Archived version from NCDOCKS Institutional Repository http://libres.uncg.edu/ir/asu/

BOONE, NORTH CAROLINA

Plethora of Plastics: Lesson Plan

By: Alana Baird

Abstract

Students will engage in the mathematical modeling process by using statistics about a real world situation to build and assess linear and exponential functions to see when each model is appropriate. Students will investigate the growth of plastic creation and the rise of the resulting waste using technology and mathematics, to better understand the problem, make predictions and think about future decisions.

Plethora of Plastics: Lesson Plan

Content Standards:

At the end of this lesson students should be able to:

- Distinguish between situations that can be modeled with linear functions and with exponential functions.
- Interpret the parameters in a linear or exponential function in terms of a context.
- Calculate and interpret the average rate of change of a function over a specified interval.
- Compute (using technology) and interpret the correlation coefficient of a linear fit.
- Fit a function to the data and then use the functions to solve problems in the context of the data.

Students will engage in the modeling process through choosing and using appropriate mathematics and statistics to analyze a real world situation. Students will investigate the real world problem using technology and mathematics, to better understand the problem, make predictions and think about future decisions.

a. Launch (10 minutes)

Students will watch a PowerPoint converted to SlideSnack (without audio) presentation the night before this lesson. Students will watch the slide show and answer the questions. Each student will bring his or her answers to class the following day. This PowerPoint will allow students to prepare for the lesson the night before through review and basic introductions. Also, students will come in with their answers ready to share with a partner. The link to the SlideSnack file is: <u>http://share.snacktools.com/F9FEF6BA9F7/bdxj4mic</u>

The PowerPoint will review functions previously encountered during the course, review how to create an equation to model specific problems, discuss fitting regression equations to real world data and making predictions with the model. Also, students will review how to determine which trend line to choose when presented with a graph and when only data points are given. Furthermore, the PowerPoint will review how to choose and calculate a line of best fit for linear models, and then review the skills needed to create scatter plots and add trend lines in Excel.

Lastly, the slideshow includes links to Moody's Mega Math Challenge and the "5 Gyres" website. These websites will serve as the inspiration for the mathematical modeling project, so students can peruse the website and get a sneak peak into the topic.

Teacher	Description of	Anticipated Student	Teacher Guidance
Considerations	Learning Activities	Responses	(During)
(Before)		_	
How will I engage	Break students into	Students should be	When choosing the
the students' prior	pairs. Have students	able to check most of	appropriate model for
knowledge?	discuss the	their answers to the	real life data sets

	1	1	
The PowerPoint	SlideSnack	questions posed in	students should
slideshow should	PowerPoint they	the slideshow with	calculate the
adequately review	watched the night	their partner.	differences and ratios
topics which relate to	before. Students		to identify the correct
the current lesson.	should use this time	One problem some	function. Ask students
Students will be able	to review what they	students might have	if they think the
to have a quick mini-	learned, discuss their	trouble with is how to	differences or ratios
lesson to refresh	answers to the	determine what	will always be exact
themselves on the	various problems	function will fit the	with real-world data.
prior knowledge, plus	posed within the	data given only the	Have students justify
there are links to	PowerPoint, and ask	table or set of points.	why or why not.
several websites	each other for		
where students can	clarification about	If students are still	Ask students to create
learn more about a	topics and questions	struggling with the	a situation where the
specific idea if they	presented in the	topic after a few	equation $y = 1/4x + 25$.
feel like they need it.	slideshow about	minutes of discussing	Also, have students
	which they were	it with their partner	explain the slope as a
Also, students have to	unsure.	they can investigate	rate of change.
answer questions on		the additional link	
several slides, and		provided. Or if	To address issues
bring their answers to		several groups share	about r-squared values
class to discuss with a		the same questions	ask students if they
partner. Students can		then the topic can be	think predictions made
work through the		addressed with the	using the equation y =
problems and then		entire class prior to	5.5x +62 with an r-
also get help from		starting the activity.	squared value of 0.79
their partner if they			will be
are still struggling		Students also might	a. Very accurate
once they get to class.		have additional	b. Slightly close
		questions about	c. Not a very
How can I keep from		Excel. Any minor	good prediction
giving away too		queries can be	
much of the		addressed by the	
problem?		teacher to the	
The links I provided		individual.	
to Moody's Mega			
Math Challenge just		Lastly, students	
shows the modeling		might have additional	
competition problem.		questions about r-	
Students might think		squared values.	
their assignment will			
be that, but I just		Hopefully students	
chose the links to get		will be excited about	
them thinking about		the problem	
plastics and recycling.		presented on	
When I chose		Moody's Mega Math	

functions for the	Challen an wahaita	
	Challenge website.	
review slide in the		
PowerPoint I made		
sure to include several		
different types of		
functions, not just the		
ones they will need to		
know for this lesson.		
How can I make it		
personal and		
relevant to the		
students?		
I think the "5 Gyres"		
website contains a lot		
of cool videos and		
information about		
plastics. Students		
today will eventually		
be involved in the		
creation of solutions		
to the many global		
problems. Students are aware of issues,		
such as global		
warming and		
pollution, so showing		
them how to attack		
these types of		
problems will be very		
beneficial to them in		
the future.		
What advantages or		
difficulties can I		
foresee?		
Reviewing prior		
knowledge before		
class frees more time		
for the activity.		
Since I gathered most		
of the data for the		
students they don't		
even have to worry		
with research.		

b. Explore (40 mir			
Teacher	Description of	Anticipated Student	Teacher Guidance
Considerations	Learning Activities	Responses	(During)
(Before)			
How will I organize	Students will work	Students used to	Some lower-ability
the students to	with a partner to	learner-oriented	level students might
explore this	complete the "Plethora	classrooms should	struggle with the
problem?	of Plastics" activity	have no difficulties	content and material;
Group students with	sheet. The student	working through the	therefore I have
one other person.	activity sheet is	problems. The	created two different
Make sure students	attached at the end of	problems build on	worksheets for the in-
given Worksheet A	this lesson plan.	each other and allow	class project and also
work with others		students to create	for the homework
assigned A and pair	Students will utilize	models by following	problems.
students working	their graphing	smaller simpler steps.	
through Worksheet B	calculators and Excel		Students who
with others working	to manipulate the data		normally struggle
through the same	and create models.	Students should be	through difficult
version.	Half-way through the	excited about using	material or through
	activity students will	Glogster to create	learner-centered
Each group will need	change roles so that	online posters. Plus,	activities should be
access to one	each student gets the	this part of the	given Worksheet B.
computer. If students	opportunity to practice	activity allows them	Worksheet B simply
work on two separate	with the technology.	to voice their own	provides a few more
computers they will		ideas on how to make	suggestions and
probably just	After students	the necessary	directions for lower-
complete the activity	complete the activity	changes.	level students.
individually, instead	sheet they will create		
of working with their	an online poster using		Students who enjoy a
partner.	Glogster. Write the		challenge can
To make sure both	directions for the		complete Worksheet
students work with the	poster and the link to		A. Worksheet A
technology and	the website on the		provides minimal
neither does all the	board.		directions and also
work, have students	1. Students will		includes several
switch roles half way	need to make a		Challenge questions.
through the activity.	group poster that		
This way both	outlines what		Individual questions
students eventually	their learned		can be addressed by
serve as the computer	about the		the teacher as he or
operator.	generation and		she walks around and
	accumulation of		observes students.
To further make sure	plastics. Explain		
both students are	to students that		Specifically, what
participating students	they must clearly		kinds of questions can
I		1	

b. **Explore** (40 minutes)

should complete their	explain (either	I ask:
own worksheets. If a	on the poster or	to make them probe
student is not	verbally during	further into the
	the presentation)	
operating the	1 · · ·	problem if the initial
computer at the time	their thought	question is
he or she can simply	patterns and why	"answered"?
sketch a graph of the	they attempted	How did you get that
data.	the problems	answer?
What materials will	like they did.	
students need to	2. Also, students	Explain your thought
encourage diverse	will use the	process to me.
thinking and	poster to voice	
problem-solving?	their own ideas	How do you know
Each pair will need	on how to	your answer is
access to one	increase plastic	correct? Have you
computer with Excel,	recycling,	justified your answer
Word, and the internet	decrease	with your work and
available.	production, and	thoughts?
	clean up the	
Also, each student	millions of tons	Compare your answer
should use their	already	to your partners.
graphing calculators	discarded.	Whose argument
when the need arises.		would win in a court
	A link to the free	of law? Why?
A ruler will help	edition of Glogster is	
students make more	located at the end of	to encourage
accurate estimations.	this section of the	student-to-student
	lesson plan. Students	conversation,
Each student will need	will need to create	thinking, learning,
a copy of either	an account, if they	etc.?
Worksheet A or B.	don't have one	Don't say you can't
	already, and then use	do it, and don't just
What advantages or	the application to	ask me because it is
difficulties can I	create their online	hard. Have you asked
foresee?	poster.	your partner what he
Working with a	poster.	or she thinks?
partner will allow the		
students to discuss		Can you build upon
their ideas with		your partners
someone else before		thinking? What can
answering the		you add to the answer
-		to make it more clear?
questions. Real world		to make it more clear?
problems require		
multiple approaches		
and everyone's critical		
thinking skills.		

Group work is always		
challenging because		
you sometimes have		
one student who relies		
on the other for the		
answers. Making each		
student complete his		
or her own worksheet		
will hopefully force		
students to engage in		
the material. Also,		
personal views and		
justifications required		
in several questions		
will make students		
have to think for		
themselves.		

Glogster free student education account:

http://edu.glogster.com/register?edu_type=student

<u>c</u> .	Summa	rize (15	5 minutes)
------------	-------	-----------------	------------

<u>c</u> . Summarize (15 min	· · · · · · · · · · · · · · · · · · ·		
Teacher	Description of	Anticipated Student	Teacher Guidance
Considerations	Learning Activities	Responses	(During)
(Before)			
How can I	Students will present	Students will probably	Remind students to
orchestrate the	their group poster	be reluctant to share	explain their thinking!
discussion so the	that outlines what	their thoughts and	
students summarize	their learned about	methods. During the	Encourage students to
the thinking in the	the generation and	Explore part of the	ask questions of each
problem?	accumulation of	lesson the teacher	group, or discuss any
Students must include	plastics. Students	should try to analyze	topics they were
their thought	will explain to the	each groups' poster	intrigued by.
processes and	class their thinking	and give suggestions	
justification for their	and methods for	for more details where	Pose class-wide
methods and	attempting the	needed.	questions such as:
calculations either on	problem.		How could we further
their Glogster poster		Hopefully the student	develop this model?
or during their oral	Also, during their	generated ideas to	What other variables
presentation of their	presentation students	improve recycling	effect this problem?
poster.	will voice their own	efforts will lead into	How could we account
	ideas on how to	some good class	for these variables?
Students who do not	increase plastic	discussions.	
complete this	recycling, decrease		If the class seems
component will loose	production, and		interested in the topic
points on their	clean up the millions		more activities could
presentation. Also, at	of tons already		be created, especially
the end of their	discarded.		ones that are more
speech I will ask			individual and
them specific	Students will then		differentiated. After
questions to make	answer questions		students understand the
them clarify their	from the teacher and		basic processes for
processes.	from fellow students		creating models for the
	about their		data students could be
What	presentation.		allowed to create their
generalizations can			own problem or model.
be made?	Each group will		For example, another
Students should see	present their posters.		problem is the filling of
how although the	Then any issues		landfills with organic
amount of plastic	which need to be		wastes. Students could
generated, recycled,	further addressed		be allowed to explore
and discarded may	will be discussed.		the topic and create
increase at a linear			their own problem to
rate each year, the			solve.
total amount of			
plastic that has			
accumulated in			

1 1011 (1		
landfills over the		
years can only be		
modeled with an		
exponential function.		
What advantages or		
difficulties can I		
foresee?		
Students will have to		
keep their		
presentations of their		
posters short so we		
don't run out of time.		
However, more		
importantly students		
will have to fully		
explain their		
thinking. More time		
might need to be		
spent on this lesson.		
1		
This lesson is very		
broad and many more		
activities could be		
generated from this		
topic. If students		
seem very interested		
it might be fun to		
expand this into a		
unit.		

d. Assessment of Student Learning

Students will complete the "Plastics Piling Up: Pointless Panic?!?" homework worksheet. Assign students either Worksheet A or B based on their understanding. Students who need less guidance should complete Worksheet A.

i. What questions are appropriate for my students to do after the investigation?

This worksheet will present a different situation and have students focus on choosing the best model using data points, difference, and ratios.

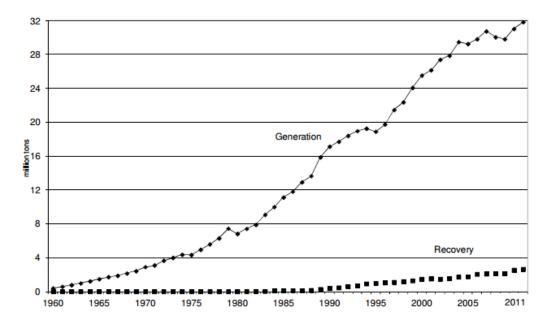
ii. What are the goals of the homework/classwork assignment?

Students will focus more on how to choose a good model, instead of allowing Excel to show them which is the best model. Since students have now worked with real-life models that are not always "pretty" this will give them a chance to do more of the mathematics behind the models instead of focusing on the

results. Plus, this worksheet introduces new variables into the overall topic and could be used to further explore the problem.

iii. How will students be supported in completing the assignment? Do I provide information and support for students and parents?

Students can still access the PowerPoint on SlideSnack to help guide them through the process of choosing models when only given data. The homework will be discussed as a class during the following class period.


Plethora of Plastics

Plastics are a rapidly growing segment of MSW. While plastics are found in all major MSW categories, the containers and packaging category (bags, sacks, and wraps, other packaging, PET bottles, jars and HDPE natural bottles, and other containers) has the most plastic tonnage at 13.9 million tons in 2011 (Figure 8 and Table 7).

Generation. Plastics made up an estimated 390,000 tons of MSW generation in 1960. The quantity has increased relatively steadily to 31.8 million tons in 2011 (Figure 9). As a percentage of MSW generation, plastics were less than one percent in 1960, increasing to 12.7 percent in 2011.

Recovery for Recycling. While overall recovery of plastics for recycling is relatively small -2.7 million tons, or 8.3 percent of plastics generation in 2011 (Table 7) – recovery of some plastic containers is more significant.

Discards After Recovery. Discards of plastics in MSW after recovery were 29.2 million tons, or 17.9 percent of total MSW discards in 2011 (Table 3).

Figure 9. Plastics generation and recovery, 1960 to 2011

United States Environmental Protection Agency. (May 2013). *Municipal solid waste in the United States: 2011 facts and figures*. (Office of Solid Waste Publication No. EPA530-R-13-001). Washington, DC: U.S. Government Printing Office. Retrieved from <u>http://www.epa.gov/epawaste/nonhaz/municipal/pubs/MSWcharacterization_fnl_0607</u> <u>13_2_rpt.pdf</u>. Worksheet A

Name:

1. Complete the table below. Data listed in the 1995 to 2011 Fact Sheets is given, however, you must estimate the values for years between 1960 and 1995 using Figure 9 above and fill in the appropriate cells.

*Remember Weight Discarded = Weight Generated – Weight Recovered (through Recycling)

YEAR	MILLIONS OF TONS OF PLASTIC DISCARDED
1960	
1965	
1970	
1975	
1980	
1985	
1990	
1995	18.90
1996	18.00
1997	18.70
1998	20.40
1999	22.80
2000	23.40
2001	24.00
2003	25.31
2005	27.25
2006	27.46
2007	28.61
2008	27.93
2009	27.71
2010	28.49
2011	29.19

- 2. Graph the data above using Excel and insert the graph below. Describe the data and any trends you notice.
- 3. Using Excel add a linear trend line. Display the equation and the r-squared value on the graph and write the equation and the coefficient of determination below. Is the equation a good fit? How do you know?

- 4. Interpret the slope of the linear regression equation created by Excel as a rate of change.
- 5. Interpret the y intercept. Does this make sense in this model?
- 6. Using the linear regression equation to predict how many millions of tons of plastic will be discarded in

2015:

2025:

7. Read back through the Generation section and study the graph of plastic generation from 1960 to 2011. Calculate the average rate of increase from 1960 to 2011. How many tons per year are created?

Do you think plastic production will continue at this rate? Why?

- 8. Look back at the Recovery information and the graph. Why do you think only 8.3% of plastics created are recycled?
- 9. Calculate the average rate of increase in Recovery. How many tons per year are recycled?

Do you think the rate of Recovery will continue to increase, start to decrease or plateau? If you think Recycling rates will continue to increase how do you think the rate of increase will change?

10. CHALLENGE: How many more tons per year must be recycled to make the amount of tons Discarded start to decrease?

11. Re-enter your data from above and then calculate the total amount of plastics Discarded into landfills at the end of each year.

*Remember to calculate Total Dumped at End of 1965 = Total Dumped at End of 1960 + Millions of Tons of Plastic Discarded in 1965

YEAR	MILLIONS OF TONS OF	TOTAL DUMPED AT
	PLASTIC DISCARDED	END OF YEAR
1960		
1965		
1970		
1975		
1980		
1985		
1990		
1995	18.90	
1996	18.00	
1997	18.70	
1998	20.40	
1999	22.80	
2000	23.40	
2001	24.00	
2003	25.31	
2005	27.25	
2006	27.46	
2007	28.61	
2008	27.93	
2009	27.71	
2010	28.49	
2011	29.19	

- 12. Using Excel create a scatter plot of the Total Dumped at End of Year with respect to time. What does the graph look like? What type of model will represent the data best?
- 13. Add the regression model you think will best fit the data. Write the equation and the r-squared value below. Is it a good fit? How do you know?

14. Using the equation make a prediction of how much plastic will be in landfills (and the ocean gyres) by

2015:

2025:

2050:

15. Do you think recycling alone will solve this problem? What are some of the challenges in recycling plastic that might hinder the United States from recycling all plastic?

16. What else do you think should be done to combat this problem? What are your ideas to curb generation, increase recycling, and begin cleaning up?

Worksheet B

Name:

1. Complete the table below. Data listed in the 1995 to 2011 Fact Sheets is given, however, you must estimate the values for years between 1960 and 1995 using Figure 9 above and fill in the appropriate cells.

*Remember Weight Discarded = Weight Generated – Weight Recovered (through Recycling)

YEAR	MILLIONS OF TONS OF PLASTIC DISCARDED
1960	
1965	
1970	
1975	
1980	
1985	
1990	
1995	18.90
1996	18.00
1997	18.70
1998	20.40
1999	22.80
2000	23.40
2001	24.00
2003	25.31
2005	27.25
2006	27.46
2007	28.61
2008	27.93
2009	27.71
2010	28.49
2011	29.19

- 2. Create a scatter plot of the data above using Excel and insert the graph below. Describe the data and any trends you notice.
- 3. Using Excel add a linear trend line. Display the equation and the r-squared value on the graph and write the equation and the coefficient of determination below. Is the equation a good fit? How do you know?

- 4. Interpret the slope of the linear regression equation created by Excel as a rate of change.
- 5. Interpret the y intercept. Does this make sense in this model?
- 6. Using the linear regression equation to predict how many millions of tons of plastic will be discarded in

2015:

2025:

7. Read back through the Generation section and study the graph of plastic generation from 1960 to 2011. Using the points (1960, _____) and (2011, 29.19) calculate the average rate of increase from 1960 to 2011. How many tons per year are created?

Do you think plastic production will continue at this rate? Why?

- 8. Look back at the Recovery information and the graph. Why do you think only 8.3% of plastics created are recycled?
- 9. Using the points (1960, 0) and (2011, 2.7) calculate the average rate of increase in Recovery. How many tons per year are recycled?

Do you think the rate of Recovery will continue to increase, start to decrease or plateau? If you think Recycling rates will continue to increase how do you think the rate of increase will change?

10. BONUS: How many more tons per year must be recycled to make the amount of tons Discarded start to decrease?

11. Re-enter your data from above and then calculate the total amount of plastics Discarded into landfills at the end of each year.

*Remember to calculate Total Dumped at End of 1965 = Total Dumped at End of 1960 + Millions of Tons of Plastic Discarded in 1965

YEAR	MILLIONS OF TONS OF	TOTAL DUMPED AT	
	PLASTIC DISCARDED	END OF YEAR	
1960			
1965			
1970			
1975			
1980			
1985			
1990			
1995	18.90		
1996	18.00		
1997	18.70		
1998	20.40		
1999	22.80		
2000	23.40		
2001	24.00		
2003	25.31		
2005	27.25		
2006	27.46		
2007	28.61		
2008	27.93		
2009	27.71		
2010	28.49		
2011	29.19		

- 12. Using Excel create a scatter plot of the Total Dumped at End of Year with respect to time. What does the graph look like? What type of model will represent the data best?
- 13. Add an exponential regression model to the data. Write the equation and the r-squared value below. Is it a good fit? How do you know?

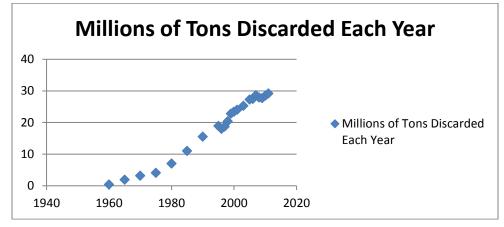
14. Using the equation make a prediction of how much plastic will be in landfills (and the ocean gyres) by

2015:

2025:

2050:

15. Do you think recycling alone will solve this problem? What are some of the challenges in recycling plastic that might hinder the United States from recycling all plastic?

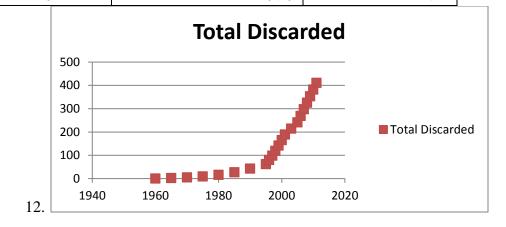

16. What else do you think should be done to combat this problem? What are your ideas to curb generation, increase recycling, and begin cleaning up?

Answer Key: Worksheets A & B

1. Estimations may vary; should be close to

Year	Millions of Tons Discarded
1960	0.39
1965	1.9
1970	3.2
1975	4.1
1980	7
1985	11
1990	15.5

2. Fairly linear; positive slope


3. y = 0.636x - 1249.6

 $R^2 = 0.9748$

Good fit; coefficient of determination close to 1

- 4. Slope = 0.636; 636,000 tons of plastic are discarded each year
- 5. Y intercept: 1249.6 means at year zero there were negative amounts of plastic; doesn't make sense in the context of the problem
- 6. Predictions
 - a. 2015 31.94 million tons of plastic
 - b. 2025 38.3 million tons of plastic
- 7. Generated = $\frac{31.8 0.39}{2011 1960} = \frac{31.41}{51} \approx 0.6159$; 615,882 tons/year generated
- 8. Answers will vary
- 9. Recovered = $\frac{2.7-0.0}{2011-1960} = \frac{2.7}{51} \approx 0.0529$; 52941.2 tons/year recycled
- 10. If Generated rate stays at 615,882 tons/year then people must recycle at least 562,942 more tons per year to make the trend decline.

Year	Millions of Tons Discarded	Total Discarded
1960	0.39	0.39
1965	1.9	2.29
1970	3.2	5.49
1975	4.1	9.59
1980	7	16.59
1985	11	27.59
1990	15.5	43.09
1995	18.9	61.99
1996	18	79.99
1997	18.7	98.69
1998	20.4	119.09
1999	22.8	141.89
2000	23.4	165.29
2001	24	189.29
2003	25.31	214.6
2005	27.25	241.85
2006	27.46	269.31
2007	28.61	297.92
2008	27.93	325.85
2009	27.71	353.56
2010	28.49	382.05
2011	29.19	411.24

- 13. $y = 2E 103e^{0.1208x}$
- 14. Predictions
- $R^2 = 0.9753$

Good fit

- a. 2015 1031.62 million tons of plastic
- b. 2025 3452.6 million tons of plastic
- c. 2050 70,748.2 million tons of plastic
- 15. Answer will vary
- 16. Answers will vary

Plastics Piling Up: Pointless Panic?!?

In class we investigated how plastic generation is increasing and the total amounts of plastic in our landfills and the ocean gyres is growing exponentially. Recycling rates are insubstantial, and as new plastic waste is added each year the total amount of plastic garbage is growing very quickly.

Who cares? Bury the plastic in the landfill and make new plastic goods!

Wait...let's examine how plastic deteriorates. Most waste products, once buried in the landfill, undergo the process of biodegrading as microorganisms begin to break down the organic materials which make-up the product. However, plastics, which are man-made polymers, are not ingestible by microorganisms, therefore, plastics do not decompose. Instead plastics are broken down by the process of photo degradation. Sunlight causes plastics to become brittle, and eventually shatter into smaller and smaller pieces.

Some news sources say it will take 500 years for plastic products to "decompose" in the landfills. On the other hand, if it has simply split into smaller pieces and has not actually become part of the carbon cycle has it really disintegrated or is it still there?

Lapidos, J. (2007). Will my plastic bag still be here in 2507? *Slate*. Retrieved from http://www.slate.com/articles/news_and_politics/explainer/2007/06/will_my_plastic_bag_still_be_here_in_2507.html.

Andrady studied plastic samples exposed to the air and samples exposed to marine conditions to study the deterioration rates. For example, he tested a sample of Polyethylene, which is representative of the plastic rings around soda six-packs and also of plastic bags. He calculated the tensile strength and the ultimate extension on each sample over the course of one year. Andrady states ultimate extension "is considered a more appropriate parameter than tensile strength for measuring physical degrada-tion since it reflects the brittleness and consequent tendency of the plastic to fragment."

Andrady, A. *Environmental degradation of plastics under land and marine exposure conditions*. Retrieved from <u>http://5gyres.org/media/Environmental Degradation%20of%20Plastics by Andrady.pdf</u> Worksheet A

Name: _____

1. Calculate the differences and ratios to determine what type of regression equation should be fitted to the data.

Months	Ultimate	Difference in	Difference of	Ratio of
	Extension	Values of	Differences	Values of the
	Mean	Dependent		Dependent
		Variable		Variable
0	82			
2	70			
4	43			
6	19			
8	12			
10	10			
12	8			

Data on Sample of Plastic Strapping Tape (Exposed in Air)

Is the data linear? Why or why not?

Is the data quadratic? Why or why not?

Is the data exponential? Why or why not?

2. Now, create a scatter plot using Excel, and insert the graph below. Does the graph justify your conclusion from #1? Add a trendline and write the equation and the coefficient of determination below.

CHALLENGE: How many months before the ultimate extension mean will reach zero? To reach 0.5?

3. Calculate the differences and ratios to determine what type of regression equation should be fitted to the data.

Data on Sample of Plastic Strapping Tape (Exposed in Seawater)

Months	Ultimate Extension Mean	Difference in Values of Dependent Variable	Difference of Differences	Ratio of Values of the Dependent Variable
0	89			
4	91			
6	82			
8	79			
10	63			
12	61			

Is the data linear? Why or why not?

Is the data quadratic? Why or why not?

Is the data exponential? Why or why not?

4. Now, create a scatter plot using Excel, and insert the graph below. Does the graph justify your conclusion from #3? Add a trendline and write the equation and the coefficient of determination below.

- 5. What do the graphs tell us about the longevity of plastic products? With regards to the amount of plastics in landfills why should scientists be concerned about plastic decomposition time?
- 6. Andrady notes samples in the marine environment do not undergo "heat buildup" therefore they decompose more slowly. However, they do break down into smaller pieces. What other problems could be modeled and evaluated mathematically that relate to this topic?
- 7. How does this information relate to food chains? Could we model the event and use it to make an estimate? Explain.

Worksheet B

Name: _____

1. Calculate the differences and ratios to determine what type of regression equation should be fitted to the data.

Months	Ultimate Extension Mean	Difference in Values of Dependent Variable	Difference of Differences	Ratio of Values of the Dependent Variable
0	82	70 - 82 = -12	-27 - (-12) =	70/82 =
2	70	43 - 70 = -27		
4	43			
6	19			
8	12			
10	10			
12	8			

Data on Sample of Plastic Strapping Tape (Exposed in Air)

Is the data linear? Why or why not?

Is the data quadratic? Why or why not?

Is the data exponential? Why or why not?

2. Now, create a scatter plot using Excel, and insert the graph below. Does the graph justify your conclusion from #1? Add an exponential trendline and write the equation and the coefficient of determination below.

3. Calculate the differences and ratios to determine what type of regression equation should be fitted to the data.

Data on Sample of Plastic Strapping Tape (Exposed in Seawater)

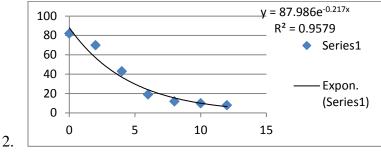
Months	Ultimate Extension Mean	Difference in Values of Dependent Variable	Difference of Differences	Ratio of Values of the Dependent Variable
0	89			
4	91			
6	82			
8	79			
10	63			
12	61			

Is the data linear? Why or why not?

Is the data quadratic? Why or why not?

Is the data exponential? Why or why not?

4. Now, create a scatter plot using Excel, and insert the graph below. Does the graph justify your conclusion from #3? Add a trendline and write the equation and the coefficient of determination below.


- 5. What do the graphs tell us about the longevity of plastic products? With regards to the amount of plastics in landfills why should scientists be concerned about plastic decomposition time?
- 6. Andrady notes samples in the marine environment do not undergo "heat buildup" therefore they decompose more slowly. However, they do break down into smaller pieces. What other problems could be modeled and evaluated mathematically that relate to this topic?
- 7. How does this information relate to food chains? Could we model the event and use it to make an estimate? Explain.

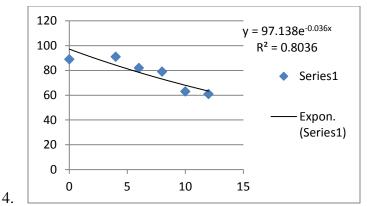
8. Answer Key Worksheets A & B:

months	ult. ext.	diff	diff of	ratio
			diff	
0	82	-12	-15	0.853659
2	70	-27	3	0.614286
4	43	-24	17	0.44186
6	19	-7	5	0.631579
8	12	-2	0	0.833333
10	10	-2	-6	0.8
12	8	-8	8	0

1. Chart

- a. Linear- no; difference not constant
- b. Quadratic- no; difference of differences not constant
- c. Exponential- best fitting model from choices; ratio close to the same for each

Good fit- looks like exp. Decay


CHALLENGE: (Worksheet A)

- a. Zero: Never
- b. 0.5: 23.8 months or approximately 24 months

months	ult. ext.	diff	diff of diff	ratio
0	89	2	-11	1.022472
4	91	-9	6	0.901099
6	82	-3	-13	0.963415
8	79	-16	14	0.797468
10	63	-2	-59	0.968254
12	61	-61	61	0

3. Chart

- a. Linear- no; difference not constant
- b. Quadratic- no; difference of differences not constant
- c. Exponential- best fitting model from choices; ratio close to the same for each

Not as good of a fit as #2. Less data points. The data is definitely decreasing, and it is not linear and it is not quadratic. Exponential is the best fitting model from the choices.

- 5. Answers will vary
- 6. Answers will vary
- 7. Bioaccumulations; toxins; could model with DDT in tropic levels model.

Guessing game

Read out different types of rubbish and get students to guess how long they can survive in the ocean. This can be done as a class activity (students can shout out answers and you can tell them higher or lower) or as a team activity (students can be put into teams and write their answers down, then check together as a class at the end).

At the end of the game, talk to the students about how the plastic doesn't go away, it just breaks down into smaller and smaller pieces. Even though this plastic is degraded, it still exists as tiny pieces. Plastic doesn't completely go away. You can also talk to them about the problems that plastic causes once it's in the ocean.

Item	Ocean degrade		
Apple core	2 months		
Aluminum can	200 years		
Tin can	50 years		
Cardboard box	2 months		
Plastic Bag	20 years		
Styrofoam	50 years		
Nylon fabric	40 years		
Plastic bottle	450 years		

Activity @

Rationale:

I chose this modeling problem because when Dr. Bauldry showed it to our class the first time I was intrigued. The problem is astronomical, and the extensions are limitless. Plus, this problem is current and needs to be addressed. I briefly discussed this problem with one of my classes, and showed them the video and they were interested as well. I didn't have my class complete an activity, so I thought it might be nice to have an activity ready if I ever got the chance to discuss this problem again with a new class.

I chose to create a PowerPoint and then tried to convert it to a SlideSnack because I am doing my Product of Learning on how flipped classrooms affect math anxiety, so I will be creating a lot of videos and SlideSnacks in the future. I had not created a SlideSnack before, so I thought I would be good to practice, however I could not get any audio recorded to my slides, therefore it is simply a PowerPoint presentation. In the future, when I master the audio recording part, I know that the addition of audio will complement the slides in the PowerPoint and will really be beneficial to students. I really like having students review prior knowledge and presenting minilessons outside of class time. Having students watch these videos at home allows more time in the classroom to complete activities like this one.

I chose to have students use Excel instead of relying solely on their calculators to create scatter plots and regression models of all of the data. I think students mainly interact with their calculators, so the introduction to new technology offers them a new way to work with mathematics, making them more adaptable. Plus, I like how easy it is to create display data and graphs in Excel.

I provided the web pages and data sets the students would need to complete the problem because the EPA documents are long and can be very confusing. I did not want the students to spend a bunch of time in class trying to find the right information, because then they would run out of time to actually complete the activity. Students need time in class to play with the technology and the problem, to discuss their results with their peers and their teachers, and time spent researching will only cut into this time. If I were to do further extensions of this project, such as letting a student choose a new problem to model, then I would have the student complete their own research, but for homework. I chose to differentiate for lower-ability level students because I often have these types of students in my developmental classes. Also, it was one of my goals for this class. I practiced creating an assignment, and then modifying it to better serve lower ability groups. For example, I incorporated more steps and hints into the original activity, but was still able to have students complete the same tasks as their peers.

I choose to have students present a Glogster poster- a Glog- instead of a presentation using any other technology or simply an oral presentation because it is a cool technology which most students probably have never seen. Additionally, I had students create a poster and then give an oral presentation as well because I hoped their explanation of their thinking would be more profound if they could use two different mediums to describe their methods and thoughts. Lastly, I had students create a poster because part of the assignment asked students to be creative and come up with ideas to improve the current waste production situation. I think posters and collages are very creative, so maybe the medium will help students get in touch with their inner creativity. Modeling problems take a lot of creativity to solve, so my hope is students' general creativity will positively influence their mathematics problems and help them create innovative and resourceful solutions.