach retains item-level 

information by explicitly modeling LID, such as the bifactor model (Gibbons & Hedeker, 
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1992) and the testlet model (Bradshaw & Wainer, 1999; Wainer et al., 2000; Wainer et 

al., 2007; Wang & Wilson, 2005). 

The bifactor model is a hierarchical factor model and a special case of the 

multidimensional model.  Equation 35 is the item response function of a 2PL bifactor 

model (Reise, Bonifay & Haviland, 2012). 
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1ja = general factor discrimination parameter for item j, 

jka = group (testlet) factor discrimination parameter for item j, 

jd = multidimensional intercept parameter for item j, 

1iθ = general ability score for examinee i, and  

ikθ = group (cluster specific) trait score for examinee i. 

In a bifactor model, an item j loads on two dimensions: a cluster specific factor k 

and a general factor “1”. The cluster-specific dimensions are independent of each other 

conditioning on the general factor.  The specification of a general factor is to account for 

the association of items that is not explained by cluster-specific factor. If the item 

discrimination parameters within a testlet are constrained to be equal, that is, remove the 

subscript j in 
jka , the bifactor model becomes a 2PL testlet model.   

As in IRT, LID in DCM is related either to measured attributes or nuisance 

dimensions. The former may be caused by an underspecified Q matrix or when multiple 

strategies are used by examinees. There are models developed to account for the multiple 
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strategies that  examinees may use to approach an item, such as the multiple-choice 

model multiple-strategy deterministic, inputs, noisy ‘‘and’’ gate model (MS- DINA; de la 

Torre & Douglas, 2008; Huo & de la Torre, 2014).  The incompleteness of Q matrix 

specification can be solved by specifying additional attributes in the Q matrix. Instead of 

specifying another Q matrix or additional attributes, the full NC-RUM model includes a 

continuous residual ability cη to capture the influence of the attributes that are not 

captured by the Q matrix. The full NC-RUM is defined as 

 
*(1 )*( 1| , ) [ ] ( )ca iaq

ic ic c c i i ci cP X r P
α

απ α η π η−= = = Π  (34) 

where αc is the vector with all attribute mastery indicators for latent class c, *
iπ  and *

iar  

has the same meaning as in reduced NC-RUM, and respectively is, the baseline 

probability of a correct answer when all the skills required by item j are mastered and 

correctly applied, and the penalty to the probability of correctly answering item j when 

attribute k is not mastered. ( )ic cP η is the probability for item j with difficult parameter c, 

and it is defined as  
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Equation 35 implies that ( )ci cP η  gets smaller when the value of ci gets smaller, a 

large value of ci indicates that the item is not influenced much by the ability beyond the 

attributes specified in the Q matrix. On the other hand, a low ci, (e.g. ci < 1) indicates that 

the item requires more on unspecified attributes in the Q matrix.    
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In the full NC-RUM model, cη  is a measure of the undifferentiated “ability” of 

the respondent in class c that is associated with all the unspecified attributes (Rupp, 

Templin & Henson, 2010).  As discussed in the previous paragraph, this residual ability 

cη  is only relevant when ci is small.  When ci is large, ( )ci cP η is very small for lower cη  

values, and essentially 1 for medium to high cη  values. In another words, a large ci 

indicates that only respondents with lower ability draw on cη , the unspecified attributes 

(Rupp, Templin & Henson, 2010).  Since cη  absorbs all unspecified attributes or 

unaccounted shared variance, it can also be used to explain the testlet-specific abilities.   

In the testlet model, a testlet effect only accounts for the shared variance of the 

items within the same testlet, the number of testlet effects corresponding to the number of 

testlets in a test.  Both cη  and the testlet effect are considered as random effects. That is, 

regardless of their mastery profile, all examinees are equally likely to be at a certain level 

of the residual ability. Examinees that mastered all Q matrix specified attributes might 

have lower residual ability, or have high residual ability but need not apply it, whereas 

examinees who have not mastered the specified attributes might be high in that residual 

ability.  

A similar approach to the full NC-RUM in accounting for LID in diagnostic 

classification modeling is the DCM Mixture Rasch Model (DCMixRM; Choi, 2010). 

DCMixRM combines the LCDM and Rasch models in order to model both discrete 

attributes and the continuous latent ability. Specifically, the LCDM portion of the model 
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provides detailed profile information, and the Rasch portion captures the quantitative 

difference between persons within a latent class.    

The second approach is to model the dependency but consider it as a nuisance 

dimension without estimating it. For example, Hansen (2013) extended the development 

in hierarchical item factor analysis to diagnostic classification modeling and proposed a 

hierarchical item response model (i.e., testlet DCM) to account for LID caused by 

nuisance dimension. A random effect (error effect) was added to the LCDM framework 

to account for dependency among items within the same item cluster (i.e., testlet). For a 

polytomous item response, the cumulative response probability of the hierarchical item 

response model for two attributes is given by   
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where ��, is the slope of item j on the cluster-specific factor sξ . sξ  is the random error 

and assumed to be normally distributed among the examinees.  Each item is only allowed 

to load on one cluster-specific dimension. When constraining the random intercept to be 

the same across items within a testlet, that is, removing the subscript of j in ��, , all 

 ��, = �, this model becomes the testlet DCM model.  When further constraining the 

number of score categories to two, the model is a testlet LCDM model. Figure 1 presents 

a path diagram for a special case of the resulting model-testlet C-RUM model.  



 36

By constraining the intercept and slope parameter as previously described in the 

LCDM section, a testlet DINA model, a testlet DINO model, and a testlet C-RUM model 

can be developed from Equation 36. 

Figure 1. Diagram for Testlet LCDM Model 

 

 

Simulation studies (Hansen, 2013) showed that in all conditions, the testlet DCMs 

provided higher classification accuracy and better calibrated EAP scores than the 

traditional DCM models when LID was present.  

Despite that the testlet DCM models have been proposed to account for LID in 

parametric DCMs, no effort has been made to account for the LID in nonparametric 

diagnostic classification analysis (i.e., the NP method). When using both parametric and 

nonparametric methods, Chiu and Douglas (2013) found that the larger the guessing 

/slipping parameter is, the lower the classification rate. Testlet effects add randomness to 
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the classification result, possibly deteriorating the performance of nonparametric 

methods. This result creates some uncertainty concerning the examinee’s attribute 

mastery status. This research intends to propose a variation of the nonparametric 

Hamming distance method in order to account for the LID that exists in testlet-based 

tests.  

In summary, there is a need to develop a nonparametric testlet effect detection 

method and a new nonparametric method that could account for the testlet effect. The 

next chapter is devoted to describing the nonparametric LID detection method and 

several variations of the testlet Hamming distance method, and the design of a simulation 

study for evaluating the new methods. 
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CHAPTER III 

METHOD 

3.1 Testlet Hamming Distance Method 

The development of the testlet Hamming distance method (testlet NP) intends to 

improve the performance of NP methods in situations where testlets might cause LID 

between items. To account for the LID among items within the same testlet, we propose 

weighting the distance between observed item response and ideal item response by the 

inverse of a parameter corresponding to the testlet effect. Therefore, the Hamming 

distance between two item response patterns is computed as  
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1
( , ) | |

sJS
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where J is the number of items within a testlet, S is the number of testlets in a test, � is a 

parameter based on the testlet effect for a particular testlet in which item j is located. 

When there are no testlet effects,  � = 1 and therefore there is no additional association 

among items after conditioning on the attribute profile, thus the weight 1/ � =1 for all 

items. In contrast, when all items in a testlet are perfectly correlated and altogether 

contribute as much information as one single item, the information contributed by each 

item is one over the number of items, that is, 1/ �=1/Js, hence the weight is constrained 

by 1/Js ≤ 1/ � ≤  1. 
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The value of   � is computed based on a heuristic used to approximate the testlet 

effect size of the Sth testlet. By weighting the Hamming distance with the inverse of the 

 �, items with larger testlet effects will be penalized more than items with smaller testlet 

effects. 

Hansen (2013) applied LD-X2 to detect local dependency caused by testlets 

However, LD-X2 requires fitting the item response data to a testlet DCM and therefore 

demands large sample sizes. A method that does not require the fitting of a mathematical 

model and has less demand on sample size, that is, a nonparametric approach to testlet 

effect detection remains to be developed. In this study, a method was proposed to 

approximate the parameter � using the average conditional correlation like the CC 

approach to LID detection in IRT.  The CC approach to LID detection in IRT, the 

conditional variable is often the observed test total score or true score. However, the 

conditional variable in diagnostic classification analysis is the examinee’s attribute 

profile.  If the test items are independent of each other, the correlation between item pairs 

should be close to zero conditional on attribute profile; if LID exists within a testlet, 

when conditioned on attribute profile, the correlations between item pairs within the same 

testlet should be larger than the conditional correlation between items from different 

testlets. 

The question then arises: how is the attribute profile estimated prior to completing 

the conditional correlations?  In this study, two methods are proposed to approximate the 

attribute profile. The first is simply to estimate the attribute profile with the NP method, 

the second is to approximate the attribute profile with the attribute sum-scores.  However, 
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if the raw sumscores are used as conditional variables, there will be a large number of 

attribute profiles. For example, if four attributes are measured in a test, and each attribute 

is measured by 10 items, there would be 104 possible sum-score combinations and result 

in 10,000 possible conditional attribute profiles. If there are 50 examinees, it is possible 

that no correlation matrices could be computed because of the scarceness of examinees in 

each sum-score profile.  However, cutoff scores can be set for attribute sumscores and 

classify the examinee into the mastery or nonmastery group based on his/her attribute 

sumscores. If the examinee’s sumscore of one attribute is higher than the corresponding 

cutoff, the examinee will be classified as the master of that specific attribute, otherwise as 

the nonmaster. For convenience, the average attribute sumscore across examinees will be 

used as the cutoff score. An �� will represent the individual’s kth attribute sum-score, if  

�� is equal to or above the mean, �� is set to be 1, and otherwise is set to be 0.   

3.1.1 Testlet NP Penalized by Conditional Correlation 

 Conditional covariance is influenced by item difficulty, and inflated by large item 

variance. Therefore, average item item-pair correlation was proposed to estimate LID- �. 

For testlet S, the average correlation  sr  will be computed and 1 /  �  can be defined as 
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The weight or penalty parameter 1/ �  is equal to “1” when all items are 

completely independent of each other ( r =0), and equal to 1/ Js when the testlet items are 

perfectly correlated ( sr =1).  To accommodate situations where the standard deviation of 
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the response scores is zero, define Ns as the number of items where the variances are not 

equal to zero. When the weight of Hamming distance is computed as in Equation 38, the 

testlet NP method is called testlet NP penalized by conditional correlation. 

NP penalized by conditional correlation minimizes the penalized distance 

between the ideal response pattern and the observed response pattern. With this approach, 

examinees are first classified using one of the nonparametric classification methods (such 

as the NP method and attribute sum-score method), then the conditional correlation is 

computed conditional on the examinees’ attribute profile (latent class). For each 

estimated attribute profile and testlet, a conditional correlation matrix is computed with 

item-pair correlations as the entries, and Fisher’s Z transformation is conducted for each 

of the entries, then the average item-pair correlation for latent class C,  scr is computed 

across the matrix entries (Eq. 39).  
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where c is the Cth latent class. The testlet-specific average conditional correlation sr  is 

computed by weighing the scr  with sample size in the latent class. 
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 (40) 



 42

where Nc represents the number of examinees in the Cth latent class. sr  is then 

transformed back to Pearson’s r. For a test that measures four attributes, the maximum 

number of item-pair correlation matrix for each testlet is 16.  

If the LI assumption is met, correlations between items within the same testlet 

should be equal to the correlations between items from different testlets. Though not 

necessarily, for the convenience of computation, it is assumed that testlet effects are the 

equal across items. Therefore, all items within the same testlet are given the same weight 

in Hamming distance calculation. 

As the conditional correlation is computed by conditioning on the attribute 

profile, and the examinee’s attribute profile can only be estimated through other methods, 

the value of conditional correlation depends on how the examinees’ attribute profiles are 

initially estimated. To show the dependency of conditional correlations on attribute 

profile classification, a simulation study was run. In this study, data were  generated with 

the testlet DINA model (Hansen, 2013) for 1000 examinees to take three tests measuring 

four attributes (K = 4). Each test contains five items belonging to one single testlet. The 

three tests varied in testlet effect size (i.e., 0, 1, and 2). The correlation matrix of each 

testlet was computed conditional on the true attribute profiles, NP estimated attribute 

profiles, and attribute-sumscore estimated attribute profiles.  

Table 1 presents the correlation matrices for examinees with true attribute profile 

α = (0, 0, 0, 1). As can be seen, the correlation values are larger and positive when the 

testlet effect is large, whereas the correlation values are small and tend to be negative 
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when testlet effect is small. In general, conditional correlations increase when testlet 

effects increase.  

Table 2 displays the average item-pair correlation for each of the 16 latent classes. 

There is no obvious relationship between latent class and the average item-pair 

correlation. The value of testlet effect when using the testlet model is the value of the β 

parameter in Equation 36. When �= 0, there is no testlet effect, � =1 or 2 indicates lower 

and higher testlet effect, respectively. Notice that the three �� are in three different tests. 

If the three �� are for three different testlets in the same test, results will be different.  

Table 1. Item Correlation Matrix of the Three Testlets for α = (0, 0, 0, 1)  

Testlet effect=0         

Item1 -.28     

Item2 -.32 .2    

Item3 .08 .19 .05   

Item4 -.18 .03 .08 -.07  

Item5 .09 -.15 -.2 -.12 -.1 

      

Testlet effect=1     

Item1 .23     

Item2 .2 .04    

Item3 .19 .09 .36   

Item4 .17 .11 .28 .24  

Item5 .21 .24 .18 .1 .15 

      

Testlet effect=2     

Item1 .27     

Item2 .29 .44    

Item3 .23 .42 .44   

Item4 .26 .32 .54 .37  

Item5 .22 .45 .33 .25 .25 
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Table 2. Average Item-Pair Correlation Conditioning on the True Attribute Profile 

  Testlet  Effect  Size  (�) 

             Profile 0 1 2 

1 0000 -.01 .12 .39 

2 0001 -.01 .17 .41 

3 0010 .01 .14 .29 

4 0011 -.03 .14 .34 

5 0100 -.01 .15 .30 

6 0101 -.03 .16 .30 

7 0110 -.02 .17 .31 

8 0111 .01 .14 .35 

9 1000 .04 .14 .35 

10 1001 .01 .21 .30 

11 1010 -.03 .07 .46 

12 1011 -.01 .06 .37 

13 1100 .01 .09 .16 

14 1101 .01 .09 .25 

15 1110 -.04 .07 .30 

16 1111 .00 .13 .31 

 

Table 3 and 4, respectively, represent the average item-pair correlations 

conditioned on the NP estimated attribute profiles and the sum-score estimated attribute 

profiles. Comparing Table 2, Table 3, and Table 4, the relationship between the average 

conditional correlation and testlet effect are the same across the three tables. In other 

words, the average correlations are larger in situations where the testlet effect size is 

larger. However, there are some exceptions for Table 3 and Table 4, where the 

relationship between testlet effect size and average conditional correlation are not truly 

reflected, such as profiles 1 (0000), 5(0100), 9(1000), and 13 (1100) in Table 3 and 

profile 12(1011) and 13 in Table 14. Under close inspection, it can be seen that the 
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average correlations conditioned on the NP estimated attribute profiles do not completely 

reflect the true conditional item correlation in Table 2. Specifically, they underestimate 

the local dependency in many occasions. 

Same as the average correlations when conditioning on NP estimated profiles, 

when the testlet effect is present, the average correlations conditioned on attribute sum-

score estimated profiles are also smaller than those conditioned on true attribute profiles.  

Table 3. Average Item-pair Correlations Conditioned on NP-Estimated Attribute Profiles 

  Testlet  Effect  Size  (�) 

 Profile     0 1 2 

1 0000 -.02 .08 .06 

2 0001 -.02 .04 .08 

3 0010 -.01 .04 .06 

4 0011 -.03 .02 .08 

5 0100 .01 -.01 .14 

6 0101 -.02 .10 .16 

7 0110 -.01 .06 .18 

8 0111 .00 .04 .12 

9 1000 .01 .18 .09 

10 1001 .00 .03 .09 

11 1010 .01 .05 .09 

12 1011 -.01 .06 .09 

13 1100 -.02 .03 .10 

14 1101 -.02 .06 .17 

15 1110 .00 .09 .15 

16 1111 .02 .11 .14 

 

 



 46

Table 4. Average Item-pair Correlations Conditioned on Sum-score Estimated Attribute 

Profile  

  Testlet  Effect  Size (�) 

 Profile     0 1 2 

1 0000 -.01 .08 .13 

2 0001 -.02 .06 .05 

3 0010 -.04 .03 .08 

4 0011 -.02 .03 .09 

5 0100 -.05 .05 .11 

6 0101 -.12 .09 .18 

7 0110 -.04 .03 .20 

8 0111 -.02 .05 .14 

9 1000 -.02 .11 .07 

10 1001 -.05 .05 .13 

11 1010 .00 .08 .11 

12 1011 -.02 .07 .07 

13 1100 -.05 .00 .11 

14 1101 -.02 .07 .17 

15 1110 -.01 .06 .16 

16 1111 .02 .11 .16 

 

Although the idea of estimating testlet effect from the conditional correlation 

perspective may be possible, there are several problems that limit its application. With 

small sample size, it is likely that only a few or no examinees belong to certain attribute 

profiles. Although the computation of the Hamming distance does not depend on sample 

size, the accuracy of the correlation estimates is related to sample size. Small sample 

sizes might result in less accurate estimation of conditional item-pair correlations. In 

addition, when all examinees of the same attribute profile give the same response to an 

item, the variance of that item will be zero, thus the item-pair correlation cannot be 
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estimated.  However, when better methods to estimate the testlet effect are developed or 

when a reasonable approximation is known, applying the testlet NP method in diagnostic 

classification can still be plausible.   

3.1.2 Testlet NP Penalized by Known Testlet Effect 

Because the correlation estimation can be inaccurate with small sample size and 

examinees’ homogeneous responses to the item, the testlet NP method might not work 

well in a situation where sample size is small. However, assume that the testlet effect size 

or the conditional correlation is known, sγ  can be used to represent the relative testlet 

effect size within a testlet. In the testlet NP method, it is not the exact value of testlet 

effect, but the relative weight for each item that is important. For example, if r = 0 

represents no testlet effect, r = .1 represents low testlet effect, r =.4 represents a higher 

testlet effect, and larger numbers indicate larger testlet effects. For the five-item testlets, 

we can define the penalty parameter 1/ � by Equation 38. Correspondingly, 1/ � for each 

of the testlets has the value of 1, .92, and .68. When �  = 1, the testlet NP method in Eq. 

37 is the NP method. 
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In this section, a few variants of the NP methods that account for testlet effects 

were presented and discussed. They are the NP approach penalized by the testlet 

conditional correlation and the NP penalized by known testlet effects. Among the NP 

penalized by conditional correlation, two ways to compute the conditional correlation are 
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presented. One is to compute the conditional correlations conditioning on the NP 

estimated attribute profile, the other is to compute the conditional correlations conditional 

on the sumscore estimated attribute profiles.  In the next section, a simulation study is 

proposed to evaluate these NP methods. 

3.2 Simulation Study 

In Chapter 2, a literature review for the parametric and nonparametric 

classification analysis as well as the methods and strategies used to deal with local 

dependency was provided. In the first section of Chapter Three, the development of the 

testlet Hamming distance nonparametric (testlet NP) method was presented. The purpose 

of developing a new method was to account for LID caused by testlets in nonparametric 

classification analyses. Though conceptually these methods can be explained, the 

performance of the new methods also depends on how LID is computed. The simulation 

studies described in this section were proposed to evaluate the performance of the newly 

developed methods in various practical conditions in comparison with the NP method and 

traditional DCM. In both the NP method and traditional DCM classification analyses, 

testlet effects are ignored. 

3.2.1 Research Design  

To be informative and realistic, simulation studies should be representative of the 

real world. However, some real world situations are too complicated to be represented in 

a single study. Therefore this simulation study will only include factors that are 
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considered to be most important based on the literature (Table 5) and pertaining to the 

research questions.  

The first step of the testlet NP procedure is to estimate the testlet effect. In section 

3.1, it was proposed that the average conditional correlation could be used to approximate 

the testlet effect. Therefore, it is important to evaluate how well the conditional 

correlation can be estimated by the two proposed methods: 1) the correlation when 

conditioning on the NP estimated attribute profiles, so called NP method (CC-NP); 2) the 

correlation when conditioning on the sumscore attribute profile, so called sumscore 

method (CC-Sumscore).  

In section 3.1, the three variants of testlet NP methods were discussed: testlet NP 

penalized by correlation conditioning on the NP estimated attribute profile, testlet NP 

penalized by the correlation conditioning on sum-score estimated attribute profile, and 

testlet NP penalized by preknown testlet effect . The former two are based on the 

proposed conditional-correlation estimation methods, the third one is based on known 

testlet effects. In fact, the third method is not a completely different method but is used to 

determine whether or not the idea of penalizing the Hamming distance for testlet effects 

is effective while avoiding the statistical estimation of the testlet effect.  To evaluate the 

performance of the testlet NP methods, the DINA model is chosen as the baseline model, 

that is, all data are estimated as though they follow the DINA condensation rule. MLE of 

DINA and the NP method were chosen to compare with the proposed testlet NP methods 

to determine if the testlet NP methods show improvement in classification accuracy. 

Throughout the study, the following questions were considered in evaluating the 



 50

estimation efficiency of conditional correlation methods, the classification performance 

of testlet NP methods, and the impact of testlet effect on different classification methods. 

1. How well can the testlet effect be represented through average item-pair 

conditional correlations? 

1.1 What is the relative performance of the NP method and the sum-score 

method in item-pair conditional correlation estimation with the correlation 

estimation conditional on the true attribute profile as the baseline? 

1.2 How does the sample size influence the performance of conditional 

correlation estimation by the NP method and the sum-score method? 

2. How do the testlet NP methods perform compared to DINA-MLE estimation and 

NP in different test situations? 

2.1. How does the testlet effect size affect the performance of the NP method, 

testlet NP methods, and DINA-MLE in diagnostic classification analysis? 

2.2. How does sample size affect the performance of the NP method, testlet 

NP methods, and DINA-MLE in diagnostic classification analysis? 

To answer the above questions, simulation studies were conducted. The 

simulation design is presented in the next section. 

3.2.2 Simulation Design 

In reviewing the literature pertaining to nonparametric classification analysis, it 

was found that several factors are commonly manipulated in previous studies (a summary 

as seen in Table 5). Those factors include sample size, test length, the values for slipping 

and guessing parameters, number of attributes, attribute correlation, the correct 
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specification of the Q matrix, and the matching between data generation models and 

estimation models. In general, the number of attributes influences both the performance 

of the parametric and nonparametric methods but not the relative performance when 

compared to each other. Slipping and guessing parameters have a significant impact on 

the performances of both the parametric and nonparametric methods, specifically, the 

larger the two parameters are, the worse the classification accuracy (e.g., Chiu, Douglas 

& Li, 2009; Henson, Templin & Douglas, 2007), although larger sample sizes and longer 

tests increased CCRs when using both and NP classification (Chiu & Douglas, 2009; 

Wang & Douglas, 2015; McCoy& Willse, 2015). Misspecification of the Q matrix and 

the misspecification of model affected the classification accuracy of both parametric and 

nonparametric methods (Chiu & Douglas, 2013; Wang & Douglas, 2015).  

A portion of the factors that seemed most important were manipulated and they 

are presented in Table 6 with their levels that are proposed for the study. To facilitate 

understanding, Table 7 explicates the conditions related to testlets.  



 

5
2

Table 5. Summary of Relevant Simulation Studies in Diagnostic Classification Analyses 

Study Estimation 

model 

Attribute 

Number  

Number of 

items 

Sample 

size 

Profile 

simulation 

distribution 

Generation 

models  

Item parameters 

Henson 

(2007) 

Sum score 3, 5, 8 20,40 10000 MVN* 

R= .3; .5 

Reduced RUM  

Chiu 

(2009) 

DINA-EM 

K-mean 

HACA 

3, 4 20,40,80 100,500 MVN 

R =.25 .5; 

And Uniform 

 

DINA, NIDO 

RUM, 

comprensatory 

GDM 

s, g, 

U(0,.15) and 

U (0,.3) 

Chiu 

(2015) 

Cluster 

analysis 

Same as 

above 

Same as 

above 

Same as 

above 

Same as 

above 

DINO,DINA Same as above 

Chiu 

(2013) 

NP, NPW 

DINA 

DINO 

3, 4 20,40 10000 MVN 

R=0, .3, .5 

Uniform 

DINA, NIDA uniform 

distribution 

0-.1, .3, or .5 

 

McCoy 

( 2014) 

NP, NPW and 

NN 

 

4, 8 

20,50 20,50,100,

500 

 0,.333,.5, .7 DINA U(0,.10) 

U(.15, .25) 

U( .35, .45) 

Hansen 

(2013) 

Testlet DCMs 

(DINA, DINO, 

C-RUM ) 

And traditional 

DCM 

4 20,120 

Clusters=1,

2,20 

20000 Higher order 

model  

Testlet DINA, 

DINO,  

C-RUM 

s beta(.02, .05) 

g beta(.01, .05) 

Note, MVN: multivariate normal distribution; R: attributes correlation; s: slipping parameter; g: guessing parameter; NPW: 

Weighted Nonparametric analysis; beta: beta distribution; U: uniform distribution
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Factors including test length, testlet size (number of items within the same testlet), 

and the number of testlets contained in a test were not manipulated in this study because 

the three factors are confounded. One factor cannot be changed while keeping the level of 

other two factors constant. In realistic test situations, it is not likely that all testlets in a 

test have the same number of items and/or LID,  and the testlet NP shows no necessity in 

addition to NP method when all the testlets have equal LID because all items receive the 

same weight (i.e., results will be identical to NP method). Therefore, the equality of 

testlet size and testlet effect size is manipulated. In some simulated situations, the testlet 

size and testlet effect size are held constant across testlets; in the other simulated 

conditions, they vary among testlets. 

Table 6. Simulation Design  

Factor N of Levels Level Values 

Attribute 1 4 

Attribute correlation 1 .5 

N of items 1 24 

Model generating type 1 Testlet DINA 

Model application  1  DINA 

Estimation 3 NP, Testlet NP, MLE 

N of clusters  3 2, 4 

Testlet effect Size 5 � = 0, .5, 1, 2, 3 

Equality of testlet effect size 2 Equal, Unequal 

Equality of testlet size 2 Equal, Unequal 

Sample size (N) 5 50, 100, 500, 1000, 10000 
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Four factors were manipulated in this study, they are the number of testlets, the 

equality of testlet size across testlets, testlet effect size, and the equality of testlet effect 

size across testlets. There were two levels for the number of testlets factor: the two-

testlets condition and four-testlets condition. Within each of the two conditions, the 

equality of testlet size (number of items) was manipulated. In the “equal” condition, all 

testlets in a test contain the same number of items (either 6 or 12 items depending on the 

number of testlets). In the “unequal” condition, the number of items was different across 

testlets. Specifically, in the two-testlets test, one testlet contains 2 items and the other 

contains 18.  In the four-testlet test, the four testlets contain 2, 4, 8, and 10 items 

respectively (for specific information, see Table 7).   

In testlet IRT, the magnitude of testlet effect is indicated by the variance of the 

random testlet effect (Wainer & Wang, 2000; Wang, Bradlow & Wainer, 2002; Wang, 

Chen, & Willson, 2005). The testlet effect variance indicates the degree of LID among 

the items within a given testlet. For example, in Jiao et al. (2013), a variance of .25, .56 

and 1 represented small, moderate and large testlet effect, respectively; in Wang et al 

(2005), a variance of 0.25, 0.5, 0.75, and 1.00 represented small to large effects.  In the 

present study, data were simulated using testlet DINA model (Hout & Cai, 2012; Hansen, 

2013) because the equality of testlet effect size across testlets in a test can be manipulated 

by varying the testlet specific parameter � as in Equation 36. In the “unequal” condition, 

the testlet effect size varied across different testlets. For example, in the 2-testlet 

condition, data for one testlet was simulated with �  =1, the other was simulated with � = 

2; in the “equal” condition, testlet effects were the same across all testlets. Within the 
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condition of equal testlet effect size, the factor-testlet effect magnitude was controlled by 

manipulating � between 0-3 (� = 0, .5, 1, 2, 3) with the mean and variance of the random 

error sξ  fixed at 0 and 1 respectively. The square of � corresponds to the testlet variance 

(i.e., testlet effect). A � value “1” corresponds to testlet variance of 1, a � value of “2” 

corresponds to testlet variance of 4, and so on. Therefore, in this study, while the � value 

of 0 and .5 represents no testlet effects and small testlet effect respectively, �  =1, 2, and 

3 all represent a large testlet effect. The reason that large testlet effects were used is 

because this study intends to examine 1) what degree that the classification methods 

ignoring testlet effects can tolerate LID in terms of classification accuracy and 2) at what 

conditions, the proposed CC methods and testlet NP methods show advantages.  

The testlet effect size was not fully crossed with the factor-number of testlets. For 

example, in two-testlet tests with different testlet effect size, the parameter � was 

constrained to be 1 and 2.  Table 7 provides detailed information about the testlet 

structures described in the above simulation design. 
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Table 7. Testlet Design 

Number 

of testlets  

Equality of 

testlet size  Testlet size 

Equality of  

test effect size Testlet effect size 

2 

 

Different  

  

8+16  

Same  0, .5, 1, 2, 3 

Different  1 + 2 

Same 
12+12 

Same  0, .5, 1, 2, 3 

Different  1+2 

4 

 

Different 

  

2+4+8+10 

Same 0, .5, 1,  2, 3 

Different .5 + 1 + 2 + 3 

Same 

  

6+6+6+6 

Same 0, .5, 1 , 2, 3 

Different .5 + 1 + 2 + 3 

 

For each test condition, item response data of five sample sizes was simulated 

(N=50, 100, 500, 1000, 10000).  The relatively small sample sizes were chosen to 

determine to what extent the nonparametric classification analyses demonstrate 

advantages in small sample size conditions.  

In summary, there were a total of 2 (Number of testlets) x 2 (Equality of Testlet 

Size) x 5 (Testlet Effect Size of Equal Condition) +2 (Number of testlets) x 2 (Equality of 

Testlet Size) x1 (Testlet Effect Size of Unequal Condition) = 24 test generation 

conditions. As five sample sizes were simulated for each test condition, there were a total 

of 24 x 5=120 data generation conditions. 
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3.2.3 Data Generation 

3.2.3.1 Q Matrix Generation 

The number of attributes measured by one test was fixed at K=4 in all simulation 

conditions. For different models, items were constrained to load on no more than two 

attributes. In generating the Q matrix, a balanced design was first used, that is, there was 

an equal number of items under each loading pattern.  However, the model can become 

unidentified if all items measure more than one attribute (Chiu, Douglas & Li 2009; 

Madison & Bradshaw, 2014). A possible limitation of Hansen’s study (Hansen, 2013) is 

that all items were designed to measure two attributes. Therefore, to ensure that the 

model is identified, eight of the 24 items were constrained to have simple structure, those 

items only measured one attribute. The resulting Q matrix is presented in Table 8, where 

all attributes were measured by the same number of items. 
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Table 8. Q Matrix for a Test of 24 Items 

         K=4   

0 0 1 1 

1 1 0 0 

0 1 0 1 

1 0 0 1 

0 1 0 0 

0 1 1 0 

1 0 1 0 

0 1 0 1 

1 1 0 0 

1 1 0 0 

1 0 0 0 

0 1 1 0 

1 0 1 0 

1 0 0 0 

1 0 0 1 

0 1 1 0 

0 0 0 1 

0 0 1 1 

0 0 0 1 

0 0 1 0 

0 0 1 1 

1 0 1 0 

0 0 0 1 

0 1 0 0 

 

3.2.3.2 Attribute Generation 

Examinee attribute profiles were generated from a multivariate normal 

distribution so the attribute correlations could be controlled. In this model, discrete 

attribute profile α was linked to multidimensional abilities with an underlying 

multivariate normal distribution, MVN (0, Σ ), where the covariance matrix is expressed 

as 
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ρ

 
 Σ =
 
 

K
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L

 (42) 

In this study, � =.5 for all conditions was used as in Henson et al. (2007), Chiu et al. 

(2009) and McCoy & Willse (2015).  After the four sets of �� were generated from the 

MVN distribution, they were further converted into 1’s and 0’s based on the following 

transformation 

 

1,  if 0;

0,  otherwise.

ik

ik

θ
α

>
= 


 (43) 

3.2.3.3 Item Parameter and Response Data Generation  

Item response data was generated using 50 replications with a special case of 

Hansen’s (2013) test DCM (Equation 36). That is, the responses were constrained to have 

only two categories and the cluster-specific parameter to be equal across items within the 

same testlet. For example, when measuring two attributes, the item response function of 

the testlet DINA can be formed through additional constraints of the item intercept and 

slope parameter, 
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The guessing parameters gj and slipping parameters sj were both simulated from a 

uniform distribution U (0, .2), and then transformed into LCDM intercept parameters 0λ  

and slope parameter λ as described in Henson et al (2009). For example, when define 

LCDM as function of DINA parameters, 

 0, ln( )
1

j

j

j

g

g
λ =

−
 (45) 

 , 0,

1
ln( )

j

C j j

j

s

s
λ λ

−
= − +  (46) 

3.2.4 Examinee Classification 

First, the performances of CC-NP (attribute pattern estimated by NP method) and 

CC-Sumscore (the attribute classification based on attribute sum-score) were investigated 

to see which of the two methods provided average conditional correlation estimations that 

were more reflective of the true testlet effect size. The average correlation conditional on 

attribute pattern estimated by attribute sumscores and the average correlation conditional 

on attribute pattern estimated through NP method were compared with the correlations 

conditioned on generated attribute profiles. All conditional correlations were used in 

computing the penalty parameter in testlet NP penalized by conditional correlation. 

For each of the generated data sets, both parametric and nonparametric 

classification methods were used for examinee classification. For parametric estimation, 

all data were fitted using the DINA model and estimated using the MLE with an EM 

algorithm (Bock & Aitkin, 1981). For nonparametric classification, the NP method, 
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testlet NP penalized by conditional correlations, and testlet NP penalized by preknown 

testlet effect were applied. The “CDM” package (Robitzsch, 2015) in R was used to 

perform DINA-MLE estimation, AlphaNP function from “NPCD” package (Zheng, Chiu 

& Douglas, 2015) in R was used to perform NP estimation, and testlet NP methods was 

programmed in R by the author. 

3.2.5 Evaluation of Examinee Classification  

The performance of the traditional classification modeling and nonparametric 

method was evaluated through correct classification rates (CCRs), which is the agreement 

between the estimated and the known true classification. Like Chiu et al. (2013) two 

indices were employed to summarize the results. One is the pattern-wise agreement rate 

(PAR)-the proportion of attribute patterns accurately estimated, the other is the attribute-

wise agreement rate (AAR)-the proportion of individual attributes that were classified 

correctly. The two indices were defined as: 

 
1

ˆ| |N i i

i

I
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N

α α
=

==∑  (47) 

 
1 1

ˆ| |N K ik ik
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α α
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Mean and standard deviation of the CCRs for the 50 replications for each 

condition and estimation were calculated. In Monte Carlo study, standard deviation is the 

standard estimation error that provides the precision information of each estimation 

method in different test conditions.   
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CHAPTER IV 

RESULTS 

The purpose of the simulation study was to investigate the performance of the 

item-pair conditional correlation in estimating testlet effects and the classification 

accuracy of the proposed testlet Hamming distance methods in conditions with varying 

testlet effect, sample size, equality of testlet effect, and equality of testlet size. Results are 

presented to address the following two major research questions: 

1. How well can testlet effects be identified using average item-pair conditional 

correlations? 

2. How do testlet NP methods (weighted Hamming distance methods) perform 

compared to the NP (unweighted Hamming distance) method and MLE method? 

Because the proposed testlet NP methods are essentially weighted Hamming distance 

methods, and the weights are determined by the testlet-specific average item-pair 

conditional correlation, answers to the first question are expected to provide some 

information for selecting the appropriate method used to estimate the weighting 

coefficients, and some explanation for differential performances of the testlet NP 

methods. 

4.1 Item-pair Conditional Correlation Estimation 

The testlet-specific average item-pair conditional correlation was proposed in 

Chapter Three to measure the testlet effect. The conditional variables, attribute profiles, 
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were estimated via the NP method or the attribute-sumscore method. Correspondingly, 

the two conditional correlation estimation methods are represented using CC-NP and CC-

Sumscore, respectively.  

To examine to what a degree that CC-NP and CC-Sumscore are able to detect the 

true testlet effect, the conditional correlations estimated by the two methods were 

compared to that when the conditional variable is the true attribute profile (CC-True). In 

this section, the average item-pair conditional correlation by CC-NP, CC-Sumscore, and 

CC-True are presented separately for the three major test conditions: the condition with 

equal testlet sizes and equal testlet effect sizes, the condition with equal testlet effect 

sizes and unequal testlet sizes, and the condition with unequal testlet effect sizes and 

equal testlet sizes. Within each test condition, the impact of sample size and testlet effect 

size on the estimation of conditional correlation was studied. 

4.1.1 Equal Testlet Size Equal Testlet Effect  

Average item-pair conditional correlations for equal-testlet-size and equal-testlet 

effect tests were summarized across the 50 replications by estimation method, sample 

size and testlet effect size. Standard deviations and means were presented in Table 9. As 

the testlet effects were the same for all the testlets in the same test, only the results for the 

first testlet were presented. 

  In simulation studies, a small standard deviation across replications represents a 

small estimation error and indicates a more stable estimation, whereas a large standard 

deviation indicates a less stable estimation. Across the three estimation methods, 

estimation errors in small sample size or larger testlet effect conditions were larger than 
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those in large sample size or smaller testlet effect conditions. In the same test condition, 

estimation errors of the three methods were close to each other. 

It was suggested in Rosenbaum (1985) and Douglas et al. (1998) that zero or a 

small negative value for conditional correlation should be found when independency 

exists between an item pair. When N = 500, the average item-pair conditional correlations 

from the three methods were all close to zero. Based on the standard error of estimation 

(SD in Table 8), their upper limits of 90% confidence intervals at � = .5 were still smaller 

than the average conditional correlations at � = 1. For example, when � = .5,  and � =

500, the upper limit of 90% confidence interval of the conditional correlation estimated 

by CC-NP is .022 + 1.97 x .09 = .059, which is smaller than .066, the conditional 

correlation estimated by CC-NP at � = 1. Although the estimation error decreased with 

the increase of the sample size, the conditional correlation values across sample size (N = 

500, 1000, and 10000) were close to each other regardless of the estimation method 

applied. 
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Table 9. Summary of Item-pair Conditional Correlations for Equal Testlet Size Equal Testlet Effect Condition 

      2-Testlet           4-Testlet       

  True NP Sumscore  True NP Sumscore 

Sample � Mean SD Mean SD Mean SD   Mean SD Mean SD Mean SD 

50 0 .016 .091 .001 .258 -.018 .128  .040 .105 .054 .186 .023 .113 

 .5 .073 .096 .094 .261 .031 .153  .064 .113 .076 .173 .071 .103 

 1 .168 .092 .129 .161 .092 .126  .150 .074 .180 .205 .115 .117 

 2 .350 .077 .327 .272 .261 .192  .340 .064 .333 .174 .301 .143 

 3 .456 .066 .361 .288 .337 .187   .435 .061 .442 .159 .433 .148 

100 0 .009 .085 .011 .116 .001 .121  .029 .076 .030 .097 .010 .080 

 .5 .048 .083 .030 .108 .001 .122  .045 .074 .028 .086 .012 .084 

 1 .186 .076 .147 .123 .096 .125  .161 .076 .138 .084 .123 .092 

 2 .381 .061 .264 .160 .215 .134  .357 .063 .329 .118 .285 .096 

 3 .498 .052 .311 .150 .268 .113   .490 .060 .430 .117 .371 .085 

500 0 -.001 .012 .003 .011 -.002 .013  .002 .018 .007 .018 -.001 .018 

 .5 .034 .008 .022 .019 .017 .012  .037 .017 .032 .018 .027 .019 

 1 .118 .015 .066 .014 .069 .013  .118 .016 .082 .022 .086 .015 

 2 .318 .020 .131 .018 .156 .015  .325 .021 .202 .027 .230 .019 

 3 .449 .020 .172 .026 .187 .028   .449 .018 .290 .035 .313 .022 

1000 0 .000 .005 -.001 .005 -.002 .006  -.001 .007 .001 .009 -.004 .008 

 .5 .028 .005 .015 .005 .018 .005  .029 .007 .018 .008 .021 .007 

 1 .108 .009 .052 .008 .066 .007  .105 .010 .068 .009 .078 .010 

 2 .299 .016 .119 .009 .148 .009  .299 .011 .188 .014 .214 .012 

 3 .428 .016 .147 .015 .183 .014  .429 .011 .281 .017 .305 .014 
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Table 9.  Continued  

     2-Testlet           4-Testlet       

  True NP Sumscore  True NP Sumscore  

Sample � Mean SD Mean SD Mean SD   Mean SD Mean SD Mean SD 

10000 0 .000 .001 -.001 .001 -.002 .001  .000 .002 .000 .002 -.003 .002 

 .5 .026 .001 .014 .001 .016 .001  .026 .002 .016 .002 .018 .002 

 1 .103 .003 .049 .002 .060 .002  .103 .003 .065 .003 .074 .002 

 2 .299 .004 .112 .003 .143 .002  .301 .003 .187 .005 .213 .002 

 3 .432 .004 .142 .005 .171 .003   .434 .003 .275 .005 .291 .003 

 

Notes, True: Conditional correlation estimated by CC-True; NP: Conditional correlation estimated by CC-NP;  Sumscore: 

Conditional correlation estimated by CC-Sumscore.
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The accuracy of conditional correlation estimation was found to be related to the 

sample size. For CC-NP, CC-Sumscore and CC-True, the standard error of estimation 

became smaller when sample sizes increased. Because large sample size was related to 

more accurate estimation of conditional correlation, comparison of different estimation 

methods is more valid when the sample size is larger. Therefore, in this study, the 

discussion is mainly based on sample size N=10,000. 

Figure 2. Distribution of Average Item-pair Conditional Correlations for Testlets in Equal 

Testlet Size Equal Testlet Effect Condition (N =10,000) 

 

Box-plots in Figure 2 display the distributions of the estimated average item-pair 

conditional correlations via the three methods in both 2-testlet and 4-testlet conditions. 

The graph should be read left-to-right and bottom-to-top. From left to right, the � value 
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increases from 0 to 3. From bottom to top, the number of testlets that a test contains 

increases from two to four.  

When there was no testlet effect (�= 0), the average item-pair conditional 

correlations estimated by CC-NP and CC-Sumscore were close to that estimated by CC-

True in both 2-testlet and 4-testlet conditions. When testlet effects were present, both 

methods underestimated the true conditional correlation, and the size of underestimation 

increased as the testlet effect increased. It should also be noted that the item-pair 

conditional correlations estimated by CC-NP and CC-Sumscore were larger in 4-testlet 

conditions than in the 2-testlet condition. That is, the two methods provided larger 

underestimation in the 2-testlet condition than in the 4-testlet condition. There are two 

possible explanations for this difference between the 2-testlet condition (12 items in each 

testlet) and 4-testlet condition (6 items in each testlet).  First, compared to the smaller 

testlet with the same true testlet effect, the large testlet might exert more influence on the 

attribute profile classification, and the estimated attribute profiles might account for more 

variance in the item response patterns of the large testlet. Therefore, there is less shared 

variance left unexplained for the large testlet after conditioning on the estimated attribute 

profile, resulting in smaller average item-pair correlation. Second, it is expected that in 

large testlet conditions, the average conditional correlations are more accurately 

estimated based on the central limit theorem.  

Comparing CC-NP and CC-Sumcore, it can be observed that CC-NP provided 

slightly larger underestimation than CC-Sumscore. A close examination of the 

classification accuracy showed that the NP method provided higher classification 
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accuracy than the attribute-sumscore method. Another interpretation of this phenomenon 

is that the conditional correlations estimated by CC-NP and CC-Sumscore reflect not 

only testlet effects but the unexplained shared variances caused by inaccurate profile 

classifications. Because the attribute sum-score method of classification provided lower 

classification accuracy rates, it most likely left a larger unexplained shared variance 

between items.   

4.1.2 Unequal Testlet Size Equal Testlet Effect  

In this section, the estimated item-pair conditional correlations for all testlets are 

presented to demonstrate whether or not unequal testlet size influences the performance 

of the two conditional correlation estimation methods. Table 10 presents the means and 

standard deviations of the average conditional correlations for each testlet in the 2-testlet 

tests. Because the relationship between standard deviations and average conditional 

correlations were similar in 2-testlet and 4-testlet conditions, that is, large testlet effects 

were related to large standard deviations, only means were presented for the 4-testlet tests 

in Table 11.   

Similar to the condition with equal testlet size and equal testlet effect, the 

estimation errors were larger in conditions with smaller sample sizes and large testlet 

effects. Item-pair conditional correlations were underestimated when testlet effects were 

presented. As in the equal testlet size condition, the average item-pair conditional 

correlations and magnitude of underestimation were related to the size of the testlets. 

When the testlet size increased, the estimated conditional correlations became smaller for 

both CC-NP and CC-Sumscore, though CC-True stayed the same. 
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Table 10. Summary of Item-pair Conditional Correlations in 2-Testlet Unequal Testlet Size Condition 

                          Testlet 1 (8 item)     Testlet 2  (16 item) 

  True NP Sum  True NP Sum 

N  Mean SD Mean SD Mean SD  Mean SD Mean SD Mean SD 

50 0 .059 .760 .039 .756 .054 .690  .121 .664 .064 .612 -.129 .532 

 .5 .378 .661 .164 .705 .123 .602  .204 .672 .117 .677 .082 .609 

 1 .593 .527 .443 .584 .319 .511  .723 .361 .427 .566 .225 .521 

 2 .916 .230 .503 .561 .604 .372  .908 .189 .532 .474 .307 .461 

 3 .912 .305 .741 .367 .657 .462  .970 .076 .400 .575 .301 .507 

100 0 .148 .402 .143 .381 .128 .354  .123 .352 .130 .349 .039 .330 

 .5 .141 .381 .120 .287 .085 .388  -.026 .364 .062 .323 -.043 .335 

 1 .295 .334 .182 .305 .254 .309  .351 .355 .284 .274 .206 .285 

 2 .593 .240 .520 .280 .426 .308  .749 .135 .430 .245 .217 .245 

 3 .811 .123 .596 .221 .650 .226   .827 .103 .415 .269 .391 .254 

500 0 .007 .044 -.003 .032 .008 .043  .008 .018 .007 .015 .017 .028 

 .5 .031 .039 .034 .034 .029 .043  .034 .021 .028 .016 .026 .022 

 1 .118 .042 .084 .027 .092 .035  .117 .022 .068 .016 .052 .031 

 2 .327 .034 .22 .029 .237 .034  .324 .028 .106 .014 .079 .013 

 3 .482 .034 .334 .045 .356 .041   .473 .026 .130 .015 .106 .022 

1000 0 .001 .011 -.002 .010 .008 .02  .001 .005 .002 .008 .005 .009 

 .5 .023 .009 .016 .010 .023 .014  .023 .006 .02 .008 .017 .006 

 1 .091 .014 .068 .013 .081 .017  .093 .013 .052 .007 .034 .006 

 2 .295 .017 .202 .016 .220 .019  .288 .013 .092 .007 .070 .008 

 3 .453 .016 .296 .019 .327 .020   .441 .015 .112 .007 .093 .008 
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Table 10. Continued 

                          Testlet 1 (8 item)     Testlet 2  (16 item) 

 True NP Sum  True NP Sum 

N  Mean SD Mean SD Mean SD   Mean SD Mean SD Mean SD 

10000 0 .000 .002 -.002 .002 .003 .002  .000 .001 .000 .001 .001 .001 

 .5 .019 .002 .014 .002 .019 .002  .019 .001 .015 .001 .011 .001 

 1 .084 .004 .065 .003 .069 .004  .081 .003 .047 .002 .033 .002 

 2 .285 .005 .196 .004 .208 .004  .274 .004 .089 .003 .067 .002 

  3 .447 .006 .289 .005 .312 .006   .435 .004 .108 .002 .092 .002 

 

 

Table 11. Summary of Average Item-pair Conditional Correlations in 4-Testlet Unequal Testlet Size Condition 

  Testlet 1 (2 items)  Testlet 2 (4 items)  Testlet 3 (8 items)  Testlet 4 (10 items) 

N � True NP Sum  True NP Sum  True NP Sum  True NP Sum 

50 0 .075 .080 .143  .017 .005 .023  .204 .186 .000  -.079 -.099 -.139 

 .5 .191 .165 .062  .001 .009 .032  .089 -.041 -.052  .328 .221 .078 

 1 .199 .144 .205  .185 .199 .110  .552 .313 .166  .689 .493 .288 

 2 .721 .531 .471  .709 .621 .519  .888 .646 .632  .881 .615 .378 

 3 .805 .540 .559  .871 .670 .652  .919 .773 .537  .925 .654 .452 

100 0 .033 .059 .031  .112 .103 .032  .025 .054 -.041  .038 .037 -.005 

 .5 .032 .001 .033  .151 .181 .118  .161 .149 .118  .066 .134 -.036 

 1 .139 .160 .092  .229 .253 .096  .333 .242 .164  .323 .260 .178 

 2 .422 .405 .383  .580 .516 .472  .582 .478 .399  .699 .511 .410 

 3 .636 .510 .524  .748 .603 .593  .764 .552 .496  .809 .562 .353 
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Table 11.  Continued 

   Testlet 1 (2 items)  Testlet 2 (4 items)  Testlet 3 ( 8 items)  Testlet 4 (10 items) 

N � True NP Sum  True NP Sum  True NP Sum  True NP Sum 

500 0 .004 -.010 -.003  .012 -.005 -.001  .012 .008 -.011  .008 .010 .004 

 .5 .025 .029 .023  .058 .036 .029  .027 .026 .009  .035 .025 .030 

 1 .111 .093 .082  .165 .099 .087  .117 .088 .060  .111 .081 .058 

 2 .340 .288 .288  .318 .274 .259  .320 .210 .171  .325 .147 .116 

 3 .474 .422 .431  .472 .414 .382  .478 .296 .254  .470 .190 .160 

1000 0 -.003 -.004 .000  .002 .004 .013  .002 .001 -.010  .000 .007 .000 

 .5 .028 .025 .027  .021 .025 .018  .023 .018 .004  .022 .020 .017 

 1 .108 .098 .101  .081 .080 .073  .097 .076 .042  .087 .058 .038 

 2 .317 .287 .283  .266 .247 .226  .303 .196 .154  .285 .127 .099 

 3 .477 .431 .436  .430 .382 .360  .454 .274 .226  .438 .164 .137 

10000 0 -.002 -.002 -.007  .000 .000 .000  .000 .000 -.011  .000 .001 .001 

 .5 .027 .025 .018  .015 .014 .012  .021 .018 .004  .017 .015 .011 

 1 .109 .098 .085  .067 .064 .057  .090 .071 .045  .076 .054 .039 

 2 .317 .285 .281  .262 .237 .212  .291 .192 .148  .266 .126 .094 

 3 .468 .424 .425  .426 .377 .347  .449 .270 .220  .428 .162 .130 
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To obtain a better understanding of the results that larger testlets produced smaller 

average item-pair conditional correlations, conditional correlation matrices from CC-

Sumscore were closely examined for the item response data of a two-testlet test. Testlet 1 

and 2 consists of 8 and 16 items, respectively. The data were simulated with the testlet 

parameter � =3 for 10,000 examinees. Table 12 lists the range and mean of the 

conditional correlation matrix of each testlet for five randomly selected attribute profiles.  

Table 12. Ranges and Means of Correlation Matrix for Each Testlet and Selected 

Attribute Profiles 

Class Attribute 

Profile (N) 

Testlet 1 (8 items)  Testlet 2 (16 items) 

 Range Mean  Range Mean 

1 0 0 0 0 (3366) .073, .480 

 

.239  -.012,  .626 .099 

2 1 0 0 0 (369) -.028, .425 .260  -.313,  .555 .058 

3 1 1 1 0 (433) .130,  .470 .250  -.255,  .345 .047 

4 1 1 0 1 (467) .093, .611 

 

.265 

 

 -.301,  .354 

 

.044 

 

5 1 1 1 1 (2893) .420,  .547 .481  -.014 ,  .353 .146 

 

Across attribute profiles, the ranges of item-pair correlations were larger for 

testlet 2 (the large testlet) than for testlet 1(the smaller testlet). For example, about 1/3 of 

the 10,000 examinees were classified in class 1 that has the attribute profile � = c (0, 0, 0, 

0). For examinees in that class, the range of item-pair conditional correlation is .480 -.073 

= .41 for the smaller testlet, and .626 - (-.012) =.64 for the large testlet. Furthermore, 
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there were also more negative values of item-pair correlations for the 16-item testlet than 

for the 8-item testlet.    

 Figure 3 visually displays the distribution of estimated average conditional 

correlations for sample size =10,000. Item-pair conditional correlations estimated by CC-

NP were close to CC-Sumcore in 2-testlet conditions but consistently smaller than CC-

NP in the 4-testlet conditions. Therefore, it is difficult to determine which estimation 

method is better as inconsistent results were discovered in 2-testlet conditions and 4-

testlet conditions.  

Figure 3. Distribution of Estimated Item-pair Conditional Conditions for Unequal Testlet 

Size Tests 8-items Condition (N=10,000) 
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4.1.3 Unequal Effects Equal Testlet Sizes 

Table 13 summarizes testlet-specific average conditional correlations for tests 

with unequal testlet effects by sample size and number of testlets.  In the 2-testlet 

conditions, item response data were simulated with �=1 for one testlet and �= 2 for the 

other. In the four-testlet conditions, data were simulated with � = .5, 1, 2, and 3 

respectively. To be comparable with the 2-testlet conditions, only the conditional 

correlations for testlets with generating � =1 and 2 in the 4-testlets conditions are 

presented in Table 13. The complete results for 4-testlet conditions are displayed in 

Appendix 1.  

 The standard error of the conditional correlation estimates in the unequal testlet 

size are larger in small-sample-size conditions and in the large-testlet-effect conditions. 

In this study, a sample size N = 500 was sufficient to produce stable estimation (small 

estimation error), the 90 percent confidence interval of the mean conditional correlation 

in any testlet effect condition did not overlay with each other. However, to be consistent 

with the previous two sections, discussions regarding the relative performance of the 

estimation methods were based on sample size N=10,000.   

It can be observed that, across estimation methods, the conditional correlation for 

testlets with generating effect size � = 2 is approximately twice as large as that for 

testlets with generating effect size � =1. This result indicates that the proposed 

conditional correlation methods can be used to indicate the relative testlet effect 

difference among testlets. 
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The CC-Sumscore method overestimated true conditional correlations when the 

testlet effect was small (� =1) and underestimated true conditional correlations when the 

testlet effect was large (� =2). However, because the deviance between CC-Sumscore 

and CC-True at  � =1 is so small, it can be considered random error instead of 

overestimation or positive bias. In contrast, CC-NP underestimated the true conditional 

correlation across all conditions.  

Similar to the equal testlet effect conditions, the estimated conditional correlation 

for the large testlet size (2-testlet tests) condition was smaller than that of the small testlet 

size (4-testlet tests) condition. That is, CC-NP and CC-Sumscore underestimated the 

conditional correlations more for the large-testlet-size conditions than for the small-

testlet-size conditions. One possible explanation for this phenomenon is that it is more 

difficult for the estimated attribute profile to account for the variation of response 

patterns in four testlets than for that in two testlets. Therefore, the shared variance among 

items might be captured more in the 2-testlet condition (larger testlet condition) than in 

the 4-testlet condition (smaller testlet condition).  

The information described above can also be found in Figure 4. The graph is read 

the same way as Figure 2. From left to right, when testlet effect � increased from 1 to 2, 

the estimated conditional correlation and standard error of estimation both increased. 

From bottom to top, when the number of testlets increased (size of testlet decreased), 

both CC-NP and CC-Sumscore increased in magnitude. 
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Table 13. Summary of Item-pair Conditional Correlation for Equal Testlet Size & Unequal Testlet Effect Conditions  

      

2-Testlet 

       

4-Testlet 

   

  True  NP  Sumscore  True  NP  Sumscore 

Sample � Mean SD  Mean SD  Mean SD  Mean SD  Mean SD  Mean SD 

 

50 1 .568 .129  .602 .129  .493 .061  .438 .08  .541 .144  .520 .141 

 2 .514 .056  .612 .143  .587 .122  .506 .059  .636 .161  .537 .135 

                   

100 1 .421 .130  .442 .127  .344 .069  .327 .08  .441 .169  .371 .149 

 2 .434 .053  .470 .188  .426 .096  .453 .065  .461 .133  .437 .089 

                   

500 1 .179 .029  .138 .026  .136 .030  .132 .028  .143 .039  .156 .045 

 2 .294 .028  .155 .032  .206 .020  .299 .031  .186 .049  .247 .026 

                   

1000 1 .134 .012  .088 .012  .103 .014  .102 .019  .097 .022  .114 .016 

 2 .272 .021  .113 .017  .170 .012  .277 .025  .151 .029  .206 .019 

                   

10000 1 .102 .004  .062 .003  .075 .005  .076 .005  .069 .006  .082 .005 

 2 .265 .007  .096 .006  .145 .004  .276 .006  .136 .009  .191 .005 
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Figure 4. Distribution of Estimated Item-pair Conditional Correlations for Unequal- 

Testlet-Effect-Size Tests (N=10,000) 

 

4.1.4 Summary of the Main Findings  

In summary, this section found: 1) Small sample size and large testlet effects 

contributed to large estimation errors. 2) Both CC-Sumscore and CC-NP underestimated 

the true conditional correlations. 3) In equal-testlet-effect conditions, CC-Sumscore 

demonstrated more underestimation than CC-NP, although the relationship was reversed 

in unequal-testlet-effect conditions. 4) The magnitude of underestimation for both 

methods increased when testlet effects increased.  
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The CC-Sumscore method produced less underestimation than CC-NP except in the 

4-testlet unequal testlet size conditions. Therefore, conclusions cannot be made about 

which method is better based only on the  results of this study.  

4.2 The Performance of Testlet NP Methods 

In this section, the classification accuracy for the proposed testlet NP methods 

(weighted Hamming distance methods) are reported and compared to the NP method and 

the MLE method. In Chapter Three, the weighting coefficient in testlet NP methods is 

defined as a function of the average conditional correlation and testlet size. In addition, it 

was proposed that the conditional correlation should be estimated by the method that 

approximates the true conditional correlation most accurately. However, the results of 

conditional correlation estimation did not provide an optimal method and therefore, both 

CC-NP and CC-Sumscore methods were used to estimate the weights. Weights were also 

estimated by CC-True. The respective testlet NP methods are named Testlet NP based on 

NP estimated profiles (NPT), Testlet NP based on attribute sum-score estimated profiles 

(Sumscore), and Testlet NP based on true attribute profile (True). Throughout the 

remainder of the document, “testlet NP methods” was used interchangeably with 

“weighted methods” depending on the circumstances. Similarly, the “unweighted 

methods” were also used to represent the NP method and MLE.  

The correct classification rates (CCRs) including AARs and PARS were 

summarized by sample size, testlet effect size in Tables 12-14 and Figures 4-7. Results 

for each test condition were presented in the following order: the condition with equal 

testlet sizes and equal testlet effects, the condition with unequal testlet sizes and equal 
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testlet effects, and the condition with unequal testlet effects and equal testlet sizes. As 

testlet NP methods are mainly weighted by the testlet effect, it is anticipated that the 

results are more influenced by testlet effect size rather than sample size. Therefore, 

information in Tables 14-16 was organized differently from that in the previous sections 

about conditional correlation estimation. Specifically, the CCRs were organized first by 

testlet effect and then by sample size.  

4.2.1 Equal Testlet Size Equal Testlet Effect 

Table 14 summarizes the classification accuracy rate of the three weighted 

methods and two unweighted methods for the condition with equal testlet size and equal 

test effect condition. It should be noticed that AARs are always higher than PARs and 

decreased in a low-rate than PARs when testlets effect increased.  
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Table 14. Average CCRs for Equal Testlet Size Equal Testlet Effect Condition  

    AAR            PAR     

� N True NPT 

Sum- 

score NP MLE 

 

True NPT 

Sum- 

score NP MLE 

 

2-Testlet 

             

0 50 .972 .973 .973 .971 .973  .900 .903 .904 .897 .905 

 100 .971 .970 .970 .973 .971  .895 .891 .892 .901 .897 

 500 .971 .971 .970 .971 .972  .896 .897 .894 .895 .899 

 1000 .969 .969 .969 .969 .970  .890 .889 .890 .890 .891 

 10000 .970 .970 .970 .970 .969  .893 .892 .893 .893 .887 

             

.5 50 .964 .965 .964 .967 .966  .878 .881 .876 .886 .885 

 100 .964 .965 .965 .965 .964  .872 .874 .875 .874 .870 

 500 .966 .966 .966 .966 .968  .881 .880 .880 .878 .887 

 1000 .963 .964 .963 .963 .966  .871 .872 .870 .871 .879 

 10000 .964 .964 .964 .964 .964  .872 .872 .872 .872 .871 

             

1 50 .946 .948 .946 .945 .948  .822 .830 .824 .827 .831 

 100 .941 .939 .939 .940 .944  .803 .799 .797 .799 .813 

 500 .942 .943 .942 .942 .948  .808 .811 .808 .808 .825 

 1000 .941 .941 .940 .940 .945  .803 .804 .803 .802 .815 

 10000 .942 .942 .942 .942 .945  .808 .808 .809 .808 .812 

             

2 50 .863 .860 .863 .863 .858  .622 .619 .623 .623 .611 

 100 .866 .864 .867 .867 .867  .621 .617 .623 .622 .621 

 500 .862 .861 .860 .862 .866  .622 .618 .619 .620 .626 

 1000 .860 .860 .860 .859 .863  .617 .619 .620 .616 .616 

 10000 .860 .860 .860 .860 .863  .618 .619 .620 .618 .615 

             

3 50 .773 .769 .770 .772 .750  .448 .443 .446 .446 .402 

 100 .784 .782 .784 .783 .771  .479 .478 .478 .472 .451 

 500 .783 .784 .784 .783 .776  .475 .479 .477 .475 .453 

 1000 .777 .777 .777 .777 .768  .468 .470 .469 .469 .443 

 10000 .781 .781 .780 .781 .773  .474 .474 .474 .473 .447 
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Table 14. Continued 

    AAR            PAR     

� N True NPT 

Sum- 

score NP MLE 

 

True NPT 

Sum- 

score NP MLE 

 

4-Testlet 

 

0 50 .973 .973 .973 .974 .973  .905 .908 .904 .908 .908 

 100 .973 .972 .973 .971 .972  .901 .898 .900 .896 .899 

   500 .970 .970 .970 .971 .972  .894 .894 .894 .898 .899 

 1000 .970 .970 .970 .970 .970  .891 .891 .891 .892 .893 

 10000 .970 .969 .970 .970 .969  .893 .891 .892 .893 .888 

             

.5 50 .967 .967 .967 .968 .969  .889 .888 .887 .892 .893 

 100 .965 .965 .964 .966 .966  .876 .875 .872 .875 .877 

   500 .965 .964 .965 .965 .968  .878 .875 .876 .877 .889 

 1000 .964 .964 .963 .963 .965  .873 .872 .871 .870 .877 

 10000 .965 .964 .965 .965 .965  .878 .875 .877 .877 .874 

             

1 50 .952 .951 .952 .951 .957  .837 .833 .836 .833 .851 

 100 .947 .947 .946 .945 .949  .819 .818 .815 .813 .826 

   500 .951 .951 .951 .950 .955  .835 .834 .833 .830 .848 

 1000 .948 .948 .947 .947 .952  .825 .822 .821 .821 .833 

 10000 .950 .949 .950 .949 .951  .829 .826 .827 .825 .831 

             

2 50 .884 .881 .886 .887 .880  .656 .650 .662 .658 .649 

 100 .884 .882 .884 .884 .885  .644 .639 .645 .646 .648 

   500 .884 .883 .883 .884 .890  .653 .647 .649 .654 .667 

 1000 .883 .882 .883 .882 .888  .649 .645 .647 .648 .660 

 10000 .885 .882 .883 .883 .889  .654 .642 .646 .647 .663 

             

3 50 .816 .807 .811 .815 .792  .505 .488 .496 .500 .449 

 100 .817 .815 .819 .818 .801  .515 .510 .514 .507 .470 

   500 .812 .811 .810 .811 .803  .501 .497 .495 .498 .473 

 1000 .807 .805 .806 .807 .796  .490 .483 .486 .489 .461 

 10000 .810 .806 .806 .808 .799   .496 .484 .483 .491 .460 

 

Note, True: Testlet NP weighted by conditional correlation based on true attribute profile; 

NPT: Testlet NP weighted by conditional correlation based on NP estimated attribute 

profile; Sumscore: Testlet NP weighted by conditional correlation based on Sumscore 

estimated attribute profile. NP: Original Hamming distance method. 
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If the testlet effect size for all of the testlets in a test are equal, it is the same as no 

weighting. Therefore, it is expected when the conditional correlations are accurately 

estimated, there should be no difference between the weighted methods and unweighted 

methods. Compared to the NP method that ignored the testlet effect, testlet NP methods 

did not show dramatic improvement regarding classification accuracy, though, testlet NP-

True did demonstrate higher classification accuracy in 2-testlet conditions when testlet 

effect was large (� = 3) and in 4-testlet conditions when � ≥ 1. The differences between 

the three testlet NP methods were minor.  

Figures 5 and 6 visually display the distribution of PAR by test condition. The 

graph is read left-to-right and top-to-bottom. From left-to-right, when the testlet effect 

sizes increase, the classification accuracy decreases and the standard error of estimations 

increase. From top to bottom, when sample sizes increase, the standard error of estimates 

decrease. However, the change was not dramatic in terms of classification accuracy, 

which was true for both the unweighted and unweighted methods, and both the 

parametric method (MLE) and nonparametric methods.
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Figure 5. Distribution of PARs for 2-testlet Equal Testlet Size Equal Testlet Effect Condition 
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Figure 6. Distribution of PARs for 4-testlet Equal Testlet Size Equal Testlet Effect Condition 
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4.2.2 Unequal Testlet Effects Equal Testlet Sizes 

Table 15 summarizes AARs and PARs of the testlet NP methods in comparison to 

the unweighted methods in unequal-testlet-effect conditions. As described in the 

simulation design of Chapter Three, conditions regarding testlet size and testlet effect 

size for the unequal-testlet-effects condition were predetermined. That is, in the 2-testlet 

conditions, parameter � in the data simulation model is “1” for testlet 1 and “2” for testlet 

2; in the four-testlet condition, � is equal to .5, 1, 2, and 3 for each testlet, respectively. 

As such, the average testlet effect for the 2-testlet test is smaller than that of the 4-testlet 

test. Therefore, higher CCRs were produced in 2-testlet tests.  

The standard deviations of AARs and PARs were similar, thus only the 

distribution of the PAR are summarized in Figure 7. As it can be observed, smaller 

sample sizes are related to larger standard deviations.  

Table 15.  Average CCRs for Unequal Testlet Effect Equal Testlet Size Condition 

   AAR             PAR     

N True NPT 

Sum- 

score NP MLE  True NPT 

Sum- 

score NP MLE 

            2-Testlet        

50 .910 .914 .911 .905 .912  .728 .737 .733 .717 .738 

100 .912 .911 .910 .909 .916  .731 .729 .726 .721 .743 

500 .913 .915 .912 .910 .923  .739 .744 .736 .731 .764 

1000 .909 .911 .907 .905 .916  .725 .729 .721 .715 .741 

10000 .911 .913 .909 .907 .919  .733 .737 .727 .722 .747 

      4-Testlet     

50 .905 .906 .906 .898 .906  .710 .695 .710 .683 .714 

100 .911 .912 .910 .901 .918  .721 .712 .719 .700 .735 

500 .912 .911 .911 .902 .920  .731 .737 .728 .703 .748 

1000 .905 .905 .905 .896 .913  .712 .714 .710 .687 .726 

10000 .909 .909 .909 .899 .917   .724 .728 .723 .697 .738 

Notes, In two-testlet tests, �=1, 2; in four-testlet tests, �=.5, 1, 2, 3 
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MLE produced the highest AAR and PAR across all sample sizes and testlet 

effects. However, weighted Hamming distance methods provided higher classification 

accuracies than those of the unweighted NP method across all conditions. The difference 

between classification accuracies of weighted and unweighted NP methods is as high 

as .03 in terms of PAR. Among the three testlet NP methods, NPT (testlet NP weighted 

by the conditional correlation based on NP estimated attribute profile) showed a slight 

advantage over the other two testlet NP methods. 

 The influence of sample size on classification accuracies for all nonparametric 

methods in both 2-testlet conditions and 4-testlet conditions is small.  However, it should 

be noted that the AARs and PARs for N= 500 are consistently better than that in other 

sample size conditions (N= 50, 100, 1000, 10,000). This result is contrary to our 

expectation, as in general, the larger the sample size, the better the classification 

accuracy.  

The results described above were similar for 2-testlet and 4-testlet conditions. 

However, the advantage of the weighted Hamming distance methods over unweighted 

Hamming distance method was slightly larger in 4-testlet conditions. As the average 

testlet effect in a 4-testlet test is larger than that in a 2-testlet test. This result suggests that 

the weighted methods have more advantage in larger testlet effect conditions. The same 

was found in the previous section (the condition with equal testlet size and equal testlet 

effect), where the weighted methods exceeded the unweighted methods the most when 

the testlet effect size � = 3. 
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Figure 7. Distribution of the PARs by Sample Size for Unequal Testlet Effect and Equal Testlet Size Condition 

2-Testlet Condition 

 
 

4-Testlet Condition 

 
Notes, True:  Hamming distance weighted by conditional correlation based on true attributes profile; Sumscore: Hamming 

distance weighted by conditional correlation based on attribute-sumscore estimated attribute profiles; NPT: Hamming 

distance weighted by conditional correlation based on NP-estimated attribute profiles.
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4.2.3 Unequal Testlet Size and Equal Testlet Effect 

It was expected that the weighted methods in the unequal testlet size condition 

would not perform as well as they did in the equal testlet size condition because the 

conditional correlations were not accurately estimated. Because the AAR and PAR have 

the same pattern across all simulation conditions, only the PARs are summarized in Table 

16. In addition, the distribution of PARs across all conditions are presented using 

boxplots in Figures 8 and 9.  

Similar to what was found in the equal-testlet-size condition, the estimation error 

decreased with the increase of sample size and the decrease of testlet effect, the PAR of 

MLE increased more than the other methods when sample size increased, and decreased 

more than the other methods when testlet effect increased. This result indicated that MLE 

was more influenced by sample size and teslet effect than the other methods. 

Overall, MLE slightly outperformed the other methods in most test conditions. 

PARs for weighted Hamming distance methods were close to those of the NP method in 

most conditions except when sample size was as small as 50 and 100. When N= 500 or 

1000, weighted Hamming distance methods provided lower PARs than the unweighted 

Hamming distance method. This result is as expected for the accurate estimation of the 

weight coefficient-function of a conditional correlation- relies on large sample size. 
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Table 16. Averaged PARs from the Weighted Methods versus Unweighted Methods for 

Unequal Testlet Size Equal Testlet Effect Tests  

� N 

NP-

True 

NP-

Sumscore Sum NPT NP MLE 

2-Testlet 

0 50 .897 .914 .782 .905 .928 .936 

 100 .896 .899 .770 .900 .905 .923 

  500 .920 .921 .713 .919 .922 .941 

 1000 .911 .910 .756 .911 .911 .934 

 10000 .914 .914 .742 .914 .914 .936 

        

.5 50 .882 .899 .770 .887 .920 .930 

 100 .888 .891 .761 .889 .891 .913 

  500 .909 .908 .703 .908 .907 .932 

 1000 .896 .896 .744 .897 .896 .923 

 10000 .902 .902 .732 .902 .902 .927 

        

1 50 .832 .852 .695 .838 .867 .876 

 100 .834 .841 .709 .842 .848 .870 

 500 .867 .863 .655 .865 .866 .896 

 1000 .852 .851 .691 .850 .852 .886 

 10000 .858 .855 .666 .856 .857 .891 

        

2 50 .667 .674 .516 .660 .699 .681 

 100 .678 .688 .567 .695 .699 .714 

 500 .700 .699 .534 .700 .698 .720 

 1000 .695 .693 .541 .692 .695 .710 

 10000 .702 .698 .545 .698 .700 .727 

        

3 50 .506 .524 .371 .519 .526 .496 

 100 .546 .550 .463 .549 .552 .546 

 500 .560 .565 .437 .563 .561 .560 

 1000 .553 .556 .434 .556 .554 .548 

 10000 .555 .558 .443 .558 .557 .554 
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Table 16. Continued 

� N NP-True 

NP-

Sumscore Sum NPT NP MLE 

4-Testlet 

0 50 .902 .910 .782 .894 .930 .940 

 100 .895 .894 .779 .896 .905 .927 

   500 .919 .917 .715 .920 .918 .942 

 1000 .914 .909 .756 .913 .909 .934 

 10000 .919 .910 .743 .919 .914 .936 

        

.5 50 .883 .899 .775 .892 .927 .936 

 100 .881 .885 .762 .881 .891 .908 

   500 .907 .911 .706 .910 .910 .931 

 1000 .897 .902 .746 .898 .898 .924 

 10000 .899 .907 .735 .899 .903 .928 

        

1 50 .822 .840 .725 .842 .880 .887 

 100 .844 .845 .724 .844 .857 .883 

   500 .867 .870 .671 .868 .873 .904 

 1000 .854 .866 .707 .855 .862 .895 

 10000 .860 .868 .682 .858 .866 .899 

        

2 50 .628 .668 .538 .658 .716 .710 

 100 .687 .706 .606 .703 .721 .744 

   500 .730 .723 .570 .723 .731 .758 

 1000 .712 .714 .570 .705 .717 .747 

 10000 .721 .727 .577 .712 .724 .755 

        

3 50 .502 .539 .421 .523 .575 .526 

 100 .543 .558 .492 .560 .574 .557 

   500 .574 .571 .460 .566 .574 .563 

 1000 .571 .575 .464 .563 .574 .558 

 10000 .575 .583 .472 .566 .578 .565 

Notes, NP-True: Hamming distance weighted by conditional correlation based on true 

attributes profile; NP-Sumscore: Hamming distance weighted by conditional correlation 

based on Sumscore-estimated attribute profiles; Sum: Attribute Sumscore method; NPT: 

Hamming distance weighted by conditional correlation based on NP-estimated attribute 

profiles; NP: Hamming distance method. 
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The performance of the weighted methods in the unequal-testlet-size condition 

deteriorated compared to the equal-testlet-size condition. In equal-testlet-size condition, 

the weighted methods provided slightly higher CCRs than unweighted methods (i.e., the 

NP method) when testlet effects were large (e.g., �=3); in unequal-testlet-size condition, 

their CCRs were lower than the NP method. Recall that in conditional correlation 

estimations, the magnitude of conditional correlations was related to testlet sizes, 

specifically, the CC-NP and CC-Sumscore estimated average conditional correlations 

were larger for the small testlet than for the large testlet although the two testlets had the 

same true testlet effects (i.e., simulated with the same � value). The inaccurate estimation 

of conditional correlations led to the wrong weighting coefficients. That is, the items in 

smaller testlets received a larger penalty than those in larger testlets. It can be observed 

that in zero to small testlet effect conditions (� ≤ .5), the weighted methods provided 

lower PARs than the unweighted methods. When testlet effects increased, the difference 

between weighted methods and the unweighted methods decreased.  

The CCRs of the three weighted methods were almost identical. Testlet NP-True 

did not provide higher CCRS than any of the other weighted methods. This similarity 

between the weighted methods was unexpected because more accurate estimations of 

conditional correlations were anticipated to lead to higher classification accuracy.  

When there were not testlet effects, PARs from the weighted methods were close 

to each other for the 2-testlet conditions and 4-testlet conditions. When the testlet effect 

increased, PARs for the 4-testlet test conditions became increasingly higher than the 

PARs of 2-testlet conditions. This difference may be due to the fact that the testlet size 
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variation in 2- and 4-testlet tests were different from each other. The testlet size variation 

in the 4-testlet test (consists of 2-, 4-, 8-, and 10- items testlets) are smaller than that in 

the 2-testlet test (consists of 8-, 16- items testlets). When the true testlet effects within a 

test are equal, the test with the larger testlet size variation will result in large variation 

among estimated weights. Therefore, Hamming distance was weighed incorrectly 

because all testlets should be penalized equally if they have the same testlet effect sizes. 
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Figure 8. Distribution of PARs for Unequal Testlet Size 2-Testlet Tests 
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Figure 9. Distribution of PARs for Unequal Testlet Size 4-Testlet Tests 
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4.2.4 Summary of the Testlet NP Results  

Testlet NP methods provided higher classification accuracy than NP in conditions 

where the testlet effects were large. However, across all conditions, MLE produced the 

highest classification accuracy except where the testlet effects were extremely large. 

Next, the results are summarized by the factors in testlet design.  

4.2.4.1 Equality of Testlet Effect    

The weighted Hamming distance methods provided higher classification accuracy 

than unweighted Hamming distance method when the testlet effects were unequal across 

testlets. It can be concluded that weighting the Hamming distance with a function of the 

average item-pair conditional correlation (Equation 38) improved classification accuracy. 

The purpose of testlet-NP methods is to penalize the items with larger testlet effect smore 

than items having smaller testlet effects. However, it should be noted that the advantage 

of weighted Hamming distance methods was found in tests that consisted of equal-size 

testlet. 

4.2.4.2 Equality of Testlet Size   

A comparison of Table 14 and Table 16 revealed that the classification accuracy 

of the proposed testlet NP methods in conditions with unequal testlet size were lower 

than those in conditions with equal testlet sizes. In addition, in conditions with equal 

testlet size, the weighted methods provided classification accuracies that were either 

similar or slightly higher than the unweighted method, whereas in conditions with 

unequal testlet size, the weighted methods produced lower classification accuracies than 

the unweighted methods. The deteriorated performance of weighted methods in unequal 
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testlet-size condition suggests that there may be better alternatives defining a weight 

parameter. As was found in the section of conditional correlation estimation, the size of 

CC-NP and CC-Sumscore estimated item-pair conditional correlations were dependent 

on testlet size. 

4.2.4.3 Testlet Size    

The difference between classification accuracy for the 2-testlet condition and the 

4-testlet condition was negligible in conditions with equal testlet size. However, in 

conditions with unequal testlet size, the classification accuracies for the 4-testlet tests 

were slightly higher than those of the 2-testlet tests, which might be due to a smaller 

difference in weights among items in 4-testlet tests when compared to 2-testlet tests.  

Because an interdependency was found between estimation of conditional correlations 

and testlet size in conditions with unequal testlet size, a conclusion cannot be arrived at 

whether or not testlet size influences the performance of weighted Hamming distance 

methods.  

4.2.4.4 Testlet Effect    

When the other factors were held constant, the weighted Hamming distance 

methods provided higher classification accuracies than the unweighted Hamming 

distance method (NP) in the large testlet effect conditions. Although not the focus of this 

study, it should be noticed that NP methods were comparable to the MLE when there was 

no testlet effects or small testlet effects, and had higher classification accuracies than 

MLE when testlet effect is large (� = 3). 
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4.2.4.5 Sample Size    

When sample size increased and the testlet effects were fixed, the difference of 

classification accuracy between the weighted methods and the unweighted methods 

became smaller, and the weighted methods provided higher classification accuracy. The 

influence of sample size on weighted methods is due to the fact that the calculation of the 

weights (function of conditional correlation) is not independent of sample size. Large 

sample sizes provided more accurate estimation of conditional correlations.  

Another thing about the impact of sample size on classification accuracy is that 

the N=500 in most conditions provide slightly higher CCRs than that in other sample size 

conditions. This result is contrary to our expectation, as in general, the larger the sample 

size, the better the classification accuracy. Future research might replicate the simulation 

study to investigate the impact of sample size on classification accuracy of different 

classification analysis methods. 
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CHAPTER V 

DISCUSSION AND CONCLUSION 

Local item dependency (LID) is an assumption for many psychometric models, 

such as item response models and diagnostic classification models. When the assumption 

of LID is met, there should be no significant covariance between items after conditioning 

on the respondents’ ability (abilities, attribute profiles). As with other statistical models, 

inferences drawn from diagnostic classification analyses are valid if this assumption is 

reasonable  

 Oftentimes associations between item responses still exist even after conditioning 

on the attribute profile. This association indicates that the assumption of LID is violated 

and the validity of the inferences drawn from the analysis is challenged. LID can be 

caused by multiple sources as described in Chapter one. Item bundle or passage 

dependency is one of the causes that has been studied in IRT. Because of the popularity 

of testlets in today’s assessment (Rosenbaum, 1984; Wainer, Bradlow & Wang, 2007; 

Lu, 2010; Zhang, 2010), it is necessary to investigate the issues related to testlet effects in 

diagnostic classification analysis.  

Psychometric models have been developed to account for testlet effects, such as 

the testlet IRT models (Wainer & Wang, 2000; Wainer, Bradlow & Wang, 2007) and 

testlet diagnostic classification models (Hout & Cai, 2012; Hansen, 2013). In application, 

practitioners often must choose between the accuracy and efficiency (the ease and/or 
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speed of administration). More accurate estimation often requires large sample size and 

more computation time. If the LID does not pose a serious threat to classification 

accuracy, practitioners often choose the model that is more parsimonious. In addition, 

modeling testlet effects that are negligible results in a more complicated model than 

necessary and potentially increases the error of parameter estimation (Demars, 2012). 

Therefore, it is necessary to understand the size of LID or testlet effects that exist among 

the item bundles and to what an extent classification accuracy can be impacted. 

As discussed in Chapter One, traditional methods of LID detection are not 

practical in situations where nonparametric classification methods are applied. The 

conditional-correlation (CC) approach to measure testlet effects was then developed to 

provide a general estimation of testlet effect. Similar to the conditional-covariance 

approach of detecting item dependency in IRT (Stout et al., 1996; Douglas et al., 1998), 

this study assumes that the association between item pairs within a testlet should be close 

to zero or a small negative value if the LID assumption is met.  

 If the testlet effects seriously threaten test validity, it should be accounted for in 

classification analyses. It is assumed that penalizing the Hamming distance with a 

coefficient related to the testlet effect, 1-(nitem-1)*r/nitem, and hence assigning more 

weight to the items that are less interdependent might increase the classification accuracy. 

Based on how initial attribute profiles are estimated, three weighted Hamming distance 

(testlet NP) methods for diagnostic classification analysis were proposed: the Hamming 

distance method weighted by CC-NP, the Hamming distance method weighted by CC-

Sumscore, and the Hamming distance method weighted by CC-True. A simulation study 
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was conducted to investigate whether or not the newly proposed testlet NP methods 

provide better estimations than the methods that ignore testlet effects. In the following 

discussion, a summary of the findings is first provided with respect to each of the two 

general research questions, followed by the implications and recommendations. 

5.1 Can Item-pair Conditional Correlation be Used to Estimate Testlet Effect 

Findings of the current study with respect to conditional correlation suggest 

several implications for practitioners. First, it was found that when the generated testlet-

effect increased, the estimated average item-pair conditional correlation increased. The 

mean values presented in Tables 9-12 in Chapter Four provide some insights in the size 

of conditional correlation that suggests a violation of LID in diagnostic classification 

analysis. Because conditional correlations accessed in this study can be computed when 

performing diagnostic classification, practitioners can calculate this statistic first and 

inspect its magnitude before interpreting the results or applying more complicated 

classification methods. However, because the CC approach also requires large sample 

sizes to achieve stable estimates, the results listed in Chapter IV should be considered 

specific to particular sample sizes and number of measured attributes.  

Second, sample size had a noticeable impact on the estimation of conditional 

correlation. In general, the larger the sample size, the larger the standard error of 

estimation, and the smaller the magnitude of the estimated conditional correlation. 

However, when the sample size reached 1000, the decrease of estimated conditional 

correlation was barely noticeable. On one hand, as sample size goes up, correlation 

coefficients fluctuate less around the "true" magnitude for the population r; therefore, the 
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estimation error decreased. On the other hand, it is more likely to calculate a larger 

correlation value with a smaller sample size than with a larger sample size because it is 

easier to fit a linear relationship for less data points. An extreme case is the linear 

correlation between two data points A and B on a two-dimensional space; you can always 

fit a line through these two points. In addition, although the testlet component 
s

ξ was 

always generated with N (0, 1), the resulted variance from smaller sample size was 

always larger than that with larger sample size. For example, the resulted variance was 

1.12 for N=500, but 1.00 for N=1000.  

Third, the estimated conditional correlation by both CC-Sumscore and CC-NP 

was negatively related with testlet size. That is, when the other factors were fixed, the 

larger the testlet, the smaller the conditional correlations estimated by CC-NP and CC-

Sumscore. However, there was not such a relationship for CC-True.  It is expected that 

the larger testlets exert a larger influence on the attribute profile estimation, which makes 

the estimated attribute profiles explain more variance in the larger testlet and leave less 

shared variance unexplained. In CC-True, the attribute profiles were not estimated but the 

true generated profiles, the variation among the influences exerted by different testlets 

did not exist, therefore, the magnitude of conditional correlation was not dramatically 

different across testlets of different sizes. Because of the above stated problem, it is not 

recommended that the proposed methods are used to compare testlet effect sizes of 

multiple testlets when they vary in sizes. Future studies should investigate the 

relationship between testlet size and estimated conditional correlation in different 

conditions other than those in this study. It is also helpful to see if LD-X2 and Yen’s Q3 
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discover similar relationships. If such a negative relationship is not found by other LID 

measurement methods, it may suggest a problem with the proposed conditional 

correlation method.  

Fourth, the magnitude of CC underestimation was not related to the accuracy of 

the initial attribute profile estimation. For example, although the Hamming distance 

method provided a higher classification accuracy than the attribute-sumscore method, 

CC-NP always underestimated CC-true more than CC-Sumscore did, except in the 

unequal testlet-size and 4-testlet condition. The unexplained shared variance estimated by 

the more precise classification method and less precise classification method are 

different. The conditional correlation based on NP estimated attribute profiles is more 

likely to be related to the testlet effect, whereas the conditional correlation based on 

attribute-sumscore estimated profiles is probably due to unexplained variances caused by 

inaccurate attribute classification. Considering there is no distinct difference between 

testlet NP based on CC-Sumscore and testlet NP based on CC-NP, the practitioners may 

choose either method to detect LID caused by the testlet. 

Lastly, although CC-NP and CC-Sumscore methods both underestimated the true 

conditional correlation, the ordinal relationship between testlets with differing testlet 

effects was still preserved. Based on the results from the simulation studies, the following 

conclusions may be drawn: if the attribute profile is estimated through the Hamming 

distance method or attribute-Sumscore method with sufficient sample size, an average 

conditional correlation larger than .01 indicates the presence of a small LID. An average 

conditional correlation larger than .05 indicates the presence of a moderate LID, and an 
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average conditional correlation larger than .1 signals a large LID. When the average 

conditional correlation is larger than .1, and the pattern-wise classification accuracy 

(PAR) is below .8, it is reasonable to consider using the testlet DCM to model the local 

item dependency. 

CC-NP and CC-Sumscore both underestimated the true LID when the testlet 

effect was large. The bias in estimations could be a result of the method used to compute 

the conditional correlation. The initial attribute pattern was estimated from all item 

responses including the testlet items. This method of obtaining attribute pattern estimates 

may lead to a poor estimation of attribute profiles, as a result, the average item-pair 

correlation is computed based on an incorrect conditional variable. The above stated 

problem also exists in Yen’s Q3. Practitioners may consider estimating the conditional 

correlation for each testlet by conditioning on attribute profile estimates based on all 

other items not included in that testlet.   

Although correlations conditioned on attribute profiles in this study was 

developed to detect testlet effect, like Yen’s Q3, it has the potential to be used to detect 

LID caused by other sources, such as incomplete/underspecified Q matrix, test 

speediness, etc. For example, in detecting LID caused by an incomplete or underspecified 

Q matrix, the conditional correlation can be calculated for all possible item pairs 

conditional on attribute profiles.  

5.2 Can Testlet Hamming Distance Method Improve Classification Accuracy  

The proposed testlet NP methods weight the original Hamming distance with a 

function of the testlet-specific average item-pair conditional correlation. Based on the 
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method used to estimate the conditional correlation, three testlet NP methods were 

examined in the simulation study. The results demonstrated that there were no distinct 

differences in terms of classification accuracy between testlet NP method based on CC-

true and testlet NP method based on either CC-NP or CC-Sumscore. This result suggests 

that the estimation method used to obtaining conditional correlations does not influence 

the performance of weighted Hamming distance methods. Therefore, in the following 

discussion, the three different weighted Hamming distance methods are not 

differentiated. 

The weighted Hamming distance methods provided higher classification accuracy 

than the unweighted Hamming distance method (i.e., the NP method) when testlet effects 

were large (� =1) regardless of sample size. However, in small sample size conditions, 

this advantage of unweighted Hamming distance methods decreased when the testlet 

effect increased. In extremely large testlet effect conditions (� = 3), the weighted and 

unweighted Hamming distance methods all provided higher classification accuracy than 

MLE. In other testlet effect conditions, MLE provided the highest classification accuracy. 

The influence of sample sizes on the classification accuracy of all methods was 

limited. Though the classification accuracy increased when the sample sizes became 

larger, the magnitude of this improvement was less than .01. In practice, if the number of 

measured attributes is small, sample size should not be a big concern in diagnostic 

classification analysis, especially when using the NP method and DINA-MLE.  However, 

it should be noted that this conclusion is drawn from simulation conditions where the 

number of measured attributes was four. It is expected that the influence of sample size 
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will be larger when the number of attributes increases. Future research might investigate 

the rate at which the classification accuracy deteriorates. 

 Consistent with what was found in Hansen (2013), where estimation bias for item 

parameters only occurred at � = 2, this study found that the impact of the testlet effect on 

DINA-MLE and the NP method was small when the testlet effect was within a reasonable 

range (� < 2). These findings suggests that both methods are quite robust to testlet 

effects. Therefore, when the average item-pair conditional correlation is less than .1, the 

impact of the testlet effect might not be a big concern for classification analysis. Based on 

the results from this study, it could be concluded that model techniques that account for 

the inter-item dependency should be implemented only when the average item-pair 

conditional correlation is greater than .1. This finding is also in line with what was found 

in testlet IRT studies (DeMars, 2012; Jiao & Zhang, 2014; Baghaei & Aryadoust, 2015), 

in which testlet effects had no noticeable impact on ability parameter estimation. 

This study found that the NP method was comparable to MLE regarding 

classification accuracy, which is consistent with findings in Chiu and Douglas (2013). In 

fact, the NP method in this study even provided slightly higher classification accuracy 

when large LID was present. The finding described above indicates that the NP method is 

more robust to the violation of LID in terms of classification accuracy. It is probably 

because the MLE method needs to estimate both item and person parameters. As shown 

in studies of testlet IRT (Jiao et al., 2012; Jiao & Zhang 2014; Baghaei & Aryadoust, 

2015), LID had more impact on item parameter estimations. In turn, item parameter 

estimations exert influence on person parameter estimations. Although the impact on 
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person parameters is small, it should not be ignored when the testlet effects are large. In 

contrast, there is no parameter estimation in the NP method, which may reduce the 

impact of testlet effects on the examinee classification. Therefore, in testlet-based tests, 

the NP method can be used as an alternative to MLE when diagnostic assessment follows 

either a conjunctive condensation rule or a disjunctive condensation rule.   

The criticism of parametric classification analysis is mainly due to its high 

demands of large sample sizes for model fitting (Chiu & Douglas, 2013; Wang & 

Douglas, 2015; Chiu & Köhn, 2015). Surprisingly, few studies have investigated how 

sample size influences the classification accuracy of parametric methods in comparison 

to the NP methods. Most simulation studies of diagnostic classification approaches used 

extremely large sample sizes to obtain stable estimations. However, diagnostic 

classification analyses are often based on small to medium scale assessments such as in 

classroom settings (Wang & Douglas, 2015) and psychiatric domains (Henson & 

Templin, 2006). Unexpectedly, the MLE method in this study provided classification 

accuracy as high as the NP method with a small sample size (N=50). Because this study 

only included tests that measure a small number of attributes as in Chiu & Douglas 

(2013), it can be concluded that sample size should not be a major concern for the MLE 

method if the number of measured attributes is no larger than four. Therefore, for 

practitioners, it is recommended that if the sample size is ≥ 50, the MLE method is still a 

reasonable option.  
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In summary, the performance of the testlet NP methods depends on the accuracy 

of estimation of the testlet effect. It is expected that when the weighting formula is 

improved, the testlet NP methods should provide higher classification accuracy.  

5.3 Limitations and Future Research 

With the increasing interest in diagnostic classification modeling (Huff & 

Goodman, 2007), there are still questions and problems left for its application and 

interpretation, such as differential item functioning, testlet effects, and item bias (Rupp & 

Templin, 2008). The current study investigates the problem related to testlet effects. 

Nonparametric methods were developed to detect testlet effects and then incorporate the 

testlet effects into the classification analyses. A simulation study was conducted to 

evaluate the proposed methods. Results of the simulation study should be cautiously 

interpreted because of the following limitations: 

First, this study only included tests where all items belong to a testlet, and did not 

consider tests with both independent items and testlet items. If the classification is based 

purely on responses to interdependent items, the accuracy could be lower than when 

based on responses that include independent items. The estimated testlet effects could not 

reflect the true LID when classification was not accurate, hence, the interpretation of 

testlet effect becomes problematic. When the attribute profile is conditioned on more 

accurately estimated profiles, the item-pair conditional correlations will be more 

accurately estimated. Future research should consider including both independent items 

and testlet items in designing diagnostic assessments or conducting simulation studies. 
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 Second, the choice of testlet effect conditions in this study was based on a 

previous simulation study (Hansen, 2013) rather than real test conditions. In IRT, testlet 

effects are measured by testlet variance and the variance rarely exceeds “3” (Wainer et al, 

2007; Zhang, 2010; Jiao et al., 2012; Eckes, 2014). For example, Wainer et al. (2007) 

found that in the four testlets of the 1994-1995 administration of the North Carolina Test 

of Computer Skills exam, testlet variance ranged widely between .03 and 2.8.  In other 

studies such as Jiao et al. (2012), the estimated testlet variance of a reading 

comprehension test could be very small (< .27). Papp, Glas and Veldkamp (2012) stated 

that a value 1.00 or larger is often found in real data-sets.  Compared to studies in testlet 

IRT (unidimensional models), the testlet effect was rarely estimated or measured through 

fitting a DCM model with Hansen (2013) as an exception. In Hansen (2013), the LD-X2 

was used to measure LID caused by testlet effect when fitting the testlet DCM. The 

detected values of LD-X2 for the two tests, PISA and TIMSS, were quite small. The 

reason that large testlet effects were used is because this study intended to examine 1) to 

what a degree that the classification methods ignoring testlet effect are robust to LID in 

terms of classification accuracy and 2) at what condition, the proposed CC methods and 

testlet NP methods work well. More studies need to be conducted with realistic � 

parameter to reflect testlet effect in reality.  

Third, the number of attributes measured per test was fixed at a small value “4” in 

this study. In reality, the number of measured attributes could dramatically vary. For 

example, in Von Davier (2009), TOEFL iBT was retrofitted to measure three skills. The 

PISA 2000 reading comprehension test measured four attributes (Hansen, 2013). In other 
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situations, there may be a need to learn about an examinee’s attribute mastery at a finer-

grain size or for specific curriculum standards. In that case, the number of measured 

attributes may be large. For example, TIMSS 2007 was retrofitted to measure 15 

attributes in Lee et al (2011). Future studies should investigate how the testlet NP 

methods perform in assessments that measure a larger number of attributes.   

Fourth, one potential reason that the testlet NP methods did not provide 

significantly higher classification accuracy than the NP method is that the accurate 

estimation of conditional correlation still depends on a large sample size. Oftentimes 

there are specific latent classes with only a few examinees. The conditional correlation 

estimation with examinees in that class was far from stable and accurate. For example, if 

two people have that particular latent class, the correlation between their responses to two 

items will be either “1” or “-1”.  To reduce the influence of inaccurately estimated 

conditional correlation caused by small sample size in a particular latent class, in 

obtaining the testlet-specific average conditional correlation, this study weighted the 

conditional correlation for each latent class by the corresponding number of respondents 

in that latent class. However, the estimated conditional correlation can be still inaccurate 

if the total number of examinees that take the assessments is small. For future research, 

the approximate estimation of testlet effects can be achieved through content experts’ 

rating a testlet with respect to the inter-item dependency. Because the ratings are based 

on non-statistical item properties, the estimation can be done before the item response 

data is collected. For example, in Baldonado, Svetin, and Gorin’s (2015) study, the 

linguistic experts were asked to rate the testlet items with respect to the common 
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necessary information required to correctly answer those items. The expert used “0” to 

represent item pairs that were not “connected” by necessary information for correct 

responses, and “1” to represent those they were “connected”. If the testlet effect of each 

testlet is preknown from the interdependency rating by content experts, the rating can be 

incorporated in testlet NP methods. When rating “1” represents no testlet effect, rating 

“2” represents low testlet effect, rating “3” represents medium testlet effect, and so on, 

the penalty parameter in teslet NP methods (Equation 37) can be defined as sγ = 1, 2, 

3, … When there is no testlet effect, that is, sγ = 1, the testlet NP method is the NP 

method.  

Fifth, using  	, the square of the correlation coefficient to show how much of the 

variation in two variables are associated, is probably more intuitive for approximating the 

shared variance among item pairs. In this study, condition correlation-Pearson’s ! was 

used as a heuristic to approximate LID.  The assumption behind using ! to approximate 

LID is that the relationship between responses to the item pair is linear. If the relationship 

between items is not linear, Pearson’s ! might underestimate the correlation between 

items. Therefore, future studies might consider approximating LID with  	 and using 

testlet-specific average item-pair  	 to approximate the testlet effect. This approach 

might increase the precision of weighting coefficients in testlet NP methods, and in turn, 

increase the classification accuracy rate.  

Lastly, this study found that sample size 500 consistently produced the highest 

CCR among all sample size conditions and across classification methods. This is against 

our general knowledge about the impact of sample size on estimation. Future research 
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might replicate the simulation study to investigate the impact of sample size on 

classification accuracy of different classification analysis methods. In addition, future 

research may also investigate the performance of CC approach and testlet NP methods in 

other test conditions such as test length, number of attributes, and especially item 

parameters.  In this study, clean item parameters were chosen so that the noise caused by 

testlet effect in the NP classification is not confounded with that caused by slipping and 

guessing. However, clean item parameters are generally not realistic in real practice. In 

addition, although a previous study (Chiu & Douglas, 2013) found that both the NP 

method and DINA-MLE were impacted by slipping and guessing parameters, it will be 

interesting to understand how the sizes of slipping and guessing parameters are reflected 

in LID estimation.  

Given the possible limitations, the main contributions of this paper are as follows: 

First, it contributes to a research gap in diagnostic classification analysis by presenting 

the nonparametric testlet effect detection methods: CC-NP and CC-Sumscore. Though 

those method underestimated the true conditional correlation in most cases, it did 

differentiate the testlets that vary in testlet effect size (magnitude of LID). Second, the 

proposed testlet NP methods represent an initial effort to account for testlet effects in 

nonparametric classification diagnostic analysis. The testlet NP methods generated higher 

classification accuracy than methods that ignore testlet effects in various test conditions. 

Though small, the improvement of the testlet NP methods from the NP is still 

encouraging. In high-stakes assessments, such as assessments that assign people into 
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different remediation groups, a slight increase of .01 in terms of a classification accuracy 

rate can still create serious impact or consequences.  

 The proposed testlet effect detection method can be used in educational 

assessment settings where teachers or schools need to diagnose students’ mastery status 

of a set of learning objectives, standards, or problem solving skills. As many reading tests 

include large proportion testlet items (e.g., North Carolina End of Grade Reading Test, 

NCDPI), it is important to measure the LID magnitude in these tests first and then give 

cautious explanation of the latent space. If the LID is moderate to large, more 

complicated models that account for testlet effect (e.g., testlet DCM models) or well-

developed testlet NP methods should be applied.  
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APPENDIX A 

SUMMARY OF TESTLET-SPECIFIC AVERAGE ITEM-PAIR CONDITIONAL 

CORRELATIONS FOR 4-TESTLET TESTS WITH UNEQUAL EFFECT SIZE  

  TRUE  NP  Sumscore 

N 
 

Mean SD  Mean SD  Mean SD 

50 .5 .394 .080  .536 .175  .494 .169 

 1 .438 .080  .541 .144  .520 .141 

 2 .506 .059  .636 .161  .537 .135 

 3 .530 .049  .521 .121  .554 .147 

100 .5 .234 .092  .379 .119  .320 .168 

 1 .327 .080  .441 .169  .371 .149 

 2 .453 .065  .461 .133  .437 .089 

 3 .492 .059  .484 .154  .479 .121 

500 .5 .063 .025  .124 .026  .128 .030 

 1 .132 .028  .143 .039  .156 .045 

 2 .299 .031  .186 .049  .247 .026 

 3 .423 .041  .270 .062  .329 .032 

1000 .5 .042 .013  .062 .015  .110 .023 

 1 .102 .019  .097 .022  .114 .016 

 2 .276 .025  .151 .029  .206 .019 

 3 .401 .022  .225 .040  .284 .019 

10,000 .5 .016 .004  .034 .005  .065 .005 

 1 .076 .005  .069 .006  .082 .005 

 2 .276 .006  .136 .009  .191 .005 

 3 .399 .007  .208 .012  .272 .006 

 

Note, the � value is corresponding to the four testlets in the same test.  


